
Run-time monitoring for model-based testing of
distributed systems

Vladimir Fedotov1

Institute for System Programming
Moscow, Russia

Email: vfl@ispras.ru

Abstract—Modern enterprise systems are highly distributed
and heterogeneous. Apart from the latest attempts on leveraging
distributed systems with SOA and SOA-like enterprise integra-
tion systems, testing still represents a major challenge.

This paper discusses practical approach for managing the
testing process for distributed systems based on transparent
test environment, run-time monitoring of interactions within this
environment and interaction model generation.

We also outline an approach for test case generation based
on the interaction model and test coverage metric based on the
coverage of interaction tree.

I. INTRODUCTION

Integration technologies are rapidly advancing since early
90-s, driven by consistently faster networking and better
data storage. Being mostly a business domain, integration
technologies constantly evolve, leaving in their wake various
vendor-locked platforms as a legacy. This legacy forms a
heterogeneous environment that is common for any enterprise
company big enough.

Enterprise environment is often divided between several
technology domains, each formed around a certain kind of
solution like an integration broker, application server or service
bus. Therefore environment as a whole is highly distributed.
Bringing this environment together is a daily struggle for an
enterprise IT.

The web-service stack of protocols is the latest attempt
to deal with this issue. Centered on Web-service Definition
Language (WSDL) web-service protocols provide standard-
ized interface for integration components. Combined with
stateless design it enables the strongest feature of web-services
– compositions.

Composition is a web-service that acts as a client for several
other web-services. Compositions can be stacked over each
other to implement different tasks over existing functional-
ity of the system, creating highly distributed environment.
Enterprise systems often follow the pyramid pattern (Fig.1),
wrapping enterprise applications with web-service interfaces
and stacking several layers of compositions on top of them.

Interface complexity, the number of operations and oper-
ation parameters, grows from the top to the bottom of the
pyramid. Low-level services may wrap an entire API of the
underlying systems, requiring an expert knowledge of the

1This work is partially supported by RFBR 11-07-00084a, 11-07-12075-
ofi-m grants.

business domain for client development. Top-level services
implement very specific business processes and provide only
basic interface that requires little knowledge of the system
internals and can be exposed to the third-party developers.

Integration complexity, the number of outgoing requests
for each incoming request, as defined in [1], grows from the
bottom to the top of the pyramid. Low-level services are tightly
coupled to the applications they wrap thus having zero integra-
tion complexity. Top-level services have multiple dependencies
on the services below them that have dependencies of their
own.

Fig. 1. Pyramid pattern in enterprise application integration

In this paper we would like to discuss the testing process
for the systems described above. While web-services by them-
selves bring nothing new to the classic V-model testing pro-
cess, compositions testing present an actual challenge, shifting
focus from functional to the integration testing. Developing a
methodology adjusted for testing of web-service compositions
is a goal of the research described in this paper.

II. MOTIVATION

Distributed heterogeneous nature of the enterprise systems
presents several major issues that need to be dealt with in
order to get meaningful consistent testing process. Other
issues described below are the consequences of data-flow
centered logic of integration components that makes them
tightly coupled to data that is stored externally.

Typical enterprise system consists from several different
technology platforms, that implement various, often propri-
etary, protocols. Applications supporting these protocols form
a domain around the platform, which means that test environ-
ment is fragmented according to these domains as there are
no connections between tests from different domains. Main

consequence of environment fragmentation is lack of end-to-
end tests that hampers a system testing stage of the process.

While individual components contain only integration logic
i.e. transformation between different message formats, actual
business logic resides in data stored in the core systems such as
billing or resource management. Constraints that exist in this
data describe what is possible and what is not in the system.
Therefore testing of business logic requires knowledge about
these constraints and a way to mine data corresponds to a
certain set of constraints. Both of these tasks are extremely
difficult as the data structures in the core systems may be
incredibly complex. In practice constraint discovery and data
mining often done in an informal way: by brainstorming the
database structure or consulting with business experts.

The price of informality is that there are no guarantees
of completeness for discovered constraint set. It may be too
strict, so certain types of input data is not represented in test
cases. Or it may be too loose, so certain test cases will fail
for no apparent reason. The main consequence of this is that
there is no appropriate way to measure test coverage. As test
cases are data-driven, they should be executed with the same
requests but different data, so typical coverage metrics, such as
amount of covered web-service operations, become inadequate
to actual test subject – business process implemented by the
component composition.

III. OUTLINE

Approach proposed in this paper can be logically divided
into two parts: firstly we try to bring the test environment
under control by developing a transparent test framework that
offers us an ability to observe and control interactions within
the test environment; secondly, we develop a technique for
modeling these interactions, that gives us a way to formally
reason about what is happening in the system.

