
MetaLanguage: a Tool for Creating Visual

Domain-Specific Modeling Languages

Alexander O. Sukhov

Department of Software and Computing Systems

Mathematical Support

Perm State University

Perm, Russian Federation

E-mail: Sukhov.psu@gmail.com

Scientific Advisor:

Lyudmila N. Lyadova

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract. The technologies based on applying a metamodeling

and domain-specific languages are widely used at information

systems developing. There are many different tools for creating

graphical domain-specific language editors with a possibility of

determining user’s graphical notations. However they possess

disadvantages. The MetaLanguage system is designed to

eliminate some of these shortcomings. MetaLanguage is a

language workbench which provides creation of visual dynamic

adaptable domain-specific modeling languages used in the

development of information systems. In paper the approach to

development of MetaLanguage DSM-platform is considered.

Basic metalanguage constructions of this system are described.

The mathematical multilevel domain model with usage of

pseudo-metagraphs is constructed. Definitions of the graph and

metagraph are given. The algorithm of vertical models

transformations is described. The architecture and

implementation of the development environment of

MetaLanguage toolkit is presented.

Domain-specific language; DSM-platform; MetaLanguage;

metamodel; visual modeling languages; graph grammars

I. INTRODUCTION

One of the key requirements for information systems is the
possibility of flexible customization to ever-changing needs of
business processes and users. Domain modeling is an essential
stage in the development of any information system. One of
approaches for maximum adaptability – using models not only
at the system development stage, but also at system
functioning.

Model is an abstract description of system characteristics
which are important from the viewpoint of modeling purposes.
Model is described in some formal language. To each task
solution can be applied a modeling language which uses
concepts and relations from the information system domain.
The systems life cycle is based on usage of the several models
that are described from the various points of view and with
different levels of abstraction. Such approach is caused by that
system development process consists of several stages:
analysis, design, implementation, testing. For example, at the
analysis stage on the software look as on implementation of
specific business functionality needed to the customer,

herewith principles and details of implementation are not
important.

At system creation several levels of models are created: the
data that are stored in system database is a state model of the
information system domain; their description, which providing
a data interpretation or code generation to work with them, is a
metamodel; for developing this model special formal language,
which allows to work in terms of the appropriate domain, is
applied – the meta-metamodel here is used.

In fact, system creation with usage of modern workbenches
represents the development of domain-specific
languages (DSLs) – information system meta-metamodels.
DSLs are simple on applying and are easy to understand for
users as they operate with domain terms. Therefore now a large
number of DSLs is developed for using in different domains,
for example, for business processes modeling [1] and the
designing applications for mobile devices [2].

The use of DSLs and language workbenches allows to
simplify process of models creation. Experts – specialists in
various domains can be involved in the development.
Expressiveness of languages and productivity of the systems
created on their basis depends on properties of baseline
models, a choice of mathematical formalism for describing
language properties.

Today, there are many widespread visual DSLs, because
the diagrams are more clear and understandable not only for
programmers, but also for the domain experts and system
users. This approach to use of visual DSLs is called domain-
specific modeling (DSM). DSM-technology provides modeling
in domain terms.

There is no unified general-purpose visual language of
software development. In practice now are widely used such
languages of visual modeling, as Class Diagrams and ERD –
for domains modeling; IDEF, DFD, EPC, BPEL, and BPML –
for business process modeling, etc.

This paper is supported by Russian Foundation for Basic Research (Grant
12-07-00763)

Recently, UML claims to be the modeling language
standard, however, this language has some significant
disadvantages:

 UML diagrams are complicated for understanding not
only for experts who take part in system engineering,
but in some cases even for professional programmers;

 UML diagrams can’t adequately represent domain
concepts, since work is being done in terms of “class,”
“association,” “aggregation,” etc., rather than in
domain terms.

The language used to create other languages is called the
metalanguage. Process of model creation can be iteratively:
having created some language, we can use it as a metalanguage
for designing other language which, by-turn, also can be used
as a metalanguage, etc.

Despite all DSL advantages they have one big
disadvantage – complexity of the designing. If general purpose
languages allow creating programs irrespectively to domain, in
case of DSLs for each domain, and in some cases for each task
it is necessary to create the domain-specific language. If the
domain is quite simple and language is uncomplicated, the
compiler will create easily. More complex domain and
language will require much effort. Another shortcoming of
domain-specific language is that it’s necessary to create
convenient graphical editors to work with it.

The language workbench or DSM-platform is the
instrumental software intended to support development and
maintenance of DSLs [3]. Usage at DSLs creation a language
workbench considerably simplifies the process of their
designing [4].

It is necessary to make following demands to tools that are
using for creation of visual DSLs:

 possibility of modeling languages defining for the
majority of domains, as for description of business
processes, ontologies, object models, and for models of
applications for mobile devices creation;

 unified representation and description of models and
metamodels, i.e. for models and metamodels definition
the same toolkit should be used;

 ability to dynamically change the language description
without source code modification and without system
restart;

 consistency of domain metamodels and models
description, i.e. system should support language and
models in a consistent state, and when metamodel
changes system must perform all necessary
modifications in corresponding models automatically;

 enabling an ability of iteration metamodels definition,
i.e. describing a metamodel, the developer should be
able to use it as a tool for creation other metamodels;

 possibility of models transforming from one notation
to another.

II. RELATED WORKS

There are many different DSM-platforms for developing
DSLs graphical editors with a possibility of determining user’s
notations. These tools are MetaEdit+, MS DSL Tools,
Eclipse GMF, State Machine Designer, Meta Programming
System, REAL-IT, UFO-toolkit, etc. A main idea of DSM-
approach is to create toolkits that support optimal variants of
visual modeling for specific domain. Let’s consider these
platforms in more detail.

