
MicroTESK: An ADL-Based Reconfigurable Test

Program Generator for Microprocessors

Alexander Kamkin

Software Engineering Department

Institute for System Programming of RAS

Moscow, Russian Federation

Email: kamkin@ispras.ru

Andrey Tatarnikov
1

Software Engineering Department

Institute for System Programming of RAS,

National Research University Higher School of Economics

Moscow, Russian Federation

Email: andrewt@ispras.ru

Abstract— Test program generation plays a major role in

functional verification of microprocessors. Due to tremendous

growth in complexity of modern designs and rigid constraints on

time to market, it becomes an increasingly difficult task. In spite

of powerful test program generators available in the market,

development of functional tests is still known to be the bottleneck

of the microprocessor design cycle. The common problem is that

it takes significant effort to reconfigure a test program

generation tool for a new microprocessor design. The model-

based approach applied in the state-of-the-art tools, like Genesys-

Pro, still does not provide enough flexibility since creating a

microprocessor model is difficult and requires special knowledge

and skills. The article suggests an approach to ease generator

customization by using architecture specifications that describe

the microprocessor behavior at a higher level. The approach is

aimed at facilitating development of architecture models and,

thus, minimizing time required to create functional tests. At the

moment, we are working to implement a new generation of the

test program generator MicroTESK that can be easily configured

for various microprocessor architectures.

Keywords—microprocessor design; architecture description

languages; test program generation; functional verification; model-

based testing.

I. INTRODUCTION

As modern microprocessors are becoming more and more

complex, functional verification is becoming an increasingly

difficult task. It is typical that up to half of resources spent on

microprocessor design is devoted to verification. The most

common approach to verification of microprocessors at a core

level is test program generation (TPG) [1]. Test programs

(TPs) are instruction sequences that trigger device events and

optionally check validity of the resulting state of the

microprocessor. A tool that creates test programs for a given

microprocessor architecture in an automated way is usually

referred to as a test program generator or a TPG tool. A well-

known problem of TPG tools is that test generation logic is

often tightly coupled with the architecture-specific knowledge,

which makes the tool hard to maintain. In fact, a frequent

solution to handle new microprocessor architecture is to

rewrite the existing generator from scratch. As we can

imagine, it increases cost of the microprocessor development

and causes significant delays in the delivery schedule.

To make a TPG tool more flexible, the architecture-specific
part has to be isolated from the test generation core. That is
usually called model-based TPG [1]. Platform-dependent
knowledge includes mainly an instruction set model (ISM) and
testing knowledge (TK), a collection of design-specific test
situations (conditions to be covered by tests). Typically,
scenarios for microprocessor verification are described
manually in the form of test templates (TTs). In abstracto, the
idea of the method can be expressed by the formula
TPs = TTs + TK + ISM (TPs are generated on the base of TTs,
which are described in terms of the ISM and TK). The model-
based TPG is a time-proved approach having been
implemented in the industrial tools, like Genesys-Pro [1] and
RAVEN [2]. However, creating a microprocessor’s ISM and
TK is rather difficult and requires special skills that verification
engineers are usually lacking for.

In this article, we present a concept of reconfigurable TPG
and its implementation in the MicroTESK tool. The key idea is
to use architecture description languages (ADLs), which are
commonly used in the area of functional simulation [3], for
TPG configuration. Architecture specification (AS) in ADL is
used by the tool to automatically build the microprocessor’s
ISM and TK. In addition to ASs, MicroTESK utilizes light-
weight configuration files (CFs) for some microprocessor
subsystems. This is due to the fact that some elements (e.g.,
cache memory, address translation mechanisms and others) are
difficult to describe in general-purpose ADLs. Usage of high-
level specifications and automated extraction of ISM and TK
make it easy to adapt the tool for new architectures and to
reconfigure it for several revisions of the same design. One
more important feature of MicroTESK is its ability to
automatically generate TTs of certain types. Thus, to generate
TPs, one needs only AS and CFs (TPs = AS + CFs).

The MicroTESK generation core comprises tools and
libraries that allow working with different configurations in a
uniform way. To accomplish this, a flexible tool architecture
has been proposed. It is based on a rather general
microprocessor meta-model, which makes it possible to all
architecture-dependent components (result of translation of the
AS and CFs) to be accessed via architecture-independent APIs.

The rest of the paper contains an overview of the existing
approaches to TPG and describes the MicroTESK principles
and architecture.

1This work is partially supported by RFBR 11-07-12075-ofi-m.

