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Abstract— Test program generation plays a major role in 

functional verification of microprocessors. Due to tremendous 

growth in complexity of modern designs and rigid constraints on 

time to market, it becomes an increasingly difficult task. In spite 

of powerful test program generators available in the market, 

development of functional tests is still known to be the bottleneck 

of the microprocessor design cycle. The common problem is that 

it takes significant effort to reconfigure a test program 

generation tool for a new microprocessor design. The model-

based approach applied in the state-of-the-art tools, like Genesys-

Pro, still does not provide enough flexibility since creating a 

microprocessor model is difficult and requires special knowledge 

and skills. The article suggests an approach to ease generator 

customization by using architecture specifications that describe 

the microprocessor behavior at a higher level. The approach is 

aimed at facilitating development of architecture models and, 

thus, minimizing time required to create functional tests. At the 

moment, we are working to implement a new generation of the 

test program generator MicroTESK that can be easily configured 

for various microprocessor architectures. 

Keywords—microprocessor design; architecture description 

languages; test program generation; functional verification; model-

based testing. 

I.  INTRODUCTION 

As modern microprocessors are becoming more and more 

complex, functional verification is becoming an increasingly 

difficult task. It is typical that up to half of resources spent on 

microprocessor design is devoted to verification. The most 

common approach to verification of microprocessors at a core 

level is test program generation (TPG) [1]. Test programs 

(TPs) are instruction sequences that trigger device events and 

optionally check validity of the resulting state of the 

microprocessor. A tool that creates test programs for a given 

microprocessor architecture in an automated way is usually 

referred to as a test program generator or a TPG tool. A well-

known problem of TPG tools is that test generation logic is 

often tightly coupled with the architecture-specific knowledge, 

which makes the tool hard to maintain. In fact, a frequent 

solution to handle new microprocessor architecture is to 

rewrite the existing generator from scratch. As we can 

imagine, it increases cost of the microprocessor development 

and causes significant delays in the delivery schedule. 

To make a TPG tool more flexible, the architecture-specific 
part has to be isolated from the test generation core. That is 
usually called model-based TPG [1]. Platform-dependent 
knowledge includes mainly an instruction set model (ISM) and 
testing knowledge (TK), a collection of design-specific test 
situations (conditions to be covered by tests). Typically, 
scenarios for microprocessor verification are described 
manually in the form of test templates (TTs). In abstracto, the 
idea of the method can be expressed by the formula 
TPs = TTs + TK + ISM (TPs are generated on the base of TTs, 
which are described in terms of the ISM and TK). The model-
based TPG is a time-proved approach having been 
implemented in the industrial tools, like Genesys-Pro [1] and 
RAVEN [2]. However, creating a microprocessor’s ISM and 
TK is rather difficult and requires special skills that verification 
engineers are usually lacking for. 

In this article, we present a concept of reconfigurable TPG 
and its implementation in the MicroTESK tool. The key idea is 
to use architecture description languages (ADLs), which are 
commonly used in the area of functional simulation [3], for 
TPG configuration. Architecture specification (AS) in ADL is 
used by the tool to automatically build the microprocessor’s 
ISM and TK. In addition to ASs, MicroTESK utilizes light-
weight configuration files (CFs) for some microprocessor 
subsystems. This is due to the fact that some elements (e.g., 
cache memory, address translation mechanisms and others) are 
difficult to describe in general-purpose ADLs. Usage of high-
level specifications and automated extraction of ISM and TK 
make it easy to adapt the tool for new architectures and to 
reconfigure it for several revisions of the same design. One 
more important feature of MicroTESK is its ability to 
automatically generate TTs of certain types. Thus, to generate 
TPs, one needs only AS and CFs (TPs = AS + CFs). 

The MicroTESK generation core comprises tools and 
libraries that allow working with different configurations in a 
uniform way. To accomplish this, a flexible tool architecture 
has been proposed. It is based on a rather general 
microprocessor meta-model, which makes it possible to all 
architecture-dependent components (result of translation of the 
AS and CFs) to be accessed via architecture-independent APIs. 

The rest of the paper contains an overview of the existing 
approaches to TPG and describes the MicroTESK principles 
and architecture. 

1This work is partially supported by RFBR 11-07-12075-ofi-m. 



