

SYRCoSE 2013

Editors:

Alexander Kamkin, Alexander Petrenko,
Andrey Terekhov

Proceedings of the 7th Spring/Summer Young Researchers’ Colloquium on
Software Engineering

Kazan, May 30-31, 2013

2013

Proceedings of the 7th Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2013), May 30-31, 2013 – Kazan, Russia:

The issue contains the papers presented at the 7th Spring/Summer Young Researchers’ Colloquium
on Software Engineering (SYRCoSE 2013) held in Kazan, Russia on 30th and 31st of May, 2013.
Paper selection was based on a competitive peer review process being done by the program
committee. Both regular and research-in-progress papers were considered acceptable for the
colloquium.

The topics of the colloquium include modeling of computer systems, software testing and
verification, parallel and distributed systems, information search and data mining, image and speech
processing and others.

Труды 7-ого весеннего/летнего коллоквиума молодых исследователей в области
программной инженерии (SYRCoSE 2013), 30-31 мая 2013 г. – Казань, Россия:

Сборник содержит статьи, представленные на 7-ом весеннем/летнем коллоквиуме молодых
исследователей в области программной инженерии (SYRCoSE 2013), проводимом в Казани 30
и 31 мая 2013 г. Отбор статей производился на основе рецензирования материалов
программным комитетом. На коллоквиум допускались как полные статьи, так и краткие
сообщения, описывающие текущие исследования.

Программа коллоквиума охватывает следующие темы: моделирование компьютерных систем,
тестирование и верификация программ, параллельные и распределенные системы,
информационный поиск и анализ данных, обработка изображений и речи и др.

ISBN 978-5-91474-020-4

© Авторы, 2013

Contents

Foreword··6

Committees / Referees··7

Formal Models of Computer Systems

NPNtool: Modelling and Analysis Toolset for Nested Petri Nets
 L. Dworzanski, D. Frumin··9

The Tool for Modeling of Wireless Sensor Networks with Nested Petri Nets
 N. Buchina, L. Dworzanski···15

Process Mining and Trace Analysis

DPMine: Modeling and Process Mining Tool

S. Shershakov··19

Recognition and Explanation of Incorrect Behavior in Simulation-Based Hardware Verification
 M. Chupilko, A. Protsenko··25

Model Transformations

Horizontal Transformations of Visual Models in MetaLanguage System
 A. Sukhov, L. Lyadova··31

An Approach to Graph Matching in the Component of Model Transformations
 A. Seriy, L. Lyadova··41

Testing Software and Hardware Systems

Technology Aspects of State Explosion Problem Resolving for Industrial Software Design

P. Drobintsev, V. Kotlyarov, I. Nikiforov··46

MicroTESK: An Extendable Framework for Test Program Generation

A. Kamkin, T. Sergeeva, A. Tatarnikov, A. Utekhin··51

Probabilistic Networks as a Means of Testing Web-Based Applications

A. Bykau··58

Software Mutation Testing: Towards Combining Program and Model Based Techniques

M. Forostyanova, N. Kushik···62

Experimental Comparison of the Quality of TFSM-Based Test Suites for the UML Diagrams

R. Galimullin···68

Linux Development and Verification

Experience of Building and Deployment Debian on Elbrus Architecture

A. Kuyan, S. Gusev, A. Kozlov, Z. Kaimuldenov, E. Kravtsunov··73

Generating Environment Model for Linux Device Drivers

I. Zakharov, V. Mutilin, E. Novikov, A. Khoroshilov··77

3 of 173

On the Implementation of Data-Breakpoints Based Race Detection for Linux Kernel Modules
N. Komarov···84

Software Engineering Education

Mobile Learning Systems in Software Engineering Education

L. Andreicheva, R. Latypov··89

Computer Networks

Hide and Seek: Worms Digging at the Internet Backbones and Edges

S. Gaivoronski, D. Gamayunov··94

Station Disassociaciation Problem in Hosted Network

A. Shal···108

On Bringing Software Engineering to Computer Networks with Software Defined Networking

A. Shalimov, R. Smeliansky···111

Parallel and Distributed Systems

The Formal Statement of the Load-Balancing Problem for a Multi-Tenant Database Cluster With a
Constant Flow of Queries

E. Boytsov, V. Sokolov···117

Scheduling Signal Processing Tasks for Antenna Arrays with Simulated Annealing

D. Zorin···122

Automated Deployment of Virtualization-Based Research Models of Distributed Computer Systems

A. Zenzinov··128

Information Search and Data Mining

Intelligent Search Based on Ontological Resources and Graph Models

A. Chugunov, V. Lanin··133

Intelligent Service for Aggregation of Real Estate Market Offers

V. Lanin, R. Nesterov, T. Osotova···136

An Approach to the Selection of DSL Based on Corpus of Domain-Specific Documents

E. Elokhov, E. Uzunova, M. Valeev, A. Yugov, V. Lanin··139

Computer Graphics and Image/Speech Processing

Beholder Framework: A Unified Real-Time Graphics API

D. Rodin··144

Image Key Points Detection and Matching

M. Medvedev, M. Shleymovich··149

Voice Control of Robots and Mobile Machinery

R. Shokhirev··155

4 of 173

Application-Specific Methods and Tools

Service-Oriented Control System for a Differential Wheeled Robot

A. Mangin, L. Amiraslanova, L. Lagunov, Yu. Okulovsky··159

Scheduling the Delivery of Orders by a Freight Train

A. Lazarev, E. Musatova, N. Khusnullin···165

Optimization of Electronics Component Placement Design on PCB Using Genetic Algorithm

L. Zinnatova, I. Suzdalcev···169

5 of 173

Foreword

Dear participants, we are glad to meet you at the 7th Spring/Summer Young Researchers’
Colloquium on Software Engineering (SYRCoSE). The event is held in Kazan, the capital and
largest city of the Republic of Tatarstan, Russia. The colloquium is hosted by Kazan National
Research Technical University named after A.N. Tupolev (KNRTU), former Kazan Aviation
Institute (KAI), one of the leading Russian institutions in aircraft engineering, engine- and
instrument- design and manufacturing, computer science and radio- and telecommunications
engineering. SYRCoSE 2013 is organized by Institute for System Programming of the Russian
Academy of Sciences (ISPRAS) and Saint-Petersburg State University (SPbSU) jointly with
KNRTU.

In this year, Program Committee (consisting of more than 40 members from more than 20
organizations) has selected 30 papers. Each submitted paper has been reviewed independently by
three referees. Participants of SYRCoSE 2013 represent well-known universities, research
institutes and companies such as Belarusian State University of Informatics and
Radioelectronics, ISPRAS, Kazan Federal University, KNRTU, Moscow State University,
National Research University Higher School of Economics, Perm State National Research
University, Tomsk State University, Ural Federal University, V.A. Trapeznikov Institute of
Control Sciences of the Russian Academy of Sciences, Yaroslavl State University and ZAO
“MCST” (2 countries, 8 cities and 12 organizations).

We would like to thank all of the participants of SYRCoSE 2013 and their advisors for
interesting papers. We are also very grateful to the PC members and the external reviewers for
their hard work on reviewing the papers and selecting the program. Our thanks go to the invited
speakers, Mirko Conrad (The MathWorks GmbH, Germany), Yuri Gubanov (“Belkasoft” and
SPbSU, Russia) and Marek Miłosz (Institute of Computer Science, Lublin University of
Technology, Poland). We would also like to thank our sponsors and supporters, Russian
Foundation for Basic Research (grant 13-07-06008-г), Cabinet of Ministers of the Republic of
Tatarstan, Intel, Nizhny Novgorod Foundation for Education and Research Assistance and ICL-
KME CS. Finally, our special thanks to local organizers Liliya Emaletdinova (Institute for
Technical Cybernetics and Informatics, KNRTU), Kirill Shershukov (Academy for Information
Technologies, KNRTU), Igor Anikin, Dmitry Kolesov, Mikhail Shleymovich and Dmitry
Strunkin (KNRTU) for their invaluable help in organizing the colloquium in Kazan.

Sincerely yours

Alexander Kamkin, Alexander Petrenko, Andrey Terekhov
May 2013

6 of 173

Committees

Program Committee Chairs

 Alexander Petrenko – Russia
Institute for System Programming of RAS Andrey Terekhov – Russia

Saint-Petersburg State University

Program Committee

 Jean-Michel Adam – France
Pierre Mendès France University Marek Miłosz – Poland

Institute of Computer Science, Lublin University of Technology
 Sergey Avdoshin – Russia

Higher School of Economics Alexey Namestnikov – Russia
Ulyanovsk State Technical University

 Eduard Babkin – Russia
National Research University Higher School of Economics Valery Nepomniaschy – Russia

Ershov Institute of Informatics Systems
 Svetlana Chuprina – Russia

Perm State National Research University Elena Pavlova – Russia
Microsoft Research

 Liliya Emaletdinova – Russia
Institute for Technical Cybernetics and Informatics, KNRTU Yuri Okulovsky– Russia

Ural Federal University
 Victor Gergel – Russia

Lobachevsky State University of Nizhny Novgorod Ivan Piletski – Belorussia
Belarusian State University of Informatics and Radioelectronics

 Efim Grinkrug – Russia
National Research University Higher School of Economics Vladimir Popov – Russia

Ural Federal University
 Maxim Gromov – Russia

Tomsk State University Yury Rogozov – Russia
Taganrog Institute of Technology, Southern Federal University

 Vladimir Hahanov – Ukraine
Kharkov National University of Radioelectronics Rustam Sabitov – Russia

Kazan National Research Technical University
 Shihong Huang – USA

Florida Atlantic University Ruslan Smelyansky – Russia
Moscow State University

 Alexander Kamkin – Russia
Institute for System Programming of RAS Nikolay Shilov – Russia

Ershov Institute of Informatics Systems
 Vsevolod Kotlyarov – Russia

Saint-Petersburg State Polytechnic University Valeriy Sokolov – Russia
Yaroslavl Demidov State University

 Oleg Kozyrev – Russia
National Research University Higher School of Economics Petr Sosnin – Russia

Ulyanovsk State Technical University
 Daniel Kurushin – Russia

State National Research Polytechnic University of Perm Vladimir Voevodin – Russia
Research Computing Center of Moscow State University

 Rustam Latypov – Russia
Institute of Computer Science and Information Technologies, KFU Mikhail Volkanov – Russia

Moscow State University
 Alexander Letichevsky – Ukraine

Glushkov Institute of Cybernetics, NAS Mikhail Volkov – Russia
Ural Federal University

 Alexander Lipanov – Ukraine
Kharkov National University of Radioelectronics Nadezhda Yarushkina – Russia

Ulyanovsk State Technical University
 Irina Lomazova – Russia

National Research University Higher School of Economics Rostislav Yavorsky – Russia
Skolkovo

 Ludmila Lyadova – Russia
National Research University Higher School of Economics Nina Yevtushenko – Russia

Tomsk State University
 Tiziana Margaria – Germany

University of Potsdam Vladimir Zakharov – Russia
Moscow State University

 Igor Mashechkin – Russia
Moscow State University

Organizing Committee Chairs and Secretaries

 Alexander Petrenko – Russia
Institute for System Programming of RAS Liliya Emaletdinova – Russia

Institute for Technical Cybernetics and Informatics, KNRTU

 Alexander Kamkin – Russia
Institute for System Programming of RAS Kirill Shershukov – Russia

Academy for Information Technologies, KNRTU

7 of 173

Referees

Eduard Babkin Mykola Nikitchenko

Svetlana Chuprina Yuri Okulovsky

Liliya Emaletdinova Elena Pavlova

Victor Gergel Alexander Petrenko

Efim Grinkrug Ivan Piletski

Maxim Gromov Vladimir Popov

Vladimir Hahanov Yury Rogozov

Shihong Huang Rustam Sabitov

Alexander Kamkin Nikolay Shilov

Vsevolod Kotlyarov Sergey Smolov

Oleg Kozyrev Valeriy Sokolov

Daniel Kurushin Petr Sosnin

Rustam Latypov Andrey Tatarnikov

Alexander Letichevsky Andrey Terekhov

Alexander Lipanov Dmitry Volkanov

Irina Lomazova Mikhail Volkov

Ludmila Lyadova Nadezhda Yarushkina

Tiziana Margaria Rostislav Yavorskiy

Marek Miłosz Nina Yevtushenko

Valery Nepomniaschy Vladimir Zakharov

8 of 173

NPNtool: Modelling and Analysis Toolset for
Nested Petri Nets

Leonid Dworzanski
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia
leo@mathtech.ru

Daniil Frumin
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia

difrumin@edu.hse.ru

Abstract—Nested Petri nets is an extension of Petri net formal-
ism with net tokens for modelling multi-agent distributed systems
with complex structure. While having a number of interesting
properties, NP-nets have been lacking tool support. In this paper
we present the NPNtool toolset for NP-nets which can be used to
edit NP-nets models and check liveness in a compositional way.
An algorithm to check m-bisimiliarity needed for compositional
checking of liveness has been developed. Experimental results of
the toolset usage for modelling and checking liveness of classical
dinning philosophers problem are provided.

Index Terms—Petri nets, nested Petri nets, multi-agent systems,
compositionality, liveness

I. INTRODUCTION

In our world distributed, multi-agent and concurrent systems
are used everyday to the point that we don’t even notice them
working for us. Not only civilian and military air and water
carriers are equipped with hi-tech electronics and software,
but even laundry machines, microwave ovens, refrigerators,
air-condition systems and other implements are controlled by
distributed software.

In the great amount of research on defining parallel and
concurrent systems, in recent years a range of formalisms have
been introduced, modified or extended to cover agent systems.
One of such approaches, which gained widespread usage, is
Petri nets. One downside of the classical Petri nets formalism
is its flat structure, while multi-agent systems commonly
have complex nested apparatus. This prevents us from easily
specifying models of multi-agent systems in a natural way.
The solution to this problem was found by R. Valk [12], who
originated the net-within-nets paradigm. According to the nets-
within-net paradigm [11], the tokens in a Petri net can be nets
themselves. Usually, there is some sort of hierarchy among the
networks: there is a system net, the top level network, and all
other nets are assigned each to their initial place, providing
us with the hierarchy of the nets in one big higher-order net.

One of the non-flat Petri net model is Nested Petri nets [9],
[10], [7]. In nested Petri nets (NP-nets), there is a system net,
in some places of which element nets resign, in the form of
net tokens. NP-nets have internal means of synchronization
between element nets and the system net.

The research is partially supported by the Russian Fund for Basic Research
(project 11-01-00737-a).

But the application and evolution of the formalism is
hampered by the lack of tool support So far, there are
no instruments (simulators, model checker software) which
provide any kind of support for the nested Petri nets formalism.
In this paper we present our newly developed project NPNtool

The paper is organized as follows. To start with, we give
some necessary foundations of Petri nets and nested Petri
nets. After that we describe our toolset (both frontend and
backend). We describe a simple experiment we’ve conducted
and conclude the paper with the directions of future research.

II. PETRI NETS

In literature, there is a variety of definitions for Petri nets,
a common one would be the following.

Definition 1. A Petri net (P/T-net) is a 4-tuple (P, T, F,W)
where

• P and T are disjoint finite sets of places and transitions,
respectively;

• F ⊆ (P × T) ∪ (T × P) is a set of arcs;
• W : F → N \ 0 – an arc multiplicity function, that is, a

function which assigns every arc a positive integer called
an arc multiplicity.

A marking of a Petri net (P, T, F,W) is a multiset over P ,
i.e. a mapping M : P → N. By M(N) we denote a set of all
markings of a P/T-net N .

We say that transition t in P/T-net N = (P, T, F,W) is
active in marking M iff for every p ∈ {p | (p, t) ∈ F}:
M(p) ≥W (p, t). An active transition may fire, resulting in a
marking M ′, such as for all p ∈ P : M ′(p) = M(p)−W (p, t)
if p ∈ {p | (p, t) ∈ F}, M ′(p) = M(p) −W (p, t) + W (t, p)
if p ∈ {p | (t, p) ∈ F} and M ′(p) = M(p) otherwise.

However, for our purpose we use a definition in algebraic
representation. Firstly, we define a low-level abstract net

Definition 2. A Low-level Abstract Petri Net is a 4-tuple
(P, T, pre, post) where

• P and T are disjoint finite sets of places and transitions,
respectively;

• pre : T → N(P) is a precondition function;
• post : T → N(P) is a postcondition function;

9 of 173

Here, N : Set→ Set is a functor, defined by N = G ◦ F ,
where F is a functor from the category of sets to the category
of some structures Struct and G is a forgetful functor from
Struct to Set.

Using this concept we can define P/T net as a low-level
abstract Petri net where Struct is the category of commutative
monoids and F maps each set x to a free monoid F (x) over
x 1.

This definition suggests for a straightforward embedding in
Haskell:
data Net p t n m = Net

{ places :: Set p
, trans :: Set t
, pre :: t -> n p
, post :: t -> n p
, initial :: m p
}

type PTNet = Net PTPlace Trans MultiSet MultiSet
type PTMark = MultiSet PTPlace
type PTTrans = Int
type PTPlace = Int

III. NESTED PETRI NETS

In this section we define nested Petri nets (NP-nets) [9]. For
simplicity we consider here only two-level NP-nets, where net
tokens are usual Petri nets.

Definition 3. A nested Petri net is a tuple
(Atom,Expr,Lab, SN, (EN1, . . . , ENk)) where
• Atom = Var ∪ Con – a set of atoms;
• Lab is a set of transition labels;
• (EN1, . . . , ENk), where k ≥ 1 – a finite collection of

P/T-nets, called element nets;
• SN = (PSN , TSN , FSN , υ,W,Λ) is a high-level Petri

net where
– PSN and TSN are disjoint finite sets of system

places and system transitions respectively;
– FSN ⊆ (PSN × TSN) ∪ (TSN × PSN) is a set of

system arcs;
– υ : PSN → {EN1, . . . , ENk}∪{•} is a place typing

function;
– W : FSN → Expr is an arc labelling function, where

Expr is the arc expression language;
– Λ : TSN → Lab ∪ {τ} is a transition labelling

function, τ is the special “silent” label;

The arc expression language Expr is defined as follows.
• Con is a set of constants interpreted over A = Anet∪{•}

and Anet = {(EN,m) | ∃i = 1, . . . , k : EN =
ENi,m ∈ M(ENi)}, i.e. Anet is a set of marked
element nets, A is a set of element nets with markings
and a regular black token • familiar to us from flat Petri
nets (see section above);

• Var is a set of variables, we use variables x, y, z to range
over Var.

1Since there is no commutative monoid datatype in Haskell, we use
(isomorphic) representation via multisets.

Definition 4. Expr is a language consisting of multisets over
Con ∪ Var.

The arc labeling function W is restricted in such way that
constants or multiple instances of the same variable are not
allowed in input arc expressions of the transition, constants
and variables in the output arc expressions should correspond
to the types of output places, and each variable in an output
arc expression of the transition should occur in one of the
input arc expressions of the transition.

We use notation like x + 2y + 3 to denote multiset
{x, y, y, •, •, •}.

A marking M in an NP-net NPN is a function mapping
each p ∈ PSN to some (possibly empty) multiset M(p) over
A.

Let Vars(e) denote a set of variables in an expression
e ∈ Expr. For each t ∈ TSN we define W (t) = {W (x, y) |
(x, y) ∈ FSN ∧ (x = t ∨ y = t)} – all expressions labelling
arcs incident to t.

Definition 5. A binding b of a transition t is a function b :
Vars(W (t)) → A, mapping every variable in the t-incident
arc expression to some value.

We say that a transition t is active w.r.t. a binding b iff

∀p ∈ {p | (p, t) ∈ FSN} : b(W (p, t)) ⊆M(p)

An active transition may fire (denoted M
t[b]−−→M ′) yielding a

new marking M ′(p) = M(p) − b(W (p, t)) + b(W (t, p)) for
each p ∈ PSN .

A behavior of an NP-net consists of three kinds of steps:
system-autonomous step, element-autonomous step and syn-
chronization step.
• An element-autonomous step is a firing of a transition in

one of the element nets, which abides standart firing rules
for P/T-nets.

• A system-autonomous step is a firing of a transition,
labeled with τ , in the system net.

• A (vertical) synchronization step is a simultaneous firing
of a transition, labeled with some λ ∈ Lab, in a system
net together with firings of transitions, also labeled with
λ, in all net tokens involved in (i.e. consumed by) this
system net transition firing.

IV. USER INTERFACE

The modelling tool of the toolset consists of the meta-
model of NP-nets and the tree-based editor which supports
editing of NP-nets models. This tool is implemented via well-
known modelling framework and code generation facility EMF
(Eclipse Modeling Framework). The core of any EMF-based
application is the EMF Ecore metamodel which describes
domain-specific models. The crucial part of the developed NP-
nets metamodel is depicted in fig. 1. The root element of the
model is the instance of PetriNetNestedMarked class which
represents marked NP-nets. TokenTypeElementNet class rep-
resents element nets. NetConstant class represents net con-
stants which bound constants with marked element nets at the

10 of 173

time of NP-net model construction. We omit here the technical
details of the remaining part of the metamodel. The metamodel
resembles the formal definition of NP-nets given in section III.

The Tree-based editor for the developed metamodel is
generated from the Ecore metamodel via EMF codegenerators
and modified for the model specific needs. The editor takes
care of standard model editing procedures like move, copy,
delete, or create fragments of a model and provides undo/redo
and serialization/deserialization support.

A NP-net model can be serialiazed into XMI (XML Meta-
data Interchange) representation via the standard serialization
mechanism of EMF. Serialized XMI documents are exported
to the Haskell backend which carries out analysis procedures.

V. BACKEND

The backend for the tool is written in Haskell [5] and
consists of the following parts:
• A library for constructing flat Petri nets;
• A library for constructing nested Petri net;
• Algorithms for checking compositional liveness of nested

Petri nets [3];
• A CTL model checker for classical Petri nets;
• Communication layer.
We also make use of a number of GHC extensions which

enrich the Haskell’s type system.

A. Import

There are two ways to load models into the library: to load
the XML file generated by the frontend or to construct the
model using specialised library (see section V-B).

For parsing input we use the HXT [6] library based on
Arrows [8]. We process the definitions into a NPNConstr
code which is later converted to NP-net.

B. Dynamic construction

Libraries for dynamic construction of Petri nets are used in
all the other modules of the system. To understand why they
are useful, let’s take a look at the straightforward definition of
a Petri net using the datatype described in the section II.
pn1 :: PTNet
pn1 = Net { places = Set.fromList [1,2,3,4]

, trans = Set.fromList [t1,t2]
, pre = \(Trans x) -> case x of

"t1" -> MSet.fromList [1,2]
"t2" -> MSet.fromList [1]

, post = \(Trans x) -> case x of
"t1" -> MSet.fromList [3,4]
"t2" -> MSet.fromList [2]

, initial = MSet.fromList [1,1,2,2]
}

where t1 = Trans "t1"
t2 = Trans "t2"

However, it does get tedious after a while to write out all
the nets this way. In addition, such approach is not modular or
compositional. We’ve included a library with simple monadic
interface for constructing P/T-nets.

The module PTConstr includes a monad PTConstrM l
which is used for constructing P/T-nets, which transitions

might be labelled with l. Among others it also includes the
following functions:
mkPlace :: PTConstrM l PTPlace
mkTrans :: PTConstrM l PTTrans
label :: PTTrans -> l -> PTConstrM l ()

used for creating places and labelling transitions. In order to
have more slick API we use Type Families [1] for providing
the interface for arc construction:
class Arc k where

type Co k :: *
arc :: k -> Co k -> PTConstrM l ()

instance Arc Trans where
type Co Trans = PTPlace
arc = ...

instance Arc PTPlace where
type Co PTPlace = Trans
arc = ...

This allows us to uniformly use arc for constructing arcs
both from transitions to places and from places to transitions,
as shown in the example:
pn3 :: PTNet
pn3 = run \$ do

[t1,t2] <- replicateM 2 mkTrans
[p1,p2] <- replicateM 2 mkPlace
label t1 "L1"
arc p1 t1
arc p1 t2
arc t1 p2
arc t2 p2

Furthermore, this allows us to take advantage of type
polymorphism and define functions such as
arcn :: Arc k => k -> Co k -> Int -> PTConstrM l ()
arcn a b n = replicateM_ n \$ arc a b

Similar library for constructing nested Petri nets –
NPNConstr – also has facilities for lifting PTConstrM code
into NPNConstrM monad, which allows for better code reuse.

C. Algorithms

Algorithmically we have implemented a CTL model checker
(as shown in [2]) with memoization, algorithm for determin-
ing the existence of m-bisimilarity (the algorithm is shown
Appendix A) and liveness algorithms (as shown in [4]) which
are used for checking liveness in a compositional way.

Definition 6 (Liveness). A net N is called live if every
transition t in its system net is live, eg: ∀m ∈ M(N).∃σ ∈
T ∗.m

σ−→ m′ ∧m′ s−→ m′′ ∧ t ∈ s

Theorem 1. Let NPN be a marked NP-net with a system net
SN and initial marking m0. Let also NPN satisfy the following
conditions:

1) (SN,m0 |SN) is live (if considered as a separate compo-
nent);

2) all net tokens in m0 and all net constants in every arc
expression in NPN are live (if considered as separate
components);

3) for each net token α in m0, residing in a place p, α (if
considered as a separate component) is m-bisimilar to
the α-trail net of p.

11 of 173

Fig. 1. The EMF Ecore metamodel of NP-nets

Then (NPN,m0) is is live.

For proof of this theorem, definition of α-trail net and
algorithm for its construction see [3]. In out project we’ve
implemented the α-trail net construction algorithm and devel-
oped the m-bisimilarity checking algorithm (see section A).

VI. EXPERIMENT

For our experiment we decided to check liveness in a
compositional way [3] on the following examples: the example
net from [3] was checked instantly, due to it’s facile structure.

We’ve decided to test our tool on the classical problem
of dining philosophers extended with the ability of philoso-
phers to walk: walking philosophers. In our modification
philosophers are modeled as separate agents who may exist
in different states. Thinking is an important philosophical
activity, but who would turn down an opportunity to have a
nice walk after a pleasant meal? Therefore philosophers can
be either thinking, walking or eating.

ThinkingWalking
Walk

Return

EatingP ickR PickL

Put

Fig. 2. philAgent - A net token representing a single philosopher

ThinkingWalking
Walk

Return

EatingP ickL PickR

Put

Fig. 3. lastPhilAgent - A net token representing the last philosopher

Given a table with n philosophers and n forks, a net,
modeling the first n − 1 philosophers is shown in figure 2.
However, the n-the philosopher is left-handed, and his net is
a little bit different (see Fig. 3).

12 of 173

Forki

PickR x

x

PickL

x
x

Put

x

x

Fig. 4. phil - A portion of net representing a philosopher and his right fork

The system net consists of a number of repeated pieces.
First n − 1 pieces are shown in Fig. 4 and connected in the
following way: for each i there is an arc from Forki+1 to
PickRi and an arc from Puti to Forki+1. The last piece
looks somewhat differently (see Fig. 5) and have arcs from
Fork1 to PickLn

and from Putn to Fork1.

ForkN

PickL x

x

PickR

x
x

Put

x

x

Fig. 5. lastPhil - A portion of net representing the last philosopher and
his right fork

This system modeled via both interfaces. Firstly the system
of 5 philosophers modelled via the frontend modeling tool. We
also use API of the backend to automatically generate several
system instances with different amount of philosophers and
check their liveness.

Due to the modular nature of this task, it was easy to encode
it using the construction library from the previous section. The
code for the problem is shown in the appendix.

We’ve verified the compositional liveness of the system for
n = 3, 5, 7, 11 and got the following results:

Number of
philosophers

3 5 7 11

Mean execu-
tion time

8.23ms 144.9ms 2.17s 415.5s

The tests were performed using the criterion library on
the 1.66GHz machine with 993mb RAM running Linux 3.5.0.
The data was collected from 20 samples for each test.

VII. CONCLUSIONS AND FURTHER WORK

In this paper we have presented NPNtool – a support pro-
gram for nested Petri nets formalism, capable of modeling NP-
nets, checking them for liveness in a compositional way, model
checking separate components for CTL specifications. We
have also developed an algorithm for checking m-bisimilarity
needed for liveness. The toolset can be used in both ways - to
create and check models with the usage of the NP-nets editor
and with the usage of the Haskell-based backend API.

The case study was presented in which we showed how to
model NP-nets in a modular way, by modeling a “walking
philosophers” problem and testing our tool against it.

Our future works directions includes: implementing a nCTL
model checker, implementing a remote simulator. Tree based
editor is pretty convenient to create or modify a model,
however it is not very helpful to get quick overview of the
model or its fragment. So the next step is to implement
graphical editor of NP-nets diagrams.

We also intend this tool to be used as a framework for
implementing algorithms on nested Petri nets.

APPENDIX A
ALGORITHM FOR CHECKING M-BISIMILARITY

Algorithm 1: mBisim – checking for existence of a m-
bisimilarity relation
Data: Two nets pt1, pt2 with their labelling functions

l1,l2 and initial markings m1,m2. R of type
M(pt1)×M(pt2) is a relation we are building
(initially empty).

Result: True if nets are m-bisimilar, False otherwise
begin

if (m1,m2) ∈ R then
return True

Ts1 ← {t | t ∈ trans(pt1) ∧ enabled(pt1,m1, t)}
Ts2 ← {t | t ∈ trans(pt2) ∧ enabled(pt2,m2, t)}
insert (m1,m2) in R
for t ∈ Ts1 do

l← l1(t)
m′1 ← fire(pt1,m1, t)

nodes← {n | n ∈M(pt2) ∧m2
l

=⇒ n}
if null(nodes) then

return False
return

∧
{mBisim(pt1, pt2, l1, l2,m′1,m

′
2, R) |

m′2 ∈ nodes}
for t ∈ Ts2 do

l← l2(t)
m′2 ← fire(pt2,m2, t)

nodes← {n | n ∈M(pt1) ∧m1
l

=⇒ n}
if null(nodes) then

return False
return

∧
{mBisim(pt1, pt2, l1, l2,m′1,m

′
2, R) |

m′2 ∈ nodes}

13 of 173

The algorithm is implemented using the
StateT (Set (PTMark,PTMark)) Maybe monad
which allows for a more or less direct translation of the above
code.

APPENDIX B
WALKING PHILOSOPHERS

import NPNTool.PTConstr
import NPNTool.NPNConstr

(arcExpr, liftPTC, liftElemNet
, addElemNet, NPNConstrM)

import qualified NPNTool.NPNConstr as NPC

-- Labels
data ForkLabel = PickR | PickL | Put

deriving (Show,Eq,Ord)
-- Variables
data V = X -- we only need one

deriving (Show,Eq,Ord)

-- Code for a single philosopher-agent
philAgent :: PTConstrM ForkLabel ()
philAgent = do

...

-- Code for the n-th philosopher
lastPhilAgent :: PTConstrM ForkLabel ()
lastPhilAgent = do

...

-- returns (Fork_i,PickL_i,Put_i)
phil :: NPNConstrM

ForkLabel V (PTPlace,Trans,Trans)
phil = do

[fork,p1,p2,p3] <- replicateM 4 NPC.mkPlace
[pickL,pickR,put] <- replicateM 3 NPC.mkTrans
-- get the philAgent token
agent <- liftElemNet philAgent
let x = Var X
NPC.label pickL PickL
NPC.label pickR PickR
NPC.label put Put
-- mark the Fork position with a single token
NPC.mark fork (Left 1)
-- mark the philosopher position with an agent
NPC.mark p1 (Right agent)

NPC.arc fork pickR
NPC.arcExpr p1 x pickR
NPC.arcExpr pickR x p2
NPC.arcExpr p2 x pickL
NPC.arcExpr pickL x p3
NPC.arcExpr p3 x put
NPC.arcExpr put x p1
NPC.arc put fork

return (fork,pickL,put)

lastPhil :: NPNConstrM ForkLabel V (PTPlace,Trans,Trans)
lastPhil = do

...

cyclePhils :: Int -> NPNConstrM ForkLabel V ()
cyclePhils n = do

(fork1,pickL1,put1) <- phil

(pickL,put) <- midPhils (n-2) (pickL1,put1)
(forkLast,pickLLast,putLast) <- lastPhil
lift $ do

NPC.arc put forkLast
NPC.arc forkLast pickL
NPC.arc fork1 pickLLast
NPC.arc putLast fork1

midPhils :: Int -> (Trans,Trans)
-> NPNConstrM ForkLabel V (Trans,Trans)

midPhils n interf | n == 0 = return interf
| otherwise = do

(pl,put) <- midPhils (n-1) interf
(f’,pl’,put’) <- phil
NPC.arc put f’ >> NPC.arc f’ pl
return (pl’,put’)

diningPhils :: Int -> NPNet ForkLabel V Int
diningPhils n = NPC.run (cyclePhils n) NPC.new

REFERENCES

[1] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, Simon
Marlow, Associated Types with Class. – Proceedings of The 32nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’05), ACM Press, 2005.

[2] Edmund M. Clarke, Orna Grumberg, Doron Peled. Model Checking, MIT
Press, 2001.

[3] L. W. Dworzaski, I. A. Lomazova, On Compositionality of Boundedness
and Liveness for Nested Petri Nets. – Fundamenta Informaticae, Vol. 120.
No. 3-4. pp. 275-293, 2012.

[4] Serge Haddad, Francois Vernadat, Analysis Methods for Petri Nets. – In
Petri Nets: Fundamental Models, Verification and Application, edited by
Michel Diaz, Wiley-ISTE, 656 p., 2009.

[5] Haskell Programming Language, http://haskell.org
[6] Haskell XML Toolkit, http://www.fh-wedel.de/∼si/HXmlToolbox/index.

html
[7] K. M. van Hee, I. A. Lomazova, O. Oanea, A. Serebrenik, N. Sidorova,

M. Voorhoeve, Nested nets for adaptive systems. – Proceedings of the
27th international conference on Applications and Theory of Petri Nets
and Other Models of Concurrency (ICATPN’06), pp. 241-260, Springer,
2006.

[8] John Hughes, Generalising Monads to Arrows. – Science of Computer
Programming 37, 2000.

[9] I. A. Lomazova, Nested Petri nets: Modeling and analysis of distributed
systems with object structure. – Moscow:Scientific World, 208 p., 2004.

[10] I. A. Lomazova, Nested Petri Nets for Adaptive Process Modeling. –
Lecture Notes in Computer Science, volume 4800. pp. 460-474, Springer,
2008.

[11] M. Mascheroni, F. Farina, Nets-Within-Nets paradigm and grid comput-
ing. – Transactions on Petri Nets and Other Models of Concurrency V,
pp. 201-220. Springer, Heidelberg, 2012.

[12] R. Valk, Petri Nets as Token Objects: An Introduction to Elementary
Object Nets. –ICATPN 1998. LNCS, vol. 1420, pp. 1-25. Springer,
Heidelberg, 1998.

14 of 173

http://haskell.org
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html

The research is partially supported by the Russian Fund for
Basic Research (project 11-01-00737-a).

The tool for modeling of wireless sensor networks
with nested Petri nets

Nina Buchina
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia

m.e.tigra@gmail.com

Leonid Dworzanski
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia
leo@mathtech.ru

The work describes a specific approach to modeling and

simulating Wireless Sensor Networks (WSN), using nested Petri Nets

formalism. The tool for modeling/simulating WSN must take into

consideration resources, time and sensors cost. Even though Petri

Nets are good for modeling dynamic systems, they do not have

enough means to express these aspects. Hence some extension were

introduced to handle them.

Keywords—wireless sensor networks; petri nets; modeling;

simulating; analysis;

I. INTRODUCTION
Two main concepts are discussed in this paper that reader

may need to be acquainted with in advance. These are Wireless
Sensor Networks and Petri Nets.

A. Wireless sensor networks

Wireless sensor networks are computer networks that consist
of distributed sensor nodes. These sensors are used to monitor
physical or environmental conditions, such as temperature,
sound, pressure and others, and pass the information to the main
host (server, end point). These networks are subject of active
study, and are utilized in such systems like smart houses,
security, environmental and others.

For example, an environmental wireless network described
in [3] detects different wild animals as they go through special
passages under roads. It also addresses to identification problem.
This task is fulfilled by filling the space within some radius from
wildlife passages with the wireless nodes of different types and
some wireless cameras. In this way scientists may not only find
out that the animals have passed the camera, but they also will
know the path and direction they followed.

Another widespread usage of WSN are road traffic control
and optimization systems. The paper [4] presents a project aimed
to “provide a wireless solution for obtaining traffic-related data
that can be used for automatically generating safety warnings at
black spots along the road network”. The WSN consists of
numerous sensors deployed along the road. Each of them
monitors its road section, collects parameters such as number,
speed and direction of vehicles.

Nets of these types are difficult and expensive to develop and
to build. Moreover, the price of possible mistake and error can
be extremely high. It may also turn out that the network in
principle cannot operate as expected. And as for any complex

system - the sooner this fact will be discovered, the higher are
chances to fix the situation before it will drain all the budgets.

This is why modeling and simulating are extremely required
for large-scale and expensive networks. There is also a
possibility that the deeper understanding of the network will be
gained, and the better network structure will be discovered in the
process of network modeling.

B. Petri nets

Petri nets is a classical formalism also known as a
place/transition net. Petri Nets are commonly used to model
different sorts of structures, processes and systems. It also has
many extensions as the concept has been adapted for different
needs. In this work, two of such extensions will be used. These
are Nested Petri nets [1] and Time Petri Nets [2].

It should be outlined that in this work we assume that all the
messages in Wireless Sensor Network are intended to end up on
the server sooner or later. There may exist specific network that
enables sensor nodes to exchange meaningful messages between
each other, but by now they are not addresed here.

II. RELATED WORK

A. Wireless sensor network modeling and simulating

There are currently plenty of works concern modeling sensor
networks or simulating them.

First of all, there are several mature software products for
modeling and simulating networks. Almost all of them share the
same drawback: they are very general as they allow to simulate
almost any kind of network, and thus are hard to learn and to use
for specific needs:

– OPNET [6]

– NetSim [7]

– ns-2 [8]

– OMNet++ [9]

There are also many works performed by researchers, aiming
to survey existing network modeling approaches or create new
modeling tools.

One of these tools is Shawn[10]. Its authors state that the tool
is designed to support several implementation models and
propose an algorithm for developing distributed implementation

15 of 173

mailto:leo@mathtech.ru

model of the network. One of main goals of Shawn is to provide
support for extremely large networks.

Another wireless sensor network simulating tool that
emerged lately is NetTopo [11]. This tool deals with not only
WSN model, but also with a real-world wireless sensors testbed.
The simulation of virtual WSN, the visualization of real testbed,
and the interaction between simulated WSN and testbed are its
key challenges.

The review paper [12] summarizes the state of the problem
at 2005, which stays mostly relevant.

B. Petri nets and wireless sensor networking

Petri nets are usually taken by some other scientists as a base
to create their own modeling language and verification
framework.

One of recent works [13] proposes the concept of intelligent
wireless sensor networks model (IWSNM) based on Petri nets,
which can accurately and unambiguously model the overall and
individual characteristics of the networks. Moreover, IWSNM
can be analyzed, verified and validated by the supporting tools
of Petri nets.

Another work [14] by computer scientists from the
University of Virginia proposes an approach to formal
application-level requirements specification in wireless sensor
networks. They present an event specification language that
supports key features of WSNs. As a description language, it is
an extension of Petri nets. It integrates features ranging from
color, time, and stochastic Petri nets to tackle problems in
specification and analysis.

III. GOALS
As it has been shown in the previous section, there are plenty

of tools and works intended to help dealing with wireless sensor
networks by modeling and simulating them. While commercial
products like OPNET can be quite expensive, the academic tools
require considerable amount of time and efforts to learn.

On the other hand, a wireless sensor network modeler that is
completely free to use and extremely easy to operate would
empower more enthusiasts to design their own sensor networks.
They would have an opportunity to ensure their projects are
actually viable before trying to implement them. Involvement of
amateurs may help to accelerate the development of wireless
sensor networks industry.

Therefore, the main practical goal of this work is to build a
wireless sensor network modeling tool, consisting of 3 modules:

1. Graphical User Interface;

2. The modelling kernel;

3. Analysis backend.

The tool should support some analyzing options such as

1. Liveness

2. Deadlock-freedom

3. Safety

All these are to be done via converting the WSN graph to a
Petri net and analyzing this net with standard techniques.

The tool must also be user-friendly and extremely easy to
use. It should be possible to perform basic operations even if the
user has no deep knowledge on networking or Petri nets.

The theoretical goal of the work is to widen nested Petri
notation with WSN-specific features, such as:

1. Time

2. Resources

3. Cost

The last goal is to use the created tool to model and simulate
a real wireless sensor network, estimate its characteristics, such
as cost, performance etc., and decide whether it can be
implemented (and whether it is reasonable).

IV. RESULTS ACHIEVED

A. Going Petri

A conversion scheme was created to translate a set of
wireless sensor nodes and their coordinates to the nested Petri
net. This scheme consists of 2 parts:

1) Generation of overall net model that shows which
nodes can communicate to which, and what ways there
exist to pass the signal to the server. In general, each
sensor node corresponds to two Petri places connected
with transition. One of these places is called
“implementation place” and is used to store tokens that
represent the wireless node implementation. The other
place is called a “signal place”. If 2 wireless nodes in
real world are able to communicate, their
corresponding signal places are connected with Petri
transitions like so:

Fig. 1 Sample Petri Net generated from wireless sensor net model. Here
each implementation place contains a token.

2) Each WS Node has its own Petri model that describes
its behavior. It’s network developer’s task to describe
the behavior of his wireless nodes. However, the tool
will have a bunch of “standard” nodes with predefined
behavior. The node’s Petri model is stored in a token
that is placed to node’s corresponding implementation
Petri place.

16 of 173

The signal is represented by a Petri token. This token travels
through the signal states of the net to the server.

Communication is done via horizontal and vertical
synchronization [1]. For example, the transition between
Node place to its signal place is enabled only when some
state of node implementation (stored in token in the
implementation place) is achieved.

B. Routing

The order in which nodes participate (or do not) in message
transmitting depends on the selected routing algorithm.
Currently the tool supports only “least hops” algorithm [5].

The routing is performed on the stage of conversion between
WSN structure and Petri net. If two nodes can be used for
message transmission, the tool will add a Petri transition to the
state that corresponds to the node with least hops number. If
there are two nodes with least hops number, the tool will add
create both transitions.

This algorithm is about to change when time concept will be
introduced. Then no transmission possibilities will be ignored;
time windows will be applied for each generated transition
instead (see Future work directions, item E: Time problems)

C. The Tool

The tool at its current state allows its user to arrange wireless
nodes using simple GUI, and then create a Petri net out of this
model with respect to routing.

The tool is written fully on Java and consists of 4 main
components.

Fig. 4 The
component

diagram of the
tool

The first
component

is WSN to
Petri

converter.
It's only
purpose is to
convert the

wireless sensor network model defined by user to its Petri
representation with respect to routing algorithm.

The main module of the tool is the Analyzer. It is designed
to contain a set of verification algorithms that can be applied to
Petri net or Petri-based model. The exact list of algorithms is still
being composed, but it is sure to contain tools for analyzing
reachability, deadlocks and time characteristics of the net.

The last module is graphical user interface. It actually
consists of two main parts.

The first part lets user to arrange wireless sensor nodes on a
map or floor plan, which is being uploaded to the tool by the
user. The wireless sensor network model is created as a result.

The second part is designed to represent Petri net generated
by the tool or created by user. The presented net can also be

modified by the user, except for the case of the Petri Net that was
generated from wireless sensor network model. In this case it
seems more reasonable to modify the original wireless sensor
model and to generate its Petri representation again.

On screen-shots below a sample small wireless sensor
network is shown, and so is its Petri representation.

Fig. 2 The Wireless Sensor Network window of the tool.

Fig. 3 The Petri Editor window of the tool.

V. FUTURE WORK DIRECTIONS

C. Fully implement the tool

This point assumes implementing all the points from the
“Goals” section. It also will require testing the tool against some
real WSN and comparing tool’s outputs and prognosis with the
real situation.

D. Add support of data packages

At this time, each message is represented by a single token.
It would be reasonable to allow user to simulate different
message sizes to estimate network bandwidth. For example,

17 of 173

each Petri token can be said to represent 1 KB of data. This work
will also require to control each message integrity.

E. Develop more predefined nodes

This point will require creating Petri models of some popular
wireless sensor nodes, and introduce these in the tool as
representation of wireless sensors behavior. The user of the tool
will then be able to edit these models and adapt them for her
needs.

F. Analysis options

Some examples of analysis that theoretically can be done
using Petri representation of WSN is given in the Goals section.
The task is to recognize as many such options as possible and
present the results in form of article, also implementing in a tool.

G. Enable the support of decentralized networks

Implementing this feature will allow to model and simulate
networks with multiple message end-points (servers), with no
servers at all, or with nodes able to consume messages, not just
transmit them.

H. Time problems

Introducing the Time to model lets researcher to deeply
explore performance of his network. It also lets him to address
the problem of network liveness, as the net may reconfigure
itself when some nodes become unavailable after certain
timeout.

In order to address time problems it has been decided to use
Time Petri Net formalism. This concept is described in detail in
[2].

This work introduces the concept of time windows. The
transition may be fired only if the time elapsed since its last
enabling gets into certain interval – the time window. This
concept may be used to implement WSN reconfiguration: once
the node that is supposed to transmit the message is identified as
not responding (the time went out) the net should try to pass the
message using a different route.

I. Add multiple routing algorithms support

There are many more possible routing options than just
counting hops. The user may prefer routing based on
availability, performance, delay time and other characteristics.

The task so far is to add some popular routing algorithms
support in a tool. Anyway, it also seems to be reasonable to
allow users to create their own routing algorithms. This may be
achieved by providing them a java interface to implement and
enabling the tool to use these implementations along with build-
in routing algorithms.

REFERENCES

[1] И. А.Ломазова “Вложенные сети Петри: моделирование и анализ
распределенных систем с объектной структурой”. Научный мир
2003, Москва

[2] L. Popova-Z. “Time and Petri Nets - A Way for Modeling and
Verification of Time-dependent Concurrent Systems”. Humboldt-
Universität zu Berlin Department of Computer Science December 2012,
Moscow

[3] A.-J. Garcia-Sanchez, F. Garcia-Sanchez, F. Losilla,
 P. Kulakowski, J. Garcia-Haro, A. Rodríguez, J.-V.López-Bao,
F.Palomares. “Wireless Sensor Network Deployment for Monitoring
Wildlife Passages”. Sensors 2010, 10, 7236-7262;

[4] M. Franceschinis, L. Gioanola, M. Messere, R. Tomasi, M. A. Spirito, P.
Civera. “Wireless Sensor Networks for Intelligent Transportation
Systems”. http://www-
mobile.ecs.soton.ac.uk/home/conference/vtc09spring/DATA/07-02-
04.PDF

[5] Bellman, Richard (1958). “On a routing problem”. Quarterly of Applied
Mathematics 16: 87–90. MR 0102435

[6] OPNET modeler website:
http://www.opnet.com/solutions/network_rd/modeler.html

[7] NetSim website: http://tetcos.com/
[8] ns-2 wiki: http://nsnam.isi.edu/nsnam/index.php/Main_Page
[9] OMNet++ website: http://www.omnetpp.org/
[10] Shawn – a customizable sensor network simulator. https://www.itm.uni-

luebeck.de/ShawnWiki/index.php
[11] Lei Shua, Manfred Hauswirthb, Han-Chieh Chaoc, Min Chend, Yan

Zhange: “NetTopo: A framework of simulation and visualization for
wireless sensor networks”.Ad Hoc Networks 9 (2011) 799–820

[12] E. Egea-López, J.Vales-Alonso, A. S. Martínez-Sala, P. Pavón-Mariño,
J. García-Haro: “Simulation Tools for Wireless Sensor Networks”.
Summer Simulation Multiconference - SPECTS 2005

[13] X Fu, Z Ma, Z Yu, G Fu: “On Wireless Sensor Networks Formal
Modeling Based on Petri Nets”

[14] Binjia Jiao Sang H. Son John A. Stankovic: “GEM: Generic Event
Service Middleware for Wireless Sensor Networks”

18 of 173

http://www-mobile.ecs.soton.ac.uk/home/conference/vtc09spring/DATA/07-02-04.PDF
http://www-mobile.ecs.soton.ac.uk/home/conference/vtc09spring/DATA/07-02-04.PDF
http://www-mobile.ecs.soton.ac.uk/home/conference/vtc09spring/DATA/07-02-04.PDF
http://www.opnet.com/solutions/network_rd/modeler.html
http://tetcos.com/
http://nsnam.isi.edu/nsnam/index.php/Main_Page
http://www.omnetpp.org/
https://www.itm.uni-luebeck.de/ShawnWiki/index.php
https://www.itm.uni-luebeck.de/ShawnWiki/index.php
kamkin
Text Box

DPMine: modeling and process mining tool
Sergey Shershakov

International Laboratory
of Process-Aware Information Systems (PAIS Lab)

National Research University Higher School of Economics
Moscow 101000, Russia

Email: sshershakov@hse.ru

Abstract—Volume of the data information system operate has
been rapidly increasing. Data logs have long been known, as
they are a useful tool to solve a range of tasks. The amount of
information that is written to a log during a specified length of
time leads to the so-called problem of “big data”. Process-aware
information systems (PAIS) allow developing models of processes
interaction, been monitoring accuracy of their performance and
correctness of interaction with each other. Studying logs of PAIS
in order to extract knowledge about the processes and construct
their models has to do with the process mining discipline. There
are available developed tools for process mining, both on a
commercial and on a free basis. We are proposing a concept
of a new DPMine tool for building a model of multistage process
mining from individual processing units connected to each other
in a processing graph. The resulting model is executed (simulated)
by making an incremental process from the beginning to the end.

Keywords: Process Mining, Model, Tool, Distributing, Work-
flow, Processes, PAIS

I. Iඇඍඋඈൽඎർඍංඈඇ
As a consequence of information systems (IS) development,

volume of the data they operate has rapidly increased. This
applies both to the data entered into the system in different
ways (automatic, semi-automatic and manual) and the data
obtained as a result of some processing which is output by
the system to various types of media. In the latter data type
one can distinguish a special subclass — the so-called data log
representing a trace left by some IS and storing information
about a set of partial states of the system at different times of
its work. These are so-called time logs, which include most
of the logs.
Data logs have long been known, as they are a useful

tool to solve a range of tasks, including diagnosing errors,
documenting a sequence of accessing different nodes of the
system, maintaining important system information, etc.
The amount of information that is written to a log during

a specified length of time can be quite substantial, making it
virtually impossible for a user to manually analyze the user
log, which leads to the so-called problem of “big data” [1]. For
studying large data represented by some orderly way (e.g. DB),
different data-oriented techniques such as machine learning,
data mining, etc. are involved.
Of particular interest are process-aware information sys-

tems, PAIS, the basic concept of which is the process (e.g.,
a business process or a workflow). These systems allow de-
veloping models of processes interaction, monitoring accuracy
of their performance and correctness of their interaction with

each other. These include systems such as BPMS (Business
Process Management Systems), CRM (Customer Relationship
Management), ERP (Enterprise Resource Planning), etc. As
in the case with many other IS such systems can produce
large logs containing information on interaction of processes
in time.
Study of such logs is of great interest from many points of

view. For example, this may be a study for obtaining a pattern
of processes interaction which reflects the real situation in a
subject field in the form of a mathematical and/or graphical
model (Petri nets, UML activity diagrams, BPMN, etc.); the
so-called process discovery problem. The opposite problem is
studying compliance of processes execution with an available
(developed manually or automatically obtained) model, i.e.
conformance checking problem. In general, process discovery
and conformance checking are related problems. Also, with
this model, one can make some adjustments that are designed
to show conceptual changes in regard to the subject area, or
can perform permanent enhancement.
Studying logs of process-aware information systems in

order to extract knowledge about the processes and construct
their models, as well as studying such models has to do with
the process mining discipline, which is relevant to data mining,
machine learning, process modeling and model-based analysis.
Is a relatively young discipline, its goals and objectives are
postulated in the Process Mining Manifesto [2] supported by
more than half a hundred organizations and a large number of
experts from various fields [3].
The event log is the starting point for process mining

research. Typically, such a log is a sequence of events united
by a common case (i.e., a process instance). Each event is
related to a certain activity which represents a well-defined
step in the process. A set of events relating to the same case
makes a so-called trace representing an imprint of processes
interaction in a particular case.
There is a variety of data mining techniques but most of

them employ the following types of information (resource):
device or person that initiates and then executes an activity,
event data elements and event timestamp.
One of the most frequently used forms of Process Mining

models representation is Petri nets [4]. Petri nets are used both
for internal representation of a model by different algorithms
[5], [6] and for visualization. Other models, such as heuristic
nets and C-nets, are reduced to Petri nets.

19 of 173

To date, there are available developed tools for process
mining, both on a commercial and on a free basis. Examples
of these tools include ProM, which is probably the most
widely used process mining tool. ProM is a framework, the
possibilities of which are enhanced by plugins, which are
several hundreds in number.
Yet for all its power, ProM has a significant architectural

constraint: use of the algorithms that are implemented by
numerous plugins, can only be done in a discrete mode with
direct participation of the user. In other words, one cannot
build a chain of processing operations conducting a multistage
procedure of log extraction, cannot analyze, transform, and
save (or visualize) data derived from such processing.
This paper proposes a concept of a new DPMine tool for

building a model of multistage process mining from individual
processing units (so called modular blocks) connected to
each other in a processing graph. The resulting model is
executed (simulated) by making an incremental process from
the beginning to the end and producing intermediate and final
results.
In the work, by real-world examples we will show differ-

ences in approaches to process mining used in tools like ProM
and the new DPMine instrument.
The rest of this paper is organized as follows. Section II

describes the modular concept and the basic components of
DPMine tool. Section III discusses some specific DPMine
blocks as applied to some tasks. Certain aspects of practical
implementation of the tool are presented in Section IV. Finally,
Section V concludes with an analysis of the work done and a
look at the future.

II. Mඈൽඎඅൺඋ ආඈൽൾඅ ർඈඇർൾඉඍ

Consider the following problem. Suppose there is a log
represented in the computer as an XML-file of a specified
format. This log should be processed, for this it should be
loaded to an appropriate tool that must support this format. An
internal representation of the log is formed after downloading
the file (partially or fully).
Suppose one wants to create a model as a Petri net, using

some of the implemented algorithms, such as conventional x-
miner, by executing which the desired Petri net will be formed.
Next, assume that one needs to build a skeleton graph from

this Petri net and then to convert it to a passage graph, and to
save the results to a file.
To do this using ProM, one should follow these steps:
1) Run importing a log file (e.g. in XES format).
2) In Actions mode select as Input object “Anonymous log

imported from ‘file-name.ext’”.
3) In the list of actions choose the right one for Input object

such as “Mine for a Petri Net using Alpha-algorithm”.
4) Run the action (Petri net construction).
5) Set the resulting net as Input Object.
6) ...
By consistently performing steps 2–4 for each type of input

object and appropriate action resulting in an output object1,
one can solve the task given above step by step.
Suppose now that after having completed the sequence of

actions, the user discovers that at the second stage, while
producing a Petri net from the original log, it would have
been desirable to use other options of the miner algorithm.
This means that all the results obtained after having processed
this net become useless and only “obstruct” the resources
list. Another example: if a similar sequence of processing
operations has to be applied to ten input logs. Or a hundred.
Or during mining of the original log one needs to get two
models of Petri net, then to compare their similarity.
Obviously, for a flexible solution of such problems a fun-

damentally different approach to multiprocessing is required,
and we proposed it in a tool called DPMine2.
Program allows creating a model of multistep process min-

ing as a graphical diagram (processing model) consisting of
modular blocks. An example of such a scheme is shown in
Fig. 1.
This model defines processing sequence for the initial log

(input object) present in the form of a file (for example, in
XML format). It is then consistently submitted to the mining
module, the result in the form of Petri net is replicated by a
splitter module and sent in three copies respectively to skeleton
module construction, visualization module and the module for
saving the Petri net model to a file in one of the available
formats.
Blocks are executed sequentially, each block begins its work

as it receives input data to its input port from the output
port of the previous block. Depending on block type, for
starting block’s execution all the data (from all the ports)
or partial data may be needed. The modules located “on
the right” of the splitter module (Fig. 1) can be executed
in parallel, and this can be quasi-parallel in the case of a
single processor in a multitasking operating system or “real”
parallel if they are run in different threads on a multiprocessor
system. There is another version of “true” parallelism: use
of special modules for distributed processing that employ as
nodes remote computers, which are identified, for example,
by IP addresses.
In case of a change in parameters (or input data) of a

particular module which is “on the left” in the chain of
consecutive executions, the interim data developed “on its
right” are announced invalid (invalidation procedure) and are
automatically rebuilt (if the model settings are set so). At this,
the user does not have to think about how, in what order and
at what point he or she needs to perform such a rebuilding:
once the scheme is developed, it will then run as many times
as it is required to produce a final result satisfying the user.

1Actually ProM allows manually setting type of output object before step
3, thus narrowing the range of possible actions.

2Letter ‘D’ in the title has many meanings, among which are such as
‘Distinguished’, ‘Direct’ and ‘Distributed’ (as it will be shown below, one
of the key features of the new tool is structural distribution of the original
objects for analysis, including that on the set of computers (nodes) for splitting
task).

20 of 173

Log file source

Discovery

module

(x-Miner)

Skeleton

maker

PN-replicator PN visualizer

Graph

visualizer

Log

Log file

PN

PN

PN

Skeleton graph

Saving model

as a file

PN

Figure 1. Example of a sequential processing of a log specified in a file

x-Miner properties

0,8

0,3

Tol

Noise

OK Cancel

Figure 2. Example of a dialog box for setting parameters of x-miner module

A processing model is stored to a file, which allows creating
a library of processing models for multiple use for different
sets of input data. In addition to information about modules
and relationships among them, a processing model stores
modules parameters, that is a set of characteristics that allow
customizing behavior of the modules, for which it is provided.
Examples of these parameters can be tolerance params, names
of input, output and intermediate files, display options for the
modules with a graphical user interface, and so on (see Fig. 2).
As with many other tools, DPMine is developed in a

modular fashion that allows extending its functionality through
plugins. This way it is possible to connect a large number of
third-party modular blocks and significantly expand opportu-
nities for construction of the processing model. Of course,
for the entire model to function properly regardless of what
modular block is included in its composition, relevant soft-
ware, implementing their functionality, should be developed
in accordance with certain requirements, some of which are
covered in the next section.

III. Sඈආൾ ඉൾർඎඅංൺඋංඍංൾඌ ඈൿ ආඈൽඎඅൺඋ ൻඅඈർ඄ඌ

Connection of modular blocks between each other is made
by means of ports that can be either input or output and
correspond to the data types they support. Thus, a logical
connection (displayed as directed arrows) in the diagram can
be achieved only between output (connector start) and the

input (connector end) ports, provided that both ports support
the same data type (Fig. 4).
All modular blocks available in DPMine are divided into

three groups: source blocks, action blocks and render blocks.
They differ in what place in the data processing chain they
can occupy.
Consider the purpose of each type of blocks closer.

A. Source blocks
Source blocks have only output ports and, as their name

implies, are the source of data to process (Fig. 5). The most
obvious example of this block is a log file source that loads
a log from the file. Another example would be a block that
retrieves a log from some IS, e.g. databases.
Semantically, the source block is a (multi-valued) function

with no parameters3 that returns results which can be used by
other functions.

B. Render blocks
Render blocks act as consumers of data obtained as a result

of processing and have only input ports. By analogy with the
source blocks one of the purposes of render blocks is to store
results in a file or export to an IS, for example, to a database
(Fig. 6).
Along with that, an equally important feature that the render

block provides is results visualization. As soon as DPMine is
a modeling tool with a user interface, it means that it must
support the graphical representation of models in the form of
charts, diagrams, graphs, reports, etc. The framework itself
does not restrict users to a few possibilities for visualization
of results, but instead offers to plug in visualization modules
as render-function blocks.
It is a natural question how to proceed in the development

of a model when it is necessary both to visualize results and
to save them to a file. Here come to rescue special types of
blocks — replicator blocks discussed in Section III-E.

3Parameters in this context refers to input and output ports. We should not
confuse them with blocks settings, which we shall call properties.

21 of 173

Discovery algo

PN

Log replicator

Log

Conformance

Checker

PN

Log

NFB

ε -params

ReportReport

PN replicator

PN visualizer

P

Figure 3. Example of a multistage Process Mining problem solving

Discovery

module

(x-Miner)

IPetriNet

Skeleton

maker

IPetriNet

Graph

visualizer

IGraphIGû
Figure 4. Example of acceptable ports and ports not acceptable for connection
(denoted by triangles) which support different types of data

Log file source

Log

Log DB source

Log

Figure 5. Examples of action blocks

Semantically, the render block is a function of no return
values that has results produced by other functions as input
parameters.

C. Action blocks

Action blocks are the largest group of blocks having both
input and output ports. Semantically, the action block is a
function that receives parameters, performs their processing
and return them for passing to following functions.
Consider some of the action blocks classes.

Graph

visualizer

Skeleton graph

PN visualizer

PN

Saving model

as a file

PN

Figure 6. Examples of render blocks

D. Action blocks for solving PM tasks
The main purpose of action blocks for solving PM tasks

is execution of serial conversion of input data into outputs
for solving a particular PM problem. These are block miners
for solving Process Discovery task, comparator blocks for
solving Conformance Checking, blocks with feedback for
Enhancement task (Fig. 7), etc.
There is a variety of blocks in this class that transfer

computational load of their tasks to a cloud or any other system
of distributed computing grids, etc. (Fig. 8).
Most of the ProM plugins can be attributed to this very

class of action blocks.

E. Control action blocks
A separate class includes action blocks not operating data

transformation as such but organizing the structure of their
execution model. Their purpose in a way is ideologically
close to program control command in programming languages.
Previously there was cited an example of a problem when the
mine-resulting Petri net has to be visualized by a display block

22 of 173

Skeleton

maker

PN Skeleton graph

Conformance

Checker

PN

LogLog

ReportReport

Discovery

module

(x-Miner)

Log PN

Figure 7. Examples of actions blocks for solving PM tasks

Distributed

Conformance

Checker
LogLog

ReportReport

Harness of submodels

You th
ere

Figure 8. Action block which implements the Conformance Checking task
by using distributed calculating nodes

PN-replicator

PN

PN

PN

PN

Figure 9. Replicator block performs replication of the inbound PN to multiple
outputs

and simultaneously stored (in the form of a model with a set
of vertices, transitions, labels, and other support elements) in
an external file or database. Here comes to the aid the so-
called replicator block (Fig. 9) performing the multiplication
of incoming network into multiple outputs. Then one of these
outputs can be connected to a visualizer block, another — to
a file saving block.

F. Action blocks for distributed calculations
Another major challenge being actively studied in PM is the

problem of distributing calculations ([6], [7], [8]). It follows
from the computational complexity of the algorithms used
in Process Discovery and Conformance Checking, which is
manifested in medium and large sets of input data (logs and
models), commonly found in experience. It is shown that
decomposition of source data (logs section and selection of

PN H-splitter

PN

Submodels harness

Figure 10. Splitter block with output port in a harness of Petri nets

submodels out of a large model) can significantly reduce
the computational load, which stems from the logarithmic
complexity of these algorithms.
One can identify three types of distribution: replication,

horizontal partitioning of event logs, and vertical partitioning
of event logs.
It has been written about replication above, now consider

how h-partitioning (h-splitting) and v-partitioning (v-splitting)
blocks can be implemented. Based on some heuristic assump-
tions, the original log is divided into a number of sublogs,
which is generally not known in advance. Therefore use of
“one sublog — one output port” can be uncomfortable. The
answer to this situation is introduction of a special type of
data port: logs harness and models harness (Fig. 10). Of
course, to work with a harness, an action block must have
an appropriate input port, as in the case with Conformance
checking block (Fig. 8). However, one can implement a special
demultiplexer block that accepts a harness to input port and
its individual elements to outputs ports, and issuing its output
ports individual elements of the input harness.
By combining the approaches suggested above, one can

build a complex branching model with feedback and get
exactly the functionality that is required in each case (Fig. 3).

IV. Pඋൺർඍංർൺඅ ංආඉඅൾආൾඇඍൺඍංඈඇ

The last question that to be treated in this paper relates to
practical aspects of implementing DPMine tool.
By the time of writing this paper two parallel development

works codenamed DPMine/C and DPMine/J have been going
on. As the names might suggest, the first fork of the tool
is developed mainly in C++ language using Qt 4.8 library
as a framework for building GUI, which allows making it
cross-platform. Plugin support is performed using dynamic
link libraries, for OS Microsoft Windows these are DLLs.
DPMine/J edition is developed in Java, and the main pur-

pose of this line is to attempt to utilize numerous ProM plugins
by designing corresponding wrapper classes to use them with
DPMine/J framework interfaces. One of GUI options being
considered is to utilize IDE Eclipse with a custom plugin
implementing the functionality of DPMine tool.
Because at the moment DPMine project is a pure research,

probably at some point later a decision will be taken to focus
only on one of the forks — either DPMine/C or DPMine/J.
Probably the main arguments in favor of the first or second
decision will be to what extent it will be possible to utilize
ProM plugins and at which cost.

