
One approach to metadata inclusion in electronic

documents

Vyacheslav Bessonov

Computer Science Department

Perm State University

Perm, Russia

v.bessonov@hotmail.com

Viacheslav Lanin

Department of Business Information Technologies

National Research University Higher School of Economics

Perm, Russia

lanin@perm.ru

The article describes an approach to the metadata inclusion into

Open XML and ODF documents. This metadata allows

implement semantic indexing. The described solution is realized

as a software library SemanticLib that provides a uniform access

to documents in these formats.

Open XML; OpenDocument Format; metadata; RDF

INTRODUCTION

Semantic indexing of electronic documents is intended to
include special structure associated with the content of
documents in its metadata. Most of the currently used
electronic document formats do not permit the inclusion of
additional information. Electronic documents open formats
Office Open XML and OpenDocument Format become
increasingly popular nowadays. By author’s opinion these
formats are the most promising.

I. OFFICE OPEN XML FORMAT

Office Open XML (OOXML) is a set of open formats
based on ZIP and XML technologies intended for
representation of electronic documents package of office
applications such as spreadsheets, presentations, text
documents.

In 2006 the Office Open XML was recognized as the
standard ECMA-376 and 2008 as the international standard
ISO/IEC 29500:2008.

Since 2007 version of Microsoft Office OOXML is the
default format for all applications included in the package of
Microsoft Office.

For each document type its own markup language is used:

• WordprocessingML for text documents;

• SpreadsheetML for spreadsheets;

• PresentationML for presentations.

OOXML also includes a set of specialized markup
languages that can be used in documents of various types:

• Office Math Markup Language is used to represent
mathematical formulas;

• DrawingML is used to represent vector graphics and
diagrams.

Office Open XML uses Open Packaging Convention
(OPC), created by Microsoft and intended for storing a
combination of XML and binary files (eg, BMP, PNG, AVI
and etc.) in a single container file.

II. OPENDOCUMENT FORMAT

OpenDocument Format (ODF) is an open document file
format intended for storing and exchanging editable office
documents such as spreadsheets, text documents and
presentations.

ODF standard is created and supported by Committee ODF
Technical Committee organization OASIS (Organization for
the Advancement of Structured Information Standards). OASIS
published ODF 1.0 in May 2005, Commission International
Organization for Standardization / International
Electrotechnical Commission ratified it in May 2006 as
ISO/IEC 26300:2006, so ODF become the first international
standard for office documents.

ODF was accepted as the national standard in the Russian
Federation, Brazil, Croatia, Italy, Korea, South Africa, Sweden
and Venezuela.

III. APPROACH DIFFERENCES

Although both formats are based on open technologies, and
are actually ZIP-archives that contain a set of XML-files
defining the contents of the documents, they use very different
approaches to solve the same problems and have radically
different internal representation.

Format ODF reuses existing open XML standards, and
introduces new ones only if it is really necessary. For example,
ODF uses a subset of Dublin Core to represent document
metadata, MathML to present mathematical expressions, SMIL
to present multimedia content of the document, XLink to
provide hyperlinks, etc. It means primarily it is easy to use this
format by people already familiar with the existing methods to
process XML.

The Office Open XML Format uses solutions developed by
Microsoft to solve these problems, such as, Office Math
Markup Language, DrawingML, etc.

IV. OFFICE OPEN XML AND OPENDOCUMENT FORMAT

APIS

As mentioned above, despite the same set of used
technologies – XML and ZIP, Office Open XML Format and
the OpenDocument Format have very different internal
representation. Besides over the formats are under permanent
development, there are currently several revisions of each
format with very different possibilities.

 For the Office Open XML they are:

 • ECMA-376;

 • ISO / IEC 29500:2008 Transitional;

 • ISO / EC 29500:2008 Strict.

 For the OpenDocument Format they are:

 • ISO / IEC 26300;

 • OASIS ODF 1.1;

 • OASIS ODF 1.2.

Existing software solutions designed to work with this
formats are quite different. We will consider some of them.

A. Office Open XML APIs

All libraries and other software tools for working with
documents in the Office Open XML Formats can be divided
into two broad categories. We will reference these technologies
next way:

• OPC API – low-level API, allowing working with OPC-
structure of OOXML documents, but not providing
opportunities to work with markup languages Office Open
XML. Examples of those APIs are shown in Table I.