UFO-toolkit [5], unlike the other systems, supports a
simulation modeling of created models. This tool provides a
representation of any system as a set of three-element
constructions: “Unit – Function – Object” (UFO-element). The
“Unit” is a point of intersection of input and output arrows.
The “Function” is a transformation process of input into
output. The “Object” is a substance that implements this
function. The disadvantage of this system is that it does not
support a possibility of models usage created in other systems
since its notation does not correspond to an open standard.

Technology REAL-IT [6] is based on the use of UML.
Information system development is reduced to description of
the database and user interface with CASE-package REAL. On
the basis of these models the application can be automatically
generated. The generation possibility is provided by user
interface standardization and lack of nontrivial logic of data
processing. Otherwise in the generated code it is necessary to
add the code written “by hand.”

REAL-IT and UFO-toolkit at information systems creating
allow using only the built-in modeling languages. This
significantly limits the customization of these systems.

MetaEdit+ is a multiplatform environment that enables
users to simultaneously work with several projects each of
which can have a few models [7]. At usage this DSM-platform
besides a possibility of domain-specific language creation, the
developer receives the CASE tool into which this language is
integrated. MetaEdit+ allows to use several DSLs at system
creation.

The approach based on metamodels interpretation, instead
of code generation used in MetaEdit+ allows changing the
DSL definition at run-time. The system allows working with
languages and metalanguages universally, using the same
tools. The disadvantage of MetaEdit+ is that this DSM-
platform for export of models uses an own file format (MXT)
and this affects the openness of technology.

DSL Tools [8, 9] and Eclipse GMF [10, 11] technologies
provide the user with advanced IDE MS Visual Studio and
Eclipse, respectively. Because of this there is a possibility of
code completion in high-level languages “by hand,” but it can
lead to inconsistency of diagrams and source code. State
Machine Designer [12], in fact, is an add-on DSL Tools,
eliminating some of its defect. However, the State Machine
Designer allows creating a DSL only using UML Activity
Diagrams that considerably limits the range of tasks.

As opposed to other DSM-platforms in the Meta
Programming System [13] a method for designing textual

DSLs is supported. It's not so convenient, because the text is
not sufficiently expressive.

Technology Eclipse GMF is most powerful of the above.
However, its use is impeded by the lack of documentation,
complexity, and frequent releases of new versions. In fact,
Eclipse GMF is in a stage of intensive development.

Eclipse environment provides the user with tab GMF
Dashboard which allows accelerating DSL development
process by automatically generating of some language
components. On GMF Dashboard tab the sequence of the
operations which execution will lead to creation of a plug-in
for Eclipse that allows to build diagrams in current domain is
represented.

Cases when DSLs becomes part of other applications are
common. For example, a specially designed language for
describing business processes can be used in document
circulation. Therefore one more important characteristic of the
DSM-platforms is their alienability of the development
environment. DSL Tools, Eclipse GMF, Meta Programming
System are strongly associated with the development
platforms – MS Visual Studio, Eclipse, IntelliJ-IDEA,
respectively, therefore languages created by these workbenches
can’t be exported to external system.

All of these technologies do not provide the ability to create
both visual and textual DSLs. In addition, all DSM-platforms,
except for the MetaEdit+, do not allow creating the dynamic
adaptability languages.

Existing problems of definition and using domain-specific
visual modeling languages and DSM-platform restrictions
became a reason to the MetaLanguage system creation, which
would integrate the advantages of existing language
workbenches and eliminate some disadvantages.

The visual metalanguage of created system should

 allow to build models that are sufficiently detailed and
accurately describe the domain, so detailed and
accurately how much it is necessary in each case, thus
for different detail levels of description it is necessary
to use the same constructions;

 have a simple constructions, allowing to work with the
metalanguage not only to professional programmers
but also ultimate users, such as business analysts;

 provide an opportunity to specify not only language
syntax, but also its semantics.

III. CONSTRUCTIONS OF METALANGUAGE SYSTEM

The main shortcoming of metalanguages, which are used
for DSLs designing, is their static character: the developer
can’t change the existing metalanguage constructions. A basis
of this problem is that the metalanguage description is
embedded in system source code, therefore for metalanguage
modification it is necessary either to modify the source code,
what to make in most cases impossible, or to offer to put up
with language capabilities.

If the metalanguage description will be presented in the
form of metadata, there will be possibility to change created
language constructions in dynamics, i.e. without modification
of system source code.

MetaLanguage system is a tool for creating visual dynamic
adaptable domain-specific modeling languages used for
development of information system. To describe the
metamodels MetaLanguage toolkit uses metalanguage, which
basic constructions are the entity, the relation, the constraint.

A. Entity

The entity is any construction of modeling language.
Entities are characterized by

 name that uniquely identifies the entity within the
metamodel;

 amount of entity instances that can be created in the
model;

 set of entity attributes;

 set of entity operations;

 set of constraint imposed on the entity;

 flag of uniqueness that determines limits of entity
instance name uniqueness.

The amount of entity instances defines how many instances
can be created in the model. The amount of instances is set by
an integer from the interval [0, ∞). If value of this entity
characteristic is equal to zero, then at model designing the
entity of this type will not be in list of entities, proposed for
creation. If the value of the characteristic is equal to infinity, it
is possible to create an arbitrary number of this type entity
instances.

Attribute is the named property of the entity (relation),
including a description of valid values set.

The attribute has

 name that uniquely identifies it within the
entity (relation);

 type that determines a set of possible values for the
attribute and the operations that can be done on its
values;

 default value which will be chosen as the attribute
value, if the last is not specified;

 description which contains some additional
information about the attribute.

Entity (relation) can have any number of attributes or not
have them at all.

Operation is an abstraction of actions which can be carried
out over the entity. In most cases, an applying of the operation
leads to the fact that the entity changes the state.

The operation includes:

 name that uniquely identifies the operation within the
entity;

 operation parameters;

 default values for parameters which in case of
unavailability of basic values will be used when an
operation call;

 type of returned value;

 description, containing the additional information
about the operation.

Entity can have any number of operations or not have them
at all.

