
Automation of QA in the project of DB migration

from SQL Server into Oracle

Iakov Kirilenko & Eduard Baranov

Software Engineering Department,

Mathematics and Mechanics Faculty,

Saint-Petersburg State University,

Saint-Petersburg, Russia

Abstract— This paper describes an automatic QA organization

experience in the industrial project of DB migration from MS

SQL Server 2005 to Oracle 11gR2. The resulting DB of the

project is supposed to contain the same data and to have a

functional correspondence with the initial one. The initial DB

is quite huge: 6 terabytes of data and 2500 KSLOC of stored

procedures. The documentation for the initial base is

incomplete and outdated and doesn’t correspond with the

database in question. Functional specifications for stored

procedures are missing, as well as tests. This article contains

the description of the main problems solved during the project,

solutions and an estimation of their applicability based on

implementation experience.

Keywords - database, data migration, testing, reengineering,

quality assurance

I. INTRODUCTION

The authors are contracted to migrate the industrial

database from MSSQL Server 2005 to Oracle 11gR2. There

are main requirements to the project: all data must be

migrated from the initial base and all functionality must be

preserved. Also there is an afunctional and difficultly

formalizable requirement to minimize changes in schema of

the database and in signatures of stored procedures. This

requirement was introduced by the customer to decrease the

cost of the following adaptation for the new DB of client

applications.

The project is organized as simultaneous progress

in two ways: analytics of the initial DB and development of

the set of tools for automatic migration. During the project

DB migration process improves continuously to entirely

automatic migration. For this purpose a set of tools is

developed for automation of all predesigned steps: database

schema transformation, migration of stored procedures and

data transfer. At the same time a complex system for quality

assessment is being developed.

Absence of the documentation, which describes

functional behavior, was decided to be compensated by an

automation of comparison between behaviors of the initial

DB and the migrated one in functional scenarios that

correlate with business use-cases. Functional complexity of

the system (2.5 million lines of stored code) and huge

amount of data (6 Tb) considerably complicates

organization of the QA process. Additional changes made in

schema and in stored code during migration also complicate

the automation of the comparison.

II. RELATED WORKS

Methodologies for database migrations are

described in several papers. In the article [2] the example of

data migration methodology is presented. Migration process

between DB with different data models, its risks and

problems are described in [3] and [4]. Methodologies for

legacy system migration are presented in [5].

Database migration projects have special risks and

problems. Authors of [6] propose the data migration triangle

for project management in this area. One of dimensions

addresses quality assurance. Typical risks, testing and QA

techniques are described in [7]. Testing during a database

migration lifecycle is considered in [8].

Differential testing was initially proposed by

McKeeman [9]. It is a special case of random testing to

detect differences between different implementations.

Regression testing is discussed in [10] where differential

unit-tests are proposed for detecting differences between

versions of the same unit. In paper [11] a tool which can

identify the cause of regressions by trace analyzing is

discussed.

 There are a lot of works about data validation. The

paper [12] describes it with emphasis on automation, quality

and security of data validation process.

An experience of the migration testing can be found

at [1].

III. QA PURPOSES

The main purpose of the migration project is to result in a
new DB, which contains the same data and has functional
correspondence with the initial one. Testing, especially the
functional one, is necessary for inspection of migrated DB.

The initial DB is accepted as a model for the migrated
DB by formulation of the problem. Behavior of the initial
DB is considered as correct and the migrated DB must
functionally correspond the initial one within the accuracy of
documented changes, which contain renames, changes in a

database schema and consistent changes in procedures
semantics.

Goals of the functional testing are:

 Verification of data migration completeness

 Functional correspondence between the initial
DB and the migrated one.

Migration tool developing process also needs a control
and permanent verification is needed for results of its work.
So, objects for testing are:

 Code of the migration tool

 Data migration procedure

 Code for RDBMS Oracle

Functional testing must solve the following problems:

 To provide constant control for correspondence
between generated code Oracle PL/SQL and
projections designed in the migration tool

 To provide constant control for regression
during the migration tool development

 To provide control for functional
correspondence between initial (SQL Server)
and migrated (Oracle) DBs

 To provide control for data migration
correctness

 To provide everyday control for code migration
completeness

The QA is executed in two main directions: generated
code testing and the data migration process testing.

