
Translation of UML Statecharts to UPPAAL 

Automata for Verification of Real-time Systems 
 

Daniil A. Zorin 

Department of Computational Mathematics and Cybernetics 

Lomonosov Moscow State University 

Moscow, Russia 

juan@lvk.cs.msu.su 

Vladislav V. Podymov 

Department of Computational Mathematics and Cybernetics 

Lomonosov Moscow State University 

Moscow, Russia  

vvpodymov@gmail.com

 

 
Abstract — In this paper we present a tool to transform UML 

statecharts to UPPAAL automata. The tool allows one to check 

temporal properties against statecharts modeling a real-time 

system. We give the constraints on statecharts, the tool 

description, and the results of testing it on a well-known traffic 

control example. 

Keywords — verification, UML, UPPAAL, modeling, real-time 

systems 

I.  INTRODUCTION 

Usually verification tools work with models written in 
specialized languages intended for convenient application of 
verification algorithms. On the other hand, during the design 
stage systems are often modeled with universal modeling 
languages (such as UML) or industry-specific modeling 
languages. UML statechart diagrams are an example of 
universal models describing the behavior of systems 
communicating with the environment via shared memory and 
message passing. Real-time systems are often modeled with 
such diagrams. Since the cost of correcting an error increases 
over the course of system development, verifying the 
properties of the system as early as possible one improves its 
quality and simplifies its development.  

In this paper we present a tool for converting UML 
statechart diagrams to timed automata used in the UPPAAL 
verification system [1, 2]. In section 2 we define the syntax of 
expressions we use in UML diagrams. The algorithm is 
discussed in section 3. Experimental results obtained with the 
algorithm are given in section 4.  

II. UML STATECHARTS 

Unified Modeling Language (UML) is used to design a 
wide range of systems implemented in various languages and 
in different environments. Therefore, the authors of the 
standard of UML deliberately avoid defining syntax and 
semantic of the language completely [5, ch. 13]. The language 
defines a metamodel comprised of syntactical constraints on all 
models in UML notation. Generally it is only possible to say 
whether the model is syntactically correct. The behavior of a 
correct model might be undetermined in some cases: guards, 
actions and triggers can be defined in a natural language which 
tolerates different interpretations.  

The authors of the language suggest creating a separate 
profile for every class of systems without changing the general 
notation. However, in the case of statechart diagrams, creating 
the profile does not solve interpretation problems. To prove the 
properties formally it is necessary to define a strict syntax and 
semantic of all used primitives of statecharts. In this study, 
additional constraints on the structure of the diagrams and the 
syntax of expressions are imposed, thus the ambiguity is 
avoided.  

Simple states are the same as in the standard UML 
metamodel. There are two types of composite states: sequential 
and parallel. Automata residing in a parallel state are executed 
simultaneously. Composite states have special entry and exit 
states. 

Some states are marked with logical formulae called 
invariants; a system can reside in such state only while its 
invariant is satisfied. 

Each transition between states may be provided with a 
guard, an action, and a synchronization. Guards express 
requirements that must be satisfied to enable the transition. 
Actions are the operations performed after the transition is fired. 

The syntax of guards, invariants and actions is similar to 
the syntax of the C language. There are three types of 
variables: an integer type over a certain range (e.g., int [4..9] x 
= 5;), the boolean type (e.g., bool b = false;), and the clock type 
(e.g., clock c;). All variables must be defined in the comments 
section of the UML model. Expressions admitted in guards 
include all types of comparison as well as logical NOT, AND 
and OR operations. Actions may contain assignment statements 
including complex arithmetic expressions and the C-style 
ternary operator ‘? :’. Invariants have the same syntax as 
guards do, though the expression must be marked with the 
keyword ‘assume()’. 

There are two additional expressions in the syntax. The 
boolean expression 'in(S)' borrowed from STATEMATE 
language [3] denotes that the state S is active in the system. 
The operation of random assignment, written as ‘x=random();’ 
non-deterministically gives a value to an integer or boolean 
variable admitted by the type. 

The syntax and the meaning of macros are similar to the 
ones in C language. They are defined in the comments section 



along with the variables. The macro ‘#define X Y’ replaces all 
occurrences of X with Y before other stages of the translation. 

The examples of expressions can be found in the Figure 9.  

The operation of sending a signal is identical to the 
hardware-like message broadcast [3]. Every signal must be 
defined in the model. When signal S is sent by a transition 
(denoted by the synchronization section), the automaton marks 
signal S as sent, and on the next step all the automata that can 
activate a transition with the receiving of signal S (written as 
‘!!S’) must do that. If none of the automata can receive the 
signal, it is considered lost. For instance, on figure 10 the 
system moves from state AHome to state AToGreen only at 
receiving a signal AtoG.  

III. TRANSLATION OF UML STATECHARTS TO UPPAAL 

AUTOMATA 

The UML to UPPAAL translator works with UML 
statecharts in the widespread XMI format. When a file is 
parsed and an internal representation is constructed, the 
translation is performed in two phases. First, the statechart is 
transformed to the intermediate form – an hierarchical timed 
automaton (HTA) [4] – and then this automaton is translated to 
a network of timed automata (NTA) according to the algorithm 
similar to the one introduced in [4]. 