II. RELATED WORK AND MOTIVATION

Hardware verification has always been a major issue for the
research community. Over the last decades, a lot of hardware
verification methods and tools have emerged. In fact, the idea
of reconfigurable TPG is not new. It is based on a combination
of well-known techniques. In this section, we will discuss the
most significant of the existing approaches and industrial tools
such as Genesys-Pro (IBM Research Lab) [1] and RAVEN
(Obsidian Software Inc., now acquired by ARM) [2]
implementing them.

Genesys-Pro is the best known TPG tool. It follows the
model-based approach and operates with two kinds of
knowledge: architectural model (ISM and TK) and TTs. To
create an architecture model, some high level building blocks
are provided. TK serves as a basis for creating TTs that
describe verification scenarios. In TTs, it is possible to define
constraints on individual scenario instructions (e.g., boundary
conditions, exceptions, cache hits/misses, etc.). For each
instruction of the TT the tool formulates a constraint
satisfaction problem (CSP) and generates test data by solving
the CSP. A known disadvantage of Genesys-Pro is that it is
difficult to model instructions affecting memory devices [4].
Therefore, there are reasons to think that Genesys-Pro is hardly
reconfigurable if significant modifications of the memory
devices are required.

Another popular industrial solution is RAVEN. It is a tool
that can generate fully random, semi-random or user-directed
TPs for microprocessors. The tools components are separated
into architectural models and TTs. Architectural models are
developed by the tool vendor in collaboration with
microprocessor manufacturers. For custom designs the
generator construction set (GCS), a C++ API to the RAVEN
core, is provided. There is no detailed information available on
this technology. However, creating a model for RAVEN is
unlikely to be an easy task for a verification engineer. In our
opinion, it implies close interaction with the tool's developers,
which is not convenient and will inevitably cause delays in the
microprocessor verification process.

An interesting ADL-based approach to automated TPG is
discussed in the work of Prabhat Mishra and Nikil Dutt [5]. It
presents a concept of graph-based functional test generation.
The approach uses the EXRESSION ADL to build a graph-
based coverage model. The extracted model is automatically
processed to extract test situations that will be covered by
generated TPs. The test generation procedure is based on model
checking (test is constructed as a counterexample for the
negation of the target test situation). Heon-Mo Koo and
Prabhat Mishra in their work [6] discuss a TPG technique that
uses SAT-based bounded model checking (BMC) to generate
TPs. Such an approach gives better results in terms of time and
space required for counterexample generation compared to
ordinary model checking that suffers from the state explosion.

Finally, it should be said that Institute for System
Programming of RAS (ISPRAS) has already done some
research and development on the TPG topic [4][7]. The present
article summarizes the ideas that have been accumulated in

ISPRAS and provides an overview of the research project our
team is working on at the moment. The main motivation of the
work is to propose a convenient way to describe
microprocessor architectures that would reduce effort needed
to create ISMs and TK.

III. MICROTESK OVERVIEW

MicroTESK is a reconfigurable TPG tool that uses ADL
descriptions together with high-level configuration information
to represent architecture-specific parts of the generator. By
reconfigurability we mean an ability to easily switch to a new
microprocessor design without having to modify the internal
logic of the tool. General structure of MicroTESK is displayed
in Figure 1. The tool uses two main types of input data: (1)
design description and optionally (2) user-defined TTs. The
former provides information about the target microprocessor,
while the latter specifies scenarios to be reproduced in TPs.
Outputs are TPs in an assembler language. MicroTESK
functions can be divided into three major groups: (1)
translating a design description into the ISM and extracting
TK, (2) creating TTs on the base of the TK and (3) generating
TPs from the TTs. In other words, to generate tests for the
target microprocessor, we need to go through the following
stages:

 Creation of a design description in ADL and
configuration of the design subsystems. This task is
performed by a modeling engineer who possesses
knowledge about the microprocessor architecture.

 Translation of a design description and configuration
into the architectural model (ISM and TK). This is
done by a translator that uses unified building blocks
from the model library to generate a model.

 Creation of TTs. TTs are created basing on the ISM
and TK extracted from the design description. TTs can
be either created automatically by a TT generator or
provided by a verification engineer. The advantage of
TTs is that they provide a flexible way to specify
instruction sequences and instruction parameters that
can vary depending on some conditions.

 Generation of TPs. TPs are generated by processing
TTs. During this stage all CSPs formulated for test
situations are solved and all instructions have their
final parameter values assigned. In the end, a TP
generator produces an assembler program which is
compiled by a verification engineer into binary code
and executed in a simulator or on a chip.