23 of 173

V. Cඈඇർඅඎඌංඈඇ
In this paper DPMine tool concept was discussed. It builds

up research models in process mining area. Despite the fact
that works on the tool are at the beginning, some of the tasks
have already found their realization. Another part is subject to
change in the process of working on it.
Among the challenges for the future the following task can

be identified, namely developing a declarative language of the
underlying graphical model that allows describing complex
models.

Aർ඄ඇඈඐඅൾൽ඀ආൾඇඍ
The study was implemented in the framework of the Basic

Research Program at the National Research University Higher
School of Economics (HSE) in 2013.
The author would like to thank Prof. Irina A. Lomazova for

her vital encouragement and support.

Rൾൿൾඋൾඇർൾඌ
[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and

A. H. Byers, “Big data: The next frontier for innovation, competition,
and productivity,” Tech. Rep., 2011.

[2] IEEE Task Force on Process Mining, “Process Mining Manifesto,” in
BPM 2011 Workshops, ser. Lecture Notes in Business Information Pro-
cessing, F. Daniel, S. Dustdar, and K. Barkaoui, Eds., vol. 99. Springer-
Verlag, Berlin, 2011, pp. 169–194.

[3] W. M. P. van der Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[4] C. A. Petri and W. Reisig, “Petri net,” Scholarpedia, vol. 3, no. 4, p.
6477, 2008.

[5] J. Carmona, J. Cortadella, and M. Kishinevsky, “A region-based algorithm
for discovering petri nets from event logs,” in BPM, 2008, pp. 358–373.

[6] W. Aalst, “Decomposing Process Mining Problems Using Passages,”
in Applications and Theory of Petri Nets 2012, ser. Lecture Notes in
Computer Science, S. Haddad and L. Pomello, Eds., vol. 7347. Springer-
Verlag, Berlin, 2012, pp. 72–91.

[7] W. M. P. van der Aalst, “Distributed process discovery and conformance
checking,” in FASE, 2012, pp. 1–25.

[8] ——, “Decomposing petri nets for process mining. a generic approach,”
Department of Mathematics and Computer Science, Technische Univer-
siteit Eindhoven, The Netherlands., Tech. Rep., 2012.

24 of 173

Recognition and Explanation of Incorrect Behavior
in Simulation-based Hardware Verification

Mikhail Chupilko∗, Alexander Protsenko∗†
∗ Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

† National Research University Higher School of Economics (NRU HSE)
{chupilko,protsenko}@ispras.ru

Abstract—Simulation-based unit-level hardware verification is
intended for dynamical checking of hardware designs against
their specifications. There are different ways of the specification
development and design correctness checking but it is still difficult
to diagnose something more than incorrect data on some or
other design outputs. The proposed approach is not only to find
erroneous design behavior but also to make an explanation of
incorrectness on the base of resulted reactions based on special
mechanism using a list of explanatory rules.

I. INTRODUCTION

Taking up to 80% of the total verification efforts [1],
verification of HDL designs remains being very important. We
expect the verification labor costs to be decreased by means
of more convenient and substantial diagnostic information. The
most complicated problem that underlies in all the approaches
to hardware verification is how to represent the specification
in machine-readable form that can be both convenient for
development and useful for verification purposes. Typically,
the specifications can be represented by means of temporal
assertions (like in SystemVerilog in general and in Unified
verification methodology [2] in particular), or using implicit
contracts in form of pre- and post-conditions applied for each
operation and micro-operation [3], or by means of executable
models. The way of assertion usage lacks of certain incom-
pleteness as assertions covers some of other quality and their
possible violation shows only the quality without any guesses
why it has happened. To guess something in this case, we
should have had a bit higher representation of specifications.
The way of implicit specification by means of contracts allows
showing which micro operation does not work, but it is still
difficult to interpret such information as such interpretation
requires lower specification representation.

The executable specification can be considered as being
the most useful in the error explanation. To be the most ap-
propriate, the specification should imitate the logic architecture
of HDL designs, and the test system is to have mechanisms
of explanations the results of simulation. Exactly such mech-
anisms based on executable specifications are implemented in
the proposed approach to test system development as it will
be shown later.

The rest of the paper is organized as follows. The following
chapter introduces the method of specification and test system
development. The third chapter tells about reaction checker
work. The fourth chapter reveals the theory underlying the
explanatory mechanism. The fifth chapter says a few words
about implementation of the approach in C++ library named
C++TESK Testing ToolKit [4].

Fig. 1. Common architecture of test system

Then a few words about the approach application are given.
The seventh chapter concludes the paper.

II. SPECIFICATION AND TEST SYSTEM ARCHITECTURE

The typical test system for unit-level simulation-based
hardware verification includes the following three parts: gener-
ator of stimuli, reaction checker, and design under verification
(DUV) connected to the test system via special adapter. The
proposed approach follows the same tradition but formulates
properties of test system components more strictly. Let us
shortly consider all the parts of the ordinary test system
developed according to the approach (see Figure 1) and then
review reference model development more thoroughly.

It should be noticed that fully colored elements in Figure 1
are derived from the supporting library (C++TESK), half-
colored elements are developed for each DUV manually on
the base of the supporting library, and white-boxed elements
are developed fully manually.

Test oracle is the test system core. In fact, the test or-
acle works as a typical reaction checker; it receives stimuli
flow from stimuli generator, receives implementation reactions
(DUV reactions) enveloped into messages, and compares them
with model reactions produced by reference model. Each
message consists of a number of fields carrying data. Only
messages with the fields of the same data types are comparable.
The test oracle includes a replacement for the reference model
which is called reference model environment. The environment
consists of a list of operations and functional dependencies
between data on output and input interfaces. The operation

25 of 173

description is based on extension of external reference model
with timing properties.

The other parts of the test oracle are reaction matcher,
and diagnostics subsystem. The reaction sequence made by
the reference model is processed by the reaction matcher. It
consists of processes each of which processes reactions on one
particular reference model interface. As each reference model
reaction is bound to a particular output interface, so that all
the reactions are subdivided into a set of model interfaces. A
reaction arbiter is defined for each output model interface. This
component orders model reaction as follows.

When the model reaction is received by the reaction
matcher, special process waiting for correspondent implemen-
tation reaction is started. If the implementation reaction is
found, the process asks the reaction arbiter of the interface
whether it can catch the reaction. The reaction arbiter contains
a list of model reactions, registered at the interface where the
arbiter is defined and not yet matched to the implementation
reactions. The match process asking the arbiter about possi-
bility of catching, the arbiter checks the list and according
with a strategy of reaction selection (i.e. FIFO, LIFO, data
matching) permits or forbids the matching process to catch
the implementation reaction.

It is the way of reaction arbitration on each output interface.
If the catching is allowed, the model reaction is deleted from
the arbiter‘s reaction list, and the couple of model and imple-
mentation reaction is sent to the diagnostics subsystem. If the
catching is forbidden, the matching process returns to the state
of looking for the next implementation reaction. If the waiting
for implementation reaction timeout is reached (the timeout
can be set up to each interface separately), the reaction is sent
to the diagnostics subsystem alone without implementation
reaction marked as missing reaction. Besides processes looking
for implementation reactions launched by model reactions,
special processes named listeners are launched by test system
for each interface. Each listener is bound to a particular
interface and works as follows.

It contains an infinite loop of receiving implementation
reaction, shaping the message with the reaction data, checking
whether the reaction is matched to the correspondent model
reaction at the next cycle after the implementation is com-
pletely received by test system. If the matching has happened,
the listener returns to its first state and starts looking for the
next implementation reaction. If the listener finds out that the
implementation reaction has not been taken by any model
reactions, it has been waiting for a certain implementation
reaction timeout, having placed the implementation reaction
into special buffer, offering next model reaction to match with
the given implementation reaction. If the implementation reac-
tion timeout is reached, the reaction is sent to the diagnostics
subsystem alone without model reaction marked as unexpected
reaction.

III. REACTION CHECKER ALGORITHM

The reaction checker work can be described by means of an
algorithm showing clearly its possibility of catching all visible
DUV defects. To provide the algorithm, some introduction
might be useful. There are two definitions, the algorithm and
a theorem about the reaction checker work.

All the input and output signals of DUV (implementa-
tion) are subdivided into input and output interfaces. The
set of input and output interfaces of the reference model
(specification) matches the one of the implementation (In and
Out). Alphabets of stimuli and reactions of the implementation
and specification also match each other (X and Y). Set of
implementation state (Simpl) and specification states (Sspec)
speaking generally might differ but initial states of implemen-
tation and specification are marked out (simpl0 ∈ Simpl and
sspec0 ∈ Sspec).

Applied during testing to input interface in ∈ In stimuli
are elements of the sequence X̄in = 〈(xi, ti)〉ni=1, where
xi ∈ X is a single stimulus, ti ∈ N0 is the time mark
of its application (ti < ti+1, i = 1, n− 1). The set of
stimuli sequences applied during testing to input interfaces
will be denoted as X̄ =< X̄in1 , . . . , X̄inn > and called
stimuli sequence. Stimuli sequence admissibility is defined by
definitional domain Dom ⊆

⋃∞
k=0(X × N0)k.

Implementation answering the stimuli sequence X̄ pro-
duces reactions Ȳ out

impl(X̄) = 〈(y′i, t′i)〉mi=1 and sends them to
the output interface out ∈ Out, where y′i ∈ Y is a single
reaction, t′i ∈ N0 is time of its sending (t′i < t′i+1, i =
1,m− 1). Let the set of reaction sequences emitting by the
implementation to all interfaces be denoted as Ȳimpl =<
Ȳ out1
impl , . . . , Ȳ

outM
impl > and called implementation reaction se-

quence.

Specification answering the stimuli sequence X̄ produces
reactions Ȳ out

spec(X̄) = 〈(yi, ti)〉ki=1 and sends them to the
output interface out ∈ Out, where yi ∈ Y is a single reaction,
ti ∈ N0 is time of its sending (ti ≤ ti+1, i = 1, k − 1). Let
the set of reaction sequences emitting by the implementation
to all interfaces be denoted as Ȳspec =< Ȳ out1

spec , . . . , Ȳ
outK
spec >

and called specification reaction sequence.

Let each output interface out ∈ Out to be equipped with
reaction production timeout ∆tout ∈ N0. Let also each finite
stimuli sequence results in a finite reaction sequence. Let us
denote single element of reaction sequence Ȳ = 〈(yi, ti)〉ki=1
as Ȳ [i] = (yi, ti). The operation of element removing from the
reaction sequence Ȳ \(y, t) is defined as follows: if the element
being removed is absent in the sequence, the result consists of
the former sequence; if the element is in the sequence, its first
entrance in the sequence will be removed. The sequence length
is denoted as m = |Ȳ |.

Definition 1: The implementation is said to correspond to
the specification if ∀out ∈ Out and ∀X̄ ∈ Dom |Ȳ out

impl(X̄)| =
|Ȳ out

spec(X̄)| = mout is satisfied and there is a rearrangement
πout of the set {1, ,mout} so that ∀i ∈ {1, . . . ,mout}{

y′i = yj
tj ≤ t′i ≤ tj + ∆tout

}
is satisfied, where j = πout(i).

Definition 2: The implementation behavior is said to have
an observable failure if the implementation does not corre-
spond to the specification or ∃X̄ ∈ Dom and ∃out ∈ Out so
that either |Ȳ out

impl(X̄)| 6= |Ȳ out
spec(X̄)|, or for each rearrangement

πout of the set {1, . . . ,mout} ∃i ∈ {1, . . . ,mout} for which[
y′i 6= yj
tj > t′i

t′i > tj + ∆tout

]
is satisfied, where j = πout(i).

26 of 173

Action 1 reactionMatcher[Ȳimpl, Ȳspec]

Guard: true
Input: Ȳimpl, Ȳspec
Ȳ ∗spec ⇐ Ȳspec
for all i ∈ |Ȳimpl| do

tnow ⇐ t′i
Y now
spec ⇐ {(y, t)|∃j · (y, t) = Ȳ ∗spec[j] ∧ t ≤ tnow}
Y now
missing ⇐ {(y, t) ∈ Y now

spec |t+ ∆t < tnow}
if Y now

missing 6= ∅ then
Ydefect ⇐ Ydefect ∩ Y now

missing
end if
Y now
matched ⇐ {(y, t) ∈ Y now

spec |y = y′i ∧ t ≤ t′i ≤ t+ ∆t}
if Y now

matched = ∅ then
Ydefect ⇐ Ydefect ∩ (y′i, t

′
i)

end if
(ymatched, tmatched)⇐ argmin(y,t)∈Y now

matched
t

Ȳ ∗spec ⇐ Ȳ ∗spec \ (ymatched, tmatched)
end for
if |Ȳ ∗spec| 6= ∅ then

Ydefect ⇐ Ydefect ∩ Ȳ ∗spec
end if
return Ydefect

Lemma 1: If reaction sequence Ȳimpl and Ȳspec are finite,
and |Ȳimpl| 6= |Ȳspec| then test oracle returns negative verdict.

Proof: Suppose the main cycle of the algorithm not to find
a failure. In this case the number of elements in sequence Ȳ ∗spec
(which at the first step was equal to the number of elements
in Ȳspec) will be decreased to the number, which the sequence
Ȳimpl contains. If |Ȳimpl| > |Ȳspec|, then there is no step of
the test oracle algorithm to find reaction from sequence Ȳspec
correspondent to current being worked under reaction from
sequence Ȳimpl. In this case test oracle finishes its work with
negative verdict. We had supposed that such a situation cant
occur, so that |Ȳimpl| < |Ȳspec|. In this case |Ȳ ∗spec| = |Ȳspec|−
|Ȳimpl| > 0 and the oracle finishes its work with negative
verdict in due to condition if |Ȳ ∗spec| 6= ∅ then return (false)
after the main cycle having finished.

Theorem 1: Test oracle working according to the proposed
algorithm allows constructing significant tests (it means that
oracle is not mistaken having found certain defect).

Proof: The case when |Ȳimpl| 6= |Ȳspec| meaning that
there are different numbers of implementation and specification
reactions is considered to be erroneous according to the
definition 2. It was considered in the lemma and shown that
the test oracle in this case does return negative verdict.

Let us consider the case |Ȳimpl| = |Ȳspec| = 0. Here the
main cycle of test oracle work is not executed, the condition
if |Ȳ ∗spec| 6= ∅ then return (false) is not satisfied too and the
test oracle returns positive verdict (true). The case of empty
sequences is understood as correct according to the definition
2. According to the induction rule of inference, let us suppose
that for the case |Ȳimpl| = |Ȳspec| = n test oracle returns
verdict correctly. Let us prove that the same situation takes
place if the numbers of elements in sequences are equal to
n + 1. According to the definition 2, defect can be found if
for each rearrangement π of set 1, . . . , n∃i ∈ 1, . . . , n, when

Type name Reaction pair Definition of type

NORMAL (rspec, rimpl) dataspec =
dataimpl & ifacespec =
ifaceimpl & timemin < time <
timemax

INCORRECT (rspec, rimpl) dataspec 6=
dataimpl & ifacespec =
ifaceimpl & timemin < time <
timemax

MISSING (rspec, NULL) @rimpl ∈ Rimpl \
Rnormal,incorrect

impl : ifacespec =
ifaceimpl & timemin < time <
timemax

UNEXPECTED (NULL, rimpl) @rspec ∈ Rspec \
Rnormal,incorrect

spec : ifaceimpl =
ifacespec & timemin < time <
timemax

TABLE I. REACTION CHECKER REACTION PAIR TYPES

[
y′i 6= yj
tj > t′i

t′i > tj + ∆tout

]
is satisfied, where j = π(i).

Let us remove last elements of sequences and make se-
quences where the numbers of elements are equal to n and to
which test oracle works correctly. Let us consider the case of
the following two removed reactions. Negative verdict can be
returned only in two cases: the first one is if Y now

missing 6= ∅
then return (false), the second one is if Y now

matched = ∅ then
return (false). The first case occurs only when t′i > tj +∆tout

according to the definition 2, and the second case takes

place only in when
[
y′i 6= yj
tj > t′i

]
according to the definition 2.

Therefore, test oracle returns negative verdict only when there
is erroneous reaction in any finite reaction sequences.

IV. DIAGNOSTICS SUBSYSTEM

Let reaction checker use two sets of reactions:
Rspec = {rspeci}

N
i=0 and Rimpl = {rimplj}

M
j=0.

Each specification reaction consists of four elements:
rspec = (data, iface, timemin, timemax). Each
implementation reaction includes only three elements:
rimpl = (data, iface, time). Notice that timemin and
timemax show an interval where specification reaction
is valid, while time corresponds to a single timemark:
generation of implementation reaction always has concrete
time mark.

The reaction checker has already attempted to match each
reaction from Rspec with a reaction from Rimpl, making a
reaction pair. If there is no correspondent reaction for either
specification or implementation ones, the reaction checker
produces some pseudo reaction pair with the only one reaction.
Each reaction pair is assigned with a certain type of situation
from the list normal, missing, unexpected, incorrect.

For given reactions rspec ∈ Rspec and rimpl ∈ Rimpl,
these types can be described as in Table I. Remember that
each reaction can simultaneously be located only in one pair.

The diagnostics subsystem has its own interpretation of
reaction pair types (see Table II). In fact, the subsystem
translates original reaction pairs received from the reaction
checker into new representation. This process can be described
as M ⇒ M∗, where M = {(rspec, rimpl, type)i} is a

27 of 173

Type name Reaction pair Definition of type

NORMAL (rspec, rimpl) dataspec = dataimpl

INCORRECT (rspec, rimpl) dataspec 6= dataimpl

MISSING (rspec, NULL) @rimpl ∈ Rimpl\Rnormal,incorrect
impl

UNEXPECTED (NULL, rimpl) @rspec ∈ Rspec \Rnormal,incorrect
spec

TABLE II. DIAGNOSTICS SYSTEM REACTION PAIR TYPES

set of reaction pairs marked with type from the list above.
M∗ = {(rspec, rimpl, type

∗)i} is a similar set of reactions
pairs but with different label system. It should be noticed that
these might be different M∗ dependent on the algorithm of
its creation (accounting for original order, strategy of reaction
pair selection for recombination, etc). This question will be
discussed after so called transformation rules are presented.

Having made reaction pair set, reaction matcher sends
it to the diagnostics subsystem to process them providing
verification engineers with explanation of problems having
occurred in the verification process. The diagnostics subsystem
is underlain with a special algorithm, consisting of consequent
application of the set of so called rules, each of which trans-
forms the reaction pairs. Some rules decrease the number of
pairs, having found pairs with correspondent implementation
and specification reactions, collapse them and write diagnostics
information into log-file. Other rules make it possible to
recombine reaction pairs for better application of rules from
the first type. The third part of rules uses special technique
to find similar reactions according to the distant function to
recombine the reaction pairs for better readability but do. The
distant function can be implemented in three possible ways. To
begin with, it may account the number of equal data fields in
two given messages. Second, Hamming distance may be used
as one can compare not only the fields but the bits of data
carried by the fields. The measure of closeness between two
given reactions is denoted as C(rspec, rimpl).

Each rule consists of one or several pairs of reactions.
In cases of missing of unexpected reactions, one of the pair
elements is undefined and called null. Each pair of reaction
is assigned with model interface. Left part of the rule shows
initial state and right part (after the arrow) shows result of the
rule application. If the rule is applied to several reaction pairs,
they are separated with comma. Now, let us review all these
twelve rules that we found.

Rule 1: If there is a pair of collapsed reactions, it should
be removed from the list of reaction pairs. (null, null)⇒ ∅.

Rule 2: If there is a normal reaction pair
(aspec, aimpl) : dataaspec

= dataaimpl
, it should be

collapsed. (aspec, aimpl)⇒ (null, null).

Rule 3: If there are two incorrect reaction
pairs (aspec, bimpl), (bspec, aimpl) : dataaspec

=
dataaimpl

& databspec = databimpl
, these reaction pairs

should be regrouped. {(aspec, bimpl), (bspec, aimpl)} ⇒
{(aspec, aimpl), (bspec, bimpl)}.

Rule 4: If there is a missing reaction pair and an unex-
pected reaction pair (aspec, null), (null, aimpl) : dataaspec =
dataaimpl

, they should be united into one reaction pair.
{(aspec, null), (null, aimpl)} ⇒ {(aspec, aimpl)}.

Rule 5: If there is a missing reaction pair and an
incorrect reaction pair (aspec, null), (bspec, aimpl) :
dataaspec = dataaimpl

, these reaction pairs should
be regrouped. {(aspec, null), (bspec, aimpl)} ⇒
{(aspec, aimpl), (bspec, null)}.

Rule 6: If there is an unexpected reaction pair and
an incorrect reaction pair (null, aimpl), (aspec, bimpl) :
dataaspec

= dataaimpl
, these reaction pairs should

be regrouped. {(null, aimpl), (aspec, bimpl)} ⇒
{(aspec, aimpl), (null, bimpl)}.

Rule 7: If there are two incorrect reaction
pairs (aspec, bimpl), (cspec, aimpl) : dataaspec

=
dataaimpl

, these reaction pairs should be
regrouped. {(aspec, bimpl), (cspec, aimpl)} ⇒
{(aspec, aimpl), (cspec, bimpl)}.

The rules 1-7 allow finding the closest reaction pairs.
The algorithm of their implementation is shown in 2 and 4
algorithms.

Action 2 match[(r1spec , r1impl
), (r2spec , r2impl

)]

Input: RP1 = (r1spec , r1impl
), RP2 = (r2spec , r2impl

)
for all rule number ∈ |NormalRules| do

if rules[rule number].isApplicable(RP1, RP2) then
return rule number

end if
end for
return 0

Action 3 fuzzy match[(r1spec , r1impl
), (r2spec , r2impl

), rule]

Input: RP1 = (r1spec , r1impl
), RP2 = (r2spec , r2impl

)
proximity metric⇐ 0
for all rule number ∈ |FuzzyRules| do

if (metric∗ = rules[rule number].metric(RP1, RP2)) >
proximity metric then

proximity metric⇐ metric∗

rule⇐ rule number
end if

end for
return proximity metric

Action 4 apply normal rules[{(rspec, rimpl)i}]
Input: {(rspec, rimpl)i}

for all r ∈ |{(rspec, rimpl)i}| do
if !r.collapsed then

for all p ∈ |{(rspec, rimpl)i|} do
if !r.collapsed&!p.collapsed then

if rule number = match(r, p) then
(rspeci+1

, rimpli+1
), (rspeci+2

, rimpli+2
)⇐

rules[rule number].apply rule(r, p)
r.collapsed⇐ true
p.collapsed⇐ true
return

end if
end if

end for
end if

end for

28 of 173

Action 5 apply fuzzy rules[{(rspec, rimpl)i}]
Input: {(rspec, rimpl)i}

for all r ∈ |{(rspec, rimpl)i}| do
if !r.collapsed then

metric∗ ⇐ 0
for all p ∈ |{(rspec, rimpl)i|} do

if !r.collapsed&!p.collapsed then
metric = fuzzy match(r, p, rule number)
if metric > metric∗ then

metric∗ ⇐ metric
rule number∗ ⇐ rule number
s1 ⇐ r
s2 ⇐ p

end if
end if

end for
if metric∗ > 0 then

(rspeci+1
, rimpli+1

), (rspeci+2
, rimpli+2

) ⇐
rules[rule number∗].apply rule(s1, s2)

s1.collapsed⇐ true
s2.collapsed⇐ true
return

end if
end if

end for

When the rules from the list of normal rules have been
applied, the sets Rspec and Rimpl does not contain any not
yet collapsed reactions with identical data. In this part of
diagnostics subsystem work the stage of fuzzy rules (See 3
and 5 algorithms) comes.

Rule 8: If there are two reaction pairs
{(aspec, bimpl), (b

′
spec, a

′
impl)} : c(aspec, a

′
impl) <

c(aspec, bimpl) & c(aspec, a
′
impl) < c(b′spec, a

′
impl) or

c(b′spec, bimpl) < c(aspec, bimpl) & c(b′spec, bimpl) <
c(b′spec, a

′
impl), where c is the selected distance

function and the value of c is the best amoung
other fuzzy rules, these reaction pairs should
be regrouped. {(aspec, bimpl), (b

′
spec, a

′
impl)} ⇒

{(aspec, a′impl), (b
′
spec, bimpl)}

Rule 9: If there are two reaction pairs
{(aspec, null), (null, a′impl)} and the value of the selected
distant function c = (aspec, a

′
impl) is the best amoung

other fuzzy rules, these reaction pairs should be regrouped.
{(aspec, null), (null, a′impl)} ⇒ {(aspec, a′impl)}

Rule 10: If there are two reaction pairs
{(aspec, null), (bspec, a′impl)} : c(aspec, a

′
impl) <

c(bspec, a
′
impl), where c is the selected distance

function and the value of c is the best amoung
other fuzzy rules, these reaction pairs should
be regrouped. {(aspec, null), (bspec, a′impl)} ⇒
{(aspec, a′impl), (bspec, null)}

Rule 11: If there are two reaction pairs
{(null, aimpl), (a

′
spec, bimpl)} : c(a′spec, aimpl) <

c(a′spec, bimpl), where c is the selected distance
function and the value of c is the best amoung
other fuzzy rules, these reaction pairs should be

regrouped. {(null, aimpl, null), (a
′
spec, bimpl)} ⇒

{(a′spec, aimpl), (null, bimpl)}
When all the metrics of fuzzy rules have been measured

and all the most suitable rules have been applied, the time of
the last rule comes.

Rule 12: If there is a reaction pair (aspec, a
′
impl) with both

specification and implementation parts, it should be collapsed.
(aspec, a

′
impl)⇒ (null, null).

The last rule allows transforming all the incorrect reaction
pairs to show the diagnostics for the whole list of reaction
pairs. Typically, after the application of each rule, the history
of transformation is traced and then it is possible to reconstruct
the parents of the given reaction pairs and all the rules they
are undergone. Such a reconstruction of the rule application
trace we understand as the diagnostics information.

V. IMPLEMENTATION

The proposed approach to development of test systems,
reference model construction, reaction correctness checking,
and diagnostics subsystem has been implemented in the open
source library C++TESK Testing ToolKit [4] developed by
ISPRAS. The library is developed in C++ language to be
convenient for verification engineers. It contains macros en-
abling the engineers to develop all the parts of the test systems
which should be done by hands. Some parts, like diagnostics
subsystem algorithm, are hidden inside of the tool.

Results of diagnostics work are shown each time after the
verification is over. Now they look like tables with all found
errors and results of rule application: new reaction pair sets
and the way of their obtaining.

VI. RESULTS

The C++TESK testing toolkit including diagnostics sub-
system has been used in the number of projects of industrial
microprocessor development in Russia. The aim of the all
approach is unit-level verification and on this level it can be a
competitor to widely used UVM mentioned in the introduction.

It might be shown by the following fact. Typically, we
started verification by means of C++TESK starts when the
whole system had been already verified by UVM-like ap-
proaches. In spite of power of UVM, it does not include means
to direct test sequence generation, which C++TESK does,
means of quick analysis of verification results as diagnostics
subsystem etc.

Results of application of different approaches depend on
the qualification of the engineers and their familiarity with the
approach. And on this point, we should say that our toolkit was
used by people now being close to its development kitchen and
despite it, they exactly managed to find those bugs we have
already mentioned.

VII. CONCLUSION

The proposed approach to simulation-based unit-level hard-
ware verification solves in some sense the task of dynamical
checking of hardware designs against their specifications. It
includes both means of specification development and diag-
nostics subsystem producing an explanation of incorrectness

29 of 173

on the base of special mechanism using formally represented
specifications and a list of explanatory rules.

The approach has been used in the number of projects
and shown its possibility to find defects and help verification
engineers to correct them by means of diagnostics information.

Our future research is connected with more convenient rep-
resentation of diagnostics results by means of wave-diagrams,
localization of found problems in source-code.

REFERENCES

[1] J. Bergeron, Writing Testbenches: Functional Verification of HDL Mod-
els. Kluwer Academic Pub, 2003.

[2] Unified verification methodology. [Online]. Available:
http://www.uvmworld.org

[3] M. Chupilko and A. Kamkin, “Specification-driven testbench develop-
ment for synchronous parallel-pipeline designs,” in Proceedings of the
27th NORCHIP, nov. 2009, pp. 1–4.

[4] C++tesk homepage. [Online]. Available:
http://forge.ispras.ru/projects/cpptesk-toolkit/

30 of 173

Horizontal Transformations of Visual Models

in MetaLanguage System

Alexander O. Sukhov

Department of Software and Computing Systems

Mathematical Support

Perm State University

Perm, Russian Federation

E-mail: Sukhov.psu@gmail.com

Scientific Advisor:

Lyudmila N. Lyadova

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract. Different specialists are involved in software

development at once: databases designers, business analysts, user

interface designers, programmers, testers, etc. It leads to creation

and usage in systems designing of various models fulfilled from

the different points of view, with different levels of details, which

use different modeling languages for the description. Thus there

is a necessity of models transformation as between different levels

of hierarchy, and within the same level between different

modeling languages for creation of united model of system and

exporting of models to external systems. The MetaLanguage

system is intended to visual domain-specific languages creation.

The approaches to development of a model transformation

component of MetaLanguage system are considered. This

component allows to fulfill vertical and horizontal model

transformations of “model-text” and “model-model” types. These

transformations are based on graph grammars described by

production rules. Each rule contains the left- and right-hand

sides. The algorithm of the left-hand side search in the source

model and the algorithms of execution of a right-hand side of a

rule are described. Transformations definitions for models in

ERD notation are presented as example.

Keywords: model-based approache; visual model; domain-

specific language; horizontal model transformation; language

workbench.

I. INTRODUCTION

In industrial production we often come to the fact that the
studying and creation of an object is done by constructing its
model. Since development of computer systems the idea of
creation and usage of models has come to computer science.

Model is an abstract description of system (object, process)
which contains characteristics and features of its functioning
which are important from the viewpoint of modeling purposes.
Metamodel is a language used for models development. For
metamodels description the meta-metamodels (metalanguages)
are used. Modeling is the process of creation and studying of
models.

Today the majority supposes that visual models are used
only at the early stages of software development, for creation
of certain “sketch” of system or transfer of high-level ideas of

designing, i.e. it is supposed that models play a secondary role,
and are primarily used only for documentation. However there
are approaches to system engineering in which the basic
elements are the visual models and their transformations –
model-based approaches.

The model-based approaches are capable at information
system creation to unite efforts of developers and domain
experts. These approaches make the system more flexible,
since for its change there is no necessity of modification of
source code “by hand”, it is enough to modify a visual model,
and with this task even nonprofessional programmers can cope.

For model-based approaches implementation it is necessary
to use toolkit which will be convenient to various participants
of system development process. The general-purpose modeling
languages, such as UML, are not able to cope with this task,
because they have some disadvantages:

 Diagrams are complicated for understanding not only
for experts, who take part in system engineering, but in
some cases even for professional developers.

 Object-oriented diagrams can not adequately represent
domain concepts, since work is being done in terms of
“class”, “association”, “aggregation”, etc., rather than in
domain terms.

That is why at implementation of model-based approaches
the domain-specific modeling languages (DSMLs, DSLs),
created to work in specific domains, are increasingly used.
Domain-specific languages are more expressive, simple on
applying and easy to understand for different categories of
users as they operate with domain terms. Therefore now a large
number of DSLs is developed for using in different domains
[1-3].

Despite all DSLs advantages they have one big
disadvantage – complexity of the designing. If general purpose
languages allow creating programs irrespectively to domain, in
case of DSLs for each domain, and in some cases for each task
it is necessary to create the domain-specific language. Another
shortcoming of domain-specific language is that it is necessary
to create convenient graphical editors to work with it.

This paper is supported by Russian Foundation for Basic Research
(Grant 12-07-00763)

31 of 173

The language workbench or DSM-platform is the
instrumental software intended to support development and
maintenance of DSLs. Usage at DSLs creation a language
workbench considerably simplifies the process of their
designing. The MetaLanguage [4] system is a language
workbench for creating visual dynamic adaptable domain-
specific modeling languages. This system allows fulfilling
multilevel and multi-language modeling of domain.

The different categories of users work at various stages of
system life cycle. At the stage of system creation the leading
role is played by professional developers with participation of
experts, specialists in the appropriate domain, and at the
operation stage – by experts, specialists and end-users, as they
detect all system shortcomings and mistakes in its
implementation. To attract experts and specialists to the
process of system adjustment of the ever-changing operating
conditions and user requirements it is necessary to provide
them with the convenient language, which is operates with
customary terms. Using this language they could make all
necessary modifications of information system.

On the other hand, several specialists are involved in
software development at once: databases designers, business
analysts, user interface designers, programmers, testers, etc.
Each of these specialists uses their own information about the
system and this information may describe the same objects, but
from the different points of view and with various modeling
languages (see fig. 1).

Студент

ID

ЧеловекID

Направление
Человек

ID

ФИО

АдресПреподаватель

ID

ЧеловекID

Должность

Прийти на

экзамен Вытянуть

билет
Написать

ответ

Fig. 1. Consideration of system objects from different points of view

Thus the software development process includes various
types of activity in which different categories of users
participate. It leads to creation and usage in systems designing
of various models fulfilled from the different points of view,
with different levels of details, which use for the description
different modeling languages (see fig. 2).

System development

Database schema

description language

Business processes

description language

Documentation

description

language

User interface

description

language

Fig. 2. The usage of different languages for software development

So there is a necessity of models transformation as between
different levels of hierarchy, and within the same level between
different modeling languages, for creation of united model of
system and exporting of models to external systems (see fig. 3).

Data

Model

Metamodel

Meta-metamodel

Vertical

transformation

Horizontal

transformation

Entity-

Relation

Diagram

UML Class

Diagram

Fig. 3. Vertical and horizontal model transformations

In addition, there is an unresolved problem of models
exporting from one information system to another (for
example, business processes described in one system can not
be executed in another, that these systems use various notations
for business processes description).

Usage of domain-specific languages and tools for their
creation also affects a transformation problem as there is a need
of export of the created by the user models to external systems
which, as a rule, use one of the standard modeling languages
that is different from developed DSL. That is why one of the
main components of the MetaLanguage system is the
Transformer. This component uses graph grammars for
transformations describing. Implementation of graph grammars
in the MetaLanguage system is defined by assignment of this
language workbench.

II. BASIC CONCEPTS

The basic concept of transformation definition is a
production rule which looks like :p L R , where p is a rule

name, L is a left-hand side of the rule, also called the pattern,
and R is a right-hand side of the rule, which is called the

32 of 173

replacement graph. Rules are applied to the starting graph
named the host-graph.

Let’s suppose that four labeled graphs G, H, L, R are given,
and graph L is a subgraph of graph G. Applying of the rule

:p L R to the starting graph G is called the replacement in

graph G of subgraph L on graph R, which is a subgraph of
graph H. The graph H is the result of this replacement.

Graph grammar is a pair GG = (P, 0G), where P is a set of

production rules, 0G is a grammar starting graph.

Graph transformation is a sequenced applying to the

starting labeled graph 0G of finite set of rules

 1 2, nP p p p : n

ppp

GGG
n

 ...10

21

.

List of production rules is arranged according to the chosen
discipline, for example, by priorities. The transformation
process is completed when the list of rules does not contain any
rule which can be applied. There are also other disciplines of
rules ordering, so some systems use the control mechanism to
explicitly specify which rule should be applied as follows [5].

At transformations direction they can be classified as
vertical and horizontal. Vertical transformations convert the
models which belong to various hierarchy levels, for example,
at mapping of the metamodel objects to domain model objects.
Horizontal transformation is the conversion, in which the
source and target models belong to one hierarchy level. An
example of a horizontal transformation is a conversion of
model description from one notation to another (see fig. 3).

The models are described with some modeling languages.
Depending on the language on which source and target models
are described, horizontal transformations can be divided into
two types: endogenous and exogenous. Endogenous
transformation is the transformation of the models which are
described on the same modeling language. Exogenous
transformation is the transformation of models which are
described on various modeling languages [6].

Graph grammar often used to describe of any
transformations, performed on graphs: definition of the models
operational semantics [7, 8], the analysis of program systems
with dynamic evolving structures [9, 10], etc. These grammars
allow to describe the transformations that should occur in
system at performance over it of the operations, specified in
grammar.

The right-hand side of the rule may be not only a labeled
graph, but the code on any programming language, and also a
fragment of a visual model described in some notation. That is
why the graph grammar can be used for generation syntactic
correct models and for refactoring of existing models, code
generation and model transformations from one modeling
language to another [11].

Considering singularities and designation of MetaLanguage
system, it is necessary to make the following requirements to
its transformation component:

 To be obvious and easy to use for providing the

opportunity of involving to transformation description
not only programmers, but also experts, specialists in
domains. It can be achieved through the usage of visual
notation of transformations description language.

 To allow using the created transformations directly in
the system, i.e. to produce the models transformation in
the same user interface in which they were designed.

 To perform both horizontal and vertical
transformations, and availability of possibility to fulfill
the horizontal transformations from one notation to
another, including a “model-text” type.

 Metamodels from the left- and right-hand sides of the
rule can be described by a user created metalanguage.

 To allow specifying the transformations of entities and
relations attributes and constraints imposed on
metamodel elements.

III. RELATED WORKS

There are various approaches to model transformations,
some of them have the formal basis, so the systems AGG,
GReAT, VIATRA use graph rewriting rules to perform
transformations, and others apply technologies from other areas
of software engineering, for example, the technique of
programming by example.

Various modifications of the algebraic approach are
implemented in systems AGG, GReAT, VIATRA. In AGG
[12] the left- and right-hand sides of the production rule are the
typed attribute graphs, both sides of a rule should be described
in one notation, i.e. this system allows to fulfill only
endogenous transformations that does impossible its usage in
MetaLanguage system. Besides, this tool does not allow to
make transformation of a “model-text” type. However the
usage as the formal basis of the algebraic approach to graph
transformations allows to produce graph parsing, to verify
graph models, and the extension of graphs of Java possibilities
makes transformations more powerful from a functional point
of view.

The GReAT system [13] is based on the algebraic approach
with double-pushout, therefore for transformation description it
is necessary to create the domain that contains both the left-
and right-hand sides of the production rule simultaneously with
instructions of what element it is necessary to add, and what to
remove. This form of rule is unusual for the end-user and a bit
tangled. However it provides a possibility of execution the
transformation of several source metamodels at once, which is
significant advantage in comparison with other approaches. For
metamodels definition the GReAT uses UML and OCL, it does
not allow the user to choose the language of metamodels
specification or to change its description. It makes this
approach unsuitable for usage in MetaLanguage.

The QVT (Query/View/Transformation) is the proposed by
OMG approach to models transformation, which provides the
user with declarative and imperative languages [14].
Conversion is defined at the level of metamodels which is
described on MOF. The advantage of this approach is the
existence of standard of its description, and also usage of

33 of 173

standard languages OCL and MOF at the models
transformation definition process. However these advantages
also have the other side. Usage of MOF as a meta-
metamodeling language, does not allow the user to choose a
metalanguage convenient for him, or to change description of
the metalanguage which is integrated in the QVT. In addition,
this approach does not allow to make the transformation of a
“model-text” type, since each metamodel should be described
using the MOF standard. It imposes of some restrictions on a
possibility of QVT usage in the MetaLanguage system.

VIATRA [15] is a transformation language, based on rules
and patterns, which combines two approaches into a single
specification paradigm: the algebraic approach for models
description and the abstract state machines intended for
exposition of control flow. Thanks to constructions of state
machines the developers significantly raised the semantics of
standard languages of patterns definition and graph
transformation. Besides, powerful metalanguage constructions
allow to make multi-level modeling of domains.

One of shortcomings of the VIATRA is an inexpressive
textual language of metamodels description. Although the
developers of approach have criticized the MOF standard for
the lack of a possibility of multi-level modeling, they still
remain within limits of this paradigm at usage of visual
language for metamodels definition. VIATRA is not intended
for execution of horizontal model transformations. Its main
purpose is a verification and validation of the constructed
models by their transformation.

The ATL is the language, allowing to describe
transformations of any source model to a specified target
model [16]. Transformation is performed at the level of the
metamodels. The heart of ATL is the standard language of
constraints description OCL.

The disadvantage of this language is high requirements to
the conversion developer. Since ATL in most cases uses only
textual definition of transformation, then in addition to
knowledge of source and target metamodels the developer
needs to know language of transformation definition. Lack of
navigation on the target model complicates the process of rules
determination.

The ATL is a dialect of QVT language and therefore
inherits all its shortcomings. One of the differences from the
QVT is very strict restriction on created transformations: the
left-hand side of the rule should contain only one element. It
highly complicates the development, increasing an amount of
rules in system. All it does impossible the usage of this
approach in the MetaLanguage system.

MTBE approach [17] is quite non-standard and unusual.
The main purpose of MTBE is automatic generation of
transformation rules on a basis of an initial set of learning
examples. However implementations of this approach do not
guarantee that the generation of model transformation rules is
correct and complete. Moreover, the generated transformation
rules strongly depend on an initial set of learning examples.
Current implementations of MTBE approach allow to fulfill
only full equivalent mappings of attributes, disregarding the
complex conversions.

In summary, it is possible to say that all considered systems
have some disadvantages which restrict their applicability for
transformations definitions in the MetaLanguage system. But
the most appropriate and perspective, from the author’s point
of view, is the algebraic approach [12] with a single-pushout
under condition of inclusion in it of some modifications:

 The availability of multi-level description of
metamodels in the rule left- and right-hand sides.

 The description of transformation rules should be made
at one level of hierarchy, and their application – on
another.

 The existence of a possibility of exogenous
transformations description.

 The right-hand side of production rule can contain as
exposition of visual model, and some text.

 The availability of the opportunity to transform
attributes of metamodel elements and constraints
imposed on them.

Description of vertical transformations in MetaLanguage
system has been considered explicitly in [4], therefore we will
pass to reviewing of horizontal model transformations.

IV. HORIZONTAL MODEL TRANSFORMATIONS IN

METALANGUAGE SYSTEM

All horizontal transformations are described at level of
metamodels that allows to specify conversions which can be
applied to all models created on basis of this metamodels. For a
transformation creation it is necessary to select a source and
target metamodels and to define production rules that are
describing conversion.

To define the rule it is necessary to select objects (entities
and relations) in a source metamodel, to set constraints on
pattern occurrence and to define the right-hand side of the rule.
Depending on a type of transformation a right-hand side will be
a text template for code generation, or a fragment of a target
metamodel.

Transformation rules are applied according to their order.
At first all occurrences of a first rule pattern will be found, for
each of them the system will fulfill a rule right-hand side, then
the system will pass to the second rule and will begin to
execute it, etc.

Let's assume that the system has selected next production
rule of transformation and trying to execute it. For
implementation of rule application it is necessary to describe
two algorithms: the algorithm of the pattern search in the
source host-graph and the algorithm of execution of a right-
hand side of a rule.

A. Algorithm of the Pattern Search in the Host-graph

There are various algorithms of search of subgraph
isomorphic to the given pattern [18]: Ullmann algorithm,
Schmidt and Druffel algorithm, Vento and Foggia algorithm,
Nauty-algorithm, etc. These algorithms are the most elaborated
and often used in practice.

34 of 173

However difference of the proposed approach from the
classical task of graph matching is that in this case it is
necessary to find a pattern in the metamodel graph, i.e. it is
required to lead matching of graphs which belong to various
hierarchy levels, thus it is necessary to consider type of nodes
and arcs, as between two nodes of the metamodel graph the
several arcs of various type can be led [19].

The described algorithm for finding a pattern in the graph
model is a kind of backtracking algorithm that takes
exponential time.

Since the amount of arcs in the model graph is less than
amount of the nodes usually, each arc uniquely identifies
nodes, that are incident to it, and the degree of node can be
more than two, that does not allow to select the following node
of the model graph, entering into a pattern, it was decided to
start subgraph search in a model graph on the basis of search of
particular type arcs.

At the first step of algorithm all instances of some arbitrary
relation of the pattern will be found, i.e. search of an initial arc
with which execution of the second step of algorithm will
begin is carried out. At the second stage it is necessary to find
one of possible occurrence of all relations instances of the

pattern-graph PG in the source model graph SG . At the third

step necessary nodes will be add to target graph TG and right-

hand side of the rule will be execute.

The first step is a procedure FindPattern:

Algorithm 1. Procedure FindPattern

1.1. To clear the set of the source graph nodes viewed during
search – VisitedEntities.

1.2. To select from the pattern-graph PG one of relations, denote

it as rel . If there are not such relations, then go to the

procedure AddNodes of adding of nodes in the graph TG .

1.3. To find all instances of the relation rel in the source model

graph SG . The set of these instances denote as

FoundRelations.
1.4. For each instance of the relation from the set FoundRelations

execute procedure FindSubGraph to find a subgraph TG ,

which corresponds to a pattern and contain the instance of

relation relI , in the source model graph SG .

Procedure of search of a subgraph containing the specified
instance of relation FindSubGraph consists of following steps:

Algorithm 2. Procedure FindSubGraph

2.1. To add arc relI to the set of arcs of the required graph TG .

2.2. If after adding of arc it has appeared that the amount of arcs of

the graph TG equal the amount of arcs of the pattern-graph

PG then it is necessary to execute the procedure of nodes

adding in the graph TG , and then to return and remove arc

relI from the set of arcs of the graph TG , since in the source

graph can exist other instances of the same type relation.
Otherwise, go to step 2.3.

2.3. To review the first node 1entI which is incident to the arc

relI , if it does not belong to the set VisitedEntities:

a. To add the node 1entI to the set VisitedEntities.

b. To review all arcs of the graph SG incoming to node

1entI , if the preimage some of them
1()I

ifr rI
 belongs

to the pattern PG and it was not considered earlier, it is

necessary to search a subgraph, that contains an instance

of the relation
I

irI , starting from the second step of this

algorithm.

c. To review all arcs of the graph SG outgoing from node

1entI , if the preimage some of them
1()O

ifr rI
 belongs

to the pattern PG and it was not considered earlier, it is

necessary to search a subgraph, that contains an instance

of the relation
O

irI , starting from the second step of this

algorithm.

2.4. To consider the second node 2entI which is incident to the

arc relI , if it does not belong to the set VisitedEntities.

Reviewing is made similarly to how it has been described in
step 2.3.

2.5. To execute the procedure of nodes adding to the graph TG .

The procedure AddNodes of nodes adding to graph consists
of three steps:

Algorithm 3. Procedure AddNodes

3.1. To consider all arcs of the graph TG . If preimage of any

node, that is incident to current arc, belongs to the pattern-

graph PG , it should be added to the set of nodes of the graph

TG .

3.2. To find in the graph SG nodes, preimages of which in the

graph PG are isolated, and add them in the graph TG .

3.3. To call the procedure of the rule right-hand side execution
ExecuteRightSide. It is determined by a type of the
transformation rule.

B. Algorithms of Rule Right-hand Side Execution

It is necessary to execute a right-hand side of production
rule after the left-hand side subgraph has been found in a
source graph. The algorithm of execution will depend on a type
of transformation: whether transformation is a “model-model”
or a “model-text”.

Transformation “model-text”. The transformation of this
type allows the user to generate the source code on any target
programming language on the basis of the constructed models
as well as any other text representation of model, for example,
its description on XML. In this case the right-hand side of
production rule contains some template consisting of as static
elements, which are independent of the found pattern, and
dynamic parts, i.e. elements which vary depending on the
found fragment of model.

For transformation fulfillment it is necessary to find all
occurrences of a pattern in a source graph and to produce an
insertion of an appropriate text fragment with a replacement of

35 of 173

a dynamic part by appropriate names of entities, relations,
values of their attributes, etc.

The template is described in the target language. For
selection of a dynamic part of a template the special
metasymbols are used: symbol “<<” (double opening angle
brackets) to indicate the beginning of a dynamic part, “>>”
(double closing angle brackets) to indicate the end of a
dynamic part. As entities and relations can have the same
name, then for entity describing before its name the prefix “E.”
is specified, and for relation describing before its name the
prefix “R.” is specified.

At the transformation specifying it is possible to set
constraints on pattern occurrence. These constraints allow to
define the context of the rule. They contain conditions with
which found fragment of model should satisfy.

Let's consider an example: define the transformation that
allows on the basis of Entity-Relation Diagrams (ERD) to
generate a SQL-query, building the schema of a corresponding
database.

Fig. 4. Fragment of metamodel for Entity-Relation Diagrams

At the first step it is necessary to choose the metamodel of
Entity-Relation Diagrams (see fig. 4) and to set the
transformation rules. The metamodel contains the entities
“Abstract”, “Attribute”, “Entity”, “Relation”. Attributes of the
entity “Abstract” are “Name” that identifies an entity instance,
and “Description”, containing the additional information about
the entity. The entity “Abstract” is abstract, i.e. it is impossible
to create instances of this entity in the model. “Abstract” acts
as a parent for entities “Entity” and “Relation” (in the figure it
is shown by an arrow with a triangular end). Both child entities
inherit all parent attributes, relations, constraints. “Entity” does
not have own attributes and constraints. “Relation” has the own
attribute “Multiplicity”. The entity “Attribute” has following
attributes: “Name”, “Type” and “Description”.

The bidirectional association “Linked_Links” connects
entities “Relation” and “Entity”. It means that it is possible to
draw equivalent relation between these entity instances in
ERD-models. The second unidirectional association
“SuperClass_SubClass” binds entity “Entity” with itself, it
allows any instance of “Entity” to have parent (another instance

of “Entity”) in ERD-models. In ERD metamodel between
entities “Attribute” and “Abstract” the aggregation “Belongs”
is set (in figure this relation is represented by an arc with a
diamond end), therefore in ERD-models instances of entities
“Relation” and “Entity” can be connected by aggregation with
the instances of entity “Attribute”.

For correct transformation execution the additional
attributes in the source metamodel should be added. To
determine what entity is a parent, and what entity is a child it is
necessary to add the mandatory attributes of a reference type
“Child” and “Parent” to relation “SuperClass_SubClass”. The
entity “Relation” should be transformed to the reference
between relational tables, therefore we will add to “Relation”
additional mandatory attributes-references of “LeftEntity” and
“RightEntity” and attribute of logical type “Has_Attribute”,
which will facilitate the execution of the right-hand side of
production rule.

For transformation definition we will use the traditional
rules of conversion of the ERD notation to a relational model,
for this purpose we will define the following rules.

The rule “Entity” which transforms the instance of entity
“Entity” to the single table looks like:


CREATE TABLE <<E.Entity.Name>>

(id INTEGER primary key)

Here <<E.Entity.Name>> is a dynamic part of the
template which allows to get a name of corresponding model
entity.

As there is not inheritance relation in a relational model, it
is necessary to specify the rule “Inheritance”, which for each
instance of the relation “SuperClass_SubClass” in the
“SubClass” table creates foreign key for connection with the
“SuperClass” table. This rule looks like:



ALTER TABLE

<<R.SuperClass_SubClass.Child>> ADD

<<R.SuperClass_SubClass.Parent>> ID

INTEGER

ALTER TABLE

<<R.SuperClass_SubClass.Child>> ADD

FOREIGN KEY

(<<R.SuperClass_SubClass.Parent>>ID)

REFERENCES

<<R.SuperClass_SubClass.Parent>> (id)

The rule “Relation_1M” allows to transform instance of
entity “Relation”, which does not have attributes and its
multiplicity is “1:M”, to the reference between tables. The rule
has the following appearance:



ALTER TABLE <<E.Relation.LeftEntity>>

ADD <<E.Relation.RightEntity>>ID INTEGER

ALTER TABLE <<E.Relation.LeftEntity>>

ADD FOREIGN KEY

(<<E.Relation.RightEntity>>ID)

REFERENCES <<E.Relation.RightEntity>> (id)

In this rule at first in the table corresponding to the left
entity the additional column with the name
<<E.Relation.RightEntity>>ID is added, and then the
foreign key (correspondence between this additional column

36 of 173

and a column containing the identifiers of right table rows) is
created. This rule contains the constraint on pattern occurrence:

E.Relation.Multiplicity = 1:М AND

E.Relation.Has_Attribute = False

The rule “Relation_M1” allows to transform instance of
entity “Relation”, which does not have attributes and its
multiplicity is “M:1”, to the reference between tables. The rule
looks like:



ALTER TABLE <<E.Relation.RightEntity>>

ADD <<E.Relation.LeftEntity>>ID INTEGER

ALTER TABLE

<<E.Связь.Relation.RightEntity>> ADD

FOREIGN KEY (<<E.Relation.LeftEntity>>ID)

REFERENCES <<E.Relation.LeftEntity>>(id)

The content of this rule right-hand side is similar to the
content of the right-hand side of the rule “Relation_1M”. This
rule contains the constraint on pattern occurrence:

E.Relation.Multiplicity = M:1 AND

E.Relation.Has_Attribute = False

For each instance of entity “Relation”, which has the
attributes, or has the multiplicity “1:1” or “М:М”, it is
necessary to create the single table that contains the key
columns of each entity involved in relation. We call this rule
“Relation_MM”, it has the following appearance:



CREATE TABLE <<E.Relation.Name>>

(id INTEGER primary key,

<<E.Relation.LeftEntity>>ID INTEGER,

<<E.Relation.RightEntity>>ID INTEGER)

ALTER TABLE <<E.Relation.Name>> ADD

FOREIGN KEY (<<E.Relation.LeftEntity>>ID)

REFERENCES <<E.Relation.LeftEntity>> (id)

ALTER TABLE <<E.Relation.Name>> ADD

FOREIGN KEY (<<E.Relation.RightEntity>>ID)

REFERENCES <<E.Relation.RightEntity>> (id)

This rule contains the constraint on pattern occurrence:

E.Relation.Multiplicity = M:M OR

E.Relation.Multiplicity = 1:1 OR

E.Relation.Has_Attribute = True

The rule “Attribute” adds the columns corresponding to
attributes of instances of entities and relations to the created
tables:



ALTER TABLE

<<E.Abstract.Name>> ADD

<<E.Attribute.Name>>

<<E.Attribute.Type>>

Let's consider an example, apply the described
transformation to the model “University” presented in fig. 5.

Fig. 5. Model “University” on the ERD notation

As a result the following text had been generated by the
MetaLanguage system:

CREATE TABLE Man (id INTEGER primary key)

CREATE TABLE Student (id INTEGER primary key)

CREATE TABLE Lector (id INTEGER primary key)

CREATE TABLE ExamCards (id INTEGER primary key)

ALTER TABLE Lector ADD ExamCardsID INTEGER

ALTER TABLE Lector ADD FOREIGN KEY (ExamCardsID)

REFERENCES ExamCards (id)

ALTER TABLE ExamCards ADD StudentID INTEGER

ALTER TABLE ExamCards ADD FOREIGN KEY (StudentID)

REFERENCES Student (id)

CREATE TABLE PassExam (id INTEGER primary key,

StudentID INTEGER, LectorID INTEGER)

ALTER TABLE PassExam ADD FOREIGN KEY (StudentID)

REFERENCES Student (id)

ALTER TABLE PassExam ADD FOREIGN KEY (LectorID)

REFERENCES Lector (id)

ALTER TABLE Student ADD ManID INTEGER

ALTER TABLE Student ADD FOREIGN KEY (ManID)

REFERENCES Man (id)

ALTER TABLE Lector ADD ManID INTEGER

ALTER TABLE Lector ADD FOREIGN KEY (ManID)

REFERENCES Man (id)

ALTER TABLE Man ADD Name nvarchar(MAX)

ALTER TABLE PassExam ADD Duration nvarchar(50)

ALTER TABLE Lector ADD Post nvarchar(50)

ALTER TABLE Student ADD Direction nvarchar(MAX)

It should be noted that this transformation does not take
into account complex conversions the ERD notation to the
database schema, for example, those which would allow to
create single dictionary table on the base of attribute, because it
requires a special description language of templates and it is
one of the areas for further research. Although such a
conversion could be done by adding to the entity “Attribute”
the attribute “Is_a_Dictionary” of logical type and setting the
constraints on pattern occurrence.

Transformation “model-model”. Transformation of this
type allows to produce conversion of model from one notation
to another or to perform any operations over model (creation of
new elements, reduction, etc.). Such transformation will allow
to export model to external systems, and to provide the ability
to convert the domain-specific language that was created by the

37 of 173

user in one of most common modeling language, for example,
UML, ERD, IDEF0, etc.

The left-hand side of a production rule of this type
transformation is a pattern, which is some fragment of the
source metamodel, and the right-hand side of the rule is a some
fragment of the target metamodel. At the production rule
definition also it is necessary to describe the rules for
converting the attributes of entities and relations. The created
model should not contain dangling pointers, therefore the
process of the transformation executions begins with the
creation of entity instances and only then instances of relations
are created. If in the process of model building the dangling
pointers are still found the system will delete them.

At transformation execution it is necessary to consider the
following elementary conversions:

 conversion “entity entity”;

 conversion “relation relation”;

 conversion “entityrelation”;

 conversion “relationentity”.

Let's suppose that in the source model the instances of
entities and/or relations of pattern are already found.

For fulfillment of the conversion : L Ree Ent Ent it is

necessary to create in the new model the instance
REntI of the

appropriate entity of a rule right-hand side and to perform the
specified transformation rules of attributes. The created
instance of entity will have the same name, as the name of
source entity instance.

For execution the conversion : L Rrr Rel Rel at first it is

necessary to found in the source model the instances of entities

.LRelI SEI and .LRelI TEI , which are connected by the

relation instance LRelI , then the images of these instances

(.)Lfe RelI SEI , (.)Lfe RelI TEI should be found in the new

model, and an instance of the relation from a rule right-hand
side should be lead between them. After that it is necessary to
fulfill transformation rules of attributes.

For fulfillment of the conversion : L Rer Ent Rel it is

necessary to find in source model the nodes SEntI , TEntI

which are adjacent to entity instance LEntI . Let’s denote their

images in the target model as Source and Target. In the target

model the relation instance RRelI between nodes Source,

Target should be lead. Further it is necessary to execute
defined transformation rules of attributes. The algorithm of

conversion : L Rer Ent Rel on the pseudocode can be

described as follows:

Algorithm 4. Conversion “entityrelation”

LEntI  Find_instance(,L SEnt G);

SEntI  Find_adjacent_node(LEntI);

TEntI  Find_adjacent_node(LEntI);

SourceFind_node_image(SEntI);

Target  Find_node_image(TEntI);

RRelI  Add_new_arc(Source ,Target);

Execute_attributes_transformation(,L REntI RelI);

The complexity of the function “Find_instance” is equal to

()O N , where N is an amount of instances of various entities in

model. The complexity of the function “Find_adjacent_node”
is equal to a constant, since for its performance it is necessary
to pass on the corresponding arc of the graph model. To find
the image of node it is necessary to pass on arc-reference, i.e.
the complexity of function “Find_node_image” is equal to a
constant. The complexity of executing of function

“Execute_attributes_transformation” is equal to
1

()
k

i
i

O A


 ,

where k is an amount of specified transformation rules of

attributes,
iA is the complexity of the performance of i-th rule.

Thus, the complexity of the presented algorithm is equal to

1

()
k

i
i

O A N


 .

Conversion : L Rre Rel Ent transforms the instance of

relation LRelI found in the source model to the entity instance

REntI of target model. For conversion execution it is

necessary to create the entity instance REntI , to perform the

specified transformation rules of attributes. The name of

REntI will be the same as the name of the relation instance

LRelI . At the next step it is necessary to find entities instances

.LRelI SEI , .LRelI TEI , which are connected by relation

instance LRelI .

Further the instances of relations that connect an entity

instance REntI with nodes Source and Target, which are

images of the nodes .LRelI SEI and .LRelI TEI , accordingly,

with keeping of orientation of relation instance.

Thus, the conversion algorithm will be following:

Algorithm 5. Conversion “relationentity”

LRelI Find_instance(,L SRel G);

Add_new_node(, .R TEntI G V);

Execute_attributes_transformation(,L RRelI EntI);

SourceFind_node_image(.LRelI SEI);

Target  Find_node_image(.LRelI TEI);

Add_new_arc(Source , REntI);

Add_new_arc(REntI ,Target);

The complexity of algorithm of conversion

“relation  entity” performance is equal to
1

()
k

i
i

O A N


 .

It is possible to present the rest conversions of “model-
model” type by a combination of these elementary operations.

38 of 173

Let's consider an example, perform the transformation of
the model on Entity-Relation Diagrams notation to UML Class
Diagrams.

Since the transformation is done at the metamodel level,
then at the first step it is necessary to create/open source and
target metamodels. The ERD metamodel was presented in the
fig. 4. Metamodel of UML Class Diagrams is shown in the
fig. 6. It contains the following elements: the entity “Class” and
three relations “Inheritance”, “Association”, “Aggregation”.
Let’s define the production rules that determine the
transformation.

Fig. 6. Fragment of metamodel for Class Diagrams

The rule “Abstract-Class” allows to convert the instances of
entities “Entity” and “Relation”, which are connected at least
with one instance of entity “Attribute”, to the instance of entity
“Class”. This rule has the following appearance:



The rule “Entity-Class” allows to convert the instance of
entity “Entity”, which is not associated with any instance of the
entity “Attribute”, to the instance of an entity “Class”. The rule
has the following form:



The rule “Relation-Association” converts instances of the
entity “Relation” of the source model to instances of the
relation “Association” of the target model.

This rule looks like:



The rule “Inheritance” puts in correspondence to each
instance of the relation “SuperClass_SubClass” of source

model a particular instance of the relation “Inheritance” of
target model. This rule has the following form:



After definition of all rules, which are included in the
transformation, it is possible to execute conversion on a
specific model. Let’s perform this transformation on the
considered earlier model “University” (see fig. 5). The result of
the transformation execution is presented in fig. 7.

Fig. 7. Model “University” on the Class Diagrams notation, generated by

MetaLanguage system

V. CONCLUSION

Models transformations are a central part of the model-
based approach to system development, since an existence in
one system of models fulfilled from the different points of
view, with a different level of detail and using for the
description different modeling languages, demands presence of
model transformation tools both between various levels of
hierarchy, and within single level: at transition from one
modeling language to another.

The presented approaches have been implemented in a
transformer of MetaLanguage system. This component allows
to convert models, described on visual domain-specific
languages, to text or other graphic models. The component has
a convenient and simple user interface, therefore not only
professional developers, but also domain specialists, for
example, business analysts, can work with it.

REFERENCES

[1] Брыксин Т.А., Литвинов Ю.В. Среда визуального
программирования роботов QReal:Robots / Материалы
международной конференции "Информационные технологии в
образовании и науке". Самара, 2011. – С. 332-334.

[2] Демаков А. Язык описания абстрактного синтаксиса TreeDL и его
использование / Препринт ИСП РАН. – 2006. – № 17. – С. 1-24.

[3] Межуев В.И. Предметно-ориентированное моделирование
распределенных приложений реального времени / Системы
обработки информации. – 2010. – № 5(86). – С. 98-103.

39 of 173

[4] Sukhov A.O., Lyadova L.N. MetaLanguage: a Tool for Creating Visual
Domain-Specific Modeling Languages / Proceedings of the 6th
Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2012). М.: Изд-во Института системного
программирования РАН, 2012. – P. 42-53.

[5] Сухов А.О., Серый А.П. Использование графовых грамматик для
трансформации моделей / Материалы конференции "CSEDays
2012". Екатеринбург: Изд-во Урал. ун-та, 2012. – С. 48-55.

[6] Mens T., Czarnecki K., Gorp P.V. A Taxonomy of Model
Transformations / Electronic Notes in Theoretical Computer Science.
Amsterdam: Elsevier Science Publishers, 2006. Vol. 152. – P. 125-142.

[7] Подкопаев А.В., Брыксин Т.А. Генерация кода на основе
графической модели / Материалы межвузовского конкурса-
конференции студентов, аспирантов и молодых ученых Северо-
Запада "Технологии Miscrosoft в теории и практике
программирования". СПб.: Изд-во СПбГПУ, 2011. – С. 112-113.

[8] Montanari U., Rossi F. Graph Rewriting, Constraint Solving and Tiles
for Coordinating Distributed Systems // Applied Categorical Structures.
Netherlands: Springer, 1999. – P. 333-370.

[9] Миков А.И., Борисов А.Н. Графовые грамматики в автономном
мобильном компьютинге / Математика программных систем:
межвуз. сб. науч. ст. / под ред. А.И. Микова, Л.Н. Лядовой. Пермь:
Изд-во Перм. гос. нац. исслед. ун-та, 2012. – Вып. 9. – С. 50-59.

[10] Konig B. Analysis and Verification of Systems with Dynamically
Evolving Structure / Habilitation thesis. – 238 p. [Электронный
ресурс]. URL: http://jordan.inf.uni-
due.de/publications/koenig/habilschrift.pdf (дата обращения:
17.02.2013).

[11] Rekers J., Schuerr A. A Graph Grammar approach to Graphical Parsing /
Proceedings of the 11th IEEE International Symposium on. Washington:
IEEE Computer Society, 1995. – P. 195-202.

[12] Ehrig H., Ehrig K., Prange U. et al. Fundamentals of Algebraic Graph
Transformation. New York: Springer-Verlag, 2006. – 388 p.

[13] Balasubramanian D., Narayanan A., Buskirk C.P. et al. The Graph
Rewriting and Transformation Language: GReAT / Electronic
Communications of the EASST. – 2006. – Vol. 1. – P. 1-8.