IV. MIGRATED CODE TESTING

A. Testing of Migratred Code Functionality

Functional testing process is based on a synchronous

playing of prepared traces in two DBs (initial and migrated).

Trace is a sequence of queries to the DB, which formalizes

an interaction between the DB and client applications. The

main requirement to the set of traces is sufficient functional

coverage. It is a black-box technique, when only external

effects are checked. They include output parameters, result-

sets, changes inside DB etc.

First traces were created from testing scenarios which

were given by the consumer. Traces were collected from

industrial servers in order to get more precise information

about functionality used in the maintenance. This helps to

enlarge the trace set with more priority scenarios which

cover more important functionality. Additional synthetic

traces were also developed for testing of rarely used

functionality.

Using only this kind of testing isn’t convenient for the

specific project. The whole migration process lasts several

hours and it’s too long to wait for results of small changes.

So some kinds of errors (e.g. incorrect construction

transformation) ought to be detected at earlier stages.

B. Early Determination of Defects

Primary migration tool testing is based on small tests,
which cover main functionality. These tests are designed for
early regress determination, so among them there are
examples for all code constructions. A test set is executed
automatically after every commit in a version control system
and allows prompt detection of an incorrect construction
transformation. Analytics and developers increase number of
tests during the development of the tool.

In addition, automatic loading and compilation in Oracle
are executed every day on procedures translated with the
most recent version of the migration tool. They allow to
control a number of correctly (syntactic correctness)
translated procedures, and show errors appeared in code.
This basic testing is especially urgent during the active
development of the migration tool.

Testing based on procedures compilation isn’t enough for
providing syntactic correctness of the code in the specific
project. A lot of procedures which contain critically
significant functionality use dynamically generated queries.
Additional functionality was developed for dynamic SQL,
which allows a detection of statically (without procedure
execution) lines of literals, which generate incorrect dynamic
query for sure.

C. Testing by Trace Playing

The trace recording method is based on MS SQL Server
2005 embedded tools. Queries are captured and saved during
the using of DB by customers. Traces for functional testing
are recorded on the initial DB in a single-user mode. Each
tester has an individual virtual machine. Virtual machine
state is saved with deployed DB before trace recording. After
recording traces are converted into a unified view which is
based on XML. The unified view represents original
structure of the initial trace. It consists of batches splitted in
queries. It keeps an original text of each query, which was
executed on SQL Server, and a text for Oracle. Queries for
Oracle are generated automatically by the trace
transformation with the rules which were used in stored
procedures code transformation. For this purpose integration
with trace transformer was added.

The trace playing always starts from the same saved
state, determined by the saved state of the initial DB. The
migrated DB is a result of migration process application to
the saved state of the initial DB. So the trace playing always
starts from two DBs in equivalent states. A synchronous
playing is also executed in a single-user mode. It provides
determined order of the stored procedures execution and a
regular repeatability of the trace playing result. Distortions
are observed only in results returned by disordered
samplings, but the trace playing tool takes this problem into
account during the result analysis.

Traces are played with a special developed utility. Result
sets received on each step are being compared as difference
sets A-B and B-A. If both of difference sets are empty then
the result is accepted and translated code is considered to be
functionally equivalent to the initial T-SQL one. Otherwise,
an attempt to compare sets A-B and B-A is performed by
rows and after that by columns for the error localization.
Results of comparing are logged into a report. Each trace has

its own record. Errors which were found during the code
execution are reported too.

For the QA improvement another monitoring was added
which strengthens control on the equivalence of initial and
migrated DBs. It looks for changes made during the trace
playing inside DBs. For this purpose triggers on events
INSERT/UPDATE/DELETE were added for every table in
initial and migrated DBs. Triggers write down information
about all changes made during the trace playing into a
special audit table.

For each section of the trace triggers write down
information about the fact of execution an operation on data.
It contains a table name, an operation type
(INSERT/UPDATE/DELETE), a number of changed values
and a hash key of the value collection. This functionality is
implemented in one trigger for all three operations on each
table. After the trace playing values in the correspondent
audit tables are compared. If any difference is found,
correspondent tables are also compared. The result of using
of this method shows that this testing can find differences in
the number of deleted rows which can’t be found by
comparison of the returning record sets. Noticeable
efficiency decreasing wasn’t observed after the triggers
addition.

