
Elaborating on the alias calculus
Alexander Gerasimov

Saint Petersburg State University,
Computer Science Chair

and
Saint Petersburg National Research University of
Information Technologies, Mechanics and Optics,

Software Engineering Laboratory
Email: asgerasimov@gmail.com

Abstract—In this research-in-progress report, we elaborate on
the alias calculus introduced in [1], [2]. The alias calculus is
to determine whether two reference expressions at the given
program point may address the same object at the run-time (in
other words, whether one expression may be an alias of the other
expression). The main intended application of the alias calculus
is to support deductive verification of object-oriented programs.
We show how aliases may be used in Hoare-style reasoning, hence
derive at what program points we are to compute aliases and
propose an algorithm that computes the required aliases. Wealso
state future work directions.

I. I NTRODUCTION

To perform deductive verification of an object-oriented
program we need to know whether two reference expressions
at the given program point may address the same object at
the run-time (in other words, whether one expression may be
an alias of the other expression). For example, we should take
care of such a situation. Ifx andy are aliased and an operation
modifies the value of the attributex.f , then the opertation also
modifies y.f , thoughy is not mentioned in the text of the
operation. The alias calculus introduced in [1], [2] is to give
an answer on the formulated question.

[2] suggests to represent possible aliases at a program point
as a symmetric and irreflexive relation over a set of reference
expressions (such a relation is called analias relation) and
formulates rules of the alias calculus for a model of a pro-
gramming language.

There are following instructions in the model of a program-
ming language: skip, forget, create, assignment, compound,
conditional, cut, loop, and procedure call.

Each rule is of the form

(a ≫ p) = A,

whereA denotes an alias relation that may hold just after
the execution of a program instructionp provided an alias
relation a holds just before the execution. Let us formulate
some of the rules.

The rule for an assignment in the non-object-oriented alias
calculus (where every reference expression is a variable) is

(a ≫ x := y) = a[x : y],

where

• a is an alias relation,x andy are variables,
• a[x : y] = b ∪ ({x} × (b/y)),
• b = a \− {x} = a \ {〈u, v〉 ∈ a | u = x ∨ v = x},
• b/y = {y} ∪ {u | 〈u, y〉 ∈ b},
• c = (c ∪ {〈v, u〉 | 〈u, v〉 ∈ c}) \ {〈u, u〉 | 〈u, u〉 ∈ c} for

a relationc.
The rule for a compound instruction is

(a ≫ (p; q)) = (a ≫ p) ≫ q,

wherep andq are instructions.
A conditional instruction in the model language is of the

form ”then p else q” (there is no boolean condition in it).
The rule for it is

(a ≫ then p else q) = (a ≫ p) ∪ (a ≫ q).

The alias calculus may say that some expressions are aliased
though in fact they cannot because the boolean condition in a
real conditional and loop is not taken into account. Such an
imprecision may be handled by means of a cut instruction in
the model language. The instruction ”cut e1, e2” asserts that
the expressionse1 ande2 are not aliased at the given program
point. In the non-object-oriented alias calculus the rule for
”cut e1, e2” is

(a ≫ cut e1, e2) = a \ e1, e2,

where s = s× s for a sets of expressions and the braces
enclosing a list of the elements ofs may be omitted.1

A. Related work.

The following approaches to handling references for
program verification are known (see [2], [3]): separation
logic [4], shape analysis [5], ownership types [6], and dynamic
frames [7]. However separation logic and shape analysis tryto
reveal a more detailed structure of pointers than it is necessary
for alias analysis [2]. Separation logic, ownership types,
and dynamic frames require a programmer to write additional
annotations besides Hoare assertions.

The alias calculus is formulated in terms of a model of a
high-level programming language and additional annotations
(i. e., cut instructions) are rarely required.

1Thuse1, e2 = {〈e1, e2〉, 〈e2, e1〉}. The notations is also used below.

B. Our work.

We analyse the alias calculus [2] and its prototype imple-
mentation (mentioned in [2]) and elaborate on some aspects of
the alias calculus in order to provide a solid basis for further
implementation and integration of the alias calculus into Eiffel
Verification Environment [8]. These aspects are:

• Hoare-style reasoning with aliases;
• computing aliases for calls to (mutually) recursive proce-

dures;
• coping with the infinity of some alias relations in the

object-oriented alias calculus.
These aspects and some of our results achieved are described
in the subsequent sections.

II. ON HOARE-STYLE REASONING WITH ALIASES

Consider the following Eiffel code fragment:

if b then y := x
−− true
x.set
−− x.f = c

Suppose the precondition and postcondition of the qualified
procedure callx.set are given in the comments above (the
comments are the lines starting with ”−−”). Let us try to infer
the weakest precondition of this fragment for the postcondition
y.f = c.