Consider the examples of entities. Fig. 1 shows a fragment
of metamodel for UML Use Case diagrams. The metamodel
contains two entities “Actor” and “Use Case.”

The entity “Use Case” has following attributes: “Name,”
“Description,” “Creation_Date.” The attribute “Name” has a
string type and defines the Use Case name. The attribute
“Description” sets the short description of the Use Case.
“Creation_Date” – the attribute which contains information on
when the “Use Case” has been created. Over the entity “Use
Case” the following operations are admissible: “SetName(),”
“SetDescription(),” “SetDate().”

An attribute of “Actor” is a string attribute “Name” which
specifies the name of the actor. Permissible operation over the
entity “Actor” is the “SetName()”operation.

B. Relation

Visual languages constructions in rare cases exist
independently, more often they are in some way related to each
other, therefore at metamodel creation importantly not only to
define the basic language constructions, but also correctly
specify the relations between them.

The relation is used for description a physical or
conceptual links between entities.

Any relation is characterized by

 name that uniquely identifies the relation in this
metamodel;

 type that defines the semantics of the relation;

 set of relation attributes;

 set of constraint imposed on the relation;

 multiplicity which determines how many entity
instances can participate in the relation;

 flag of uniqueness that determines limits of relation
instance name uniqueness.

Use Case

Name: String

Description: Text

Creation_Date: Date

SetName()

SetDescription()

SetDate()

Actor

Name: String

SetName()

Actor_PartUse_Case_Part

Figure 1. Fragment of metamodel for UML Use Case diagrams

The metamodel can contain the following types of relation:
inheritance, association, aggregation. However in models it is
possible to create only instances of the association and
aggregation relations. Consider each type of relation in more
detail.

Inheritance – a relation between the general
entity (superclass, parent) and a specific entity (subclass,
child).

The child entity inherits all parent attributes, operations and
relations. In addition to the parent it can also have their own
attributes, operations, relations, therefore child entity can be
used everywhere where the parent entity is used, but converse
is not true.

Entity can have only one parent and unlimited number of
child entities, i.e. multiplicity of this type relation is 1:M.

On Fig. 2 the fragment of metamodel for Entity-Relation
Diagrams is presented. The metamodel contains the entities
“Abstract,” “Attribute,” “Entity,” “Relation.” In order to
reduce the diagram entity operations are not represented in
figure.

Attributes of the entity “Abstract” are “Name” that
identifies an entity instance, and “Description,” containing the
additional information about the entity.

The entity “Attribute” has following attributes: “Name,”
“Type” and “Description.”

Abstract

Name: String

Description: Text

Entity Relation

Is_a Is_a

Has_Attribute

SuperClass_SubClass

Links

Attribute

Name: String

Type: String

Description: Text

Linked
Figure 2. Fragment of metamodel for Entity-Relation Diagrams

The entity “Abstract” is abstract, i.e. it is impossible to
create instances of this entity in the model. “Abstract” acts as a
parent for entities “Entity” and “Relation” (in the figure it is
shown by an arrow with a triangular end). Both child entities
inherit all parent attributes, operations, relations; these entities
have no own attributes and operations. Entities “Relation” and
“Entity” in addition to the inherited relation “Has_Attribute”
have their own relation “Linked_Links.” Another association
relation “SuperClass_SubClass” belongs to the entity “Entity.”

Association is a structural relationship which specifies that
entities of one kind are connected to entities of another.

If two entities are connected by association, then we can
navigate from one entity instances to another entity instances.
The association relation can be unidirectional and bidirectional.
Unidirectional association is used, when it is necessary to
specify that the relation instance can be drawn only in the
given direction, bidirectional association defines that the
relation instance can be drawn in both directions. The case
when both ends of association belong to one entity is a valid. It
means that some entity instance can be associated with another
instance of the same entity.

In addition to the previously described basic characteristics
of the relation, there is one more which applies only to the
association – a role. Entities related by association plays a role
in it. The role is a name which uniquely identifies one of the
association ends.

The arbitrary number of entity instances can participate in
association as with one, and on the other hand, thus, generally
a multiplicity of this relation is М:М.

On Fig. 2 two associations are presented. The bidirectional
association connects entities “Relation” and “Entity” it means
that in ERD-models between these entity instances it is
possible to draw equivalent relation. The second unidirectional
association binds entity “Entity” with itself, this allows any
instance of “Entity” to have parent (another instance of
“Entity”) in ERD-models.

Aggregation – a kind of association that models an unequal
part-whole relation.

The main difference of aggregation from association is that
the last reflects the relation between two equal entities, while in
aggregation one of entities is the main and another –
dependent. The distinctive features of aggregation is also the
fact that this type of relation is always directed, the multiplicity
of this relation is 1:M, and the aggregation ends can’t belong to
one entity.

At removal of main entity instance all instances of
dependent entity participating in this aggregation will be
automatically deleted.

In ERD metamodel between entities “Abstract” and
“Attribute” the aggregation relation is set (in figure this
relation is represented by an arc with a diamond end), therefore
in ERD-models instances of entities “Relation” and “Entity”
can be connected by aggregation with the instances of entity
“Attribute.”

C. Constraints

In practice quite often there are cases when it is necessary
to impose any constraints on entities and relations between
them.

If rules of diagrams connection set syntax of visual
language, constraints define its semantics. Some of constraints
are set by metamodel structure, and others are described on
some language. An example of the language used to describe
constraints is OCL.

All constraints imposed on the metamodel can be divided
into two groups: constraints imposed on the entities and
constraints imposed on the relations.

Constraints imposed on the entity can be one of the
following types:

 constraints imposed on the uniqueness of entity
instance name;

 constraints imposed on the amount of entity instances
in model;

 constraints imposed on the attribute values of entity
instance.