As we can notice, at each stage the tool works with data
produced by the previous stage. This reduces dependencies
between different components of the tool and facilitates their
customization. For example, adding support for a new ADL
will affect only the translator as the architectural model
representation is independent of a particular ADL.

The next sections of the article describe the MicroTESK
components in more detail.

Figure 1. General structure of the MicroTESK TPG tool

IV. ARCHITECTURE MODELING

As it has already been said, MicroTESK makes use of
ADLs to specify the target design architecture. At the moment,
supported ADLs include nML [8] and Sim-nML [9]. nML is a
formalism that describes a microprocessor at the instruction set
level hiding unnecessary low-level details. The language is
flexible and easy to use. Thereby, modeling a microprocessor
architecture does not require significant effort. For example, a
description of the integer addition instruction (ADD) from the
MIPS instruction set architecture [10] looks as follows [4]:

op ADD(rd: GPR, rs: GPR, rt: GPR)

action = {

 if(NotWordValue(rs) || NotWordValue(rt)

 then

 UNPREDICTABLE();

 endif;

 tmp_word = rs<31..31>::rs<31..0> +

 rs<31..31>::rt<31..0>;

 if(tmp_word<32..32> != tmp_word<31..31>

 then

 SignalException("IntegerOverflow");

 else

 rd = sign_extend(tmp_word<31..0>);

 endif;

}

syntax = format("add %s, %s, %s",

 rd.syntax, rs.syntax, rt.syntax)

op ALU = ADD | SUB | …

As we can see, this notation is quite similar to the
instruction's specification in the MIPS manual, which is shown
below.

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
 UNPREDICTABLE
endif
temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then
 SignalException(IntegerOverflow)
else
 GPR[rd] ← sign_extend(temp31..0)
endif

Basing on such specifications the microprocessor’s TK can
be automatically extracted. For example, analyzing the
instruction description, we can derive three conditions that
require attention:

1) The rt and rs general-purpose registers (GPRs) should

contain sign-extended 32-bit values (bits 63..31 should be

equal). Otherwise, the result of the instruction is

UNPREDICTABLE. This means that under such a condition

the microprocessor behavior is undefined and cannot be

checked. Such situations should be avoided in TPs.

2) If the addition results in 32-bit two’s complement

arithmetic overflow, the destination register rd should not be

modified and the IntegerOverflow exception should occur.

Such a situation can be specified in a TT. When a TP is being

generated the constraint solver engine will calculate exact

values of the rt and rs GPRs to satisfy the constraint.

3) If the addition executes normally (does not cause an

overflow), the sign-extended 32-bit result should be placed

into the rd GPR. Such a condition can as well be used in TTs

(for example, to be sure that some instruction does not raise

exceptions).
ADL descriptions are used to build coverage models for

individual instructions and to determine basic inter-instruction
dependencies. It should be emphasized that models are
composed from the building blocks provided by the model

library and independent of a particular ADL. Therefore, it is
possible to use any ADL that provides enough information
regarding the structure and behavior of microprocessors.

In addition to an instruction-level ADL description of the
microprocessor, there is a need to specify some microprocessor
subsystems, like memory management unit (MMU) and
pipeline control unit (PCU), in more details. ADLs like Sim-
nML are not suitable for describing these elements. At the
same time, they should not be overlooked as it is very
important to verify how a microprocessor handles events
related to memory management and pipeline control. To
provide specifications of these properties, special configuration
files (CFs) are used.

MMU provides memory access protections, virtual-to-
physical address translation and caching of instructions and
data. It works with the main memory, cache memory (L1 and
L2) and translation look-aside buffers (TLBs) that are used to
accelerate virtual-to-physical address translation by caching
latest translations. A cache or a TLB is represented by a
memory buffer. At a logical level, each buffer is described as
an array of sets of lines that can be specified as structures
comprising several bit vectors called fields. A line stores a
copy of memory data that has been recently read or written.
Data is accessed by its address. When a buffer contains a line
with a specified address the situation is called a hit; if it does
not the situation is called a miss. When a miss occurs, the line
is replaced with data stored in main memory at the given
address. So, buffer configuration information includes the
following attributes: set size (associativity), number of sets,
line field description, address-to-index translation rule, rule for
checking if a line and an address match and data displacement
policy. To specify this information, we use CFs of the
following kind [4]:

buffer L1 = {
 set = 4
 length = 128
 line = { tag:card(27), data:card(32) }
 index(addr:36) = { addr<8..2> }
 match(addr:36) = { addr<35..9> == tag<0..26> }
 policy = LRU
}

For the purpose of functional verification, there are two
main situations that interest us: when a hit occurs and when a
miss occurs. Both situations can be formulated as CSPs over
the address being used to access data and state of the buffer
[11][12].