II. RELATED WORK AND MOTIVATION   

Hardware verification has always been a major issue for the 
research community. Over the last decades, a lot of hardware 
verification methods and tools have emerged. In fact, the idea 
of reconfigurable TPG is not new. It is based on a combination 
of well-known techniques. In this section, we will discuss the 
most significant of the existing approaches and industrial tools 
such as Genesys-Pro (IBM Research Lab) [1] and RAVEN 
(Obsidian Software Inc., now acquired by ARM) [2] 
implementing them. 

Genesys-Pro is the best known TPG tool. It follows the 
model-based approach and operates with two kinds of 
knowledge: architectural model (ISM and TK) and TTs.  To 
create an architecture model, some high level building blocks 
are provided. TK serves as a basis for creating TTs that 
describe verification scenarios. In TTs, it is possible to define 
constraints on individual scenario instructions (e.g., boundary 
conditions, exceptions, cache hits/misses, etc.). For each 
instruction of the TT the tool formulates a constraint 
satisfaction problem (CSP) and generates test data by solving 
the CSP. A known disadvantage of Genesys-Pro is that it is 
difficult to model instructions affecting memory devices [4]. 
Therefore, there are reasons to think that Genesys-Pro is hardly 
reconfigurable if significant modifications of the memory 
devices are required. 

Another popular industrial solution is RAVEN. It is a tool 
that can generate fully random, semi-random or user-directed 
TPs for microprocessors. The tools components are separated 
into architectural models and TTs. Architectural models are 
developed by the tool vendor in collaboration with 
microprocessor manufacturers. For custom designs the 
generator construction set (GCS), a C++ API to the RAVEN 
core, is provided. There is no detailed information available on 
this technology. However, creating a model for RAVEN is 
unlikely to be an easy task for a verification engineer. In our 
opinion, it implies close interaction with the tool's developers, 
which is not convenient and will inevitably cause delays in the 
microprocessor verification process. 

An interesting ADL-based approach to automated TPG is 
discussed in the work of Prabhat Mishra and Nikil Dutt [5]. It 
presents a concept of graph-based functional test generation. 
The approach uses the EXRESSION ADL to build a graph-
based coverage model. The extracted model is automatically 
processed to extract test situations that will be covered by 
generated TPs. The test generation procedure is based on model 
checking (test is constructed as a counterexample for the 
negation of the target test situation). Heon-Mo Koo and 
Prabhat Mishra in their work [6] discuss a TPG technique that 
uses SAT-based bounded model checking (BMC) to generate 
TPs. Such an approach gives better results in terms of time and 
space required for counterexample generation compared to 
ordinary model checking that suffers from the state explosion. 

Finally, it should be said that Institute for System 
Programming of RAS (ISPRAS) has already done some 
research and development on the TPG topic [4][7]. The present 
article summarizes the ideas that have been accumulated in 

ISPRAS and provides an overview of the research project our 
team is working on at the moment. The main motivation of the 
work is to propose a convenient way to describe 
microprocessor architectures that would reduce effort needed 
to create ISMs and TK. 

III. MICROTESK OVERVIEW 

MicroTESK is a reconfigurable TPG tool that uses ADL 
descriptions together with high-level configuration information 
to represent architecture-specific parts of the generator. By 
reconfigurability we mean an ability to easily switch to a new 
microprocessor design without having to modify the internal 
logic of the tool. General structure of MicroTESK is displayed 
in Figure 1. The tool uses two main types of input data: (1) 
design description and optionally (2) user-defined TTs. The 
former provides information about the target microprocessor, 
while the latter specifies scenarios to be reproduced in TPs. 
Outputs are TPs in an assembler language. MicroTESK 
functions can be divided into three major groups: (1) 
translating a design description into the ISM and extracting 
TK, (2) creating TTs on the base of the TK and (3) generating 
TPs from the TTs. In other words, to generate tests for the 
target microprocessor, we need to go through the following 
stages: 

 Creation of a design description in ADL and 
configuration of the design subsystems. This task is 
performed by a modeling engineer who possesses 
knowledge about the microprocessor architecture. 

 Translation of a design description and configuration 
into the architectural model (ISM and TK). This is 
done by a translator that uses unified building blocks 
from the model library to generate a model. 