[14] Gardner T., Griffin C., Koehler J. et al. A review of OMG MOF 2.0
Query/Views/Transformations Submissions and Recommendations
towards the final Standard / Proccedings of the 1st International
Workshop on Metamodeling for MDA. York, 2003. – P. 1-20.

[15] Csertan G., Huszerl G., Majzik I. et al. VIATRA – Visual Automated
Transformations for Formal Verification and Validation of UML
Models. Available at: http://static.inf.mit.bme.hu/pub/ase2002_varro.pdf
(accessed 17 March 2013).

[16] ATL: Atlas Transformation Language / ATL Starter’s Guide. LINA &
INRIA Nantes, 2005. – 23 p.

[17] Wimmer M., Strommer M., Kargl H. et al. Towards Model
Transformation Generation By-Example / Proceedings of the 40th
Annual Hawaii International Conference on System Sciences.
Washington: IEEE Computer Society, 2007. – P. 1-10.

[18] Серый А.П. Алгоритмы сопоставления графов для решения задач
трансформации моделей на основе графовых грамматик /
Математика программных систем: межвуз. сб. науч. ст. Пермь: Изд-
во Перм. гос. нац. исслед. ун-та, 2012. – Вып. 9. – С. 60-73.

[19] Лядова Л.Н., Серый А.П., Сухов А.О. Подходы к описанию
вертикальных и горизонтальных трансформаций метамоделей /
Математика программных систем: межвуз. сб. науч. ст. Пермь: Изд-
во Перм. гос. нац. исслед. ун-та, 2012. – Вып. 9. – С. 33-49.

40 of 173

An Approach to Graph Matching in the Component

of Model Transformations

Alexander P. Seriy

Department of Software and Computing

Systems Mathematical Support

Perm State University

Perm, Russian Federation

E-mail: SerAlexandr@bk.ru

Scientific Advisor:

Lyudmila N. Lyadova

Department of Business Informatics

National Research University Higher School

of Economics

Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract – Nowadays approaches, based on models, are

used in the development of the information systems. The

models can be changed during the system development process

by developers. They can be transformed automatically: visual

model can be translated into program code; transformation

from one modeling language to other can be done. The most

appropriate way of the formal visual model presentation is

metagraph. The best way to describe changes of visual models

is the approach, based on graph grammars (graph rewriting).

It is the most demonstrative way to present the transformation.

But applying the graph grammar to the graph of model means

to find the subgraph isomorphic to the left part of the

grammar rule. This is an NP-complete task. There are some

algorithms, developed for solving this task. They were designed

for ordinary graphs and hypergraphs. In this article we

consider some of them in case of using with the metagraphs

representing models.

 Keywords – subgraph isomorphism, metagraphs, graph

grammars, model transformations.

I. INTRODUCTION

Nowadays approaches, based on models, are used at
information systems development (Model Driven Design,
Model Driven Engineering, Model Based Development,
etc.). A graph is the most obvious way to represent a visual
model. As shown in [1], using domain-specific models is the
most convenient way of representing information about the
system.

The created models can be changed during the system
development process by developers (data base designers,
system analysts). The developed models can be transformed
automatically: visual model can be translated into program
code; transformation from one modeling language to other
can be done. Therefor, the task of transformation rules
development is important for information system developers.

There are some approaches to create a special language
and automatically generate model transformation rules using
this language. Thus, the Model Driven Architecture (MDA)
[5] involves the construction of two domain models –

platform independent (PIM) and platform-specific models
(PSM). In this case the platform-specific model can be
constructed automatically.

The most appropriate way to describe the changes is an
approach based on graph grammars. Graph grammars
provide a powerful tool of describing transformation of
models. However, in their work, these tools should solve the
problem of finding a subgraph isomorphic to a given graph.
This is a NP-complete problem. There are some efficient
algorithms, developed for solving this problem, and many of
them are applicable for model transformation by graph
grammars. However, all of them were originally designed for
digraphs or hypergraphs. As we are going to use the
metagraphs, we should consider the applicability of the
existing algorithms to metagraphs and evaluate the
effectiveness of these algorithms in this case.

II. GRAPH MATCHING ALGORITHMS

Graph is an ordered pair G = (V, E), where
V = {v1, …, vn} is a non-empty set of vertices of the graph
and E = {e1, …, em} is the set of edges of the graph.

The graph in which we need to find and replace subgraph
usually is called “host graph”, and the graph we need to find
is called “sought-for graph”.

The most of theoretical research in graph theory was
conducted specifically for ordinary graphs; in particular,
there are some algorithms for comparing graphs. We will
consider the following algorithms: the Ulman algorithm; the
Schmidt-Druffel algorithm; the Vento and Foggia algorithm;
Nauty-algorithm; the algorithm for checking the
isomorphism of colored hypergraphs basing on easy-to-
compute parameters of graph; the algorithm of checking the
structure of the neighbors for directed hypergraphs and
checking isomorphism by invariants.

Ullman algorithm. Ullmann algorithm [8] is one of the
first algorithms proposed for solving the problem of graph
isomorphism. It is a backtracking algorithm, but it uses the
refining procedure (Listing 1) to reduce search field.

This paper is supported by Russian Foundation for Basic Research
(Grant 12-07-00763)

41 of 173

Algorithm constructs a subgraph, which is suspected to be
isomorphic to the sought-for graph. At each step the
algorithm tries to add to constructing subgraph a new vertex
(V for the host-graph and v to the sought-for graph). After
that, for each vertex v1 of the sought-for graph adjacent to the
vertex v; function Refine is trying to find a vertex V1 in the
host graph, such as: V1 is connected to V, and

deg(V1)  deg(v1). If a match is found, the function Refine
returns “Ok” and constructed subgraph will be extended on
the next step. Otherwise, the function returns failure and
algorithm will fall back on the search tree.

LISTING 1. REFINE PROCEDURE

bool Refine(graph Host, graph Small)
{
Foreach (node n in Host.Nodes)
{ bool Found=false;
 foreach (node n1 in Small.Nodes)
 { If (n.Degree()>n1.Degree())
 {
 Found=true;
 break;
 }
 }
 If (!Found)
 return false;
}
return true;
}

The lower boundary of the time complexity of this
algorithm is O(N

3
), the upper – O(N

3
 × N!).

Schmidt-Druffel algorith. Schmidt-Druffel algorithm
[7] is a backtracking algorithm, which is using a matrix of
distances between vertices of the graph to reduce the space
of search. Using this matrix, the characteristic matrix of size
N × (N˗˗1) is built (Listing 2). The element cij of a
characteristic matrix is the number of vertices in the graph,
which are placed at the distance j from vertex i.

LISTING 2. BUILDING CHARACTERISTIC MATRIX

Matrix BuildCharMatrix(graph g)
{
 Matrix result = ClearCharacteristicMatrix
 (g.NodesCount, g.NodesCount-1);
 For (int n=0;i<NodesCount;i++)
 {
 For (j=0;j<NodesCount;j++)
 {
 int dist=g.GetDist(i, j);
 result [i][dist]++;
 }
 }
 Return result;
}

The vertices of the host-graph are divided into classes
after constructing such a matrix (Listing 3). All vertices shall
be in the same class, if their columns in the characteristic
matrix are equal.

LISTING 3. BUILDING CLASSES OF VERTICES

List<List<int>> BuildClasses(Matrix CharMatrix)
{ int i,j ;
 List<List<int>> result=new List<List<int>>();
 result.Add(new List<int>());
 result[0].Add(0);
 for (i=1;i<CharMatrix.ColumnsCount;i++)
 { For (j=0;j<result.Count;j++)
 { If (CharMatrix.Columns[i] ==
 CharMatrix.Columns[result[j][0]])
 {
 result[j].Add(i);
 break;
 }
 }
 If (j==result.Count)
 { result.Add(new List<int>());
 result[result.Count-1].Add(i);
 }
 }
}

After that, the vertices of the sought-for graph should be
attributed to the already existing class, so columns of the
characteristic matrix of the sought-for graph compares with
the columns of the characteristic matrix of the host graph.

Thus such a relationship is built between the vertices of
the two graphs, which preserve the classes of vertices. As a
result, the partition to the classes can reduce the dimension of
the problem, at best, by reducing it to the trivial, when all
classes have only one vertex. However, the partition can not
be useful at all, if all vertices will be in the same class.

The lower boundary of the time complexity of this
algorithm is O(N

2
), the upper – O(N × N!).

Vento and Foggia algorithm. Vento and Foggia’s
genetic algorithm [9] is an algorithm developed for solving
the problem of finding a subgraph isomorphic to a given
graph. Starting with a set of subgraphs, algorithm calculates
the fitness function for them, which characterizes their
similarity to the original graph. After calculating of the
fitness function, the new generation of the subgraphs is
building. A set of easy-to-compute graph invariants is often
taken as the fitness function. The functions listing below can
be used as the invariants.

1. Ordered set of vertices degrees (Listing 4).

LISTING 4. EVALUATING THE INVARIANT
“SET OF VERTICES DEGREES”

List<int> GetDegrees(graph g)
{
 List<int> result=new List<int>();
 Foreach (node n in g.Nodes)
 { result.Add(n.degree);
 }
 result.Sort();
 return result;
}

42 of 173

2. The characteristic path length – the average length of
the shortest paths between each pair of vertices (Listing 5).

LISTING 5. EVALUATING THE INVARIANT
“CHARACTERISTIC PATH LENGTH”

double AverageDist(graph g)
{
 Double res=0;
 For (int i=0;i<g.NodesCount;i++)
 {
 For (int j=0;j<g.NodesCount;j++)
 {
 res+=g.GetDist(i,j);
 }
 }
 return res/n/n;
}

3. Number of second neighbors (the vertices adjacent to
the neighbors of this one) for each vertex. The numbers are
ordered ascending (Listing 6).

LISTING 6. EVALUATING THE INVARIANT
“NUMBER OF SECOND NEIGHBORS”

List<int> SecondNeighbors(graph g)
{
 List<int> result=new List<int>();
 int t;
 foreach (node n in g.Nodes)
 {
 t=0;
 foreach (node n1 in g.Nodes)
 {
 if(g.GetDist(n,n1)==2)
 {
 t++;
 }
 }
 result.Add(t);
 }
 result.Sort();
 return result;
}

4. The number of paths between the vertices x and y,
passing through the vertex i.

Other functions can be used as the invariants too.

The boundaries of the algorithm depend on the selected
set of invariants. Author’s fitness function gave the following
boundaries: the lower boundary of the algorithm is O(N

2
),

the upper – O(N × N!)

The later modification of the algorithm [9], named VF2,
exists. It has the same complexity boundaries, but smaller
hidden constants. The authors of this algorithm have shown
[10] that their algorithm is faster than the Schmidt-Dryuffel
algorithm.

Nauty-algorithm. This algorithm is designed by B.
McKay [4]. The Nauty-algorithm uses a tightening

transformation in order to bring graph to its canonical code.
A code that is the same for isomorphic graphs and not the
same for non-isomorphic is named canonical. After the
construction of a canonical code the isomorphism checking
becomes trivial task. The Nauty-algorithm is considered as
the fastest algorithm known to nowadays.

The algorithm divides the set of vertices into classes
basing of the special properties of the vertices.

B. McKay gave his implementation of the Nauty-
algorithm in the public domain. In this implementation he
uses a significant number of optimizations and means of
reducing the search, such as “granted automorphisms”. The
author admitted that not all of the optimization techniques
used by him are documented.

III. HYPERGRAPH MATCHING ALGORITHMS

Hypergraph is a pair G = (X, E), where X is a non-empty
set of objects of a certain nature, called vertices of the
hypergraph, and E – a family of non-empty subsets of X,
named hyperedges.

Algorithm for checking the isomorphisms of colored
hypergraphs basing on easy-to-compute parameters of
graph [2]. This algorithm is a combination of the “divide
and conquer” approach and dynamic programming. First,
the vertices of both graphs are divided into classes (Cosets)
in order to reduce the problem of graph isomorphism to
problems in the theory of permutation groups, in particular,
to the problem of intersection classes. Then these problems
can be solved by dynamic programming.

The computational complexity of the algorithm –
2

O(b)
× N

O(1)
, where b – the maximum number of nodes of the

same color.

Algorithm of checking the structure of the neighbors
for directed hypergraphs [3]. It is an improved
backtracking algorithm. Before adding a new vertex V in the
expanding subgraph, this algorithm counts the number of
different paths of a certain length for each vertex, which is
connected to V. Resulting set of numbers is named a
structure of the adding vertex. With such information
algorithm checks whether it is possible to expand the
subgraph further, and if not, algorithm will fall back.

The authors of the algorithm do not lead to count of the
complexity. However they compare this algorithm [3] with
the algorithm VF2 (Vento-Foggia 2). While checking
algorithm structure neighbors greatly reduced number of
analyzed variants, each test takes too much time. As a result,
the algorithm is almost always slower than the algorithm
VF2.

Checking isomorphism by invariants. This algorithm
[6] involves the invariants to compare hypergraphs. The
authors propose an algorithm to consider a number of
invariants to more quickly identify nonisomorphic graphs.
These invariants can be, for example, a set of ordered vertex
degrees, the lowest path length between each pair of vertices,
the number of entries in each of the graphs of the same

43 of 173

subgraphs of smaller dimensions (e.g., the number of cycles
of length 3), etc.

This algorithm is developed to solve the problem of
testing isomorphism of two graphs. However, it can be
applied to the problem of finding isomorphic subgraph. Such
invariants as the length of the shortest paths between vertices
and vertex degrees will no longer be useful in this case, but
the invariant “number of entries in each of the graphs of the
same subgraphs smaller” can be adapted to subgraph search.

The problem of this approach is that it can determine
only the difference of graphs. If all the above graphs matched
invariants coincide, this does not guarantee isomorphism.
The authors propose to increase the number of invariants to
increase the likelihood of a negative response to the issuance
of non-isomorphic graphs.

IV. METAGRAPH MATCHING ALGORITHMS

Metagraph is an ordered pair G = (X, E), where X = {xi}

(ni ,1) is a finite nonempty set of metavertices, E – the set

of edges of the graph. Each edge ek = (Vi, Wi), mk ,1 ,

Vi, Wi  X and Vi  Wi  , that is, each edge in metagraph
connects two subsets of vertices.

It is shown [1] that the most convenient way to represent
the domain model is metagraph. This leads us to the problem
of searching metasubgraph isomorphic to the given one in
order to execute graph rewriting at model transformation
process.

In this section we will consider the applicability of
existing graph matching algorithms to metagraphs.

Ullman algorithm. The most flexible element of the
algorithm is a function Refine. We can make it to check not
only the degree of vertices, but the number of subvertices in
the metavertex (Listing 7).

LISTING 7. FUNCTION REFINE, MODIFIED FOR METAGRAPHS

bool Refine(graph Host, graph Small)
{ Foreach (node n in Host.Nodes)
 { bool Found=false;
 foreach (node n1 in Small.Nodes)
 { If (n.Degree()>n1.Degree()
 && n.SubNodes.Count ==
 n1.SubNodes.Count)
 { Found=true;
 break;
 }
 }
 If (!Found) return false;
 }
 return true;
}

Although we can quicker weed out unsuitable subgraphs,
it does not affect the evaluation of the algorithm, but only
reduces the hidden constants.

The lower boundary of the algorithm complexity is
O(N

3
), the upper – O(N

3
 × N!).

Schmidt-Druffel algorithm. This algorithm can be
optimized as follows: in the division into classes of vertices
we may consider not only the value of the characteristic
matrix, but the number of subvertices (Listing 8).

LISTING 8. MODIFIED CONDITION OF VERTICES PARTITION

If (CharMatrix.Columns[i] ==
 CharMatrix.Columns[result[j][0]]
 && g.Nodes[i].SubNodes.Count ==
 g.Nodes[result[j][0]].SubNodes.Count)
{
 result[j].Add(i);
 break;
}

So we will get more classes, and reduce the likelihood of
a worse situation when all the vertices are included in the
same class. Thus, the estimates will not change, but the
distribution of probabilities of the worst and the best
situation will improve.

The lower boundary of the algorithm complexity is
O(N

2
), the upper – O(N×N!).

Vento and Foggia algorithm. Efficiency of this

algorithm depends on the used set of invariants. The most

obvious invariant for metagraphs is an ordered set of

capacities of metavertices (Listing 9).

LISTING 9. EVALUATING THE INVARIANT
“ORDERED SET OF CAPACITIES OF METAVERTICES”

List<int> SubNodesCounts(graph g)
{ List<int> result=new List<int>();
 Foreach (node n in g.Nodes)
 {
 result.Add(n.SubNodes.Count);
 }
 result.Sort();
 return result;
}

Adding such an invariant will decrease the hidden
constant in the estimates of the complexity.
The lower boundary of the algorithm complexity O(N

2
), the

upper – O(N×N!).

Nauty-algorithm. Nauty-algorithm differs from the
previously discussed algorithms. The process of constructing
the canonical code is not changed for graphs and metagraphs.
We can assume that the vertices belonging to the metavertex
– a new special property of vertex. It allows us to perform
the first step of the algorithm automatically. As this
algorithm is the fastest, it is a main candidate for the
implementation in the model transformation component of
MetaLanguage system. The algorithm implementation
suggested by B. McKay is useless for us – it takes just a data
structure that stores the graph. This representation does not
allow to transfer a set of vertices belonging to metavertex.

Algorithm for checking the isomorphisms of colored
hypergraphs basing on easy-to-compute parameters of
graph. When we try to apply this algorithm to metagraphs,
the number of subvertices in metavertex will be considered a

44 of 173

special color of the vertex. If the original graph is colored, it
grinds partition by color and reduces the number of vertices
of each color. However, the complexity of this algorithm is
always 2

O(b)
× N

O(1)
. It can be a significant disadvantage

because the other algorithms can work faster in the average.

Algorithm of checking the structure of the neighbors
for directed hypergraphs. This algorithm can not use the
information of vertices in metavertex (only path lengths are
important to this algorithm), and it is often slower than the
algorithm Vento-Foggia (VF2). So this algorithm is useless
in practice.

Checking isomorphism by invariants. This approach
can be applied to regular graphs, and to hyper- and
metagraphs, but it can say only that the sought-for subgraph
is in the graph or not, but can not identify the vertices that
form it. Thus this method is useless for solving the problem
of graphs transformation with graph grammars. However, it
can be used in conjunction with any other algorithm for the
preliminary analysis. If the algorithm reports that there is no
subgraph isomorphic to a given, running of a more powerful
algorithm is not necessary.

As it seems from the Table 1, the leadings algorithms are
the algorithm Vento and Foggia and Nauty algorithm.

TABLE 1. THE COMPARISON OF THE ALGORITHMS

Algorithm
Best-case

complexity

Worth-case

complexity

Always

finds

correct

answer

Ullman algorithm O(N2) O(N×N!) +

Schmidt-Druffel

algorithm

O(N2) O(N×N!) +

Vento and Foggia

algorithm

O(N2) O(N×N!) +

Nauty-algorithm Not leaded by

the author

Not leaded

by the author

+

Algorithm for checking

the isomorphism of

colored hypergraphs

basing on easy-to-

compute parameters of

graph

2O(b) × N
O(1) 2O(b) × N

O(1) +

Algorithm of checking

the structure of the

neighbors for directed

hypergraphs

Not leaded by

the authors,

more than for

Vento and

Foggia

algorithm

Not leaded

by the

authors, more

than for

Vento and

Foggia

algorithm

+

Checking isomorphism

by invariants

Depends on the

chosen

invariants

Depends on

the chosen

invariants

–

V. CONCLUSION

Graph matching is important task for implementation of
DSM-platform, where new visual domain specific modeling
languages (DSML) are created and model transformation
rules based on graph grammars are defined.

This article covers seven graph matching algorithm in the
case of their applicability to the metagraphs comparison in
order to search subgraph of model metagraph. All of them
can be applied to compare metagraphs, and many of them
can use the features of the metagraphs structure to get some
acceleration. However, the difference in the complexity is
only a constant for all of them.

Our analysis revealed the two leaders – the algorithm
Vento and Foggia and Nauty algorithm. We plan to
implement both of them and test them to identify the most
effective algorithm to execute graph matching in component
of visual model transformation, included in MetaLanguage
DSM-platform.

REFERENCES

[1] Сухов А.О. Анализ формализмов описания визуальных языков
моделирования // Современные проблемы науки и образования.
– 2012. – № 2; URL: www.science-education.ru/102-5655 (дата
обращения: 10.11.2012).

[2] Arvind V., Das B., Köble J., Toda S. Colored Hypergraph Isomor-
phism is Fixed Parameter Tractable // In Proceedings of the
Conference on Foundations of Software Technology and Theoretical
Computer Science, 2010.

[3] Battiti R., Mascia F. An Algorithm Portfolio for the Sub-Graph
Isomorphism Problem, Universit`a degli Studi di Trento.

[4] McKay B.D. Practical Graph Isomorphism // Congressus
Numerantium. – 1981. - №30. – с. 45-87.

[5] MDA Guide Version 1.0. OMG document, Miller, J. and Mukerji, J.
Eds., 2003. Available: http://www.omg.org/docs/omg/03-06-01.pdf
[19.06.2012].

[6] Remie V. Bachelors Project: Graph isomorphism problem,
Eindhoven University of Technology Department of Industrial
Applied Mathematics, 2003.

[7] Schmidt D., Druffel L. A Fast Backtracking Algorithm to Test
Directed Graphs for Isomorphism Using Distance Matrices // Journal
of the Association for Computing Machinery. – 1976. – №23. –
P. 433-445.

[8] Ullmann J.R. An Algorithm for Subgraph Isomorphism // Journal of
the Association for Computing Machinery. – 1976. – №23. –
P. 31-42.

[9] Vento M., Foggia P., Sansone С. An Improved Algorithm for
Matching Large Graphs // IAPR-TC-15 International Workshop on
graphbased Representations. – 2001. – №3. – P. 193-212.

[10] Vento M., Foggia P., Sansone C. A Performance Comparison of Five
Algorithms for Graph Isomorphism // In Proceedings of the 3rd
IAPR TC-15 Workshop on Graph-based Representations in Pattern
Recognition, 2001.

45 of 173

Technology Aspects of State Explosion Problem
Resolving for Industrial Software Design

P.Drobintsev,V.Kotlyarov, I.Nikiforov
Saint-Petersburg State Polytechnic University

e-mail: vpk@spbstu.ru

Abstract – The paper describes technology aspects of proposed
solution for resolving of state explosion problem. The main point is
in usage of guides which can be created both manually and
automatically and allow to reduce state space during trace
generation process. The following techniques is described:
traceability tracking of requirements, guides generation based on
selected criterion, guides analysis in case of problems with traces
generation.

Usage of described techniques in verification and testing
phases of software development allow to resolve problem of state
exposure for industrial projects.

Key words — design specification, state explosion problem,
requirements, behavioral tree, guides, guide formalization.

I. INTRODUCTION

One of the main problems in development and testing
automation of industrial applications’ software is handling of
complicated and large scale requirements specifications.
Documents specifying requirements specifications are
generally written in natural language and may contain hundreds
and thousands of requirements. Thereby the task of
requirements formalization to describe behavioral scenarios
used for development of automatic tests or manual test
procedures is characterized as a task of large complexity and
laboriousness.

Applicability of formal methods in the industry is
determined to a great extent by how adequate is the
formalization language to accepted engineering practice which
involves not only code developers and testers but also
customers, project managers, marketing and other specialists. It
is clear that no logic language is suitable for adequate
formalization of requirements which would keep the semantics
of the application under development and at the same time
would satisfy all concerned people [1].

In modern project documentation the formulation of initial
requirements is either constructive, when checking procedure
or scenario of requirement coverage checking can be
constructed from the text of this requirement in natural
language, or unconstructive, when functionality described in
the requirement does not contain any explanation of its
checking method.

For example, behavioral requirements of
telecommunication applications in case of described scenario
of coverage are constructively specified and assume allow
using of verification and testing for realization checking. Non-
behavioral requirements are usually unconstructively specified
and require additional information during formalization which
allows reconstructing the checking scenario, i.e. converting of
non-constructive format of requirements specification into
constructive one.

II. REQUIREMENT COVERAGE CHECKING

The procedure of requirement checking is exact sequence
of causes and results of some activities (coded with actions,

signals, states), the analysis of which can prove that current
requirement is either covered or not. Such checking procedure
can be used as a criterion of coverage of specific requirement, i.e.
it can become a so-called criteria procedure. In the text below a
sequence or “chain” of events will be used for criteria procedure.

Tracking the facts of criteria procedure coverage in system’s
behavioral scenario (hypothetical, implemented in the model or
real system), it can be asserted that the corresponding
requirement is satisfied in the system being analyzed.

Procedure of requirement checking (chain) is formulated by
providing the following information for all chain elements
(events):

• conditions (causes), required for activating of some activity;

• the activity itself, which shall be executed under current
conditions;

• consequences – observable (measurable) results of activity
execution.

Causes and results are described with signals, messages or
transactions, commonly used in reactive system’s instances
communications [2], as well as with variables states in the form
of values or limitations on admissible values. Tracking states’
changes, produced by chains activities, lets observe the coverage
of corresponding chains.

Problems with unconstructive formulations of requirements
are resolved by development of requirement coverage checking
procedures on user or intercomponent interfaces.

Thus, chains containing sequences of activities and events can
appear as criteria of requirements coverage; in addition, it is
possible that criteria of some requirement coverage is specified
not with one, but with several chains.

III. INITIAL DOCUMENTS SPECIFYING APPLICATION

REQUIREMENTS

In technical documentation each requirement is usually
specified in natural language in one of two ways:

• in form of behavioral requirement, when checking scenario
(procedure) of requirement coverage checking can be
constructed from the text of this requirement in natural
language

• in form of non-behavioral requirement, specifying the
contents, structure or some desired feature without
explanation of how it can be checked.

Formalization of constructively specified requirements is
possible together with effective automated analysis of software
requirements and is implemented in VRS/TAT technology [3].

In VRS/TAT technology Use Case Maps (UCM) notation [4]
(Fig.1) is used for high-level description of the model, while tools
for automation of checking and generation work with model in
basic protocols language [5].

46 of 173

Fig.1 UCM model of two instances: Receiver and UserPC

UCM model (Fig.1) contains two interacting instances

model description. Each path on the graph from the event
“start” to the event “end” represents one behavioral scenario.
Each path contains specified number of events
(Responsibilities). Events on the diagram are marked with ×
symbol, while Stub elements which encode inserted diagram –

with ♦ symbol. As a result, each scenario contains specified
sequence of events. Variety of possible scenarios are specified
with variety of such sequences.

In these terms a chain is defined as subsequence of events
which are enough to make a conclusion that the requirement is
satisfied. A path on the UCM diagram, containing the sequence
of events of some chain, is called trace, covering the
corresponding requirement. Based on a trace tests can be
generated which are needed for experimental evidence of
requirement coverage.

IV. TRACEABILITY MATRIX

Verification project requirements formalization starts with
Traceability matrix (TRM) [1] creation (TRM for specific project
is presented in table format in Fig.2). “Identifier” and
“Requirements” columns contain requirement’s identifier, used in
the initial document with requirements, and text of the
requirement, which shall be formalized. “Traceability” column
contains chains of events sufficient for checking of corresponding
requirement coverage and “Traces” column – traces or behavioral
scenarios used for tests code generation.

Fig.2 TRM – Traceability matrix

For example, in the third row of TRM there are 2 chains in

“Traceability” column for covering FREQ_GWR.3
requirement. To satisfy the requirement it is enough to trace
ACM_CAP signal sending in one of two possible scenarios:

FREQ_GWR.3-1: start, recACMCAP_SL,
good_new_cap_table, format_mpeg2, no_chanes, end

FREQ_GWR.3-2: start, recfwdACM_CAP_IP,
recACM_CAP_IP, good_new_cap_table, format_multicast,
end.

It should be noted, that during formulating of criteria chains
a model of verified functionality is being created which
introduces a lot of state variables, types, agents, instances, etc.

V. DEVELOPING INTEGRAL CRITERIA OF

REQUIREMENTS COVERAGE

Mentioned above is disticntive feature of VRS/TAT
technology – special criteria of each requirement’s coverage
checking. Below all criteria related to requirements are listed in
ascending order of their strength:

1. Events criterion - coverage level in generated
scenarios of subset of events used in criterial chains.

2. Chains criterion - coverage level in generated
scenarios of subset of chains (consisting of events and
states of variables) with at least one for each
requirement.

3. Complex criterion - coverage level in generated
scenarios of the whole set of chains specifying

integral criteria (combined from criteria 1 and 2) of
requirements coverage.

Criteria development shall be adaptive to specific project.
Criteria shall be applied flexibly and can be changed according to
conditions of scenarios generation.

VI. GENERATING AND SELECTING SCENARIOS
WHICH SATISFY TO SPECIFIED INTEGRAL COVERAGE

CRITERIA

Trace generation is performed by symbolic and concrete trace
generators STG (SimbolicTrace Generator) and CTG (Concrete
Trace Generator), which implements effective algorithms of
Model Checking. The main problem of trace generation is
“explosion” of variants combinations while generating traces
from basic protocols, which formalize scenario events, conditions
of their implementation and corresponding change of model state
after their implementation. Solution here is filtration of
generation variants based on numerous limitations specifically
defined before trace generation cycle.

There are general and specific limitations. For example,
commonly used general limitations are maximum number of
basic protocols used in a trace and maximum number of traces
generated in a single cycle of generation. Specific limitations are
defined by sequences of events in UCM model which guide the
process of generation in user-preferable model behavior (so-
called Guides). Used are two steps of test scenarios generation by
Guides. On the first step guides are created which guarantee
specified criteria of system behavior coverage. On the second
step guides in UCM notation (Fig.3a) are translated into guides
on basic protocols language (Fig.3b) and control trace generation

47 of 173

process. It is important, that only main control points in
behavior are specified in guides, while the trace generated from
the guide contains detailed sequence of behavioral elements.
Such approach to generation significantly reduces the influence
of combinatorial explosion on the time of generation during
exploring behavioral tree of developed system.

(а) (b)

Fig.3. Guides: (а) in UCM notation,
(b) in basic protocols language (VRS Guide Language)

VII. AUTOMATIC AND MANUAL PROCESSES OF

GUIDES CREATION

There are two possible approaches to guides creation from
high-level system description in UCM language: manual and
automatic.

Automatic approach allows to generate numerous guides
covering system behavior on branches criteria [6]. Each guide
contains information about key points of behavioral scenario,
starting from initial model state modeled by StartPoint element
and ending in final state modeled by EndPoint element. Process
of guides generation is performed by UCM to MSC generator
[7].

Automatic approach to guides creation can be considered as
fast way to obtain test set which satisfies branches criteria, but
such approach is not always suficient. Customer and test
engineer may want to check specific scenarios of system
behavior for checking some specific requirements. Such
scenarios are specified manually by engineer and they are
created using UCM Events Analyzer (UCM EVA) tool [8].

In both cases, automatic or manual, problems may occur
with guides’ coverage by test scenarios.

In automatic mode this is due to the fact that VRS tool not
always can successfully generate test scenario form guides
because guides are created based on model’s control flow and
do not consider values of corresponding data flow. At the same
time, traces generated based on control flow consider changes
in variables values and accordingly model states.

Therefore the actual task is automated analysis of why
some guides are not covered by traces and accordingly
automation of guides adjusting solved by guides or UCM
model modification.

VIII. METHOD OF GUIDES ADJUSTMENT

AUTOMATION

Most often reasons of discrepancies are insufficient (not
enough detailed) guides specification and mistakes in the
sequence of UCM elements in the guide due to incorrect usage of
variables, identified as a deadlock on the branch or ramification.

Consider the method of searching of places and reasons of
discrepancies between a guide and a trace. Fig.4 shows iterative
algorithm of errors searching and fixing automation.

Fig.4. Algorithm of searching and fixing errors in guides

(1) Guides and traces generated in VRS are presented as MSC
diagrams containing sequences of basic protocols application,
thus the first step of the algorithm is mapping basic protocols
names on UCM elements.

(2) Comparing the guide and the trace in terms of UCM
elements it is possible to define the last trace element which
satisfies the sequence of UCM elements specified in the guide.
The next uncovered element of the guide will be referred to as the
element of discrepancy.

(3) For the element of discrepancy uncovered in the symbolic
trace it is possible to explore corresponding data and
precondition.

(4) Then variables of precondition shall be singled out into
separate list and those places on the UCM diagram where
variables of this list are changed shall be analyzed. The analysis
shall be performed from the bottom up, starting with the events
closest to the element of discrepancy.

(5) After revealing the reason of discrepancy, the guide shall
be corrected or the UCM model shall be changed.

The steps above shall be repeated until all guides will be
covered by traces.

Consider the process of searching for discrepancy on the
example of telecommunication project (Fig. 5).

48 of 173

Fig.5. Revealing the reason of discrepancy between the guide and the trace due to variables values

While searching for the reason of guide’s non-coverage it is

firstly required to find the last element of coincidence between
the guide and the trace (1) – set_timer in this example. Then
the guide element which can not be achieved in the trace (the
discrepancy element) shall be found – WaitConfig in this
example. Analyzing its metadata (2), detect the variable which
affects the trace generation (3) and can be the reason of
discrepancy - config_loadable in this example. After analysis
of this variable’s values in the UCM model (4) draw a
conclusion that in order to apply this element the variable’s
value shall be 5. The analysis is held only for those points in
the trace where config_loadable is used. In current case such
point is load_config element (5), where 0 is assigned to
config_loadable variable. Thus the conclusion can be made
that in order to create a guide which will be successfully
covered by a trace it is required to assign value 5 on
load_config element or change the guide.

Achieved is the reduction of laboriousness in searching for
the reasons of errors due to decreasing of the number of points
being analyzed which is actual for large industrial projects
created in accordance with considered technology.

IX. FORMAL DEFINITIONS OF THE MODEL AND

GUIDES LANGUAGE

In [9] the guided search method is described which is used
for generation of test scenarios satisfying to specified coverage
criteria. Used coverage criteria (Guides) are specified in the
form of special regular expressions over the model’s transition
names alphabet. Guides in abstract way specify the sought-for
behaviors in terms of model and simultaneously restrict the
number of analyzed states by cutting off the behavioral
branches which do not satisfy to specified criteria.

Definition 1. Transitive system M is the tuple

<Q, q0, T, P, f>, where Q – the set of states,
Qq ∈0 – the

initial state, T – the set of names of parameterized transitions, P
– the set of agents, f:Q→P – the map, specifying the actual set
of agents in Q state.

To keep connection with initial UCM model of the system
being analyzed associate the model’s events with the names of
its transitions. Parameterization is especially actual for
distributed systems composed of parallel asynchronous
processes which can be generated and eliminated dynamically.
The agent can be presented by one or a set of processes [10].

Definition 2. A path in M from qi state to qj state is such
sequence of states and transitions

ji
ii

i
ii

i qqqq atat ...2
11

1

)()(
+

++
+  → →

, that
)(kkk qfaTtQq k ∈∧∈∧∈
 for each jik ..∈ .

Definition 3. A trace in M is the sequence
t0(a0), t1(a1), … tn(an)… such that the path

......)()()(11
1

00
0 n

nn qqq atatat  → → → exists

Definition 4. The language associated with M is denoted as

L
*)(LM ⊂ – this is the set of all traces coming from initial state

q0.

Definition 5. Guide a.n is the transition a on maximal
distance n, which allows the set of traces {a, X1a, …, X1…Xn
a}, where X1,…,Xn – any non-empty symbols from {L\a},

~ a – restriction of a transition, allows any symbol from
{L\a},

a; b – (where a, b – guides) guides concatenation, allows
the set of traces {ab},

a \/ b – (where a, b – guides) nondeterministic selection of
guides, allows the set of traces {a, b},

a || b – parallel composition of the guide a, which represents
Za language over the X set alphabet, and the guide b, which
represents Zb language over the Y set alphabet, herewith

X ∩ Y = ∅ , because the sets of agents do not intersect in X
and Y. Then the parallel composition of guides is the set

represented by
b

X
a
Y

ba ZZZ
⇑⇑

∩=||

 language

join(a1,…,an) – the set {Sn} of all combinations of guides
a1,…,an,

loop(a) – iteration of the guide a, i.e. { *aa }.

The features of the operations listed above are described in
details in [11].

Semantically guides specify the “control points” in model’s
behavior and also specify the criteria (a chain of events in
model’s behavior) of selection of generated traces for their
further usage as test scenarios [12, 13]. Supposed scenarios of
modeled system’s behavior are checked for admissibility,
simultaneously restricting their search.

X. RESULTS OF DEPLOYMENT IN PILOT PROJECTS

Table 1 contains the results of deployment of design and
testing integrated technology in the area of wireless
telecommunication applications development. As a result, a

49 of 173

significant reduction of laboriousness and increase of software
quality were obtained.

Table 1. RESULTS OF TECHNOLOGY DEPLOYMENT IN PILOT PROJECTS.

Project Number of
requirements

Number of
basic protocols

Requirements
coverage level

Number of found
and fixed errors
(overall/critical)

Efforts
(human-
weeks)

Module 1 of wireless network
(WN)

400 127 75% 142/11 5.6

Module 2 of WN 730 192 80% 106/18 12
High-level module of WN 148 205 100% 68/23 11
Clients and administrator
connection module of WN

106 163 100% 42/8 6

Mobile phone software module 200 170 100% 96/10 7

XI. CONCLUSION

The result of the work is improved integrated technology of
verification and testing of software projects which provides:

1. Full automation of industrial software product development
process with requirements semantics implementation control.

2. Generation of application’s model and symbolic behavioral
scenarios, which cover 100% of application’s behavioral
features.

3. Automated concretization of symbolic traces in accordance
with test plan.

4. High level of software development and quality management
process automation.

REFERENCES
[1] S.Baranov, V.Kotlyarov, A.Letichevsky. Industrial technology of mobile devices

testing automation based on verified behavioral models of requirements project
specifications// «Space, astronomy and programming» – SpbSU, Spb. – 2008. –
pp. 134–145. (in Russian)

[2] Z.Manna, A.Pnueli.: The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

[3] S.Baranov, V.Kotlyarov, A.Letichevsky, P.Drobintsev. The technology of
Automation Verification and Testing in Industrial Projects. / Proc. of
St.Petersburg IEEE Chapter, International Conference, May 18-21,
St.Petersburg, Russia, 2005 – pp. 81-86

[4] Recommendation ITU-T Z.151. User requirements notation (URN), 11/2008

[5] A. Letichevsky, J. Kapitonova, A. Letichevsky Jr., V. Volkov, S. Baranov, V.
Kotlyarov, T. Weigert. Basic Protocols, Message Sequence Charts, and the
Verification of Requirements Specifications. Proc of ISSRE04 Workshop on
Integrated-reliability with Telecommunications and UML Languages
(ISSRE04:WITUL), 02 Nov 2004: IRISA Rennes France.

[6] P.Drobintsev, V.Kotlyarov, I.Chernorutsky. Test automation based
on user scenarios coverage. “Scientific and technical sheets”,
SpbSTU, vol.4(152)-2012, pp.123-126 (in Russian)

[7] I.Anureev, S.Baranov, D.Beloglazov, E.Bodin, P. Drobintsev,
A.Kolchin,, V.Kotlyarov, A. Letichevsky, A. Letichevsky Jr.,
V.Nepomniashiy, I.Nikiforov, S.Potienko, L.Priyma, B.Tytin. Tools
for support of integrated technology for analysis and verification of
specifications telecom applications // SPIIRAN proceedings- 2013-
№1-28P.

[8] I.Nikiforov, A.Petrov, V.Kotlyarov. Static method of test scenarios
adjustment generated from guides // “Scientific and technical
sheets”, SpbSTU, vol.4(152)-2012, pp. 114-119 (in Russian)

[9] A.Kolchin, V.Kotlyarov, P. Drobintsev. A method of the test
scenario generation in the insertion modelling environment //
“Сontrol systems and computers”, Kiev: "Akademperiodika", vol.6-
2012, pp.43-48 (in Russian)

[10] A.A. Letichevsky, J.V. Kapitonova , V.P. Kotlyarov, A.A.
Letichevsky Jr., N.S.Nikitchenko, V.A. Volkov, and T.Weigert.
Insertion modeling in distributed system design // Programming
problems. – 2008. – pp. 13–38

[11] A. Letichevsky Jr., A. Kolchin. Test scenarios generation based on
formal model // Programming problems. – 2010. – № 2–3. – pp.
209–215 (in Russian)

[12] V.P. Kotlyarov. Criteria of requirements coverage in test scenarios,
generated from applications behavioral models // “Scientific and
technical sheets”, SpbSTU. – 2011. – vol.6.1(138). – pp.202–207.
(in Russian)

[13] Baranov S., Kotlyarov V., Weigert T. Varifiable Coverage Criteria
For Automated Tesdting. SDL2011: Integrating System and
Software Modeling // LNCS. –2012. –Vol.7083. – P.79–89.

50 of 173

MicroTESK: An Extendable Framework for
Test Program Generation

Alexander Kamkin∗, Tatiana Sergeeva∗, Andrei Tatarnikov∗† and Artemiy Utekhin‡
∗ Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

† National Research University Higher School of Economics (NRU HSE)
‡ Moscow State University (MSU)

Email: {kamkin,leonsia,andrewt,utekhin}@ispras.ru

Abstract— Creation of test programs and analysis of their
execution is the main approach to system-level verification of
microprocessors. A lot of techniques have been proposed to
automate test program generation, ranging from completely
random to well directed ones. However, no “silver bullet” has
been found. In good industrial practices, various methods are
combined complementing each other. Unfortunately, there is
no solution that could integrate all (or at least most) of the
techniques in a single framework. Engineers are forced to use
a number of tools, which leads to the following problems:
(1) it is required to maintain duplicating data (each tool uses
its own representation of the target design); (2) to be used
together, tools need to be integrated (engineers have to deal with
different formats and interfaces). This paper proposes a concept
of an extendable framework (MicroTESK) that follows a unified
methodology for defining test program generation techniques.
The framework supports random and combinatorial generation
and (what is even more important) can be easily extended with
new techniques being implemented as the framework’s plugins.

I. INTRODUCTION

Being extremely complex, modern microprocessors require
systematic activities for ensuring their correctness and reli-
ability. Such activities are usually referred to as verification
and testing [1]. The first of them, verification, is applied in the
development stage and focuses on discovering logical faults
in microprocessor designs (functional faults, interface faults,
etc.). The second one, testing, is related to the manufacturing
stage and deals with diagnosing physical faults in integrated
circuits (stuck-at faults, bridging faults, etc.). The general
approach to both tasks is based on execution of verification/test
programs, which are assembly programs causing some situa-
tions in the design (internal events, component interactions,
etc.) [2]. (Throughout the paper we will use the term testing
to denote both verification and testing.)

By the present time, a great number of techniques for
automated test program generation have been proposed. All
of them can be subdivided in the following categories:
(1) random generation [3], (2) combinatorial generation [2],
(3) template-based generation [4] and (3) model-based gener-
ation [5]. The thing is that there is no a “silver bullet”, which
can effectively “fight” against all kinds of testing tasks. In real-
life practice, different approaches are used together comple-

This work was supported in part by the Ministry of Education and Science
of the Russian Federation under grant #8232 (06/08/2012).

menting and strengthening each other. It is a typical solution,
for example, when general functionality of a microprocessor
is tested by randomly generated programs, while critical logic
is verified by advanced model-based techniques.

Unfortunately, there is no framework that could accomodate
a variety of test program generation techniques. Engineers
have to use a number of tools with different input/output
formats, and it is a big problem how to integrate them and
keep their configurations in consistent states. It is not difficult
to use different tools for solving loosely connected tasks,
but settling tightly dependent problems by means of two or
more tools might require deep knowledge of their internal
interfaces. The root of the problem is that different tools use
different representation of the target design, and often one
representation is hidden from others. As a result, similar things
are specified several times, duplicating data and complicating
tests maintenance.

We propose a concept of an extendable test program
generation framework, named MicroTESK [6]. The idea is
to represent knowledge about the microprocessor under test
(a design/coverage model) in a general way and to provide
easy access to that knowledge to a number of test generators
built as the framework’s plugins. Being shared among various
tools, a common model serves as a natural interface for
their integration. Moreover, we have unified test generator
interfaces, making it possible to use different tools for solving
a testing task and even to combine them for doing complex
jobs. Interaction between the framework and engineers is done
with the help of test templates that specify test scenarios
in a hierarchical manner (dividing testing tasks into smaller
subtasks and linking each of them with an appropriate test
generator).

The rest of the paper is organized as follows. Section 2
overviews existing test generation techniques and tools. Sec-
tion 3 analyses the approaches described in Section 2 and
formulates a concept of an extendable test program generation
framework. Section 4 outlines the framework architecture
and introduces two main components: a modeling framework
and a testing framework. Section 5 considers the modeling
framework and its components: a translator and a modeling
library. Section 6 pays attention to the testing framework
consisting of a test template processor, a testing library and a
constraint solver engine. Section 7 concludes the paper.

51 of 173

II. TEST PROGRAM GENERATION TECHNIQUES

There is a variety of techniques for test program construc-
tion. All of them can be divided into two types: (1) manual
test program development and (2) automated test program
generation. Nowadays, manually created tests are rarely used
for systematic verification of microprocessors, but the ap-
proach is still in use for testing hardly formalizable and
highly unlikely “corner cases” in microprocessor behavior. As
for automated techniques, they can be subdivided into the
following classes: (1) random generation, (2) combinatorial
generation, (3) template-based generation and (4) model-
based generation.

Random generation is the most common technique to
produce complex (though unsystematic) test programs for
microprocessor verification. Being easy to implement, the
method, however, can create a significant workload to the
microprocessor and is able to detect some high-quality bugs.
One of the most famous generators of that type is RAVEN
(Random Architecture Verification Engine) developed by Ob-
sidian Software Inc (now acquired by ARM) [3]. To generate
test programs, the tool not only applies randomization, but
takes into account information about common microprocessor
faults. RAVEN is built upon pre-developed and custom made
modules that can be included into the generator to expand its
functionality [3]. Unforfunately, due to the lack of publicly
available information, technical details are unclear.

Another approach to test program construction is combi-
natorial generation. A brief analysis of microprocessor errata
shows that many bugs can be detected by small test cases
(2-5 instructions). Thus, it may be useful to systematically
enumerate short sequences of instructions (including test situ-
ations for individual instructions and dependencies between
instructions) [2]. The technique has been implemented in
the first version of MicroTESK (ISPRAS). The tool supports
hierarchical decomposition of a test program generator into
iterators (each being responsible for iterating its own part
of the test) and combinators (combining results of the inner
iterators into complex test sequences). MicroTESK can also
construct test programs with branch instructions (generation
is done by enumeration of control flow graphs and bounded
depth-first exploration of the execution traces) [7].

The next method is called template-based generation. A
test template is an abstract representation of a test program,
where constraints are used to specify possible values of
instruction operands (instead of concrete values used in usual
programs). When constructing a test program, a generator
tries to find random solutions to the given constraint systems
(such approach is usually referred to as constraint-based
random generation [8]). Automating routine work, the method
considerably increases productivity of engineers. The leading
generator of that kind is Genesys-Pro (IBM Research) [4]. This
is an architecture-independent tool that uses two types of input
data: (1) a model (containing architecture-specific information)
and (2) test templates (describing test scenarios). Genesys-Pro
generates test programs in an instruction-wise manner: at each

step, it selects an instruction to be put into a program and,
then, formulates and solves a constraint system for the chosen
instruction.

As opposed to the previously described approaches, model-
based generation uses microprocessor models to compose test
programs (or test templates). It is worthwhile clarifying the
terminology. There are two main types of models used in
microprocessor design and test: (1) instruction-level models
(behavioral models) and (2) microarchitectual models (struc-
tural models). Models of the first type specify micropro-
cessors as instruction sets (in other words, they describe a
programmer’s view to microprocessors: ‘How to write pro-
grams for a microprocessor?’). Models of the second type
define the internal structure of microprocessors (this is a
computer engineer’s point of view: ‘How a microprocessor is
organized inside?’). All test program generation methods and
tools apparently use instruction-level models, but only few of
them use microarchitectural models. The latter ones are called
model-based. Let us consider some examples.

In [5], a method for directed test program generation has
been proposed. It takes detailed microprocessor specifications
written in the EXPRESSION language [9] and translates them
into the SMV (Symbolic Model Verifier) description [10].
Specifications define the structure of the design (components
and their interconnections), its behavior (semantics of the
instructions) and mapping between the structure and the be-
havior. The key part of the work is a fault model describing
typical errors for registers, individual operations, pipeline
paths and for interactions between several operations. For each
of the fault types, the set of concrete properties is generated,
each of which is covered by a test case constructed by SMV
(as a counterexample for the negation of the property). The
generated test cases are mapped into test programs. As the
authors say, the technique does not scale well on complex
microprocessor designs. Thus, they suggest using the template-
based approach as an addition. Test templates are developed
by hand and describe sequences of instructions that create
certain situations in the design’s behavior (first of all, pipeline
hazards). Test program generation is performed with the help
of the graph model extracted from the specifications. It should
be noticed that both approaches are based on rather accurate
specifications, and it is better to apply them in the late design
stages when the microarchitecture is stable.

In [11], a microprocessor is formally specified as an oper-
ation state machine (OSM). The OSM is a system of com-
municating extended finite state machines (EFSMs) modeling
the microprocessor at two levels: (1) the operational level
and (2) the hardware level. At the first level, movement of
the instructions across the pipeline stages is described (each
operation is specified by an EFSM). At the second level, hard-
ware resources are modeled using so-called token managers.
An operation EFSM changes its state by capturing/releasing
tokens of the token managers. The pipeline model is defined as
a concurrent composition of the operation EFSMs and resource
EFSMs. Test programs are generated on-the-fly by traversing
all reachable states and transitions of the joint OSM model.

52 of 173

III. EXTENDABLE FRAMEWORK CONCEPT

Let us analyze the test generation techniques and tools
having been surveyed previously and formulate a concept
of an extendable test program generation framework. It is
worthwhile answering the questions: ‘What is extendability?’
and ‘What is an extendable framework?’ In general terms, ex-
tendability is a framework characteristic that shows how much
effort it takes to integrate a new or existing component (in
our case, a microprocessor model or a test generation engine)
into the framework. Indeed, the less effort it is required, the
more extendable the framework is. The object of this study is
to suggest a framework architecture that would minimize the
effort for creating new models/engines and plugging them into
the framework.

There is a number of basic requirements that all kinds
of extendable frameworks are expected to comply with. A
system should be architected in such a way that there is a
core (platform) and there are extensions (plugins) connected
to the core via the extension points. Obviously, there should
be well-defined interfaces between the core and its extensions
as well as clear mechanisms for installing extensions into
the framework and calling them for solving particular tasks.
An optional requirement, which, we think, is essential for
true extendable frameworks, is open source. The open source
paradigm significantly simplifies creation and distribution of
framework extensions.

There are also specific requirements to test program gener-
ation frameworks. Analyzing the approaches presented in the
previous section, we can see that all of them use instruction-
level models (either explicitly or implicitly). Evidently, to cre-
ate a valid test program, one should know instruction formats
and instruction preconditions. However, if more sophisticated
programs need to be generated, more complicated models
should be utilized (finite state machines, nets, etc.). In our
opinion, the core should be formed around instruction-level
models, while more specialized models/engines should be
organized as framework extensions. Another suggestion is to
divide the test program generation framework into two parts:
(1) the modeling framework and (2) the testing framework,
each having its own core and being extendable.

The core of the modeling framework allows describing
registers (as variables storing fixed-size bit vectors), memory
(as an array of machine words) and instructions (as atomic
operations over registers and memory). More detailed speci-
fication is provided by so-called model extensions. There is
a number of points that such extensions can be connected
to (e.g., the memory access handler and the instruction exe-
cution handler). The framework supports standard extensions
for specifying memory management (cache hierarchy, address
translation mechanisms, etc.) and pipelining (interconnection
between pipeline stages, control flow transfers, etc.). Note that
the standard extensions, in turn, have extension points and can
be easily customized by engineers (e.g., it is possible to define
a cache replacement strategy or describe behavior of a pipeline
stage).

The testing framework is comprised of engines of two types:
(1) test sequence generators and (2) test data generators.

The main test sequence generators are random and combi-
natorial generators [2], [3]. It is explained by the fact that
the modeling framework is organized around instruction-level
models, which give no information on how to compose instruc-
tions into sequences for achieving particular testing goals. A
useful feature is support for test program composition [12].
Given two test programs (or test templates) focusing on
different (and more or less independent) situations, it may be
interesting to shuffle them with the intention to cause situations
to occur simultaneously or close to each other. More advanced
model-based generators can be installed into the framework
together with the corresponding models. Moreover, extension
of the modeling framework shoud be always accompanied
by the extension of the testing framework (if a new type of
models is added into the framework, one should describe how
to generate tests on the base of such models).

We think, it is a promising practice to use constraint solvers
for test data generation (as it is done in Genesys-Pro [4]).
It implies that test situations are expressed as constraints
on the instruction operands and the microprocessor state. An
important property of the approach is that situations can be
easily combined by conjuncting the constraints. In contrast to
Genesys-Pro, we suggest using general-purpose SMT solvers
(like Yices [13] and Z3 [14]) supporting the unified SMT-
LIB notation [15]. In addition, the generation core can be
extended with custom generators (which are useful when
situations are hardly expressible in terms of constraints). There
is also a library of predefined generators including random
generators and directed generators (e.g., for the floating-point
arithmetic [16]).

IV. MICROTESK FRAMEWORK ARCHITECTURE

The MicroTESK framework is divided into two main parts:
(1) the modeling framework and (2) the testing framework. The
purpose of the modeling framework is to represent a model
of the microprocessor under test (a design model) as well
as model-based testing knowledge (a coverage model). The
design/coverage model is extracted from formal specifications
written in an architecture description language (ADL). The
testing framework, for its turn, is responsible for generating
test programs for the target microprocessor on the base of
information provided by the model. Testing goals are defined
in test templates written in a template description language
(TDL).

The MicroTESK modeling framework consists of (1) a
translator (analyzing formal specifications in an ADL and
producing the microprocessor model) and (2) a modeling
library (containing interfaces to be implemented by a model
and classes to be used as building blocks) (see Figure 1).
The translator includes two back-ends: (1) a model generator
(constructing an executable design model) and (2) a coverage
extractor (building a coverage model for the microprocessor
instructions). In a similar fashion, the modeling library is split
into design and coverage libraries.

53 of 173

Modeling Framework

Testing Framework

Design Model Coverage Model

Translator

Coverage Extractor

Design Library

Test Template
Processor

Testing Library

Coverage Library

Model

Constraint
Solver Engine

Formal
Specifications

Test Templates

Test ProgramsExternal Solvers

Test Sequence Generators

Test Data Generators

Model Generator

Modeling Library

Figure 1. General structure of the MicroTESK framework

Design Aspect

Instruction Set

Memory Management

Pipelining

User Defined

Core

Extensions

Framework Plugin

Translator

Solvers

Library

Test Generators

Modeling

Testing

Figure 2. Design aspects and organization of a MicroTESK plugin

Components of the MicroTESK testing framework are as
follows: (1) a test template processor (handling test templates
written in a TDL and generating test programs), (2) a testing
library (containing a wide range of test sequence generators
and test data generators used by the test template processor)
and (3) a constraint solver engine (providing the test gener-
ators of the testing library with a Java interface to external
SMT solvers).

The framework components are not monolithic – they
include some core functionality as well as extensions oriented
to specific tasks. Such tasks are usually grouped according
to the design aspects they deal with. All extensions related
to the same aspect are united into a framework plugin (see
Figure 2). To extend the framework with features aimed at
modeling/testing a new design aspect, one should develop
extensions for all of the framework components, including
a modeling library (to provide building blocks for modeling
the design aspect), a testing library (to let the framework
know of how to test the design aspect) and a specification
language coupled with a translator (to make it possible to
express properties on the design aspect in a human-readable
form).

The framework functionality is divided into the following
aspects: (1) instruction set, (2) memory management and
(3) pipelining. Forming the framework core, the first aspect
is responsible for modeling microprocessor instructions and
generating test programs on the base of the instruction-level
models (random, combinatorial and template-based generators
are in active use). Support for the next ones, memory manage-
ment and pipelining, is implemented in the standard plugins.
For other design aspects, custom plugins can be created and
installed into the framework.

V. MICROTESK MODELING FRAMEWORK

The purpose of the MicroTESK modeling framework is to
represent knowledge about a microprocessor and share that
knowledge with the testing framework. An engineer provides
formal specifications of the microprocessor under test. The
specifications are processed by the translator (including the
front-end and two back-ends, the model generator and the
coverage extractor). The translator produces the model by
using the modeling library (comprising the design and cov-
erage libraries). Let us consider the modeling framework
components in more detail.

A. Translator

The translator processes formal specifications of the mi-
croprocessor and builds the design/coverage model (apply-
ing the model generator/coverage extractor and using the
building blocks defined in the design/coverage library). Note
that microprocessor specifications are written in a mixture
of languages, each being responsible its own design aspect.
The central part of specifications is related to the instruction
set architecture; other parts describe memory management,
pipelining, etc. As specifications are heterogeneous, the trans-
lator is actually represented as a set of tools processing their
parts of specifications.

At the moment, Sim-nML [17], [18] is the only ADL
supported by MicroTESK for specifying microprocessors at
the instruction level. Sim-nML code specifying the integer ad-
dition instruction (ADD) from the MIPS instruction set [19] is
shown below. Several things need to be emphasized: (1) spec-
ifications can use the predefined function UNPREDICTABLE
to indicate the situations, where the design’s behavior is
undefined; (2) by analyzing control and data flows in instruc-
tion specifications one can automatically extract the coverage
model; (3) instructions can be grouped together providing the
framework with useful information to be used within test
templates; (4) basing on such specifications, the framework
is able to predict the result of the test program execution [12].

op ADD(rd : GPR, r s : GPR, r t : GPR)
a c t i o n = {

i f (NotWordValue (r s) | | NotWordValue (r t))
then

UNPREDICTABLE () ;
e n d i f ;
tmp = rs <31 . .31 > : : r s <31..0> +

r t <31 . .31 > : : r t <31. .0 > ;

54 of 173

i f (tmp<32..32> != tmp <31..31>)
then

S i g n a l E x c e p t i o n (” I n t e g e r O v e r f l o w ”) ;
e l s e

rd = s i g n e x t e n d (tmp word <31. .0 >) ;
e n d i f ;

}

s y n t a x = f o r m a t (” add %s , %s , %s ” ,
rd . syn t ax , r s . syn t ax , r t . s y n t a x)

op ALU = ADD | SUB | . . .

B. Design Library

The design library is intended to represent a microprocessor
model, which is used to simulate instruction execution and to
keep track of the design state during test program generation.
State tracking is essential for generating self-checking tests
(i.e., programs with built-in checks of the microprocessor
state). In addition to the instruction simulator (which simulates
instructions and updates the model state) and the state observer
(which provides access to the model state), the design model
provides meta-information describing the design elements
(registers, memory, instructions, etc.). The meta-information
is the main interface between the modeling framework and
the test template processor.

The design library has several extension points that allow
engineers to connect their components. The set of extension
points includes (1) the memory access handler and (2) the
instruction execution handler. The handler of the first type is
invoked every time a memory location is accessed for reading
or writing. It may encapsulate memory management logic such
as address translation and caching. The handler of the second
type is launched when an instruction is executed. It is usually
used to model the microprocessor pipeline – decomposition of
instructions into microoperations and their scheduling.

C. Coverage Library

The coverage library is used to describe situations that can
occur in a microprocessor (an overflow, a cache miss/hit, a
pipeline bypass, etc.). Such a description (referred to as a
coverage model) serves as a basis for generating test programs
(especially, for creating test data for individual instructions of a
program). Besides the test situations, the coverage model con-
tains grouping rules, classifying microprocessor instructions
according to some criteria (number of operands, resources
being accessed, control flow structure, etc.). Similar to the
design model, the coverage model provides meta-information
on its elements, which is used by the test template processor.

Each test situation has a unique name that can be used in a
test template to refer to the situation. There is a mapping of
situation names onto test generators. Thus, the test template
processor knows which engine to use to create a particular
test case. To make the engine comprehend how it can be
done, the situation include an engine-specific description of
the condition/action causing the situation to occur. The most

usable engine built-in into the framework uses the constraint-
based description of situations and constraint solving [20].

VI. MICROTESK TESTING FRAMEWORK

The MicroTESK testing framework is responsible for gen-
erating test programs. An engineer provides a test template
describing a test scenario for the microprocessor under test.
The test template is handled by the test template processor
by using the engines of the testing library: (1) it applies the
test sequence generators to construct a symbolic test program
(i.e., sequence of instructions annotated with test situations);
(2) it requests the test data generators to generate concrete
values of the instruction operands; (3) it instantiates the test
program by inserting control code initializing the registers and
the memory with the generated test data. Let us consider the
testing framework components in more detail.

A. Test Template Processor

The test template processor is a runtime environment that
handles a test template, chooses appropriate engines of the
testing library and produces a test program. The supported
TDL is organized as a Ruby [21] library. It allows describing
instruction sequences in a way it is done in the assembly
language (by using the meta-information provided by the de-
sign model) though supporting high-level scenario description
constructs. The latter ones can be subdivided into two types:
(1) native Ruby constructs (conditional statements, loops, etc.)
and (2) special MicroTESK constructs (test sequence blocks,
test situations, etc.). A simple test template example is given
below.

Assembly−S t y l e Code
add r [1] , r [2] , r [3]
sub r [1] , r [1] , r [4]

Ruby C o n t r o l S t a t e m e n t s
(1 . . 3) . each do | i |

add r [i] , r [i +1] , r [i +2]
sub r [i] , r [i] , r [i +3]

end

T e s t Sequence Block
block (: e n g i n e => ” random ” ,

: c o u n t => 2013)
{

add r [1] , r [2] , r [3]
sub r [1] , r [2] , r [3]

T e s t S i t u a t i o n R e f e r e n c e
do o v e r f l o w end

}

An important notion used in test templates is a test sequence
block. In fact, a test template is a hierarchical structure
of test sequence blocks, each holding a set of instructions
(or nested blocks) and specifying a test sequence generator
(and its parameters) to be used to produce a test sequence.
The test template processor constructs test sequences for the

55 of 173

nested blocks by applying the corresponding engines and then
combines/composes the built sequences with the root engine
(an example is given the section “Test Sequence Generators”).

Another important feature of the test template processor
is support for generation of self-checking tests. When con-
structing a test program, the test template processor can inject
special pieces of code that check whether the microprocessor
state is valid in the corresponding execution point. Such code
(called a test oracle) compares data stored in the previously
accessed registers and memory blocks with the reference data
(calculated by the instruction simulator) and terminates the
program if they do not match.

B. Test Sequence Generators

A test sequence generator is organized as an iterator of test
sequences. In the simplest case, a test sequence generator re-
turns a single test sequence for a single test sequence block. As
blocks can be nested, generators can be combined/composed in
a recursive manner. To do it, two strategies should be defined
for each non-terminal block: (1) a combinator (describing
how to combine the results of the inner iterators) and (2) a
compositor (defining the method for merging several pieces of
code together). Thus, a combinator produces the combinations
of the inner test sequences, while a compositor merges those
sequences into the one.

The testing library contains a variety of combinators and
compositors. The most usable combinators are: (1) a random
combinator (produces a number of random combinations
of the inner iterators’s results), (2) a product combinator
(creates all possible combinations of the inner blocks’ test
sequences) and (3) a diagonal combinator (synchronously
requests the inner iterators and joins their results). The set of
implemented compositors include: (1) a random compositor
(randomly mixes the inner test sequences), (2) a catenation
compositor (catenates the inner test sequences) and (2) a
nesting compositor (embeds the inner test sequences one into
another). Note that engineers are allowed to add their own
test sequence generators, combinators and compositors into
the testing library and invoke them from test templates. Let
us consider a simple example.

T e s t Sequence Block
block (: combine => ” p r o d u c t ” ,

: compose => ” random ”) {

Nes ted Block A
block (: e n g i n e => ” random ” ,

: l e n g t h => 3 ,
: c o u n t => 2) {

add r [a] , r [b] , r [c]
sub r [d] , r [e] , r [f]
mul t r [g] , r [h]
d i v r [i] , r [j]

}

Nes ted Block B
block (: e n g i n e => ” p e r m u t a t e ”) {

l d r [k] , r [l]
s t r [m] , r [n]

}
}

In the example above, there is one top-level block contain-
ing two nested blocks, A and B. Block A consists of four
instructions, ADD, SUB, MULT and DIV. Block B consists
of LD and ST. The engine associated with A generates two
sequences (:count => 2) of the length three (:length
=> 3) composed of the instructions listed in the block. The
engine associated with B generates all permutations of the in-
ner instructions (there are two permutations of two elements).
The top-level engine produces all possible combinations of the
nested blocks’ sequences (:combine => "product") and
randomly mixes them (:compose => "random"). The
result may look as follows.