The name of the entity instance can be unique in the
metamodel, in the model or not be unique. The uniqueness in
the metamodel means that in all models which are created on
the basis of a current metamodel the entity instance name
should be appeared only once. The constraint of such type it is
necessary to set on the “Use Case” entity of metamodel for
UML diagrams, if you want to specify that names of all
instances of the “Use Case” entity must be unique in all
models.

The uniqueness in the model means that the name of entity
instance will be unique only within limits of the model of
which this entity belongs. The condition of name uniqueness of
the “Actor” entity in the Use Case diagram model can be an
example of such constraint.

Constraint imposed on the amount of entity instances in
model is set by specifying the number of instances at entity
creation. So instances of abstract entities at which value of
property “amount” is equal to zero, will not participate at
model creation. If value of this property is equal to one, then in
model it is possible to create only a single instance of this type
entity. An example of this type constraint is a condition that
limits an amount of created instances of the entity “Actor” by
value five, it will build a clear diagram, which is not
encumbered by great number of “Use Cases” and “Actors.”

In terms of defining the semantics of visual language the
constraints imposed on the attribute values of entity instance
are the most important. Such constraints are specified as
triples:

Attribute_Name: Sign: Value.

“Value” can be a constant, attribute value of the entity
instance or some function of attribute values of entity
instances.

For example, in a metamodel of Use Case diagrams
constraint of this type can be imposed on the attribute
“Creation_Date” of the “Use Case” entity, because the date
can’t exceed the current time. Such constraint may look like:

Creation_Date <= Now(),

where function Now() returns current system time.

All constraints imposed on the relation may be divided into
following groups:

 constraints imposed on the uniqueness of relation
instance name;

 constraints imposed on the types of connected entity
instances;

 constraints imposed on the relations multiplicity;

 constraints imposed on the attribute values of
connected entity instances.

Constraint imposed on the uniqueness of relation instance
name are similar to constraint imposed on the uniqueness of
entity instance name and can accept one of values: unique in
the metamodel, unique in the model, non-unique.

Constraints imposed on the types of connected entity
instances are defined by metamodel structure. These
constraints set rules for connection of different types of entity
instances. For example, the metamodel in Fig. 1 hasn’t
association the ends of which belong to the same entity, this
means that between two instances of the “Use Case” entity or
between two instances of the “Actor” entity it is impossible to
create an association instance.

Constraints imposed on the relations multiplicity are set at
their creation. Thus the relation of inheritance and aggregation
supports only 1:M multiplicity, which can be adjusted only for
dependent entity multiplicity. The association admits M:M
multiplicity with the ability to refine.

If in models of Use Case diagrams it is necessary to specify
that the amount of the “Actors” which involved with “Use
Case” can’t be more than five, then at creation of association
between entities “Use Case” and “Actor” it is necessary to set
the M:5 multiplicity.

The constraints imposed on the attribute values of
connected entity instances carry the greatest semantic weight.
Difference of these constraints from the constraints imposed on
the attribute values of entity instance is that first type
constraints allow setting specific entity instances on which
constraints are imposed.

Constraints of this type can be set on values of attribute
“Birthday” of connected entities “Person” in constructing the
metamodel “Family tree,” as the parent’s birthday can’t exceed
of child’s birthday.

IV. MATHEMATICAL DESCRIPTION OF MULTILEVEL

DOMAIN MODEL

Using constructions entity and relation it is possible to
build any model, including an invalid in the current domain.

There are various formalisms for specifying the syntax of
visual languages: automatic models [14], algorithmic nets [15],
graph grammars [16], et al.

Most of the existing approaches to definition visual
languages syntax consider a concrete syntax, and only in rare
cases – abstract syntax. The abstract syntax of visual modeling
languages does not need all those details that are presented in a
concrete syntax: it is possible to abstract from the choice of
icons used to display the language elements, and their
geometrical parameters, etc.

To define the formal rules of models creation it is proposed
to use graph grammars. Graph grammar is a generalization of
Chomsky grammars on graphs. To define a grammar it is
required to specify the finite sets of terminal and nonterminal
symbols, a finite set of production rules, and select the start
symbol in nonterminal symbols set. For representation graph
grammars it is necessary to choose such type of graphs which
would be provided the opportunity for an iteratively
metamodels definition, unified representation and description
of domain models and metamodels.

Production rules in graph grammar contain the left- and the
right-hand side. If to generalize the classic definition of graph
grammars, then as right-hand side of the rule may be not only a
labeled graph, but the code in any programming language, and
also a fragment of a visual model described in other notation.
That is why the graph grammar can be used for generation
syntax correct models and for refactoring of existing models,
code generation and model transformations from one modeling
language to another [17].

As an analysis result of various representations of graph
grammars it was determined that the most appropriate
formalism for describing the syntax of visual modeling
languages in MetaLanguage system are graph grammars,
which are constructed on the pseudo-metagraphs [18]. Let’s
define the domain metamodel and model, applying the selected
formalism, and construct the direct and reverse map of
metamodel graph on model graph.

A. Metamodel graph

Let { }, ,iEnt ent i i (N – set of natural numbers)

is a set of metamodel entities that is finite at every fixed point
in time, but extends at entity creation and reduces at removing.

Let's designate each entity as a tuple

enti = {ENamei, EICounti, EAttri, EOppi, EResti, EUniquei},

where ENamei is a entity name, EICounti – amount of entity

instances, { }, ,
ii j i iEAttr eattr j j – entity attributes,

{ }, ,
ii j i iEOpp eopp j j – entity operations,

{ }, ,
ii j i iERest erest j j – set of constraint imposed

on the entity, EUniquei – flag of uniqueness.

Sets iEAttr , iEOpp , iERest are finite at every fixed point

in time.

Let's divide all characteristics of i-th entity on two groups
EGi

1
 and EGi

2
. The first group consists of those characteristics,

which will be represented by separate nodes in graph model:
sets of attributes, operations, and constraints imposed on the
entity, i.e.

EGi
1
 = {EAttri, EOppi, EResti}.