 Creation of TTs. TTs are created basing on the ISM 
and TK extracted from the design description. TTs can 
be either created automatically by a TT generator or 
provided by a verification engineer. The advantage of 
TTs is that they provide a flexible way to specify 
instruction sequences and instruction parameters that 
can vary depending on some conditions.  

 Generation of TPs. TPs are generated by processing 
TTs. During this stage all CSPs formulated for test 
situations are solved and all instructions have their 
final parameter values assigned. In the end, a TP 
generator produces an assembler program which is 
compiled by a verification engineer into binary code 
and executed in a simulator or on a chip. 

As we can notice, at each stage the tool works with data 
produced by the previous stage. This reduces dependencies 
between different components of the tool and facilitates their 
customization. For example, adding support for a new ADL 
will affect only the translator as the architectural model 
representation is independent of a particular ADL. 

The next sections of the article describe the MicroTESK 
components in more detail. 



 

Figure 1. General structure of the MicroTESK TPG tool

IV. ARCHITECTURE MODELING 

As it has already been said, MicroTESK makes use of 
ADLs to specify the target design architecture. At the moment, 
supported ADLs include nML [8] and Sim-nML [9]. nML is a  
formalism that describes a microprocessor at the instruction set 
level hiding unnecessary low-level details. The language is 
flexible and easy to use. Thereby, modeling a microprocessor 
architecture does not require significant effort. For example, a 
description of the integer addition instruction (ADD) from the 
MIPS instruction set architecture [10] looks as follows [4]:  

op ADD(rd: GPR, rs: GPR, rt: GPR) 

action = { 

    if(NotWordValue(rs) || NotWordValue(rt) 

    then 

        UNPREDICTABLE(); 

    endif; 

    tmp_word = rs<31..31>::rs<31..0> + 

        rs<31..31>::rt<31..0>; 

    if(tmp_word<32..32> != tmp_word<31..31> 

    then 

        SignalException("IntegerOverflow"); 

    else 

        rd = sign_extend(tmp_word<31..0>); 

    endif; 

} 

 

syntax = format("add %s, %s, %s", 

    rd.syntax, rs.syntax, rt.syntax) 

 

op ALU = ADD | SUB | … 

 

As we can see, this notation is quite similar to the 
instruction's specification in the MIPS manual, which is shown 
below. 

 

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then 
   UNPREDICTABLE 
endif 
temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0) 
if temp32 ≠ temp31 then 
   SignalException(IntegerOverflow) 
else 
   GPR[rd] ← sign_extend(temp31..0) 
endif 
 

Basing on such specifications the microprocessor’s TK can 
be automatically extracted. For example, analyzing the 
instruction description, we can derive three conditions that 
require attention: 

1) The rt and rs general-purpose registers (GPRs) should 

contain sign-extended 32-bit values (bits 63..31 should be 

equal). Otherwise, the result of the instruction is 

UNPREDICTABLE. This means that under such a condition 

the microprocessor behavior is undefined and cannot be 

checked. Such situations should be avoided in TPs. 

2) If the addition results in 32-bit two’s complement 

arithmetic overflow, the destination register rd should not be 

modified and the IntegerOverflow exception should occur. 

Such a situation can be specified in a TT. When a TP is being 

generated the constraint solver engine will calculate exact 

values of the rt and rs GPRs to satisfy the constraint. 

3) If the addition executes normally (does not cause an 

overflow), the sign-extended 32-bit result should be placed 

into the rd GPR. Such a condition can as well be used in TTs 

(for example, to be sure that some instruction does not raise 

exceptions). 
ADL descriptions are used to build coverage models for 

individual instructions and to determine basic inter-instruction 
dependencies. It should be emphasized that models are 
composed from the building blocks provided by the model 



library and independent of a particular ADL. Therefore, it is 
possible to use any ADL that provides enough information 
regarding the structure and behavior of microprocessors. 

In addition to an instruction-level ADL description of the 
microprocessor, there is a need to specify some microprocessor 
subsystems, like memory management unit (MMU) and 
pipeline control unit (PCU), in more details. ADLs like Sim-
nML are not suitable for describing these elements. At the 
same time, they should not be overlooked as it is very 
important to verify how a microprocessor handles events 
related to memory management and pipeline control. To 
provide specifications of these properties, special configuration 
files (CFs) are used. 