Combina t ion (1 , 1)
sub r [d] , r [e] , r [f] # Block A
l d r [k] , r [l] # Block B
d i v r [i] , r [j] # Block A
s t r [m] , r [n] # Block B
add r [a] , r [b] , r [c] # Block A

Combina t ion (1 , 2)
s t r [m] , r [n] # Block B
sub r [d] , r [e] , r [f] # Block A
l d r [k] , r [l] # Block B
d i v r [i] , r [j] # Block A
add r [a] , r [b] , r [c] # Block A

Combina t ion (2 , 1)
mul t r [g] , r [h] # Block A
mul t r [g] , r [h] # Block A
l d r [k] , r [l] # Block B
add r [a] , r [b] , r [c] # Block A
s t r [m] , r [n] # Block B

Combina t ion (2 , 2)
mul t r [g] , r [h] # Block A
s t r [m] , r [n] # Block B
mul t r [g] , r [h] # Block A
l d r [k] , r [l] # Block B
add r [a] , r [b] , r [c] # Block A

C. Test Data Generators

A symbolic test program produced by test sequence gen-
erators does not necessarily define values of all of the in-
struction operands (leaving some of them either undefined
or deliberately ambiguous). The job of test data generators
is to construct operand values on the base of the provided
test situations. Test data generation relies on the constraint
solver engine that constructs operand values by solving the
corresponding constraints. To achieve a given test situation,

56 of 173

the test template processor selects an appropriate test data
generator and requests the design model for the state of the
involved design elements. After that, it initializes the closed
variables of the constraint (variables whose values are defined
by the previouly executed instructions) and calls the constraint
solver engine to construct the free variables’ values.

As soon as the operand values are constructed, the test
data generator returns control code, which is a sequence
of instructions that accesses the microprocessor resources
associated with the instruction operands and brings them into
the required states. For example, if an instruction operand is
a register, control code writes the constructed value into that
register. Following the concept of the constraint-based random
generation, different calls of a test data generator may lead to
different values of free variables. However, each generated set
of values should cause the specified test situation.

D. Constraint Solver Engine

The constraint solver engine is a framework component
that helps test data generators to construct test data by
solving constraints specified in test situations. The engine is
implemented as a collection of solvers encapsulated behind a
generic interface. Solvers are divided into two major families:
(1) universal solvers (handling a wide range of constraint
types) and (2) custom solvers (aimed at specific test data
generation tasks).

Universal solvers are built around external SMT solvers (like
Yices [13] and Z3 [14])), which provide a rich constraint
description language (supporting Boolean algebra, arithmetic,
logic over fixed-size bit vectors and other theories) as well as
effective decision procedures for solving such constraints. The
MicroTESK framework uses Java Constraint Solver API [20]
providing a generic interface to SMT-LIB-based constraint
solvers [15]. The library allows dynamically creating con-
straints in Java, mapping them to the SMT-LIB descriptions,
launching a solver and transferring results back to Java.

Some test situations are hardly expressible in terms of
SMT constraints (e.g., situations in floating-point arithmetic,
memory management, etc.). For such situations engineers
are able to provide special custom solvers/generators. Note
that custom solvers can also use SMT solvers to construct
test data; though they usually implement non-trivial logic on
forming a constraint system and interpreting its solution. When
the design/coverage model is extended with a new type of
knowledge, it often means a need to provide a corresponding
custom solver. To facilitate extension of the constraint solver
engine with new solvers, both universal and custom solvers
implement uniform interfaces.

VII. CONCLUSION

We have suggested the extendable achitecture for test pro-
gram generation framework. The proposed solution, named
MicroTESK, can combine a wide range of microprocessor
modeling and testing techniques. The central part of the
framework is built around instruction-level models and ran-
dom/combinatorial test program generators. More complicated

types of models and test generation engines are supposed to
be added as the framework’s extensions. The goal of our work
is not to create a “silver bullet” for microprocessor verification
and testing (which, we believe, does not exist), but to organize
a flexible, open-source environment being able to absorb
a variety of useful approaches. Let us emphasize that the
development having been launched at ISPRAS is based on the
many-years experience of verifying industrial microprocessors.
The work has not been finished, and there are a lot of things
need to be done. In the nearest future, we are planning to
implement the framework core and customize the generator for
widely-spread microprocessor architectures, including ARM
and MIPS. We are also working on MicroTESK’s extensions
for specifying/testing memory management mechanisms and
pipeline control logic.

REFERENCES

[1] M.S. Abadir, S. Dasgupta, Guest Editors’ Introduction: Microprocessor
Test and Verification. IEEE Design & Test of Computers, Volume 17,
Issue 4, 2000, pp. 4–5.

[2] A. Kamkin. Test Program Generation for Microprocessors. Institute for
System Programming of RAS, Volume 14, Part 2, 2008, pp. 23–63 (in
Russian).

[3] http://www.arm.com/community/partners/display product/rw/ProductId/5171/.
[4] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov

and A. Ziv. Genesys-Pro: Innovations in Test Program Generation for
Functional Processor Verification. IEEE Design & Test of Computers,
Volume 21, Issue 2, 2004, pp. 84–93.

[5] P. Mishra and N. Dutt. Specification-Driven Directed Test Generation
for Validation of Pipelined Processors. ACM Transactions on Design
Automation of Electronic Systems (TODAES), Volume 13, Issue 3,
2008, pp. 1–36.

[6] http://forge.ispras.ru/projects/microtesk.
[7] A. Kamkin. Some Issues of Automation of Test Program Generation for

Branch Units of Microprocessors. Institute for System Programming of
RAS, Volume 18, 2010, pp. 129–150 (in Russian).

[8] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus and
G. Shurek. Constraint-Based Random Stimuli Generation for Hardware
Verification. AI Magazine, Volume 28, Number 3, 2007, pp. 13–30.

[9] P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt and A. Nicolau.
EXPRESSION: An ADL for System Level Design Exploration. Technical
Report 1998-29, University of California, Irvine, 1998.

[10] http://www.cs.cmu.edu/˜modelcheck/smv.html.
[11] T.N. Dang, A. Roychoudhury, T. Mitra and P. Mishra. Generating Test

Programs to Cover Pipeline Interactions. Design Automation Confer-
ence (DAC), 2009, pp. 142–147.

[12] A. Kamkin, E. Kornykhin and D. Vorobyev. s Reconfigurable Model-
Based Test Program Generator for Microprocessors. Software Testing,
Verification and Validation Workshops (ICSTW), 2011, pp. 47–54.

[13] B. Dutertre and L. Moura. The YICES SMT Solver. 2006
(http://yices.csl.sri.com/tool-paper.pdf).

[14] L. Moura and N. Bjørner. Z3: An Efficient SMT Solver. Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008, pp. 337–340.

[15] D.R. Cok. The SMT-LIBv2 Language and Tools: A Tutorial. GrammaT-
ech, Inc., Version 1.1, 2011.

[16] M. Aharoni, S. Asaf, L. Fournier, A. Koifman and R. Nagel. FPgen – A
Test Generation Framework for Datapath Floating-Point Verification.
High Level Design Validation and Test Workshop (HLDVT), 2003.
pp. 17–22.

[17] M. Freericks, The nML Machine Description Formalism. Techical Re-
port, TU Berlin, FB20, Bericht 1991/15.

[18] R. Moona, Processor Models For Retargetable Tools. International
Workshop on Rapid Systems Prototyping (RSP), 2000, pp. 34–39.

[19] MIPS64TM Architecture For Programmers. Volume II: The
MIPS64TM Instruction Set, Document Number: MD00087, Revision
2.00, June 9, 2003.

[20] http://forge.ispras.ru/projects/solver-api.
[21] http://www.ruby-lang.org.

57 of 173

Probabilistic Networks as a Means of Testing Web-
Based Applications

Anton Bykau
Department of Informatics

Belarusian State University of Informatics and Radiotechnics
Minsk, Republic of Belarus
anton.bukov@gmail.com

Abstract— The article describes the mechanism used to
control GUI tests coverage and the technique of GUI application
under test model building using probabilistic networks. The
technology of combining GUI tests into the common network has
been developed. The mechanism to report defects is proposed.

Keywords— probabilistic network testing; web interfaces;
automation

I. INTRODUCTION

Testing is a process of execution of the program to detect
defects [1]. The generally accepted methodology for the
iterative software development Rational Unified Process
presupposes the performance of a complete test on each
iteration of development. The testing process of not only new
but also earlier code written during the previous iterations of
development, is called regression testing. It’s advisable to use
the automated tools when performing this type of testing to
simplify the tester work. "Automation is a set of measures
aimed at increasing the productivity of human labor by
replacing part of this work, the work of machines". [2] The
process of automation of software testing becomes part of the
testing process.

The requirements formulation process is the most important
process for software developed. The V-Model is a convenient
model for information systems developing. It’s become
government and defense projects standard in Germany. [3] The
basic principle of V-model is that the task of testing the
application that is being developed should be in
correspondence with each stage of application development
and refinement of the requirements. One of the development
model challenges is the system and acceptance testing.
Typically, this type of testing is performed according to the
black box strategy and is difficult for automation because
automated tests have to use the application interface rather than
API.

"Capture and replay" is the one of the most widely used
technologies for web application test automation according to
the black box strategies today [4]. In accordance with this
technology the testing tool records the user's actions in the
internal language and generates automated tests.

Practice shows that the development of automated tests is
most effective if it is carried out using modern methods of

software development: it is necessary to analyze the quality of
the code, merge into the library the duplicate code of tests,
which must be documented and tested. All this requires a
significant investment of time and the tester should have the
skills of the developer.

Thus, the question arises of how to combine the user
actions recording technology and the manually automated tests
development, how to organize the automated tests verification,
and whether it is possible to develop an application and
automated tests in parallel according to the methodology of the
test-driven development (TDD).

There are systems capable of determining the set of tests
that must be performed first. Such systems offer manually
associate automated tests with the changes in the source files of
application under test. However, the connection between the
source and the tests can be expressed in terms of conditional
probabilities. The probabilistic networks used in the artificial
intelligence, could also be useful when defining the relations
automatically based on the statistics of tests results. By using
probabilistic networks we can link interface operations and test
data and this will allow reducing the complexity of automation.

II. KEY ELEMENTS OF PROPOSED TESTING

TECHNOLOGY

For tests automation we could use a probabilistic network
that has the following structure:

The first level network shown in Fig. 1, consists of two
layers, which determine the location of graphical controls on
the web page. Top-level nodes Fig. 1.1 are either pages or the
condition of the tested application page such as a page of the
user authentication. Lower-level units are templates used to
identify GUI elements Fig. 1.3. Some nodes are GUI container
templates Fig. 1.3. Fig. 1.4 shows the properties of the selected
node, like the template for the password field. Graphic
elements that occur more than on one page can be transferred
to a general unit for multiple pages, such as Fig. 1.5 that shows
the menu items. Fig. 1 shows only the network connection
between the unit and the common elements of the page to
simplify the visualization of the network for testers.

The availability of GUI templates and states of the web
interface allows monitoring the test coverage for interface of

58 of 173

application with tests; it also allows to effectively adapt
automated tests to new versions of the tested application.

Fig. 1 GUI elements composition

The main goal of the second level network is to describe
the workflow of the program in the form of interconnected
rules, describing the program states and GUI interface actions
(see Fig. 2). The network consists of two layers and two types
of nodes that include the nodes of all possible states of the
program (see Fig. 2.1) and the nodes of all possible program
actions (see Fig. 2.2). The communication network describes
the state transitions as a result of GUI activities. The page can
be linked to the data (see Fig. 2.3) to describe the state of the
page containing dynamic elements, for example, a table with a
date. The data layer consists of nodes storing the state of the
tested application and the operations that modify the data. Fig.
2.3 describes the results table which is used in Fig. 2.4. Each
table row should include a reference to additional information;
the lower part of the table should contain additional 3
references (see Fig. 2.4) while the search box should include
the search phrase (see Fig. 2.5). The state of some graphical
elements is not preserved in the data layer (Fig. 2.6) to simplify
the automation process.

The system of tests automation constantly analyzes the state
of the application interface during the tests recording time. If
the same sequence of actions is repeated many times, the
system offers to merge this sequence for multiple pages into a
common block (see Fig. 1.5). The recorded actions and states
will not be duplicated. When writing the second and
subsequent tests, the system adds only unknown conditions and
operations. Although the model interface can be split into
separate files, it will not prevent the system from linking blocks
common for several pages. Often, automated tests complicate
the process of automation as a result of an unsuccessful
candidate decomposition code. A single model of the whole
test interface can help to avoid duplication and to refactor the
source of recorded tests.

The system determines an appropriate relationship between
the states if a previously unknown combination of actions was
done between the known conditions in the process of test
recording.

Fig. 2 Program Algorithm

The third level network describes the tests and defects of
the tested program. The top layer describes a set of written tests
(see Fig. 3.1) and is connected to the nodes pages (see Fig.
3.2). Each test case describes what action and what graphics
should be checked (Fig. 3.3). Subsequently, the system will
find preliminary steps for testing, using an algorithm to find a
way to graph states proposed by S. Russell [5] to perform one
or more tests.

The relationship between the test and page nodes can be
divided by a bug note to describe the defect (see Fig. 3.4). The
defect can be in one of the following states turning a positive
test into a negative one (see Fig. 3.5):

• presence of an undocumented and uncorrected defect
(the node is absent)

• expectance of an uncorrected and described defect (the
defect node created and verify defect reproduce)

• absence of the expected defect (the defect node can’t
reproduce the defect)

• confirmed lack of the described defect (the defect note
verifies the defect absence)

The test system displays test results in a different way for
developers and testers. This allows evaluating the correctness
of the automated tests and independently assessing the quality
of the tested application. The presence of the life cycle of a
defect integrates accounting system defects and automated
testing.

The priority value is associated with each test node. This
characteristic is actually the probability that the test result will
be incorrect, for example, the bug will not be reproduced or the
expected page will not load properly. The higher the
probability of the failure, the more important it is to run the test
to fix the problem and increase the stability of testing.

The priority of the test run can be set manually by the
tester, or can be statistically calculated on the basis of the
associated defect status changes, or the associated source code
changes, or on the basis of the results of the same test for the
same controls of other pages. Typically, these tests are
associated with blocks of common elements (see Fig. 3.6).

The most important testing task is to measure the
relatedness of the test results from the internal state to the

59 of 173

application, or previous operation. The main problem of such
measurements is an extremely large number of conditions with
should be measured by the test system. The whole history of
the automated testing system is preserved, and each performed
activity is associated with a corresponding network node .

Fig. 3 Description of Tests and Defects

The fourth level network describes the knowledge about of
testing purposes (see Fig. 4). The network consists of the nodes
which represent the testing goal (see Fig. 4.1) and is associated
with one or more tests (see Fig. 4.2). The example of the target
can either be one or a group of pages and of the tested interface
program (see Fig. 4.3).

Fig. 4 Description of Test Purposes

Two algorithms are used for the network work; they are the
calculation network algorithm and the path finding algorithm.
The calculation algorithm determines the status of the tested
application using patterns of GUI elements, and calculates the
priority of tests running, analyzing what associated source files
have been changed and what defects have been fixed. The path
finding algorithm finds the sequence of preparatory steps to
perform the test in order to select a sequence of tests that will
allow to reduce the total test time.

III. NETWORKS CALCULATION ALHORITHM

The test system uses a modification of the Bayesian
networks calculation algorithm proposed by R. Schechter [6].
The modified algorithm can calculate the network even in the
presence of the following features:

• Probabilistic network links can be directed or
undirected.

• Probabilistic network links can contradict each other.

The first level network must be recalculated, despite the
controversy because the program interface can be wrong: the
graphic elements may not work properly, requirements may be
outdated or the tester can make mistakes. The goal of the test
system is to detect these mistakes.

Probabilistic networks nodes can take multiple values
which are characterized by probabilities. The probability
evaluate whether the node actually takes this particular
probability value. The condition corresponding to the node, its
condition is called a characteristic. The sum of all
characteristics of the multivalue node equals 1.

 P(A1)+P(A2)+…+P(An)=1 (1)

The network connection may be contradictory.
Contradictions arise when there is a problem in the test
program. The algorithm has to consider the mutual influence of
links and to make approximation solutions. On the other hand,
the system can independently adjust its work in case of the loss
of control of the tested application.

To describe the algorithm we shall present an example of
calculating the characteristics of the two states of simple
networks. For simplicity, we use only the connections between
two nodes while the binary characteristics and the conditional
probabilities equal 1 or 0. We shall use Bayes’ formula to
calculate the characteristic of the required node:

 P(A)=P(A|B)*P(B) (2)

Let’s consider an example where the communication is in
conflict. Let’s suppose that we know that:

Figure 5. Contradictory Conditions

When looking at Figure 5 we can consider connections C-A
and B-A independent, and the probability node A is calculated
as the probability of two independent events:

 P(A)=(P(A|B)*P(B)+P(A|С)*P(С))/2 (3)

Another difficulty is the presence of cycles in the network.
Let’s add to the previously described structure of the network
Figure 5 connection C-B, and calculate the values of the
characteristics B and C on the basis of the given vertex A

60 of 173

Figure 6. Contradictory Dependencies

When looking at the network (Figure 6) we can see an
apparent contradiction: the links from node A assign different
states to nodes B and C but the link C - B requires the identity
of node values.

We could solve the contradiction by reducing the trust in
relations of the network but we can’t do that until we know the
correct values. The temporary solution should be the
construction of the set of the skeletons of trees of a network for
any given performance with equal confidence in relations and
the known value of the node A. There are three skeletons for
the network (see Figure 6). It’s easy to calculate the probability
value of the nodes for each such skeleton. Finally we find the
average value for each characteristic for each skeleton tree. The
solution can be presented in the following way:

 P(C=1)=P(B=0)=0,333, P(C=0)=P(B=1)=0,667 (4)

The advantage of the algorithm is that the connection can
combine more than two characteristics and the logic of the
relationships conversions can be defined by the programmer
manually. The link may be represented as a function of several
variables that return the value to the node to which it is directed
and that can be defined in any programming language. The
presence of a double direction link between the two
characteristics can be described by two oppositely oriented
links.

IV. AUTOMATION PROCESS

The probabilistic network for the application testing can be
created on the basis of the “record and play” tool. This method
is useful when the testing system has a poor knowledge of the
tested application. When recording the test system stores the
sequence of the application states and interface actions. After
the recording of the test the test automation system invites the
tester to answer some questions. The recorded net diagram of
transitions between the states should become the result of the
recording.

The tester creates a test node and describes the data need
for the test to define the test case. He can create a set of
tolerance values for each GUI element of the page (see Fig.
2.3). In this case, it will reach the coverage criterion according
of the black box strategy “covering the tolerance range”, based
on the testing criteria of the class of input and output data.

The network for the application testing can be created using
the answers to the questions about the interface. This interface
is effective when the model contains enough knowledge about
the tested program. The system will be testing the application

in the background, and if there is a problem, it will ask the
tester without stopping the execution of other tests.

The system operation and the work of the tester start with
some initial page and state of the tested application. This
condition is evaluated and if the condition does not correspond
to GUI templates, the system will suggest that we add a new
state to the model. To facilitate the dialogue with the user all
the questions are simply reduced to the confirmation of the
changes, or, in case of an error, the choice of the right solution.
For example, if the test system reliably determines all the basic
controls, it prompts you just to confirm a page layout. Next, the
system selects the highest priority operation for testing, then
performs it, and analyzes the next state. In case of conflict such
as some unexpected behavior or the appearance of the tested
application the system will propose to create a characteristic
describing the defect.

CONCLUSION

The technology of the test automation using probabilistic
networks uses generic templates of interface graphics to
conduct the analysis of the interface test program which allows
to carry out the testing of the applications based on the “black
box” criterion by covering the tolerance range on the basis of
the testing criteria of the classes of input and output data.

The developed measures allowed to vary the order of the
execution of tests for related modules, analyzing the test results
for the current or previous versions of the application and can
serve as a new measure to evaluate the relation between the test
results and various modules of the program for its overall
functionality.

The mechanism of defects detection, designed and tested by
the author, can be used to evaluate the correctness of the
automated testing work and independently assess the quality of
the tested application.

This technology has been tested in the project WebCP by
automation Ajax interface testing and has shown its
effectiveness and convenience in comparison with the
development of GUI Unit Tests writing.

The author thanks his scientific adviser I. Piletski for his
help in preparing this paper.

REFERENCES
[1] G. J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., New

Jersey, 2004.

[2] I. Vinnichenko Automation of testing processes, Peter Press, C-
Piterburg, 2005.

[3] The V-Model as Software Development Standard; IABG Information
Technology

[4] Martin Steinegger and Hannu-Daniel Goiss Introducting a Model-based
Automated Test Script Generator - Testing Expirience Magazine. pp.70-
75

[5] S. Russell, P. Norvig, Artificial intelligence: a modern approach
(AIMA), Williams, Moscow, 2007.

[6] R. Shachter, Evaluating influence diagrams. Operations Research, 34
(1986), 871–882.

61 of 173

Software mutation testing: towards combining

program and model based techniques

M. Forostyanova

Department of Information technologies

Tomsk State University

Tomsk, Russia

mariafors@mail.ru

N. Kushik

Department of Information technologies

Tomsk State University

Tomsk, Russia

ngkushik@gmail.com

Abstract — The paper is devoted to the mutation testing

technique that is widely used when testing different software

tools. A short survey of existing methods and tools for mutation

testing is presented in the paper. We classify existing methods:

some of them rely on injecting bugs into a program under test

while other use a formal model of the software in order to inject

errors. We also provide a short description of existing tools that

support both approaches. We further discuss how these two

approaches might be combined for the mutation based test
generation with the guaranteed fault coverage.

Keywords — Software testing, mutation testing, mutation
operator, model based testing, fault coverage.

I. INTRODUCTION

As the number of widely used information systems
increases quickly, the problem of software testing becomes
more important. Thorough testing is highly needed for software
being used in critical systems such as telecommunications,
banking, transportation, etc. [1]. An approach for mutation
testing has been proposed around thirty years ago but there still
remain some issues of this approach waiting for new effective
solutions. Those are fault coverage, equivalent mutants, etc.
that we further discuss. In order to solve these problems model
based methods for mutation testing are now appearing. In this
paper, we make an attempt to follow the chronology of
mutation software testing. We start with the initial
methodology of mutating programs and further turn to model
based mutation testing techniques. In both cases, we provide a
brief description of tools which are developed for
program/model based mutating testing.

As mentioned in [2], the mutation testing has been
introduced by a student Richard Lipton in 1971 [3] while the
first publication in this field has been prepared by DeMille,
Lipton and Sayward [4]. Meanwhile, the first tool for mutation
testing has been developed by Timothy Budd ten years later, in
1980 [5]. Next twenty years the popularity of mutation testing
techniques did not grow rapidly while after Millennium it
became more and more popular. Moreover, in 2000 the first
complete survey of existing methods for mutation testing has
appeared [3]. During the last decade there appeared more than
230 publications on mutation testing [2] and almost all existing
tools rely on injecting errors in a program under test. One may

turn to [2] to find various papers, PhD theses, etc. combined
together into one large repository [6], where the authors make
an attempt to cover mutation testing evolution from 1977 till
2009. However, there exist much less publications on model
based mutation testing and much less tools that support
corresponding formal methods.

In this paper, we first discuss mutation testing technique
when a program is mutated by injecting bugs into it. In this
case, a program with an injected bug is called a mutant. If the
behavior of the program is not changed after an injected bug
then such injection leads to an equivalent mutant. Most of
existing tools are developed for software that is written in high
level language, and thus, mutation operators are often adapted
to language operators. Moreover, ‘good’ tools usually inject
those errors that programmer often ignores in his/her programs.

When deriving a mutant based test suite two ways are often
used. The first way is to randomly generate test sequences and
to check which mutants (errors) are detected by these
sequences. Another option is to generate mutant based test
sequences such that all the injected errors are detected. The
first approach is mostly used when a model is the program
itself while the second approach is used more rarely and deals
with the formal specification of the program.

Considering the first approach there exist tools that are able
to inject bugs into programs written in Fortran [see, for
example 7], C/C++ [see, for example 8], Java [see, for example
9], and an SQL code [see, for example 10]. As for the second
approach, there exist tools that are developed for injecting
errors into software specifications on different abstraction level
such as Finite State Machines [see, for example 11], State
charts [see, for example 12], Petri Nets [see, for example 13],
XML-specification [14]. In this paper, we discuss a number of
methods and tools for mutation testing and divide the paper
into two parts. The first part is devoted to the program based
mutation testing where bugs are injected into programs and in
the second part the model based mutation testing is discussed.

The rest of the paper is organized as follows. Section II
contains the preliminaries. Section III is devoted to the
program based mutation testing. This section contains the
description of a testing method when a program is mutated and
a short description of tools for mutating programs written in

62 of 173

Java, C and SQL languages. The model based mutation testing
is discussed in Section IV. This approach is illustrated for
different kinds of program specifications such as finite state
machines, XML-specifications, etc. A number of tools
developed for injecting faults into the program specifications
are also described. Section V discusses an approach of
combining the program based mutation testing with the model
based one. Section VI concludes the paper.

II. PRELIMINARIES

As mentioned above, software testing becomes more and

more important and there appear new methods and techniques

for this kind of testing. Nevertheless, all methods for software

testing can be implicitly divided into two large groups.

Methods of the first group rely on the informal program

specification or the informal software requirements while

methods of the second group require a formal model to derive
a test suite for a given program. The main advantage of the

first approach is the speed of testing that might be rather high

because of short length of test sequences and because of a the

cardinality of a test suite. However, the main problem of this

technique is the fault coverage that is not guaranteed. This

problem can be partially solved for model based testing

techniques where a test suite is derived based on the formal

specification of a given program. This formal specification

may be finite transition model [15], pre-post conditions [16],

etc. However, the speed of the software testing may fall down

exponentially since a long time is needed for deriving formal
specifications as well as for deriving a test suite on the basis of

this specification. Thus, a good compromise might be to

combine somehow methods of the first and the second groups

in order to increase the testing speed and to guarantee the fault

coverage at least for some classes of program bugs.

Mutant based software testing is not an exception of this

tendency and methods for mutation testing can be also

implicitly divided into those that rely on a program itself and

those that are based on the formal model of a given program.

Hereafter, we refer to methods of the first groups as methods

of program based mutation testing while methods of the

second group are called model based methods. The main idea
of the mutation testing is to change a program or a model in

such way that this change corresponds to possible errors in

program implementation. Another nontrivial task is to derive a

test sequence or a test suite such that all ‘inappropriate’

changes could be detected by applying test sequences.

Each tool for the program based mutation testing relies on

a set of mutation operators and this set describes types of

errors that can be detected in the source code by a

corresponding test suite. The bigger is the set of mutation

operators the more test properties can be verified by these

mutants.
In this paper, when discussing the program based mutation

testing we consider programs written in high level languages

like C + + and Java. We further turn to the model based

mutation testing and consider finite state machines (FSMs)

and extended FSMs (EFSMs) as formal specifications that are

widely used for the software test derivation.

Model based testing allows to detect those implementation

bugs that cannot be detected by random testing or other

techniques of program based testing. Thus, in this paper we

discuss which methods and tools are developed for the

program based mutation testing as well as for the model based

mutation testing. In Section V we make a step towards
combining those methods, i.e., we establish a correspondence

between software bugs (program mutants) and formal

specification errors (model mutants).

III. PROGRAM BASED MUTATION TESTING

In case of the program based mutation testing mutated
programs (mutants) are often used for evaluating the quality of
a given test suite, i.e., a mutant is used for checking whether
corresponding types of program bugs can be detected by the
test suite or not. If some mutants cannot be detected or killed
the test suite is extended by corresponding test sequences. This
approach is illustrated in Fig. 1. [2]. One may turn to [2] to find
out more about the scheme presented in Fig 1.

Fig. 1. Generic Process of Mutation Analysis

The program based mutation testing described above has
been implemented as several software tools. Most of the tools
are developed only for injecting bugs into a source code and
only several tools support a test generation process. Moreover,
almost every tool for program based mutation testing is
commercial. We further provide a short description of existing
tools for mutation testing of C/C++ and Java programs.

A. Tools for C program Mutation testing

Agrawal et al. [8] have proposed a comprehensive set of
mutation operators for the ANSI C programming language in
1989. There are 77 mutation operators defined in this set.
Moreover, Vilela et al. [17] proposed a number of mutation
operators to represent bugs associated with static and dynamic
memory allocations.

Now there exist a number of tools for injecting errors into
C programs. Some of these tools are briefly presented in Table
I.

63 of 173

TABLE I

A LIST OF TOOLS FOR PROGRAM BASED MUTATION TESTING FOR C++/C PROGRAMS

Name Date of first

release

Accessibility

Is improving

currently

Features

PlexTest [18] 2005 The commercial product + Only an instruction removal is supported

Insure++ [19] 1998 The commercial product + Injects and detects bugs for identifiers,
memory/stack bugs and bugs that concern to

linking libraries

Proteum/IM

2.0 [20]

2000 The free download utility - Supports 71 mutation operators and calculates the

number of mutants being killed

Certitude [21] 2006 The commercial product + Can be used for C/ C + + and HDL programs;

Combines the mutation approach with the static

code analysis;

Allows to verify an environment of the program

under test

MILU [22] 2008 The free download utility + Allows a user to choose the desired number of

mutants and to specify their types;

77 mutation operators are supported

One may conclude from Table I that almost all existing

tools are developed for injecting bugs, probably except of

PlexTest, Insure++ and Certitude that also provide test

generation. In spite of the fact that these products are

commercial they do not guarantee the guaranteed fault

coverage with respect to their specifications.

B. Tools for Java program mutation testing

 As many Java programs support the object-oriented
paradigm, tools that inject bugs into such programs are mainly
concentrated on disturbing inheritance and/or polymorphism
features.

Kim et al. [23] were the first to define mutation operators
for Java programming language taking into account object-
oriented paradigm. This team has proposed 20 mutation
operators for Java programs. Moreover, Kim has introduced
Class Mutations, which were divided into six groups:
Types/Variables, Names, Classes/interface declarations,
Blocks, Expressions and others.

Following the tendency from Section A we further describe
several tools developed for Java program mutation testing.
Differently from C based mutation testing most of the tools
developed for the Java program mutation testing are distributed
for free. A brief description of available tools is presented in
Table II.

Looking at this table one may conclude that there exist

tools that support injecting bugs concerned on encapsulation,

polymorphism and inheritance. Those are MuJava,

Javalanche, and Jester. Moreover, these tools support mutation

testing based on corresponding mutation operators. However,

the fault coverage of these tests remains unknown. One of the

reasons could be the problem of equivalent mutants that are

not automatically excluded from the mutants being generated.

Therefore, the program based mutation testing needs to be
extended with the formal specification of a program under test

in order to provide the guaranteed fault coverage of a test

suite.

TABLE II

A LIST OF TOOLS FOR PROGRAM BASED MUTATION TESTING FOR JAVA PROGRAMS

Name Date of first

release

Accessibility

Is improving

currently

Features

Jester [24] 2001 The free download utility + Supports object-oriented mutation operators;

Shows equivalent mutants to a user

MuJava [25] 2004 The free download utility + Supports 24 mutation operators which specify

object-oriented bugs;

Mutants are generated and executed

automatically;

Equivalent mutants have to be excluded manually

MuClipse [26] 2007 The free download utility

(plugin for Eclipse)

+ This is the MuJava version developed for Eclipse

Javalanche [27] 2009 The commercial product + Detects around 10% of equivalent mutants;
Allows a user to manipulate with a bytecode;

Most mutants are concerned about the

replacement of an arithmetic operator, constants,

64 of 173

function calls;

Can execute several mutations in parallel and

might be used for testing parallel and distributed

systems

IV. MODEL BASED MUTATION TESTING

The first steps in model based mutation testing have been
made in 1983 by Gopal and Budd. They have proposed a
technique for the software mutation testing describing
software requirements taking into account the predicate
structure of the program under test.

When generating a test using the model based mutation
testing, errors are injected into the model, i.e. the model is
mutated. Moreover, similar to the program based mutation
testing equivalent mutants need to be deleted. The model
based mutation testing has been studied for a number of
formal models such as automata models [15], Petri nets, etc
described in UML, XML, etc.

By the use of automata models such as FSMs, EFSMs,
Petri nets, tree automata, labeled transition systems (LTS),
etc. there were proposed a number of approaches for
specifying informal software requirements. A number of
mutation operators have been proposed for such finite state
models. One may turn, for example, to [28] where the
authors propose 9 mutation operators representing faults
related to states, inputs and outputs of an FSM that is
mutated. This set of mutation operators has been
implemented in the tool PROTEUM [20]. In [29], the
authors investigated an application of mutation testing for
probabilistic finite automata (PFAs). They have defined 7
mutation operators and have specified a number of rules how
to exclude equivalent mutants.
 Mutation operators have been also defined for EFSMs in
[30]. In this work, the author has discussed changing
operators and/or operands in functions and predicates.
Nevertheless, only some types of mutants are formally
specified in this work. Thus, in our paper we make an
attempt to classify EFSM mutants and to establish a
correspondence between EFSM mutants and bugs in the
corresponding software implementations.

 Tree automata are also of a big help when dealing with
software verification. Moreover, each tree automaton can be
described as an XML document, and thus, a number of
mutation operators is defined especially for XML-
documents. One may turn to [14] where Lee and Offut
discuss how to inject errors into XML-documents and how to
apply this technique for mutation testing of web-servers. The
authors have proposed 7 mutation operators and they have
further extended their work in 2001 introducing a new
approach to XML mutation. This work is based on deriving
invalid XML-data using seven mutation operators. All the
XML mutation operators introduced in [32] have been
combined together and have been implemented in the tool
XTM. XTM supports 18 mutation operators and allows to
test XML-documents. Nevertheless, the authors of [31]
‘complain’ that only 60% of injected errors have been
detected in their experiments.

V. ESTABLISHING A CORRESPONDENCE BETWEEN

PROGRAM MUTANTS AND MODEL MUTANTS

In order to somehow combine methods and tools for the
program based mutation testing with that based on formal
models we are now interested in establishing a
correspondence between bugs in a program under test and
faults in a model of this program. We are planning to
experimentally solve this problem and we focus on testing
C/C++ programs. Moreover, we choose one of finite state
models discussed above and define a number of mutation
operators for this model. A model of an EFSM [32] is rather
close to C/C++ implementation because it extends a classical
FSM with input and output parameters and context variables.
Predicates can be also specified in the EFSM model and a
transition can be executed if a corresponding predicate is
true. Thus, we establish a correspondence between bugs in
C/C++ programs and EFSM faults. Such correspondence can
be further used for deriving a test suite for C/C++
implementations based on program mutants but preserving
the same fault coverage as if a test suite is derived based on a
corresponding EFSM.

We first classify EFSM mutants and then establish to
which C/C++ program errors they correspond to.

1. Predicate EFSM mutant is derived when a predicate
formula is mistaken or the predicate is deleted, i.e. ,transition
becomes unconditional.

2. Transition EFSM mutant is derived when a transition
is deleted, unspecified transition is added to EFSM or the
next state of some transition is wrong.

3. Function EFSM mutant occurs when changing a
formula for calculating the next value of a context variable or
an output parameter.

We now discuss which C/C++ bugs correspond to the
above mutants.

A. Predicate mutants

Each EFSM predicate corresponds to a switch/case or
if/else instruction of a corresponding C/C++ code, and thus,
the following cases are possible.

1. An EFSM predicate is deleted and this fault
corresponds to eliminating the if/else instruction
from the C code.

2. An EFSM predicate consists of several conditions
and one of these conditions is deleted. In this case,
the corresponding C code contains a complex
condition under if or while and one of its conditions
is deleted.

3. Changing logical connectives of a predicate
corresponds to a software implementation with an
invalid condition.

65 of 173

4. An EFSM predicate can be also changed with
respect to a corresponding formula, i.e., operators
and/or operands may be changed. These changes
correspond to the same changes under if or while
conditions in the C code.

B. Transition mutants

 This type of EFSM faults is rather difficult to correlate
with C/C++ implementation changes. The reason is that this
correspondence strongly depends on how states are defined
in the program. If each EFSM state corresponds to one of
special program state variable then EFSM transition mutant
can correspond to changing the identifier of the next state in
the program. If the transition is deleted in the EFSM then a
corresponding instruction is deleted from the C/C++ code.

Establishing such correspondence is much more difficult
when state semantics is different in the program and by now
this option is out of the scope of this paper.

C. Function mutants

 When changing formula for calculating values of a
context variable or output parameters corresponding C/C++
program is changed in the same way. Thus, EFSM function
mutants correspond to those program mutants that are
derived by changing corresponding operators and/or
operands in the C/C++ instructions.

In Table III the correspondence between EFSM mutants
and bugs in software implementations is presented.

TABLE III

 A CORRESPONDENCE BETWEEN EFSM MUTANTS AND PROGRAM BUGS

VI. CONCLISUION

In this paper, we have discussed different methods and
tools developed for the software mutation testing. The paper
clearly shows that there exists a list of tools that support
program based mutation testing when a bug is injected into
the original program. Much less tools are developed for
model based software testing in spite of the fact that this
technique allows to guarantee the fault coverage of a test
suite. As a result, we are planning to combine the program
based mutation testing with the model based one in order to
derive tests with the guaranteed fault coverage rather fast.
For this purpose we have tried to establish a correspondence
between program bugs and model mutants. Such
correspondence can be further used for deriving a test suite
for C/C++ implementations based on program mutants but
preserving the same fault coverage as if a test has been
derived based on corresponding EFSM. Developing such
testing method based on this correspondence is an open
problem for a future work.

REFERENCES

[1] О. Г. Степанов. Методы реализации автоматных
объектно-ориентированных программ. Диссертация
на соискание ученой степени кандидата
технических наук, СПбГУ ИТМО: 2009, 115 с.

[2] Yue Jia, M. Harman, IEEE, ”An Analysis and Survey
of the Development of Mutation Testing”, pp 33

[3] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting
the Orthogonal,”In Proceedings of the 1st Workshop on
Mutation Analysis (MUTATION’00), published in
book form, as Mutation Testing for the New Century.
San Jose, California, 6-7 October 2001, pp. 34–44

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints
on Test Data Selection: Help for the Practicing
Programmer,” Computer, vol. 11, no. 4, pp. 34–41,
April 1978

[5] T. A. Budd, “Mutation Analysis of Program Test Data,”
PhD Thesis,Yale University, New Haven, Connecticut,
1980

[6] Repository: [web-site]. URL:
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/, 2010

[7] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayward,“Theoretical and Empirical Studies on Using
Program Mutation to Test the Functional Correctness of
Programs,” in Proceedings of the 7th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL’80), Las Vegas, Nevada, 28-30
January 1980, pp. 220–233

[8] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W.
Hsu, E. W. Krauser, R. J. Martin, A. P. Mathur, and E.
Spafford, “Design of Mutant Operators for the C
Programming Language,” Purdue University, West
Lafayette, Indiana, Technique Report SERC-TR-41-P,
March 1989.

Program bugs EFSM mutants

Removal of instruction block if / else Predicate mutant (a transition becomes unconditional)

Removal of a part of composite condition Predicate mutant

Sign changing in an if condition Predicate mutant

Operators and/or operands changes in an if condition Predicate mutant

Change of identifier in an if condition Predicate mutant

Return of a wrong variable from a function Output mutant

Changing a sign in an arithmetic operation Function mutant

Removal of instruction block after if (or else) Transition mutant

66 of 173

http://www.dcs.kcl.ac.uk/pg/jiayue/repository/

[9] S. Kim, J. A. Clark, and J. A. McDermid, “Investigating
the effectiveness of object-oriented testing strategies
using the mutation method,” in Proceedings of the 1st
Workshop on Mutation Analysis (MUTATION’00),
published in book form, as Mutation Testing for the
New Century. San Jose, California, 6-7 October 2001,
pp. 207–225.

[10] SQLmutation : [web-site]. URL:
http://in2test.lsi.uniovi.es/sqlmutation/, 2005

[11] S. S. Batth, E. R. Vieira, A. R. Cavalli, and M. U. Uyar,
“Specification of Timed EFSM Fault Models in SDL,”
in Proceedings of the 27th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’07), ser. LNCS, vol.
4574. Tallinn, Estonia: Springer, 26-29 June 2007, pp.
50–65.

[12] G. Fraser and F. Wotawa, “Mutant Minimization for
Model-Checker Based Test-Case Generation,” in
Proceedings of the 3rd Workshop on Mutation Analysis
(MUTATION’07), published with Proceedings of the
2nd Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART’07).
Windsor, UK: IEEE Computer Society, 10-14
September 2007, pp. 161–168.

[13] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M.
E. Delamaro, and W. E. Wong, “Mutation Testing
Applied to Validate Specifications Based on Petri
Nets,” in Proceedings of the IFIP TC6 8th International
Conference on Formal Description Techniques VIII,
vol. 43, 1995, pp. 329–337.

[14] S. C. Lee and A. J. Offutt, “Generating Test Cases for
XML-Based Web Component Interactions Using
Mutation Analysis,” in Proceedings of the 12th
International Symposium on Software Reliability
Engineering (ISSRE’01), Hong Kong, China,
November 2001, pp. 200–209.

[15] N.Shabaldina, Khaled El-Fakih, N. , "Testing
Nondeterministic Finite State Machines with Respect to
the Separability Relation", TestCom/FATES, 2007,
pp:305-318

[16] S. S. Batth, E. R. Vieira, A. R. Cavalli, and M. U. Uyar,
“Specification of Timed EFSM Fault Models in SDL,”
in Proceedings of the 27th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’07), ser. LNCS, vol.
4574. Tallinn, Estonia: Springer, 26-29 June 2007, pp.
50–65.

[17] P. Vilela, M. Machado, and W. E. Wong, “Testing for
Security Vulnerabilities in Software,” in Software
Engineering and Applications, 2002.

[18] PlexTest : [web-site]. URL:
http://www.itregister.com.au/products/plextest, 2005

[19] Insure++: [web-site]. URL:
http://www.parasoft.com/jsp/products/insure.jsp?itemId
=63, 1998

[20] M. E. Delamaro, J. C. Maldonado, "Proteum/IM 2.0:
An Integrated Mutation Testing Environment", Univ. de
Sao Paulo, Sao Paulo, Brazil, 2001, pp. 91 - 101

[21] Cetress, “Certitude,”: [web-site]. URL:
http://www.certess.com/product/ , 2006

[22] Y. Jia and M. Harman, “MILU: A Customizable,
Runtime-Optimized Higher Order Mutation Testing
Tool for the Full C Language,” in Proceedings of the
3rd Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART’08).
Windsor, UK: IEEE Computer Society, 29-31 August
2008, pp. 94–98.

[23] S. Kim, J. A. Clark, and J. A. McDermid, “The
Rigorous Generation of Java Mutation Operators Using
HAZOP,” in Proceedings of the 12th International
Cofference Software and Systems Engineering and their
Applications (ICSSEA 99), Paris, France, 29
November-1 December 1999.

[24] Jester : [web-site]. URL: http://jester.sourceforge.net/,
2001

[25] MuJava : [web-site]. URL:
http://cs.gmu.edu/~offutt/mujava/, 2004

[26] B. H. Smith and L. Williams, “An Empirical Evaluation
of the MuJava Mutation Operators,” in Proceedings of
the 3rd Workshop on Mutation Analysis
(MUTATION’07), published with Proceedings of the
2nd Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART’07).
Windsor, UK: IEEE Computer Society, 10-14
September 2007, pp. 193–202.

[27] Schuler, D., Dallmeier, V., and Zeller, A. 2009.
Efficient mutation testing by checking invariant
violations. In Proceedings of the 18th international
Symposium on Software testing and Analysis (2009),
pp. 69–80.

[28] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and
P. Masiero, “Mutation Analysis Testing for Finite State
Machines,” in Proceedings of the 5th International
Symposium on Software Reliability Engineering,
Monterey, California, 6-9 November 1994, pp. 220–
229.

[29] R. M. Hierons and M. G. Merayo, “Mutation Testing
from Probabilistic Finite State Machines,” in
Proceedings of the 3rd Workshop on Mutation Analysis
(MUTATION’07), published with Proceedings of the
2nd Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART’07).
Windsor, UK: IEEE Computer Society, 10-14
September 2007, pp. 141–150.

[30] А. В. Коломеец. Алгоритмы синтеза проверяющих
тестов для управляющих систем на основе
расширенных автоматов. Дис. … канд. техн. наук.
Томск: 2010, 129 с.

[31] Ledyvania Franzotte and Silvia Regina Vergilio,
“Applying Mutation Testing to XML Schemas”,
Computer Science Department, Federal University of
Parana (UFPR), Brazil, pp 6

[32] El-Fakih K., Prokopenko S., Yevtushenko N.,
Bochmann G. "Fault diagnosis in extended finite state
machines",In Proc. of the IFIP, 15th Intern. Conf. on
Testing of Communicating Systems, France -2003.

67 of 173

http://in2test.lsi.uniovi.es/sqlmutation/
http://www.itregister.com.au/products/plextest
http://www.parasoft.com/jsp/products/insure.jsp?itemId=63
http://www.parasoft.com/jsp/products/insure.jsp?itemId=63
http://www.certess.com/product/
http://jester.sourceforge.net/
http://cs.gmu.edu/~offutt/mujava/

Experimental comparison of the quality of TFSM-

based test suites for the UML diagrams

Rustam Galimullin

Department of Radiophysics

Tomsk State University

Tomsk, Russia

nihilkhaos@gmail.com

Abstract— The paper presents the experimental comparison

of the quality of three test suites based on the model of a Finite

State Machine with timeouts, namely, the explicit enumeration of

faulty mutants, transition tour and TFSM-based black-box test.

Test suites are then applied to the program, automatically

generated via the UML tool. The experimental results on the

quality of the above mentioned test suites and the corresponding
analysis are presented.

Keywords—Finite State Machines with timeouts, the UML state

machine diagrams, test suites

I. INTRODUCTION

Nowadays software failures of critical control systems are

very expensive, and, thus, it is essential to provide high-

quality testing at every stage of the system development.

Many of such systems are formally described using the UML

(the Unified Modeling Language) that has become the de facto

standard for modeling software applications. The UML being

a visual modeling language allows obtaining comprehensive

and detailed information about a system under design, as well
as provides a possibility for convenient update of the system.

Correspondingly, the UML is widely used in software

engineering, business project development, hardware design

and in a number of other applications. The UML description

can be automatically translated into a program code using

proper tools and the developed software should be thoroughly

tested. One of the formal models for testing UML-based

software is a trace timed model. In this paper, we derive tests

with the guaranteed fault coverage based on a timed Finite

State Machine (FSM) augmented with timeouts [1], since

FSMs are known to be an efficient model for deriving tests

with the guaranteed fault coverage. The paper presents a case
study for assessing the quality of test suites derived by three

methods [2, 3, 4], which is estimated for the example of a

phone line; the UML description of this project is taken from

[5]. Using the tool Visual Paradigm for UML 8.0 [6] a JAVA

code is generated for this application that serves a sample

when assessing the test suite quality. We first check whether

the initial program passes all the derived test suites. At the

second step, some practical faults are injected into the initial

program. Applying to each mutant tests, which were derived

on the basis of timed FSM, we check whether injected faults

can be detected with the test suites and analyze the reason

when some faults cannot be detected with some/all derived

test suites.

II. PRELIMINARIES

The model we use, TFSM, is an extension of a classical

FSM that is described as a finite set of states and transitions

between them. Every transition is labeled by an input/output

pair, where an input triggers the transition and an output is a

system response to a given input. Formally, a timed Finite

State Machine (TFSM) is a 6-tuple S = (S, I, O, s0, λS, ∆S)
where S is a finite nonempty set of states with the initial state

s0, I and O are finite disjoint input and output alphabets, λS  S

 I  O  S is transition relation and ∆S: S → S × (N  ) is a
delay function defining timeout for each state [1]. If no input

is applied at a current state during the appropriate time period

(timeout), a TFSM can move to another prescribed state. A

TFSM is called deterministic if for each pair (s, i)  S × I

there is at most one pair (o, s′)  O × S such that (s, i, o, s′) 
λS, otherwise it is called nondeterministic. If for each pair (s, i)

 S × I, there is at least one pair (o, s')  O × S such that (s,i,

o, s')  λS then S is said to be complete, otherwise it is partial.

A timed input symbol is a pair i, t  I  Z0
+, where Z0

+ is
a set of nonnegative integers. The timed input symbol shows

that the input symbol i is applied at the moment when the

value of the time variable is equal to t. A sequence of timed

input symbols i1, t1 ... ik, tk is a timed input sequence of
length k.

Let S = (S, I, O, s0, λS, ∆S) and Q = (Q, I, O, q0, λQ, ∆Q) be

complete TFSMs. TFSMs S and Q are said to be non-

separable if the sets of output responses of these TFSMs to

any timed input sequence α intersect; i.e. outS (s0, α) ∩ outQ

(q0, α)  . Otherwise, the TFSMs are separable. A timed

input sequence α, such that outS (s0, α) ∩ outQ (q0, α) =  is
called a separating sequence for TFSMs S and B. TFSM S is a

submachine of TFSM Q if S  Q, s0 = q0 and each timed

transition (s, i, t, o, s) of S is a timed transition of Q.
Intersection S ∩ Q of two FSMs is the largest submachine

of P = (P, I, O, p0, λP, ΔP), where P = S × K × Q × K, K= {0,

…, k}, k = min(max ΔS(s), max ΔQ(q)), the initial state is

68 of 173

quadruple (s0, 0, p0, 0). Transition relation λP and function ΔP

are defined by the following rules:

1. The transition relation λP contains quadruple [(s, k1, q,

k2), i, o, (s', 0, q', 0)] iff (s, i, o, s')  λS and (q, i, o, q')  λQ.
2. Time function is defined as ΔP(s, k1, q, k2) = [(s, k'1, q,

k'2), k], k = min(S(s)N - k1, Q(q)N - k2). State (s,

k1, q, k2) = (S(s)S, 0, Q(q)Q, 0), if S(s)N = ,

Q(q)N =  or (S(s)N - k1) = (Q(q)N - k2). If (S(s)N - k1),

(Q(q)N - k2)  Z+ и (S(s)N - k1) < (Q(q)N - k2), then state

(s, k1, q, k2) = (S(s)S, 0, q, k2 + k). If (S(s)N -

 k1), (Q(q)N - k2)  Z+ and (S(s)N - k1) > (Q(q)N - k2), then

state (s, k1, q, k2) = (s, k1 + k, Q(q)Q, 0).

III. CASE STUDY

As a running example, we consider a simple phone line state

machine diagram, taken from [5].

Fig. 1. Phone line state machine diagram

When the device is at Idle state it is possible to pick up the

phone (offHook), and to get soundDialTone as an output. The

state diagram is at Dialing state when a user enters the number
(digit (n)). If the number cannot be served (invalidNumber),

the corresponding message is played (playMessage).

Otherwise, the device enters the state Connecting. At this

state, four different events are possible. Either the number or a

trunk is busy, and in this case, the user should hang up, or the

phone will connect (routed). After the connection there is the

ring (ringBell) and, finally, the conversation takes place (state

Connected). After the conversation, either the user or her/his

partner hangs up. In both cases, the line will be disconnected.

With a case tool Visual Paradigm for UML 8.0 JAVA

program code of this diagram was automatically generated.

A TFSM that describes such a state machine diagram is in
Figure 2.

Fig. 2. TFSM that describes the phone line, presented in Fig. 1.

The TFSM has four states and one timeout at state Ready.

The initial state is Idle. If the user picks up the phone

(offHook), a dial tone is played (soundDialTone), and the

TFSM changes its state to Ready. If the user does not interact

with the system for a certain period of time, 3 time units for

instance, the state will be spontaneously changed to Warning.

At the Ready state, a user also can hang up the phone

(onHook) and in this case, the line will be disconnected
(disconnectLine). If the user enters a valid number

(validNumber), the TFSM can response in three different

ways. The first option is a busy number (slowBusyTone) and

in this case, the system changes its state to Warning. The

second option is a busy trunk (fastBusyTone). The last option

is that a conversation starts. In other words, the corresponding

TFSM is nondeterministic. In the Warning state none of

entered numbers (validNumber and invalidNumber) affects the

system. Being in this state the user can only hang up (onHook)

and the same situation occurs in the Conversation state.

Here we notice that a TFSM is also partial and cannot be
augmented to a complete TFSM as it is usually done when

deriving tests against a partial specification FSM. The reason

is that after onHook input we cannot apply the same input.

This input can be applied only after the input offHook.

IV. METHODS OF TEST DERIVATION

Three TFSM-based methods for the test suite derivation

are considered in the paper. The first method (Method 1) is
based on the explicit enumeration of faulty mutants. Given the

specification TFSM, some faults are injected in it, i.e. some

mutant TFSMs are constructed, and for each mutant an input

sequence that separates the specification TFSM and this

mutant is derived [2]. A separating sequence is an input

sequence such that the sets of output responses of two TFSMs

to this sequence do not intersect, and since the TFSMs can be

nondeterministic we use a separating sequence instead of

traditional distinguishing sequence [7]. In order to derive a

separating sequence we first construct the intersection of two

given TFSMs and then a truncated successor tree is

69 of 173

constructed for the intersection. In the paper, we consider only

six mutants which describe meaningful faults for our running

example.

1. A fault related to the timeout at state Ready. In

this case, the TFSM has a transition, labelled with

timeout 4, instead of 3. For this pair of FSMs,
specification (Fig. 2.) and mutant TFSMs, a

separating sequence is (offHook, 0,

validNumber, 3).
2. Another wrong timeout. But now it is smaller

(e.g. 1) than that of the specification TFSM. By

direct inspection, one can assure, that for this

mutant a separating sequence is (offHook, 0,

validNumber, 2).
3. The situation when having an invalid number as

an input the connection is still found. For this

particular case, a separating sequence is

(offHook, 0, invalidNumber, 0).
4. The situation when during the conversation a user

accidentally types some digits (a number), and the

slow busy tone is played. In this case, an input

sequence (offHook, 0, validNumber, 0,

validNumber, 0) is a separating sequence.
5. The situation when being at state “Warning” we

can make a call anyway. For this case, a

separating sequence is (offHook, 0,

validNumber, 3).
6. The situation when conversation is impossible

(i.e. there is no transition to state Conversation)

and in this case, a separating sequence is

(offHook, 0, validNumber, 0).
We consider the set of the above mentioned separating

sequences as a test suite for explicit enumeration of mutants.

Thus, TS1 = {(offHook, 0, validNumber, 3), (offHook, 0,

validNumber, 2), (offHook, 0, invalidNumber, 0),

(offHook, 0, validNumber, 0, validNumber, 0)}.
The second method (Method 2) for deriving a test suite

against TFSMs with the guaranteed fault coverage is based on

the correlation between TFSM and FSM (Procedure 1) [4]. To

transform a timed FSM into a classical FSM we add a special

input symbol 1 that corresponds to the notion of waiting one

time unit, and a special output – N that corresponds to the case

when there is no reply from the machine. If at state s a timeout

value T is greater than 1, then we add (T – 1) copies of state s

with corresponding outgoing transitions. If TFSM have n

states and the maximum finite timeout is Tmax, the

corresponding FSM may have up to n Tmax states. In Figure 3,
there is an FSM that corresponds to the specification TFSM in

Figure 2.

Fig. 3. FSM that corresponds to the TFSM, presented in Fig. 2.

Given a classical FSM, a test suite that is complete w.r.t. to
output faults can be derived as a transition tour of the FSM

[3]. A transition tour of an FSM is a finite set of input

sequences which started at the initial state traverse each FSM

transition. A corresponding transition tour can be derived for

an FSM that is derived from corresponding TFSM.

Proposition 1. Given a test suite TS for TFSM based on a

transition tour of an FSM output by Procedure 1, the TS

detects each output fault of the TFSM.

A transition tour for the FSM (Fig. 3) is a test suite TS2 =

{(offHook, 0, validNumber, 1, validNumber, 0, onHook,

0), (offHook, 0, validNumber, 1, validNumber, 0,

onHook, 0), (offHook, 0, validNumber, 0), (offHook, 0,

invalidNumber, 2), (offHook, 0, validNumber, 2),

(offHook, 0, onHook, 1), (offHook, 0, offHook, 2),

(offHook, 0, onHook, 0), (offHook, 0, invalidNumber,

0)}.
Consider now the third test derivation method proposed in

the paper [4]. The method has two testing assumptions: the

upper bound on the number of states of a TFSM under test

(implementation under test, IUT) and the largest finite timeout

at a state of the IUT are known. Authors show that in this case,

a complete test suite obtained directly from a given TFSM is
much shorter than a complete test suite that is derived based

on a corresponding FSM by the use of corresponding FSM

based methods [8]. The procedure for test derivation consists

of three steps. We first identify each state of the specification

TFSM using separating sequences. At the next step, we check

all transitions at each state, i.e. reach a state, execute a

transition and execute corresponding separating sequences. At

the last step, timeouts are tested: for this purpose at each state

we apply inputs (i, 1), …, (i, T + 1) when T is the largest

timeout of the IUT. The method was proposed for reduced

complete deterministic TFSMs; however, we use it also for

nondeterministic partial TFSMs adding separating sequences
after each transition. We also assume that if a timeout at a

state of the specification TFSM is  then the IUT has the
same timeout. Correspondingly, for the specification TFSM

(Fig. 2.) we do not check the initial state Idle; all other states

can be identified by separating sequences listed below. For

70 of 173

state Warning we have a separating sequence (offHook, 0,

invalidNumber, 0, invalidNumber, 0), for state

Conversation - (offHook, 0, validNumber, 0,

invalidNumber, 0) and for state Ready - (offHook, 0,

onHook, 0). At the second step all the transitions are

checked. We use a transition tour {(offHook, 0,

invalidNumber, 0, invalidNumber, 0, onHook, 0),

(offHook, 0, validNumber, 0, invalidNumber, 0, onHook,

0), (offHook, 0, onHook, 0)}, where each sequence is
augmented with a corresponding separating sequence At the

final step timeouts are checked and we derive the following

sequences: {(offHook, 0, invalidNumber, 1), (offHook, 0,

invalidNumber, 2), (offHook, 0, invalidNumber, 3)}.

Thus for given FSM test suite is TS3 = {(offHook, 0,

invalidNumber, 0, invalidNumber, 0), (offHook, 0,

validNumber, 0, invalidNumber, 0), (offHook, 0,

onHook, 0), (offHook, 0, invalidNumber, 0,

invalidNumber, 0, onHook, 0), (offHook, 0,

validNumber, 0, invalidNumber, 0, onHook, 0),

(offHook, 0, invalidNumber, 1), (offHook, 0,

invalidNumber, 2), (offHook, 0, invalidNumber, 3)}.

V. EXPERIMENTAL RESULTS

We now consider the set of possible program faults which

is listed below.

1. The transition from state Ready to state

Conversation is triggered by input validNumber,

but the output is fastBusyTone instead of

findConnection.

2. The timeout at state Ready is greater than that in

the specification TFSM, e.g. timeout equals six
instead of three.

3. There is a new transition from state Ready to state

Warning under input onHook with fastBusyTone

output.

4. A fault is inside the program. While scanning the

valid number set there is a while loop, and if an

input number coincides with one in the list, then

Boolean variable flag is true, otherwise – false.
 while ((strLine = br.readLine()) != null)
 {
 if (s == null ? strLine == null :
 s.equals(strLine))
 {
 flag = true;

 }
 }

The fault is as follows. If an entered number is not

in the list, then flag is still true and in order to get

the mutant we add ! in an if clause.
 while ((strLine = br.readLine()) != null)

 {
 if (s == null ? strLine == null :
 !s.equals(strLine))

 {
 flag = true;
 }
 }

The fault implies that all entered numbers are

valid.

5. A new state is added. From state Ready it is

possible to enter a new Wait state via

validNumber input. This means that having a

valid number as an input a user would listen to a

special message, e.g. “Connection is set up.

Please wait”. This is modeled by an output

findConnection. On input validNimber in state

Wait there is an output convContinues. If an

invalidNumber is entered the implementation
TFSM changes its state to state Warning with

fastBusyTone output. Finally, if onHook input is

applied the machine is at Idle state and

disconnectLine output is produced.

6. There is a new timed transition from state

Conversation to state Ready after 8 time units.

This means, that after 8 time units the

conversation is automatically finished.

We first apply each test case to the initial program to be sure

that the program produces expected output sequences to every

test case. Then all the above faults were injected into the

initial program. For each test suite, each test case was applied
to a mutant program. A fault was detected by a test suite when

there was at least one test case of the test suite such that the

output responses of the initial program and of a mutant

program were different. The results are presented in Table I,

where ‘+’ means that this fault can be detected by a

corresponding test suite.

TABLE I. EXPERIMENTAL RESULTS

 1 2 3 4 5 6

TS1 + + - + - -

TS2 + + + + - -

TS3 + + + + + -

As we can see, Faults 3, 5 and 6 were not found by TS1; the

reason can be that we did not consider corresponding mutants

for the specification TFSM. Despite of the fact, that some of

such mutant program still can be detected in this case, we

were ‘unlucky’. Test suite TS2 did not detect Faults 5 and 6,

since when considering a transition tour, we assume that the

number of states of an IUT is the same as of the specification

TFSM. Finally, Fault 6 was not detected even by TS3 because

we also violated testing hypothesis about an implementation

TFSM. Nevertheless, we could conclude that a transition tour

where each sequence is appended with corresponding
separating sequence can detect more faults and thus, such

augmentation is worth for improving the quality of a generated

test suite.

V. CONCLUSIONS

In this paper, we considered three methods for the deriving

tests based on the model of an FSM augmented with input and
output timeouts for automatically generated program code of

an UML project. Using a simple running example we illustrate

that a transition tour of the specification TFSM augmented

with corresponding separating sequences is a test suite of a

good quality and this test suite detects not only faults it is

derived for, but also other faults, including those which

increase the number of states of an implementation TFSM.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my

scientific supervisor professor Nina Yevtushenko for her

invaluable support during the work on paper.

71 of 173

REFERENCES

[1] M. Gromov, D. Popov and N. Yevtushenko, “Deriving test suites for
timed Finite State Machines,” Proc. of IEEE East-West Design & Test

Symposium, pp. 339-343, 2008.

[2] N. Shabaldina and R. Galimullin, “On deriving test suites for

nondeterministic Finite State Machines with time-outs,” Programming
and computer science, vol. 38, pp. 127-133, 2012.

[3] M. Zhigulin “TFSM-based methods of fault detection tests synthesis

with guaranteed fault coverage for discrete controlling systems”, PhD
thesis, TSU, Tomsk, 2012. (in Russian)

[4] M. Zhigulin, S. Maag, A. Cavalli and N. Yevtushenko, “FSM-based test

derivation strategies for systems with time-outs,” Proc. of the 11
th

conference on quality software (QSIC), pp. 141-149, 2011.

[5] J. E. Rumbaugh and M.R. Blaha “Object-oriented modeling and design

with UML (2 ed.),” Pearson Education, 2005.

[6] Visual Paradigm [Electronic resource] - http://www.visual-

paradigm.com/

[7] A. Gill, “Introduction to theory of Finite State Machines,” McGraw-Hill,
1962.

[8] R. Dorofeeva, K. El-Fakih, S. Maag, A. Cavalli, N. Yevtushenko (2010)

“FSM-based Conformance Testing Methods: A Survey Annotated with
Experimental Evaluation,” Information and Software Technology,

Elsevier, 52, pp. 1286-1297, 2010.

72 of 173

http://www.visual-paradigm.com/
http://www.visual-paradigm.com/

Experience of Building and Deployment Debian on
Elbrus Architecture

Andrey Kuyan, Sergey Gusev, Andrey Kozlov, Zhanibek Kaimuldenov, Evgeny Kravtsunov
Moscow Center of SPARC Technologies (ZAO MCST)

Vavilova street, 24, Moscow, Russia
{kuyan a, gusev s, kozlov a, kajmul a, kravtsunov e}@mcst.ru

Abstract—This article describe experience of porting Debian
Linux distribution on Elbrus architecture. Authors suggested
effective method of building Debian distribution for architecture
which is not supported by community.

I. Introduction

MCST (ZAO ”MCST”) is a Russian company specializing
in the development of general purpose CPU with Elbrus-
2000 (e2k) ISA [1] and computing platforms based on it
[2].Also in the company are being developed optimizing
and binary compilers, operating systems. General purpose of
microprocessors and platforms assume that users have the
ability to solve any problems of system integration with its
help. At the user level universality is provided by distribution
of operating system. Distribution uses architecture-dependent
capabilities of software components, such as the kernel, arch-
dependent system libraries and utilities, compilers. Nowadays
there are several large and widely used distributions supported
by community: Gentoo, Slackware, Debian. We chose Debian
guided by wishes of our customers and because Debian is
one of the most stable and well supported Linux distributions.
Debian has system of package management, installer and all
this components are supported by a large community of devel-
opers. 99% of Debian packages are architecture independent
applications and libraries, which is written in C/C++ or Perl,
Python, etc. There is a popular way to building distribution for
unsupported by community architecture: download a limited
number of software sources with different versions and add
a popular package manager, for example dpkg with limited
functionality. This approach allows to provide for user a
distribution with basic functionality and even call it a Debian-
like. A significant drawback of this way is the complexity
or even impossibility of extending the package set. Due to
software dependencies, even if they are, do not match with
dependencies of pure Debian and nothing additional can be
built with using dpkg-buildpackage. This drawback is not
so significant for specialized systems that solve the limited
range of tasks, but a problem for the platform, which is
claimed as universal. This problem is solved by porting Debian
on new architecture in its purest form with preserving all
dependencies. The resulting distribution will allow to solve all
kind of the current problems, even more a system integrator
will be able to build new packages using the package manager.