• OOXML API – high-level API, designed to work with
specific markup languages (WordprocessingML,
SpreadsheetML, PresentationML). Libraries and tools of this
category typically are based on OPC API. Examples of
OOXML APIs are shown in Table II.

TABLE I. OPC APIS COMPARISON

ECMA-376
ISO/IEC

29500:2008

ISO/EC

29500:2008

Strict

Packaging API +

System.IO.Packaging +

OpenXML4j +

libOPC +

TABLE II. OOXML APIS COMPARISON

ECMA-376
ISO/IEC

29500:2008

ISO/EC

29500:2008

Strict

Microsoft Office
2007 Automation

 +

Microsoft Office +

ECMA-376
ISO/IEC

29500:2008

ISO/EC

29500:2008

Strict

2010 Automation

Open XML SDK 2.0 +

Apache POI +

B. ODF APIs

Libraries for operating with electronic documents in the
ODF format can be divided into two broad categories too:

 • Libraries in the ODF Toolkit. ODF Toolkit Union is the
community of open source software developers. Its goal is
simplifying document and document content software
management.

 • Third-party organizations libraries.

TABLE III. ODF APIS COMPARISON

ISO/IEC

26300

OASIS

ODF 1.2

AODL

odf4j +

ODFDOM + +

Simple Java for ODF

lpOD +

V. SEMANTICLIB

It is obvious that there should be a universal approach,
allowed to work with electronic documents in various formats
in a standardized way. SemanticLib was developed to solve
this problem.

SemanticLib - is a program complex designed for semantic
indexing of electronic documents. SemanticLib main functions
are:

• create new and edit existing Office Open XML and
OpenDocument Format documents;

• work with the document metadata, linking the metadata
with the content of the document;

• providing an interface for SPARQL queries to the
metadata document.

Here are the basic components of SemanticLib:

• SemanticLib DOM is an abstract model of an electronic
document and its metadata, which may be applicable for the
description of electronic documents in various formats (Office
Open XML, OpenDocument Format).

• SemanticLib Plugins are specific SemanticLib DOM
implementations using specialized API. For example, the
OpenXmlSdkPlugin uses Open XML SDK 2.0, a plugin
OdfDomPlugin uses ODFDOM [6].

• SemanticLib Interpreter is a module that allows to work
with SemanticLib online.

• SemanticLib Document Browser is a GUI application that
allows you to analyze the structure of electronic documents,
view its metadata and run SPARQL queries.

• SemanticLib Shell Extension is Microsoft Windows
Explorer extension, which adds to its context menu extra

points, allowing to run SemanticLib Document Browser for
certain types of documents (.docx, .odt, etc).

VI. SEMANTICLIB DOM

SemanticLib DOM is a set of interfaces and abstract classes
that describe the model of an electronic document and its
metadata. This model was designed in accordance with the
ISO/IEC 29500 standard, which described in [1], [2], and the
OASIS ODF 1.2 specification, which described in [3], [4].
Software implementation of this model is based on the
implementations used in Open XML SDL 2.0 and ODFDOM
libraries.

SemanticLib DOM as well as the Open XML SDK 2.0 and
ODFDOM has layered architecture:

• the first layer contains functions for working with
document package (e.g., OPC package as described in [2], or
ODF package as described in [4]).

• the second layer contains features designed specifically to
work with the structure of the document: add/delete
paragraphs, change document content, etc.

A. Document structure

The document model has a hierarchical structure and
schematically depicted in Fig. 1.

Figure 1. The model of the document used in SemanticLib

Fig. 2 shows a software implementation of DOM
SemanticLib.

Figure 2. SemanticLib.Core.dll interfaces to work with OOXML and ODF

documents

IMarkupable interface contains properties and methods that
are used for semantic markup.

ITextDocument interface contains methods and properties
for working with text documents, presented in a format like
OOXML, and in the format ODF.

IParagraph interface contains properties and methods for
working with particular paragraphs of the document.

IRange interface is used for working areas with continuous
text contained in paragraphs.

IText interface is designed to work with particular text
fragments contained in the text fields. The reason for the
separation is the necessary to provide an opportunity for
semantic markup of particular words in a text document.

It is worth to note that all mentioned interfaces inherit from
interface IMarkupable, so the semantic markup can be used as
well as at the level of the document and to its particular
elements such as paragraphs, text fields and text fragments.

