
Meta-database for the information systems

development platform

Yury Rogozov, Alexander Sviridov, Sergey Kucheov

System analysis and Telecommunications dept.

Taganrog Institute of Technology, Southern Federal University

Taganrog, Russian Federation

rogozov@tsure.ru, sviridov@tsure.ru s.a.kucherov@gmail.com

Abstract — For today conditions of using information systems

presuppose availability of tools, by which developers can quickly

adjust their products in accordance with the updated

requirements. In connection with this arises the problem of

automating the information systems development and reducing

the share of labor expenditures for writing the source code. The

paper presents a solution for this problem, which is based on the

modernization of data and knowledge storing technologies. The

concept of the meta-database is proposed. The requirements for

the meta-database are formulated. The formal and the graphical

model are given; features of the meta-database implementation

with using relational technology are described. The questions of

constructing and utilization a development platform based on the

meta-database are examined

Keywords – metamodel; metamodelling; meta-database;

information systems development platform; automation

I. INTRODUCTION

The problem of automating the information systems

development and reducing the share of labor expenditures for

writing the source code actively discussed in scientific and

research works recently. This is evidenced by the emergence

and development of Model-driven-architecture (MDA) [1]. It

is worth noting that each author sees the problem through the

prism of their own knowledge. Considerable imprint on the

vision of the problem leave and subject area in which the

researchers works. Thus, for example, experts in the field of

requirements management [2,3] trying to automate the process

of user requirements fixation through specialized tools and use

them for generating of application source code. Specialists in

the field of software design and development [4] concentrate

their efforts on creating of universal abstract application

model, and then realize information system through

configuring and customization of this abstract model.

Analysis of these papers shows that common idea of

authors consist in an attempt to capture the acquirements about

specific domain in the form of some models, that underlie the

static structure of a development platform.

Due to this realization created models have generalizing

character and serve as a means of constructing models specific

information system, i.e. they are situated at a higher level of

abstraction - a meta-level. Therefore, they can be called

metamodels. There is some examples of the meta-model's

definition:

─ Metamodel is a model that defines the language for

expressing a model [5]

─ Metamodel is a model of model [6]

─ In MDSD, a metamodel is a “model of the modeling

language.” [7]

─ Metamodel describes the possible structure of models

written in that language, i.e., the “constructs of the

language and their relationships, as well as constraints

and modeling rules” [8]

The concept of metamodeling can also be correlated with

data storage technologies. This will open up new possibilities

for design and development of information systems in general.
In this paper the meta-database – the tool of storing

description of the subject domain at the different levels of
detailing – from domain metamodel to user data are proposed.
In the first section of this paper we describe features of
development environments based on meta-database, in the
second section – meta-database concept. The third and fourth
sections of this article describe models of meta-database.

II. META-DATABASE BASED DEVELOPMENT PLATFORM

From the viewpoint of information systems development,

the metamodel is primarily the knowledge ontology of the

developers about particular domain with its activities and

tasks. Also, the metamodel is a tool for describing information

systems and data models.

Today the process of creating and using a development

environment consists of the following steps:

1. Formation of the metamodel based on the acquired

experience and knowledge. Metamodel, as a rule, is

represented as a set of classes, and by this reasons it

presents the static structure of the environment.

2. Static structure of classes is supplemented by components

that will allow to work with the metamodel. Such

components can be tools for interface specification,

configuration metamodel, input/output data, etc.

3. Metamodel, supplemented by components, implemented

into the finished form - development environment.

4. The metamodel is supplemented by description of specific

business processes by means of the appropriate

mailto:rogozov@tsure.ru
mailto:sviridov@tsure.ru
mailto:s.a.kucherov@gmail.com

components, configuration of this metamodel occurs. The

complete product (information system) is formed in the

result.

Visually, the process is as follows (fig. 1):

Knowledge

Developers Metamodel

Component

Development
environment

Complete
product

User

Business-
processes

D
o

m
a

in

T
e

ch
n

o
lo

g
ie

s

T
a

sk
s

Component Component

Figure 1. Metamodel-based development environment building

process

Approaches that use a metamodel as a static structure of

the development environment have capabilities to reducing the

share of labor expenditures for writing the application source

code. However, fig. 1 shows that the universality of these

environments is limited by the range of problems from a

particular subject domain, for example in the field of corporate

web applications [4].