Characteristics of second group EGi
2
 = {ENamei, EICounti,

EUniquei} (entity name, amount of entity instances, flag of
uniqueness) will be attributed to node of the corresponding
entity directly.

{ }, ,iRel rel i i denotes a set of metamodel

relations that is finite at every fixed point in time, but extends
at relation creation and reduces at removing.

Let relation is a tuple

reli = {RNamei, RTypei, RAttri, RMulti, RResti, RUniquei},

where RNamei is a relation name, RTypei – relation type,

{ }, ,
ii j i iRAttr rattr j j – relation attributes,

RMulti – multiplicity, { }, ,
ii j i iRRest rrest j j –

relation constraints, RUniquei – flag of uniqueness.

Sets iRAttr , iRRest are finite at every fixed point in time.

Characteristics of i-th relation will be divided into two
groups RGi

1
 and RGi

2
. The first group comprises a set of

relation attributes and constraints imposed on the relation. The
second group includes the following characteristics: “name,”
“type,” “multiplicity,” “flag of uniqueness,” i.e.

RGi
1
 = {RAttri, RResti},

RGi
2
 = {RNamei, RTypei, RMulti, RUniquei}.

Consider directed pseudo-metagraph (,)GMM V E . Let

a set of metamodel graph nodes is a union of seven disjoint
subsets:

1 1 1

Ent Ent Ent

i i i

i i i

V Ent EAttr EOpp ERest

1 1

Rel Rel

i i

i i

Rel RAttr RRest

. (1)

The set of pseudo-metagraph arcs E divide into six
disjoint subsets:

 { }, 1,iEEA eea i Ent – a set of arcs connecting

each metamodel entity with set of attributes belonging
to it;

 { }, 1,iEEO eeo i Ent – a set of arcs connecting

each metamodel entity with set of operations over it;

 { }, 1,iEER eer i Ent – a set of arcs connecting

each metamodel entity with set of constraints imposed
on it;

 { }, 1,iERA era i Rel – a set of arcs connecting

each metamodel relation with set of its attributes;

 { }, 1,iERR err i Rel – a set of arcs connecting

each metamodel relation with set of constraints
imposed on it;

 { }, ,iEERR eerr i i – a set of arcs

conforming to links between entities and relations that
is finite at every fixed point in time, but extends at
entity (relation) creation and reduces at removing.

Thus, we see that

 E EEA EEO EER ERA ERR EERR . (2)

The metamodel graph is a directed pseudo-metagraph

(,)GMM V E , for which (1) and (2), where V is a

nonempty set of graph nodes, E is a set of graph arcs.

Let's consider an example. We will construct a metamodel
graph for the entity “Use Case” of UML Use Case diagrams.
Metamodel of this diagram type is shown in Fig 1. Attributes
of the entity “Use Case” are “Name,” “Description,”
“Creation_Date.” Operations that can be performed on entity –
“SetName(),” “SetDescription(),” “SetDate(),” i.e. for given
entity

iEAttr {“Name,” “Description,” “Creation_Date”},

iEOpp {“SetName(),” “SetDescription(),” “SetDate()”},

iERest .

The metamodel graph corresponding to a fragment of the
“Use Case” entity shown in Fig. 3.

As can be seen from figure

1
{ }iEEA eea ,

1
{ }iEEO eeo , EER , EERR .

B. Model Graph

The model is actually an “instance” of metamodel in which:

 the attributes of entity – a concrete values;

 there are no operations over entity instances and
constraints imposed on the entity and relation
instances;

 inheritance relation instances can’t be created.

Name

SetName

eeoi1

eeai1

Use Case

(enti)

Description

SetDescription

Creation_Date

SetDate

EAttri

EOppi

Figure 3. Fragment of metamodel graph for

“Use Case” entity

Let's designate a set of all models which have been created
based on the current metamodel through

{ }, ,kM m k k that is finite at every fixed point in

time, but extends at model creation and reduces at removing.

Let's introduce following notation:

 iEntI – set of instances of i-th entity;

ij

EAttrI – set of attribute values for j-th instance of

i-th entity;

 kRelI – set of instances of k-th relation;

lkRAttrI – set of attribute values for k-th instance of

l-th relation.

Sets iEntI ,
ij

EAttrI , kRelI ,
lkRAttrI are finite at every

fixed point in time, but extend at entity (relation) instance
creation and reduce at removing.

Examine the directed pseudo-metagraph (,)GM VI EI .

Let a set of model graph nodes is a union

1 1 1 1

i k

i k

EAttr RAttrEnt Rel

i j k l

i j k l

VI EntI EAttrI RelI RAttrI

. (3)

Consider the following example. Let’s create a model
graph for instance of “Use Case” entity (Fig. 4).

From a figure it is apparently that

iEAttrI {“Pass_exam,” “Use Case describes passing an

exam process,” “21/06/09”}.

The set EI divides into three disjoint subsets:

 { }, 1,iEEAI eeaI i EntI – a set of arcs

connecting each entity instance with set of attributes
belonging to it;

 { }, 1,iERAI eraI i RelI – a set of arcs

connecting each relation instance with set of attributes
belonging to it;

 { }, ,iEERRI eerrI i i – a set of arcs

corresponding to the links between entity instances and
relation instances that is finite at every fixed point in
time, but extends at entity (relation) instance creation
and reduces at removing.

Thus, we see that

 EI EEAI ERAI EERRI . (4)

You can see from the Fig. 4 that for represented “Use

Case” entity instance
1

{ }iEEAI eeaI , EERRI .

The model graph is a directed pseudo-metagraph

(,)GM VI EI , for which (3) and (4), where VI is a

nonempty set of graph nodes, EI – set of graph arcs.

Pass_Exam

eeaIi1

Use_Case_Pass_Exam (entIi)

Use Case describes

passing an exam process
21/06/09

Figure 4. Model graph corresponding to “Use Case”

entity instance

C. Operation of Model Graph Creation

Let's construct map of the metamodel graph on the model
graph, it corresponds to an operation of a model graph creation.
Such map allow to support models in an actual state, as
metamodel modification leads to a change of all models
created based on it.