Since the structure of statecharts differs significantly from 
the structure of hierarchical timed automata, an additional step 
of transformation of UML statecharts should be carried out 
before translating them to UPPAAL. 

Firstly, during the parsing of UML, the expressions that do 
not belong to UPPAAL model language are translated. All 
macro substitutions take place before parsing the guards and 
actions. The 'in(S)' expression in guards is replaced by 
checking the value of a special flag variable which is unique 
for each 'in(S)' statement. 

Further, all references to automata are replaced by their 
unique copies. If one automaton is nested into another one, it is 
inserted as well. Name collision on this step is avoided: if the 
names of two states in two nested automata coincide, then one 
of the states is renamed, and if two variables with the same 
name are declared in different scopes (e.g. in two automata 
referenced in the third one), then one of them is renamed. As a 
result a single hierarchical UML statechart is formed. 

The next step is to modify composite states (figure 2-3). In 
HTA, only transitions between simple states, entry and exit 
states are allowed, so it is necessary to change the arcs which 
start or end in composite states to match them with the 
corresponding entries and exits. Adding several new entries or 
exits might be necessary. In HTA transitions into a composite 
state are allowed if they end in its entry state, similarly, 
transition out of a composite state into its parent is possible if it 
starts in an exit state. All other transitions must begin and end 
inside of the same composite state, i.e., the source and target 
states remain in the same composite state. However, in UML 
statecharts it is possible to perform transitions to a deeply 
nested state; hence it is important to add all exits and entries in 
between.  

Finally, guards, actions, and synchronizations should not be 
present on transitions ending in exit states according to HTA 
definition. In such cases, a new state, like tmp in the Figure 2, 
is added and the guards, actions and synchronizations are 
assigned to the transition ending in the new state. 

 

 

Figure 1.  Correction of composite states: before 

 

Figure 2.  Correction of composite states: after 

 

When HTA is obtained, it is translated into NTA used in 
UPPAAL. 

NTA consists of processes, variables, channels and clocks. 
A process is a certain timed automata which has finite sets of 
locations and transitions. 

Some locations are marked with invariants, and some 
transitions are supplied with guards, actions, and 
synchronizations. Invariants, guards, actions, and 
synchronizations are similar to those in HTA. 

Three kinds of locations are possible: ordinary, urgent, and 
committed. When an urgent location is active in NTA, no time 
can advance, and if the location can be deactivated, it is left at 
once. Committed locations are similar to urgent locations, but 
they have the highest priority in deactivation. 



Each channel has its own type, either broadcast or 
handshake. Broadcast channels are similar to those in HTA. 
Handshake channel is used to synchronize the execution of 
exactly two transitions in NTA. 

The translation HTA to NTA is as follows. 

Before state translation, variables, channels and clocks are 
copied from HTA directly to NTA. According to translation 
algorithm, auxiliary variables and channels are added. Some of 
them are mentioned below. 

Every composite state S in HTA corresponds to a process 
P(S) in NTA. Every such a process has an initial location ‘idle’ 
which corresponds to inactivity of a composite state. 

Consider a parallel composite state S in HTA. A special 
location ‘active’ is created in P(S). The ‘active’ location can be 
reached from the ‘idle’ location by performing a sequence of 
transitions via committed locations ‘start(X)’, one for each 
composite state X nested in S. The first transition in the 
sequence carries a synchronization ‘activate(S)?’ that activates 
P(S). Other transitions in the sequence carry synchronizations 
‘activate(X)!’ for every nested state X. Also there is exactly 
one transition from the state ‘active’ to the state ‘idle’ that 
carries a synchronization ‘deactivate(S)?’ deactivating P(S). 

When P(S) is activated, the whole sequence of transitions is 
executed with no time advancing, every nested state is 
activated, and then P(S) reaches the ‘active’ location which 
corresponds to activity of all states nested in S. 

Consider a sequential composite state S in HTA. A process 
P(S) includes locations ‘active(X)’ for every state X nested in S 
as well as committed locations ‘start(X)’  for every composite 
state nested in S. Locations ‘start(X)’ and ‘active(X)’ are 
connected via a transition decorated with a synchronization 
‘activate(X)!’. The ‘idle’ location is connected with either a 
location ‘start(X)’ in the case of a composite state X or with a 
location ‘active(X)’ in the case of a basic state X via transition 
with synchronization ‘activate(S)?’. 

When P(S) is activated, it activates exactly one of its nested 
states and reaches one of ‘active(X)’ locations which 
correspond to the activity of X. 