The problem of limitation this approach is fixing the

metamodel as a static structure of a development environment.

Creating more versatile metamodel - the task that is solved for

today only in the development environment for object-oriented

programming languages. Object-oriented paradigm allows to

specify the elements of subject domain on abstract level, but it

does not solve problem that is noted at the beginning of this

paper - writing source code in such environments is the base

component of the development process. Multiple approaches,

such as code reuse and patterns are also oriented on source

code, and it is not consistent with the direction of research

outlined in the beginning of the paper.

In our opinion, the solution consists in empowering

development platform by adding abilities to create new or

modify existing therein metamodels. For this meta-model

should be separated from the static structure of the

development environment and is represented as object with

complex structure stored in permanent memory (for example,

like records in database), and the environment itself - have a

means to describe and store metamodels (for example, a set of

mechanisms for manipulating data and their structure). Such

database, giving developers tools for describing metamodels

of any structure, similarly to the metamodel can be called the

meta-database. For the first time this term was formulated by

Cheng Hsu et al. in 1990 [9], in those work were designated

common meta-database properties, which is the integration

into one the following aspects:

─ knowledge about the company or the information system

(i.e., operating, control, and decision);

─ All models obtained at each stage of the development

life cycle, ranging from multistage analysis to design and

implementation;

─ Data obtained in the process of using information

system.

In our understanding, in terms of designated problem of

automating the information systems developing process, meta-

database is a tool that allows to represent a permanent

memory descriptions of subject domains at various levels of

detailing (the various meta-levels) - from metamodels to

configuration of information system and user data.

In using the meta-database there could appears more

abstract development tool - development platform.

Development platform is a mechanism that reflects

metamodels into the meta-database and thus it can allow to

produce a less abstract development environments. These

environments, in turn, give a complete product via

concretization of metamodel to the level of current tasks

(business processes) (fig. 2).

DEVELOPMENT
PLATFORM

META-DATABASE

Figure 2. The concept of meta-database based development environment

Taking into account that the metamodel can be changed

dynamically, without alteration the information system

development platform, the process of building a development

environment should look like this:

1. Existing meta-database based development platform that

has a predefined set of basic components, if necessary,

depending on the technologies knowledge complemented

by missing components;

2. Domain experts (platform's users) placed metamodel into

the development platform's meta-database, which is

detailed to the level of selected implementation

technologies.

3. The platform is configured to the level of the development

environment which is oriented to concrete technology and a

certain subject domain metamodel.

4. Users put the knowledge about current tasks in the form of

business processes models into the development

environment, and then they can try complete product

(information system).

Visually, this process of creating a development

environment may be shown as follows (fig. 3).

Knowledge

Knowledge

Domain experts metamodels

Development
environment

Complete
product

users

Business-
processes

Meta-database

Development platform

Domain

technologies

Tasks

components

Complete
product

Figure 3. Using of meta-database to construct a development environment

Fig. 3 shows that the development platform can exist

without any metamodel (in fact, the development platform in a

static structure is described by the meta-metamodel, i.e.,

metamodel of higher level of abstraction). Knowledge of the

developers from a particular subject domain, represented in

the form of metamodel, are sort of configuration file for the

platform. There can be several of such configuration files and

in one platform we may have multiple development

environments. In this way the development environment is

constructed in accordance with the principles of meta-design

and socio-technical environments [10,11].

This statement allows us to call the fig. 3 a meta-design

model and to formulate the meta-database concept.
.

III. THE META-DATABASE CONCEPT

So, the meta-database is a tool that allows a unified strict

way to represent in permanent memory knowledge about

subject domains and results of operation their business

processes. These two big aspects are divided into:

─ metamodels of information system' classes for different

range of tasks in any domain;

─ logics of subject domain business processes;

─ structure of the information system that is described in

terms of the metamodel;

─ user data collected as a result of business processes.

Thus unified representation may be entities (the objects

with some structure information about which should be

stored), attributes (characteristics of an entity) and relations

(between entities), which may be a special kind of entity.