If we do not know thatx andy may be equal just after the
call x.set, then we cannot weaken the postconditionx.f = c
to y.f = c.

Suppose we have computed aliases that may hold just before
and just after the callx.set: x andy may be aliased at these
program points. Then we addx = y to the precondition and
postcondition ofx.set via conjunction. Now we obtain the
preconditionb ∨ x = y of the whole code fragment using
Hoare rules [9]:

−− b ∨ x = y
if b then y := x
−− true ∧ x = y
x.set
−− x.f = c ∧ x = y
−− implies

−− y.f = c

Thus in order to perform Hoare-style reasoning for a pro-
gram, whose routines are specified with their preconditions
and postconditions, we propose (at least) to compute aliases
that may hold just before and just after each routine call.
(Other details of Hoare-style reasoning with aliases are tobe
elaborated in future.)

III. H ANDLING PROCEDURE CALLS IN THE

NON-OBJECT-ORIENTED ALIAS CALCULUS

[2] introduces the following rule for a callcall r(l) to a
procedurer with a list l of actual arguments:

(a ≫ call r(l)) = (a[r• : l] ≫ r),

where

• r• is the list of formal arguments of the procedurer,
• r is the body of the procedurer,
• a[l̃ : l] = (. . . (a[x̃1 : x1]) . . .)[x̃m : xm] for lists of

variablesl̃ = (x̃1, . . . , x̃m) and l = (x1, . . . , xm) (see
the definition ofa[x : y] for variablesx, y in Section I).

We elaborate on how to extend this rule to handle possibly
mutually recursive procedures. First of all, from Section II we
know that we must compute alias relations that may hold just
before and just after each procedure call of a program. Next
we introduce some definitions and notation and then propose
an algorithm that computes required alias relations.

Any alias relation that may hold at the program point just
before/after (the occurrence of) the procedure callc is called
theinput/output alias relation for (the occurrence of) the proce-
dure callc. (In this definition and in what follows we assume
that the aliasing semantics of (possibly mutually recursive)
procedures is intuitively clear, however the semantics is to be
precisely defined in our future work.)

Let c1, . . . , cn be all the occurrences of procedure calls in
the program. Letc0 be an (implicit) occurrence of theMain
procedure call, which is performed when the program starts
its execution.

For eachj = 0, . . . , n we need to compute
(1) the maximal (w. r. t. inclusion) input alias relationacjmax

for the procedure callcj (obviously,ac0max = ∅) and
(2) the maximal output alias relationAcj

max for the procedure
call cj .

To obtain these alias relations, Algorithm 1 takes into
account all possible sequences of procedure calls by itera-
tively computing an input alias relationacj and output alias
relationAcj for the procedure callcj (j = 0, . . . , n) so that at
the termination of the algorithm

acj = acjmax and Acj = Acj
max for eachj = 0, . . . , n.

For an occurrencec of a procedure call in the program
we denote byrc the procedure and bylc the list of actual
arguments of the call.

Algorithm 1 Computes the maximal input and maximal output
alias relation for each procedure call.
(1) for eachj = 0, . . . , n

(1.1) acj := ∅;
(1.2) Acj := ∅;

(2) while all Acj (j = 0, . . . , n) are not stabilized

(2.1) for eachj = 0, . . . , n

(2.1.1) Acj := (acj [(rcj)• : lcj] ≫ rcj),
where acj [(rcj)• : lcj] ≫ rcj is computed using
calculus rules and whenever a subtask of com-
puting āck ≫ call rck(lck) is encountered at a
program point just beforeck (for somek):

(2.1.1.1) āck ≫ call rck(lck) is treated asAck ;
(2.1.1.2) ack := ack ∪ āck .

Algorithm 1 terminates since the set of expressions (i. e.,
variables in case of the non-object-oriented alias calculus) that

may be in the computed alias relations is finite. Note also that
if all Acj (j = 0, . . . , n) are stabilized, then obviously allacj

(j = 0, . . . , n) are stabilized too. The algorithm is a variant of
the Chaotic Iteration algorithm (see [10]) and it is subjectto
some optimization, e. g., maintaining a worklist of what really
needs to be recomputed.

A. An example.

Let us illustrate how Algorithm 1 works on the model
language program given on Fig. 1.

procedure Main −− c0
then

x := y
else

x := a;
call q −− c1

end

end

procedure q
x := b
then

call Main −− c2
else

a := c
end

end

Fig. 1. An example program [2, Example 13].

1. For j = 0, 1, 2: acj := ∅; Acj := ∅.
2. Ac0 := (ac0 ≫ rc0) = (∅ ≫ Main) =

(x, y, (x, a ≫ call q)) = x, y
as currently(x, a ≫ call q) = Ac1 = ∅;
ac1 := x, a.