It was mentioned that a text document and its fragments are
containers, i.e. they contain other elements:

• a text document contains a collection of paragraphs;

• each section contains a collection of text fields;

• each text area contains a collection of text fragments.

Fig. 3 shows the hierarchy of abstract classes that represent
collections of text documents.

Figure 3. Collections of DOM SemanticLib

CustomCollection is the base class for all collections
SemanticLib. It contains the common set of properties and
methods, such as, for example, adding a new item in a
collection, inserting a new item in a collection, removal
element of the collection, etc.

ParagraphCollection represents a collection of paragraphs.

RangeCollection represents a collection of text fields.

TextCollection represents a collection of text fragments.

B. Metadata model

Different types of metadata SemanticLib can be divided
into two groups:

• non-RDF metadata

• RDF metadata.

1) Non-RDF metadata
Metadata model of the group was developed based on

analysis:

• core properties, extended properties, custom properties,
described in [1], [2];

• predefined non-RDF metadata elements, described in [3].

Table IV shows a list of supported in the current version
SemanticLib DOM properties that allow to describe the
metadata of the document.

TABLE IV. NON-RDF DOCUMENT METADATA

SemanticLib

Property

OOXML Property ODF Property

Created created creation-date

Creator creator initial-creator

Description description description

Keywords keywords keyword

Language language language

LastModifiedBy lastModifiedBy creator

LastPrinted lastPrinted print-date

Modified modified date

Revision revision editing-cycles

Subject subject subject

Title title title

Application Application meta:generator

Characters Characters meta:character-count

CharactersWithSpaces CharactersWithSpaces meta:non-whitespace-

character-count

Lines Lines meta:row-count

Pages Pages meta:page-count

Paragraphs Paragraphs meta:paragraph-count

Template Template meta:template

TotalEditingTime TotalTime meta:editing-duration

Words Words meta:word-count

2) RDF metadata
SemanticLib RDF metadata model is based on the ODF 1.2

metadata model, as described in [3].

Access to all RDF metadata of the document is performed
by the manifest metadata, which in turn is also RDF document.
At the program level for this interface IMetadataManfiest is
used for this purpose. With IMetadataManifest you can access
directly to the manifest’s RDF graph, to gain access to existing
or to add new RDF metadata files.

SemanticLib uses for work with RDF an Open Source
Library dotNetRDF. It provides an opportunity to work with
RDF graphs in memory, to serialize/deserialize graphs and to
run SPARQL queries.

VII. SEMANTICLIB PLUGINS

The SemanticLib core library contains only a description of
the document model (DOM). Implementation of the methods
for processing documents of any format is contained in the

plug-ins. Typically each plug-in is an implementation of
SemanticLib DOM with some libraries described in
paragraph V. For example, a plug-in
SemanticLib.OpenXmlSdkPlugin.dll uses API Open XML
SDK 2.0, a plug-in SemanticLib.LibOpcPlugin.dll contains
API libOPC.

Using plug-ins using makes possible a high degree of
flexibility and extensibility. If a library expire or a new one
appears, developer can just replace or add a plug-in without
changing the basic functions of libraries and existing code.

However, plug-in development becomes significant
difficult because of the existing the variety and diversity
libraries. For example, the library Office Open XML SDK 2.0
is created on the platform .NET, while the library ODFDOM is
created in Java, which means a significant difficulty trying to
promote interoperability between these libraries. It is also
difficult to ensure interoperability between C/C++ and .NET
libraries. Let’s consider how these issues are resolved in
SemanticLib.

A. С/С++ plug-ins

Let’s see the interoperability between C/C++ and .NET
code by the example LibOpcPlugin, which is the
implementation of DOM SemanticLib with libraries libOPC,
written in ANSI C.

It was decided to use C++/CLI to enable interoperability
between managed and unmanaged code. The main advantage
of this solution is the ability to use object-oriented
programming style even interacting with procedural code of
libOPC. In this case plug-in consists of a set of classes that
implement the interfaces of DOM SemanticLib.

B. Java plug-ins

Interoperability between Java and .NET code will be
considered on the example plug-SemanticLib.OdfDomPlugin.

There are some solutions to ensure interaction between Java
and .NET applications. For example, there are products of
JNBridge company, which provide both in-process and inter-
process (network cloud) communication.