Entities are relevant to the classes, entity instances - to the

objects of classes, etc.
Such properties set up the number of requirements to the

meta-database:

5. Existence of manipulating mechanisms not only for data

but also for their structure. Since on the upper levels of

detailing the domain structure is described primarily, and

the data appears at the lowest level;

6. Standard format for querying the meta-database. Since the

meta-database is integrated with a development platform,

then regardless of its content should be standard ways to

access data and their structure;

7. Independence from the structure and composition of stored

information. As can be seen from fig. 3, the meta-database

is constantly updated by some information; structure of

whose can not be determined in advance that in the case of

depending the meta-database structure on stored

information will lead to malfunction of platform as a whole.

Implementation of these requirements depends on

separation methods, which will be applied to divide storing

instruments on the meta-levels. For example, in database

technology, there is one meta-level - metadata. This meta-

level strictly define the access path to the data and data

structure. Often, metadata is a declarative tool that is

supported on DBMS level. As a result, the metadata becomes

static element of database and its changing leads to redesign

software that uses data from database.

Meta-database should provide means of storing metadata,

which can take an arbitrary structure, depending on the

metamodel. By this reason, structure of the meta-levels

described above is unusable - it has to be modified. To ensure

the creation of meta-database the metadata, which is a tool for

fixing the knowledge about data, should be descriptive and be

contained inside the database (fig. 4).

DBMS

Meta-database

Data
<Employee1,Smith,…,male>
….
<Dept1,Insurance,…,3491,…,room 201>

Metadata
Relation1=<Attr1,Attr2,…,AttrN>

...
RelationN=<Attr1,Attr2,…,AttrN,…,AttrK>

Metalevel

Data level

Meta-metalevel
Meta-metadata

Figure 4. Meta-database concept

Fig. 4 shows that in process of using meta-database appear

two meta-levels:

─ Metalevel. Metadata - a means of representing

knowledge about the database data. They are descriptive

and are stored in the meta-database in a similar way with

the data.

─ Meta-metalevel. Meta-metadata - a means of describing

the various metadata. It is a declarative tool that contains

elements of the language for describing arbitrary

metadata.

We can assert that the meta-database concept showed in

fig. 3 is applicable for creating the information systems

development platform since the metamodel, placed in the

permanent memory (in the meta-database), it is nothing else

than the metadata, and configuration of metamodel reflecting

particular application – the data in the database. In this case,

there is a meta-metalevel – meta-metadata reflecting the meta-

database structure and defining thereby a means of describing

the various metamodels.

IV. THE META-DATABASE MODEL

Now turn to a more detailed presentation of the meta-

database - its model. Here the key role is played by the strict

representation in permanent memory of such aspects as

domain knowledge and results of business processes

operation. This strictness can be achieved by creating a formal

meta-database representation model at the level of meta-

metadata structure. Such formal representation will also allow

to define accessing and manipulating methods for structure of

stored metamodels and data.

As we told in second section of this paper, representation

of any aspect from subject domain can be made with entities,

attributes and relationships. Therefore, a formal tool for

describing meta-database model may be of Codd's relational

algebra [12], in which exist most similar concepts: entity -

relation, attribute - attribute, connection - equal values of key

attributes for two entities.

On the basis of the proposed concept, meta-database

should combine in itself the lower level of representation -

data of domain, and the first metalevel - metadata that store

knowledge about data. When we create a formal model, this

should be a fundamental requirement.

After analyzing several metamodels, described by the

authors [4,13,14,15], we can define a unified set of their

components:

8. Metamodel alphabet - entities reflecting the main aspects of

information system produced by a specific metamodel. For

example, use cases, data elements, reports, business logic,

etc.

9. Entity attributes, adding of which leads to specification of

metamodel.

10. Relationships between entities that define the

structure of metamodel.

11. Hierarchy of entities, determining the order and

direction of relationships.

12. Entity instances, reflecting the certain components of

finished information systems.

13. Attribute values of entities by which metamodel is

configured to the level of complete product.

14. Links between instances that represent structure of

finished information system.

On the base of this classification meta-database model can

be defined in terms of Codd's algebra by following system of

relations:

VRLSAEM ,,,,,

where:

E – relation «Entities»

 ieE

A – component «Attributes»

},{ ji taA Tti

S – component «Entity structure»

),,(FAES EEEF ',')(1 AAAF ',')(2

L – component «Relationship structure»

),,(FAEL EEEF ',')(1 EEEF '','')(2

AAAF ',')(3

R – component «Entity instances»

),,(FIER EEEF ',')(1 IF)(2

V – component «Attribute values»

),,,(FDAIV
it
 IIIF '','')(1

AAAF ',')(2
iСDDDDF ',''','')(3

To prove the applicability of this model, consider the

Ecore metamodel – the base for Eclipse Modelling Framework

[14].