Let's introduce following notation:

1

Ent

i

i

EntI EntI

 – a set of model graph nodes

conforming to all entity instances;

1

Rel

i

i

RelI RelI

 – a set of model graph nodes

corresponding to all relation instances;

1 1

i

i

Ent EntI

j

i j

EAttrI EAttrI

 – a set of model graph nodes

conforming to attribute values of all entity instances;

1 1

k

k

Rel RelI

l

k l

RAttrI RAttrI

 – a set of model graph nodes

corresponding to attribute values of all relation
instances.

Sets EntI , RelI , EAttrI , RAttrI are finite at every

fixed point in time, but extend at entity (relation) instance
creation and reduce at removing.

Let’s construct a map that for each metamodel graph entity-
node defines a set of model graph nodes conforming to
instances of this entity, i.e.

 ()() : ()
i ii j i jent Ent entI EntI fe ent entI , if

entity is not abstract and has instances;

 () : ()i ient Ent fe ent , if entity is abstract and

does not have instances.

Map fe defines creation operation of node corresponding

to entity instance.

Let's define map of metamodel graph nodes EAttr

conforming to a set of entity attributes on a set of model graph
nodes EAttrI :

:fea EAttr EAttrI .

And besides

()() : () ,
i j i ji i
j k j keattr EAttr eattrI EAttrI fea eattr eattrI

1, , 1, , 1,
i ii i j ji Ent j EntI k EAttrI .

Map fea corresponds to the operation of assignment a

value to entity instance attribute.

Let's examine a set of metamodel graph nodes which
correspond to relations. With each node we associate a set of
graph model nodes that appropriate to particular relation

instances, as a result we obtain a map :fr Rel RelI , such

that the following

 ()() : ()
i ii j i jrel Rel reli RelI fr rel reli , if

relation has instances;

 () : ()i irel Rel fr rel , if relation does not have

instances.

This map defines creation operation of node corresponding
to relation instance.

Let’s define operation of assignment a value to relation
instance attribute. To do this, we will construct a map of
metamodel graph nodes RAttr conforming to a set of relation

attributes on set of model graph nodes corresponding to

attribute values RAttrI : :fra RAttr RAttrI .

And besides

()() : () ,
i j i ji i
j k j krattr RAttr rattrI RAttrI fra rattr rattrI

1, , 1, , 1,
i ii i j ji Rel j RelI k RAttrI .

Thus, maps , , ,fe fea fr fra define matching between set

of metamodel graph nodes and set of model graph
nodes (Fig. 5).

Now we will define the rules under which the arcs of graph
GMM are mapped to the arcs of graph GM .

Let's construct the map :gea EEA EEAI , according to

which each arc of the set EEA is put in correspondence with
specified arcs of the set EEAI , i.e.

()() : () ,
i j i ji i
j k j keea EEA eeaI EEAI gea eea eeaI

1, , 1, , 1,
i ii i j ji Ent j EntI k EAttrI .

Similarly, we can define a map :gra ERA ERAI for

which

()() : () ,
i j i ji i
j k j kera ERA eraI ERAI gra era eraI

1, , 1, , 1,
i ii i j ji Rel j RelI k RAttrI .

VIV

RelI

EntI

EAttrI

Rel

EAttr

Ent
fe

fea

fr

RAttrI
RAttr fra

Figure 5. The map of metamodel graph nodes on

model graph nodes

Let’s construct the map :ger EERR EERRI , according

to which each arc of the set EERR is put in correspondence
with specified arcs of the set EERRI , i.e.

()() : () ,
j ji i

i k k ieerr EERR eerrI EERRI ger eerrI eerr

1, , 1, , 1,
i ii i j ji Ent j EntI k EAttrI .

Thus, maps , ,gea gra ger define matching between the set

of metamodel graph arcs and the set of model graph arcs.

Model graph creation is a map of metamodel graph on
model graph at which conversions are performed

, , , , , ,fe fea fr fra gea gra ger .

D. Operation of Model Interpretation

Let's construct map of model graph on metamodel graph. It
defines operation of model interpretation which allows to
execute operations over entity instances and to check
constraints imposed on the entities and relations.

As model graph nodes are instances of metamodel graph
nodes, it is possible to define the map of the model graph
nodes on the metamodel graph nodes.

Let’s construct a surjection
1 :fe EntI Ent which to

each model entity instance puts in correspondence metamodel
entity

1()(!) : () ,
i ij i j ientI EntI ent Ent fe entI ent

1, , 1,i ii Ent j EntI ,

and besides several elements of the set EntI may correspond

to one entity, i.e. is performed

()(, ,) :
i i i ii j k j kent Ent entI entI EntI entI entI

1 1() ()
i ij k ife entI fe entI ent .

Let's define map which is an inverse of map fea :

1 :fea EAttrI EAttr .

This surjection to each element of set EAttrI puts in

correspondence a unique element of set EAttr , i.e.

1()(!) : ()
j i ji i

k j keattrI EAttrI eattr EAttr fea eattrI

, 1, , 1, , 1,
i i ij i i j jeattr i Ent j EntI k EAttrI ,

and besides several elements of the set EAttrI may

correspond to one element of the set EAttr , i.e. is performed

()(, ,) :
i j j j ji i i i
j k l k lea EAttr eaI eaI EAttrI eaI eaI

1 1() ()
j j ii i

k l jfea eaI fea eaI ea .

Let’s consider a set of model graph nodes that correspond
to relation instances. Each such node we associate with a
unique metamodel graph node, which corresponds to a current
relation, as a result we obtain a surjective map

1 :fr RelI Rel for which

1()(!) : () ,
i ij i j irelI RelI rel Rel fr relI rel

1, , 1,i ii Rel j RelI ,

and multiple relation instances may be created on the basis of
one relation, i.e. is performed

()(, ,) :
i i i ii j k j krel Rel relI relI RelI relI relI

1 1() ()
i ij k ifr relI fr relI rel .