II. Debian package managment system
Debian is built from a large number of open-source projects

which maintained by different groups of developers around
the world. Debian uses the package term. There are 2 types
of packages: source and binary. Common source package
consists of *.orig.tar.gz file, *.diff.gz file and *.dsc
file. *.orig.tar.gz file contains upstream code of a project,
maintained by original developers. *.diff.gz file contains
a Debian patch with some information about project, such
as build-dependencies, build rules, etc. *.dsc file holds an
information about *.orig.tar.gz and *.diff.gz. Some
source packages, maintained by Debian developers (for ex-
ample dpkg) may not comprise *.diff.gz file because they
already have a Debian information inside. Binary packages
can contain binary and configuration files, scripts, man pages,
documentation and another files to install on the system. In ad-
dition, each package holds metadata about itself. Binary pack-
ages represented as *.deb files. Source and binary packages
contains information about build and runtime dependencies
respectively. Build dependencies are binary packages that has
to be installed on the system for building source package.
Runtime dependencies are binary packages that has to be
installed on the system for correct work of package.

In fact, Debian solves two main problems:
1) supporting appropriate versions of packages
2) managing packages with dpkg and support tools

For building any source package, some utilities have to be
installed on the system. For example, every source code
required make utility. Set of packages that have to be installed
on the system for building called build-essentials. Some of
them are Debian-specific. This because Debian has it’s own
tools and features for building source code directly into
packages. Debian patch for source package holds, as men-
tioned, build rules. Rules is the makefile with set of standard
targets, such as “clean” and “build”. Build process starts with
run dpkg-buildpackage script which is part of dpkg-dev
package. This script checks build dependencies, gets some
information about environment and runs the desired targets
from rules.

III. Architecture-dependent software and Debian release
selection

Architecture-dependent part of software stack (see Fig.1)
comprises the following components: Linux kernel, glibc

73 of 173

library, toolchain (compiler lcc and binutils), strace and de-
buger gdb. Development of this components for new CPU
architecture is long and laborious process. Versions of this
components are crucial for Debian release number selection.

k
e
rn

e
l
s
p
a
c
e

u
s
e
r

s
p
a
c
e

linux kernel

toolchain

glibc

a
rc

h
 d

e
p
e
n

d
e
n
t

s
o
fr

w
a
re

a
rc

h
 i
n

d
e
p
e
n
d
e
n
t

s
o
fr

w
a
re

binutils lcc

gdb strace

perldpkg

xorg

iceweasel abiword

Fig. 1. Software stack

In the table 1 represented comparison of MCST and Debian
architecture-dependent components, according to this table
Debian Lenny is appropriate one for porting.

TABLE I
Architecture-dependent components comparison

version kernel glibc binutils gcc
MCST 2.6.33 2.7 2.18 3.4.6
Lenny 2.6.26 2.7 2.18 4.3.2

Squeeze 2.6.32 2.11 2.20 4.4.5
Wheezy 3.2 2.18 2.10 4.7.2

MCST compiler team has developed two kinds of toolchain:
cross and native. Cross-toolchain, which is running x86-
machine, allow to generate code for e2k ISA. MCST
architecture-dependent components consist of binutils-2.18,
glibc-2.7, gdb-7.2, gcov, dprof, libstlport, libffi and lcc (com-
piler compatible with gcc 3.4.6). Compiler lcc is original
development of MCST [3] and uses frontend which is licensed
from Edison Design Group (EDG)[4]. Remaining components
are the result of porting the GNU utilities on e2k-architecture
and contain a large number of changes arising from architec-
tures peculiarities.

IV. Technical issues for challenging

Define main technical problems in porting Debian on a new
CPU architecture:

1) The chicken and egg problem: for build any package
we need build-essentials set. But we haven’t this one
because we haven’t build and runtime dependencies for
build-essentials packages.

2) Some packages may cyclically dependent on each other.
Example of cyclic dependencies shown in figure 2.

3) While building build-essentials there isn’t simple way
to pass arch identifier to configure script. This because
we built build-essentials without dpkg, which provides
features for auto-detecting cpu type. The problem is
compounded by the fact that some packages strictly
depends on the architecture type.

4) Compilation speed problem. For running iceweasel, gnu-
meric and so on we need to have almost 2500 binary
packages in our repository. Some of them are very large
and build takes more than a day.

5) Difference between gcc and elbrus toolchains: gcc
toolchain packages set and elbrus toolchain packages set
vary greatly, elbrus compiler don’t support some new
language extensions or compiler flags.

perl

��

��

dpkg − dev

''

��
libdpkg − perl

ff

cpio

kkdpkg

Fig. 2. Example of cyclic dependencies.

Fig.2 illustrates a part of runtime and build dependencies
graph for dpkg package. This graph represents existence of
cyclic dependencies, blue arrows depict runtime dependencies
and green arrows depict build dependencies. Package dpkg-
dev is build dependence of perl and it is used only in
process of building perl package, but dpkg-dev required for
working pakage libdpkg-perl, which depend on perl. Thus perl
interpreter should run on machine for building perl package.
Solutions of these problems are presented below.

V. Solution for package manager: building essentials,
breaking cyclic dependencies

Packages from build-essentials set have been built in the
following algorithm:

1) Using debtree utility we built dependency graph of
required packages for build-essentials set.

2) Every package from graph has been built with native
toolchain and configure-make mechanism, without dpkg.

3) In build process, we broke some cyclic dependencies.
Break dependencies algorithm shown in figure 2. It

74 of 173

is seen that if package A depends on package B and
package B depends on package A, we should build
package B 2 times: first time with broken A dependence,
which mean we don’t pass corresponding option to
configure second time after building A package in due
form.

4) Result of building has been installed on the machine and
at the same time wrapped in the package manually.

5) After building all graph elements we built dpkg with
configure-make mechanism.

6) Then we verifyed package manager efficiency by install
on the machine all deb packages that we got manually.

7) All build-essential set have been rebuild with dpkg-
buildpackage.

A

��

A

��

A

��

compilation
((
A

��

A

��
B

@@

B

@@

compilation
66 B

@@

B

@@

compilation
66 B

@@

Fig. 3. Algorithm of resolving circular dependencies

After sequential implementation all 7 points of algorithm
we’ve got small system which can be used for building all
other neccesary packages with dpkg. So, manual building
with configure-make used only in initial phase. After dpkg
all packages have been building with standard debian rules.

VI. Solution for compiler problems

As was mentioned above, Debian for e2k ISA is based
on using lcc compiler, which was developed by MCST
compiler team. Lcc compiler is using edg frontend, which
is compatible with gcc 3.4.6. Lcc dosen’t support some
extensions of C language, for example nested functions.
Programs written with using of nested functions, should be
patched to unwrap this functions. Fortunately as the experience
of porting Debian distribution nested functions are seldom
used, so patches require only for several packages. One of
those packages is bogl-bterm, which is used by Debian
Installeras a graphical frontend. Many of software developed
by GNU project are using gcc directives attribute

((attribute-list)), and some of this directives are not
supported by lcc, so for succesful compilation of such code
corresponding patches should be applied to source package.
MCST toolchain contain library for STL support - libstlport,
which is different from standard STL library libstdc++, also
libstlport is not supported some STL features. Due to this
distinctions such packages as mysql and exim require patches
or special tuning in makefiles to be successfully compiled.

VII. Hybrid compile farm

Due to the existence of two toolchains (cross and native)
feasibility to decrease compilation time appeared. This tech-
nique is based on using hybrid scheme of source-code com-

pilation via distcc. Distcc (distributed C/C++/ObjC compiler)

TABLE II
Compile farm configuration

parametr e2k x86
CPU name Elbrus-2C+ Core2 Duo E8400

CPU frequency 500 MHz 3.00GHz
Number of cores 2 + 4(dsp) 2

[5] is a software for speeding up compilation process by using
distributed computing over network. Compilation of source
package is starting on e2k host with native toolchain and distcc
client, this client is sending preprocessed files to servers with
x86-architecture for code compilation using cross-toolchain.
After compilation server return object files to clients which
perform operations of linking and *.deb packages forming.
Hybrid compile farm, which configuration is described in Tab.
2, was used for building linux distribution of 350 source
packages. This method allow to decrease up to 5 times average
time of package building as compared with native compilation.
Fig. 2 shows a generalized scheme of compile farm, which is
described above.

N
e
tw

o
rk distcc

server

x86 host

cross
toolchain

distcc
server

x86 host

cross
toolchain

.......

e2k host

.......

deb build

system

native

toolchain

distcc

client

preprocessed

code

object file

preprocessed

code
object file

preprocessed

code

object file

distcc
server

x86 host

cross
toolchain

preprocessed

code

object file

e2k host

deb build

system

native

toolchain

distcc

client

preprocessed

code

object file

Fig. 4. Hybrid compile farm

VIII. Solution for arch type

When any package is builded with configure-make, there
are two main ways to pass arch identifier to the config-
ure script: pass --build=arch option to the configure fix

75 of 173

config.guess script which contains all known by community
arch identifiers For correct building we used both. Typical
config.guess patch is as follows:

--- config.guess-orig

+++ config.guess-fix

@@ -854,6 +854,9 @@

crisv32:Linux:*:*)

echo crisv32-axis-linux-gnu

exit ;;

+ e2k:Linux:*:*)

+ echo e2k-unknown-linux-gnu

+ exit ;;

frv:Linux:*:*)

echo frv-unknown-linux-gnu

exit ;;

Typical configure script run as follows:
./configure --build=e2k-unknown-linux-gnu

Dpkg has feature for auto-detect arch type of the host and
target machine which is called dpkg-architecture. It uses dpkg
internal config files, such as cputable. This one contains all
Debian known CPU and consists of three columns: Debian
name for the CPU, GNU name for the CPU and regular
expression for matching CPU part of config.guess output. So
we have to patch cputable too:

--- cputable-orig

+++ cputable-fix

@@ -34,3 +34,4 @@

sh4 sh4 sh4

sh4eb sh4eb sh4eb

sparc sparc sparc(64)?

+e2k e2k-unknown e2k

Almost all packages use dpkg-architecture and get
correct architecture identifier. If they don’t, we fix it.

IX. Conclusion

This article is attempt to share experience in porting Debian
on the architecture which is not supported by the community.
General and specific for e2k architecture problems were de-
scribed, as well as methods for their solutions. Authors hope
that the article will be useful and interesting for developers,
who support Debian on different architectures.

References
[1] Babayan B., “E2K Technology and Implementation”, Proceedings of

the Euro-Par 2000 - Parallel Processing: 6th International, Volume
1900/2000, pp. 18-21, January 2000.

[2] Dieffendorf. K., “The Russians Are Coming. Supercomputer Maker
Elbrus Seeks to Join x86/IA-64 Melee” Microprocessor Report, Vol. 13,
№2, pp. 1-7, February 15, 1999.

[3] Volkonskiy V., “Optimizing compilers for Elbrus-2000 (E2k) architec-
ture”, 4-th Workshop on EPIC Architectures and Compiler Technology,
2005.

[4] http://www.edg.com/
[5] Hall J., “Distributed Compiling with distcc”, Linux Journal, Issue 163,

November 2007.

76 of 173

Generating environment model for Linux device

drivers

Ilja Zakharov

ISPRAS

Moscow, Russian Federation

Email:

ilja.zakharov@ispras.ru

Vadim Mutilin

ISPRAS

Moscow, Russian Federation

Email: mutilin@ispras.ru

Eugene Novikov

ISPRAS

Moscow, Russian Federation

Email: novikov@ispras.ru

Alexey Khoroshilov

ISPRAS

Moscow, Russian Federation

Email:

khoroshilov@ispras.ru

Abstract— Linux device drivers can't be analyzed separately

from the kernel core due to their large interdependency with

each other. But source code of the whole Linux kernel is rather

complex and huge to be analyzed by existing model checking

tools. So a driver should be analyzed with environment model

instead of the real kernel core. In the given paper requirements

for driver environment model are discussed. The paper describes

advantages and drawbacks of existing model generating

approaches used in different systems of model checking device

drivers. Besides, the paper presents a new method for generating

model for Linux device drivers. Its features and shortcomings are

demonstrated on the basis of application results.

Keywords—operating system; Linux; kernel; driver; model

checking; environment model; Pi-processes

I. INTRODUCTION

Linux kernel is one of the most fast-paced software
projects. Since 2005, over 7800 individual developers from
almost 800 different companies have contributed to the kernel.
Each kernel release contains about 10000 patches - work of
over 1000 developers representing nearly 200 corporations
[1]. Up to 70% of Linux kernel source code belongs to device
drivers, and more than 85% errors, which lead to hangs and
crashes of the whole operating system, are also in the drivers’
sources [2] [3].

A. Linux device drivers

The Linux kernel could be divided into two parts - core
and drivers (look at Fig. 1). Drivers manage devices and the
kernel core is responsible for a process management, memory
allocation, networking and et al.

Fig. 1. Device drivers in the Linux kernel.

Most of drivers can be compiled as modules that can be
loaded on demand. Drivers differ from common C programs.
Drivers do not have a main function and a code execution
order is primarily determined by the kernel core. Let us
describe driver organization by considering a simplified
example of a driver in Fig. 2:

 Driver initialization function (the function init
below). A module of a driver is loaded on demand by
the Linux kernel core when the operating system starts
or when a necessity to interact with a corresponding
device occurs. A module execution always begins
with an invocation of a driver initialization function
by the kernel core. In the Fig. 2 the initialization
driver function is usbpn_init.

77 of 173

 Driver exit function (the function exit below). An
interaction with the device is allowed until the module
is unloaded. This happens after an invocation of a
driver exit function by the kernel core. The function
usbpn_exit is such function in Fig. 2.

 Driver Handlers. Various driver routines are usually
implemented as callbacks to handle driver-related
events, e.g. system calls, interrupts, et al. There are
two handlers in the example in Fig. 2: usbpn_probe
and usbpn_disconnect.

 Driver structures (we will call them just “structures”
from now on). Most of handlers that work with
common resources consolidated in groups. Each
handler in such a group implements certain
functionality defined by its role in this group. Usually
pointers to handlers from one group stored in fields of
a special variable with complex structure type. That is
why we identify such groups as “driver structures”. In
example in Fig. 2 usbpn_driver is the driver structure
with usb_driver type. It has two fields “.probe” and
“.disconnect” initialized with pointers to usbpn_probe
and usbpn_disconnect handlers.

 Registration and deregistration of handlers. Before
the kernel core can invoke handlers from the module,
they should be registered. The typical way to register
driver handlers is to call a special function. The
function registers the driver structure with handlers
and since the structure is registered, its handlers can
be called. The driver structure registration takes place
in the driver initialization (in init function body) or in
an execution of a handler from another structure. An
example of registration of usb_driver structure is
illustrated in Fig. 2: usb_register is called in
usbpn_init function body and it registers usbpn_driver
structure variable. Also similar deregistration
functions are implemented for the handler
deregistration.

Even this simplified example illustrates the complexity of
device drivers. A lot of driver methods are called by the kernel
core such as handlers, init and exit functions and there are
routines from the kernel core that are invoked by the driver
such as register and unregister functions and other library
functions. Besides, interaction of the kernel core and the driver
depends on system calls from the user space and interrupts
from devices. Their large interdependency with each other
leads to availability of almost arbitrary scenarios of handler
calling. But in all of such scenarios rules of correctness are
taken into account such as restrictions on order, parameters
and context of handler invocations.

B. Model checking Linux device drivers

Nowadays it is not easy to maintain the safety of all device
drivers manually due to complexity of drivers, high pace of
the Linux kernel development and huge size of source code.
That is why an automated driver checking is required. There
are various techniques for achievement this goal and a model
checking approach is one of them.

Fig. 2. A simplified example of a driver drivers/net/usb/cdc-phonet.c1

(compiled as cdc-phonet.ko module).

As illustrated before, a driver execution depends on the
kernel core. But analysis of a driver together with the kernel
core is rather difficult nowadays for tools due to complexity of
kernel core source code and its huge size. That is why a driver
environment model is required for analyzing device drivers.
The model can be implemented as C program that emulates
interaction of the driver with the kernel core. In general the
model should emulate the interaction with hardware too, but
this aspect is not considered in this paper. The driver
environment model should provide:

 Invocation of the driver initialization and exit
functions.

 All available in the real interaction of the kernel core
and the driver scenarios of invocations of handlers
taking into account:

o Limitations on parameters of handler calls.

o A context of handler invocation such are
interrupts allowed or not.

o Limitations on order and number of
invocations of handlers for:

 Handlers from a driver structure.

 Handlers from different driver
structures.

 Models for kernel core library functions.

An incorrect model often causes a false positive verdict
from a verification tool (verifier below) or a real bug skipping

1
 http://lxr.free-electrons.com/source/drivers/net/usb/cdc-

phonet.c?v=3.0

static int usbpn_probe(struct usb_interface *intf, const

struct usb_device_id *id){

…

}

static void usbpn_disconnect(struct usb_interface *intf){

…

}

static struct usb_driver usbpn_driver = {

 .name = “cdc_phonet”,

 .probe = usbpn_probe,

 .disconnect = usbpn_disconnect,

};

static int __init usbpn_init(void){

 return usb_register(&usbpn_driver);

}

static void __exit usbpn_exit(void){

 usb_deregister(&usbpn_driver);

}

78 of 173

[4]. An example of environment model for the driver
considered above is shown in Fig. 3:

Fig. 3. Environment model for the driver from Fig. 2.

A verifier starts the driver analysis from the function
entry_point. First the driver should be initialized by the
function ubpn_init. If it returns success result “0”, then
usbpn_probe and usbpn_disconnect are invoked. The variable
busy is needed for calling handlers in the proper order. The
handler usbpn_probe should be called the first and if it returns
success result, then usbpn_disconnect should be called.
Operator while is needed for call sequences of handlers of
variable length. Operator switch with the function nondet_int
returning random int provides non-deterministic handler

calling for various scenarios of handler invocations covering
in the. At the end of a driver work usbpn_exit should be
called, but it can take place only if the device wasn’t probed,
either when usbpn_probe wasn’t called or when usbpn_probe
returned an error value or when usbpn_probe and
usbpn_disconnect were already called one or more times.
After the exit invocation a verifier finishes analysis.

II. RELATED WORK

There are several verification systems for device drivers,
but only Microsoft SDV [5] is in industrial use. For modeling
driver environment various approaches are used.

 Microsoft SDV. SDV provides a comprehensive
toolset for analysis of source code of device drivers of
Microsoft Windows operating system. These tools are
used in the process of device driver certification, and
have been included in Microsoft Windows Driver
Developer Kit since 2006. SDV’s driver environment
model is based on manually written annotations of
handlers. SDV provides a kernel core model that
contains simplified stubs of some kernel core routines.
Microsoft SDV is specifically tailored for analysis of
device drivers of Microsoft Windows. Unfortunately,
it is proprietary software, which prohibits its
application to other domains outside Microsoft.

 Avinux [6]. This project was developed in University
of Tubingen, Germany. Its environment model is
based on handwritten annotations of each handler.
Authors paid attention to the problem of proper
initialization of various resources and uninitialized
pointers in the environment model [7].

 DDVerify [8]. The project was developed in Oxford
and Carnegie Mellon universities. Authors
implemented a partial kernel core model for a special
kernel version for verifying drivers of several types.
But the model is handwritten and maintaining it
manually is complicated while the kernel is under
continuous development.

 LDV [9]. LDV framework for driver verification is
developed in Institute of System Programming of
Russian Academy of Sciences. This project took a
high pace of the Linux kernel development. An
environment model generation process is fully
automated and does not need manual annotations in
code. It is based on an analysis of the driver source
code and on a configuration. The configuration
consists of handwritten specifications for several
driver structures and a heuristic template for other
cases. Generated model provides nondeterministic
handler call sequences, interrupt handlers invoking. A
model can be generated for a driver module from any
subsystem and in most cases it correctly describes
interaction of a driver with the kernel core.

The lack of such sufficient handicaps as a demand for
handwritten annotations or the difficulty of model maintaining
allows to efficiently using LDV for verifying all kernel drivers

void entry_point(void){

 // Try to initialize the driver.

 if(usbpn_init())

 goto final;

 // The variable shows usb_driver device is probed

// or not.

 int busy = 0;

 // For call sequence of handlers of any length.

 while(1){

 // Nondeterministic choosing

 switch(nondet_int()){

 case 1:

 // The device wasn’t probed.

 if(busy == 0){

 res = usbpn_probe(..);

 if(res == 0){

 busy = 1;

 }

 }
 break;

 case 2:

 // The device was already

 // probed.

 if(busy == 1){

 usbpn_disconnect(..);

 busy = 0;

 }
 break;

 case 3:

 // Try to unload the module

 // if the device wasn’t probed.

 if(busy == 0){

 goto exit;

 }
 break;

 default: break;

 }

}

// Unload driver.

exit: usbpn_exit();

 final:

}

79 of 173

from a lot of kernel releases. However, a driver environment
generator has considerable limitations:

 Only linear handler call sequences are available,
where each handler can be called only once.

 Driver structures registration and deregistration are
not taken into account in model generation process.

 Source code analysis is based on regular expressions.
This approach leads to syntactic mistakes in a model
due to changes in the kernel and complexity of the
kernel source code.

 Not all needed restrictions on handler calls can be
described in the configuration.

 For a driver module that consists of several files the
tool generates separate models for each “.c” file but
not the one for the whole module.

Such shortcomings lead to incorrect verdict from a verifier
or real bugs missing. And in most cases the tool doesn’t
provide any capabilities for overcoming model imperfectness.
This paper suggested a new approach for generating driver
environment model.

III. SUGGESTED APPROACH

The main goal of this research was to develop a new tool
for automatically generating environment model for kernel
driver modules which contain one or several files. An
approach suggests environment model that should take into
account:

 All available in real driver handler call scenarios from
a one driver structure.

 Limitations on order of calling handlers from several
driver structures.

 Association of handlers invocation with registrations
and deregistration of driver structures.

 Restrictions on handler call parameters.

A new generator should provide full automated generating
of environment model for a kernel driver module and facilities
for describing restrictions on handler calls in the model.

Moreover the tool should provide additional capabilities
for driver environment model debugging, altering generated
code and understanding scenarios available in generated C
code.

IV. ARCHITECTURE OF THE NEW DRIVER ENVIRONMENT

MODEL GENERATOR

The design of the new driver environment model generator
(DEG) is illustrated in Fig. 4. An input file for DEG is a LDV
command stream. This file contains information on build
options for compiler, paths to driver and kernel source code, et
al. LDV components connects with each other through this file
and DEG transforms it during its work. The environment
model generation process consists of 3 steps: driver source
code analysis, generating of the model in the intermediate

representation and printing of corresponding C code. We shall
consider these steps below in details.

Fig. 4. Design of the driver environment generator.

A. Driver source code analysis

Linux kernel source code is sophisticated and often
changing. That is why using analysis based on regular
expressions leads to various bugs in generated code of the
model or lack of information on source code for model
generation. For solving this problem DEG uses C
instrumentation framework (CIF below) for source code
querying [10]. DEG requests information from this tool about
driver source code like initialization and exit procedures,
driver structures, library function invocations, et al. Querying
process can be divided into two steps:

1) Querying for handlers and driver structures used in the

driver.

2) Querying for functions used for registration of these

driver structures and other queries based on information

extracted at a first step.
After source code analysis it is needed to get additional

information on handler call order, handler return values and
handler arguments before environment model can be
generated. Such the information is stored in a configuration.

B. Internal driver environment model representation

construction

Paper [11] designed a formal driver environment model

based on Robin Milner’s Pi-processes [12]. The model is
considered as a parallel composition of Pi-processes. A group
of handlers from one driver structure corresponds to a Pi-
process. Interactions between such processes are implemented
by signals exchanging. Driver structure registration and

Linux kernel

source code

Command

stream

Driver source

code Command

stream

C

Instrument-

ation

Framework

Environment

model

Model

representation

Statecharts

Source code

analysis

Model

preparation

Printing

80 of 173

deregistration are modeled via these signals too. Also this
work proposed a method of translating such driver
environment model into a multi-threaded C program. And it
showed that the translated sequential program reproduces the
same traces as available in the initial model via Pi-processes.
This result is important because nowadays model checking
verifiers don’t support multi-threaded C programs analysis but
drivers can be executed in several threads.

A DEG configuration is developed for specifying Pi-
processes of environment model. The configuration consists of
two parts: manually written specifications for several driver
structures and patterns for automatically generating such
specifications for other driver structures. This design of
configuration allows generating Pi-process description for
difficult cases using manually written specifications and for
other cases using patterns.

New DEG constructs a model representation on the basis
of the configuration and data extracted from the source code.
The following algorithm for constructing the representation is
used:

1) First of all presence of manually written descriptions in

configuration is checked for each driver structure that was

found in the driver.

2) If such specification for a driver structure is found, it

will be adopted for this driver structure taking into account its

handlers and registration methods that were founded in the

driver source code. This adopted specification is used for

modeling the driver structure in the model representation.

3) If a description is not found, then a suitable pattern

will be chosen from the second part of the configuration. This

pattern will be adopted using heuristics and taking into

account the driver structure.
As a result of this stage DEG provides a driver

environment model representation with Pi-processes
descriptions for each driver structure found in the driver
source code and signals that are used for interaction between
processes. Representation format almost coincides with the
format of the configuration.

For debugging purposes DEG can generate statecharts with
available handler invocation scenarios in the generated code.
Each statechart illustrates the call handler order for the
corresponding Pi-process. Simplified examples of such charts
showed in Fig. 5 and Fig. 6. These figures illustrate two
graphs for order of calling init and exit functions and for order
of calling handlers from the driver structure with the
usb_driver type. In the Fig. 5 there are 3 states: “state 0” in
which driver wasn’t been initialized yet, “state 1” in which
driver normally operates and “state 2” in which it is already
unloaded. In “state 1” other handlers can be called like it is
illustrated in the charts in the Fig. 6: after init execution,
usb_driver structure is become registered, after this event
handler probe can be called. If the device was probed
successfully handler disconnect can be called. After
disconnect invocation exit can be called that unregisters
usb_driver structure.

C. Printing C code of driver environment model

On the last stage DEG translates the driver environment
model representation based on Pi-processes into a C code.

Fig. 5. Simplified example of the statechart for init and exit functions.

Fig. 6. Simplified example of the statechart for handlers from usb_driver

driver structure.

Then DEG represents this C code in form of aspect files,
which are used by another LDV component Rule
Instrumentor. After applying these aspect files by that
component, code of the generated model is added to the driver
source code and some driver routines are also changed. Added
code includes various auxiliary routines, variables and
entry_point function in which handlers are invoked and from
which a verifier starts its analysis.

81 of 173

V. RESULTS

New DEG is still under development, but some results
have been obtained already. For a comparison of the new tool
with the old one 2672 drivers from the Linux kernel 3.8-rc1
were analyzed. As a model checking verifier BLAST tool was
used [13].

Table I illustrates transitions of verification verdicts after
switching to the new driver environment model generator.
Columns show results of checking of modules for a
corresponding error type connected with: blk_requests
executing (1); classes, chrdev_regions and usb_gadgets
allocating (2); pairing of module_get and module_put routines
(3); using locks (4). The first table line contains the numbers
of modules without any exposed errors for both old and new
DEG. One of the main goals of development of the new tool
was to decrease the number of false positives from a verifier
due to incorrect environment model. Progress in this direction
is illustrated in the second line. The number of transitions isn’t
as much as expected due to incorrect work of other LDV
components and BLAST tool or time and memory limits
(because more resources are needed for proving safety of a
driver than for finding an error). Next three lines demonstrate
cases with true and false positives from the verifier. The first
of these lines illustrates the number of modules whose
environment model becomes better. In the next line there are
cases with still incorrect environment model. And the last of
these 3 lines stores true positives or false positives with the
incorrect verdict occurred not due to environment model (for
example due to an imperfect pointer analysis by BLAST).
Next 2 lines contain the number of absence of the verdict with
a new model. In 20% of these cases a reason is limit of
memory or time because in some cases new DEG generates a
sophisticated and large model. In other cases reasons are
various bugs in LDV or in the verifier. Next two lines contain
number of cases when an old model had syntax errors in the
contrast to the new one. The last line shows cases with LDV
or verifier fails despite both new and old environment model
because these modules are too huge or just due to bugs in
verification system or in the verifier.

TABLE I. VERIFICATION VERDICTS AFTER SWITCHING TO THE NEW

DRIVER ENVIRONMENT MODEL GENERATOR.

Transitions 1 2 3 4

Safe → Safe 2469 2441 2414 2444

Unsafe → Safe 0 2 5 7

Unsafe → Unsafe

Model becomes

better
6 3 6 4

Model is still

incorrect
0 1 6 5

Unsafe is not due

to model
0 15 18 5

Safe → Unknown 43 44 46 45

Unsafe → Unknown 0 1 16 4

Unknown → Safe 12 13 10 16

Unknown → Unsafe 0 1 4 1

Unknown → Unknown 142 151 149 141

Proper environment model is one of necessary conditions
for obtaining true verdicts. Despite a minor number of
transitions from false positives, an experience of using the
new generator showed that such incorrectness of an
environment model often hides various problems in other
LDV components or in verifier. Switching to the new
generator explored such problems and allowed to increase
quality of driver verification in general.

VI. FURTHER DEVELOPMENT DIRECTIONS

The suggested approach increased quality of generating of
driver environment models, but there are the following
shortcomings in the current tool that should be solved in
future:

 Configuration extension. For several types of drivers
specifications for driver structures should be written
manually in the configuration. The number of driver
structures is estimated as two hundreds in the whole
kernel. There are 15 described already in the
configuration and about 15 are needed to be specified.

 Interrupts, timers, tasklets modeling. New DEG
doesn’t invoke interrupt handlers, timer routines or
tasklet callbacks yet. For increasing coverage of code
analysis they should be invoked in the new model.

 Generating model for several modules. Sometimes
an analysis of only one module leads to sophisticated
or incorrect environment model, because drivers can
contain several modules or common routines from
several drivers are picked out to a library module.
Thus environment model should be generated for
groups of interacting modules rather than for separate
modules of these groups.

VII. CONCLUSION

The paper describes the new approach for automatically
generating driver environment models for model checking
Linux kernel drivers. Also it demonstrates the new version of
the component of LDV framework called Driver Environment
Generator implementing this approach. The new DEG
provides:

 Fully automated environment model generating for
drivers that can be compiled as Linux kernel modules.
Generating process is based on source code analysis
performed by C Instrumentation Framework [10].

 The new configuration for generating process
management. This configuration consists of
specifications for driver structures and patterns for
invoking handlers from other driver structures having
an unknown type. The configuration is based on Pi-
processes and allows setting various restrictions for
handler invocation including restrictions on order and
parameters of calling handlers from one or several
driver structures.

 Facilities for simplifying work with generated
environment models by its representation in

82 of 173

configuration format or statecharts that illustrate order
of handler calls.

 Driver environment model as a set of aspect files for
applying to the driver source code by LDV component
Rule Instrumentor.

Initial experience of the new tool application demonstrated that

the new approach allows increasing quality of generated

environment models and decreasing the number of false

positives from verifiers. Also usability of DEG tool was

improved.

The new DEG will replace soon the old one and will be

available as component of LDV framework. Information on

LDV framework is available on the site of the project

http://linuxtesting.org/project/ldv.

References
[1] J. Corbet, G. Kroah-Hartman, A. McPherson., “Linux kernel

development. How Fast it is Going, Who is Doing It, What They are
Doing, and Who is Sponsoring It,” http://go.linuxfoundation.org/who-
writes-linux-2012, 2012.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and DR Engler, “An Empirical
Study of Operating System Errors,” Proceedings of the 18th ACM
Symp. Operating System Principles, 2001.

[3] M. Swift, B. Bershad, H. Levy, “Improving the reliability of commodity
operating systems,” Proceedings of the nineteenth ACM symposium on
Operating systems principles, 2003.

[4] D. Engler, M. Musuvathi, “Static analysis versus model checking for
bug finding”, Proceedings of the 16th international conference
CONCUR 2005, San Francisco, CA, USA, 2005.

[5] T. Ball, E. Bounimova, V. Levin, R. Kumar, J. Lichtenberg, “The Static
Driver Verifier Research Platform,” Formal Methods in Computer Aided
Design, 2010.

[6] H. Post, W. Kuchlin, “Integrated Static Analysis for Linux Device
Driver Verification,” Proceedings of the 6th international conference on
Integrated formal methods, Germany, 2007.

[7] H. Post, W. Kuchlin, “Automatic data environment construction for
static device drivers analysis,” Proceedings of the conference on
Specification and verification of component-based systems, USA, 2006.

[8] T. Witkowski, N. Blanc, D. Kroening , G. Weissenbacher, “Model
Checking Concurrent Linux Device Drivers,” Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering, ACM, USA, 2007.

[9] M. Mandrykin, V. Mutilin, E. Novikov, A. Khoroshilov, P. Shved,
“Using linux device drivers for static verification tools benchmarking,”
Programming and Computer Software September 2012, Volume 38,
Issue 5, pp 245-256.

[10] A. Khoroshilov, E. Novikov, “Using Aspect-Oriented Programming for
Querying Source Code,” Proceedings of the Institute for System
Programming of RAS, volume 23, 2012.

[11] V. Mutilin, “Verification of Linux Operating System Device Drivers
with Predicate Abstractions,” Phd's Thesis, Institute for System
Programming of RAS, Moscow, Russia, 2012.

[12] R. Milner, “A Calculus of Communicating Systems,” Springer-Verlag
(LNCS 92), ISBN 3-540-10235-3, 1980.

[13] D. Beyer, T. Henzinger, R. Jhala, R. Majumdar, “The Software Model
Checker Blast: Applications to Software Engineering,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 5, pp.
505-525, 2007.

83 of 173

http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv
http://linuxtesting.org/project.ldv

On the Implementation of Data-Breakpoints Based
Race Detection for Linux Kernel Modules

Nikita Komarov
ISPRAS

Moscow, Russia
nkomarov@ispras.ru

Abstract—An important class of problems in software are
race conditions. Errors of this class are becoming more common
and more dangerous with the development of multi-processor
and multi-core systems, especially in such a fundamentally
parallel environment as an operating system kernel. The paper
overviews some of existing approaches to detect race conditions
including DataCollider system based on concurrent memory
access tracking. RaceHound, a race condition detection system
for Linux drivers based on similar principles as DataCollider is
presented.

Keywords—driver verification; race condition; linux kernel;
dynamic verification; operating system

I. INTRODUCTION

The Linux Kernel is one of the most popular and
fast-developed projects in the world. Linux Kernel
development started in 1991 by Linus Torvalds. The
development process of Linux kernel is distributed, about
1,000 people worldwide are involved in the preparation of each
new kernel release. The new release comes out every 2-3
months. Changes are submitted by the developers in the form
of little pieces of code called patches. Each kernel release
consists of about 9-13 thousands of patches, which corresponds
to an average of about 7.3 patches per hour. The total source
code size of one of the latest versions of the Linux kernel -
version 3.2 – is about 15 million lines. These data are given in
the latest Linux Foundation report on Linux Kernel
development [6].

Linux Kernel development process is described in [7].
There are some other branches of kernel development based on
the original Linux Kernel. Some of the Linux distributions
developers support their own versions of the kernel - for
example, Red Hat [11], openSUSE [12] and Debian [13].
These kernels are different from the original version in that
they support some additional functionality and/or contain bug
fixes. There are some kernel versions with the significant
changes to the basic systems of the kernel, for example, a
real-time Linux Kernel [14] or the Android kernel [15]. Over
time some changes from different branches of development
needed by a broad range of people can get to the original
kernel.

As with any programs, there are various errors in Linux
Kernel that lead to the incorrect functioning of the OS, freezing
etc. The greatest part of the kernel (about 70%) are various
device drivers. The results of studies that have been carried out
in [16] and [17] in the early 2000s for kernels 1.0 to 2.4.1,
showed that drivers contain up to 85% of all errors in the Linux
Kernel. A similar study for the Microsoft Windows XP kernel
in 2006 also showed that the highest number of errors in the
operating system kernel belongs to the device drivers [18].
More recent studies done in 2011 for the Linux Kernel versions
from 2.6.0 to 2.6.33 showed that although the number of errors
in the drivers became less than in the kernel components
responsible for the support of the various architectures and file
systems, their share is still high [19].

The task of ensuring the reliability of drivers is important as
drivers in Linux work with the same privileges level as the rest
of the kernel. Because of this a vulnerability in the drivers can
lead to the possibility of execution of arbitrary code with kernel
privileges and access to the kernel structures.

II. RACE CONDITIONS

One of the important types of errors in the software is race
conditions [20]. A race condition occurs when a program is
working wrong due to an unexpected sequence of events that
leads to the simultaneous access to the same resource by
multiple processes.

As an example of a race condition, consider a simple
expression in some programming language: b = b + 1. Imagine
that this expression is executed simultaneously by two
processes, the variable b is common to them, and its initial
value is 5. Here is a possible example of the order of execution
of the program:

• Process 1 loads b value in a register.

• Process 2 loads b value in a register.

• Process 1 increases its register value by 1 with a result
of 6.

• Process 2 increases its register value by 1 with a result
of 6.

• Process 1 stores its register value (6) in the variable b.

84 of 173

• Process 2 stores its register value (6) in the variable b.

The initial value of b was 5, each of the processes added 1,
but the final result was 6 instead of the expected 7. Processes
are not executed atomically, another process may intervene and
perform operations on some shared resource between almost
any two instructions. Similarly, the classic example is the
simultaneous withdrawal of money from a bank account from
two different places: if the check for the required amount in the
account by the second process would occur between similar
check and amount decrease of the first process, the account
balance may become wrong that will cause a loss and
significant reputation damage.

With the development of multicore and multiprocessor
systems race condition related errors including the Linux
Kernel, becomes even more important than before. For
example in the study [1] it was concluded that the race
conditions are the most frequent type of error in the Linux
Kernel and make up about 17% of typical errors in the Linux
Kernel (on the second and third place are specific objects leaks
and null pointer dereference – 9% both). The study was
conducted by analyzing the comments to the changes in the
Linux Kernel. From the above it can be concluded that race
conditions are an important and common class of errors,
including those in the Linux Kernel, and the task to find them
is relevant.

III. EXISTING METHODS FOR DETECTING RACE CONDITIONS

There are various ways to detect race conditions in
programs. Most of the dynamic methods are based on two
principles: Lockset and Happens-before [4] [5]. Lockset based
tools check if there is synchronization between threads when
accessing shared variables. This makes it possible to find a
large number of potential errors, but the number of false
positives is high too.

Happens-before based instruments find accesses from
different threads to a specified area of memory that have no
specified order, meaning they can be in a different order. These
instruments depend on how the access is done in a real system
operation, so they identify a smaller subset of errors but have
greater accuracy than the Lockset method. An alternative to
this method is a direct test for simultaneous memory access by
placing breakpoints - this method is implemented in the
DataCollider system (see sect. II.C). In most real systems, a
combination of two methods is used. Let's consider some
examples of such systems.

A. Helgrind

Helgrind is a tool for analyzing user mode programs for
race conditions, based on the Valgrind framework [10]. This
system can detect three types of errors:

• Improper pthreads API use;
• Possible deadlocks that occur due to incorrect order of

synchronization mechanisms;
• Race conditions.

Helgrind detects race conditions by monitoring all accesses
to the memory of the process and all use of synchronization
primitives. Then the system builds a graph, based on which it
makes a conclusion that there is a «happens-before»

relationship between accesses. If the access to a certain area of
memory happens in two different threads, the system checks
whether there can be found the «happens-before» relationship
between them, that is, whether one of accesses happen before
the other. The system makes conclusions of the presence or
absence of such a connection based on the presence or absence
of various synchronization primitives. If the memory access
occurs in at least two different threads and the system cannot
find a relationship «happens-before» between them, it
concludes that there is a data race between them.

B. ThreadSanitizer

ThreadSanitizer is another engine that finds race conditions
in user space programs. The algorithm of this system is similar
to the Helgrind algorithm and is described in [23]. The system
instruments the program code adding calls to its functions
before each memory access and every time the program uses
some synchronization tools. The system then tries to figure out
which of the memory accesses occur with inadequate
synchronization and may conflict with other memory accesses.
ThreadSanitizer also has an offline mode in which it can be
used to analyze traces created by some other tools such as
Kernel Strider for Linux Kernel [24].

C. DataCollider

The system is designed for dynamic race conditions
detection in Microsoft Windows kernel. It was developed in
Microsoft Research and is described in [3]. The system uses
the principle which is slightly different from other described
systems and is as follows:

• The system periodically sets up software breakpoints
in random places of studied code.

• When the software breakpoint is triggered, the system
decodes the triggered instruction getting the memory
address and sets a hardware breakpoint on access to
this address. Then it stops the process execution for a
short time to increase the chance of another access to
this address.

• After the delay the system removes the hardware
breakpoint.

• If the hardware breakpoint is triggered, data race is
reported. Also data race is reported if the value at the
address has changed – to take the possible use of
direct memory access (DMA) into account.

DataCollider system is used in Microsoft, it helped to find
about 25 errors in the Windows 7 kernel. In [3] low overhead
advantage of the system is noted: it can find some errors in the
kernel even with the settings causing overhead of less than 5%.

IV. LINUX DRIVER VERIFICATION

The main features of driver design and verification are the
direct work with the hardware, a common address space,
limited set of user space interfaces and multithreading. This
makes it difficult to debug the drivers and to determine the
causes of errors. Let's consider some software products that are
used to verify the Linux drivers.

85 of 173

A. Kmemleak, kmemcheck

These systems are the most known and widely used. They
are included in Linux Kernel. Kmemleak [8] is a system for
finding memory leaks. Its principle of operation is similar to
those in some of the garbage collectors in high level languages.
For every memory allocation, the information about the
selected memory area (address, size etc.) is stored, and when
this area is deallocated the corresponding entry is removed.
The system can be interacted with via a character device in
debugfs. With every access to this device the following steps
are conducted:

• The "white" list of the allocated and not freed memory
areas is created.

• Certain areas of memory are scanned for pointers to
the memory of the "white" list. If the system finds
such a pointer, the memory is transferred from the
"white" list to the "gray" list. The memory in the
"gray" list is considered accessible and not leaked.

• Each block of the "gray" list is also scanned for
pointers to the memory of the "white" list.

• After this scanning all memory left in the "white list"
is considered to memory leaks.

Kmemcheck [9] is a simple system that keeps track of
uninitialized memory areas. Its principle of operation is as
follows:

• The system intercepts all the memory allocation.
Instead of each area an area 2 times as big is
allocated, these additional ("shadow") pages are
initialized with zeroes and are hidden.

• The allocated memory area is returned to the caller
with cleaned “present” flag. As a result, any reference
to this memory will result in page fault.

• When such a memory access happens, kmemcheck
determines the address and size of the corresponding
memory access. If the access is for writing, the system
populates the corresponding bytes of "shadow" page
with 0xFF, then successfully completes the operation.

• If the access is for reading, the system checks the
appropriate bytes of "shadow" pages. If at least one of
them is 0, uninitialized memory access is reported.

B. KEDR

KEDR (short for KErnel-mode Drivers in Runtime) is a
system for the dynamic analysis of Linux Kernel modules [21].
This system can replace some kernel function calls with its
wrappers which can produce some additional actions such as
saving the information of function calls or just returning errors.
Users can create their own systems based on this system, and
solutions for some specialized tasks are included, such as:

• Memory leaks detection. To solve this problem, the
system keeps track of calls to different functions that
allocate and free the memory. After unloading the
tested module the system creates a report containing
all memory locations that have been allocated, but
have not been freed, along with the call stack for each

of the memory allocation functions calls. The report
also includes any attempts to free the memory that has
not been allocated. The scenario is different from the
Kmemleak system in that the memory leak detection
happens after the unloading of the target module,
which simplifies the algorithm.

• Fault simulation. To solve this problem given
functions are replaced by a wrapper which returns
errors on defined scenario.

• Call tracking. Information about calls to given
functions (including arguments, return values etc.) is
stored in a file for later analysis.

This system has been used successfully and helped to find
about 12 errors in various Linux drivers [22].

C. Static methods

Static program verification is the analysis of program code
without actually executing it, as opposed to dynamic analysis.
It does not require setting up the test environment, and
provides the ability to analyze all the possible execution paths
of the program, even those which need the coincidence of
several rare conditions. When applied to the OS Kernel, static
verification is particularly useful because in many cases
creating a test environment and analyzing some of the
execution paths can be a non-trivial task. However, static
analysis has many limitations. The main part of the paper is
devoted to the dynamic verification system, so we will not
examine the static verification methods in detail. A more
detailed review of these methods is given in [2].

V. RACEHOUND

As part of the Google Summer of Code 2012 [25], the
author developed a lightweight race detection system for Linux
Kernel. The algorithm used by this system is similar to the
algorithm used by the DataCollider system (see sect. II.C). The
system is designed not only to find race conditions, but also to
confirm the data obtained with other systems that can produce
false alarms, for example, ThreadSanitizer (see section II.B).
At present the system supports the x86 and x86-64.

The originally planned principle is as follows:

• The system randomly plants software breakpoints
(there is a Linux Kernel API called Kprobes [26] for
that) in various places of the investigated kernel
module, periodically changing them.

• When the software breakpoint is triggered, the system
decodes the instruction on which the breakpoint was
planted, using the decoder of the Linux Kernel
modified in KEDR project. Then it determines the
memory address which the instruction tries to access
and sets the hardware breakpoint on this address
(there is also an API in Linux Kernel for this [27]),
and then stops the process for a short time to increase
the chance of access from another process to this
address.

• After the delay the system removes the hardware
breakpoint.

86 of 173

• If the hardware breakpoint was triggered in the
elapsed time, the race condition is reported. The race
condition is also reported if the value at the address
has changed – to cover the case of direct memory
access.

Software breakpoints in x86 architecture work as follows.
The first byte of instruction at the specified address is replaced
by the 0xCC byte – interrupt INT3 – preserving the original
byte in some place. When the CPU executes the instruction, an
interrupt is triggered and control is passed to the interrupt
handler in Linux Kernel, which searches the list of software
breakpoints for the appropriate address. When the address is
found, it transfers control to the appropriate handler. After the
handler finishes the original instruction is executed.

Hardware breakpoints are implemented as four debug
registers on Intel x86 processors. This system is described in
the Intel Developer Manuals [28]. An addresses can be written
in these registers, and there will be an interrupt on an access to
these addresses. The interrupt is then processed by the Linux
Kernel which transfers control to the appropriate hardware
breakpoint handler.

A. Implementation features

There were some problems in the implementation of
system. Software breakpoint handlers are executed in an
atomic context, and therefore it was impossible to properly set
the hardware breakpoint for all available CPUs. This problem
was solved by installation and removal of hardware breakpoint
not from the software breakpoint handler, but from the function
in the task queue. Unfortunately, this decision led to a time gap
between the beginning of the delay and the hardware
breakpoint setup, and therefore may reduce the probability of
concurrent memory access to occur within the delay (for a very
small time delay - down to 0) and to lower detection accuracy.
This effect, however, requires a special study.

Another problem was the execution of the original
instruction in the software breakpoint handler. This execution
takes place inside an interrupt handler, but the original
instruction refers to the address on which the hardware
breakpoint has just been set. In some cases, removal of
hardware breakpoint does not yet happen at the time of the
original instruction execution, and the hardware breakpoint was
triggered. However, the software breakpoint handler works in
an atomic context and the interrupt is forbidden. This caused
some faults and unusual behavior. This problem was solved by
dropping Kprobes API and implementing similar functionality
manually. Instead of executing the original instruction separate
from the module code this instruction was restored and the
control was transferred to the investigated module. To reset the
breakpoints after that the timer has been set, which reset the
breakpoints at frequent intervals replacing their first bytes with
0xCC. This decision, however, also has a drawback: there is a
period in which a software breakpoint is not set at the needed
place. This can also reduce the accuracy of error detection.

The system consists of a kernel module which has an
interface based on the debugfs and some auxiliary scripts. The
interface is a character device in debugfs which allows a user
to set the possible breakpoints range, from which N is
randomly chosen, in the format <function name>+<offset>. If
the both parameters or just the offset are equal to *, the

complete module or the complete function is added,
respectively.

An important limitation of the system is the inability to
work on single-core systems. This problem is caused by the
software breakpoint handler execution: it is performed in an
atomic context, so putting the process to sleep is impossible.
Therefore, instead of the function msleep() the mdelay()
function is used, which waits a specified period of time,
leaving the thread in running state. For this time no other tasks
can run on the same processor. Therefore the process which
could cause a race condition should run on another core to be
able to execute at a delay time.

The system requires a Linux Kernel 2.6.33 or later (this
version introduced the Hardware Breakpoints API). The build
system is based on CMake. At present the system is in the state
of working prototype. It requires testing on some real drivers to
identify potential errors and defects, adjust the parameters of
the system (number of breakpoints, time intervals, etc.) and to
evaluate the effectiveness of the system in the real world. For
testing it is necessary to pay attention to the choice of test cases
for drivers – they should include some parallel and concurrent
testing, because the system just increases the probability of
errors, being useless if the concurrent access is impossible.

Another direction of the system development may be the
development of interfaces and integration with other race
condition detection systems. For example, the system can be
useful when working together with static methods which
provide a significant number of false positives to confirm these
data with them. However, dynamic methods which can
produce some false positives can also benefit from such
integration.

VI. CONCLUSION

Race conditions are an important problem. This paper
reviews some methods for detecting race conditions, including
those in the operating system kernel, and some features of
Linux drivers verification. The race condition detection system
created by author is described.

Most of the race condition detection systems are based on
one of the two methods: LockSet and Happens-before, or some
kind of their combination. From a theoretical point of view, the
direction of future work could be some more detailed review of
existing methods for detecting race conditions in order to
integrate the developed system with some of them.

Directions of further practical work should be testing the
developed system on some real drivers and its integration with
other systems, including those based on static methods. Testing
on real drivers will help to identify errors or omissions, find
some valid settings of various parameters of the system
(number of breakpoints, time intervals etc.) and to evaluate the
effectiveness of the system in real conditions.

[1] V. Mutilin, E. Novikov, A. Khoroshilov

Analysis of typical errors in Linux operating system drivers.

Proceedings of Institute for System Programming of RAS, vol.22, 2012

[2] M. U. Mandrykin, V. S. Mutilin, E. M. Novikov, A. V. Khoroshilov, and
P. E. Shved

Using Linux Device Drivers for Static Verification Tools Benchmarking

Programming and Computer Software, 2012, Vol. 38, No. 5

87 of 173

[3] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk Olynyk

Effective Data-Race Detection for the Kernel

9th USENIX Symposium on Operating Systems Design and
Implementation, 2010

http://static.usenix.org/event/osdi10/tech/full_papers/Erickson.pdf

[4] Cormac Flanagan, Stephen N. Freund

FastTrack: Efficient and Precise Dynamic Race Detection

http://slang.soe.ucsc.edu/cormac/papers/pldi09.pdf

[5] Nels E. Beckman

A Survey of Methods for Preventing Race Conditions

http://www.cs.cmu.edu/ nbeckman/papers/race_detection_survey.pdf

[6] Jonathan Corbet, Greg Kroah-Hartman, Amanda McPherson

Linux Kernel Development. How Fast it is Going, Who is Doing It,
What They are Doing, and Who is Sponsoring It (2012)

http://go.linuxfoundation.org/who-writes-linux-2012

[7] Jonathan Corbet

How to Participate in the Linux Community. A Guide To The Kernel
Development Process (2008)

http://www.linuxfoundation.org/content/how-participate-linux-communi
ty

[8] Jonathan Corbet

Detecting kernel memory leaks

http://lwn.net/Articles/187979/

[9] Jonathan Corbet

kmemcheck

http://lwn.net/Articles/260068/

[10] Valgrind Manual. 7. Helgrind: a thread error detector.

http://valgrind.org/docs/manual/hg-manual.html

[11] S. M. Kerner

The Red Hat Enterprise Linux 6 Kernel: What Is It? (2010)

http://www.serverwatch.com/news/article.php/3880131/The-Red-Hat-E
nterprise-Linux-6-Kernel-What-Is-It.htm

[12] OpenSUSE Kernel

http://en.opensuse.org/Kernel

[13] Debian Kernel

http://wiki.debian.org/DebianKernel

[14] OSADL Project: Realtime Linux

https://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html

[15] Jonathan Corbet

Bringing Android closer to the mainline

https://lwn.net/Articles/472984/

[16] A. Chou, J. Yang, B. Chelf, S. Hallem, DR Engler

An Empirical Study of Operating System Errors. Proc. 18th ACM
Symp. Operating System Principles, 2001

[17] M. Swift, B. Bershad, H. Levy

Improving the reliability of commodity operating systems. In: SOSP
’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, 2003

[18] A. Ganapathi, V. Ganapathi, D. Patterson

Windows XP kernel crash analysis. Proceedings of the 2006 Large
Installation System Administration Conference, 2006

[19] N. Palix, G. Thomas, S. Saha, C. Calves, J. Lawall, and Gilles Muller

Faults in linux: ten years later. Proceedings of the sixteenth international
conference on Architectural support for programming languages and
operating systems (ASPLOS ’11), USA, 2011

[20] David Wheeler

Secure programmer: Prevent race conditions (2004)

http://www.ibm.com/developerworks/linux/library/l-sprace/index.html

[21] KEDR Manual

http://code.google.com/p/kedr/wiki/kedr_manual_overview

[22] KEDR wiki: Problems Found

http://code.google.com/p/kedr/wiki/Problems_Found

[23] Thread Sanitizer Manual

http://code.google.com/p/thread-sanitizer/w/list

[24] Kernel Strider Manual

http://code.google.com/p/kernel-strider/wiki/KernelStrider_Tutorial

[25] Project: Implement a Lightweight Data Race Detector for Linux Kernel
Modules on x86

Google Summer of Code 2012

http://www.google-melange.com/gsoc/project/google/gsoc2012/nkomar
ov/7001

[26] Linux Kernel Documentation: Kprobes

http://www.mjmwired.net/kernel/Documentation/kprobes.txt

[27] Prasad Krishnan

Hardware Breakpoint (or watchpoint) usage in Linux Kernel. Ottawa
Linux Symposium, 2009

http://kernel.org/doc/ols/2009/ols2009-pages-149-158.pdf

[28] Intel 64 and IA-32 Architectures Software Developer Manuals

http://www.intel.com/content/www/us/en/processors/architectures-softw
are-developer-manuals.html

88 of 173

Mobile Learning Systems in Software Engineering
Education

Liliya Andreicheva
Institute of Computer Science & Information Technologies

Kazan Federal University
Kazan, Russia

liliya.andreicheva@gmail.com

Rustam Latypov
Institute of Computer Science & Information Technologies

Kazan Federal University
Kazan, Russia

roustam.latypov@kpfu.ru

Abstract— The latest achievements in the information
sciences area are mostly connected with the mobile technologies.
The significant growth in this area attracts more and more users
worldwide. In this paper we concentrate on the mobile learning
aspect in education process, specifically in learning management
systems. We propose a new design approach which consolidates
different front-end representations of the learning system with
the single back-end instance. To increase the efficiency of the
system we consider new module like preliminary homework
checking module, which will be useful especially in software
engineering field, and additional statistical and feedback
modules.

Keywords— m-leaning; e-learning; mobile technologies; LMS;
CMS; learning system; education; software engineering.

I. INTRODUCTION
In recent years there has been a tremendous growth of

mobile technologies worldwide. Nowadays every day the
technologies are getting more and more advanced. Modern
people use smartphones and tablets almost everywhere – at
work, at home, at university, etc. They read newspapers and
journals online, check their e-mails while driving back home
from work, post in social networks, and play games and chat.
According to statistical information [1] the influence of the
mobile devices will keep increasing in the nearest future. As
we observe most of the users of popular gadgets are young
people, students or pupils. This gives us an idea that we can
turn mobile technologies into a powerful tool in the educational
process.

Obviously, education is one of the most important steps in
each young person's life. Unfortunately, not everyone
understands it and as the result more effort is needed from the
teachers and professors. As mobile technologies cause a lot of
interest in the modern society, this fact can be used as an
advantage in the educational process. We propose new design
principles for the educational systems, whose main idea lies in
the unity of back-end and variety of front-end forms. The
common server part and the different ways to access
information from the client side increases the educational
system availability with the minimum set of requirements
(basically you need just an Internet access from your mobile
device). This paper consists of three parts. In the first part we
define the main principles of the e-learning system usage,

especially in the software engineering field. Second part
contains some analysis of usage of electronic learning systems
in Russia and worldwide. The third part is dedicated to our
proposal of new design principles.

II. E-LEARNING AND M-LEARNING

Soon after an expansion of the computer technologies, the
e-learning terminology became regular in educational process.
Although in recent years as a product of the growth of the
mobile industry we received a new term – m-learning. What is
m-learning? M-learning states for mobile learning, which
suggests the learning process is organized with the usage of
mobile devices. This fact makes it available for everyone, who
has a smartphone or a tablet. One of the greatest advantages of
m-learning is that it is independent from time and place.

The next question is why we need anything else if m-
learning systems are available at any time and any place? Each
method has its own advantages and disadvantages. The
approach is based on the principles of work of different
devices. For example, it is much more convenient to read a
book from tablet than from smartphone. Although if you want
to download this book and use information from it in you
report, like different citations and images, you need a good text
editor, which is most likely installed on your PC. The main
idea is the consolidation of all forms of front-end to obtain the
most efficient system for students and professors. These
technical specifications define a set of requirements to the
system, which we will discuss in the third part of this paper.

One of the drawbacks of the e-learning process is that it is
not equally efficient in different areas of study. For example,
medical disciplines which require a lot of practical exercises
and direct communication with patients cannot be fully
automated within the e-learning process. Let us look
specifically on the software engineering (SE) area. The area
itself is very wide and contains a lot of subjects that should be
given to the student. An important aspect that is giving SE a
great advantage in the automation of learning systems is that
most of the subjects are technical: mathematics, physics,
programming sciences, etc. The distinctive characteristics and
specifics of this type of sciences allow simplifying the control
units significantly. Various tests, quizes, multiple-choice
questions with strict answers can be created easily for any

89 of 173

software engineering course, while for art course you should
show your personal vision of the topic and there is generally
more than one correct answer. Therefore we propagate a wide
usage of e-learning and m-learning technologies in the SE area.

Speaking in terms of international practices, we see that the
major universities in the world support a lot of various
programs based on the e-learning methods. Statistical analysis
shows that every year more and more students enroll in online
university services provided by the best universities in the
world. This is a great opportunity for students with disabilities,
international students and those who cannot afford to pay full
tuition for getting the degree on campus. Unfortunately,
nowadays leading universities in Russia are just starting to
deploy the e-learning systems. Speaking about m-learning, for
Russian universities it is still a future project. In my opinion we
should start working actively in this area, because now this is a
perspective future. We can see the growth of usage of the
mobile application that has been deployed on campuses of
American universities and colleges in 2010 and 2011 (see “Fig,
1”) [2]. Based on the graph data, we can observe that values
have doubled within a single year. Taking into consideration
the speed of the development of the mobile technologies, we
need to act fast to be able to compete with top universities in
the world.

Fig. 1. Big Gains on Going Mobile, percentage of campuses that have
deployed mobile apps, fall 2010 vs fall 2011 [2].

III. USAGE OF MOBILE TECHNOLOGIES

According to statistics [3], US, Japan and South Korea are
top most consumers of the mobile markets. The forecasted
revenue is about $14 billion by 2014. This number explicitly
shows the size of the market and its growth. Although the
research results say that more than 22% of the Internet users in
cities with population over 100,000 people in Russia access the
Web from mobile devices, e-learning and m-learning
technologies are not so widespread.

In recent years education became one of the prior areas in
the country. In Soviet Union the level of education was one of
the highest in the world. The hard political times on the edge of
the centuries destroyed the educational system. Nowadays the
best universities in the country should work a lot to achieve the

same level that foreign schools are offering. Thus the area of e-
learning has become very important. If we look at the way the
process is organized abroad we can see that in most of
universities there is an internal system for students and
professors, which offer a variety of options, from enrollment
and scheduling to taking courses online and making
presentations online. This is a very important step to every
school. In general e-learning process attracts a lot of new
students to universities, increases its popularity worldwide and
makes education more approachable and affordable for
different groups of people. The initial integration of new
technologies will definitely require some investments but all
the costs will be reimbursed later. For students taking online
courses also has some financial benefits. There is a good
example the savings the famous company IBM achieved using
e-learning practice. In their training process for new managers
they used online learning approach and it saved them more
than 24 million US dollars. The new technologies used allowed
to give 5 times more information and at the same time the cost
for one study day was reduced from $400 to $135. The other
advantage of e-learning approach is the variety of forms that
can be integrated in the educational process. The simplest one
will be usage of course management and learning management
systems (CMS and LMS) in the specific course. More solid
approach is the application for the whole set of subjects, which
prepare a student for some degree or certification exam. In
Russia this is a rare practice, but in our opinion this is the
future of the educational process for big universities.

Let us specify some use cases for the e-learning system to
obtain the set of requirements. We consider two main roles in
the system: professor and student. There are a lot of different
aspects that should be taken into consideration in the system,
but in the use cases we concentrate on the aspects that are
important in the m-learning scope.

One of the regular situations is that professor has to make
some changes in the schedule and this information should be
sent quickly. Mobile technologies solve this question easily.
Various methods can be implemented, via e-mail, via text
messages in the message exchange system, but as everybody
now has a mobile phone next to him/her all the time, the push
messages from the mobile application are the easiest solution.
The mechanism of push messages can be used in many cases;
therefore there should be a configurable notification system,
which will allow providing the most recent information to both
professors and students as soon as any change occurred. As we
have mentioned before schedule update events are very
important, information that new learning materials are
available or homework grades are posted. Students are usually
mostly interested in their grades and they want to know this
information as soon as possible. So it is more convenient for
them to check the mobile application rather than to wait till
they get back home and log in to the e-learning system on their
PC. The specific use of notifications for professors can help to
track if all the homework was submitted on time. Another
example will be notifications from the administrator of the
system about technical issues, like “Servers A and B will be
rebooted in 5 minutes. Do not run any tasks at that time”, etc.
The advantage of using mobile technologies here is the
independence from place and time of the target object of

90 of 173

notification and the speed. Generally viewing message from
the mobile app is faster than checking an e-mail or viewing
message through the LMS.

Another important aspect, especially for students, is the
availability of the materials. Imagine a student, who is working
for some company and is getting a degree at the same time. In
Russia this is a very widespread situation. The student spends a
lot of time in transport, it can be either public transportation,
which is usually slow, or traffic jams.

But he does not want to lose this time, he better review
once again lectures for the test, which is later the same day. In
this case using laptops is not a suitable solution as they are still
big and heavy enough. Tablets and smartphones can easily
solve the problem, even when you are driving you can enable
the voice support on the device, so that it will be reading text to
you aloud. By the way, here we should also take into
consideration the technical specifications of different gadgets.
It is not always convenient to read from you smartphone if the
screen is not big enough, but if you have the headset, you can
listen to the same lecture. Or you can watch the video recorded
during the lecture. Tablets are more user-friendly for these
specific purposes. For professors access to homework
assignments and tests is more valuable. Thus when they get
into the same situation with transportation they can look
through the homework tasks or run some automated procedures
that check tests and quizzes submitted by the class. These
actions can be performed by one button click, they start the job
on server and by the time professor gets home he already has a
report with the results of the last test. This kind of automation
saves a lot of time, which allows professors to spend it later on
research and student questions.

These examples show the particular use cases for m-
learning, but we have other forms of the front-end, like web-
based console and regular PC program. In the next part we will
discuss how the whole system should be working together.

IV. SYSTEM DESIGN

The main idea of our proposal is to have the unified
concept for different representations of the front-end of the
application. This will allow organizing the LMS and CMS in
the rational and user-oriented way. The general practice shows
that it is much more difficult to upgrade the existing software,
which may be absolutely unsuitable for the new needs. Thus a
good design approach should specify all the use cases and the
corresponding requirements in advance. This is one of the
reasons why the idea of development of new system is better
than using some existing ones. An individual project can be
turned up for the specific goals, while any modification of an
existing tool presented on the market is a long time- and labor-
consuming process. The other reason is that most of the
existing systems are expensive. Although there is an open-
source segment of the market, if we look at the theory of the
delayed expenses this approach becomes inapplicable for large
educational organizations like universities and colleges. At
some point there is always a risk that developers of open-
source software will decide to stop the support of this particular
product that you are using. This can cause a lot of problems for
the users, as eventually it leads not only to the change of an

existing system but also to the migration of the information
from one system to another, which is also expensive and
inconvenient.

Although we consider three types of representation of the
user interface for the system (see “Fig. 2”), we concentrate
mainly on the mobile application and PC programs. The reason
for our choice is that these two parts have different purposes.
As we have mentioned earlier the use cases for the m-learning
application first of all allow the user to be independent from
time and location. The set of features for this app will be
defined mostly by this factor, however we also take into
account that some actions are inconvenient to perform from the
mobile device (like file upload, download, text/graph editing,
submission of programming assignments, etc.). For the PC we
consider a complete system with support of a variety of
features for students, professors and administrators. As we
have mentioned several roles above, let us elaborate on that.