For example, we take two objects form Ecore:

ENamedEement and ETypedElement, which is connected by

hierarchical relationship without inherited characteristics (fig.

5).

Figure 5. Ecore metamodel elements

Selecting entities:

E = { ENamedEement, ETypedElement}

Selecting the attributes and matching them with data types:

A = {<name,t3>,<ordered,t1>,<unique,t1>,<lowerBound,t2>,

<upperBound,t2>,<many,t1>,<required,t1>}, где

t1=’boolean’, t2=’integer’, t3=’string’

Matching the attributes and entities, defining the structure

of entities:

S = {<ENamedEement,name>,<ETypedElement, ordered>,

<ETypedElement, unique>,<ETypedElement, lowerBound>,

<ETypedElement, upperBound>,<ETypedElement, many>,

<ETypedElement, required>}.

Defining link structure:

L = {<ENamedEement, ETypedElement,0>}

Thereby, we described two objects of Ecore metamodel

[14] by using of proposed formal model.

Let us suppose that in process of metamodel configuration

appears certain instance of ENamedEement class and related

to it instance of ETypedElement class. In our formal model

this will be represented by next way:

Fixing of class instances:

R = {<ENamedEement,instanceID1>,<ETypedElement,instanceID2>}

Filling in values of attributes:

V = {<instanceID1, name,

MyObject>,<instanceID2,ordered,true>,

<instanceID2,unique,true>,<instanceID2,lowerBound,-1>,

<instanceID2,upperBound,1><instanceID2,many,false>,<insta

nceID2,required,true>}

Fixing of relationship between class instances:

V = {<instanceID1, 0, instanceID2>}

Thereby, we showed creating of two class instances that
appear in the process of metamodel configuring by using of
proposed formal model. Such class instances could represent
certain aspects of information systems or data. The given
example and analysis of other known metamodels shows
applicability of proposed formal model for its unified
representation. More detailed representation of meta-database
formal model and its utilization is described in [16].

V. THE META-DATABASE REALIZATION AND UTILIZATION

Guided by the fact that relations in Codd's algebra may be

mapped in corresponding database tables and their attributes -

in the fields of these tables, we implemented meta-database on

the base of relational DBMS.

The principal difference between a simple relational

database and meta-database is showed by three-dimensional

representation in basis "entity-attribute-value" (fig. 6,7).

A
tt
ri
b

u
te

s

E
nt

iti
es

Instances

Structure

 (metadata)

Data

Instances
a)

Figure 6. three-dimensional representation of a relational

database in basis "entity-attribute-value"

A
tt
ri
b

u
te

s

E
nt

iti
es

Instances

Data

Instancesb)

Structure

 (metadata)

Figure 7. three-dimensional representation of a meta-database

in basis "entity-attribute-value"

Fig. 7 shows that describing domain metamodel a-priori is

not necessary for the meta-database – meta-database is ready

for utilization even if it has no one entity and no one attribute.

Using of a relational database (Figure 6) require pre-determine

the structure of metadata and by this reason it is not suitable

for resolving problem outlined in this paper.

We make some assumptions before giving the meta-

metadata structure (structure of meta-database tables):

15. Metadata can be grouped and be represented by

following corresponding tables:

─ Hierarchical directory, which includes all metadata,

barring "entity-entity" and "entity-attribute"

relationships. Metadata stored in this directory is

applicable for representing entities and attributes with

the same efficiency, and therefore they may be

represented by a single table.

─ Attributes and relationships directory, which entries will

refer to ascribable elements of hierarchical directory.

Implemented as a separate table.

─ Entity instances directory that refers to the elements of a

hierarchical directory. Implemented as a separate table.

─ Attribute values may be grouped by types into the

similar tables for the purposes of efficiency. Ownership

of these values will be defined by references to the

metadata tables – name of field, which stores values, is

not an attribute name. Attribute values make up the

appropriate subschema of tables.