Another important aspect related to architectural models is
dependencies between instructions. Instructions change the
state of the microprocessor and, thus, affect the behavior of
subsequent instructions. For example, a precondition for the hit
event is that corresponding data are loaded into cache, which is
done by a previous instruction that accesses the same data line.
To produce a complex instruction sequence that will give
predictable results, we need first to simulate its execution to
determine final parameter values of the dependent instructions.
This is done at the final stage when MicroTESK processes TTs
to produce TPs. The tool keeps a track of all events that occur
in the model and provides this information to the TP generator

Knowledge about possible dependencies between instructions
is a part of TK extracted from the CFs.

V. CONSTRAINT SOLVER ENGINE

Important part of MicroTESK is a CSP solver engine. It
facilitates generating test data and helps to achieve a better test
coverage. Architecture specifications do not usually specify
precise parameter values that lead to particular situations, but
rather specify a class of possible values expressed as a set of
conditions. For example, when we want to create a test for an
integer overflow exception in the ADD instruction, we do not
know values of parameter that cause the exception (in fact,
there may be thousands of possible values). However, we know
what conditions the resulting value should satisfy to recreate
the situation. To generate parameter values that will make a test
situation occur, the tool formulates a CSP and solves it with the
help of the solver engine. The engine returns parameter values
satisfying the constraint. Such an approach allows generating
new test data from each time a TP is generated from the TT,
which improves test coverage.

MicroTESK uses the SMT-LIB language [13] to formulate
CSPs for test situations. CSP is expressed as a set of assertions
that specify assumptions about values of input variables and
results of operations performed with them. Modern solvers
support bit vectors, which facilitates specifying constraints for
data buffers used in different parts of microprocessor models
(registers, cache, main memory, etc.). Below, there is an
example of a CSP that specifies conditions leading to an
integer overflow exception in the ADD instruction.

(define-sort Int_t () (_ BitVec 64))

(define-fun INT_ZERO () Int_t (_ bv0 64))
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64))

(define-fun INT_SIGN_MASK () Int_t
 (bvshl (bvnot INT_ZERO) INT_BASE_SIZE))

(define-fun IsValidPos ((x!1 Int_t)) Bool
 (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false))

(define-fun IsValidNeg ((x!1 Int_t)) Bool
 (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true
false))

(define-fun IsValidSignedInt ((x!1 Int_t)) Bool
 (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false))

(declare-const rs Int_t)
(declare-const rt Int_t)

; rt and rs must contain valid sign-extended
; 32-bit values (bits 63..31 equal)
(assert (IsValidSignedInt rs))
(assert (IsValidSignedInt rt))

; the condition for an overflow: the summation
; result is not a valid sign-extended 32-bit value
(assert (not (IsValidSignedInt (bvadd rs rt))))

; just in case: rs and rt are not equal
; (to make the results more interesting)
(assert (not (= rs rt)))
(check-sat)

(echo "Values that lead to an overflow:")
(get-value (rs rt))

MicroTESK provides a possibility to generate CSPs
automatically on the base of the TK extracted from the design
description. It should be said that TK’s constraints are stored in
a format that is independent from a particular solver. The
current version of the tool uses the Z3 solver by Microsoft
Research [14]. The TP generator interacts with the solver via
solver-independent CSP solver API. This allows the tool to use
different solvers.

VI. TEST TEMPLATES

TTs are an important part of the MicroTESK solution. The
tool provides facilities to create and modify TTs by hand.
Despite the fact that some amount of TTs can be generated
automatically based on TK, to cover all possible situations, it is
often necessary to create TTs manually or customize
automatically generated ones. Therefore, an expressive and
easy-to-understand language is needed. Generally speaking, a
TT describes a class of TPs that verify microprocessor
behavior in particular test situations. Whereas TPs represent
sequences of commands in a processor-specific assembler, TTs
provide a way to describe a test scenario at a more abstract
level. Such an approach gives a lot of advantages in terms of
flexibility. For example, it allows generating tests taking into
account dependencies between related instructions, create tests
for a whole class of similar instructions and specify test
parameters as ranges of possible values or as random values
instead of hard-coding them. It also helps organize groups of
separate test scenarios in more complex test cases and set up
parallel test execution.

