Elaborating on the alias calculus

Alexander Gerasimov
Saint Petersburg State University,
Computer Science Chair
and
Saint Petersburg National Research University of
Information Technologies, Mechanics and Optics,
Software Engineering Laboratory
Email: asgerasimov@gmail.com

Abstract—In this research-in-progress report, we elaborate on  « @ IS an alias relationy andy are variables,
the alias calculus introduced in [1], [2]. The alias calculg is e aflz:yl=bU ({z} x (b/y)),
to determine whether two reference expressions at the given  , _ a\—{z} = a\{{u,v)€alu=2Vv=uz}
program point may address the same object at the run-time (in ’ ’
other words, whether one expression may be an alias of the ath « by = {ypU{u](uy) b},
expression). The main intended application of the alias calilus o T=(cU{{v,u) | (u,v) € c}) \ {{u,u) | (u,u) € c} for
is to support deductive verification of object-oriented praggrams. a relationc.
We show how aliases may be used in Hoare-style reasoning, loen The rule for a compound instruction is
derive at what program points we are to compute aliases and
propose an algorithm that computes the required aliases. Walso (a> (p;q)) = (a>p)>q,
state future work directions.

wherep andgq are instructions.
|. INTRODUCTION A conditional instruction in the model language is of the
To perform deductive verification of an object-orienteform "then p else ¢ (there is no boolean condition in it).
program we need to know whether two reference expressior¥e rule for it is
at the given program point may address the same object at
the run-time (in other words, whether one expression may be
an alias of the other expression). For example, we shoukl tak The alias calculus may say that some expressions are aliased
care of such a situation. if andy are aliased and an operatiorthough in fact they cannot because the boolean condition in a
modifies the value of the attribute f, then the opertation alsoreal conditional and loop is not taken into account. Such an
modifies y. f, thoughy is not mentioned in the text of theimprecision may be handled by means of a cut instruction in
operation. The alias calculus introduced in [1], [2] is teegi the model language. The instructioadt e;, ex” asserts that
an answer on the formulated question. the expressions; andes are not aliased at the given program
[2] suggests to represent possible aliases at a prograrh pgioint. In the non-object-oriented alias calculus the rude f
as a symmetric and irreflexive relation over a set of refegentcut e;, es” is
expressions (such a relation is called @ras relation) and
formulates rules of the alias calculus for a model of a pro-
gramming language. wheres = s x s for a sets of expressions and the braces
There are following instructions in the model of a programenclosing a list of the elements sfmay be omitted.
ming language: skip, forget, create, assignment, compound
conditional, cut, loop, and procedure call. A. Related work.

(a>>then p else q) = (a>p)U (a> q).

(a>> cut ey,e2) = a\ ey, ez,

Each rule is of the form The following approaches to handling references for
program verification are known (see [2], [3]): separation
(a>p) = A, logic [4], shape analysis [5], ownership types [6], and dyita

where A denotes an alias relation that may hold just aftéFameS 71 Howevgr separation ogic gnd shape gqalysi@try
the execution of a program instructin provided an alias reveal a more detailed structure of pointers than it is resrgs

relation ¢ holds just before the execution. Let us formulatgor alias analyS'S [2]. Separatlon logic, ownelrshlp ty_pes,
some of the rules. and dynamic frames require a programmer to write additional
The rule for an assignment in the non-object-oriented aliggnotations besides Hoare assertions.

calculus (where every reference expression is a variable) i _The alias calculus_ls formulated in terms_, .Of a model O.f a
high-level programming language and additional annatatio

(a>x:=y) = alx: vy, (i. e., cut instructions) are rarely required.

where 1Thuser, ea = {(e1,e2), {e2,e1)}. The notations is also used below.



B. Our work. o r* is the list of formal arguments of the procedute
We analyse the alias calculus [2] and its prototype imple- * £ iS the body of the procedune

mentation (mentioned in [2]) and elaborate on some aspécts o* @l : 1] = (... (a[Z1 : z1])...)[Zm : 2] for lists of
the alias calculus in order to provide a solid basis for farth ~ varablesl = (i1,...,%n) andl = (z1,...,2,) (see
implementation and integration of the alias calculus infteE the definition ofa[ : y] for variablesz,y in Section I).
Verification Environment [8]. These aspects are: We elaborate on how to extend this rule to handle possibly

« Hoare-style reasoning with aliases; mutually recursive procedures. First of all, from Sectibwé
. computing aliases for calls to (mutually) recursive procé‘—”ow that we must compute alias relations that may hold just

dures: before and just after each procedure call of a program. Next
« coping with the infinity of some alias relations in theVe introduce some definitions and notation and then propose
object-oriented alias calculus. an algorithm that computes required alias relations.