Whereas these assumptions, we represent the structure of

meta-database as follows (fig. 8):

Figure 8. Logical model of meta-database

Such structure of data and metadata tables allows to

implement all principles underlying the definition of meta-

database, and it is satisfy the meta-database conception

presented in fig. 4. In this case meta-metadata, which defining

the rules of making metamodels, is the structure of meta-

database logical model.

Summing up, we can formulate the following features

meta-database:

─ No need for a-priori description of stored data structure;

─ Metadata is a descriptive. As a declarative tool we use

meta-metadata;

─ Independency of accessing data mechanisms from data

structure.

Implementation of the meta-database is called SiDB

(Structire-Independent Database) and described in detail in

[17].

No less important question related to the meta-database is

its utilization. For today the vast majority information systems

are based on object-oriented paradigm. As a result, interact

programs with relational databases is difficult - representation

of application objects do not always correspond to

representation of these objects in a relational database tables.

To resolve these mismatch problems developers apply

technology of object-relational mapping (Object-Relational

Mapping). Actually, ORM is a layer between application and

database that provides one mapping of data between two

models (fig. 9).

Relational DBRelational DBORM-layerORM-layerApplicationApplication

Figure 9. Using of ORM-layer

The main disadvantage of using ORM-layer is considered

a loss of productivity. From this perspective, addition of a

meta-level over the metadata would lead to even greater costs

on the conversion and searching of data. However, using of

metadata as a descriptive tool, which is not regulates strict

access paths to data and permits access to attribute values

directly in aggregate with a fixed structure of tables allows to

replace ORM-layer by SQL-queries generator (fig. 10). By

means of such generator any data from meta-database can be

represented in the required form for particular application.

Figure 10. SQL-query generator interface

Thereby, building up another layer, that involved in the

process of working with data does not occur (fig. 11).

MetadatabaseMetadatabaseSQL-query
generator

SQL-query
generator

ApplicationApplication

Figure 11. Scheme of interaction between the application and the meta-

database

Lack of cost on data conversion, together with the

possibility of using compiled stored procedures to access

frequently requested data allow to achieve an enough level of

performance, which is less than 10% inferior to relational

databases created on the classical technology [18,19].

The effectiveness of the development platform is

corroborated by its commercial use for automation of several

social protection institutions in the Southern Federal District

of Russia. This platform is called PRIMIUS (fig. 12) and in

the working process is based on interpretation of the

metamodel, which is created in terms of knowledge gained

during many years of work in this area. The metamodel is

implemented as entries in the metadata directories of SiDB.

Figure 12. Interface of development platform PRIMIUS

Information systems of any complexity is developing by

means of platform «PRIMIUS», both for individual

departments, where the volume of stored data is relatively

small, and for organizations with a wide range of workstations

and complex logical structure of stored data.

CONCLUSION

Proposed in this paper the meta-database is an effective

solution, with close to a relational database performance

measures. Meta-database has the following beneficial

properties:

─ storing of metamodel, information system model and

user data simultaneously;

─ absence of restrictions on the stored data structures;

─ storing is not only the elements of models and

relationships between them, but and the properties of

these relationships;

─ no need for a-priori description of the stored data

structure;

─ presence of means for formal description and data

manipulation.

Due to these properties using of the meta-database allows

to solve the next important problems:

16. Reducing the share of labor expenditures for writing

the source code. Meta-database allows to build a

development platform based on the paradigm of

metamodeling, That allows the developers to generate

source code by using of the models stored in meta-database.

17. Boundedness of development platforms which use

metamodels as an aspect of the static structure. Built on the

base of meta-database information systems development

platform can contain a variety of metamodels, and permits

their changing without loss of efficiency.

Current results of our work allow to form a basis for

further research, among which the following main areas:

─ Meta-database optimization and searching for its high-

performance implementations;

─ Creating tools for formalization description of subject

domain and information system;

─ Creating automate tools for the information systems

development process;

─ Creating tools for supporting variability of requirements

and information systems.

REFERENCES

[1] Colin Atkinson and Thomas Kühne. Model-driven development: a
metamodeling foundation. IEEE Software, 20(5):36–41, IEEE Computer
Society, 2003.

[2] Carlos Rossi, Antonio Guevara, Manuel Enciso, José Luis Caro, Angel
Mora. A Tool for user-guided database application development -
Automatic Design of XML Models using CBD. Proceedings of the Fifth
International Conference on Software and Data Technologies, ICSOFT
2010, Volume 2, p.195-201.