Surjective map
1 :fra RAttrI RAttr which is an

inverse of map fra , each model node conforming to relation

attribute value associates with a unique metamodel node from
set RAttr :

1()(!) : ()
j i ji i

k j krattrI RAttrI rattr RAttr fra rattrI

, 1, , 1, , 1,
i i ij i i j jrattr i Rel j RelI k RAttrI ,

and multiple elements of the set RAttrI may correspond to

one element of set RAttr , i.e. is performed

()(, ,) :
i j j j ji i i i
j k l k lra RAttr raI raI RAttrI raI raI

1 1() ()
j j ii i

k l jfra raI fra raI ra .

Thus, four maps
1 1 1 1, , ,fe fea fr fra

 define matching

between the set of model graph nodes and the set of metamodel
graph nodes (see Fig. 6).

VI V

RelI

EntI

EAttrI

Rel

EAttr

Ent
fe

-1

fea
-1

fr
-1

RAttrI
RAttrfra

-1

Figure 6. The map of model graph nodes on metamodel

graph nodes

Since operations over entity and relation instances are not
defined, then for navigation between the entities, relations and
their instances let’s extend set of model graph arcs with the
arc-references connecting entity and relation instances with
those metamodel entities and relations on which basis they are
created. Let’s denote the set of such arcs through

1

, { }, 1,
i

Ent Rel

i i j i i

i

T T T t j EntI RelI

 .

Now we will define the rules under which the arcs of model
graph GM are associated with the arcs of metamodel graph

GMM .

Let’s construct the map
1 :gea EEAI EEA which to

each arc of the set EEAI puts in correspondence unique arc of
the set EEA , i.e.

1()(!) : () ,
j i j ii i

k j k jeeaI EEAI eea EEA gea eeaI eea

1, , 1, , 1,
i ii i j ji Ent j EntI k AttrI .

Similarly, we can define a map
1 :gra ERAI ERA for

which

1()(!) : () ,
j i j ii i

k j k jeraI ERAI era ERA gra eraI era

1, , 1, , 1,
i ii i j ji Rel j RelI k AttrI .

As can be seen from definition the maps
1gea
 and

1gra

are surjective.

Let's construct the surjective map
1 :ger EERRI EERR which to each arc of the set EERRI

puts in correspondence unique arc of the set EERR , i.e.

1()(!) : () ,
i ij i j ieerrI EERRI eerr EERR ger eerrI eerr

1, , 1,i ii EERR j EERRI .

Thus, maps
1 1 1, ,gea gra ger

 define single-valued

transformation between set of model graph arcs and set of
metamodel graph arcs.

Model interpretation is a map of model graph on
metamodel graph at which conversions are performed

1 1 1 1 1 1 1, , , , , ,fe fea fr fra gea gra ger
.

V. DEVELOPMENT ENVIRONMENT OF METALANGUAGE

SYSTEM

To work with metalanguage objects the development
environment that includes the following components: graphical
editor, object browser, repository, validator, generator is
designed.

The development environment includes implementation of
the general service functions of created system. It integrates all
components into a single unit.

Graphic Editor – a work area for drawing diagrams.
Assignment of the Editor is a creation, modification, removal
of models, and also establishment of links between different
models. Each model entity is represented by some graphic
symbol, and relations between entities are represented by
different types of lines.

The Graphical Editor allows to allocate on a worksheet
various shapes (instances of entities and relations), to apply to
these shapes different actions, to set various graphical
properties for them.

Object Browser – a tool designed for viewing and editing
information stored in the repository. The browser provides the
ability to export/import models to/from external systems. A
format for models import/export is the XML which contains
besides the data also metadata that describe structure of the
stored information.

Uniform storage of all information about the system is the
repository. It contains the information about metamodels,
models, entities, relations, attributes, constraints, icons used to
image entities and relations. Repository stores the information
about models as well as metamodels uniformly it allows to
process them with a single tool. Physically, the repository is a
relational database.

The Validator checks correspondence of model to the
constraints specified by the user. At check each constraint will
be applied to each instance of entities and relations. If
constraint is not performed, the error message will be shown.

The Generator allows generating XML-file, model
documentation or source code on the basis of existing models.
XML-file will contain information about the model: model
properties, entities, relations, their attributes, constraints
imposed on the model. Model documentation includes: model
name, information about developers who took part in its
creation, graphical representation of model with links to
description of its individual parts.

Having described the basic components of a MetaLanguage
system, let consider how visual domain-specific modeling
languages are designed (Fig. 7).

Entity

creation/

modification

Metamodel creation/modification

Specifying the

relations

between entities

Set constraints

imposed on the

metamodel objects

Domain concepts

creation/modification

Model creation/modification

Specifying the relations

between concepts

Check of the constraints

imposed on the entities

Validation

Check of the constraints

imposed on the relations

XML-file

generation

Generation

Model

documentation

generation

Source code

generation

Figure 7. Process of creation/modification the by means of

MetaLanguage system

Process of DSL definition begins with metamodel creation.
For this purpose it is necessary to specify the main
constructions of created language, to define relations between
them, to set constraints imposed on the metamodel entities and
relations. After building of metamodel the developer gets a
customizable extensible visual modeling language.

Using created DSL, the user can design models containing
objects that describe specific domain concepts and links
between them.

The Validator should check up whether model satisfies to
constraints which were imposed on it after model constructing.

Using the Generator, the developer can save the
constructed metamodels and models in the form of XML-files
or generate system documentation or source code based on
them.

Note that at metamodel modification the system
automatically will make all necessary changes in the models
which are created on the basis of this metamodel.

VI. CONCLUSION AND FUTURE WORKS

The article describes the language workbench
MetaLanguage which can be used at all stages of information
system creation from domain-specific modeling languages
development to creating of models that used in a particular
system implementation or for source code generation.