D. Control and Providing Testing Coverage Completeness

Testing scenarios which were used for the trace recording
were given by the customer. It is supposed that they cover
sufficient functionality of the system. For test coverage
(completeness) quality assessment source codes of the stored
procedures were automatically changed on test servers.
Logging instructions were added which allow to backtrace a
sequence of operators in order they were executed with an
acceptable accuracy. At the beginning of each line code
section a command is added which inserts information about
passing through a checkpoint into a special table. During the
trace playing on the test server a log table is generated. With
knowledge about all checkpoints and their places it’s
possible to count code test coverage using this log. Synthetic
tests are counted separately.

For the testing coverage control traces from industrial
server are also used, and it helps to determine how the test
set covers wide used functionality. But the customer gave
only a few industrial traces.

The most completeness cover could be provided with
traces from the industrial server, collected during a long
period of time. But there are some problems with their
reproduction. Firstly, traces and the DB image must be
consistently depersonalized before their transfer to third
persons. It makes no difficulties to implement such
functionality while having such analysis level of the
migration tool, but it’s impossible because of the project time
limit. Another problem is the recording of the reproduced
traces even with solved problem of the consistent
depersonalization. Values returned in samples to client
applications can depend on current state of the DB, for
example IDENTITY column. In certain cases results made
during parallel sessions are not comparable. Possible solution
of the problem is to substitute IDENTITY generation (and a
column type converter) in the initial DB for more suitable

functions. But this substitution mustn’t have influence on
efficiency.

V. DATA MIGRATION TESTING

A DB size is impressive, so there is no guarantee, that
functional tests can find an imperfection of data loading. So
the QA of data loading procedure implementation is based
on return codes, logs analysis of all system utilities used in a
load chain, a data integrity control embedded in the DB and
an additional control of the data loading result – a
validation[2].

The validation makes it possible to assure that all data
reloaded successfully to the new DB after all necessary
documented transformations. This DB is a key component
for a valuable part of customer business, so the validation is
very urgent after the DB migration of such size. The
database schema contains more than 2000 tables and at
almost 10000 columns, some tables contain tens of millions
of records. Foreign keys as an instrument of data integrity
practically aren’t used.

The validation process must check not only objects
content but the whole database schema verifying existence
and state of objects. Full validation for checking DBs
equivalence with such volume DBs needs a huge amount of
resources, especially a time resource. For a regular process
another method is needed. It must require much less
resources but have a good result confidence.

At first, validation by row counting was used for primary
testing. Measure of success was a table’s row number
coincidence in initial and migrated DBs. Implementation was
pretty simple. It was necessary only to count a number of
rows in all tables and to compare results. Script was
automatically generated during the database schema and
stored code transformation. One of method’s advantages is
its speed. It has high speed, especially on tables which have
primary or unique keys. On this tables number of rows is
counted by index and full scan of the table is not performed.
Even such simple method revealed unsuccessfully migrated
objects. But this method doesn’t verify objects values and
this is a big disadvantage, especially in migration which is
accompanied by the data type transformation.

For the validation result reliability improvement another
method was implemented. It is based on hash keys
comparison. In the initial DB hash keys are calculated for all
columns in every table and results are saved in a separate
table. Procedure for hash keys calculating have the following
requirement: values of hash keys must be independent from
table strings traversal order, because the rows order in the
sample can be different and ordering is a very slow
operation, it can strongly reduce the speed of the validation.
At the current implementation the XOR operation is used. It
is commutative and it is embedded into SQL. However
research is being made in order to find another function
which makes more qualitative hashing but at the same time
is very fast. Calculation code is implemented in T-SQL. This
code and table with hash keys are being migrated with
database schema and stored procedures. Migrated hash
calculation procedure on migrated data must give the same

value as an initial one on the initial DB. This also makes an
additional testing of the migration tool.