Test framework described above is based on existing ap-
plication integration solutions. We are extending an existing
open-source enterprise service bus, that offers us various proto-
col adapters, message routing and transformation capabilities.
By having centralized, possibly federated, test environment
we deal with test environment fragmentation. Supporting the
environment also becomes easier, as protocol adapters can
be developed independently and do not affect other parts of
the environment. Adapters are connected to the Normalized
Message Router that transforms various message formats into
canonical one, thus making end-to-end testing easier.

Another important feature of our framework is an interaction
monitoring. It provides us with a bridge between real system
and a model. As it seems impossible to derive interaction
model from component specifications, we see run-time mon-
itoring as a best possible alternative. Run-time monitoring at
the unit-testing stage of process helps us to create behavior
models for independent components. At the later stages inter-
action monitoring helps us to determine the outcome of the
test executions and coverage reached.

The goal of model generation is to provide binding between
data-driven test cases and composition behavior to deal with

data constraints discovery issue. Model is built bottom-up,
starting from request-reply pairs for individual component and
growing to composition of models of several components. It
is presumed that model generation starts at the unit testing
stage, where data mock-ups are used. At this stage, model
describes what types of behavior are possible for an individual
component, later we bind them to an actual data, representing
an equivalence class.

When interaction model for component composition is
ready, we generate test scenarios that represent a certain
interaction path within a system. Test stimulus is represented
by a message that would be sent into composition entry
point, while reaction is a set of all consequent interactions
that happened within a system. Stimuli that have the same
structure, but contain different data may produce an entirely
different interaction pattern. The power of the approach is in
testing various interaction patterns that may be hidden behind
the entry point.

Essential feature of our approach is test coverage metric.
Data complexity in an enterprise system often prevents instan-
tiation of certain classes of data as we are unable to satisfy
constraints that exist in the system. Well-managed testing
process always aims for a perfect balance between risks and
man-hours, so we need a tool to evaluate an amount of work
required for test data instantiation and compare it to risks
coming from not testing on this data. Our test coverage is
measured as coverage of possible interaction patterns in the
composition. This coverage metric includes not only coverage
of reachable request-reply pairs, but also coverage of reachable
data classes discovered on earlier stages of process.

IV. APPROACH

A. Transparent environment

Basis of our approach is the observable environment. While
evaluating properties of the components under test we presume
that interactions between these components are observable.

In practice it might be difficult to achieve such level of
transparency. For example, there is no easy way, known to
us, to observe database interactions. Also interactions over
proprietary binary protocols, common for message queues, are
observable, but not decodable. Still, most interactions are done
over HTTP, with messages formatted in XML, so they are
easily observable and readable.

Second part is to bring all the observations together in a
single framework. Surely a bunch of HTTP sniffers here and
there would not do much for our goal. As a solution we suggest
the existing open source ESB platforms like ServiceMix,
Synapse and others.

First of all, ESBs already have a lot of adapters for different
protocols, thus widening our reach for many different plat-
forms. Second, the concept of an ESB presumes existence of
single point of observation for everything that happens inside a
system. Third, messages passed into an ESB are normalized to
canonical form, so we are relieved from a burden of handling
different message formats.

Componen t 23

Componen t 12

1:Reques t

Componen t 9

1 :Reques t

Componen t 1

5 :Reques t

Client

7:Reply2:Reply 4:Reply

Componen t 4

2 :Reques t 3:Reply

6:Reply 0:Reques t

Fig. 2. Interaction graph

We have not yet reviewed all available ESB platforms,
Apache Synapse looks most promising due to ease of its con-
figuration by XML-based configuration language, but protocol
support is somewhat limited in comparison to other platforms.
We will also look into possibility of developing our own
solution on top of the existing ones.

The role of the framework described above is to provide
a new entity of the system - an observer. Observer should
be able to log, analyze, transform and re-route messages
passing through him. As we actually see interactions within
the environment only if they are visible to observer, modeling
the environment actually means modeling the observer’s state.
We see an observer’s state as a queue of incoming messages. In
a certain period of time message queue gets processed which
basically means that messages get sent to their destinations.
Queue-based processing gets us a handy abstraction of time
for our model. Instead of dealing with continuous time, we
have discrete time represented by a message polling interval
of the observer that can be imagined like a turn in a turn-based
computer game. For example, messages are considered con-
current if they were retrieved on the same turn and sequential
if message B followed message A exactly on the next turn.

B. Interactions model

The first and easiest step of our approach is creation of a
connection graph of the system, like the one shown on the
Fig.2, that basically represents connections between compo-
nents. This graph is created by monitoring of the message-
flow on the observer and requires almost no processing other
than message headers where message destination resides.