The analysis of existing analogues has shown that there are
unresolved problems: impossibility of export of DSLs and
models to external systems, impossibility of models

transformations from one notation to another, impossibility of
dynamic adaptability of languages. It was decided to eliminate
these DSM-platforms restrictions at MetaLanguage system
engineering.

The development environment is simple to use, therefore
not only professional programmers, but also domain experts,
for example, business analysts, can work with this toolkits.
Thus the developer gets powerful workbench for creation of
visual dynamic adaptable domain-specific modeling languages.

To work with models and metamodels uniformly, it is used
the same tools, therefore process of model creation can be
iterative.

Metamodels modification can be made at any stage of DSL
creation. Thus after metamodel modification the system
automatically will make all necessary changes in models which
are created on basis of this metamodel.

For unified models creation the mathematical model –
graph grammars based on pseudo-metagraphs – was
constructed. This formalism has allowed to describe basic
elements and algorithms which MetaLanguage uses in its
work: algorithms for creation/modification of domain
metamodels and models, algorithms for vertical models
transformation, algorithms for constraint checking.

The paper also presents the approaches to implementation
of metalanguage and development environment to work with
it. This environment allows to create modeling languages that

 can be flexibly configured not only to ever-changing
needs of business processes and users, but also to other
domains;

 provide an opportunity to work in domain terms;

 have a high degree of consistency with the
metalanguage;

 can be reused in similar projects.

The research prototype of MetaLanguage system that
implements the functionality described above was created in
the present time. In the future it is planned to continue working
in this direction:

 to design the DSLs for various purposes, for example,
for description of ontologies, document templates,
business processes with created DSM-platform;

 to describe algorithms for the horizontal
transformation of graph representation which will
allow to make transformation of domain models from
one notation to another;

 to integrate language workbench MetaLanguage with
some CASE tool that allows to develop information
systems, for example, with METAS CASE
system [19].

REFERENCES

[1] А.О. Сухов, Л.Н. Лядова "Использование визуальных предметно-
ориентированных языков для описания бизнес-процессов",
Материалы межвуз. конкурса-конференции "Технологии Microsoft
в теории и практике программирования", СПб, 2009. С. 117.

[2] А.О. Сухов "Использование предметно-ориентированных языков
при создании приложений для мобильных устройств", Материалы
всероссийской научно-практической конференции студентов
"Студент и наука", т. 3, 2010. С. 75-76.

[3] M. Fowler, “Language Workbenches: The Killer-App for Domain
Specific Languages?” Available at:
http://martinfowler.com/articles/languageWorkbench.html (accessed
10 April 2012).

[4] Л.Н. Лядова, А.О. Сухов "Визуальные языки и языковые
инструментарии: методы и средства реализации", Труды
международных научно-технических конференций
"Интеллектуальные системы" (AIS’10) и "Интеллектуальные
САПР" (CAD-2010), т. 1, 2010. С. 374-382.

[5] В.С. Маторин "CASE-инструментарий UFO-toolkit. Автоматизация
построения УФО-моделей", Проблемы программирования, №2,
2004. – С. 144-149.

[6] А.Н. Иванов "Технологическое решение REAL-IT: создание
информационных систем на основе визуального моделирования",
Сб. "Системное программирование" под ред. проф. А.Н.Терехова и
Д.Ю.Булычева, 2004. – С.89-100.

[7] J.-P. Tolvanen, M. Rossi, “MetaEdit+: defining and using domain-
specific modeling languages and code generators.” Available at:
http://portal.acm.org/citation.cfm?id=949365 (accessed 10 April 2012).

[8] S. Cook, G. Jones, S. Kent, A.C. Wills, “Domain-Specific Development
with Visual Studio DSL Tools,” Reading: Addison-Wesley, 2007.

[9] “Creating Domain-Specific Languages.” Available at:
http://msdn.microsoft.com/en-us/library/bb126259(v=vs.80).aspx
(accessed 10 April 2012).

[10] R.C. Gronback “Eclipse Modeling Project: A Domain-Specific
Language Toolkit,” Reading: Addison-Wesley, 2009.

[11] T. Ozgur, “Comparison of Microsoft DSL Tools and Eclipse Modeling
Frameworks for Domain-Specific Modeling In the context of the Model-
Driven Development.” Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.6383&re
p=rep1&type=pdf (accessed 10 April 2012).

[12] А.В. Ларионов "Разработка визуального языка автоматного
программирования".
Available at: http://is.ifmo.ru/papers/StateMachineDesigner.pdf
(accessed 10 April 2012).

[13] S. Dmitriev, “Language Oriented Programming: The Next Programming
Paradigm.” Available at:
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/index.html
(accessed 10 April 2012).

[14] А.П. Стасенко "Автоматная модель визуального описания
синтаксического разбора", Вычислительные технологии, вып. 5,
т. 13, 2008. – С. 70-87.

[15] О.Ф. Королев "Алгоритмические сети как визуальный язык
программирования", Труды СПИИРАН, вып. 2, 2005. – С. 130-137.

[16] J. Rekers, A. Schuerr, “A Graph Grammar approach to Graphical
Parsing,” Visual Languages Proceedings, 11th IEEE International
Symposium, Darmstadt, pp. 195-202, 1995.

[17] B. Courcelle, “Graph Rewriting: An Algebraic and Logic Approach,”
Handbook of Theoretical Computer Science, vol. B, 1990, pp. 193-242.

[18] А.О. Сухов "Анализ формализмов описания визуальных языков
моделирования", Современные проблемы науки и образования, №2,
2012. Available at: http://www.science-education.ru/102-5655 (accessed
10 April 2012).

[19] Л.Н. Лядова, С.А. Рыжков "CASE-технология METAS",
Математика программных систем, Межвуз. сб. науч. статей, Пермь,
2003. С. 4-18.