VI. RESULTS

Described testing strategy was implemented within the

project. The unit test set contains a hundred of tests for

different input language constructs. Permanent control over

transformations of the constructions has helped to save a

vast amount of men-hours. Compilation in Oracle has often

showed a regress made in the previous day, so it wasn’t

difficult to isolate faults. Both controls have taken just

several minutes which is nothing in comparison with

migration process.

 Trace comparison has been conducted with more than

400 traces and is still growing. Trace playing process takes

6 hours. As a result of the discovered differences

investigation a lot of problems were found, and some of

them forced to improve or change introduced projections.

Moreover, this testing methodology has discovered

problems in the initial DB (e.g. some queries return first

element from unstable unordered selection, so the result

can’t be assured).

Evaluation of the testing coverage showed that

testing scenarios which were given by the customer had

covered about 14% of operators. Additional synthetic

scenarios made it possible to increase this value to 33%.

During the functional testing about 49% of procedures were

executed. Moreover, a huge amount of dead code (more

than 40% of operators) was found in the initial database, so

the resulting coverage is enough. 20% were confirmed by

the customer as acceptable test coverage. This number is

based on previous experience in reengineering and

correlates with Pareto’s principle.

Data validation process has had two implementations.

First implementation (by line counting) was fast, and it had

found several losses during the data migration at early

stages of the project. Next implementation based on hash

keys comparison has helped to improve data migration

process and it can provide rather high probability of the data

migration correctness. Validation process has taken 6 hours

on test servers which is much less than full validation.

VII. CONCLUSION

This paper presents an experience of the QA organization
in a technically complex project of DB migration. Described
methods were implemented and tested in practice and show
their efficiency.

In spite of positive results of the current QA organization
and automation some methods can be improved. The main
direction of methodology improvement is supposed to
implement trace recording and playing from the industrial
server. In order to achieve this synchronization problem and
depersonalization problem are needed to be solved.

REFERENCES

[1] Sneed H.M.,”Selective Regression Testing of a Host to DotNet

Migration”, Software Maintenance, 2006. ICSM '06. 22nd IEEE

International Conference J. ds, 1892, pp.68–73.
[2] Hudicka J., “The Complete Data Migration Methodology”, Dulcian

Inc., June 2000

[3] Chang-Yang Lin, “Migrating to Relational Systems: Problems,
Methods, and Strategies”, Contemporary Management Research, Pages

369-380, Vol. 4, No. 4, December 2008

[4] Maatuk A., “Migrating Relational Databases into Object-Based and
XML Databases”, Doctoral thesis, Northumbria University, 2009

[5] Wu B., Lawless D., Bisbal J., Grimson J., Wade V., O’Sullivan D.,

Richardson R., “Legacy System Migration : A Legacy Data Migration
Engine”, Proccedings of the 17th International Database Conference,

October, 1997. pp 129-138

[6] Klaus Haller, “Data Migration Project Management and Standard
Software – Experiences in Avaloq Implementation Projects”, Proceedings

of the DW2008 Conference, St. Gallen, Switzerland, 2008

[7] Matthes F., Schulz C., Haller K., “Testing & quality assurance in data
migration projects”, Software Maintenance (ICSM), 2011 27th IEEE

International Conference.

[8] Patil S., Royy S., Augustinez J., Redlichx A., Lodha S., Vin H.,
Deshpande A., Gharote M., Mehrotrak A., “Minimizing Testing Overheads

in Database Migration Lifecycle”, The 16th International Conference on

Management of Data (COMAD), 2010
[9] McKeeman W., “Differential testing for software”, Digital Technical

Journal, 1998
[10] Elbaum S., Chin H., Dwyer M., Dokulil J., “Carving differential unit

test cases from system test cases”, FSE’06, 2006.

[11] Hoffman K., Eugster P., Jagannathan S., “Semantics-aware trace
analysis”, PLDI’09, 2009

[12] Manjunath T., Ravindra S.,Mohan H., “Automated Data Validation for

Data Migration Security”, International Journal of Computer Applications
(0975 – 8887)Volume 30– No.6, September 2011

[13] Microsoft Developer Network Library, http://msdn.microsoft.com/en-

us/library/default.aspx
[14] Oracle Documentation, http://www.oracle.com/pls/db112/homepage

http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/default.aspx
http://www.oracle.com/pls/db112/homepage