3. Ac1 := (ac1 ≫ rc1) = (x, a ≫ q) =

((x, b ≫ call Main), x, b ≫ (a := c)) =
x, y, x, b, a, c
as currently(x, b ≫ call Main) = Ac2 = ∅;
ac2 := x, b.

4. Ac2 := (ac2 ≫ rc2) = (x, b ≫ Main) =
(x, y, (x, a ≫ call q)) = x, y, x, b, a, c
as currently(x, a ≫ call q) = Ac1 = x, y, x, b, a, c;
ac1 := x, a.

5. Ac0 := (ac0 ≫ rc0) = (∅ ≫ Main) =
(x, y, (x, a ≫ call q)) = x, y, x, b, a, c
as currently(x, a ≫ call q) = Ac1 = x, y, x, b, a, c;
ac1 := x, a.

6. Ac1 := (ac1 ≫ rc1) = (x, a ≫ q) =

((x, b ≫ call Main), x, b ≫ (a := c)) =
x, y, x, b, a, c
as currently(x, b ≫ call Main) = Ac2 = x, y, x, b, a, c;
ac2 := x, b.

7. Ac2 := (ac2 ≫ rc2) = (x, b ≫ Main) =
(x, y, (x, a ≫ call q)) = x, y, x, b, a, c

as currently(x, a ≫ call q) = Ac1 = x, y, x, b, a, c;
ac1 := x, a.

Items 8–10 (not shown) are the same as items 5–7 respectively,
so Ac0 , Ac1 , Ac2 given in items 5–7 are stabilized and equal
to the maximal output alias relations sought for; the maximal
input alias relations areac0 , ac1 , ac2 given in items 1, 7, 6
respectively.

IV. CONCLUSION AND FUTURE WORK

We are elaborating on the alias calculus and in this research-
in-progress report presented how aliases might be used in
Hoare-style reasoning, derived at what program points we
were to compute aliases and proposed an algorithm that
computed the required aliases.

Future work includes:

• elaborating on the overall process of Hoare-style reason-
ing using the alias calculus;

• precisely defining the aliasing semantics of (possibly
mutually recursive) procedures; optimizing Algorithm 1,
which computes alias relations for calls to (possibly
mutually recursive) procedures; proving its correctness;
and adopting the algorithm for qualified calls;

• coping with the infinity of some alias relations in
the object-oriented alias calculus (e. g., after assigning
cur := first and then iteratingcur := cur.next, the
variablecur may be aliased to any element of the infinite
set described by the regular expressionfirst(.next)∗).

ACKNOWLEDGMENT

The author would like to thank his scientific supervisor
Professor Bertrand Meyer, the head of the Software Engineer-
ing Laboratory at Saint Petersburg National Research Univer-
sity of Information Technologies, Mechanics and Optics, and
Alexander Kogtenkov for helpful discussions. The Software
Engineering Laboratory is supported by a grant from Mail.Ru
Group.

The author is grateful to the anonymous referees for their
useful comments on the original version of this paper.

REFERENCES

[1] B. Meyer, “Towards a theory and calculus of aliasing,”Journal of Object
Technology, vol. 9, no. 2, pp. 37–74, 2010.

[2] ——, “Steps towards a theory and calculus of aliasing,”Int. J. Software
and Informatics, vol. 5, no. 1-2, pp. 77–115, 2011.

[3] ——, “Towards a calculus of object programs,”CoRR, vol.
abs/1107.1999, 2011.

[4] J. C. Reynolds, “Separation logic: A logic for shared mutable data
structures,” inLICS. IEEE Computer Society, 2002, pp. 55–74.

[5] S. Sagiv, T. W. Reps, and R. Wilhelm, “Parametric shape analysis via
3-valued logic,”ACM Trans. Program. Lang. Syst., vol. 24, no. 3, pp.
217–298, 2002.

[6] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership typesfor flexible
alias protection,”SIGPLAN Not., vol. 33, no. 10, pp. 48–64, Oct. 1998.
[Online]. Available: http://doi.acm.org/10.1145/286942.286947

[7] I. T. Kassios, “Dynamic frames: Support for framing, dependencies and
sharing without restrictions,” inFM, ser. Lecture Notes in Computer
Science, J. Misra, T. Nipkow, and E. Sekerinski, Eds., vol. 4085.
Springer, 2006, pp. 268–283.

[8] Eiffel verification environment. [Online]. Available:
http://eve.origo.ethz.ch

[9] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. ACM, vol. 12, no. 10, pp. 576–580, 583, 1969.

[10] F. Nielson, H. R. Nielson, and C. Hankin,Principles of program analysis
(2. corr. print). Springer, 2005.