We have already mentioned students and professors as the
target users of the application. Besides them there is one more
user role – administrator, who is responsible for registration of
other users, helping them with any questions about system
usage and controlling the whole system. In general we suppose
that system includes plenty of courses from various
departments. To handle the department information accurately
and to be able to control the department schedules we propose
a subgroup of administrators called department administrators.
Basically the administrator can create another administrator-
user who will be able to work only with data from his
department (see “Fig. 3”). One of the possible scenarios of
system development is integration with some other useful
services of university campus, for example, information about
operation hours of departments, library, on-campus cafes, etc.
In this case the role of an administrator will be to include
handling information for these additional services. We will not
discuss the administrator role a lot because he is basically only
using the PC application, while in this paper we concentrate on
the m-learning aspect.

Fig. 2. The organization of the system.

91 of 173

Fig. 3. Hierarchy of roles in the system.

Based on the use cases that we have mentioned above the
primary purpose of the mobile application is to keep the user
updated with the latest progress that is going on in the system.
Thus we should concentrate on the notification system and
monitoring console. From our point of view notification
mechanism is more important for students, while monitoring is
more valuable for professors. Nevertheless in the design we
consider both types of users being able to use these
components.

Generally notifications can be divided into two types:
created by system and created by user. Each of these types of
messages includes the following levels: information, warning,
error. For better user experience we also suggest three types of
importance of every message (low, regular, high). This makes
system more flexible, because depending on the user's
approach he can configure the individual preferences. The
importance level will help the use handle urgent questions with
high priority faster. On the other hand, from the system
development point of view, such notification mechanism will
help improve the product stability and troubleshooting. The
system notifications are configured by administrator. They are
designed mainly for administrators to keep the system
maintained. But regular users should also be aware of the
current situation. For example, when student is trying to upload
his homework but the server is rebooting, he should get an
appropriate alert to be able to perform this operation later. This
will be a user-friendly behavior and will decrease the number
of errors. The user should be able to set up notification
mechanism in general and for any particular course. The most
important issues from the system point of view include system
failures, database failures, server connection problems,
protocol problems, running jobs problems (running automated
homework or quiz checking, etc.), user access problems, etc.
The alert message should contain description of the problem,
error code if applicable, and suggestions of possible solution.
The user defined notifications include information about any
changes in the course schedule, homework assignments, lecture
materials, forum updates, tests and examination results, course
announcements, etc. The set of these messages should be the
same for students and professors. As it might be the case where
one course is divided between two professors and both have
access to course materials, so one should be notified of what
another is changing in the course.

Monitoring is a great tool mostly for professors. Besides
some general statistical information about popularity of the
course, individual student performance, overall student
performance, etc., provided logical set of rules will be able to
analyze performance of students in general and individually
within the course and give some recommendations. For
example, module A was successfully learned by 90% of
students, 5% need to review the module once again, 5%
finished the module with average knowledge of the subject.
This information should be interesting to both teachers and
students. From the development point of view it will require
implementation of some analytical algorithms on the back-end.
More complex approach can involve some expert systems or
self-learning neural networks. Monitoring of individual
performance is also very important for students. We should
remember that one of the main characteristics of the e-learning
process is individual factor. The whole concept of e-learning
supposes that most of work is done individually and professor
is controlling it remotely. This requires good self-
organizational abilities, time management and motivation.
Thus the overall performance of the student should be given in
comparison to the class that will increase student's motivation.

One of the most important components of educational
process is control of the level of knowledge obtained, thus we
consider in e-learning systems particular attention should be
paid to this aspect. Information technologies brought
automation to the regular slow processes and this greatly
increased the performance in various areas. Therefore, the
higher is the level of automation of the system, the easier and
more practical it is in use. Our idea supposes adding some extra
control on the stage of homework submission. We offer a
module which will execute some preliminary control. The goal
of this module is to have some self-controlling tool for the
students. The main idea of this approach is that the system
performs some additional checks when uploading homework.
The result is an informational message demonstrating the
validity of the submitted task. Based on the response of the
system student can then re-upload his homework with any
modifications needed, if the original exercises have been
carried out not quite right. To implement this approach, a set of
tests to verify the job is needed. Such set can have quite
different views. From basic check for the correct answers of
the math problems to various tests for the correctness of the
output of some programs delivered as assignments for
programming courses. This module will depend a lot on the
particular subject and the approach of the professor. This tool
will be easy to configure for the various software engineering
courses. Overall the effort for making this module work
properly in technical courses is less, than it would be for art
courses. Nevertheless we consider this approach useful in
every area. Basically the efficiency of the module depends on
the professor. For programming courses, for example, the
control condition to the minimum practical tasks may be
simply an ability to compile the program, and more serious
approach will have some test units, checking the correctness of
the input parameters, output results and test the operation of the
program on different operating systems, etc. From the students
point of view this module is very practical and provides
additional help. Obviously with proper organization of the time
they can upload the homework in advance to the system and

92 of 173

get a preliminary result. Now they know whether their work
fits the minimum requirement for this task. Such verification
system does not involve full check of the assignment on-a-fly,
but allows students to significantly improve their results. For
professors module also provides an effective time
management: time taken to prepare the preliminary tests for
jobs will reduce the time needed to check homework, and
improve the quality of the provided solutions.

Nowadays one of the common methods of improving
something is polling the audience. Thus in many areas system
of feedback and suggestions is used. From our point of view,
the presence of such a system will make the e-learning system
more effective. The use of such a module in e-learning systems
is simple for users, thanks to the process automation; the
results are calculated quickly and immediately available for the
professor. This module performs several functions:

• Evaluation of the professor - how effective his method of
teaching is, whether he explains the material good enough,
whether he answers the questions and emails quickly, etc.

• Course evaluation - whether course content suites
expectations, do selected materials cover the subject, were the
home assignments effective, how is the control system, how
popular is this course among students, etc.

The big advantage of this survey is that it may be
configured from the same set of questions regardless of the
course topics, and include some specific items that will be
important for a particular teacher and course. If there is no such
a need for the specific questions, the section where comments
allowed can help a lot. The generic system of evaluation of
courses and instructors can be organized when using same
questions in the surveys. This approach allows creating a rating
system. Rating will help students to select from a variety of
courses, instructors. For the organizations, that use e-learning
system for professional trainings rating system will help to
evaluate the effectiveness of professors and courses.

From the developer’s point of view an e-learning system is
a complex application primarily divided into front-end and
back-end. In our case we are basically talking about a client-
server architecture where the client side has different views. On
the one hand, the client is a separate application for the PC, on
the other hand, it is a mobile application, which uses a
completely different design principles. However, both of them
are parts of the same system, working with a server, which
stores all the data. As we have mentioned earlier we
concentrate primarily on the mobile and PC client views, but as
another view we consider a web console. Running an e-
learning system from the browser also requires some other
technologies. At this point an important issue is to keep the

client-server protocol the same for communication between all
parts of the application. One of the other important questions is
synchronization. When using file-sharing service Dropbox,
files are downloaded from one device to the shared folder, and
then are displayed at all devices that run with the appropriate
application. The same idea should be used in the proposed
system. So before actual implementation is done, a careful
study of the mathematical model technologies should be done,
because every part of the application is very different.

In this paper we present the system design. The initial
prototype is under construction now. However, the described
approach presents fully the main features of the whole system.
The heart of the system is the server part, which takes most of
the development time. Overall, development process contains a
lot of pitfalls, which are connected with different problems –
from the technologies point of view and

The novelty of the solution lies not only in the choice of a
new long-term approach to client-server architecture, but also
in the introduction of the new modules for the convenience of
teachers and students. Our design approach is promising in
terms of end-user response, as it is a priority to increase the
availability and convenience of e-learning systems for users.
Based on statistical data [1], we conclude that the audience of
Internet users and advanced mobile devices is increasing.
Education has always been a key element in the development
of the society. Thus, the introduction of the latest technology
innovations in the educational process can only increase the
development of the state and society.

REFERENCES

[1] Blinov, D. (2012). Statistics of usage of mobile devices, platforms and
applications. Retrieved
from: http://beamteam.ru/2012/09/mobile-platforms-share-2012/

[2] A Profile of the LMS Market (page 18), CampusComputing, 2011.
Retrieved from: http://www.campuscomputing .
net/sites/www.campuscomputing.net/files/Green-
CampusComputing2011_4.pdf

[3] Nicole Fougere, US Leads the Global Mobile Learning Market , 2010
http://www.litmos.com/mobile-learning/us-leads-the-global-mobile-
learning-market-mlearning/

[4] Kerschenbaum, Steven (04). "LMS Selection Best Practices" (White
paper). Adayana Chief Technology Officer. pp. 1–15, 13 February 2013.
Retrieved from:
http://www.trainingindustry.com/media/2068137/lmsselection_full.pdf

[5] Ellis, Ryann K. (2009), Field Guide to Learning Management Systems,
ASTD Learning Circuits. Retrieved from:
http://www.astd.org/~/media/Files/Publications/LMS_fieldguide_20091

[6] Wikipedia. http://www.wikipedia.org/

93 of 173

http://www.wikipedia.org/
http://www.astd.org/~/media/Files/Publications/LMS_fieldguide_20091
http://www.trainingindustry.com/media/2068137/lmsselection_full.pdf
http://www.litmos.com/mobile-learning/us-leads-the-global-mobile-learning-market-mlearning/
http://www.litmos.com/mobile-learning/us-leads-the-global-mobile-learning-market-mlearning/
http://www.campuscomputing.net/sites/www.campuscomputing.net/files/Green-CampusComputing2011_4.pdf
http://www.campuscomputing.net/sites/www.campuscomputing.net/files/Green-CampusComputing2011_4.pdf
http://www.campuscomputing.net/sites/www.campuscomputing.net/files/Green-CampusComputing2011_4.pdf
http://beamteam.ru/2012/09/mobile-platforms-share-2012/

Hide and seek: worms digging at the Internet backbones and edges

Svetlana Gaivoronski

Computational Mathematics and Cybernetics dept.

Moscow State University

Moscow, Russia

Email: sadie@lvk.cs.msu.su

Dennis Gamayunov

Computational Mathematics and Cybernetics dept.

Moscow State University

Moscow, Russia

Email: gamajun@cs.msu.su

Abstract—The problem of malicious shellcode detection in
high-speed network channels is a significant part of the
more general problem of botnet propagation detection and
filtering. Many of the modern botnets use remotely exploitable
vulnerabilities in popular networking software for automatic
propagation. We formulate the problem of shellcode detection
in network flow in terms of formal theory of heuristics
combination, where a set of detectors are used to recognize
specific shellcode features and each of the detectors has its
own characteristics of shellcode space coverage, false negative
and false positive rates and computational complexity. Since the
set of detectors and their quality is the key to the problem’s
solution, we will provide a survey of existing shellcode detection
methods, including static, dynamic, abstract execution and
hybrid, giving an estimation to the quality of the characteristics
for each of the methods.

Keywords-shellcode; malware; polymorphism; metamor-
phism; botnet detection;

I. INTRODUCTION

Since the early 2000’s and until the present time botnets

are one of the key instruments used by cybercriminals

for all kinds of malicious activity: stealing users’ financial

information, bank accounts credentials, organizing DDoS

attacks, e-mail spam, malware hosting et cetera. Among

the recent botnet activity we could mention the Torpig

botnet, which was deeply investigated by the UCSB research

group Torpig, the Zeus botnet involved in FBI’ investigations

which ended in arrest of over twenty people in September

2010 [6], and also the Kido/Conficker botnet, which has

attracted the attention of security researchers since the end of

2008 and is still one of the most widespread trojan programs

found on end users computers [4].

Despite of the fact that malware tends to propagate via

web applications vulnerabilities, drive-by downloads, rogue

AV software and infecting legitimate websites more often,

the significance of remotely exploitable vulnerabilities in

widespread networking software does not seem to have faded

out in the following years, since the large installation base of

the vulnerable program warrants very high infection rates in

case of the zero-day attacks. Besides, drive-by downloads

often make use of remotely exploitable vulnerabilities in

the client software like Microsoft’s Internet Explorer, Adobe

Reader or Adobe Flash. A typical remotely exploitable

vulnerability is a kind of memory corruption error - heap

or stack overflows, access to the previously freed memory

and other overflow vulnerabilities. Modern malware utilizes

so called ”exploit packs”, commercially distributed suites of

shellcodes for many different vulnerabilities, some of which

may be unknown to the public. For example, the Conficker

worm exploited several attack vectors for propagation: the

MS08-67 vulnerability in Microsoft RPC service, dictionary

attack for local NetBIOS shares and propagation via USB

sticks autorun. Nevertheless, among all these propagation

methods exploitation of the vulnerabilities in the networking

software gives the attacker (or the worm) the best timing

characteristics for botnet growth, because it requires no user

interaction.

We could conventionally designate the following main

stages of the botnets life cycle: propagation, privilege esca-

lation on the infected computer, downloading trojan payload,

linking to the botnet, executing commands from the botnet’s

C&C, removal from the botnet. Comparing the ease of botnet

activity detection and differentiating it from normal Internet

users activity, the propagation stage would be the most

interesting as it involves computer attack, which is always

an anomaly. The stages that follow successful infection -

trojan extensions downloads, linking to botnet and receiving

commands are usually made using ordinary application level

protocols like HTTP or (rarely) IRC, different variations

of P2P protocols, so that these communications are fairly

easy to render to look like normal traffic. At the same

time the propagation stage almost always involves shellcode

transfer between attacker and victim, therefore it is easier

to detect then other stages. This is why memory corruption

attacks and their detection are important for modern Internet

security.

A. Shellcodes and memory corruption attacks

A memory corruption error occurs when some code within

the program writes more data to the memory, than the size of

the previously allocated memory, or overwrites some internal

data structures like malloc() memory chunks delimiters.

One typical example of a memory corruption attack is

stack overflow, where the attacker aims at overwriting the

function return address with an address somewhere within

94 of 173

Activator Decryption routine Shellcode payload Return address zone

Figure 1: Example of possible shellcode structure. Activator may be NOP-sled or GetPC code or alike.

the shellcode. Another example of a memory corruption

attack is a heap overflow which exploits dynamic memory

allocation/deallocation scheme in the operating system’s

standard library.

An example of a possible shellcode structure is shown

at figure 1. Conditionally, we could break shellcodes into

classes depending on which special regions they contain,

where each shellcode region carries out some specific shell-

code function, including detection evasion. For example,

these could be regios of NOP-equivalent instructions (NOP-

sled) or GetPC code as an activator, a decryption routine

region for encrypted shellcodes, shellcode payload or return

address zone.

In terms of classification theory we could define a shell-

code as a set of continuous regions of executable instructions

of the given architecture, where regions are associated by the

control flow (following each other sequentially or linked to

each other with control flow transfer instructions), and where

one or more shellcode features are present simultaneously

(i.e. it contains an activator, decryptor, shellcode payload

zone or return address zone, associated by control flow).

There are significant numbers of existing and ongoing

research activities which try to solve shellcode detection

in network flow problem. These methods can be grouped

into classes in two ways - by the type of analysis they

perform (static, dynamic, abstract execution, hybrid) or by

the types of shellcode features they are designed to detect

(for example, activator, decryptor, shellcode payload, return

address zone). An important observation is that most modern

research papers are focused on IA32 (EM64-T) architecture,

since most Internet-connected devices running Windows

platform use this architecture and, besides, some of Intel

Architecture instruction set features make memory corrup-

tion exploitation easier. This may change in the following

decade when the broadband wireless connections for mobile

devices become more common.

B. Computation complexity problem

Since we primarily aim at detecting network worms

propagation (botnet growth) and not just remote exploitation

of memory corruption vulnerabilities, our task has several

certain peculiarities. Like any massive phenomenon worm

propagation is best monitored in large scale, than at the

end point of the attacked computer. This means that we

should better try to detect worm propagation analyzing

network data in transit at the Tier-2 channels or even Tier-

1 channels. And in this case we inevitably fail because of

the lack of computational power. There are two famous

empiric laws which reflect the evolution of computation and

computer networks - these are Moore’s law and Gilder’s

law. Moore’s law states that the processing power of a

computer system available for the same price doubles every

18 months, and the Gilder’s law says that the total bandwidth

of communication systems triples every twelve months (see

figure 2). The computational power of a typical computer

system available for network channel analysis tends to grow

slower than the throughput of the channel. The real-time

restrictions for filtering devices also become more strict.

For example, the worst case scenario for 1Gbps channel

which is a flow of 64-byte IP packets at the maximum

throughput gives us about 600ns average time for each

packet analysis if we want to achieve wire-speed, and it gives

only about 60ns in case of 10Gbps channel. This trend makes

requirements for computational complexity of the algorithms

utilized by network security devices more severe each year.

That’s why algorithms used for inline shellcode mitigation

should have reasonable computational complexity and allow

implementation in the custom hardware (FPGA, ASIC).

We also should not forget that backbone network channels

like those connecting two or more different autonomous

systems are especially sensitive to the false positives of the

filtering device, because they lead to denial of service for

the legitimate users.

In this paper we formulate the task of the malicious

shellcode detection in the high-speed network channels as a

multi-criteria optimization problem: how to build a shellcode

classifier topology using a given set of simple shellcode

feature classifiers, where each simple classifier is capable

of detecting one or more simple shellcode features with

zero false negative rates, given computational complexity

and false positive rates within its shellcode classes, so

that to provide the optimum aggregate false positive rates

along with computational complexity. The key element of

any solution of this task is the set of simple classifires.

Thus, we provide a survey of the existing methods and

algorithms of shellcode detection, which could be used as

simple classifiers for the aggregate detector. In this survey

we pay special attention to the class coverage, false positives

rates and computational complexity of each method or

algorithm. The structure of this paper is as follows. In the

second section the classes of shellcode features are given

and the main part of the section is the shellcode detection

methods survey. In the third section we provide estimations

of the key methods characteristics, which are essential for

solving multi-criteria optimization problems. In the final two

sections we discuss the results of the survey and suggest

the formal task definition for building hybrid classifier as

a oriented filtering graph of simple classifiers with optimal

95 of 173

Figure 2: Moore and Gilder laws - the network channels throughput leaves the computational power behind.

computational complexity and false positive rates.

II. SHELLCODE DETECTION METHODS

This section provides a classification of malicious objects

and methods of shellcode detection. In addition, we will give

a description of existing methods. For each method, we will

briefly describe the basic idea. We will also describe classes

of shellcode and their coverage, false positive rates and,

where possible, we will give the computational complexity

for the methods.

Let S = {Seq1, . . . , Seqr} be a given set of sequences

of executable instructions, later referred to as object S.

We assume that all instructions in the object are valid

instructions of the target processor. Let us define several

definitions for S, using terminology from [1].

Let us consider a set of features Mal = {m1, ,mn}
of malicious instruction set (a malicious object) and a

set of features Leg = {l1, . . . , lk} of a legitimate set of

instructions.

Suppose we are given a set M of malicious objects. Set

M is covered by a finite number of subsets K1, . . . , Kl:

M =
l⋃

i=1

Kl.

Subset Kj , j = 1, l is called the class of malware. Each

class Kj is associated to the set of features Mal(Kj)
and Leg(Kj) from the set of malicious features Mal and

legitimate features Leg respectively. In addition, the partition

of M to KJ classes conducted in a way that

Mal =
l⋃

i=1

Mal(Ki)

and

Leg 6=
l⋃

i=1

Leg(Ki)

in general.

Each class Kj is assigned with elementary predicate

Pj(S) = (S ∈ Kj), Pj(S) ∈ {0, 1,∆}

(object S ∈ Kj; S /∈ Kj ; unknown). The information about

the occurrence of object in the class K1, . . . , Kl is encoded

by vector (α1α2 . . . αl), αi ∈ {0, 1,∆}, i = 1, l.

Definition 1: Instruction set S is called a legitimate, if its

information vector is null |α̃(S)| = 0. In other words, the

object is considered as legitimate iff it is not contained in

any of the classes Kj of malicious set M .

Definition 2: Instruction set S is called malicious if the

length of its information vector is equal to or greater than

1: |α̃(S)| ≥ 1. In other words, the object is considered as

shellcode if it is contained at least in one of the classes Kj

of malicious set M .

The problem of detecting malicious executable instruc-

tions is to calculate the values of the predicates Pj(S) =
(S ∈ Kj) and to construct information vector α̃A(S), where

A is the detection algorithm.

Definition 3: False negatives FN of algorithm A is the

probability that the information vector of S resulted by

algorithm A is null, but the veritable vector of object S
is not null.

FN(A) = P(|α̃A(S)| = 0 | |α̃(S)| ≥ 1) , S ∈ M .

In other words, it is probability that a malicious object is

not assigned to any of the classes Kj of malicious set M .

Definition 4: False positives FP of algorithm A is the

probability that the length of information vector of object S
returned by algorithm A is greater than or equal to 1, but

the veritable vector of object S is null.

FP (A) = P(|α̃A(S)| ≥ 1 | |α̃(S)| = 0) , S /∈ M .

In other words, it is the probability of classifying a legitimate

object to at least one of the classes Kj of malicious set M .

96 of 173

A. Shellcode features classification

As previously mentioned, the entire set of malicious ob-

jects M is covered by the classes K1, . . . , Kl: M =
l⋃

i=1

Kl.

Let us define the classes K1, . . . , Kl with respect to the

structure of malicious code. Thus, the set M can be classified

as follows:

1) Activators:

• KNOP1
- class of objects containing simple NOP-sled

- a sequence of nop (0x90) instructions ;

• KNOP2
- objects containing one-byte NOP-equivalents

sled;

• KNOP3
- objects containing multi-byte NOP-

equivalents sled;

• KNOP4
- objects containing four-byte aligned sled;

• KNOP5
- objects containing trampoline sled;

• KNOP6
- objects containing obfuscated trampoline-

sled;

• KNOP7
- objects containing static analysis resistant

sled;

• KGetPC - objects containing GetPC code.

2) Decryptors:

• KSELF UNP - self-unpacking shellcode class;

• KSELF CIPH - self-deciphering shellcode class.

3) Payload:

• KSH - non-obfuscated shellcode class;

• KDATA - class of shellcode with data obfuscation.

For example, ASCII character set can be replaced by

UNICODE;

• KALT OP - class of shellcode obfuscated by the inser-

tion of alternative operators;

• KR - class of shellcode, obfuscated by instruction

reordering in the code;

• KALT I - class of shellcode, obfuscated by replacing

the instructions with instructions with the same opera-

tional semantics;

• KINJ - class of shellcode, obfuscated by code injec-

tion;

• KMET - class of metamorphic shellcode - shellcode

whose body is changing with respect to semantic struc-

ture maintaining;

• KNSC - (non-self-contained) - class of polymorphic

shellcode which does not rely on any form of GetPC

code, and does not read its own memory addresses

during the decryption process.

4) Return address zone:

• KRET - class of shellcode which can be detected by

searching for the return address zone;

• KRET+
- class of shellcode whose return address is

obfuscated. For example, one can change the order of

lower address bits. In this case, the control will be

transferred to different positions of the stack, but always

in any part of NOP-sled. In this case, the functionality

of the exploit will not be compromised.

B. Methods classification

According to the principles at work, shellcode detection

methods can be divided into the following classes:

• static methods - methods of code analysis without

executing it;

• abstract execution - analysis of code modifications and

accessibility of certain blocks of the code without a real

execution. The analysis uses assumptions on the ranges

of input data and variables that can affect the flow of

execution;

• dynamic methods - methods that analyze the code

during its execution;

• hybrid methods - methods that use a combination of

static and dynamic analysis and the method of abstract

interpretation.

From a theoretical point of view, static analysis can

completely cover the entire code of the program and consider

all possible objects S, generated from the input stream.

In addition, static analysis is usually faster than dynamic.

Nevertheless, it has several shortcomings:

• A large number of tasks which rely on the program’s

behavior and properties, can’t be solved by using static

analysis in general. In particular, the following theo-

rems have been proved in the work of E. Filiol [13]:

Theorem 1: Problem of detecting metamorphic shell-

code by static analysis is undecidable.

Theorem 2: The problem of detection of polymorphic

shellcode is NP-complete in the general case.

• The attacker has the ability to create malicious code

which is static analysis resistant. In particular, one can

use various techniques of code obfuscation, indirect

addressing, self-modifying code techniques, etc.

In contrast to static methods, dynamic methods are resis-

tant to the code obfuscation and to the various anti-static

analysis techniques (including self-modification). Neverthe-

less, the dynamic methods also have several shortcomings:

• they require much more overheads than static analysis

methods. In particular, a sufficiently long chain of

instructions can be required to conclude whether the

program has malicious behavior or not;

• the coverage of the program is not complete: the dy-

namic methods consider only a few possible variants of

program execution. Moreover, many significant variants

of program execution can not be detected;

• the environment emulation in which the program ex-

hibits its malicious behavior is difficult;

• there are detection techniques for program execution in

a virtual environment. In this case, the program has the

ability to change its behavior in order not to exhibit the

malicious properties.

97 of 173

C. Static methods

A traditional approach for static network-based intrusion

detection is signature matching, where the signature is a

set of strings or regular expression. Signature based designs

compare their input to known, hostile scenarios. They have

the significant drawback of failing to detect variations of

known attacks or entirely new intrusions. Signatures them-

selves can be divided into two categories: context-dependent

and signatures that verify the behavior of the program.

One example of signature-based methods is Buttercup

[12] - a static method that focuses on the search of the return

address zone. The algorithm solution is simply to identify the

ranges of the possible return memory addresses for existing

buffer-overflow vulnerabilities and to check the values that

lie in the fixed range of addresses. The algorithm considers

the input stream, divided into blocks of 32 bits. The value

of each byte in the block is compared with the ranges of

addresses from the signatures. If the byte value falls into

one of the intervals, an object S is considered as malicious.

Formally,

|α̃BUTTERCUP (S)| 6= 0 ⇔ ∃Ij ∈ S : val(Ij) ∈
[LOWER,UPPER],

where LOWER and UPPER - lower and upper limits

of the calculated interval, respectively. In the notions of

introduced model, we assume that the second part of the

expression is predicate Pj(S), defining membership of an

object S to one of the classes of malware. Since this method

relies on known return addresses used in popular exploits,

it becomes unusable when the target host utilizes address

space layout randomization (ASLR). Static return addresses

are rarely used in real-world exploits nowdays.

Another example of the signature-based methods is

the Hamsa [14] - static method that constructs context-

dependent signatures with respect to a malware training

sample. The algorithm selects the set

{Si | α̃j(Si) 6= {0,∆}}

from the training information. Then the algorithm constructs

a signature Sigj = {T1, . . . , Tk} from that set. The signature

itself is a set of tokens Tj = {Ij1 , . . . , Ijh}, where Iji
are instruction. In general, in [14] the following theorem

is represented:

Theorem 3: The problem of constructing a signature Sig
with respect to the parameter ρ < 1 such that FP (Sig) ≤ ρ
is NP-hard.

The authors make the following assumptions in the prob-

lem: let the parameters k∗, u(1), . . . , u(k∗) characterize a

signature. Then, the token t added to the signature during

signature generation iff

FP (Sig
⋃
{t}) ≤ u(i).

When the signature is generated, the algorithm checks

whether it matches to object S or not:

|α̃HAMSA(S)| 6= 0 ⇔ Sigj ∈ S.

Another considered static signature-based method is Poly-

graph [15]. The approach builds context-dependent signa-

tures. The algorithm takes different versions of the same

object S′ as a training set of objects S1, . . . , Sm for training

information. Versions of S are generated by applying the

operation of polymorphic changes for m times. With respect

to learning information the Polygraph builds three types of

signatures. If any of these signatures matches object S then

S is considered as malware. The types of signatures are

following: i) conjunction signatures SigC (consist of a set

of tokens, and match a payload if all tokens in the set are

found in it, in any order); ii) token-subsequence signatures

SigSUB (consist of an ordered set of tokens); iii) Bayes

signatures SigB = {(TB1
,M1), . . . , (TBr

,Mr)} (consist of

a set of tokens, each of which is associated with a score, and

an overall threshold). We define the following predicates:

PC(S) = (Sig ∈ S) -

predicate checks whether objects S matches to conjuction

signature;

PSUB(S) = (∀i, j,m, n, k, t : TSUBi
=

{Im, . . . , In}, TSUBj
= {Ik, . . . , It} : i < j ⇒ m < n) -

predicate checks if set of tokens in the objects is ordered;

PB(S) = (∀i : |TBi
| ≥ Mi) -

predicate checks whether token exceeds threshold. Then the

algorithm can be formally described as:

|α̃POLY GRAPHC

(S)| 6= 0 ⇔ PC(S),

|α̃POLY GRAPHSUB

(S)| 6= 0 ⇔ PC(S)&PSUB(S),

|α̃POLY GRAPHB

(S)| 6= 0 ⇔ PB(S).

Among the methods of static analysis, which generating

the signature of program behavior, we have considered the

method of structural analysis [9]. Let us call it Structural

in the rest of paper. By training on a sample of malicious

objects S1, . . . , Sm the approach constructs a signature base

of program behavior. The object S is considered as malware

if it matches any signature in the base. The method checks

whether object matches a signature contained in the base by

following steps:

• program structure is identified by analyzing the control

flow graph (CFG);

• program objects are identified by CFG coloring tech-

nique;

• for each signature and for each built program structure

the approach analyses, whether they are polymorphic

modifications of each other.

Nevertheless, a simple comparison of the control flow

graphs is ineffective due to the fact that this isn’t robust

to the simplest modifications. The authors of the method

propose the following modification: subgraphs containing

98 of 173

k vertices are identified. Identification of the subgraph is

carried out as follows:

• first, the adjacency matrix is built. The adjacency matrix

of a graph is a matrix with rows and columns labeled

by graph vertices, with a 1 or 0 in position (vi, vj)
according to whether there is an edge from vi to vj or

not;

• second, a single fingerprint is produced by concatenat-

ing the rows of the matrix;

• additionally, the calculation of fingerprints extended

to account for colors of verticles (graph is colored

according to the type of verticle). This is done by first

appending the (numerical representation of the) color

of a node to its corresponding row in the adjacency

matrix.

Definition 5: Two subgraphs are related if they are iso-

morphic and their corresponding vertices are colored the

same.

Definition 6: Two control flow graphs are related if they

contain related K-subgraphs (subgraph containing k ver-

tices). It is believed that if CFG(S) are related to any

control flow graph of a malicious object, then the object

S itself is malicious.

Let {ID} be the set of subgraphs identifiers. Subgraphs

contained in the malicious objects from the training data.

We define the predicate

PST = id(S) ∈ {ID}.

Thus,

|α̃Structural(S)| 6= 0 ⇔ PST (S).

The Stride [10] algorithm is NOP-sled detection method.

STRIDE is given some input data, such as a URL, and

searches each and every position of the data to find a sled.

STRIDE can be formally described as follows: it forms

object S from the input stream by disassembling, starting

at offset i+ j of the input data, for all j ∈ {0, . . . , n− 1}.

It is believed that the input stream contains a NOP-sled of

length n:

|α̃STRIDE(n)(S)| 6= 0,

if the object S = {I1, . . . , Ik} satisfies the following

conditions:

• k ≥ n;

• ∃i : ∀j : j = i, . . . , i + n ⇒ (Ij 6=
Privileged) || (∃k : i ≤ k < j Ik = JMP)

In other words, it is believed that a sled of length n starts at

position i if it is reliably disassembled from each and every

offset i+j, j ∈ {0, . . . , n−1} (or from each of the 4th byte)

and in any subsequence of S privileged instruction isn’t met

(or a jump instruction is encountered along the way).

There is an algorithm Racewalk [11] which improves

performance of the algorithm STRIDE through the decoded

instructions caching. Moreover, Racewalk uses pruning tech-

niques of instructions that are not a valid NOP-sled (for

example, if we meet an invalid or a privileged instruction

at some position h, it is obvious that the run from offset

j = h%4 is invalid. Consequently, the object S formed

from the offset j = h%4 will not appear in any of

the classes KNOP1
, . . . , KNOP7

). Racewalk also uses the

instruction prefix tree construction to optimize the process

of disassembling.

Styx [8] is a static analysis method, based on CFG

analyzing. Object S is believed to be malware if sliced

CFG contains cycles. Cycles in the sliced CFG indicate the

polimorphic behavior of the object. For such an object the

signature is generated in order to use it in its signature base.

Given the object S algorithm builds a control flow graph

(CFG). The vertices are the blocks of instruction chains.

Such blocks do not contain any transitions. The edges are

the corresponding transitions between the blocks. All the

blocks in the graph can be divided into three classes:

• valid (the branch instruction at the end of the block has

a valid branch target);

• invalid (the branch target is invalid);

• unknown (the branch target is unknown).

Styx constructs a sliced GFG from control flow graph.

All invalid blocks and blocks to which invalid ones have

the transitions are removed from sliced CFG. Some of the

blocks are excluded as well using the technique of data flow

analysis, described in [16]. From sliced CFG Styx constructs

a set of all possible execution chains of instructions. Next,

method considers each of chains to check whether it contains

cycles or not. To formalize the algorithm we describe the

following predicates. Let SIG = {Sig1, . . . , Sign} be the

signatures base which constructed from training information.

Thus,

PSIG(S) = ∃i : (Sigi ∈ SIG) & Sigi ⊂ S

is the predicate which verifies that the object matches to

one of the previously generated signatures. Pcycle(S) is

the predicate which checks sliced CFG of S for cycles.

Consequently,

|α̃STY X(S)| 6= 0 ⇔ PSIG(S) || Pcycle(S).

In contrast to this algorithm, a method SigFree [17] stati-

caly analyses not CFG but an instruction flow graph (IFG).

Vertices of CFG contain blocks of instruction while IFG

vertices contain instructions only. An object is considered

as malware if its behavior conforms to the behavior of real

programs, rather than a random set of instructions. Such

heuristic restricts applicability of method on the channels

such that the profile of the traffic allows for the transfer of

executable programs.

Definition 7: An instruction flow graph (IFG) is a di-

rected graph G = (V,E) where each node v ∈ V cor-

responds to an instruction and each edge e = (vi, vj) ∈ E

99 of 173

corresponds to a possible transfer of control from instruction

vi to instruction vj .

The analysis is based on the assumption that a legitimate

object S, consisting of instructions encountered in the input

stream, can not be a fragment of a real program. Real

programs are assigned with two important properties:

1) The program has specific characteristics that are in-

duced by the operating system on which it is running,

for example calls to the operating system or kernel

library. A random instruction sequence does not carry

this kind of characteristics.

2) The program has a number of useful instructions

which affects the results of the execution path.

With respect to these properties, the method provides two

schemes of IFG analysis. In the first scheme SigFree based

on training information constructs a set {TEMPL} of

instructions call templates. Then algorithm checks whether

object S satisfies these patterns or not. Let us describe the

predicate

P1 = ∃t ∈ {TEMPL} : t ∈ IFG(S)

which checks if IFG of S satisfies to any of the templates.

Thus,

|α̃SigFree1 (S)| 6= 0 ⇔ P1(S).

The second scheme is based on an analysis of the data

stream. In this scheme, each variable can be mapped from

the set

Q = {U,D,R,DD,UR,DU},

where the six possible states of the variables are defined

as following. State U : undefined; state D: defined but

not referenced; state R: defined and referenced; state DD:

abnormal state define-define; state UR: abnormal state

undefine-reference; and state DU : abnormal state define-

undefine. SigFree constructs for an object S state variables

diagram - an automaton

DSV = (Q,Σ, δ, q0, F),

where Σ is the alphabet, consisting of instruction of object

S, and q0 = U is the initial state. If there is the transition

to the final (abnormal state) when parsing S, it is believed

that the instruction is useless. All useless instructions are

excluded from the object S, resulting in an object S′ ⊂ S.

Let us describe the following predicate:

P2(S) = |S′| > K ,

where K - threshold. Thus,

|α̃SigFree2 (S)| 6= 0 ⇔ P2(S).

There is an algorithm STILL [18] which improves the

method SigFree. The method based on techniques to detect

self-modifying and indirect jump exploit code are called

static taint analysis and initialization analysis. The method is

based on the assumption that self-modifying code and code

using the indirect jump, must obtain an absolute address of

the exploit payload. With respect of this the method searhes

subset S′ ∈ S which obtains the absolute address of the

payload at runtime. The variable that records the absolute

address is marked as tainted. The method uses the static

taint analysis approach to track the tainted values and detect

whether tainted data are used in the ways that could indicate

the presence of self-modifying and indirect jump exploit

code. The variable can infect others through data transfer

instructions (push, pop, move) and instructions that

perform arithmetic or bit-logic operations (add, sub,

xor).

The method uses initialization analysis in order to reduce

the false positive rates. The analysis is based on the assump-

tion that the operands of self-modifying code and code using

the indirect transitions, must be initialized. If not, object s
is considered as legitimate. Formally, P1 = tainted(S) ,

P2 = initialized(S) ,

|α̃STILL(S)| 6= 0 ⇔ P1(S)&¬P2(S).

Semantic-aware malware detection [19] is a signature-

based approach. The method creates a set of behavior

signature patterns by training on a sample of malicious

objects. The object S is considered as malware if its behavior

conforms to at least one pattern from this set.

In [19] authors have proved the following theorem:

Theorem 4: The problem of determining whether S sat-

isfies a template T of a program behavior is undecidable.

Thus, the authors notice that their method can not have

full coverage of classes of malicious programs. The method

identifies a malicious object to a limited number of program

modification techniques. The algorithm constructs a set {T }
of patterns of a programs malicious behavior. It is believed

that the object S matches the pattern, if the following

conditions are satisfied:

• The values in the addresses, which were modified dur-

ing execution, are the same after the template execution

with the appropriate context;

• A sequence of system calls in template is a subsequence

of system calls in S;

• If the program counter at the end of executing the

template T points to the memory area whose value

changed, then the program counter after executing S
should also point into the memory area whose value

changed.

In order to check whether object S matches the behavior

pattern, the method checks that the vertices of the template

correspond to vertices of S. The method also implements

the construction of”def-use”ways and its checking. Matching

of template nodes to program nodes is carried out by

constructing a control flow graph CFG, with respect to

the following rules (we also describe the predicate P1(S)
checking whether nodes match each other) :

100 of 173

• A variable in the template can be unified with any

program expression, except for assignment expressions;

• A symbolic constant in the template can only be unified

with constant in S;

• The function memory can be unified with the function

memory only;

• An external function call in the template can only be

unified with the same external function call in the

program.

Preservation of def-use paths. A def-use path is a se-

quence of template nodes (or CFG(S)). The first node of

def-use path defines the variable and the last uses it. Each

def-use path in a template should correspond to the program

def-use path. Next, method checks whether a variable is

stored in an invariant meaning or not in the paths. To

solve the problem of preservation of the variable using the

following procedures are implemented:

• first, the NOP-sled lookup using simple signature

matching;

• second, search of such code fragments in which values

of variables are not preserved. If found, the correspond-

ing fragment of code is executed with a random initial

state;

• finally, using the theorem prover like the Simplify

method [20] or the UCLID method [21].

We define the predicate P2 which checks the Preservation

of def-use paths. Thus, T ∼ S ⇔ P1(S) & P2(S). The

algorithm itself can be formaly described as following:

|α̃Semantic aware(S)| 6= 0 ⇔ ∃Ti ∈ {T } : Ti ∼ S.

D. Dynamic methods

One example of the dynamic method is the emulation

method (Emulation) proposed by Markatos et al in [23].

The main idea of the approach is to analyze the chain of

instructions received during execution in a virtual environ-

ment. The execution starts from each and every position

of the input buffer since the position of the shellcode is

not known in advance. Thus, the method generates a set of

objects

{S′

i | S
′

i ⊂ S}

from object S. If at least one of the objects Si satisfies

the following heuristics, object S is considered as malware.

These heuristics include the execution of some form of

getPC code by an execution chain of S′

i; another heuristic is

checking whether the number of the memory accesses excess

a given threshold. The object S′

i is considered as legitimate

if during its execution an incorrect or privileged instruction

was met. Let us define the following predicates:

P1(Si) = getPC ∈ Si & mem access number(Si) ≥
Thr,

where Thr is threshhold;

P2(Si) = ∀j : Ij ∈ Si & invalid(Ij).

Thus, [23] can be formally described as:

|α̃Emulation(S)| 6= 0 ⇔ ∃i : Si ⊂ S & P1(Si) & ¬P2(Si).

Method NSC emulation [26] is an extension of [23].

The method focuses on non-self-contained (NSC) shellcode

detection. The execution of executable chains also starts

from each and every position of the input buffer. Object

S is considered as malware, if it satisfies the following

heuristic. Let unique writes be the write operations to

different memory locations and let wx-instruction be an

instruction that corresponds to code at any memory address

that has been written during the chain execution. Let W and

X be thresholds for the unique writes and wx-instructions,

respectively. The object belongs to the class KNSC , if after

its execution emulator has performed at least W unique

writes (P1(S) = unique writes ≥ W) and has executed

at least X wx-instructions (P2 = wx ≥ X). Thus,

|α̃NSC(S)| 6= 0 ⇔ P1(S) & P2(S).

Another method, which uses emulation is IGPSA [25].

The information about instruction is processed by automa-

ton. All the instructions are categorized into five categories,

represented by patterns P1, . . . , P5. If an instruction writes

PC into certain memory location, it is categorized into P1;

if it reads PC from the memory, it belongs to P2; if it reads

from memory location the instruction sequence resides in,

it belongs to P3; if it writes data into memory location

PC, it belongs to P4; otherwise it belongs to P5. Method

generates a sequence of transformed patterns W which

consists of elements of the set {P1, . . . , P5}. Thus, the object

classification problem is the problem of determining whether

its transformed pattern sequence W is accepted by atomaton

IGPSA = (Q,Σ, δ, q0, F),

where Q is the set of states, Σ = {P1, . . . , P5} is the

alphabet, δ : Q × Σ → Q is the transition function,

q0 is the initial state and F is set of final states. Each

state corresponds to polymorphic shellcode behavior. Let us

describe the predicate P (S) which checks whether W is

accepted by IGPSA. Formally,

|α̃IGPSA(S)| 6= 0 ⇔ P (S).

E. Hybrid methods

One of the examples of the hybrid method is the method

for detecting self-decrypting shellcode [24], proposed by K.

Zhang. Let us call it HDD in the rest of the paper. The

static part of the method includes two-way traversal and

backward data flow analysis. By which the analysis method

finds seeding subsets of instructions of S. The presence

of malicious behavior is verified by the emulation of these

subsets.

101 of 173

Firstly, static analysis method performs recursive traversal

analysis of the instruction flow, starting at the seeding

instruction. A seeding instruction that can demonstrate the

behavior of GetPC code (for example, call, fnstenv,

etc.). The method starts the backward analysis, if a target

instruction, an instruction that is either (a) an instruction that

writes to memory, or (b) a branching instruction with indirect

addressing, is encountered during the forward traversal. The

method follows backwards the def-use chain in order to

determine the operands of the target instruction. Then the

method checks such chains Si ⊂ {two way analysis(S)}
for the presence of cycles (P1(Si)). Moreover, it checks

whether chains write to memory in the code address space

(that fact is considered as self-modification behaviour). Let

it be the P2(Si) predicate. Let us also consider

P3(Si) = ∀j : Ij ∈ Si & invalid(Ij).

Thus,

|α̃Hybrid dec detection(S)| 6= 0 ⇔ ∃i : Si ⊂
{two way analysis(S)} & P1(Si) & P2(Si) & ¬P3(Si).

Another hybrid method is PolyUnpack [27]. This method

is based on statical constructing of a program model and

verification of this model by the emulation technique. The

object S is said to be legitimate if it does not produce any

data to be executed. Otherwise, the object is a self-extracting

program. At the stage of static analysis, the object S is

divided into code blocks and data blocks. These code blocks,

separated by blocks of data, are a sequence of instructions

Sec0, . . . , Secn, which represent the program’s model. The

statically derived model and object S are then transited into

the dynamic analysis component where S is executed in

an isolated environment. The execution is paused after each

instruction and its execution context is compared with the

static code model. If the instruction corresponds to the static

model, then the execution continues. Otherwise, the object

S is considered as malware. Let us describe the predicate

P (S) which checks whether object S satisfies its static code

model. Then we can formally describe PolyUnpack as

|α̃PolyUnpack(S)| 6= 0 ⇔ ¬P (S).

F. Methods of abstract execution

At the present day, this class represented the only method

that is called APE [28]. APE is NOP-sled detection method,

which is based on finding sufficiently long sequences of

valid instructions, whose operands in memory are in the

protected address space of the process. There are a small

number of positions in the experimental data, from which

abstract execution should be started, which are chosen in

order to reduce the computational complexity. The abstract

execution is used to check the instruction’s correctness and

validity.

Definition 8: A sequence of bytes is correct, if it rep-

resents a single valid processor instruction. A sequence of

bytes is valid if it is correct and all memory operands of the

instruction reference the memory addresses that the process

which executes the operation is allowed to access.

The number of correct instructions, which are decoded from

each selected position, are denoted as MEL (Maximum

Executable Length). It is possible that a byte sequence

contains several disjoint abstract execution flows and the

MEL denotes the length of the longest. The NOP-sled is

believed to be found in S, if the value of MEL reaches a

certain threshold Thr. Formally,

|α̃APE(S)| 6= 0 ⇔ (MEL ≥ Thr).

III. EVALUATION AND DISCUSSION

This section provides an analysis and comparison of the

above methods with respect to three criteria: the complete-

ness of classes handling, the false positive rates and the

computational complexity. The key difficulty here is that all

the research papers observed in this paper use completely

different testing conditions and testing datasets. Therefore it

is not very helpful to compare the published false positives

rates or throughput of the algorithms. For example, the

STRIDE method was tested using only HTTP URI dataset,

where the possibility of finding executable byte sequences is

indeed relatively low. Some of the methods like SigFree are

designed to detect ”meaningful” executables and distinguish

them from random byte sequences which only look like

executable, but such method would definitely have high false

positive rates when used for shellcode detection in the net-

work channel where ELF executable transfer is quite normal.

This means that the results provided in the original research

papers can not be used directly for solving the problem of

aggregate classifier generation. A real performance and false

positive profiling should be performed, with some kind of

representative dataset and a solid experiment methodology.

But for the task of the survey and making some prelim-

inary relative comparison of the detection methods within

the same shellcode feature classes the data provided in

the original research papers could be useful. Therefore, we

collected it into a series of summary tables, along with

short descriptions of the testing conditions. The computa-

tional complexity estimation was made using the algorithm

descriptions from the research papers and general knowl-

edge of computational complexity of the typical tasks like

emulation or sandboxing. The drawback of such estimation

is that it gives only classes of complexity, not the real

throughput in any given conditions. The actual throughput

of the considered methods was analytically evaluated for

the normalized machine 2.53 GHz Pentium 4 processor

and 1 GB RAM with running Linux on it. Throughput

is considered below when discussing the advantages and

disadvantages of the methods.

Table I shows the comparison results for the completeness

of classes coverage.

102 of 173

B
u
tt

er
cu

p

H
am

sa

P
o
ly

g
ra

p
h

S
tr

id
e

R
ac

ew
al

k

S
ty

x

S
tr

u
ct

u
ra

l
an

al
y
si

s

S
ig

F
re

e

S
T

IL
L

S
em

an
ti

c
aw

ar
e

E
m

u
la

ti
o
n

H
D

D

N
S

C

IG
P

S
A

P
o
ly

U
n
p
ac

k

A
P

E

KNOP1

KNOP2

KNOP3

KNOP4

KNOP5

KNOP6

KNOP7

KSH

KDATA

KALT OP

KR

KALT I

KINJ

KSELF UNP

KSELF CIPH

KRET

KRET+

KMET

KNSC

Table I: Methods coverage evaluation

Table II shows the comparison results of false positive

and false negative rates for the above methods. The rate was

calculated for those classes of malicious objects, which were

covered by the appropriate method. It is important to note

the following fact. As table II shows, rates of false positive

are low enough. Nevertheless, the number of false positives

on the real channels reach very high values, because of the

large volume of transmitted data.

Table III shows computational complexity of the methods.

We consider the methods in terms of their applicability

to the analysis of traffic on high-speed channels, as well as

provide deeper understanding the space of the algorithms,

comparison and tradeoffs between them.

For example, it is known that the method ButterCup

could detect the exploits with many kinds of obfuscation

(see table I). But the method usage on real channels is

problematic. This is due to the fact that the method uses

signatures of the return address, but a static return address

in the modern exploits isn’t used. In addition, the ButterCup

usage as the only one detection method implies a large

number of false positives. Nevertheless, the method can be

used as an additional check with other tools, as it doesn’t

require much time and computing costs. The method can

be applied to channels with any traffic profile (with any

probability of executable code will appear in the channel),

as well as permits analysis of high-speed data in real time.

Average throughtput of the method, calculated analytically,

is 4, 34Mb/s.

Both Polygraph and Hamsa have similar pre-processing

requirements. Both of these methods are based on the

automatic generation of context-dependent signatures and

provide similar shellcode classes coverage. Nevertheless,

the method Hamsa isn’t suited for polymorphic versions

of the virus detection because of specifics of generated

signatures. Different kinds of Polygraph’s signatures provide

a more flexible method. Although, the polymorphic version

of the virus isn’t detected by Polygraph in general case.

All three Polygraph’s signature classes have advantages

and disadvantages. The token-subsequence signatures are

more specific than the equivalent conjunction signatures.

However, some exploits may contain invariants that can

appear in any order. In that case, the token-subsequence

signatures are more preferable. The Bayes signatures are

generated more quickly than the others and are more useful

when the invariants arise in exploits some of the time. The

authors recommend to use all three types of signatures at

the same time, but it implies a large overhead. For example,

Polygraph in the best case 64 times slower than the Hamsa

algorithm, in the worst case this value reaches 361 times.

Average throughput of the Hamsa, estimated analytically,

is 7, 35Mb/s which makes the method applicable in real-

time analysis of high-speed traffic. Average throughput of

Polygraph without clustering reaches the value of 10Mb/s,

but the accuracy of the method decreases in the same time.

Average throughput of the method with clustering reaches

the value of 0.04Mb/s only. In that case method can be

used only as off-line analyzier.

In contrast to the Hamsa and Polygraph, the Structural

analysis method cam detect some types of obfuscated

shellcode. Moreover, in some cases it is able to detect

103 of 173

Method FP, % FN, % Testing sets

Buttercup 0.01 0 TCPdump files of network traffic from the MIT Lincoln Labratory IDS evaluation Data Set

Hamsa 0.7 0 Suspicious pool: Polygraphs pseudo polymorphic worms; polymorphic version of Code-Red II; polimorphic
worms, created with CLET and TAPiON; Normal traffic: HTTP URI

Polygraph 0.2 0 Malicious pool: the Apache-Knacker exploit, the ATPhttpd exploit, BIND-TSIG exploit;
Network traces: 10-day HTTP trace (125,301 flows); 24-hour DNS trace

Stride 0.0027∗ 0 Malicious pool: sleds, generated by the Metasploit Framework v2.2; Network traffic: HTTP URI;

Racewalk 0.0058 0 Malicious pool: sleds, generated by the Metasploit Framework v2.2; Normal traffic: HTTP URI, ELF
executables, ASCII text, multimedia, pseudo-random encrypted data.

Styx 0 0 Malicious pool: exploits generated using the Metasploit framework; Normal data: network traffic collected
at a enterprise network, which is comprised mainly of Windows hosts and a few Linux boxes.

Structural 0.5 0 Malicious pool: malicious code that was disguised by ADMmutate;
Normal traffic: data consists to a large extent of HTTP (about 45%) and SMTP (about 35%) traffic

The rest is made up of a wide variety of application traffic: SSH, IMAP, DNS, NTP, FTP, and SMB traffic.

SigFree 0∗∗ 0 Malicious pool: unencrypted attack requests generated by Metasploit framework, worm Slammer, CodeRed
Normal data: HTTP replies (encrypted data, audio, jpeg, png, gif and flash).

STILL 0∗∗ 0 Malicious pool: code that was generated using Metasploit framework, CLET, ADMmutate

Semantic aware 0 0 Malicious pool: set of obfuscated variants of B[e]agle;
Normal data: set of 2,000 benign Windows programs

Emulation 0.004 0 Malicious pool: code generated by Clet, ADMmutate, TAPiON and Metasploit framework;
Normal data: random binary content

HDD 0.0126 0 Malicious pool: code generated by Metasploit Framework, ADMmutate and Clet;
Normal data: UDP, FTP, HTTP, SSL, and other TCP data packets; Windows binary executables

NSC 0 0 Malicious pool: code generated by Avoid UTF8/tolower, Encoder and Alpha2
Normal data: three different kinds of random content such as binary data, ASCII-only data, and

printable-only characters

IGPSA 0 0 Malicious pool: code generated by Clet, ADMmuate, Jempiscodes, TAPioN, Metasploit Framework
Normal data: two types of traffic traces: one contains common network applications HTTP and

HTTPs, of port 80 and 443; the other contains traces of port 135, 139 and 445

PolyUnpack 0 0 Malicious pool: 3,467 samples from the OARC malware suspect repository.

APE 0 0 Malicious pool: IIS 4 hack 307, JIM IIS Server Side Include overflow, wu-ftpd/2.6-id1387,
ISC BIND 8.1, BID 1887 exploits; Normal data: HTTP and DNS requests.

Table II: Accuracy of the methods. FP stands for “False Positives” and FN stands for “False Negatives”

Method Complexity Remarks

Buttercup O(N) N is the lenght of S

Hamsa O(T ×N) N is the lenght of S,
T is the number of tokens in signature

Polygraph O(N) without clusters
N is the lenght S

O(N + S2) with clusters
S is the number of clusters

O(M2
× L) method’s training

M the lenght of malware training information
L - the lenght of legitimate training information

Stride O(N × l2) N is the lenght of S,
l is the lenght of NOP-sled

Racewalk O(N × l) N is the lenght of S,
l is the lenght of NOP-sled

Styx O(N) N is the lenght of S

Structural O(N) N is the lenght of S

SigFree O(N) N is the lenght of S

STILL O(N) N is the lenght of S

Semantic O(N) N is the lenght of S

Emulation O(N2) N is the lenght of S

N is the lenght of S

HDD O(N +K2
× T 2) K is the number of suspicious chains

T is maximum lenght of suspicious chains

NSC O(N2) N is the lenght of S

IGPSA O(N2) non-optimized
O(CN) optimized

PolyUnpack O(N) N is the lenght of S

APE O(N × 2l) N is the lenght of S
l is the lenght of NOP-sled

Table III: Methods complexity

104 of 173

metamorphic shellcode as it generates program’s structure

dependent signatures. In spite of the fact the algorithmic

complexity of all three algorithms is comparable (see table

III), Structural analysis slower than the others. Because of

the time complexity of algorithm, traffic analysis is possible

in off-line mode only. Average throughtput of the method

reaches the value of 1Mb/s. In addition,technique cannot

detect malicious code that consists of less than k blocks.

That is, if the executable has a very small footprint method

cannot extract sufficient structural information to generate a

fingerprint. The authors chose 10 for k in their experiments.

The Racewalk method improves the Stride algorithm

by significally reducing of computational complexity. Both

Racewalk and Stride can be used in real-time analysis

of high-speed channels. When comparing the methods of

false positives rate it is necessary to consider the following

observation fo the Stride algorithm. There is a possibility

that NOP-equivalent byte sequence can occur in legitimate

traffic. For example, a sequence of bytes may appear as

part of ELF executable, ASCII text, multimedia or pseudo-

random encrypted data. Thus, the value presented in Table

II for this type of legitimate traffic may vary from what is

represented. Both of these methods significantly exceed the

speed of the APE method of abstract interpretation which

also detects NOP-sled. In that case it is diffucult to use APE

on real channels.

The Styx method is able to detect self-unpacked and self-

ciphered shellcode. Nevertheless, in the average case Styx

is slower than similar methods of dynamic analysis. Partic-

ularly, the average throughput of the method is 0.002Mb/s.

That significantly decreases the method’s applicability. Nev-

ertheless, it can be used as a supplement to other shellcode

detection algorithms. The method as an additional tool to

others can increase the shellcode space coverage. Another

considered method which is based on CFG construction is

Semantic aware algorithm. It is also characterized by low-

speed analysis. In that case the method cannot be used in

real-time mode even on channels with low bandwidth. The

second limitation of method comes from the use of def-

use chains.The def-ude relations in the malicious template

effectively encode a specific ordering of memory updates.

Thus, the algorithm can detect only those program that

exhibit the same ordering of memory updates. Nevertheless,

the method can be used as additional checking tool to others

shellcode detection algorithms.

Methods SigFree and STILL together providing particu-

larly complete coverage of all shellcode classes. In addition,

methods are able to work in real-time mode on high-

speed channels. However, the value of false positives rates

of SigFree and STILL methods represent only the traffic

profile, which does not allow any kind of executables. For

the other traffic profile false positive rates of these methods

are extemely high. That fact decreases the aplicability of

SigFree and STILL.

Significant advantage of methods Emulation, NSC Em-

ulation, IGPSA is their resistance to anti-static evasion

techniques. At the same time, all these methods have a

limitated applicability since they can detect only shellcode

classes that contain anti-static obfuscation. As example, the

Emulation method detects only polymorphic shellcodes that

decrypt their body before executing their actual payload.

Plain or completely metamorphic shellcodes that do not per-

form any self-modifications are not captured by algorithm.

However, polymorphic engines are becoming more prevalent

and complex. The method’s throughput is analytically evalu-

ated as 1Mb/s. Method NSC Emulation, running at average

throughput 1.25− 1.5Mb/s is focused on finding non-self-

contained shellcode which practically doesn’t occur in real

traffic. Thus, the applicability of the method isn’t clear.

The average throughput of IGPSA algorithm is 1.5Mb/s/

Algorithms IGPSA and Emulation can interchanged with

each other.

Average estimated throughput of the hybrid method HDD

is 1.5Mb/s. That allows to use the method on the channels

characterized by a relatively low bandwidth in real-time

mode. An important advantage of the method is its ability to

detect metamorphic shellcode, along with other classes that

use anti-static obfuscation techniques. However, the authors

didn’t test the method on non-exploit code that uses code

obfuscation. code encryption, and self-modification. That

fact can potentially change the false positives rate proposed

by the authors. Thus, this is true for the other methods which

detects polymorphic and metamophic shellcodes.

The throughput of PolyUnpack hybrid method is sig-

nificantly lower than HDD and estimated as 0.05Mb/s.

This is due to time requirement to model generation and

long delays between running program request and model

responce. In addition, with decreasing of the program size,

the throughtput of method desreases respectively. Neverthe-

less, the method characterized by 100% detection accuracy

and zero false positives rate. That makes possible to use

method as an additional analyzer to other shellcode detection

algorithms.

IV. PROPOSED APPROACH AND CONCLUSION

This paper discusses techniques to detect malicious ex-

ecutable code in high-speed data transmission channels.

Malicious executable code is characterized by a certain set of

features by which the entire set of malware can be divided

into the classes. Thus, the problem of shellcode detection

can be formulated in terms of recognition theory. Each

shellcode detection method can be considered as a classifier

which assigns the executable malicious code to one of the

classes Ki of shellcode space. Each classifier has its own

characteristics of shellcode space coverage, false negative

and false positive rates, computational complexity.

Using the set of classifiers we can formulate the problem

of automatic synthesis of such hybrid shellcode detector,

105 of 173

which will cover all shellcode feature classes and reduce

the false positive rates while reducing the computational

complexity of the method compared with the simple linear

combination of algorithms. The method should be synthe-

sized in conformance with the profile of traffic channel data.

In other words, the method should consider the probability of

executable code transmission through the channel, etc. Let us

consider the problem of algorithm synthesis as construction

of a directed graph G = (V,E) (see Fig. 3) with a specific

topology, where {V } is the set of nodes which are classifiers

themselves, {E} is the set of arcs. Each arc represents the

route of flow data. We decided to include in the graph

such classifiers (methods) that provide the most complete

coverage of the shellcode classes K1, . . . , Kl. Each of the

selected classifiers is assigned with two attributes: false

positive rates and complexity. The attributes’ values can be

calculated by profiling, for example.

This qualifier must change the corresponding bit in the

information vector from the delta to 0 or 1. If the corre-

sponding bit different from the delta, the classifier produces

for him a logical or operation.

Each arc (vi, vj) is marked with one of the classes

Kr if vi classifier checks whether the object (flow data)

belongs to class Kr. The vi classifier changes the cor-

responding bit αr(S) in the information vector α̃(S) =
(α1(S), α2(S), . . . , αl(S)) from ∆ to value from {0, 1}.

If αr(S) 6= ∆ then the classifier produces for it a logical

or operation: αr(S) = αrCURRENT
(S) || αrPREV IOUS

(S).
If the classifier vi checks whether the object S belongs

to several classes of shellcode space, then the vertex vi
has several outgoing arcs with the corresponding notes.

Similarly, the classifier changes the values of corresponding

bits in information vector α̃(S). In addition, if vertex vi has

several incoming arcs, then the results of classifiers, from

which the arcs are outgoing, merge with each other.

We assume that each node is associated with the type of

the set {REDUCING,NON REDUCING}. If a node

vi has type REDUCING, then if the classifier vi concludes

object S to be legitimate, the flow is not passed on. That

implies the computational cost decreases and input flow is

reduced. The reduced flow example is shown in Fig. 4

We associate each path in the graph G with its weight.

The weight consists of a combination of two parameters: i)

the total processing time, and ii) the false positive rates. it

is necessary to include a classifier with lowest false positive

rates to each path in G.

As part of the problem being solved it is necessary to

propose a topology of graph G such that: i) the traffic profile

will be taken into account; ii) all pathes will be completed

in the shortest time, and iii) all pathes will be completed

with the lowest false positive rates. We will consider that

problem in terms of multicriteria optimization theory.

Figure 3: Graph example. Solid arrow represents the route

of shellcode candidates. The arc (vi, vj) is marked with one

of the classes Kx if vi classifier checks whether shellcode

candidate belongs to class Kx.

Figure 4: Example of flow reducing. Arrows represent the

flow of shellcode candidates. The Classifiers 1, 2 and 3

consider part of the objects as legitimate, so they are not

passed on.

REFERENCES

[1] Y. I. Zhuravlev, Algebraic approach to the solution of
recognition or classification problems. Pattern recognition
and image analysis, 1998, vol. 8; no.1, 59-100.

[2] Team Cymru Malware Infections
Market. [PDF] http://www.team-
cymru.com/ReadingRoom/Whitepapers/2010/Malware-
Infections-Market.pdf

106 of 173

[3] B. Stone-Gross et al., Your Botnet is My Botnet: Analysis of a
Botnet Takeover. Technical report, University of California,
May 2009.

[4] K. Kruglov, Monthly Malware Statistics: June
2010. Kaspersky Lab Report, June 2010. [HTML]
http://www.securelist.com/en/analysis/204792125/Monthly

Malware Statistics June 2010

[5] P. Porras, H. Saidi, V. Yegneswaran, An Analysis of Con-
ficker’s Logic and Rendezvous Points. Technical Report, SRI
International, Feb 2009.

[6] FBI, International Cooperation Disrupts Multi-Country Cy-
ber Theft Ring. Press Release, FBI National Press Office,
Oct 2010.

[7] U. Payer, M. Lamberger, P. Teufl, Hybrid engine for poly-
morphic shellcode detection. In: Proceedings of the Confer-
ence on Detection of Intrusions and Malware & Vulnerabil-
ity Assessment (DIMVA05). Berlin: Springer-Verlag, 2005.
19-31

[8] R. Chinchani, E. Berg, A fast static analysis approach to
detect exploit code inside network flows. In: Proceedings
of the 8th International Symposium on Recent Advances
in Intrusion Detection (RAID’05). Berlin: Springer-Verlag,
2005. 284-308

[9] C. Kruegel, E. Kirda, D. Mutz, et al., Polymorphic worm
detection using structural information of executables. In:
Proceedings of the 8th International Symposium on Re-
cent Advances in Intrusion Detection (RAID’05). Berlin:
Springer-Verlag, 2005

[10] P. Akritidis, E. Markatos, M. Polychronakis, and K Anag-
nostakis, Stride: Polymorphic sled detection through instruc-
tion sequence analysis. In Proc. of the 20th IFIP Interna-
tional Information Security Conference (SEC’05), 2005.

[11] D. Gamayunov, N. T. Minh Quan, F. Sakharov,
E. Toroshchin Racewalk: fast instruction frequency
analysis and classification for shellcode detection in
network flow In: 2009 European Conference on Computer
Network Defense. Milano, Italy, 2009

[12] A. Pasupulati, J. Coit, K. Levitt, et al., Buttercup: On
network-based detection of polymorphic buffer overflow
vulnerabilities. In: Proceedings of Network Operations and
Management Symposium 2004. Washington: IEEE Com-
puter Society, 2004

[13] E. Filiol, Metamorphism, formal grammars and undecidable
code mutation. International Journal of Computer Science,2,
2007

[14] Z. Li, M. Sanghi, Y. Chen, et al., Hamsa: Fast signature
generation for zero-day polymorphic worms with provable
attack resilience. In: Proceedings of 2006 IEEE Symposium
on Security and Privacy (S&P’06). Washington: IEEE Com-
puter Society, 2006. 32-47

[15] J. Newsome, B. Karp, D. Song, Polygraph: automatically
generating signatures for polymorphic worms. In: Proceed-
ings of 2005 IEEE Symposium on Security and Privacy
(S&P’05). Washington: IEEE Computer Society, 2005. 226-
241

[16] M. Weiser, Program Slicing: Formal, Psychological and
Practical Investigations of an Automatic Program Abstrac-
tion Method. PhD thesis, The University of Michigan, Ann
Arbor, Michigan, 1979

[17] X. Wang, C. C. Pan, P. Liu, S. Zhu, Sigfree: A signature-
free buffer overflow attack blocker. In 15th Usenix Security
Symposium, July 2006

[18] X. Wang, Y. Jhi, S. Zhu, Protecting Web Services from
Remote Exploit Code: A Static Analysis Approach In Proc.
of the 17th international conference on World Wide Web
(WWW’08), 2008.