The second step is the creation of the interaction trees
shown on the Fig.3 that maps the whole interaction between
components to a single message that started it. To create an
interaction tree we should implement basic rules for message
correlation:

1) Messages are concurrent if they were sent on the same
turn

2) Messages are sequential if the second message was sent
on exactly next turn and destination of the first message
matches to source of the second message

3) If there is no messages in the observer’s queue, the
interaction has ended

The third step is to discover relations between actual request
data and component behavior. This step is necessary for a
meaningful model as our components are data-driven and
their behavior may depend not only on the type of incoming
data, but also on its semantics. By developing this technique

0:Client

0 :Component 23

1

1:Component 12

2

1:Component 9

3

2 :Component 23

4

2:Component 4

5

3:Component 9

6

4 :Component 23

7

5:Component 1

8

6 :Component 23

9

7:Client

1 0

Fig. 3. Interaction tree

further we hope to implement a set of behavioral heuristics
for discovering common dependencies in the input data, such
as message ordering and equivalence classes.

C. Test generation

Final step of our approach is a test generation based on
the interaction model enriched with the discovered classes of
input. To test a certain composition we need to derive the
minimal set of test stimuli from a model that is able to cover
all reachable branches of the interaction tree.

This task is achievable in case we would be able to discover
and correlate inputs properly, the problem here is that these
tests would be abstract i.e. they would contain a description
of classes of data instead of a real data. Real data gathered by
observer may become unusable in case of update operations,
as the updated data no longer represents its original class.

Currently we see no possible general approach for discovery
of concrete data instances, so we presume it is done manually.
As it is certainly possible that some classes of data would not
have concrete instances (because we were unable to find them,

not because they do not exist), it is vital to develop a coverage
metric for these test sets.

D. Model semantics

Finally we would like to discuss a topic somewhat unrelated
to the practical application of our approach, but essential for
its further development – formal semantics of our model.
Currently we are considering several different semantics. First
one is widely used LTS semantics [2] [3] [4]. LTS model
represents a system as a set of vertices - states and a set of
labels - actions that perform a transition from one state to the
other.

As we discussed earlier, we consider components as a
stateless entities, so it may be unclear how to model them
using LTS semantics. We propose a slightly different approach
for using the same semantics. As we are modeling a data-flow
in the system, we represent state as a message in an observer’s
queue and transition as an action performed by a component
that results in transition to a new state i.e. getting new message
in a queue. This approach is expressive enough, but there are
certain difficulties in its practical application.

First of all, as we discussed earlier, our inputs have state
of their own that should be included in the model. In reality
it is some sort of the global state represented by a set of
attributes stored in a database, but we think that modeling
a global state is not exactly a good idea, because it brings
unnecessary complexity to a model without any real value.

We deal with that issue by splitting our state, a message
in reality, in two parts: implicit and explicit. Explicit part of
the state is an actual message received, while implicit part
is an associated context that is hidden from us somewhere
in the system. By doing so we get rid of non-determinism
we showed earlier, where two same messages may produce
different reactions. Here it means that only explicit parts of
the messages were equal, and implicit parts were actually
different, so we have two different states and there is no
indeterminism in these cases. Declaring the two states different
is done solely by looking on the results of the same actions,
so we do not need to actually compare the implicit parts.

Another option we are considering is somewhat less known
actor semantics [5] [6]. Actors model was introduced by
Hewitt in 1973 [7] and was supposed to model concurrent
systems as a set of related entities – actors. Actors communi-
cate via reliable messaging and have a state of their own. For
every incoming message actor can create more actors, send
more messages or change its own state.

Most recent and successful implementation of an actor
model is done in the Scala language [8], which served for us
as an inspiration to look into actor semantics. Scala provides
an actor framework for implementation of concurrent systems
in a clear and concise way that differs a lot from a traditional
locking mechanism.

Model-checking for actors modeled in Rebeca language [9]
was successfully implemented in Modere [10] model-checking
engine. For now these are the only works in formal verifi-
cation for actors, but while recent development of an actor

model itself was not very active, we see its expressiveness
in our domain as a big advantage. Components, especially
web services, can be naturally described as actors. Message
passing as a way of communication also fits naturally in our
approach. Another big advantage is model scalability – a way
of composing smaller models into larger ones described in
[11].

V. RELATED WORK

Testing and verification of the distributed systems is a
very popular field of academic research, mostly due to recent
peak of SOA-related technologies. The formal specification
language - WSDL and the composition description language
- BPEL provided by web services attract attention as they
seem to be very prominent tools for implementation of various
model-based testing techniques.

The ideas that are closely related to ours and, more
importantly, already implemented in the Plastic Validation
Framework [12] were expressed in the works of Bertolino et
al. [13] [14] [15]. The concept of the model-based generation
of the test environment, expressed in [14] is very close to
our approach. Unfortunate downside of the proposed methods
is their limitation to the domain of web services. There also
no clear description of the data binding mechanism as web
services are described as stateful entities.