MMU provides memory access protections, virtual-to-
physical address translation and caching of instructions and 
data. It works with the main memory, cache memory (L1 and 
L2) and translation look-aside buffers (TLBs) that are used to 
accelerate virtual-to-physical address translation by caching 
latest translations. A cache or a TLB is represented by a 
memory buffer. At a logical level, each buffer is described as 
an array of sets of lines that can be specified as structures 
comprising several bit vectors called fields. A line stores a 
copy of memory data that has been recently read or written. 
Data is accessed by its address. When a buffer contains a line 
with a specified address the situation is called a hit; if it does 
not the situation is called a miss. When a miss occurs, the line 
is replaced with data stored in main memory at the given 
address. So, buffer configuration information includes the 
following attributes: set size (associativity), number of sets, 
line field description, address-to-index translation rule, rule for 
checking if a line and an address match and data displacement 
policy. To specify this information, we use CFs of the 
following kind [4]: 

buffer L1 = { 
    set = 4 
    length = 128 
    line = { tag:card(27), data:card(32) } 
    index(addr:36) = { addr<8..2> } 
    match(addr:36) = { addr<35..9> == tag<0..26> } 
    policy = LRU 
} 

For the purpose of functional verification, there are two 
main situations that interest us: when a hit occurs and when a 
miss occurs. Both situations can be formulated as CSPs over 
the address being used to access data and state of the buffer 
[11][12]. 

Another important aspect related to architectural models is 
dependencies between instructions. Instructions change the 
state of the microprocessor and, thus, affect the behavior of 
subsequent instructions. For example, a precondition for the hit 
event is that corresponding data are loaded into cache, which is 
done by a previous instruction that accesses the same data line. 
To produce a complex instruction sequence that will give 
predictable results, we need first to simulate its execution to 
determine final parameter values of the dependent instructions. 
This is done at the final stage when MicroTESK processes TTs 
to produce TPs. The tool keeps a track of all events that occur 
in the model and provides this information to the TP generator 

Knowledge about possible dependencies between instructions 
is a part of TK extracted from the CFs. 

V. CONSTRAINT SOLVER ENGINE 

Important part of MicroTESK is a CSP solver engine. It 
facilitates generating test data and helps to achieve a better test 
coverage. Architecture specifications do not usually specify 
precise parameter values that lead to particular situations, but 
rather specify a class of possible values expressed as a set of 
conditions. For example, when we want to create a test for an 
integer overflow exception in the ADD instruction, we do not 
know values of parameter that cause the exception (in fact, 
there may be thousands of possible values). However, we know 
what conditions the resulting value should satisfy to recreate 
the situation. To generate parameter values that will make a test 
situation occur, the tool formulates a CSP and solves it with the 
help of the solver engine. The engine returns parameter values 
satisfying the constraint. Such an approach allows generating 
new test data from each time a TP is generated from the TT, 
which improves test coverage. 

MicroTESK uses the SMT-LIB language [13] to formulate 
CSPs for test situations. CSP is expressed as a set of assertions 
that specify assumptions about values of input variables and 
results of operations performed with them. Modern solvers 
support bit vectors, which facilitates specifying constraints for 
data buffers used in different parts of microprocessor models 
(registers, cache, main memory, etc.). Below, there is an 
example of a CSP that specifies conditions leading to an 
integer overflow exception in the ADD instruction. 

(define-sort Int_t () (_ BitVec 64)) 

(define-fun INT_ZERO () Int_t (_ bv0 64)) 
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64)) 

(define-fun INT_SIGN_MASK () Int_t 
    (bvshl (bvnot INT_ZERO) INT_BASE_SIZE)) 

(define-fun IsValidPos ((x!1 Int_t)) Bool 
    (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false)) 

(define-fun IsValidNeg ((x!1 Int_t)) Bool 
    (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true 
false)) 

(define-fun IsValidSignedInt ((x!1 Int_t)) Bool 
    (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false)) 

(declare-const rs Int_t) 
(declare-const rt Int_t) 

; rt and rs must contain valid sign-extended 
; 32-bit values (bits 63..31 equal) 
(assert (IsValidSignedInt rs)) 
(assert (IsValidSignedInt rt)) 

; the condition for an overflow: the summation 
; result is not a valid sign-extended 32-bit value 
(assert (not (IsValidSignedInt (bvadd rs rt)))) 

; just in case: rs and rt are not equal 
; (to make the results more interesting) 
(assert (not (= rs rt))) 
(check-sat) 

(echo "Values that lead to an overflow:") 
(get-value (rs rt)) 



MicroTESK provides a possibility to generate CSPs 
automatically on the base of the TK extracted from the design 
description. It should be said that TK’s constraints are stored in 
a format that is independent from a particular solver. The 
current version of the tool uses the Z3 solver by Microsoft 
Research [14]. The TP generator interacts with the solver via 
solver-independent CSP solver API. This allows the tool to use 
different solvers. 