To describe TTs, a special test template description
language (TTDL) is used. In the current version of the tool, it is
based on the Ruby scripting language, which is extended with
special automatically generated libraries that provide all
hardware-related features and perform interaction with the
design model. Generally, the TTDL features can be divided
into the following groups according to their purpose:

A. Achitecture-related statements

Include constructs to simulate generalized processor-
specific assembler instructions and a list of supported registers.
Both instructions and registers can be combined into families.
The TTDL allows specifying a family instead of a precise
element or an address range instead of a specific address. Thus,
it is possible to vary the level of randomness in the generated
tests from completely random to completely directed. Also, we
can specify dependencies between instructions. For example,
we can make them use the same registers or the same address,
which is selected at random when being accessed for the first
time.

B. CSP-related statements

Constraints can be applied to instructions to recreate test
situations. Typically, constraint conditions are extracted from
ADL specifications. For example, it can be a condition that
causes an integer overflow exception. Constraints are stored in
a special catalog of constraints that includes information about
instructions (or classes of instructions) they can be associated
with. Constraints can be extracted from a design specification
automatically, created manually or provided with the tools as

independent general TK which is common for different
microprocessors.

C. Generation flow statements

Provide control over instruction generation sequencing.
Sometimes the sequence of instructions in a TP may need to be
varied depending on some conditions or even to be randomized
to achieve a better level of coverage. There are several possible
ways to specify how a TP can be generated:

 As a sequence of ordered instructions (the order is
specified in the TT);

 As a sequences of specified instructions given in a
random order;

 As a sequence of instructions some of which are
repeated depending on some conditions;

 As a sequence of instructions that contain instructions
(or subsequences of instructions) randomly selected from the
specified set of instructions;

 As a set of instruction sequences that should be
executed concurrently;

 etc.
The TTDL language provides language constructs that

offer such facilities. The set of offered features can be
extended.

D. Standard language constructs

Include constructs derived from the underlying scripting
language such as control flow operators, variables, constants
and assertion statements. Such constructs are necessary to
describe complex scenarios, to specify shared instruction
parameters, to use common constants and to add validity
checks to test scenarios.

E. Infrastructure-related statements

Provide a framework for creating TTs. Include base classes
and global objects needed to organize the structure of TTs and
provide communication with design models and CSP solvers
during test generation. Some features are architecture-specific
and are generated from models automatically.

The TTDL provides facilities that suffice for most
verification tasks. To simplify the test design process,
MicroTESK provides an ability to automatically generate some
types of TTs. This includes templates for single instruction
tests (that cover all possible execution paths for all supported
instructions), combinatorial tests (that generate short sequences
represented by combinations of specified instructions) and
random tests (that produce random instruction sequences).
Automated generation of TTs is performed based on TK
extracted from the design description. To generate more
specific TTs, the design model can be extended with additional
information about test situations and instruction dependencies.

To illustrate the use of the TTDL, an example of a TT for a
MIPS microprocessor is provided below.

class MyTemplate < Template

 def test()

 data = [[0xEF, 0xFF], [0x1EF, 0x1FF], [0xFEF, 0xFFF]];

 data.each { |d|

 xor r0, r0, r0;

 ori r(2), r0, d[0];

 ori r(4), r0, d[1];

 ld tmp1=r(1), 0x0, r(2);; hit([L1(), L2()], [25, 50, 75]);

 ld tmp2=r(3), 0x0, r(4);; hit([L1(), L2()], [25, 50, 75]);

 dadd r(5), tmp1, tmp2;; overflow;

 }

 end

end # class MyTemplate

This TT represents a scenario that generates a set of

instruction sequences parameterized with data stored in the

array. The generated sequences load data located at the

addresses stored in the data array. For the ld instructions, the

TT specifies constraints related to cache events:

hit([L1(), L2()], [25, 50, 75]);

This statement means that the line that accesses a memory

device should cause a cache hit event to occur. It specifies a set

of target caches and probabilities of the hit event occurrence.

For this line, MicroTESK will generate a list of possible

combinations and will add an instruction for each of them to

the resulting TP. Another constraint is used to make the dadd

instruction generate an overflow exception. The TTDL

provides a wide range of facilities to express test situations that

involve complicated series of events.