Another important work related to our topic, done by
Sharygina and Kröning and included in [16], discusses the
application of the model-checking techniques in the domain
of web-services. Being a preliminary work it only discusses
the model checking for certain properties such as deadlocks,
but can be easily extended for more practical cases.

Castagna et al. [17] developed the theory of contracts
for Web services. These contracts are used as behavioral
descriptions of Web services and offer concise and formal way
for reasoning about their properties.

Ferrara [18] developed the process algebra approach for
reasoning about BPEL services. This approach maps formal
abstracts to concrete web-service implementations done in
BPEL4WS language.

Textor et al. [19] proposed formal workflow model for
SOA monitoring. This model is used for Quality-of-Service
monitoring for enterprise applications. Described approach
was successfully implemented for self management of the
actual enterprise system.

VI. CONCLUSION

In this paper we have introduced a model-based approach
for testing distributed systems. Our approach has strong em-
phasis on practical application and is based on the run-time
monitoring of the system. To enable such monitoring in real
enterprise systems we develop transparent test environment
that acts as an observer for interactions between components
of the distributed system. We use existing open-source ESB
as a technology platform for the test environment.

We have outlined an approach for generation of a model of
distributed system that is based on observing behavior patterns

of the individual components. This model is composable and
can be used throughout all stages of the testing process, from
unit-testing up to end-to-end acceptance testing. The main
feature of the model is that it allows binding component
behavior to the semantics of the input data. Described model
is used for generation of tests that cover possible interaction
paths and input data classes.

We have also discussed suitable formal semantics for a
described model. LTS semantics is common for model-based
techniques, but cannot be applied in a straightforward manner
because of the stateless design of the system components.
Instead of modeling the component state, we model the state
of the observer that is represented by a message or multiple
messages for concurrent interactions. Another suitable seman-
tics is the actor model, introduced by Hewitt and implemented
in Erlang and Scala programming languages. Despite being
unpopular for means of formal verification, we see the actors
semantics superior to others mostly because of scalability of
the models defined with actors.

Presented work is still very much in progress. Description
of the model and test generation techniques is preliminary and
would be improved in future. We also plan to put more efforts
in researching the actors semantics.

REFERENCES

[1] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software
Engineering, no. 4, pp. 308–320, 1976.

[2] J. Tretmans, “Model Based Testing with Labelled Transition Systems.”
[3] V. Kuliamin, “Component architecture of model-based test-

ing environment,” Programming and Computer Software,
vol. 36, no. 5, pp. 289–305, 2010. [Online]. Available:
http://dx.doi.org/10.1134/S036176881005004X

[4] I. Burdonov and A. Kosachev, “Conformance testing based on a state
relation,” Proceedings of the Institute for System Programming of RAS,
vol. 18, pp. 183–220, 2010.

[5] C. Hewitt, “Actor Model of Computation: Scalable Robust Information
Systems,” pp. 1–29, 2011.

[6] S. Smith, I. A. Mason, and C. Talcott, “Towards a Theory of Actor
Computation.”

[7] C. Hewitt and P. Bishop, “A universal modular actor formalism for
artificial intelligence,” Joint conference on Artificial intelligence, pp.
235–245, 1973.

[8] M. Odersky and L. Spoon, “Programming in Scala,” 2008.
[9] M. Sirjani and M. M. Jaghoori, “Ten Years of Analyzing Actors : Rebeca

Experience.”
[10] A. Movaghar, “Modere : The Model-checking Engine of Rebeca Mo-

hammad Mahdi Jaghoori,” pp. 1810–1815.
[11] A. Gul, “A Foundation for Actor Computation,” no. July 1993, 1993.
[12] A. Bertolino, G. D. Angelis, L. Frantzen, and A. Polini, “The PLASTIC

Framework and Tools for Testing Service-Oriented Applications,” pp.
106–139.

[13] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini, “WS-TAXI: A
WSDL-based Testing Tool for Web Services,” International Conference
on Software Testing Verification and Validation, pp. 326–335, Apr. 2009.

[14] A. Bertolino, G. D. Angelis, L. Frantzen, and A. Polini, “Model-Based
Generation of Testbeds for Web Services.”

[15] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Whitening
SOA Testing,” pp. 161–170, 2009.

[16] L. Baresi, Test and Analysis of Web Services, 2007.
[17] G. Castagna, N. Gesbert, and L. Padovani, “A theory of contracts for

Web services,” ACM Transactions on Programming Languages and
Systems, vol. 31, no. 5, pp. 1–61, Jun. 2009.

[18] A. Ferrara, L. Sapienza, and V. Salaria, “Web Services : a Process
Algebra Approach,” pp. 242–251.

[19] A. Textor, M. Schmid, J. Schaefer, and R. Kroeger, “SOA Monitoring
Based on a Formal Workflow Model with Constraints,” Applied Sciences,
pp. 47–53, 2009.