However, in SemanticLib Open Source project jni4net was
selected. Its aim is providing an in-process communication.

Deal with jni4net has several stages:

 • Creating a proxy for a Java library with a special utility
proxygen, which is part of jni4net.

 • Creating a .NET stub, which provides the work with
Java-proxy. This step is also performed using proxygen.

 • Implementation of a plugin functional using the resulting
stub.

This process is quite complex and requires specific skills,
so it is necessary to create automation tools in future versions
of SemanticLib.

C. Working with plug-ins

One of the significant advantages offered by SemanticLib,
is the ability to work with a dynamic plug-ins. This feature is
important if you work with a large number of different plug-
ins. Plug-in manager, which is part of SemanticLib, helps user
to manage the plug-ins loading process. Plugin Manager
provides the following features:

• Find the required plug-ins in accordance with certain
criteria, such as the name of the plug-in or the format of the
document.

• Loading and unloading plug-ins.

• Viewing the meta-information about the loaded plug-ins
(name, manufacturer, document format, etc.).

VIII. SEMANTIC LIB INTERPRETER

The main usage scenario SemanticLib involves writing
code in one of the support. NET languages and the subsequent
compilation of the code. However, this approach is not always
convenient. Especially it is not convenient for users who are
not programmers and have no special skills to work with IDE,
compilers, etc.

SemanticLib Interpreter has been developed to solve these
problems. He adds two more SemanticLib use cases:

• interactive work in interpreter mode;

• writing scripts and their subsequent dynamic compilation
without the need for third-party tools (IDE, compiler, etc.).

However, it should bear in mind that SemanticLib
Interpreter is a DLL and it need a host CUI or GUI application
(for example SemanticLib Document Browser).

A. Interpreter mode

In this mode user interacts with SemanticLib in progressive
interpretation kind. In this case the interpreter correctly handles
all the variables, i.e. following line:

“var plugin = PluginManager.FindPlugin("SemanticLib.OpenXmlSdkPlugin.dll")"

is absolutely correct and the variable “plugin” can be used in

subsequent commands.

B. Scenario mode

In this mode, the user instead of the progressive
interpretation creates a so-called "scenario" (set of SemanticLib
commands) and then compiles them into a CUI application.

IX. SEMANTICLIB DOCUMENT BROWSER

This application is still under development. It should be a
GUI application written using Microsoft Windows Presentation
Foundation framework. The main functions of this applications
are:

• view the document structure and it’s metadata;

• SPARQL queries execution and presentation.

X. RESULTS

• SemanticLib DOM library that allows you to perform
basic operations with the structure of Office Open XML and
OpenDocument Format documents.

• Metadata model and that allows to manipulate document-
level metadata.

• SemanticLib.OpenXmlSdkPlugin and
SemanticLib.OdfDomPlugin plugins.

• SemanticLib Interpretet that allows you to use
SemanticLib functions in interactive mode.

XI. GOALS

• To refine SemanticLib DOM, so that it covered more fully
the ISO/IEC 29500 standard and OASIS ODF 1.2
specification.

• To refine the metadata model of the document, in
particular the binding metadata to the document content.

• To develop a mechanism for context queries, i.e. queries
that would take into account the document contents.

• To develop SemanticLib Document Browser and
SemanticLib Shell Extension.

CONCLUSION

Semantic indexing of documents in Open XML Formats
and Open Document Format can be implemented on the basis
of the described solutions. The developed library is a part of
the intelligent document processing project, but also can be
used to solve other problems that require metadata inclusion.

REFERENCES

[1] ISO/IEC 29500-1 Second edition, 2011-08-15. Information technology –
Document description and processing languages – Office Open XML
File Formats. Part 1: Fundamentals and Markup Language Reference.

[2] ISO/IEC 29500-2 Second edition, 2011-08-15. Information technology –
Document description and processing languages – Office Open XML
File Formats. Part 2: Open Packaging Conventions. 138 с.

[3] Open Document Format for Office Applications (OpenDocument)
Version 1.2 Part 1: OpenDocument Schema 29 September 2011.

[4] Open Document Format for Office Applications (OpenDocument)
Version 1.2 Part 3: Packages 29 September 2011.

[5] OASIS OpenDocument 1.2 Metadata Examples, Oct 2,2009.

[6] http://incubator.apache.org/odftoolkit/odfdom/index.html

[7] http://dotnetrdf.org/