VII. CONCLUSION

Verification of modern microprocessors requires a lot of
effort and efficient instruments. An ability to quickly
reconfigure a TPG tool for a new design is a crucial
requirement. In this paper, we offered a solution to the
problem. The paper contributes the following approaches: (1)
using high-level ADLs and CFs to specify the configuration of
a target design and (2) building TK from high-level
specifications basing on behavioral characteristics of the target
design and (3) automated generation of TTs and TPs based on
TK. The approaches are applied in MicroTESK, the instrument
our team is working on. It makes use of the nML/Sim-nML
ADL to describe target microprocessor designs. This formalism
uses a format similar to the notation used in microprocessor
manuals, which significantly facilitates creating configuration
description of target devices. Another important application of
ADLs is that they serve as source of behavioral characteristics
of a microprocessor. MicroTESK is able to extract TK from
ADL specifications and use it as a basis for creating test
scenarios. This simplifies the job of a verification engineer who
being armed with this knowledge can start creating tests as a
soon as MicroTESK has processed an ADL specification. TTs
are another major feature of MicroTESK. It provides a flexible
way to specify complex test scenarios. Test situations can be
formulated as CSPs, which eliminates the necessity to provide
exact values of instruction parameters to make a particular
event to occur.

The architecture of MicroTESK facilitates customization.
Designs models are created based on an API provided by the
model library. They are independent of a particular ADL and
can be processed in a uniform way. Also, MicroTESK includes
built-in TK about situations that are common for different
microprocessors. The template generation logic combines
built-in TK and TK extracted from the architecture model to
generate test scenarios, which allows automating the process of

creating tests for basic test situations. The tool can be extended
to support new ADLs and new ways to describe TK and TTs.
As we can see, MicroTESK automates most of activities
required to create tests for a target microprocessor design,
which helps significantly decrease delays in the delivery
schedule.

At the present stage of our research, we implemented a
prototype that supports only a small set of the described
features. The first version of the prototype was tried with
several industrial microprocessors and their subsystems. The
experimental results are provided in the work of Kamkin,
Kornykhin and Vorobyev [4]. Our current plans are to develop
a full featured product that could be used by microprocessor
vendors. A further direction of research is to more extensively
automate creation of TTs. This will require using more
complex models and test generation techniques. To keep in
pace with temps of growth in complexity of modern
microprocessor designs, TPG tools should provide more
facilities to automate test design.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov and A.
Ziv, Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification, IEEE Design & Test of Computers,
2004, pp. 84-93.

[2] http://www.obsidiansoft.com/pdf/Datasheet.pdf

[3] P. Mishra, A. Shrivastava and N. Dutt, Architecture Description
Language (ADL)-Driven Software Toolkit Generation for Architectural
Exploration of Programmable SOCs, ACM Transactions on Design
Automation of Electronic Systems, Vol. 11, No. 3, July 2006, Pages
626–658.

[4] A. Kamkin, E. Kornykhin and D. Vorobyev, Reconfigurable Model-
Based Test Program Generator for Microprocessors, A-MOST, Berlin,
Germany, 2011.

[5] P. Mishra and N. Dutt, Graph-Based Functional Test Program
Generation for Pipelined Processors, In Design Automation and Test in
Europe (DATE), Paris, France, pages 182–187, February 16-20, 2004.

[6] H. Koo and P. Mishra, Functional Test Generation using SAT-based
Bounded Model Checking, CISE Technical Report 05-008, Department
of Computer and Information Science and Engineering, University of
Florida, 2005.

[7] A. Kamkin. Test Program Generation for Microprocessors, Institute for
System Programming of RAS, Volume 14, part 2, 2008, pp. 23–63 (in
Russian).

[8] M. Freericks, The nML Machine Description Formalism, Techical
Report, TU Berlin, FB20, Bericht 1991/15.

[9] R. Moona, Processor Models For Retargetable Tools, Proceedings of
IEEE Rapid Systems Prototyping 2000 June 2000, pp 34–39.

[10] MIPS64™ Architecture For Programmers, Volume II: The MIPS64™
Instruction Set, Document Number: MD00087, Revision 2.00, June 9,
2003.

[11] E. Kornykhin, SMT-Based Test Program Generation for Cache-Memory
Testing, East-West Design & Test Symposium (EWDTS), 2009, pp.
124–127.

[12] E. Kornykhin, Generation of Test Data for Verification of Caching
Mechanisms and Address Translation in Microprocessors, Programming
and Computing Software, Volume 36 Issue 1, 2010, pp. 28-35.

[13] D. R. Cok, The SMT-LIBv2 Language and Tools: A Tutorial,
GrammaTech, Inc., Version 1.1, 2011.

[14] L. Moura and N. Bjørner, Z3: An Efficient SMT Solver, Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008, pp. 337–340.