VI. TEST TEMPLATES 

TTs are an important part of the MicroTESK solution. The 
tool provides facilities to create and modify TTs by hand. 
Despite the fact that some amount of TTs can be generated 
automatically based on TK, to cover all possible situations, it is 
often necessary to create TTs manually or customize 
automatically generated ones. Therefore, an expressive and 
easy-to-understand language is needed. Generally speaking, a 
TT describes a class of TPs that verify microprocessor 
behavior in particular test situations. Whereas TPs represent 
sequences of commands in a processor-specific assembler, TTs 
provide a way to describe a test scenario at a more abstract 
level. Such an approach gives a lot of advantages in terms of 
flexibility. For example, it allows generating tests taking into 
account dependencies between related instructions, create tests 
for a whole class of similar instructions and specify test 
parameters as ranges of possible values or as random values 
instead of hard-coding them. It also helps organize groups of 
separate test scenarios in more complex test cases and set up 
parallel test execution. 

To describe TTs, a special test template description 
language (TTDL) is used. In the current version of the tool, it is 
based on the Ruby scripting language, which is extended with 
special automatically generated libraries that provide all 
hardware-related features and perform interaction with the 
design model. Generally, the TTDL features can be divided 
into the following groups according to their purpose: 

A. Achitecture-related statements 

Include constructs to simulate generalized processor-
specific assembler instructions and a list of supported registers. 
Both instructions and registers can be combined into families. 
The TTDL allows specifying a family instead of a precise 
element or an address range instead of a specific address. Thus, 
it is possible to vary the level of randomness in the generated 
tests from completely random to completely directed. Also, we 
can specify dependencies between instructions. For example, 
we can make them use the same registers or the same address, 
which is selected at random when being accessed for the first 
time. 

B. CSP-related statements 

Constraints can be applied to instructions to recreate test 
situations. Typically, constraint conditions are extracted from 
ADL specifications. For example, it can be a condition that 
causes an integer overflow exception. Constraints are stored in 
a special catalog of constraints that includes information about 
instructions (or classes of instructions) they can be associated 
with. Constraints can be extracted from a design specification 
automatically, created manually or provided with the tools as 

independent general TK which is common for different 
microprocessors. 

C. Generation flow statements 

Provide control over instruction generation sequencing. 
Sometimes the sequence of instructions in a TP may need to be 
varied depending on some conditions or even to be randomized 
to achieve a better level of coverage. There are several possible 
ways to specify how a TP can be generated: 

 As a sequence of ordered instructions (the order is 
specified in the TT); 

 As a sequences of specified instructions given in a 
random order; 

 As a sequence of instructions some of which are 
repeated depending on some conditions; 

 As a sequence of instructions that contain instructions 
(or subsequences of instructions) randomly selected from the 
specified set of instructions; 

 As a set of instruction sequences that should be 
executed concurrently; 

 etc. 
The TTDL language provides language constructs that 

offer such facilities. The set of offered features can be 
extended. 

D. Standard language constructs 

Include constructs derived from the underlying scripting 
language such as control flow operators, variables, constants 
and assertion statements. Such constructs are necessary to 
describe complex scenarios, to specify shared instruction 
parameters, to use common constants and to add validity 
checks to test scenarios. 

E. Infrastructure-related statements 

Provide a framework for creating TTs. Include base classes 
and global objects needed to organize the structure of TTs and 
provide communication with design models and CSP solvers 
during test generation. Some features are architecture-specific 
and are generated from models automatically. 