.bA(J\y alias relation that may hold at the program point just
efore/after (the occurrence of) the procedure cadl called
theinput/output alias relation for (the occurrence of) the proce-
Il. ON HOARE-STYLE REASONING WITH ALIASES dure callc. (In this definition and in what follows we assume
Consider the following Eiffel code fragment: that the aligsing _s_emantics of (possibly mutually_reqm)siv
b thon v — 2 procedures is intuitively clear, however the semantic® ibe
_ y= precisely defined in our future work.)
; rue Let ¢y, ..., ¢, be all the occurrences of procedure calls in
f‘s_e of=c the program. Lety be an (implicit) occurrence of thilain

_ _ ~ procedure call, which is performed when the program starts
Suppose the precondition and postcondition of the qualifigd execution.

procedure callr.set are given in the comments above (the For eachj = 0,...,n we need to compute
comments are the lines starting with- 2-"). Let us try to infer

These aspects and some of our results achieved are descr,
in the subsequent sections.

(1) the maximal (w. r. t. inclusion) input alias relatia¥, ..

the weakest precondition of this fragment for the postcioomli for the procedure calt; (obviously,ac,, = 0) and
)v’ max
y.f=c ) (2) the maximal output alias relatioé;,,. for the procedure
If we do not know thatr andy may be equal just after the call ¢;.
call z.set, then we cannot weaken the postconditioff = ¢ 15 gptain these alias relations, Algorithm 1 takes into
oy.f=c account all possible sequences of procedure calls by itera-

Suppose we have computed aliases that may hold just befﬁ\;gly computing an input alias relationf:
and just after the calt.set: x andy may be aliased at these
program points. Then we add= y to the precondition and
postcondition ofz.set via conjunction. Now we obtain the

and output alias
relation A% for the procedure calt; (j = 0,...,n) so that at
the termination of the algorithm

preconditionb V z = y of the whole code fragment using @“ = ay,, and A% = A&z for eachj =0,...,n.

Hoare rules [9]: For an occurrence: of a procedure call in the program
——bVzr=y we denote byr¢ the procedure and by the list of actual
if bthen y:=2« arguments of the call.
—— trueNz =y
z.set Algorithm 1 Computes the maximal input and maximal output
—— z.f=chz=y alias relation for each procedure call.
— — implies (1) for eachj =0,...,n
——yf=c (1.1) a% :=0;

Thus in order to perform Hoare-style reasoning for a pro- (1.2) A% :=(;
gram, whose routines are specified with their preconditior(g) while all A% (j = 0,...,n) are not stabilized

and postconditions, we propose (at least) to compute aliase (2.1) for eachj =0, ...,
that may hold just before and just after each routine call.
(Other details of Hoare-style reasoning with aliases areeto
elaborated in future.)

n

(2.1.2) A% := (a%[(r)® : 1%9] > r%),
where a% [(r%)® : [%] > r% is computed using
calculus rules and whenever a subtask of com-

IIl. HANDLING PROCEDURE CALLS IN THE puting a* > call r°#(I°*) is encountered at a
NON-OBJECTFORIENTED ALIAS CALCULUS program point just before; (for somek):
[2] introduces the following rule for a caltall (I) to a (2.1.1.1) a® >> call r°+(I°*) is treated asA®;
procedurer with a list! of actual arguments: (2.1.1.2) a® :=a® U a®~.

(a> call r(l)) = (alr®: 1] > 1), Algorithm 1 terminates since the set of expressions (i. e.,

where variables in case of the non-object-oriented alias cafjuhat



may be in the computed alias relations is finite. Note also tha as currently(z,;a > call ¢) = A** = 7,7y, z,b,q,c;

if all A% (j =0,...,n) are stabilized, then obviously aif a‘ :=T,a.

(j =0,...,n) are stabilized too. The algorithm is a variant oftems 8-10 (not shown) are the same as items 5-7 respegtively
the Chaotic Iteration algorithm (see [10]) and it is subject so A<, A¢1) A< given in items 5-7 are stabilized and equal
some optimization, e. g., maintaining a worklist of whatlliea to the maximal output alias relations sought for; the maxima
needs to be recomputed. input alias relations are®,a,a" given in items 1, 7, 6

r ively.
A. An example. espectively

Let us illustrate how Algorithm 1 works on the model
language program given on Fig. 1.