[19] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant, Semantics-aware malware detection. In
Proc. of 2005 IEEE Symposium on Security and Privacy
(S&P’05), 2005.

[20] D. Detlefs, G. Nelson, J. B. Saxe Simplify: A Theorem
Prover for Program Checking

[21] R. E. Bryant, S. k. Lahiri, S. A. Seshia, Modeling and
verifying systems using a logic of counter arithmetic with
lambda expressions and uninterpreted functions. In: CAV
02: International Conference on Computer-Aided Verifica-
tion

[22] A. Stavrou, M. E. Locasto, Y. Song, On the Infeasibility
of Modeling Polymorphic Shellcode In Proc. of the 14th
ACM conference on Computer and communications security
(CCS’07), 2007.

[23] M. Polychronakis, K. G. Anagnostakis, E. P. Markatos,
Network-level polymorphic shellcode detection using emu-
lation. In:Proceedings of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment. Berlin:
Springer-Verlag, 2006

[24] Q. Zhang, D. S. Reeves, P. Ning, et al., Analyzing network

traffic to detect self-decrypting exploit code. In: Proceedings
of the 2nd ACM Symposium on InformAtion, Computer and
Communications Security, New York: ACM, 2007. 4-12

[25] L. Wang, H. Duan, X. Li, Dynamic emulation based model-
ing and detection of polymorphic shellcode at the network
level Science in China Series F: Information Sciences Vol-
ume 51, Number 11, 1883-1897.

[26] M. Polychronakis, K. G. Anagnostakis, E. P. Markatos
Emulation-based Detection of Non-self-contained Polymor-
phic Shellcode In Proc. of the 10th international conference
on Recent advances in intrusion detection (RAID’07), 2007.

[27] P. Royal, M. Halpin, D. Dagon, R. Edmonds, W. Lee,
PolyUnpack: Automating the Hidden-Code Extraction of
Unpack-Executing Malware In: Computer Security Appli-
cations Conference (ACSAC’06), 2006.

[28] T. Toth, C. Kruegel, Accurate Buffer Overflow Detection
via Abstract Payload Execution In Proc. of the 5th interna-
tional conference on Recent advances in intrusion detection
(RAID’02), 2002.

107 of 173

Station Disassociaciation Problem in Hosted Network

Artyom Shal

Software Engineering department

The Higher School of Economics

Moscow, Russia

artiom.shal@gmail.com

Abstract — hosted network technology gives an

opportunity to create the virtual access point. However,

client stations are forced to disassociate from AP due to

poor configuration. This paper proposes solution to the

issue of station disassociation in the hosted networks.

Keywords — hosted network, Wi-Fi, TCP/IP.

I. INTRODUCTION

Microsoft hosted network is not a new technology,
however, it is not examined enough yet. Although it gives
the opportunity to arrange fully qualified access point with
no additional hardware required, users face connectivity
problems too often. Virtual access point drops the connection
with users’ PC frequently for no apparent reason (at first
sight). This action is very disturbing and disruptive. This
paper is aimed to uncover possible issues and pitfalls of the
powerful technology.

II. FIRST INVESTIGATION

The first apparent reason for station disassociating from
virtual AP is that TCP and Wi-Fi are not perfectly combined.
The nature of the IEEE 802.11 technology causes packet
delay and loss rate, which triggers TCP congestion control
mechanism [1]. This may lead to performance degradation.
However, connection breaks were not reported on such
scenarios. Possible reason for connection breaks could be
specific features of Microsoft TCP/IP stack. Virtual access
point may behave differently compared to real devices,
indeed. Responsibility for smooth operation of the hosted
network technology is on NIC manufacturers. Hence, we
assume that virtual AP is fully compliant to 802.11 set of
standards. What is the reason for such behavior?

A. Testing

A clear behavior pattern was discovered after performing
tests. The testing involved Microsoft Network Monitor tool
for capturing and analyzing wireless network traffic. The
monitoring showed that the connection was fine when the
heavy data transfer existed, e.g. video stream. On the other
hand, when there was no network activity for more than 10
seconds connection was breaking. This is a rather infrequent
situation for ordinary users, as many network services (like
NetBIOS) on client stations usually communicate with each
other. Yet, it is common enough for corporate environment,
where security policies prohibit using many services. This

may lead to total blackout in network activity and thus to
frequent connection breaks.

To measure the issue we used Windows API on the side
of virtual AP. To monitor Wi-Fi network events, we
registered system notifications from miniport driver. For
this, we used WlanRegisterNotification function. The
function was called in the following way:

DWORD prevNotif = 0;

DWORD lastError = WlanRegisterNotification(

 handle(),

 WLAN_NOTIFICATION_SOURCE_ALL,

 TRUE, //Ignore duplicate

 (WLAN_NOTIFICATION_CALLBACK)handleNotification,

 NULL,

 NULL,

 &prevNotif

);

To get the state of Wi-Fi NIC we handled specific message

type in handleNotification callback function.

VOID handleNotification(WLAN_NOTIFICATION_DATA

*wlanNotifData, VOID *p)

{

switch(wlanNotifData->NotificationSource) {

case WLAN_NOTIFICATION_SOURCE_HNWK:

 switch(wlanNotifData->NotificationCode){

 case wlan_hosted_network_peer_state_change:

 ...

 }

...

}

}

Three devices were used for testing:

 Dell Latitude E5420 laptop with NIC Intel Centrino

Advanced-N 6205

 Samsung Galaxy S3 smartphone with Samsung Exynos

4 Quad system on chip

 Macbook Air 13 laptop with NIC Realtek RTL8188CU

Wireless LAN 802.11n

108 of 173

The results for Samsung device were the worst. It

couldn’t connect to access point at all. Dell device with

Windows 7 OS on board showed good results. Virtually no

disassociations were detected. Macbook Air laptop was

attempting to reconnect the access point every 10-15

seconds (Fig.1).

Fig 1. Macbook Air connection state pattern

B. DHCP server integration

The easiest way to fix this issue is to send stub packets.
One candidate is ICMP packets used by ping utility.
However, the obstacle is that we need to know the IP address
of every connected client. The only way to know this at
application layer is to allocate IP addresses dynamically
through DHCP server.

Starting the wireless Hosted Network typically involves
the launch of Internet Connection Sharing (ICS) service in
standalone mode. This, in turn, leads to DHCPv4 server to
begin providing private IPv4 addresses to connected devices.
In this mode, only the DHCPv4 server is operating. This is a
special operation mode for ICS and is only made available
through the wireless Hosted Network. A user or application
are not able to directly start and stop standalone ICS through
public ICS APIs or netsh commands. Moreover, there are no
ways to manage DHCP server operation. Therefore we had
to stop ICS manually and to use some open source
alternative.

To stop ICS in standalone mode we used simple
workaround: the connected key in Windows registry was
deleted. The OpenDHCP server is a good alternative to ICS
DHCP server. After small modifications, we obtained the
following result. The server was receiving the
acknowledgement message and starting the ping utility. This
simulated activity was enough to keep client stations
connected.

C. Results

The tests of the modified DHCP server showed a much

more steady connection for many devices. Still, the results

were disappointing, as connection was still breaking. Deeper

testing with wider variety of devices and different usage

scenarios revealed that problem is not at transport or

network layer [2] of the OSI model. It is somewhere at the

underlying layers.

III. DEEPER EXPLORATION

To uncover the issue of station disassociation at data link
layer we had to use special hardware and software. In
particular, Proxim ORINOCO wireless network interface
card was used to capture WLAN frames. This NIC can work
in promiscuous mode, which makes the controller pass all
received traffic to the central processing unit (instead of only
passing the frames that the controller intended to receive). To
monitor network activity the CommView software was
used. The application has WLAN-specific features, such as
displaying and decoding of management and control frames.

A. Monitoring

Tests showed that the disassociation frame (sent from

virtual access point) was the reason for dropping

connection. The reason field in that frame was

“disassociated due to inactivity”. This indicates that either

the station’s NIC is not sending probe frames frequent

enough or that software-based AP cannot see them. We

think that the latter is more likely due to specific feature of

SoftAP—it shares the common processing unit with virtual

station adapter. If proper buffering on NIC is not present,

this may lead to a situation when AP is halted to process

station operations and cannot process its own frames. This

might be fixed by proper configuration during the process

of association and initial handshake [3]. The virtual access

point should notify the stations that more frequent probe

requests are needed, as the listen intervals decreased.

B. Solution

As Microsoft doesn’t provide any public API to

configure hosted network we can manage it only through

NDIS driver stack. NDIS stack has several types of

drivers: protocol, miniport and filter (intermediate).

Miniport driver is the prerogative of NIC manufacturer, so

the filter driver is an appropriate tool to interact and affect

the adapter.

The miniport driver notifies the filter driver on every

event including virtual AP events. Using lightweight filter

driver we modified the listen interval in beacon frames.

This frames set short packet buffer, which forced the client

stations to make probe requests more frequently. This

prevents the AP from sending disassociation requests.

To access the configuration of the beacon frames we

used the OID_DOT11_BEACON_PERIOD object type,

which requests the miniport driver to set specified value of

the IEEE 802.11 at dot11BeaconPeriod management

information base (MIB) object . This object is used by the

802.11 station for scheduling the transmission of 802.11

beacon frames. It also represents the Beacon Interval field

of the 802.11 Beacon and Probe Response frames sent by

the station.

The data type for OID_DOT11_BEACON_PERIOD is

a ULONG value that specifies the beacon period in 802.11

time units (TU). One TU is 1024 microseconds. The

dot11BeaconPeriod MIB object has a value from 1 through

65535.

0 50 100

Macbook Air

Associated
state

Associating
state

109 of 173

C. Results

The tests showed a stable connection for all reference

devices. devices operating in power saving mode

(Samsung Galaxy S3) can go asleep in ATIM window if

there are no announcements [4]. However, right configured

beacon intervals fixed this issue.

Fig 2. ATIM messages announcement

Another specific case is channel switch. The device

that has the ability to scan networks in background may

switch channels for short periods. Devices with this feature

(Macbook Air) may miss beacon announcement. NDIS

configuration fixes this issue as well.

Fig 3. Channel switch for network scan

IV. CONCLUSION

It is clear that hosted network have some pitfalls. It is

advisable for NIC manufacturers to provide not only

standard-compliant devices, but also drivers that can avoid

many pitfalls of the 802.11 protocol stack. The solution for

station disassociation issue was given in this paper. It may

find application in hot spot software.

REFERENCES

[1] M. Franceschinis, M. Mellia, M. Meo, M. MunafoMeasuring “TCP

over WiFi: A Real Case,” 1st workshop on Wireless Network
Measurements (Winmee), Riva Del Garda

[2] V. P. Kemerlis , E. C. Stefanis , G. Xylomenos , G. C. Polyzos
“Throughput Unfairness in TCP over WiFi” Proc. 3rd Annual
Conference on Wireless On demand Network Systems and Services
(WONS 2006)

[3] V. Gupta, M. K. Rohil, “Information Embedding in IEEE 802.11
Beacon Frame,” Proc. National Conference on Communication
Technologies & its impact on Next Generation Computing CTNGC
2012

[4] H. Coskun, I. Schieferdecker, Y. Al-Hazmi “Virtual WLAN: Going
beyond Virtual Access Points” Electronic Communications of the
EASST, Volume 17, 2009

[5] P. Bahl “Enhancing the Windows Network Device Interface
Specification for Wireless Networking”, Microsoft Research

110 of 173

On Bringing Software Engineering to Computer
Networks with Software Defined Networking

Alexander Shalimov
Applied Research Center for Computer Networks,

Moscow State University
Email: ashalimov@arccn.ru

Ruslan Smeliansky
Applied Research Center for Computer Networks,

Moscow State University
Email: smel@arccn.ru

Abstract—The software defined networking paradigm be-
comes more and more important and frequently used in area
of computer networks. It allows to run software that manages
the whole network. This software becomes more complicated
in order to provide new functionality that was impossible to
imagine before. It requires better performance, better reliability
and security, better resource utilization that will be possible only
by using advanced software engineering techniques (distributed
and high availability systems, synchronization, optimized Linux
kernel, validation techniques, and etc).

I. INTRODUCTION

Software Defined Networking (SDN) is the ”hottest” net-
working technology of recent years [1]. It brings a lot of
new capabilities and allows to solve many hard problems
of legacy networks. The approach proposed by the SDN
paradigm is to move network’s intelligence out from the packet
switching devices and to put it into the logically centralized
controller. The forwarding decisions are done first in the
controller, and then moves down to the overseen switches
which simply execute these decisions. This gives us a lot of
benefits like global controlling and viewing whole network at
a time that helpful for automating network operations, better
server/network utilization, and etc.

A controller (also known as network operating system) is a
dedicated host which runs special control software, framework,
which interacts with switching devices and provides an inter-
face for the user-written management applications to observe
and control the entire network. In other words, the controller
is the heart of SDN networks, and its characteristics determine
the performance of the network itself.

We describe the basic architecture of contemporary
controllers. For each part of a controller we show software
engineering techniques are already used and might be used in
the future in order to improve the performance characteristics.

We show the result of our latest experimental evaluation
of SDN/Openflow controllers. Based on this we explain that
the performance of single controller is not yet enough to
manage data centers and large-scale networks.

Finally, we present the approach of high performance
and reliable next generation distributed controller. We
discuss possible ways to organized it and mention highly
demands software engineering techniques.

II. BACKGROUND

A. History

Since early 2000th many researchers in Stanford University
and Berkeley University have started rethinking the design and
architecture of networking and Internet. The modern Internet
and enterprise networks have a very complex architecture
and are build using an old design paradigm. This paradigm
includes the request for decentralized and autonomous control
mechanisms which means that each network device imple-
ments both the forwarding functionality and the control plane
(routing algorithms, congestion control, etc). Furthermore, any
additional functionality in modern networking (for example,
load balancing, traffic engineering, access control etc) is pro-
vided by the set of complex protocols and special gateway-like
devices.

The enterprise and backbone networks, data center infras-
tructures, networks for educational and research organizations,
home and public networks both wired and wireless are build
upon a variety of proprietary hardware and software which are
cost expensive and difficult to maintain and manage. This leads
to inefficient physical infrastructure utilization, high oncost for
management tasks, security risks and other problems.

Enterprise networks are often large, run a wide variety
of applications and protocols, and typically operate under
strict reliability and security constraints; thus, they represent a
challenging environment for network management. The stakes
are high, as business productivity can be severely hampered
by network misconfigurations or break-ins. Yet the current
solutions are weak, making enterprise network management
both expensive and error-prone. Indeed, most networks today
require substantial manual configuration by trained operators
to achieve even moderate security [1], [3].

The Internet architecture is closed for innovations [4]. The
reduction in real-world impact of any given network innovation
is because the enormous installed base of equipment and
protocols, and the reluctance to experiment with production
traffic, which have created an exceedingly high barrier to
entry for new ideas. Today, there is almost no practical way
to experiment with new network protocols (e.g., new routing
protocols, or alternatives to IP) in sufficiently realistic settings
(e.g., at scale carrying real traffic) to gain the confidence
needed for their widespread deployment. The result is that
most new ideas from the networking research community go
untried and untested.

111 of 173

Modern system design often employs virtualization to de-
couple the system service model from its physical realization.
Two common examples are the virtualization of computing
resources through the use of virtual machines and the virtual-
ization of disks by presenting logical volumes as the storage
interface. The insertion of these abstraction layers allows
operators great flexibility to achieve operational goals divorced
from the underlying physical infrastructure. Today, workloads
can be instantiated dynamically, expanded at runtime, migrated
between physical servers (or geographic locations), and sus-
pended if needed. Both computation and data can be replicated
in real time across multiple physical hosts for purposes of high-
availability within a single site, or disaster recovery across mul-
tiple sites. Unfortunately, while computing and storage have
fruitfully leveraged the virtualization paradigm, networking
remains largely stuck in the physical world [6], [7], [8]. As is
clearly articulated in [5], networking has become a significant
operational bottleneck.

While the basic task of routing can be implemented on
arbitrary topologies, the implementation of almost all other
network services (e.g., policy routes, ACLs, QoS, isolation
domains) relies on topology-dependent configuration state.
Management of this configuration state is cumbersome and
error prone adding or replacing equipment, changing the
topology, moving physical locations, or handling hardware
failures often requires significant manual reconfiguration.

Virtualization is not foreign to networks, as networking
has long supported virtualized primitives such as virtual links
(tunnels) and broadcast domains (VLANs). However, these
primitives have not significantly changed the operational model
of networking, and operators continue to configure multiple
physical devices in order to achieve a limited degree of
automation and virtualization. Thus, while computing and
storage have both been greatly enhanced by the virtualization
paradigm, networking has yet to break free from the physical
infrastructure. Furthermore, the network virtualization func-
tionality implemented via additional protocols under L2-L4
layers increase the complexity and cost of network hardware
and the difficulty of configuring such hardware.

B. SDN

Further, to solve all above mentioned problems with net-
work management and configuration, reduce the complexity
of network hardware and software and make networks more
open to innovations the broad community of academical and
industrial researchers Open Networking Foundation [9] pro-
pose a new paradigm for networking the Software Defined
Networking (SDN).

The approach proposed by the SDN paradigm is to separate
the control plane (i.e. the policy for management network
traffic) from the datapath plane (i.e. the mechanisms for real
packet forwarding) (see Figure 1).

Traditionally, hardware implementations have embodied
the logic required for packet forwarding. That is, the hard-
ware had to capture all the complexity inherent in a packet
forwarding decision. According to new paradigm [1], [2], [4]
all forwarding decisions are done first in software (remote con-
troller), and then the hardware merely mimics these decisions
for subsequent packets to which that decision applies (e.g., all

Fig. 1. Software Defined Network organization.

packets of given network flow). Thus, the hardware does not
need to understand the logic of packet forwarding, it merely
caches the results of previous forwarding decisions (taken by
software) and applies them to packets with the same headers.

The key task is to match incoming packets to previous
decisions. Packet forwarding is treated as a matching process,
with all packets matching a previous decision handled by
the hardware, and all non-matching packets handled by the
software of remote controller. It is important to mention, that
only packet headers are used in matching process.

A network switching hardware now must implement only
a simple set of primitives to manipulate packet headers (match
them against matching rules and modify if needed) and forward
packets [1]. The core feature of such SDN-base switching
software is a flow table which stores the matching rules (in
form of packet header patterns to match against the incoming
packet headers) and set of actions which must be applied to
successfully matched packet.

Switching hardware also must provide common and
vendor-agnostic interface for remote controller. To unify the
interface between the switching hardware and remote con-
troller the special OpenFlow protocol [10] was introduced.
This protocol provides the controller a way to discover the
OpenFlow-compatible switches, define the matching rules for
the switching hardware and collect statistics from switching
devices.

Figure 2 shows an interaction between OpenFlow-based
controller and OpenFlow-based switching hardware, there con-
troller provides the switch with a set of forwarding rules.

The control functionality in SDN paradigm is implemented
by the remote controller a dedicated host which runs special
control software. At the present time there exist a number of
controllers. The most well known are NOX [12], POX [13],
Beacon [14], Floodlight [15], MUL [16], Ryu [19], and Mae-
stro [18]. Again, a controller is a framework which interacts
with OpenFlow-compatible switching devices and provides
an interface for the user-written management applications to
observe and control the entire network. A controller does not

112 of 173

Fig. 2. Software Defined Network paradigm. Remote controller provides the
forwarding hardware with rules describing how to forward packets according
to their headers.

manage the network itself; it merely provides a programmatic
interface. Applications implemented on top of the Network
Operating System perform the actual management tasks.

A controller represents two major conceptual departures
from the status quo. First, the Network Operating System
presents programs with a centralized programming model;
programs are written as if the entire network were present on a
single machine (i.e., routing algorithms would use Dijkstra to
compute shortest paths, not Bellman-Ford). Second, programs
are written in terms of high-level abstractions (e.g., user and
host names), not low-level configuration parameters (e.g., IP
and MAC addresses). This allows management directives to be
enforced independent of the underlying network topology, but
it requires that the Network Operating System carefully main-
tain the bindings (i.e., mappings) between these abstractions
and the low-level configurations.

C. OpenFlow

The OpenFlow protocol is used to manage the switching
devices: adding new flow, deleting the flow, get statistics,
and etc. It supports three message types: controller-to-switch,
asynchronous, and symmetric.

Controller-to-switch messages are initiated by the con-
troller and used to directly manage or inspect the state of the
switch. Asynchronous messages are initiated by the switch and
used to update the controller of network events and changes
to the switch state. Symmetric messages are initiated by either
the switch or the controller and sent without solicitation.

The full set of messages and the detailed specification of
OpenFlow protocol could be found in [11].

III. CONTROLLER

Based on analyzing available materials about almost twenty
four SDN/OpenFlow controllers, we proposed the reference
architecture of SDN/OpenFlow controller shown on Figure 3.

The main components are:

Fig. 3. The basic architecture of an OpenFlow/SDN controller.

1) Network layer is responsible for communication with
switching devices. It is the core layer of every con-
troller that determines its performance. There are two
main tasks here:

• Reading incoming OpenFlow messages from
the channel. Usually this layer relies on the
runtime of chosen programming language. For
faster communication with NIC we can also
use fast packets processing framework like
netmap [20] and Intel DPDK [21].

• Processing incoming OpenFlow messages.
The common approach is to use multi-
threading. One thread listens the socket for
new switch connection requests and dis-
tributes the new connections over other work-
ing threads. A working thread communicates
with the appropriate switches, receives flow
setup requests from them and sends back the
flow setup rule. There are a couple of ad-
vanced techniques. For instance, Maestro dis-
tributes incoming packets using round-robin
algorithm, so this approach is expected to
show better results with unbalanced load.

2) OpenFlow library. The main functionality is parsing
OpenFlow messages, checking the correctness, and
according to a packet type producing new event like
”packetin”, ”portstatus”, and etc. The most interesting
part here, that is not in modern controllers yet, is
resilience to incorrectly formed messages.

3) Event layer. The layer is responsible for event
propagation between the controller’s core, services,
and network internal network applications. The net-
work application subscribes on events from the core,
produces other events to which other applications
may subscribe. This is usually done by publish-
ing/subscribing mechanism, either by writing your-
own implementation or using the standard one like

113 of 173

libevent for C/C++, RabbitMQ for Erlang.
4) Sevices. This is the most frequently used network

functionality like switches discovery, topology creat-
ing, routing, firewall.

5) Internal network applications. This is your-own appli-
cation like L2 learning switch. ”Internal” means that
it’s compiled together with the controller in order to
get better performance.

6) External API. The main idea behind the layer is to
provide language independent way to communicate
with controller. This common example is the web-
based RESTful API.

7) External network applications. Applications in any
language leveraging services via External API ex-
posed by controller services and internal applica-
tions. These applications are not needed in good
performance and low latency communication with
the controller. The common example is monitoring
applications.

8) Web UI layer. It provides WEB-based user interface
to manage the controller by setting up different pa-
rameters.

Also, the most important general question before choosing
the controller or creating new one is what programming
language to use. There is a trade off between the performance
and the usability. For instance, POX controller written on
Python is good for fast prototyping but it is too slow for
production.

IV. EXPERIMENTAL CONTROLLERS EVALUATION

We performed an experimental evaluation of the con-
trollers.

Our test bed consisted of two servers connected via 10Gb
link. The first server was used to launch the controllers. The
second server was used for traffic generation according to a
certain test scenario.

We chose the following seven SDN/OpenFlow controllers:

• NOX [12] is a multi-threaded C++-based controller
written on top of Boost library.

• POX [13] is a single-threaded Python-based controller.
It’s widely used for fast prototyping of network appli-
cation in research.

• Beacon [14] is a multi-threaded Java-based controller
that relies on OSGi and Spring frameworks.

• Floodlight [15] is a multi-threaded Java-based con-
troller that uses Netty framework.

• MUL [16] is a multi-threaded C-based controller writ-
ten on top of libevent and glib.

• Maestro [18] is a multi-threaded Java-based controller
that uses JAVA.NIO library.

• Ryu [19] is Python-based controller that uses gevent
wrapper of libevent.

Each controller runs the L2 learning switching application
provided by the controller. There are several reasons for
that. It’s quite simple and at the same time representative.

It fully uses controller’s internal mechanisms, and it also
shows how effective the chosen programming language is by
implementing single hash lookup.

We used the latest available sources of all controllers dated
March, 2013. We run all controllers with the recommended
settings for performance and latency testing, if available.

As a traffic generators we used freely available cbench [17]
and our-own framework hcprobe for controllers testing.
Cbench and hcrpobe emulates any number of OpenFlow
switches and hosts. Cbench is intended for measuring different
performance aspects of the controller including the minimum
and maximum controller response time, maximum throughput.
Hcprobe allows to investigate various characteristics of con-
trollers in a more flexible manner by specifying patterns for
generating OpenFlow messages (including malformed ones),
varying the number of reconnection attempts in case the
controller accidentally closes the connection, choosing traffic
profile, and etc. It is written in Haskell that is high-level
programming language and allows users to easily create their
own scenarios for controllers testing.

Our testing methodology includes performance and scal-
ability measurements as well as advanced functional anal-
ysis such as reliability and security. The goal of per-
formance/scalability measurements is to obtain maximum
throughput (number of outstanding packets, flows/sec) and
minimum latency (response time, ms) for each controller. For
reliability we measured the number of failures during long term
testing under a given workload profile. And as for security
we study how controllers work with malformed OpenFlow
messages.

Fig. 4. The average throughput achieved with different number of threads.

The figure 4 shows the maximum throughput for different
number of available cores per one controller. The single
threaded controllers (Pox and Ryu) show no scalability across
CPU cores. The performance of multithreaded controllers
increases steady in line for 1 to 6 cores, and much slower
for 7-12 cores because of using hyper threading technology
(the maximum performance benefit of the technology is 40%).
Beacon shows the best availability, achieving the throughput
near 7 billion flows per second. This is because of using shared
queues for incoming messages and batching for outgoing
messages.

The average response times of all controllers are between
80-100ms. The long-term tests show that most controllers

114 of 173

when running for quite a long time start to drop connections
with the switches and loose PacketIn messages. The average
number is 100 errors for 24 hours. And almost all controllers
crashes or loosing the connection with a switch when they
received malformed messages.

Let us come back to throughput numbers and understand if
the current performance enough. In the data centers new flow
request arrives every 10us in maximum and 300us to 2ms in
average [22]. Assuming small data center with 100K hosts
and 32 hosts/rack, the maximum flow arrival rate can be up to
300M with the median rate between 1.5M and 10M. Assuming
2M flows/sec throughput for one controller, it requires only
1-5 controllers to process the median load, but 150 for peak
load! In large-scale networks the situation can be tremendously
worse.

The solving of the problem should go two ways. The first
way is improving single controller itself by doing more ad-
vanced multi-threaded optimizations. The second way is using
multiple controller instances which collaboratively manage the
network. This approach is called a distributed controller.

V. MOVING TO DISTRIBUTED CONTROLLER

As we see in previous section single controller is not
enough for managing the whole network. There are two
problems here:

1) Scalability. Because networks are growing rapidly,
the controller’s resources are not enough to maintain
state of all network devices. Moreover, the flow setup
latency in a bigger networks is also increasing.

2) Reliability. The controller is a single point of failure.
If the controller crashes, the network stops.

To solve the above problems, we need physically dis-
tributed control plane with centralized view of the entire
network.

The scheme of the solution is presented in Figure 5.

Fig. 5. The organization scheme of distributed controller.

The networks divides into segments, which controlled by
dedicated instance of the controller. Network segments may
overlap to ensure network resiliency in case of failure of any
controller. In this case the switches will be redistributed over
appropriate instances of the controller.

Each controller is connected to a distributed data storage
that provides a consistent view of whole network. It stores
all switch- and application- specific information. Application
state is kept in the distributed data store to facilitate switch
migration and controller failure recovery.

In addition, each controller has failover controller in case
of its failure. It might be cold or hot. The cold failover is
turned off by default and starts only when the master controller
crashes. The hot failover receives the same messages as the
master controller, but has read-only access. This provides the
smallest recovery time.

There is a lot of open research questions like how to orga-
nized controllers consistency in the right way, how to reduce
overhead on using distributed data store, how to do switch
migration, how to run applications on distributed controllers,
what the best controllers placement is, and etc.

VI. CONCLUSION

Software Defined Networking (SDN) has been developed
rapidly and is now used by early adopters such as data
centers. It offers immediate capital cost savings by replacing
proprietary routers with commodity switches and controllers;
computer science abstractions in network management offer
operational cost savings, with performance and functionality
improvements too.

However there is a lot researching has to be done especially
in SDN software area. Controllers are not yet ready to use in
production because of insufficient performance to operate with
data centers and large scale networks load.

Distributed controller is the next step in developing
SDN/Openflow controllers. It’s solving the scalability and
reliability problems of modern controllers. For this we must
use the techniques already existed in software engineering.

REFERENCES

[1] M. Casado, T. Koponen, D. Moon, and S. Shenker, Rethinking Packet
Forwarding Hardware. In Proc. of HotNets, Nov. 2008.

[2] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Natasha
Gude, Nick McKeown, Scott Shenker, Rethinking enterprise network
control, IEEE/ACM Transactions on Networking (TON), v.17 n.4,
p.1270-1283, August 2009

[3] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, Scott Shenker. Ethane: Taking Control of the Enterprise,
ACM SIGCOMM 07, August 2007, Kyoto, Japan.

[4] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford , Scott Shenker, Jonathan Turner, OpenFlow:
enabling innovation in campus networks, ACM SIGCOMM Computer
Communication Review, v.38 n.2, April 2008

[5] J. Hamilton, Data center networks are in my way, Talk at Stanford Clean
Slate CTO Summit, 2009.

[6] M. Casado, T. Koponen, R. Ramanthan, S. Shenker S. Virtualizing the
Network Forwarding Plane. In Proc. PRESTO (November 2010)

[7] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, S. Shenker,
Extending Networking into the Virtualization Layer, HotNets-VIII, Oct.
22-23, 2009

[8] J. Pettit, J. Gross, B. Pfaff, M. Casado, S. Crosby, Virtual Switching in
an Era of Advanced Edges, 2nd Workshop on Data Center Converged
and Virtual Ethernet Switching (DC-CAVES), ITC 22, Sep. 6, 2010

[9] Open Networking Foundation, https://www.opennetworking.org
[10] Openflow, http://www.openflow.org
[11] Openflow specification, http://www.openflow.org/wp/documents

115 of 173

[12] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown,
N., and Shenker, S. NOX: towards an operating system for networks.
SIGCOMM Computer Communication Review 38, 3 (2008), 105-110.

[13] Pox documentation, http://www.noxrepo.org/pox/about-pox/
[14] Beacon documentation, https://openflow.stanford.edu/display/Beacon/Home
[15] Floodlight documentation, http://floodlight.openflowhub.org/
[16] Mul documentation, http://sourceforge.net/p/mul/wiki/Home/
[17] Cbench documentation, http://www.openflow.org/wk/index.php/Oflops
[18] Zheng Cai, Maestro: Achieving Scalability and Coordination in Cen-

tralized Network Control Plane, Ph.D. Thesis, Rice University, 2011
[19] Ryu documentation, http://osrg.github.com/ryu/
[20] Luigi Rizzo, netmap: a novel framework for fast packet I/O,Usenix

ATC’12, June 2012
[21] Packet Processing is Enhanced with Software from Intel DPDK,

http://intel.com/go/dpdk
[22] Theophilus Benson, Aditya Akella, and David A. Maltz, Network traffic

characteristics of data centers in the wild, IMC, 2010

116 of 173

The Formal Statement of the Load-Balancing
Problem for a Multi-Tenant Database Cluster with a

Constant Flow of Queries
Evgeny A. Boytsov
Valery A. Sokolov

Computer Science Department
Yaroslavl State University

Yaroslavl, Russia
{boytsovea, valery-sokolov}@yandex.ru

Abstract — The concept of a multi-tenant database cluster
offers new approaches in implementing a data storage for cloud
applications. One of the most important questions to solve is
finding a load-balancing algorithm to be used by the cluster,
which is able to effectively use all available resources. This paper
discusses theoretical foundations for such an algorithm in the
simplest case when the flow of incoming queries is constant, that
is, every tenant has a predefined intensity of the query flow and
there are no changes in the state of the tenant's data.

Keywords — database; cluster; multi-tenancy; load-balancing;
quadratic assignment problem; imitation modeling;

I. INTRODUCTION

When a company designs a high load cloud application, its
developers sooner or later face the problem of organizing the
storage of data in the cloud with the requirement of high
performance, fault-tolerance and reliable tenants’ data isolation
from each other. At the moment these tasks are usually solved
at the level of application servers by designing an additional
layer of an application logic. Such a technique is discussed in
many specialized papers for application developers and other
IT-specialists [1, 2, 3]. There are also some projects of
providing native multi-tenancy support at the level of a single
database server [4]. This paper is devoted to an alternative
concept of a multi-tenant database cluster which proposes the
solution of the above problems at the level of a data storage
subsystem and discusses theoretical foundations of this concept
in a particular case.

II. THE ARCHITECTURE OF THE MULTI-TENANT DATABASE

CLUSTER

A multi-tenant database cluster [5,6] is an additional layer
of abstraction over ordinary relational database servers with a
single entry point which is used to provide the isolation of
cloud application customer data, load-balancing, routing of
queries among servers and fault-tolerance. The main idea is to
provide an application interface which has most in common
with the interfaces of traditional RDBMS (relational database
management system). At the moment the typical scenario of
interaction with the cluster from the developer's point of view
is seen as the following:

Connect(TenantId, ReadWrite / ReadOnly);
SQL-commands
Disconnect();

A multi-tenant cluster consists of a set of ordinary database
servers and specific control and query routing servers.

The query routing server is a new element in a chain of
interaction between application servers and database ones. This
is the component application developers will deal with. In fact,
this component of the system is just a kind of a proxy server
which hides the details of the cluster structure, and whose main
purpose is to find an executor for a query and route the query
to him as fast as possible. It makes a decision based on the map
of the cluster.

It is important to note that a query routing server has a
small choice of executors for each query. If a query implies
data modification, there is no alternative than to route it to the
master database of a tenant, because only there data
modification is permitted. If the query is read-only, it also can
be routed to a slave server, but in the general case there would
be just one or two slaves for a given master, so even in this
case the choice is very limited.

The data distribution and load balancing server is the most
important and complicated component of the system. Its main
functions are:

• initial distribution of tenants data among servers of a
cluster during the system deployment or addition of
new servers or tenants;

Fig. 1. Multi-tenant database cluster architecture

117 of 173

• management of tenant data distribution, based on the
collected statistics, including the creation of additional
data copies and moving data to another server;

• diagnosis of the system for the need of adding new
computing nodes and storage devices;

• managing the replication.
This component of the system has the highest value since the
performance of an application depends on the success of its
work.

III. MAIN CHARACTERISTICS OF THE QUERY FLOW

When modeling and analyzing the multi-tenant database
cluster the most important things to study are characteristics
and properties of the incoming query flow. The quality of
implementation of this model component significantly affects
the adequacy and applicability of results obtained during
modeling.

The flow of incoming queries of the multi-tenant database
cluster can be divided into N non-intersecting and independent
sub-flows for each tenant λ i ,i∈1, N :

Λ=∑
1

N

λi

The study of statistics on existing multi-tenant cloud
applications shows that there is a significant dependency
between the size of data that the client stores in the cloud and
the intensity of a client's query flow (the more data has the
client, the larger organization it represents and, therefore, the
more often these data are accessed by individual users of that
client). The analysis of the statistics also shows that the above
tendency is not comprehensive and there are clients within the
cluster which have the intensity of the query flow that does not
match the size of the stored data (it can be both more or less
intensive than it is expected). The client's query flow can be
divided into two sub-flows: read-only queries and
data-modifying ones.

λ i=λ i read
+λ i write

Such a division only has sense when the data replication is
used within the cluster or when the solution is tuned to
specifics of the particular database server or operating system.
The higher-level analysis can omit this division.

Another obvious characteristics of the query flow is an
average duration μ of a query at the server. The duration of
different operations is not equal and this consideration should
be taken into account during the modeling. This value has a
significant impact on the quality of load-balancing, since it
affects the formation of the total cluster load. As we know
from the queuing theory, if Λμ>N queries , where N queries is
the maximum amount of queries that can run in parallel in the
cluster, then the cluster will fail to serve the incoming flow of
requests. It is also known that intensities of incoming query
flows are changed during the lifetime of the application, that is,

λ i=λ(t) , i∈1, N . Some clients begin to use the application
more intensively, the activity of others decreases, new clients
appear and existing clients disappear. Besides, some
applications may have season peaks of load.

IV. THE LOAD-BALANCING PROBLEM WITH A CONSTANT

FLOW OF QUERIES

A. General problem

The present paper is devoted to the study of load-balancing
the cluster in the case when flows of incoming queries have a
constant intensity, i.e. λ i=const , i∈1, N . The solution of
this problem can be considered as a solution of the general
problem «at the point». Clusters without data replication will
be studied (that is, without providing fault-tolerance). For
simplicity we assume that μ=1 (or, equivalently, the
bandwidth of each server in the cluster is divided by μ).

Let C be a multi-tenant database cluster that consists of М
database servers (S 1 , ... , S M) , for each of which we know
the following values:

1. λ̄ i ,i∈1,.. , M - the bandwidth of the database
server;

2. v̄ i , i∈1,.. , M - the capacity of the database server.

There are also N clients, comprising the set T, for each of
which we also know two values:

1. λ j , j∈1,.. , N - the intensity of j-th client query
flow;

2. v j , j∈1, .. ,N - the data size of j-th client.

We will call the M ×N matrix X a distribution matrix
(of clients in the cluster), if X satisfies the following constraints
and conditions:

1. xi , j=1 when data of the j-th client are placed at
the i-th server and xi , j=0 otherwise;

2. ∀ j∈1,.. , N ∃ ! i∈1, .. ,M : xi , j=1 - the data of
each client are placed at the single server;

3. ∀ i∈1,.. , M ∑
j=1

N

xi , j v j⩽v̄ i - the total data size at

each server is less than or equal to the server capacity;

4. ∀ i∈1,.. , M ∑
j=1

N

xi , j λ j⩽λ̄ i - the total query flow

intensity at each server is less than or equal to the
server bandwidth.

We will call the matrix X̃ the optimal matrix of
distribution of clients set T in the cluster C if for some function
f(C, T, X) the following condition is met:

f (C ,T , X̃)=min{ f (C ,T , X):
X −distribution matrix }

The function f in this definition is the measure of
load-balancing efficiency among the servers of the cluster. The
problem of effective cluster load-balancing in this formulation
reduces to finding an optimal distribution matrix X̃ for a
given cluster C, a set of clients T and the measure of efficiency
f.

118 of 173

B. The measure of efficiency

What is the best way to measure the efficiency of
load-balancing among servers? Uniformity of the load is a
good criteria here, therefore the target function which will
measure this characteristics should be searched. At the first
approximation, it may seem that the sum of squares of
differences between the load of the i-th server and the average
load of servers in the cluster can be used as the above measure.
This can be written as:

∑
i=1

M (∑j=1

N

x i , j λ j

λ̄ j
−Z)

2

, where Z — is the average load of

the cluster servers, that is

Z =

∑
i=1

M ∑
j=1

N

x i , j λ j

λ̄i

M

However, on closer examination this measure is consistent
only if the cluster C consists of servers with a uniform
performance, otherwise it leads to an intuitively wrong result.
This consideration can be illustrated by the following example.
Let the cluster C consist of twelve servers and two of them are
45 times more powerful than other ten (that is

λ̄1,2=45 λ̄k , k ∈3, .. ,12). In this case these two servers
constitute 90 percent of total cluster computational power and
therefore they play a crucial role in solving the problem of
effective load-balancing. The operation mode of other ten
servers is not important in such a configuration (for example,
they can not serve any queries at all). But the above formula
assumes that all terms are equivalent and therefore these ten
servers will bring a decisive contribution to the measure. This
example shows the need to somehow normalize the terms in
accordance with the powers of the cluster components. So the
desired situation can be formulated in the following way: the
share of a total query flow at each server should be as close as
possible to the share of this server in the total computational
power of the entire cluster. Using this formulation, the function
f can be written as follows:

f (C ,T , X)=∑
i=1

M (∑j=1

N

xi , j λ j

∑
j=1

N

λ j

−
λ̄ i

∑
i=1

M

λ̄ i)
2

 (1)

C. Additional considerations

Since a set of distribution matrices X is discrete and finite,
then, if it is not empty (that is there are some feasible cluster
configurations), there is a non-empty subset X min , whose
elements are the points of minimum of the target measure
function f, that is, the problem of optimal cluster
load-balancing always has a solution.

V. THE LOAD-BALANCING PROBLEM AS THE QUADRATIC

ASSIGNMENT PROBLEM

The above problem is a special case of the generalized
quadratic assignment problem (GQAP) which, in turn, is a

generalization of the quadratic assignment problem (QAP),
initially stated in 1957 by Koopmans and Beckmann[7] to
model the problem of allocating a set of n facilities to a set of n
locations while minimizing the quadratic objective function
arising from the distance between the locations in combination
with the flow between the facilities. The GQAP is a
generalized problem of the QAP in which there is no restriction
that one location can accommodate only a single equipment.
Lee and Ma[8] proposed the first formulation of the GQAP.
Their study involves a facility location problem in
manufacturing where facilities must be located among fixed
locations, with a space constraint at each possible location. The
aim is to minimize the total installation and interaction
transportation cost. The formulation of the GQAP is:

min∑
i=1

M

∑
j=1

N

∑
k =1

M

∑
n=1

N

f ik d jn xij xkn+∑
i=1

M

∑
j=1

N

bij xij

subject to:

∑
i=1

M

s ij≤S j , j ∈1, N ,

∑
j=1

N

xij=1, i∈1, M ,

xij={0,1} , i∈1, M , j∈1, N ,

 where:

M is the number of facilities,

N is the number of locations,

f ik is the commodity flow from a facility i to a facility
k,

d jn is the distance from a location j to a location n,

bij is the cost of installing a facility i at a location j,

sij is the space requirement if a facility i is installed at a
location j,

S j is the space available at a location j,

xij is a binary variable which is equal to 1 if a facility i
is installed at a location j.

The objective function sums the costs of installation and
quadratic interactivity. The knapsack constraints impose space
limitations at each location, and the multiple choice constraints
ensure that each facility is to be installed at exactly one
location.

The QAP is well known to be NP-hard [9] and, in practice,
problems of moderate sizes, such as n=16, are still being
considered very hard. For recent surveys on QAP, see the
articles by Burkard [10], and Rendl, Pardalos, Wolkowicz [11].
An annotated bibliography is given by Burkard and Cela [12].
The QAP is a classic problem that defies all approaches for its
solution and where the problems of dimension n=16 can be
considered as of large scale. Since GQAP is a generalization of
QAP, it is also NP-hard and even more difficult to solve.

The above load-balancing problem for a multi-tenant
database cluster deals with hundreds of database servers and
hundreds of thousands of clients. Due to NP-hardness of the

119 of 173

GQAP, it is obvious that such a problem can not be solved
exactly or approximately with a high degree of exactness by an
existing algorithm. So we can conclude that to solve the
load-balancing problem we need to suggest some heuristics
that can provide acceptable performance and measure its
efficiency and positive effect in comparison with other
load-balancing strategies.

VI. LOAD-BALANCING ALGORITHM HEURISTICS AND ITS

EXPERIMENTAL VERIFICATION

To test the above-mentioned target function used to
evaluate the efficiency of multi-tenant database cluster
load-balancing strategy, an experiment was conducted on the
simulation model of the cluster. The structure of the cluster
with N database servers of different bandwidth (N is a
parameter of the experiment) was created by using the
modeling environment. At the initial moment the cluster had no
clients. The model of the query flow was configured so that it
provided progressive registration of new clients at the cluster
and due to it the corresponding increase of query flow
intensity. Subsystems of the model which provide data size
refreshing and recalculation of tenants activity coefficients
were disabled. Since the above subsystems are responsible for
the dynamism of the model, the resulting configuration
corresponded to a cluster with constant intensities of incoming
query flows. Since the computational power of the cluster is
limited and the total intensity of incoming query flow
constantly increases, it is obvious that the cluster will stop
serving queries at some point in time. It is also obvious that if
one load-balancing strategy allows to place more clients than
another within similar external conditions, then this
load-balancing strategy is more effective and should be
preferred in real systems. The experiment was meant to
compare the simple algorithm, that is based on the analysis of
incoming query flows intensities and the minimization of the
above target function, with other simple load-balancing
strategies which do not take intensities into account at all. It
should be mentioned, that the ratio between read-only and
data-modifying queries is not important in this experiment,
since data replication is not used.

Three load-balancing algorithms are used in the
experiment. The first algorithm tries to balance the load of the
cluster by balancing the size of data that are stored at each
server according to the server bandwidth ratio. When deciding
to host a new client on the server, this algorithm calculates the
ratio of the total data size of clients that are hosted on the
server to the bandwidth of the server for all servers in the
cluster (the amount of stored data per the processor core), and
selects a server with the minimal ratio (if there are several such
servers, it randomly selects one of them). The algorithm takes
into account only the servers that have enough free space to
host a new client. In a pseudo-code this algorithm can be
written as the following:

min_servers = {};
min_ratio = max_double();
for each s in S

if datasize(s) + sz > capacity(s)
continue;

ratio = num_clients(s) / bandwidth(s);
if ratio < min_ratio

min_ratio = ratio;
min_servers.clear();

if ratio == min_ratio
min_servers.add(s);

return random(min_servers);

Here S denotes a set of database servers within the cluster ,
min_servers is a set of servers with minimum amount of clients
taking into account server bandwidth, sz is a data size of a new
client . This algorithm will be referred to as “Algorithm 1”.

The second algorithm tries to balance the load of the cluster
by balancing the amount of clients at each server according to
the server bandwidth ratio. When deciding to host a new client
on the server, this algorithm calculates the ratio of the number
of clients that are hosted on the server to the bandwidth of the
server for all servers in the cluster (the number of clients per
the processor core), and selects the server with a minimal ratio
(if there are several such servers, it randomly selects one of
them). As the previous algorithm, this algorithm also takes into
account only the servers that have enough free space to host a
new client. In a pseudo-code this algorithm can be written as
the following:

min_servers = {};
min_ratio = max_double();
for each s in S

if datasize(s) + sz > capacity(s)
continue;

ratio = datasize(s) / bandwidth(s);
if ratio < min_ratio

min_ratio = ratio;
min_servers.clear();

if ratio == min_ratio
min_servers.add(s);

return random(min_servers);

The meaning of variables here is the same as in the previous
example. This algorithm will be referred to as “Algorithm 2”.

The third algorithm is based on the minimization of the
target function (1). For the sake of simplicity this algorithm
was connected to the query generator information subsystem of
the model to get exact values of incoming query flow
intensities for each client. In reality such an approach cannot be
implemented and values of query flow intensities should be
obtained by some statistical procedures, but for experimental
purposes and testing theoretical model this approach is
applicable. The main principle of the algorithm is simple: it
alternately tries to host a new client at each server and
computes the resulting value of the target function (1). Finally,
the client is hosted at the server which gave the minimal value
of all the above. In a pseudo-code this algorithm can be written
as the following:

min_server = null;
min_ratio = max_double();
for each s in S

if datasize(s) + sz > capacity(s)
continue;

ratio = F(S | new client hosted at s);
if ratio < min_ratio

min_ratio = ratio;
min_server = s

return min_server;

In this example F denotes the target function (1). This
algorithm will be referred to as “Algorithm 3”.

120 of 173

All three algorithms were tested in the same environment,
that is, with the same mean of query cost and tenants activity
coefficient distribution. The results of experiments are given in
the table 1. The first three columns show the parameters of the
model and the algorithm used in the particular experiment. The
fourth column shows the average amount of clients hosted at
the cluster when the model met the experiment stop condition
(one of the servers had the queue with more than 200 pending
requests). Algorithm number 3 has shown significantly better
results than others for all three models.

TABLE I. RESULTS OF EXPERIMENTS

Number of
servers

Algorithm Number of
experiments

Average
number of

hosted
clients

5 1 30 701,95

5 2 30 1197,63

5 3 30 1353,45

9 1 30 1090,6

9 2 30 1851,7

9 3 30 2155,45

15 1 30 1766,5

15 2 30 3235,35

15 3 30 3835,2

VII. CONCLUSION

The experiment has shown that the load-balancing strategy
based on the analysis of incoming query flow intensities is
more effective than others. This fact leads to the conclusion
that the above-mentioned theoretical concepts are correct and
can be applied to construct more complicated load-balancing
strategies which take into account more factors and can be used
in a more complicated environment. Some interesting
questions to study are:

• How to determine the incoming query flow intensity of
a client in a real environment;

• What algorithms can be used to find a better solution
for the clients assignment problem;

• Are all solutions of the client assignment problem
equally valuable when the intensities of incoming query
flows are not constant;

• How to deal with the data replication and how the
intensity of a client query flow should be divided
among servers which have copies of the client data;

• What strategy should be used to relocate the clients
data when the load balancing subsystem decides to do
so.

All these questions are crucial in implementing an efficient
load-balancing strategy for the cluster.

[1] F. Chong, G. Carraro, “Architecture Strategies for Catching the Long
Tail“, Microsoft Corp. Website, 2006.

[2] F. Chong, G. Carraro, R Wolter, “Multi-Tenant Data Architecture“,
Microsoft Corp. Website, 2006.

[3] K.S. Candan, W. Li, T. Phan, M. Zhou, "Frontiers in Information and
Software as Services", proceedings of ICDE, 2009, pages 1761-1768.

[4] Oliver Schiller, Benjamin Schiller, Andreas Brodt, Bernhard Mitschang,
“Native Support of Multi-tenancy in RDBMS for Software as a
Service“, proceedings of the 14-th International Conference on
Extending Database Technology, 2011.

[5] E.A. Boytsov, V.A. Sokolov, “The Problem of Creating Multi-Tenant
Database Clusters”, proceedings of SYRCoSE 2012, Perm, 2012 , pages
172-177.

[6] E.A. Boytsov, V.A. Sokolov, “Multi-tenant Database Clusters for SaaS”,
proceedings of BMSD 2012, Geneva, 2012 , page 144.

[7] Koopmans, T.C. and M.J. Beckmann, “Assignment problems and the
location of economic activities”, Econometrica 25, 1957, pages 53-76.

[8] Lee C.-G. and Z. Ma, “The generalized quadratic assignment problem”,
Research Report, Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Canada, 2004.

[9] S. Sahni and T. Gonzales, “P-complete approximation problems”,
Journal of ACM, 1976.

[10] R.E. Burkard, “Locations with spatial interactions: the quadratic
assignment problem”, Discrete Location Theory. John Wiley, 1991.

[11] P. Pardalos, F. Rendl, and H. Wolkowitz. “The quadratic assignment
problem: A survey and recent developments”, proceedings of the
DIMACS Workshop on Quadratic Assignment Problems, volume 16 of
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 1-41, 1994.

[12] R.E. Burkard and E. Cela, “Quadratic and three-dimensional assignment
problems”, Technical Report SFB Report 63, Institute of Mathematics,
University of Technology Graz, 1996.

121 of 173

Scheduling signal processing tasks for antenna arrays

with simulated annealing

Daniil A. Zorin

Department of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

juan@lvk.cs.msu.su

Abstract — The problem dealt with in this paper is the design of a

parallel embedded system with the minimal number of

processors. The system is designed to solve signal processing

tasks using data collected from antenna arrays. Simulated

annealing algorithm is used to find the minimal number of

processors and the optimal system configuration.

Keywords — optimization, scheduling, hardware design,

embedded systems, simulated annealing

I. INTRODUCTION

Antenna array is hardware used to collect data from the
environment, it is often employed in areas such as
radiolocation and hydroacoustics [1]. Radiolocation tools have
to process signals with a fixed frequency and have hard
deadlines for the data processing time. At the same time, the
size of the antenna array is limited, therefore, in order to
maintain high accuracy, algorithms with significant
computational cost have to be used to process signals. The co-
design problem of finding the minimal necessary number of
processors and scheduling the signal processing tasks on it
arises in this relation. This paper suggests the application of
simulated annealing algorithm to this problem. The purpose of
this work is to show how the simulated annealing algorithm
(discussed, for instance, in [2] and [3]) can work with real-
world industrial problems.

In Section 2 we define the problem of scheduling for
systems with antenna arrays and show the structure of signal
processing algorithms used in such systems. It is explained
how this problem can be formulated in the way that allows to
use simulated annealing. The simulated annealing algorithm
itself is discussed in Section 3. Experimental results obtained
with the algorithm are given in Section 4.

II. PROBLEM FORMULATION

Systems used in radiolocation and hydroacoustics use a set
of sensors to collect data from the environment. This set is
called antenna array, and it is the most valuable and
complicated part of the system. The size of the antenna array is
fixed, so it is preferable and cheaper to build the system with a
smaller antenna array and effective performance.

The problem solved with the antenna array system is
finding the coordinates of the source of the signal. Traditional
signal processing algorithms are based on fast Fourier

transforms (FFT). However, their potential solution capabilities
are limited by the sizes of the antenna array. With a small array,
the FFT will be performed on a small set of points, which can
lead to low accuracy. Alternative methods based on automatic
interference filtration [4] and on correlation matrix expansion
(also shortened to CME) [5] can give accurate results even with
smaller antenna arrays. They use several samples collected
with the small array over a period of time to get very precise
solutions. However, their computational complexity is
significantly higher.

Assume that the antenna array has K elements (sensors) and
works in frequency interval (-B, B). The interval is split into L
parts, and each of them is processed separately until the final
result is computed on the last stage of the algorithm. We also
need the number of support vectors used in CME method, Mθ.

The sampling frequency is 1/=aB, where a≥2.5 is the
coefficient in the Kotelnikov-Nyquist theorem. The system
waits until a sample of n points is collected from the sensors,
and then starts the processing algorithm. Therefore, the

execution deadline is n/, the time until the new sample is
collected. If the deadline is broken, the sensors’ buffer will
overflow.

Stage Name Complexity
Input
size

Output
size

1 Normalization O(aL) - aL

2 FFT O(aLlog2aL) aL 1

3
Vector

multiplication
O(K

2
) 1 K

2

4
Computing

eigenvalues, matrix
reversal

O(K
3
) K

2
 K

2

5
Computing signal
source coordinates

O(K) K
2
 K

6
Vector

multiplication
O(K) K 1

7 Vector comparison O(K) 1 K

8 Vector comparison O(LK) K -

Table 1. Steps of the CME method

122 of 173

The steps of the algorithm, their respective computational
complexities and the size of the data processed on each step are
shown in Table 1. For simplicity, all figures are given only for
the CME method. However, the general scheme of the
automatic filtration method is the same, the difference lies on
step 5, where the complexity becomes O(K

2
).

The signal processing runs on a multiprocessor system. It is
assumed that processors are identical. Processors have fixed
clock rate and reliability. The processors are interconnected,
data transfer rate is fixed.

The workflow of the program is shown in Figure 6. The
nodes represent subprograms and the edges represent
dependencies between them. First, preprocessing, including
FFT, is applied to the collected data, and the corresponding
nodes are in the topmost row. They implement steps 1-3 from
Table 3. The number of nodes is the same as K, the size of the
antenna array. Then all data is sent to each of the L
subprocesses and CME is performed. The CME can be divided
into steps; each step implies some operations on the matrix
(nodes CME_i_stage_j, where i runs from 1 to L, and j
enumerates the stages). In Figure 6, there are three stages that
correspond to steps 4 and 5 in Table 1. In the latter half the
CME is broken into Mθ parallel threads for step 6 and joined
into one thread on step 7 (nodes CME_i_pstage_j_k, where i
runs from 1 to L, j runs from 1 to Mθ, and k enumerates the
stages). Then all data is collected for final processing on step 8
(CME_final).

All nodes perform simple computations with matrices and
vectors, such as FFT or matrix multiplications, so the
complexity of each subprogram (also called ‘task’ hereafter) is
known. Since processor performance is known, it is possible to
calculate the execution time of each node, as well as the
amount of data sent between the nodes. So, we reach the
following mathematical problem statement [2].

The signal processing program can be represented with its
data flow graph G = {V, E}, where V is the set of vertices
(corresponding to the tasks) and E is the set of edges
(corresponding to the dependencies of the tasks). Each vertex is
marked by the time of execution of the corresponding task and
each edge is marked by the time of data transfer. The set of
processors denoted by M is given.

Processor redundancy implies adding a new processor to
the system and using it to run the same tasks as on some
existing processor. In this case the system fails if both
processors fail. The additional processor is used as hot spare,
i.e. it receives the same data and performs the same operations
as the primary processor, but sends data only if the primary one
fails. With switch architecture used, this does not cause any
delays in the work of the system.

A schedule for the program is defined by task allocation,
the correspondence of each task with one of the processors, and
task order, the order of execution of the task on the processor.
Formally, a schedule is defined as a pair (S, D) where S is a set
of triplets (v, m, n) where v ∈V, m ∈M, n ∈ℕ, so that ∀v ∈V :
∃!s=(vi, mi, ni) ∈S:vi=v; and ∀si=(vi, mi, ni) ∈S, ∀sj=(vj, mj, nj)
∈S: (si≠sj ∧ mi=mj) ⇒ ni≠nj.

D is a multiset of elements of the set of processors.
Substantially m and n denote the placement of the task on a
processor and the order of execution for each version of each
task. The multiset D denotes the spare processors: if processor
m has k spares, it appears in D k times.

A schedule can be represented with a graph. The vertices of
the graph are the elements of S. If the corresponding tasks are
connected with an edge in the graph G, the same edge is added
to the schedule graph. Additional edges are inserted for all
pairs of tasks placed on the same processor right next to each
other.

According to the definition, there can be only one instance
of each task in the schedule, and all tasks on any processor
have different numbers. Besides these, one more limitation
must be introduced to guarantee that the program can be
executed completely. A schedule S is correct by definition if its
graph has no cycles. Otherwise the system would reach a
deadlock where two processors are waiting for data from each
other forever.

For every correct schedule the following functions are
defined: t(S) – time of execution of the whole program, R(S) –
reliability of the system, M(S) – the number of processors used.

Given the program G, tdir, the hard deadline of the program,
and Rdir, the required reliability of the system, the schedule S
that satisfies both constraints (t(S) < tdir and R(S) > Rdir) and
requires the minimal number of processors is to be found.

Theorem 1. The optimization problem formulated above is
NP-hard.

III. SIMULATED ANNEALING ALGORITHM

The proposed algorithm of solution is based on simulated

annealing [6]. For simplicity, the model used in this study does
not consider software reliability, so operations and structures
related to that are omitted here. This does not affect the
algorithm’s performance because it simply works as if the
software reliability is always maximal.

The following three operations on schedules are used.

Add spare processor and Delete spare processor. Adds or
removes a hot spare to the selected processor.

Move vertex. This operation changes the order of tasks on a
processor or moves a task on another processor. It is obligatory
to make sure that no cycles appear after this operation. The
analytic form of the necessary and sufficient condition of the
correctness of this operation is given in [4].

Theorem 2. If A and B are correct schedules, there exists a
sequence of operations that transforms A to B such that all
interim schedules are correct.

Each iteration of the algorithm consists of the following
steps:

Step 1. Current approximation is evaluated and the
operation to be performed is selected.

123 of 173

Step 2. Parameters for the operation are selected and the
operation is applied.

Step 3. If the resulting schedule is better than the current
one, it is accepted as the new approximation. If the resulting
schedule is worse, it is accepted with a certain probability.

Step 4. Repeat from step 1.

The number of iterations of the algorithm is pre-determined.

If the reliability of the system is lower than required, spare
processors and versions should be added, otherwise they can be
deleted. If the time of execution exceeds the deadline the
possible solutions are deleting versions or moving vertices. The
selection of the operation is not deterministic so that the
algorithm can avoid endless loops.

When the operation is selected, its parameters have to be
chosen. For each operation the selection of its parameters is
nondeterministic, however, heuristics are employed to help the
algorithm move in the direction where the new schedule is
more likely to be better.

The selection of the operation is not deterministic so that
the algorithm can avoid endless loops. The reliability limit and
the deadline can either be satisfied or not. Probability of
selecting each operation, possibly zero, is defined for each of
the four possible situations depending on the time and
reliability constraints (tdir and Rdir): both constraints satisfied,
both constraints not satisfied, reliability constraint is satisfied
while the time constraint is not, and vice versa. These
probabilities are given before the start of the algorithm as its
settings.

Some operations cannot be applied in some cases. For
example, if none of the processors have spare copies it is
impossible to delete processors and if all versions are already
used it is impossible to add more versions. Such cases can be
detected before selecting the operation, so impossible
operations are not considered.

When the operation is selected, its parameters have to be
chosen.

Add spare processor. Processors with fewer spares have
higher probability of being selected for this operation.

Delete spare processor. A spare of a random processor is
deleted. The probability is proportional to the number of spare
processors.

The probabilities for these operations are set with the
intention to keep balance between the reliability of all
components of the system.

Move vertex. If t(S) < tdir, the main objective is to reduce
the number of processors. With a probability of pcut the
following operation is performed: the processor with the least
tasks is selected and all tasks assigned to it are moved to other
processors. With a probability of 1-pcut the movement of a
task is decided by one of the three strategies described below.

If t(S) > tdir, it is necessary to reduce the time of execution
of the schedule. It can be achieved either by moving several
tasks to a new processor or reallocating some tasks. The

parameters for the operation are chosen according to one of the
three strategies: delay reduction, idle time reduction or mixed.

Delay reduction strategy. The idea of this strategy emerges
from the assumption that if the time of the start of each task is
equal to the length of the critical path to this task in graph G,
the schedule is optimal. The length of the critical path is the
sum of the lengths of all the tasks forming the path and it
represents the earliest time when the execution of the task can
begin.

For each element s it is possible to calculate the earliest
time when s can start, i.e. when all the tasks preceding the
current one are completed. The difference between this time
and the moment when the execution of s actually starts
according to the current schedule is called the delay of task s. If
some task has a high delay, it means that some task preceding
it is blocking its work, so the task before the one with a high
delay has to be moved to another processor.

The task before the task with the highest delay is selected
for Move Vertex operation. If the operation is not accepted, on
the next iteration the task before the task with the second
highest delay is selected, and so on. The position (pair (m, n)
from the triplet) is selected randomly among the positions
where the task can be moved without breaking the correctness
condition.

Figure 1 gives an example of delay reduction. Task 3 does
not depend on task 4, so moving task 4 to the first processor
reduces the delay of task 3, and the total time decreases
accordingly.

Figure 1. Delay reduction strategy

Idle time reduction strategy. This strategy is based on the
assumption that in the best schedule the total time when the
processors are idle and no tasks are executed due to waiting for
data transfer to end is minimal.

For each position (m, n) the idle time is defined as follows.
If n=1 then its idle time is the time between the beginning of
the work and the start of the execution of the task in the
position (m, 1). If the position (m, n) denotes the place after the
end of the last task on the processor m, then its idle time is the
time between the end of the execution of the last task on m and
the end of the whole program. Otherwise, the idle time of the
position (m, n) is the interval between the end of the task in (m,
n-1) and the beginning of the task in (m, n).

124 of 173

The task to move is selected randomly with higher
probability assigned to the tasks executed later. Among all
positions where it is possible to move the selected task, the
position with the highest idle time is selected. If the operation
is not accepted, the position with the second highest idle time is
selected, and so on.

The idle time reduction strategy is illustrated in Figure 2.
The idle time between tasks 1 and 4 is large and thus moving
task 3 allows reducing the total execution time.

Figure 2. Idle time reduction strategy

Mixed strategy. As the name suggests, the mixed strategy is
a combination of the two previous strategies. One of the two
strategies is selected randomly on each iteration. The aim of
this strategy is to find parts of the schedule where some
processor is idle for a long period and to try moving a task with
a big delay there, prioritizing earlier positions to reduce the
delay as much as possible. This strategy has the benefits of
both idle time reduction and delay reduction, however, more
iterations may be required to reach the solution.

After performing the operation a new schedule is created
and time, reliability and number of processors are calculated
for it. Depending on the values of these three functions the new
schedule can be accepted as the new approximation for the next
iteration of the algorithm. Similar to the standard simulated
annealing algorithm, parameter d modeling the temperature is
introduced. Its initial value is big and it decreases after each
iteration.

The probability to accept a worse schedule on step 3
depends on the parameter called temperature. This probability
decreases along with the temperature over time. Temperature
functions such as Boltzmann and Cauchy laws [7] can be used
as in most simulated annealing algorithms

Theorem 3. If the temperature decreases at logarithmic rate
or slower, the simulated annealing algorithm converges in
probability to the stationary distribution where the combined
probability of all optimal results is 1.