To deactivate a state X nested in S, the process P(S) uses a 
set of deactivation sequences of committed locations. 
Transitions in each sequence carry synchronizations 
‘deactivate(Y)!’ for every composite state Y nested at any level 
in X. Thereby when a deactivation sequence is executed, all 
inner states which can be deactivated simultaneously in HTA 
are deactivated in NTA. If S has to be deactivated as well, the 
final location of the sequence is connected to the ‘idle’ location. 
Otherwise it is connected to one of ‘start(X)’ or ‘active(X)’ 
locations. 

To initialize the NTA defined above, an additional process 
‘Kickoff’ is created. This process is a sequence of committed 
locations which ends with an ordinary location. Transitions in 
this process carry special synchronizations ‘init(X)!’ for every 
initial state X of HTA. Special initial transitions are also added 
into other processes to reach a correct initial state. 

IV. EXPERIMENTAL RESULTS 

To be certain that the implementation of our translation 
algorithm is correct and well suited for composition with 
UPPAAL we tested it on several case studies. The simple 
examples were used to make sure that the output of the 
algorithm satisfies the expectations and to check the behavior 
on various sample cases. Some more complex tests were aimed 
to simulate the whole process of verification of a system 
defined by a UML statechart diagram. Below we present the 
results of our experiments with the model of traffic lights 
control system described in [4].  

A. Simple tests 

An example of a simple test is given on figures 4-5. 

 

Figure 3.  Example 1: UML 

 

Figure 4.  Example 1: UPPAAL 



 

Figure 5.  Example 2: UML 

 

Figure 6.  Example 2: UPPAAL 

B. Traffic lights example 

The traffic lights control system consists of two traffic 
lights on a crossroad. The lights are controlled by a processor 
supplied with some sensors. Lights on the street and on the 
avenue change colors customary to let cars pass by in both 
directions. Further, in the case an ambulance car arrives from 
any direction, the lights must turn to green on that direction in 
order to let the ambulance pass as soon as possible. 

The UML diagrams for this system are shown in the 
Figures 10-11. The first diagram contains state loops for the 
lights and the ambulance and a reference to the diagram of the 
light controller. The lights are changed in the usual order 
(green to yellow to red) according to the signals of the light 
controller. The ambulance appears non-deterministically and 
passes through the street crossing. 

The light controller normally sends signals to the lights to 
switch their colors in order. When the ambulance appears, the 
system exits the normal cycle and enters the 
AmbulanceArriving composite state where the light colors are 
changed arbitrarily in order to turn the light on the street where 
the ambulance is waiting green. 

In [4] the authors constructed a UPPAAL model for this 
system manually to verify its properties. We used our translator 
and obtained the model automatically. 

 

Figure 7.  UPPAAL diagram for AvenueTurn composite state 



 

Figure 8.  UPPAAL diagram for Ambulance behavior 

Some of the UPPAAL automata are shown on figures 7-8. 

The following properties were tested. 

A[]! deadlock 

This property guarantees the absence of deadlocks. 

A[]! (stg==1 || sty==1) imply avr==1 

A[]! (avg==1 || avy==1) imply str==1 

The lights are synchronized: if the avenue light is green or 
yellow, the street light must be red and vice versa.  

E<> stg==1 && avg==1 

This property means that there exists a trace where both 
lights are green at the same time and it was proved to be false. 
At the same time the seemingly contrary property 

A[] (stg==1 || avg==1) 

is not fulfilled also, because there can be a situation where one 
light is red and the other one is yellow. 

Ambulance_process_proc.Approaching_active_in_Ambula
nce --> 

Ambulance_process_proc.Home_active_in_Ambulance 

Home state for the ambulance car is reachable from the 
Approaching state, which basically means that the ambulance 
will always eventually pass the crossing. 

CONCLUSIONS 

Experiments with our tool testify that translation of UML 
statecharts to UPPAAL timed automata is possible. We 
reproduced the results that were obtained manually in [4] with 
our automatic translation and showed that the tool is applicable 
to models of relatively simple real-time systems with parallel 
interacting processes. Further work includes formal proof of 
the correctness of the algorithm based on [3] and testing the 
tool on practical examples of real-time systems. 

REFERENCES 

[1] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. 
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–
152, October 1997. 

[2] Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi. A tool 
architecture for the next generation of UPPAAL. In 10th Anniversary 
Colloquium. Formal Methods at the Cross Roads: From Panacea to 
Foundational Support, LNCS, 2003. 

[3] David, M. Moller Oliver, Wang Yi. Verification of UML Statechart with 
Real-Time Extensions / Uppsala: Department of Information 
Technology, Uppsala University. IT Technical Report 2003-009, 2003.  

[4] A. Furfaro, L. Nigro. A development methodology for embedded 
systems based on RT-DEVS, Innovations in Systems and Software 
Engineering, vol 5, P. 117-127, June 2009. 

[5] Grady Booch, Ivar Jacobson & Jim Rumbaugh. OMG Unified Modeling 
Language Specification. Addison Wesley, 1997 

 

 

 



 

Figure 9.  Example of a UML diagram containing all syntactic features 



 

 

 

 
Figure 10.  Traffic lights UML diagram 



 
Figure 11.  Traffic lights UML diagram (2) 

 