IV. CONCLUSION AND FUTURE WORK

We are elaborating on the alias calculus and in this research
in-progress report presented how aliases might be used in
Hoare-style reasoning, derived at what program points we

procedure Main — — ¢ were to compute aliases and proposed an algorithm that
then computed the required aliases.
Ti=y Future work includes:
else « elaborating on the overall process of Hoare-style reason-
T = a; ing using the alias calculus;
callgy —— ¢ « precisely defining the aliasing semantics of (possibly
end mutually recursive) procedures; optimizing Algorithm 1,
end which computes alias relations for calls to (possibly
procedure ¢ mutually recursive) procedures; proving its correctness;
x:=b and adopting the algorithm for qualified calls;
then o coping with the infinity of some alias relations in
call Main — — ¢y the object-oriented alias calculus (e. g., after assigning
else cur := first and then iteratingcur := cur.next, the
a:=c variablecur may be aliased to any element of the infinite
end set described by the regular expressjanst(.next)*).
end ACKNOWLEDGMENT

Fig. 1. An example program [2, Example 13]. The author would like to thank his scientific supervisor

Professor Bertrand Meyer, the head of the Software Engineer
ing Laboratory at Saint Petersburg National Research Wnive
2. A% = (a®® > r®) = (0 > Main) = sity of Information Technologies, Mechanics and Opticg] an
(7,9, (T;a> call q)) T,y Alexander Kogtenkov for helpful discussions. The Software
as currently(z,;a > call ¢q) = A® = () Engineering Laboratory is supported by a grant from Mail.Ru
a' =17, a. Group.
A = (a" >r%) = (Ta>q) = The author is grateful to the anonymous referees for their
((x,b > call Main), z,b> (a:=¢)) = useful comments on the original version of this paper.
7,9, 2,0,@,¢
as currently(z, b > call Main) = A = {);

=

Forj =0,1,2: a% := (; A% := (.

REFERENCES

a®® :=x,b.

4. A2 :=(a®2 > r®) = (x,b> Main) =
(T,y, (T,a>call q)) = T,y,z,b,a,¢
as currently(z,a > call q) = A =7, 7, ,b
al =T, a.

5. A% := (a® > r®) = (0> Main) =
(T,y, (T,a>call q)) = T,y,z,b,a,¢
as currently(z;a > call q) = A =T, g, x,b
al =T, a.

m? :1:7 b’ﬁ
as currently(z, b >> call Main) = A2 =7,y
a® = ﬂ

7. A% = (a2 > r?) = (2,b> Main) =
(7,9, (T,a>call ¢

|
8
&
8
-
Q
a

[1] B. Meyer, “Towards a theory and calculus of aliasinggrnal of Object
Technology, vol. 9, no. 2, pp. 37-74, 2010.

[2] ——, “Steps towards a theory and calculus of aliasirgt’ J. Software
and Informatics, vol. 5, no. 1-2, pp. 77-115, 2011.
[8] ——, “Towards a calculus of object programs,CoRR, vol.

abs/1107.1999, 2011.

[4] J. C. Reynolds, “Separation logic: A logic for shared ahlé data
structures,” inLICS  |IEEE Computer Society, 2002, pp. 55-74.

[5] S. Sagiv, T. W. Reps, and R. Wilhelm, “Parametric shapalyeis via
3-valued logic,”ACM Trans. Program. Lang. Syst., vol. 24, no. 3, pp.
217-298, 2002.

[6] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership typesflexible
alias protection,"SIGPLAN Not., vol. 33, no. 10, pp. 48—64, Oct. 1998.
[Online]. Available: http://doi.acm.org/10.1145/2869286947

[7] 1. T. Kassios, “Dynamic frames: Support for framing, éepencies and
sharing without restrictions,” ifFM, ser. Lecture Notes in Computer
Science, J. Misra, T. Nipkow, and E. Sekerinski, Eds., vd8%
Springer, 2006, pp. 268-283.

[8] Eiffel verification environment. [Online]. Available:
http://eve.origo.ethz.ch



[9] C. A. R. Hoare, “An axiomatic basis for computer programgi” [10] F. Nielson, H. R. Nielson, and C. HankiRrinciples of program analysis
Commun. ACM, vol. 12, no. 10, pp. 576-580, 583, 1969. (2. corr. print).  Springer, 2005.