The TTDL provides facilities that suffice for most 
verification tasks. To simplify the test design process, 
MicroTESK provides an ability to automatically generate some 
types of TTs. This includes templates for single instruction 
tests (that cover all possible execution paths for all supported 
instructions), combinatorial tests (that generate short sequences 
represented by combinations of specified instructions) and 
random tests (that produce random instruction sequences). 
Automated generation of TTs is performed based on TK 
extracted from the design description. To generate more 
specific TTs, the design model can be extended with additional 
information about test situations and instruction dependencies. 

To illustrate the use of the TTDL, an example of a TT for a 
MIPS microprocessor is provided below. 

class MyTemplate < Template 

  def test() 

    data = [ [0xEF, 0xFF], [0x1EF, 0x1FF], [0xFEF, 0xFFF] ]; 

    data.each { |d| 

      xor r0, r0, r0; 

      ori r(2), r0, d[0]; 

      ori r(4), r0, d[1]; 



      ld tmp1=r(1), 0x0, r(2);; hit([L1(), L2()], [25, 50, 75]); 

      ld tmp2=r(3), 0x0, r(4);; hit([L1(), L2()], [25, 50, 75]); 

      dadd r(5), tmp1, tmp2;; overflow; 

    } 

    end 

end # class MyTemplate 

This TT represents a scenario that generates a set of 

instruction sequences parameterized with data stored in the 

array. The generated sequences load data located at the 

addresses stored in the data array. For the ld instructions, the 

TT specifies constraints related to cache events: 

hit([L1(), L2()], [25, 50, 75]); 

This statement means that the line that accesses a memory 

device should cause a cache hit event to occur. It specifies a set 

of target caches and probabilities of the hit event occurrence. 

For this line, MicroTESK will generate a list of possible 

combinations and will add an instruction for each of them to 

the resulting TP. Another constraint is used to make the dadd 

instruction generate an overflow exception. The TTDL 

provides a wide range of facilities to express test situations that 

involve complicated series of events. 

VII. CONCLUSION 

Verification of modern microprocessors requires a lot of 
effort and efficient instruments. An ability to quickly 
reconfigure a TPG tool for a new design is a crucial 
requirement. In this paper, we offered a solution to the 
problem. The paper contributes the following approaches: (1) 
using high-level ADLs and CFs to specify the configuration of 
a target design and (2) building TK from high-level 
specifications basing on behavioral characteristics of the target 
design and (3) automated generation of TTs and TPs based on 
TK. The approaches are applied in MicroTESK, the instrument 
our team is working on. It makes use of the nML/Sim-nML 
ADL to describe target microprocessor designs. This formalism 
uses a format similar to the notation used in microprocessor 
manuals, which significantly facilitates creating configuration 
description of target devices. Another important application of 
ADLs is that they serve as source of behavioral characteristics 
of a microprocessor. MicroTESK is able to extract TK from 
ADL specifications and use it as a basis for creating test 
scenarios. This simplifies the job of a verification engineer who 
being armed with this knowledge can start creating tests as a 
soon as MicroTESK has processed an ADL specification. TTs 
are another major feature of MicroTESK. It provides a flexible 
way to specify complex test scenarios. Test situations can be 
formulated as CSPs, which eliminates the necessity to provide 
exact values of instruction parameters to make a particular 
event to occur. 

The architecture of MicroTESK facilitates customization. 
Designs models are created based on an API provided by the 
model library. They are independent of a particular ADL and 
can be processed in a uniform way. Also, MicroTESK includes 
built-in TK about situations that are common for different 
microprocessors. The template generation logic combines 
built-in TK and TK extracted from the architecture model to 
generate test scenarios, which allows automating the process of 

creating tests for basic test situations. The tool can be extended 
to support new ADLs and new ways to describe TK and TTs. 
As we can see, MicroTESK automates most of activities 
required to create tests for a target microprocessor design, 
which helps significantly decrease delays in the delivery 
schedule. 

At the present stage of our research, we implemented a 
prototype that supports only a small set of the described 
features. The first version of the prototype was tried with 
several industrial microprocessors and their subsystems. The 
experimental results are provided in the work of Kamkin, 
Kornykhin and Vorobyev [4]. Our current plans are to develop 
a full featured product that could be used by microprocessor 
vendors. A further direction of research is to more extensively 
automate creation of TTs. This will require using more 
complex models and test generation techniques. To keep in 
pace with temps of growth in complexity of modern 
microprocessor designs, TPG tools should provide more 
facilities to automate test design. 
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