[3] Xufeng (Danny) Liang, Christian Kop, Athula Ginige, Heinrich C.
Mayr: Turning concepts into reality - Bridging Requirement Engineering
and Model-Driven Generation of Web Applications. ICSOFT 2007,
Proceedings of the Second International Conference on Software and
Data Technologies, Volume ISDM/EHST/DC p.109-116

[4] Athula Ginige. Meta-design paradigm based approach for iterative rapid
development of enterprise web applications. Proceedings of the Fifth
International Conference on Software and Data Technologies, ICSOFT
2010, Volume 2, p.337-343.

[5] Meta-Object Facility (MOF) standard. http://www.omg.org/mof/

[6] Gilles Dodinet, Michel Zam and Geneviève Jomier. Coevolutive meta-
execution support - Towards a Design and Execution Continuum.

Proceedings of the Fifth International Conference on Software and Data
Technologies, ICSOFT 2010, Volume 2, p.143-151.

[7] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA
Distilled: Principles of Model-Driven Architecture. Object Technology
Series. Addision-Wesley Longman, Amsterdam, The Netherlands, 2004.

[8] Thomas Stahl and Markus Völter. Model-Driven Software
Development: Technology, Engineering, Management. Wiley & Sons,
1st edition, 2006.

[9] Hsu, C., Bouziane, M., Rattner, L. and Yee, L. "Information Resources
Management in Heterogeneous, Distributed Environments: A
Metadatabase Approach", IEEE Transactions on Software Engineering,
Vol. SE-17, No. 6, June 1991, pp. 604-624.

[10] Fischer, G. (2007): "Designing Socio-Technical Environments in
Support of Meta-Design and Social Creativity", Proceedings of the
Conference on Computer Supported Collaborative Learning (CSCL
'2007), Rutgers University, July pp. 1-10.

[11] Fischer, G., & Giaccardi, E. (2006) "Meta-Design: A Framework for the
Future of End User Development." In H. Lieberman, F. Paternò, & V.
Wulf (Eds.), End User Development — Empowering people to flexibly
employ advanced information and communication technology, Kluwer
Academic Publishers, Dordrecht, The Netherlands, pp. 427-457.

[12] E. F. Codd: Relational Completeness of Data Base Sublanguages. In: R.
Rustin (ed.): Database Systems: 65-98, Prentice Hall and IBM Research
Report RJ 987, San Jose, California : (1972)

[13] Gonzalez-Perez, C. and B. Henderson-Sellers, 2008. Metamodelling for
Software Engineering. Chichester (UK): Wiley. 210 p

[14] “Ecore” http://www.eclipse.org/modeling/emf/?project=emf

[15] L. Lyadova. Technology for creating a dynamically adaptable
information systems // Proceedings of International Conference on
Artificial Intelligence and Systems (AIS’07). – Moscow: Fizmatlit,
volume. 2, 2007.

[16] Y. Rogozov, A. Sviridov, S. Kucherov. An approach for formal
representation of metamodels. Proceedings of first international
conference on Actual problems of information systems and processes
constructing. Taganrog: SFEDU, 2010, p. 9-15.

[17] Youri I. Rogozov, Alexander S. Sviridov, Sergey A. Kutcherov,
Wladimir Bodrov. Purpose-driven approach for flexible structure-
independent database design. Proceedings of the Fifth International
Conference on Software and Data Technologies, ICSOFT 2010, Volume
1, p.356-362

[18] S. Kucherov. Performance evaluation of the statistical DB structure.
Proceedings of seventh All-Russian conference «Information
technologies, system analysis and management». - Taganrog: SFEDU,
2009. p. 138-141.

[19] Y. Rogozov, A. Sviridov, S. Kucherov. Performance evaluation of the
structure-independent database SiDB for the purposes of full-text search.
Proceedings of first international conference on Actual problems of
information systems and processes constructing. Taganrog: SFEDU,
2010, p. 196-199.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liang:Xufeng_=Danny=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kop:Christian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Ginige:Athula.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mayr:Heinrich_C=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mayr:Heinrich_C=.html
http://www.omg.org/mof/
http://www.eclipse.org/modeling/emf/?project=emf