IV. EXPERIMENTS

Figure 7 shows the solution found by the algorithm for the
problem shown on Figure 6. The system has been successfully
reduced to 4 processors.

In real systems the size of the array is a power of 2, usually
between 256 and 1024 (radiolocation systems use smaller

arrays), and the number of frequency intervals (L) is a power of
2, usually 32 or 64. For evaluation purposes, other values of L
were tested as well. The value of Mθ is normally between 1 and
4.

In general, the majority of computations are performed
after the initial processing on the K antennas and constitute the
L*Mθ parallel sequences of nodes in the program graph,
Therefore, the quality of the algorithm can be estimated by
comparing the number of processors in the result with the
default system configuration where L*Mθ processors are used.
The following graphs (Figures 3-5) show the quotient of these
two numbers, depending on L, for radiolocation problem.
Lower quotient means better result of the algorithm.

Figure 3. Optimization rate, Mθ=2

Figure 4. Optimization rate, Mθ=3

125 of 173

Figure 5. Optimization rate, Mθ=4

As we can see, the algorithm optimizes the multiprocessor
system by at least 25% in harder examples with many parallel
tasks, and by more than a half in simpler cases.

CONCLUSIONS

Experiments with our tool testify that scheduling for
antenna arrays can be done effectively with simulated
annealing. The experimental data shows that the size of the

system can be optimized by 25-30% without breaking
deadlines and limits of reliability.

REFERENCES

[1] Kostenko V.A. Design of computer systems for digital signal processing
based on the concept of ``open'' architecture.//Automation and Remote
Control. – 1994. – V. 55. – №. 12. – P. 1830-1838.

[2] D. A. Zorin and V. A. Kostenko Algorithm for Synthesis of Real-Time
Systems under Reliability Constraints // Journal of Computer and
Systems Sciences International. 2012. Vol. 51. No. 3. P. 410–417.

[3] Daniil A. Zorin, Valery A. Kostenko. Co-design of Real-time Embedded
Systems under Reliability Constraints // Proceedings of 11th IFAC/IEEE
International Conference on Programmable Devices and Embedded
Systems (PDeS). Brno, Czech Republic: Brno University of
Technology, 2012. P. 392-396

[4] Monzingo R. A., Miller T. W. Introduction to adaptive arrays, 1980
//Wiley New York. – P. 56-63.

[5] Widrow B., Stearns S. D. Adaptive signal processing //Englewood
Cliffs, NJ, Prentice-Hall, Inc., 1985, 491 p. – 1985. – V. 1.

[6] Kalashnikov, A.V. and Kostenko, V.A. (2008). A Parallel Algorithm of
Simulated Annealing for Multiprocessor Scheduling. Journal of
Computer and Systems Sciences International, 47, No. 3, pp. 455-463.

[7] Wasserman F. Neurocomputer Techniques: Theory and Practice
[Russian translation] //Mir, Moscow. – 1992. – 240 p.

126 of 173

http://www.zentralblatt-math.org/zmath/en/search/?q=ai:kostenko.v-a

Figure 6. Signal processing workflow

Figure 7. Schedule for the program from Figure 6

127 of 173

Automated deployment of virtualization-based
research models of distributed computer systems

Andrey Zenzinov
Mechanics and mathematics department, Moscow State University

Institute of mechanics, Moscow State University
Moscow, Russia

andrey.zenzinov@gmail.com

Abstract—In the research and development of distributed
computer systems and related technologies it is appropriate to
use research models of such systems based on the virtual infras-
tructure. These models can simulate a large number of different
configurations of distributed systems. The paper presents an
approach to automate the creation of virtual models for one of the
classes of distributed systems used for scientific computing. Also
there considers the existing ways to automate some maintaining
processes and provides practical results obtained by the author
in the development and testing of prototype software tools to
create virtual models.

Index Terms—Distributed computer systems, Virtualization,
Automation, Grid computing

I. INTRODUCTION

Research and development of distributed computer systems
usually involves performing a lot of testing and development
activities. It seems useful to carry out experiments and tests
not on a production system, but on its research model created
specifically for the purposes of performing the experiments.
Virtualization-based research models of computer systems
may be used to accurately model software components of such
systems. This kind of models is widely used in the study of
distributed systems [1], [2].

Another possible use case for virtual research models is
development of parallel and distributed programs, e.g. client-
server applications, parallel computing programs. It is also
applicable to information security sphere, particularly in the
development of different monitoring and auditing systems.

With virtualization technologies it is possible to simu-
late distributed systems of various architecture. Also, the
virtualization-based approach significantly simplifies the pro-
cess of deploying the model and preparing the experiments.

The main idea of this approach is to use one or more
computers (virtualization hosts) with a set of deployed virtual
machines which run the software identical or similar to the
software in the production system. Similar approaches are
widely used, e.g. in cloud computing, to deploy multiple
computing nodes on a single physical host. The overhead of
running a set of virtual machines is relatively low on hosts
with hardware virtualization support.

In this research we consider grid computing systems de-
signed for parallel task execution as the object of modelling.
Typical examples of these systems are the distributed systems
based on the Globus Toolkit—a set of open source software

used for building grid computing systems. Distributed systems
of this kind usually do not require the use of virtualization
technologies to function, contrary to other types of distributed
systems, e.g. in cloud computing. This property of typical
grid computing systems simplifies the virtualization-based
modelling as nested virtualization is not required in this case.

In our research we consider evaluation of information
security properties of distributed systems as the goal of mod-
elling. The following attacks are particularly relevant to grid
computing systems: denial of service (DoS) and distributed
denial of service (DDoS) attacks; exploitation of software
vulnerabilities; attacks on the system’s infrastructure allowing
the attacker to eavesdrop and to substitute trusted components
of the system.

Different kinds of modelling parameters should be taken
into account, such as the system’s architecture, attacker loca-
tion, configuration and composition of security mechanisms,
and attack scenarios. Usually it is necessary to perform a
series of experiments for each configuration of parameters to
show the adequacy of the experiments’ coverage. Modelling
different variants of system’s architecture requires to iteratively
rebuild and redeploy the model, which may be performed at a
high degree of automation when using the virtualization-based
models.

II. WORKFLOW OF DISTRIBUTED SYSTEM DEPLOYMENT

The building process of the distributed system contains the
following steps:

• a set of nodes creation;
• OS installation and setting up on each node;
• additional software installation on each node;
• setting up distributed network.
All these processes takes a lot of time and it is a very

monotonous work, which requires carefulness and attention,
because mistakes can lead to system failure.

Suppose the operator performing the deployment processes
have got given system configuration, which describes nodes
of the distributed system, its network architecture, a set of
software tools installed on the nodes and other necessary
options. The distributed system and its virtual model are
being constructed following this configuration.

128 of 173

The operator should perform actions based on the algorithm,
which was described above. Some of these actions require
their completion, which can take a long time, e.g. disk image
copying, software installation, etc. The operator can make
mistakes, which may result in system performance loss.

It seems appropriate to reduce the amount of non-automated
actions to increase the reliability of deployment.

III. GOALS OF THE RESEARCH

The aim of the study is to automate the deployment and
setting up of virtual research model with given configuration
file. Let us require following options from the deployment
system:

• support for different types of nodes;
• nodes have a configured required software for remote

access to nodes, e.g. via SSH;
• the deployment system should work only with open

source software.
The idea of last requirement is that we may need to modify
the code of some programs for further development. Different
tasks in a distributed system determines different types of
nodes. For example, we can divide grid nodes into several
types: compute nodes, gateway nodes, certificate distribution
nodes, task distribution nodes. These types have different
software and configurations. On the other side usually there
are not much kinds of nodes.

IV. WAYS TO AUTOMATION

Let us consider the process of deployment. It is divided
into the steps, as described above, and we’re using VMs to
emulate nodes. Network infrastructure is also virtualized.

It is convenient to use libvirt [3] for virtual system
management. Libvirt is an open source cross-platform
API, daemon and management tool for managing platform
virtualization. It provides unified controlling for most
hypervisors like KVM, Xen, VMware and others. There are
API for some popular programming languages like Python.
The idea of automation lies in using libvirt, well-known shell
scripting automation and programs written in Python.

OS installing is usually interactive. It contains a set of
specific questions about disk partitions, packages, users,
time zone, etc. These questions are obstacles for automated
OS installing. However, there are various solutions such as
network installation and using specified file with the answers.
These solutions have been successfully used in many modern
systems, e.g. compatible with the Debian GNU/Linux and
Red Hat Enterprise Linux.

Automation is also applicable to editing configuration files.
On the one hand, this implements with text processing tools
and specific actions using regular expressions. On the other
hand, there are special systems designed to automate the
configuration of OS and software – Chef and Puppet [4], [5].

V. RELATED WORKS

Automation of VM deployment is studied in IBM
developerWorks paper “Automate VM deployment“ [6].
In this paper the author propose to create separate virtual
machines on a given configuration. The described system
consists of two parts: Virtual Machine Deployment Manager
(VDM) and Virtual Machine Configuration Manager (VCM).
Configuration for each VM stored on special disk image.
Then it boots on the VM via virtual CD-ROM and configure
the system. The VDM handles user requests to deploy VM
such as cloning virtual images, configuring VM hardware
settings, and registering the VM to the VM hypervisor.
The VCM is installed in the VM template. After a system
starts, it will start automatically and launch the configuration
applications on the CD with configuration data.

The deployment process is illustrated on figure 1.

Fig. 1. Architecture of the automatic VM deployment framework

Using pre-configured VM templates and configuration files
is the main advantage in this paper. This system is based on
VMware virtualization and shell scripts. It supports Red Hat
Enterprise Linux, SuSE Linux and Windows.
There are also some disadvantages. Unfortunately, described
system does not support creating multiple copies of VM
template, which is essential for our research. Use of special
configuration CD seems redundant.

Another approach is presented in Vagrant system [7]. Va-
grant is an open source tool for building development envi-
ronment using virtual machines. The idea of this system is to
use already prepared VM images, called ”boxes“. You need
only three commands:

vagrant box add <name> <box url>
vagrant init <name>
vagrant up

These commands launches pre-configured VM with
specific configuration. You should create another box to

129 of 173

create a machine with different configuration. Configuration
parameters stores in ”vagrantfile“ which describes machine
settings such as hostname, network settings, SSH settings
and provider (hypervisor) settings. VirtualBox is a default
provider for Vagrant. But you can use other hypervisors like
VMware via special plugins. Additional software can be
installed using the Chef and Puppet.

This system is simple to use, there are Chef, Puppet, SSH,
Network File System (NFS) support – it is a major advantage.
There are multi-machine support: each machine describes
separately in ”vagrantfile“. But concept using in Vagrant
suppose that there is a ”master“ machine and limited number
of ”slave“ machines. It is not convenient for large-scale
distributed system.

VMware presents ”Auto Deploy“ technology in their
products [8]. Auto Deploy is based on the Preboot eXecution
Environment (PXE) – environment to boot computers using
a network interface. Another important part is vSphere
PowerCLI – a PowerShell based command line interface for
managing vSphere.

Unfortunately, Auto Deploy deals only with VMware
ESXi hypervisor and it only available in VMware vSphere
Enterprise Plus version, which is non-free.

We should consider CFEngine. It is an open source
configuration management system widely used for managing
large numbers of hosts that run heterogeneous operating
systems. There is support for a wide range of architectures:
Windows (cygwin), Linux, Mac OS X, Solaris, AIX, HPUX,
and other UNIX-systems. This system is not directly related
to virtualization, but it is a proven tool for large systems.
The main idea is to use unified configurations that describe
required state of the system.

CFEngine automates file system operations, service man-
agement and system settings cloning.

VI. REQUIREMENTS FOR THE DEPLOYMENT SYSTEM

After the review of existing approaches to automation, let
us formulate the requirements for the deployment system:

• using of general configuration;
• VM templates using;
• the ability to create a set of clones of the template VM;
• automated initialization;
• ability to making manual setting up.
Using of the general configuration assumes unified method

of describing various systems with general parameters.
It means that there is a unified set of parameters for all
modelling systems. Requirements for configuration with these
parameters are described below. If the simulated system
contains of a large number of repetitive nodes, it seems
appropriate to use a special VM templates. In this case you
should make requested number of copies and possibly add

some changes to their configuration. There are two ways
of cloning VMs: complete cloning – copying the template
disk image; incremental cloning – the base image used in
the ”read-only“ mode, and changes of clone’s settings saved
in separate files. The second way can significantly reduce
disk space usage and deployment time. This economy is
particularly noticeable in the large series of experiments.
We should note that there is an analogue of this approach
applied to memory. It is KSM (Kernel SamePage Merging)
technology. There is also KSM modification – UKSM (Ultra
KSM).
As to the requirement of ability to manual setting up, it
may be necessary when the experiment requires operator
interaction.

A. Requirements for configuration file

We should request following for general configurations.
General configuration should describe:

• all the types of VMs and number of creating copies;
• the parameters for each VM type (e.g., allocated re-

sources, path to disk image);
• virtualization parameters (type of hypervisor);
• network settings;
• post-install scripts.

This set of parameters is enough to creating wide class of
research models.

VII. AUTHOR’S APPROACH

At present time, we have created an automatic system
to deploy a VM using the libvirt library. It supports the
deployment of the model of a distributed system based on
a set of VM types. Figure 2 schematically shows the general
scheme of polygon.

Fig. 2. System diagram

130 of 173

An algorithm includes following steps:
• creating a universal configuration in JSON (figure 3);
• preparing VM template disk images;
• incremental cloning of template images, network settings

customization;
• creating XML-descriptions for each VM instance;
• creating a set of VMs based on these XML-descriptions

via libvirt methods.
The first two steps are making manually by the operator,

and the rest is automated.

Fig. 3. Example configuration of the test model

Figure 3 shows the configuration of the system consisting
of three types of nodes: ”gw“ (1 item), ”node-1“ (4 items)
and ”node-2“ (8 items). There specified the size of allocated
memory and the path to disk image for each type of nodes.
”Network“ option contains a list of used virtual networks,
which are described in the configuration file ”Network.cfg“
(figure 4).

”Network1“ in this example – is the network connecting
nodes of type ”node-1“, and ”network2“ connecting ”node-2“
nodes. ”Gw-1“ node plays the role of the router and has
connected to both networks.

It should be noted that the operator sets the configuration
manually, but the rest is automated. Deployed system have
automatically configured remote access via SSH and the keys
stores on the host machine.

A. Deployment on a distributed host system
There are also a possibility to use distributed host system

for deployment. It means that you have a number of physical

Fig. 4. Example configuration of the network (Network.cfg)

machines and the operator can deploy a large-scale distributed
system based on several host machines. For example, if we
have four hosts with 100 VMs, summary there are 400 VMs.

Distributed deployment system requires following:
• all hosts are connected to the VPN-network;
• there are one controlling host (Deployment Server);
• NFS-server is installed on the Deployment Server;
• configuration file ”hosts.json“ (figure 5) is stored on the

DS contains IP-addresses of all hosts;
• DS have remote access to other hosts via SSH.

Fig. 5. Example configuration of the distributed deployment system

To start deployment process the operator should launch
server application on DS, and then launch client applications
on hosts.

131 of 173

Fig. 6. Distributed system diagram

Figure 6 shows a distributed system with general NFS-store.
Additionally, there are possibility to allow access to host’s
virtual networks to other hosts using VPN-tunnel.

VIII. EXPERIMENTS

Using the developed software was made a series of
experiments on the parallel tasks execution. Experiments
showed that deployed virtual model of the distributed
computer system satisfies the requirements for the system
functions. Particularly, the created nodes can execute remotely
received tasks.

The test were conducted using remote access via SSH.
There were created program scripts which launches DDoS-
attack against one chosen node automatically, while the other
nodes were attacking. Simulated attacks were successful. A
network access to the victim VM was blocked.

The scenario of the experiment is parameterized, i.e. you
can change parameters of the experiment such as number
of nodes, addresses, launching tasks, but the used script is
universal.

The experiments were performed with Intel i5-3450 based
system with 16 GB RAM. There was deployed a model
of distributed system consisting of 200 nodes on this host.
Elapsed time of deployment was 24 minutes. Deduplication
technologies such as UKSM led to this result. At the launch
time the memory use was 14 GB, and one hour later it was
reduced to 7 GB.

IX. CONCLUSION

As a result of this research we have created a software
prototype for deploying a virtual model of a distributed com-
puter system. Virtualization-based models of grid computing
systems, produced with the help of the developed software,

were used to simulate various processes in such systems
including their regular functioning and the reaction to denial-
of-service attacks.

Further work is planned to add support for automated
deployment of the software for distributed and parallel com-
puting, such as the Globus Toolkit and MPI implementations.
Beside that, we plan to add support for nested virtualization
in order to create virtualization-based models for the systems
which use virtualization technologies by themselves—cloud
computing systems being a notable example.

REFERENCES

[1] Grossman, R., et al. The open cloud testbed: A wide area testbed for
cloud computing utilizing high performance network services. Preprint
arXiv:0907.4810. 2009.

[2] Krestis A., et al. Implementing and evaluating scheduling
policies in gLite middleware // Concurrency and Com-
putations: Practice and Experience. Wiley, 2012. URL:
http://www.ceid.upatras.gr/faculty/manos/files/papers/cpe 2832 Rev EV.pdf

[3] Libivrt. The virtualization API. URL: http://libvirt.org
[4] Chef. // Opscode. URL: http://www.opscode.com/chef/
[5] Puppet Labs: IT Automation Software for System Administrators. //

Puppet Labs. 2013. URL: https://puppetlabs.com/
[6] Yong Kui Wang, Jie Li. Automate VM Deployment // IBM.COM. 2009.

URL: http://www.ibm.com/developerworks/linux/library/l-auto-deploy-
vm/

[7] Vagrant // HashiCorp. 2013. URL: http://www.vagrantup.com/
[8] VMware vSphere Auto Deploy: Server Provisioning // VMware.

2013. URL: http://www.vmware.com/products/datacenter-
virtualization/vsphere/auto-deploy.html

132 of 173

Intelligent search based on

ontological resources and graph models

Chugunov A.P.

Computer Science Department

Perm State National Research University

Perm, Russia

chugunov@permedu.ru

Lanin V.V.

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russia

lanin@perm.ru

Abstract— This paper describes our approach to document

search based on the ontological resources and graph models. The

approach is applicable in local networks and local computers. It

can be useful for ontology engineering specialists or search

specialists.

Keywords—ontology; semantic; search; graph; document.

I. INTRODUCTION

Today the amount of electronic documents is very large
and information searching remains to be a very hard problem.
The majority of search algorithms, applicable in local
networks, based on full-text search and don’t take into
account the semantics of a query or document. And good
statistical methods can’t be used in the local documents
repository.

Mathematical and statistical (latent semantic search), graph
(the set of documents presented as directed graph), ontological
(the searching by existing ontologies) methods are used in
computer search [1]. All of them have some imperfection [2].

In spite of this, the tandem of latent semantic and graph
methods give very good results. The majority of internet
search engines use it [3]. But graph method is not applicable
in local networks or local computers [2]. And this approach
doesn’t let the consideration of semantic context of documents
or all parts of search.

So, the task of semantic search hasn’t been decided yet.
And the newest search algorithms on the internet remain
inapplicable in local networks or local computers.

If we combine the tandem with the third, semantic method,
we get a possibility to decide the problem of taking into
account a semantics. We have chosen ontologies as a semantic
method because it allows solving the problem of a document
directed graph building too. The building of full ontologies is
not required.

The aim of our survey is to unite three different search
approaches into one.

II. DESCRIPTION OF RELATED WORK

We observed the most popular algorithms of different
search approaches:

1. Namestnikov’s A. M. algorithm informational
search in semantic project repository [4];

2. information search based on semantic
metadescription [5];

3. In-Degree algorithm [6];

4. PageRank algorithm [6];

5. HITS algorithm [7].

The survey was made with a tendency towards on ontology
applicable in approach, precision and recall of search results.
The extract of survey [3] is presented in table 1.

TABLE I. THE SURVEY OF SEARCH ALGORITHMS.

 Using of

ontologies

Ontology

applicable
Precision Recall

Namestnikov’s

A. M. algorithm

informational
search in

semantic project

repository

Yes Yes 85% 69%

Information

search based on

semantic
metadescription

Yes Yes 97% 85%

In-Degree

algorithm
No Yes 75% 47%

PageRank
algorithm

No Yes 81% 66%

HITS algorithm No Yes 63% 78%

The highest result of precision made by information search
based on semantic metadescription. But this algorithm
requires a lot of ontology building, because it needs human
participation. [2]

So, we decided to use HITS algorithm, because it has the
best result and it’s applicable to our work.

133 of 173

The using of ontologies in HITS algorithm is planned on
the stage of primary documents set forming, which satisfy the
query, as well as on the stage of Gδ forming and changing.

III. DEFINITION

We used the following definition of ontology [5] as basic:
ontology is a triplet O=<X,R,F> where

X – not empty set of concepts of subject area;

R – finite set of relations between concepts;

F – finite set of interpretation functions, adjusted on
concepts and/or relations of ontology;

We must mention the fact, that R and F can be empty.
Ontology can contain instances of classes – the classes with
preset properties.

In our work we will use the changed definition of
ontology: ontology is a pair O=<X,R> with some constraints
on the concepts set and relations set [2].

Document in our paper is a set of properties of a real
document, subject, content and document ontology. Properties
of real document are any data about it, which isn’t presented
in the content, including metadata.

D=<R,C,O>

R – set of document properties. A set of properties can be
described by metadata standard “Dublin core” [4];

C – content, i.e. entry of the document;

O – document ontology.

IV. ALGORITHM DESCRIBING

Proposed algorithm consists of 5 steps:

1. Building ontology O by existing documents.

2. The second step is to enter a query by the user,
i.e. the determination of the set of primary
concepts {Ci}, is interesting for the user.

3. The third step is the allocation of a documents set
Ai, that contains all or some from {Ci}. Denote
this As.

4. The fourth step is executing a range algorithm
with input: {Ci} as a user query, As as a primary
document set, O as a directed document graph.

5. Output results to the user.

A. Building ontology

The step is preparatory. On this step we solve the task of
automatic document ontology building, selected document
properties from unstructured text on the natural language.

After document ontology building we determine “link to”
type links between documents. It is advisable to combine this
links into separate ontology. During this process not existing
files can be included in the set. These links must be placed in

the set because it allows making search of documents, which
doesn’t exist in the repository.

After that we get 2 levels of ontologies:

1. Document ontologies. Define them {O1, O2, …
On}, where n is amount of documents.

2. Documents links ontology. Define it OL.

In addition, the subject area ontology Op can be made. This
ontology doesn’t depend on documents D, it contains only the
knowledge about the subject area. Building of Op can be
automatic or manual. It’s main, that if the amount of
documents subject areas will be large, large amount of Op can
spoil the results. It leads to anomalies, conflicts, ambiguity
between ontologies.

B. Entry a query by user

It’s the first step in search. The aim of that is to determine
a set of concepts Q={Ci}, which are interesting for the user.

From the query we select keywords, concepts. Next, we
extend the set due to subject ontologies, if it exists. This
extend will contain synonyms, definitions and else.

Besides, the part of ontology Op is being built on this step.
The part contains a user query. Afterwards we will use it for
calculating the weight of documents.

C. Allocation of a documents set

The goal of this step is building a primary documents set
DF={Di}, which satisfies the user query Q. The set is not final
and can be changed on the next step.

Since the set is not final, we use latent semantic search on
this step. We choose it because it gives high speed of search
and relatively high precision of results.

The primary set can be calculated by the following
formula:

In this set come documents, which keywords and concepts
X in document ontology O (we define it Oi) are crossing with
{Ci} in the user query Q.

After that, we assign weight of each document in DF. This
weight reflects semantic distance to user query. This weight
can be calculated by

where

where k = simsem(p1,p2) is value of distance between
predicators, and t1, t2 are triplets. Triplet is a set of three <X1,
P, X2> where X1 and X2 are ontology concepts, P is predicate,
relation between X1 and X2.

134 of 173

User query Q and documents Di have ontology view OQ
and Oi. Each ontology divides into triplets t1 and t2, which can
be intersected in an ontology. Next, we calculate semantic
distance in pairs. Semantic distance between a user query and
a document calculation as average of semantic distances of
them triplets. It allows to take into account not absolute
coincidences.

If we combine OL and {wi}, we get weighted directed graph
G=<V,E>, where V is a set of documents {Di}, some of them
has a weight – a number. If number is missing, the weight we
let 0. Set E – a set of directed arcs, which present the links
between documents. Arcs E haven’t weights because it’s
impossible to determine power of link automatically with
needed accuracy between documents today.

D. Executing range algorithm

Primary documents set DF are extending by documents,
which have links (in or out) with documents from DF. In
algorithm exists parameter d – amount of documents, which
can be added by document from Rδ. In the set must be added d
or fewer documents with maximal weights (semantic
distance). It’s important, that the weight of adding document
must be bigger than wmin. This rule rises precision and recall of
the results.

Documents ranging process base on vertex weights and
amount of in- and out- arcs. It allows to get semantically
closer documents in the results, even if they have small
amount of arcs or haven’t them at al.

So, the result of the algorithm is a set of pairs
DR=<Di,ri>, where

Di – found document

ri – rang of the document.

E. Output results to the user

The set DR can be output to the user as a traditional list of
documents ordered by their weights or in graphical mode – as
a document graph.

V. CONCLUSION

In this work we developed, offered and described our
information and documents search approach, which combine 3
most widespread methods. We described it mathematically.

Now we have started the first realization of this approach.
As a starting subject area we have chosen the science papers
and publications, because these documents meet the standards
of typography.

REFERENCES

1. Gasanov E. E. Information storage and search
complexity theory, Fundamentalnaya i
prikladnaya matematika, vol. 15 (2009), no. 3, pp.
49–73.

2. Никоненко А.А. Обзор баз знаний
онтологического типа / Штучний інтелект,
2009, № 4. С. 208-219.

3. Signorini A. A survey of Ranking Algorithms,
http://homepage.divms.uiowa.edu/~asignori/phd/r
eport/a-survey-of-ranking-algorithms.pdf

4. Наместников А. М. Интеллектуальный
сетевой архив электронных информационных
ресурсов / А. М. Наместников, Н. В. Корунова,
А. В. Чекина // Программные продукты и
системы, 2007, № 4. С. 10-13.

5. Гладун А.Я. Онтологии в корпоративных
системах / А.Я. Гладун, Ю.В. Рогушина //
Корпоративные системы. – 2006. – № 1. – С.
41-47.

6. K. Bharat, Henzinger M. R. Improved algorithms
for topic distillation in a hyperlinked
environment// In Proceedings of the 21st annual
international ACM SIGIR conference on
Research and development in information
retrieval (SIGIR '98). ACM, 1998, New York,
USA, p. 104-111.

7. Kleinberg J. Authoritative sources in a
hyperlinked environment, Journal of ACM
(JASM), №4, 1999, pp. 85-86.

135 of 173

Intelligent Service for Aggregation

of Real Estate Market Offers

Lanin V., Nesterov R.

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russia

lanin@perm.ru; mistika93@mail.ru

Osotova T.

Computer science department

Perm State National Research University

Perm, Russia

hvostya@gmail.com

Abstract – This article contains the implementation

description of a real estate market offers aggregator service.

Advertisement analysis is made with the aid of ontologies. A set

of ontologies to describe specific websites can be extended, so the

aggregator can be used for many diverse resources.

Keywords – intelligent service; real estate; ontology

I. INTRODUCTION

Real estate agents constantly analyze different information
flows, so intellectual analysis of real estate market offers and
monitoring services are required for their efficient work. Most
of this information is semistructured and in this case
conventional processing is time-consuming. Real estate
information resources are topical Internet resources,
newspapers and special databases.

Information aggregation and structuring tasks are
increasingly timely. Apart from that, it is necessary to address
information duplication and inconsistency search tasks.
Semistructured information and its heterogeneous resources
implies application of artificial intelligence means: text mining,
Semantic Web technologies and multi-agent technologies.

Our solution is to develop intelligent service to accumulate
information on real estate market offers from different
resources in a single database.

II. REAL ESTATE MARKET OFFERS AGGREGATORS

CLASSIFICATION

The term “Aggregator” is used to describe Internet
resources and services accumulating existing real estate market
offers. Database completeness, data timeliness and fidelity,
search and filtering capabilities and access price are the main
features of aggregators [3].

Existing resources can be classified in two ways: by
database areal coverage and by the way of organizing customer
relations. According to the first classification resources can be
divided into two groups: global ones based on a well-known
web portal platform (“Yandex.Nedvizhymost” [2]) and local
ones related to the regional real estate business projects.
According to the second classification resources can be divided
into following groups: on-line bulletin boards, electronic

versions of free advertisements newspapers, multilisting
systems, information portals and meta-aggregators.

One of the first to appear was on-line bulletin board. It is
usually chargeless and topically organized database. Bulletin
board is arranged as a website, where anyone can place an
advertisement and visitors can read it. According to experts’
opinions, on-line bulletin boards, created simultaneously with
the growth of a real estate market, establish themselves a lot
more firmly. New bulletin boards projects do not approach a
market because they require significant capital and financial
inputs. Specialists call bulletin boards a “dirty” database, i.e.
disorganized and almost unregulated. Nowadays boards
prevent real estate market from proper functioning, because,
generally speaking, bulletin boards creators are not interested
in information structuring and quality enhancing as well as in
information exchange cost reduction of real estate market
participants.

Electronic versions of free advertisements newspapers are
also one of the core information aggregators. For instance, they
include “Iz ruk v ruki” website. According to experts’
opinions, the main advantage, that allows this kind of resources
to take the lead in their market segments, is that it combines
newspaper concept with its electronic version. That is why,
non-Internet users can also be involved, so much larger market
coverage will be provided.

Among real estate brokers the most popular and in-demand
kind of resources is multilisting systems. The major difference
between real estate market aggregators in Russia and in
western countries that in latter ones portals are owned by non-
governmental organizations. Multilisting is a basis used by all
market participants. For example, National Association of
Realtors in USA owns the world largest real estate information
aggregator “Realtor.com”. At present Russia has no global
portals that would aggregate information on all real estate
market offers. Commercial portals created as business projects
in different Russian regions occupy this niche market.

Real estate information portals or specific (customer-
oriented) websites are the most widespread aggregators of real
estate information on the Internet. They are the projects that
can capture its audience by having a database and providing
information uniqueness, convenient delivery, wide range of
analytical services, specific positioning and target audience

136 of 173

choosing means. Experts say that these portals appeal to users
because they offer more specific information: news, analysis
and wider range of search filters. Services of real estate
information portals are more convenient than ones of multi-
purpose websites because such portals are designed especially
for keeping real estate information.

Social networks also can be called information aggregators.
It is a CRM-direction that implies a step when a customer
interacts with an agent. Nonetheless, today the distance
between website-aggregators and social networks is shortening
from the point of view on common features and applied
services. In western countries this technologies are long since
popular and mainly because due to Web 2.0 technologies a
website visitor is becoming an information co-author and
increase its reliance among other society members.

Meta-aggegator is a system accumulating real estate offers
from several resources. The examples are “Skaner
Nedvizhymosti” (rent-scaner.ru), “Choister” (choister.ru) and
BLDR (bldr.ru). These resources offer extra services like
intellectual advertisement search placed only by an owner, not
by a broker.

III. DESCRIPTION OF SERVICE IMPLEMENTATION

A. Service architecture

To address automatic population of a real estate items
database in the context of project on creating a real estate
agency automation system an intelligent service was
implemented. It extracts information on real estate items from
unstructured advertisements placed on different resources. The
solution is based upon an ontological approach. The general
architecture of the implemented service is shown in fig. 1.

Fig. 1. Common service architecture

B. Service work layout

The general service work layout is shown in fig. 2.

Fig. 2. Main modules of the service

Journalizing component makes a record of a service work
(functioning). This record is used for service monitoring and
debugging.

Configuration manager gives access to service settings and
if necessary dynamically configures the service.

Ontology manager operates with ontological resources.

Page loader creates a local copy of a page and exercises its
preprocessing. Information on visited pages is put into a special
database. Due to this, during one loading session the loader
will not visit the same pages; thus, it allows to improve service
work. On basis of real estate websites ontology the loader
extract information from the page. In this fashion page parser
will have preprocessed text of a real estate advertisement, from
which it extracts knowledge using real estate items ontology.
Then this knowledge is unified (e.g. floor space can be
converted to square meters).

Page analyzer makes an inference using real estate items
ontology and captured knowledge as well as it checks several
additional heuristics, after that it forms an object to be put into
a correspond database.

C. Real estate websites ontology

Real estate websites ontology keeps specific websites
settings. We are interested in keeping following parameters:

1) Position on a page, where the information will be found

most likely and a description to have a title of this

information;

2) Position on a page, where useful references can be

found;

3) Description of filters to toss out “garbage” references

for our service;

4) “Page turning” mechanism settings (more details on

this are given below).

Journalizing

component

Configuration

manager

Ontology

manager

Page loader

Parsing

component

Page analyzer

DB
Visited pages

list

Service

Real estate

ontology

Websites

ontology
Configuration

Internet

DB

137 of 173

D. Real estate items ontology and regular expressions

Real estate items ontology keeps general domain concepts
and their interconnections.

While parsing pages, the service attempts to “bind” specific
concepts using ontology knowledge. Specific regular
expressions are attached to each ontology concepts. There are
two categories of regular expressions: general and website-
adjusted. The latter can be used for binding only at specific
websites and in general they are wrong (they allows to parse
specific wordings used on a website more effectively). General
regular expressions come into action in general cases. Firstly,
binding of specific concepts is implemented using website-
adjusted regular expressions and then in case of failure using
general ones.

A regular expression consists of two components: ones to
show that coincidence was found and ones to show erroneous
binding. For example, “telephone” concept is binding (i.e. there
is phone line), however advertisements often give a placer
phone number. The second type of components used to identify
a situation when it is said about different concept.

Apart from that, while extracting knowledge from text
specific figures are also being bound: e.g. “Flat floor space” or
“Focal person phone number”. The general structure of regular
expressions is the same with the above, but additionally there
are several logic parts used to convert figures to a single
system. For example, if the price in advertisement were in
rubles per Are, the service will convert it to rubles per square
meter.

E. “Page turning” mechanism

While analyzing real estate items advertisements websites
structure, it was identified that there are often lists containing
advertisements references. A website has a plenty of
advertisements and they are placed on different pages, that is
why page crossing is implemented with navigation buttons.

We develop a “page turning” mechanism to exercise a
sequential page crossing. Settings required for it are kept in real
estate websites ontology and custom for each website.

It stands to mention that reference click-through, when a
part of list is loaded with JavaScript, is a bit difficult to
process. It was addressed by using special classes.

F. Service settings and load list

Service settings include parameters responsible for service
functioning. There are following parameters:

1) Load list path with addresses that will be scanned by

the service.

2) A path for saving loaded pages;

3) Time lapse, in that the service will resume work

(service functioning can be stopped when it scanned all

addresses in a load list);

4) “Websites scanning depth”, i.e. maximum path length

to be scanned by the service;

5) Flag showing whether to go to third-party websites in

case of the “in-depth” search.

G. “Page turning” mechanism

While analyzing real estate items advertisements websites
structure, it was identified that there are often lists containing
advertisements references. A website has a plenty of
advertisements and they are placed on different pages, that is
why page crossing is implemented with navigation buttons.

We develop a “page turning” mechanism to exercise a
sequential page crossing. Settings required for it are kept in real
estate websites ontology and custom for each website.

It stands to mentions that reference click-through, when a
part of list is loaded with JavaScript, is slightly difficult to
process. It was addressed by using special classes.

H. Programming and software tools

The service was developed using Microsoft Visual Studio
2010 and C# programming language. Ontology was developed
with the aid of Protégé ontology editor. Also, HtmlAgilityPack
(for html-pages parsing) and OwlDotNetApi (for reading
ontologies from a file) libraries were used.

IV. BENCHMARKING

The service demonstrates rather high accuracy rates.
Approximately 97 per cent of all advertisements are recognized
in an adequate way. In 93 per cent of the time advertisement
attributes are recognized precisely. Recognition accuracy can
be improved with the aid of adjusting ontology to the specific
representation of an advertisement. Besides, logging
component includes analytical tools to find a reason for a fail
correlation and to recommend on required ontology settings.

V. CONCLUSION

In this paper we described the architecture and peculiar
implementation properties of the service aggregating the real
estate market offers. At the moment the pilot system of the
service is implemented. One of the core features of this service
is that it can be adjusted to analysis of new resources without
changing program code; configuration is only about ontology
editing. Also, in the context of this project and on the basis of
the information kept in the system, we intend to develop an
expert system on selection and estimating of real estate items.

REFERENCES

[1] Segaran T., Evans C., Taylor J. Programming the Semantic Web,

O'Reilly Media, 2009.

[2] Что такое Яндекс.Недвижимость http://help.yandex.ru/realty/

[3] Недвижимость online: агрегаторы http://media-
office.ru/?go=2082914&pass=f79e9c77f077cf1d060a615834c3c2d1

138 of 173

An Approach to the Selection of DSL Based on

Corpus of Domain-Specific Documents

E. Elokhov, E. Uzunova, M. Valeev, A. Yugov, V. Lanin

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russian Federation

eugene.yelokhov@gmail.com, palgonuri@gmail.com, mt.vallev.1992@gmail.com, yugovas@live.ru, lanin@perm.ru

Abstract. Today many problems that are dedicated to a

particular problem domain can be solved using DSL. Thus to use

DSL it must be created or it can be selected from existing ones.

Creating a completely new DSL in most cases requires high

financial and time costs. Selecting an appropriate existing DSL is

an intensive task because such actions like walking through every

DSL and deciding if current DSL can handle the problem are

done manually. This problem appears because there are no DSL

repository and no tools for matching suitable DSL with specific

task. This paper observes an approach for implementing an

automated detection of requirements for DSL (ontology-based

structure) and automated DSL matching for specific task.

Keywords: ontologies, conceptual search, domain-specific

language, semantic similarity of words

I. INTRODUCTION

Nowadays metamodeling and DSL-based technologies

(DSL – Domain Specific Language) [16] are widely used in

information system developing. DSL is created for solving

some specific problem. Almost every arising problem is

similar to the one that was solved before. In this case it means

that a suitable DSL was already implemented or an

implemented DSL does not fully meet the requirements.

Therefore, you can either find a ready-to-use DSL or complete

and configure a DSL implemented earlier. This requires less

costs rather than developing a completely new DSL.

So, there are two steps to select one of already existing

DSL:

1. Determine the requirements for DSL.

2. Find out how closely each of DSL meets this

requirements.

Requirements are determined by analyzing domain-

specific documents or problem statement. Then a requirements

ontology based on that analysis is generated.

To match a concrete DSL with generated ontology some

matching metrics and DSL description formats must be

defined. In this work the MetaLanguage system [1] allowing

DSL creation will be used. The use of MetaLanguage system

is justified by its noticeable features:

1) the ability to work with most common DSL notations;

2) DSL convertation from one notation to another;

3) exporting dsls to external systems.

In summary, the input data will be:

 corpus of domain-specific documents;

 set of DSL descriptions.

The target output is a list (ordered by correspondence to

the generated ontology) of appropriate DSLs that can handle

the problem.

This paper shows generating process of requirements

ontology based on domain-specific documents and how a

particular DSL meets given requirements.

II. RELATED WORKS

Nowadays there are some information systems that let you

create text-based ontology models of documents or let you

define correspondence of ontology models thereby transform

one model onto another one. We found two web-resources that

let you create ontologies: OwlExporter and OntoGrid.

The core idea of OwlExporter is to take the annotations

generated by an NLP pipeline and provide for a simple means

of establishing a mapping between NLP (Natural Language

Processing) and domain annotations on one hand and the

concepts and relations of an existing NLP and domain-specific

ontology on the other hand. The former can then be

automatically exported to the ontology in form of individuals

and the latter as data type or object properties [7].

The resulting, populated ontology can then be used within

any ontology-enabled tool for further querying, reasoning,

visualization, or other processing.

OntoGrid is an instrumental system for automation of

creating domain ontology using Grid-technologies and text

analysis in natural language [12].

This paper is supported by Russian Foundation for Basic Research
(Grant 12-07-00763)

139 of 173

This system has bilingual linguistic processor for

retrieving data from text in natural language. Worth D.

derivational dictionary is used as a base for morphological

analysis [4]. It contains more than 3.2 million word forms. The

index-linking process consists of 200 rules. “Key dictionary”

is determined by words allocation analysis in text.

The developers came up with new approach of revealing super

phrase unities that consist of specific lexical units. The

building of semantic net is carried out this way: the text is

analyzed using text analysis system, semantic Q-nets are used

as formal description of text meaning [18]. The linguistic

knowledge base of text analysis system is set of simple and

complex word-groups of the domain. This base can be divided

into simple-relation-realization base and critical-fragment-set,

that let you determine which ontology elements are considered

in this text. The next step is to create and develop the ontology

in the context of GRID-net. A well-known OWL-standard is

used to draw the ontology structure.

Also three information systems were found that fulfill a

function of transformation [10].

ATLAS Transformation Language is a part of the

architecture of managing ATLAS model [6]. ATL is the

language that let you describe initial model transformation

into destination model.

GReAT (Graph Rewriting And Transformation) is the

language of model transformation description, which is based

on triple graph transformation method [4]. This transformation

represents the set of graph sorted re-record rules that are

applied to the initial model and as a result create the

destination model.

VIATRA is pattern-based transformation language for

graph models managing which combines two methods:

mathematic formal description (based on graph transformation

rules for model description) and abstract finite state automaton

(for control flow description) [5].

The program resources described before are key functions

that determine an appropriate DSL matching. Unfortunately, a

software system, which implements all this functions, was not

found.

In addition, the idea used in applications intended to

transform the ontology can be implemented to determine the

measure of DSL correspondence to ontology requirements.

III. APPROACH DESCRIPTION

The suggested approach of the DSL selection process

consists of six stages that can be described as a series of

sequential operations which should be implemented (fig. 1).

Firstly, a corpus of documents is processed. As a result, the

key words (concepts related to specific domain) are retrieved.

Secondly, when re-viewing the document, the relations

between concepts are built. These concepts and relations form

a semantic network. The next step is to eliminate synonymy

(to merge nodes containing synonymic concepts). In order to

achieve this, a linguistic ontology is used. After that, it is

necessary to transform “contracted” semantic network into

ontology model, using the graph coarsening algorithm with

implementing linguistic ontologies. The next step is to qualify

the ontology model by a specialist. This step includes concepts

editing and relations marking semantically.

Figure 1. DSL selection process stages

When the ontology is complete, i.e. it meets user

requirements, DSLs are taken from the repository, and the

measures of DSLs correspondence to ontology requirements

are calculated.

140 of 173

A. Keyword extraction

Using ontology is one of the most widespread ways to

structure information on domain [11]. The formal ontology

description is O = <X, R, F>, where

 X – a finite set of domain terms,

 R – a finite set of relations between the terms,

 F – a finite set of interpretation functions.

Within the context of this paper, let us take a look at

defining the set of terms and the set of relations.

Consider that basic terms in document are its key words-

nouns. Researches related to finding key words in documents

are based on frequency laws discovered by linguist and

philosopher George Kingsley Zipf. The first law says that

multiplication of word detection possibility and frequency

rank is constant. The second law says that frequency and

number of words with this frequency also have a relation.

Currently, for searching key words the pure Zipf’s laws

(TF-IDF) and also LSI (latent semantic indexing) algorithms

are used. This research observes Zipf’s laws, which are easily

implemented, and a linguistic processing will be provided by

program resources of Aot.ru.

As an example some university exam taking process is

described. Consider that frequency analysis retrieved

following keywords (fig. 2).

Student Tutor

Teacher

Programming

Discrete

mathematics

Student Tutor

Teacher

Programming

Discrete

mathematics

Figure 2. Exam taking keywords

B. Searching relations

As a result of frequency-response analysis we have a set of

unlinked nodes (fig. 1). Now we have to define a set of

relations, in other words to make disconnected graph a

semantic net.

Semantic graph is weighted; its nodes are the terms of

analyzed documents. The existence of edge between two

nodes means that two terms are related semantically; weight of

the edge is measure of semantic similarity [17].

Similarity measurement of ontology concepts can be

calculated as follows:

1. Jaccard similarity coefficient [8]:

cba

c
K J




It’s a statistic used for comparing the similarity and

diversity of sample sets, where а – frequency of

occurrence of first term, b – frequency of occurrence of

second term, с – frequency of occurrence of joint terms.

2. Mutual information [2]:

  
  


{0,1} }1,0{

2

{0,1} }1,0{

2
))((

),(
log

),(

)()(

),(
log),(

u vu v

N
vu

vu

N

vu

vPuP

vuP
vuPMI

where u, v – terms retrieved from the document; (u) –

frequency of occurrence of u, (v) – frequency of

occurrence of v, (u, v) – frequency of occurrence of joint u

and v.

Point mutual information may be calculated as [2]:











)()(

),(
),(

vpup

vu
pvuPMI .

After calculating measurements of ontology concepts they

must be averaged [15]. Based on average measurement,

keywords become connected. As a result the semantic net

(fig. 3) is created.

Student Tutor

Teacher

Programming

Discrete

mathematics

Figure 3. Exam taking semantic network

C. Synonymy reduction

Each concept is searched in linguistic ontology and those

marked as synonyms are being contracted to a single node.

We are going to use WordNet, the semantic net, which was

created at the Cognitive Science Laboratory of Princeton

University. Its dictionary consists of four nets: nouns, verbs,

adjectives and adverbs because they follow different

grammatical rules. The basic dictionary unit is synset,

combining words with similar meaning. It is also the node of

the net. Synsets may have a few semantic relations like:

hypernym (breakfast → eating), hyponym (eating → dinner),

has-member (faculty → professor), member-of (pilot → crew

team), meronym (table → foot), antonym (leader → follower).

Different algorithms are widely used, for instance, the ones

that take into account the distance between conceptual

categories of words and hierarchical structure of WordNet

ontology.

Linguistic ontology showed that example’s tutor and

teacher concepts are synonyms, so this concepts contract into

one node (fig. 4).

141 of 173

http://vk.com/away.php?to=http%3A%2F%2FAot.ru

Student

Teacher

Programming

Discrete

mathematics

Figure 4. Exam taking semantic network after

synonymy reduction

D. Graph coarsening

The next step is to transform the semantic net into

ontology model. In general it’s graph coarsening problem [5].

Classic methods of solving this problem are based on iterative

contraction of adjacent nodes of graph Gα into nodes of graph

Gα+1, where α = 0, 1, 2, … – number of iteration, G(0) = G(O).

As a result the edge between two of graph Gα is removed and

the multinode of graph Gα+1 is created. [9].

When two nodes are replaced by one node (during the

contraction), the values of these nodes are replaced by the

value of parent node from linguistic ontology.

In example programming and discrete mathematics

concepts are coarsened into one node (fig. 5).

Student

Teacher Subject

Figure 5. Exam taking semantic network after graph coarsening

E. Ontology improving

At this step we have a base ontology, representing criteria

for DSL matching. However, it has some disadvantages:

1) no semantic relations representation;

2) unnecessary concepts may appear (this are useless for

current task, but were generated during the analysis);

3) essential concepts could be missed during analysis.

To fix these disadvantages, this base ontology should be

edited by human (specify relation semantics, add or delete

concepts). Obviously, the more accurate will be ontology

model, the more accurate DSL will be matched.

Consider that specialist renamed “Subject” to “Exam”, and

removed relation between student concept and teacher

concept, and added the semantic meanings to remaining

relations (student takes an exam and teacher grade an exam).

The result is shown in fig. 6.

Student

Teacher

Exam

TAKE

GRADE

Figure 6. Exam taking ontology

F. Matching evaluation between DSL and created ontology

Comparison of ontologies comes down to calculation or

relations revelation between the terms of two ontologies based

on different lexical or structure methods. The result of this

comparison represents a set of correspondences between the

entities that are related semantically.

In order to assess how similar ontologies are, the extent of

isomorphism should be measured.

Two graphs (V1;E1; g1) and (V2;E2; g2) are isomorphic if

there are bijections:

f1 : V1 → V2 and f2 : E1 → E2

so that for each edge









yxag

Ea

)(1

1

if and only if

g2[f2(a)] = f1(x) – f1(y).

It is not always easy to establish if two graphs are isomorphic

or not. An exception is the case where the graphs are simple.

In this case, we just need to check if there is a bijection

f: V1 → V2,

which preserves adjacent vertices. If the graphs are not simple,

we need more sophisticated methods to check for when two

graphs are isomorphic

In our case, we should place emphasis that two graphs are

not going to be isomorphic. However, the higher extent of

isomorphism is, the more suitable current graph is.

The linguistic ontologies will have huge impact on the

extent of isomorphism. For instance, if current node in the first

graph was happened to describe a person and current node in

the second graph described the document, isomorphism

substitution would not exist in this context. At this moment,

we are developing linguistic ontology-based algorithm for

measuring how isomorphic two graphs are.

142 of 173

IV. CONCLUSION AND FUTURE WORK

In this paper a problem of matching a suitable DSL for

specific task was observed.

The requirements for DSL are based on domain documents

analysis. Requirements are formed as ontological model which

is generated in two steps: defining concepts using frequency

analysis of terms found and defining relations based on

average weighted score obtained using Jaccard index and

mutual information index.

The second step of DSL matching is comparison of DSL’s

that was implemented earlier with ontology based on domain

documents analysis. The core of this comparison is the method

of determining graphs’ isomorphism and semantic match is

controlled by linguistic ontology.

The further work is devoted to increasing the number of

methods used to create more relations in the ontology model.

This will improve the accuracy of average weighted score of

concept relationship. Furthermore the DSL comparison on

different levels will be observed (hierarchical structure

comparison).

REFERENCES

[1] A.O. Sukhov, L.N. Lyadova “MetaLanguage: a Tool for Creating Visual
Domain-Specific Modeling Languages”, Proceedings of the 6th
Spring/Summer Young Researchers’ Colloquium on Software
Engineering, SYRCoSE 2012, Пермь: Институт системного
программирования Российской академии наук, 2012, pp. 42-53

[2] Centre for the Analysis of Time Series website. [Online]. Available:
http://cats.lse.ac.uk/homepages/liam/st418/mutual-information.pdf

[3] D. Balasubramanian “The Graph Rewriting and Transformation
Language: GReAT”. [Online]. Available:
http://www.isis.vanderbilt.edu/sites/default/files/great_easst.pdf

[4] D. Worth, A. Kozak, D. Johnson “Russian Derivational Dictionary”,
New York, NY: American Elsevier Publishing Company Inc, 1970

[5] G. Karypis, V. Kumar “Multilevel k-way Partitioning Scheme for
Irregular Graphs”, Journal of Parallel and Distributed Computing, 96-
129, 1998

[6] J. Bezivin “An Introduction to the ATLAS Model Management
Architecture”. [Online]. Available:
http://www.ie.inf.uc3m.es/grupo/docencia/reglada/ASDM/Bezivin05b.p
df

[7] R. Witte, N. Khamis, and J. Rilling, “Flexible Ontology Population from
Text: The OwlExporter” Dept. of Comp. Science and Software Eng.
Concordia University, Montreal, Canada. [Online]. Available:
http://www.lrec-conf.org/proceedings/lrec2010/pdf/932_Paper.pdf

[8] R. Real, J. Vargas, “The Probabilistic Basis of Jaccard's Index of
Similarity” [Online]. Available:
http://sysbio.oxfordjournals.org/content/45/3/380.full.pdf

[9] А. Карпенко “Оценка релевантности документов онтологической
базы знаний”. [Online]. Available:
http://technomag.edu.ru/doc/157379.html

[10] А. Сухов “Методы трансформации визуальных моделей”. [Online].
Available: http://www.hse.ru/pubs/share/direct/document/68390345

[11] В. Аверченков, П. Казаков “Управление информацией о
предметной области на основе онтологий”. [Online]. Available:
http://www.pandia.ru/text/77/367/22425.php

[12] В. Гусев “Механизмы обнаружения структурных закономерностей
в символьных последовательностях”, 47–66, 1983

[13] В. Гусев, Н. Саломатина “Алгоритм выявления устойчивых
словосочетаний с учётом их вариативности (морфологической и

комбинаторной”. [Online]. Available: http://www.dialog-
21.ru/Archive/2004/Salomatina.htm

[14] Г. Белоногов, И. Быстров, А. Новоселов и другие
“Аавтоматический концептуальный анализ текстов” НТИ, сер. 2, №
10, с. 26–32, 2002

[15] И. Мисуно, Д. Рачковский, С. Слипченко “Векторные и
распределенные представления, отражающие меру семантической
связи слов”. [Online]. Available:
http://www.immsp.kiev.ua/publications/articles/2005/2005_3/Misuno_0
3_2005.pdf

[16] Л. Лядова “Многоуровневые модели и языки DSL как основа
создания интеллектуальных CASE-систем”. [Online]. Available:
http://www.hse.ru/data/2010/03/30/1217475675/Lyadova_LN_2.pdf

[17] М. Гринева, М. Гринев, Д. Лизоркин “Анализ текстовых
документов для извлечения тематически сгруппированных
ключевых терминов”. [Online]. Available:
http://citforum.ru/database/articles/kw_extraction/2.shtml#3.3

[18] Н. Загоруйко, А. Налётов, А. Соколова и другие “Формирование
базы лексических функций и других отношений для онтологии
предметной области”. [Online]. Available: http://www.dialog-
21.ru/Archive/2004/Zagorujko.htmM. Young, The Technical Writer’s
Handbook. Mill Valley, CA: University Science, 1989.

143 of 173

Beholder Framework
A Unified Real-Time Graphics API

Daniil Rodin

Institute of Mathematics and Computer Science

Ural Federal University

Yekaterinburg, Russia

Abstract—This paper describes Beholder Framework, which

is a set of libraries designed to provide a single low-level API for

modern real-time graphics that combines clarity of Direct3D 11

and portability of OpenGL. The first part of the paper describes

the architecture of the framework and its reasoning from the

point of view of developing a cross-platform graphics application.

The second part describes how the framework overcomes some

most notable pitfalls of supporting both Direct3D and OpenGL

that are caused by differences in design and object models of the

two APIs.

Keywords—real-time graphics; API; cross-platform; shaders;

Direct3D; OpenGL;

I. INTRODUCTION

Real-time graphics performance is achieved by utilizing
hardware capabilities of a GPU, and to access those capabilities
there exist two “competing” API families, namely Direct3D
and OpenGL. While OpenGL is the only option available
outside Windows platform, it has some significant drawbacks
when compared to Direct3D including overcomplicated API
[1] and worse driver performance [2]. For this reason,
developers, who are working on a cross-platform graphics
application that must also be competitive on Windows, have to
support both Direct3D and OpenGL, which is a tedious and
time-consuming work with many pitfalls that arise from the
design differences of Direct3D and OpenGL.

This paper describes a framework that solves those issues
by providing an API that is similar to Direct3D 11, while being
able to use both Direct3D and OpenGL as back-ends. The
former allows developers to use well-known and well-designed
programming interfaces without the need to learn completely
new ones. The later allows applications developed using the
framework to be portable across many platforms, while
maintaining the Direct3D level of driver support on Windows.

II. WHY OPENGL IS NOT SUFFICIENT

Since OpenGL provides a real-time graphics API that is
capable of running on different platforms, including Windows,
it might look like an obvious API of choice for cross-platform
development. But if you look at the list of best-selling games
[3] of the last ten years (2003 – 2012), you will notice that
almost every game that has a PC version [3] uses Direct3D as

main graphics API for Windows and most of them are
Direct3D (and thus, Windows) – only.

If OpenGL was at least near to being as powerful, stable,
and easy to use as Direct3D, it would be irrational for
developers to use Direct3D at all. Especially so for products
that are developed for multiple platforms, and thus, already
have OpenGL implementations.

These two facts bring us to a conclusion that, in comparison
to Direct3D, OpenGL has some significant drawbacks.

In summary, those drawbacks can be divided into three
groups.

The first reason of Direct3D dominance is that from the
Direct3D version 7 and up, OpenGL was behind in terms of
major features. For example, GPU-memory vertex buffers, that
are critical for hardware T&L (transform and lighting),
appeared in OpenGL after almost four years of being a part of
Direct3D, and it took the same amount of time to introduce
programmable shaders as a part of the standard after their
appearance in Direct3D 8. [4]

And even today, when the difference between Direct3D 11
and OpenGL 4.3 features is not that noticeable, some widely
used platforms and hardware do not support many important of
them for OpenGL. For example, OS X still only supports
OpenGL up to version 3.2. Another example is Intel graphics
hardware that is also limited to OpenGL 3.x, and even OpenGL
3.x implementation has some major unfixed bugs. For instance,
Intel HD3000 with current drivers does not correctly support
updating a uniform buffer more than once a frame, which is
important for efficient use of uniform buffers (a core OpenGL
feature since version 3.1).

The third OpenGL drawback is very subjective, but still
important. While trying to achieve backwards-compatibility,
Khronos Group (an organization behind OpenGL) was
developing OpenGL API by reusing old functions when
possible, at the cost of intelligibility (e.g. glBindBuffer,
glTexImage3D). This resulted in an overcomplicated API that
does not correspond well to even the terms that the
documentation is written in and still suffers from things like
bind-to-edit principle [1]. On the other hand, Direct3D is being
redesigned every major release to exactly match its capabilities,
which makes it significantly easier to use.

144 of 173

III. ALTERNATIVE SOLUTIONS

Beholder Framework is not the first solution for the
problem of combining Direct3D and OpenGL. In this section
we will discuss some notable existing tools that provide such
abstraction, and what are their differences from the Beholder
Framework.

A. OGRE

OGRE (Open Graphics Rendering Engine) [5] is a set of
C++ libraries that allow real-time rendering by describing a
visual scene graph that consists of camera, lights, and entities
with materials to draw, which are much higher-level terms than
what APIs like Direct3D and OpenGL provide.

While this was the most natural way of rendering in the
times of fixed-function pipeline, and thus, providing this
functionality in the engine was only a plus, nowadays
rendering systems that are not based on scene graph are
becoming more widespread because the approach to
performance optimizations has changed much since then [6, 7].
The other aspect of OGRE API being higher-level than
Direct3D and OpenGL is that it takes noticeably longer to
integrate new GPU features into it, since they must be well
integrated into a higher-level object model that was not
designed with those capabilities in mind.

Therefore, even though OGRE is providing rendering
support for both Direct3D and OpenGL, it is not suited for
those applications that require different object model or newer
GPU features.

B. Unity

Unity [8] is a cross-platform IDE and a game engine that
allows very fast creation of simple games that expose some
predefined advanced graphics techniques like lightmaps,
complex particle systems, and dynamic shadows.

Unity provides excellent tools for what it is designed for,
but has even less flexibility than OGRE in allowing
implementation of non-predefined techniques. It also forces an
IDE on the developer, which, while being superb for small
projects, is in many cases unacceptable for larger ones.

C. Unigine

Unigine [8] is a commercial game engine that supports
many platforms, including Windows, OS X, Linux, PlayStation
3, and others while using many advanced technologies and
utilizing low-level API to its limits. Having said that, Unigine
is still an engine which forces the developer to utilize the
graphics the specific way instead of providing a freedom like
low-level APIs do.

In comparison to all the discussed solutions, Beholder
Framework aims to provide the freedom of a low-level API
(namely, Direct3D 11) while maintaining portability of
supporting both Direct3D and OpenGL.

IV. BEHOLDER FRAMEWORK ARCHITECTURE

Beholder Framework is designed as a set of interfaces that
resemble Direct3D 11 API, and an extensible list of
implementations of those interfaces. The framework is being
developed as a set of .NET libraries using the C# language, but
it is designed in such a way that porting it to C/C++ will not
pose any significant problems if there will be a demand for
that.

All the interfaces and helper classes are stored in the
Beholder.dll .NET assembly including the main interface –
Beholder.IEye that is used to access all the implementation-
specific framework capabilities. In order to get an
implementation of this interface, one can, for example, load it
dynamically from another assembly. This is a preferred way
since it allows using any framework implementation without
recompiling an application. At the time of writing, there are
three implementations of the framework – for Direct3D 9,
Direct3D 11, and OpenGL 3.x/4.x.

When the instance of the Beholder.IEye is acquired, one
can use if to perform four kinds of tasks that are important for
initializing a graphics application. The first one is enumerating
graphics adapters available for the given system along with
their capabilities. By doing this, one can decide what pixel
formats to use, what display modes to ask the user to choose
from, and whether some specific features are available or not.
The second task is creating windows or preparing existing ones
for drawing and capturing user input. The third one is
initializing a graphics device, which is a main graphics object
that holds all the graphics resources and contexts (corresponds
to the ID3D11Device interface of Direct3D 11). Finally, the
fourth task that Beholder.IEye can be used for is initializing a
“game loop” – a specific kind of an infinite loop that allows the
application to interact with the OS normally.

Another useful feature that the framework provides at the
Beholder.IEye level is a validation layer. It is an
implementation of the interfaces that works like a proxy to a
real implementation while running a heavy validation on the
interface usage. This is useful for debugging purposes, and
since it is optional, it will not affect performance of a release
build.

When the device is initialized and the game loop is running,
an application can use Beholder Framework in almost the same
way it could use Direct3D with only minor differences. The
only exception to this is a shader language.

V. UNIFYING SHADERS

Even though both Direct3D 11 and OpenGL 4.3 have
similar graphics pipelines, and thus, same types of shaders,
they provide different languages to write them, namely HLSL
and GLSL respectively. Compare, for example, these versions
of a simple vertex shader in two languages:

A. HLSL
cbuffer Transform : register(b0)

{

 float4x4 World;

 float4x4 WorldInverseTranspose;

};

145 of 173

cbuffer CameraVertex : register(b1)

{

 float4x4 ViewProjection;

};

struct VS_Input

{

 float3 Position : Position;

 float3 Normal : Normal;

 float2 TexCoord : TexCoord;

};

struct VS_Output

{

 float4 Position : SV_Position;

 float3 WorldPosition : WorldPosition;

 float3 WorldNormal : WorldNormal;

 float2 TexCoord : TexCoord;

};

VS_Output main(VS_Input input)

{

 VS_Output output;

 float4 worldPosition4 = mul(float4(input.Position, 1.0), World);

 output.Position = mul(worldPosition4, ViewProjection);

 output.WorldPosition = worldPosition4.xyz;

 output.WorldNormal = normalize(

 mul(float4(input.Normal, 0.0), WorldInverseTranspose).xyz);

 output.TexCoord = input.TexCoord;

 return bs_output;

}

B. GLSL
#version 150

layout(binding = 0, std140) uniform Transform

{

 mat4x4 World;

 mat4x4 WorldInverseTranspose;

};

layout(binding = 1, std140) uniform CameraVertex

{

 mat4x4 ViewProjection;

};

in vec3 inPosition;

in vec3 inNormal;

in vec2 inTexCoord;

out vec3 outWorldPosition;

out vec3 outWorldNormal;

out vec2 outTexCoord;

void main()

{

 vec4 worldPosition4 = vec4(inPosition, 1.0) * World;

 gl_Position = worldPosition4 * ViewProjection;

 outWorldPosition = worldPosition4.xyz;

 outWorldNormal = normalize(

 (vec4(inNormal, 0.0) * WorldInverseTranspose).xyz);

 outTexCoord = inTexCoord;

}

As you can see, even though the shader is the same, the
syntax is very different. Some notable differences are: many
cases of different naming of same keywords (e.g. types),
different operator and intrinsic function sets (e.g. while GLSL
uses ‘*’ operator for matrix multiplication, in HLSL ‘*’ means
per-component multiplication, and for matrix multiplication
mul function is used instead), different input/output declaration
approaches, and many others. Also notice how in HLSL output
position is a regular output variable with a special HLSL
semantic SV_Position (‘SV’ stands for ‘Special Value’), while
in GLSL a built-in gl_Position variable is used instead.

To enable writing shaders for both APIs simultaneously,
one would naturally want to introduce a language (maybe
similar to one of the existing ones) that will be parsed and then
translated to the API-specific language. And as you will see,
Beholder Framework does that for uniform buffers,
input/output, and special parameters (e.g. tessellation type). But
because fully parsing and analyzing C-like code requires too

much time-commitment, the author decided to take a slightly
easier approach for the current version of the framework.

Here is the same shader written in the ‘Beholder Shader
Language’:

%meta

Name = DiffuseSpecularVS

ProfileDX9 = vs_2_0

ProfileDX10 = vs_4_0

ProfileGL3 = 150

%ubuffers

ubuffer Transform : slot = 0, slotGL3 = 0, slotDX9 = c0

 float4x4 World

 float4x4 WorldInverseTranspose

ubuffer CameraVertex : slot = 1, slotGL3 = 1, slotDX9 = c8

 float4x4 ViewProjection

%input

float3 Position : SDX9 = POSITION, SDX10 = %name, SGL3 = %name

float3 Normal : SDX9 = NORMAL, SDX10 = %name, SGL3 = %name

float2 TexCoord : SDX9 = TEXCOORD, SDX10 = %name, SGL3 = %name

%output

float4 Position: SDX9=POSITION0, SDX10=SV_Position, SGL3=gl_Position

float3 WorldNormal : SDX9 = TEXCOORD0, SDX10 = %name, SGL3 = %name

float3 WorldPosition : SDX9 = TEXCOORD1, SDX10 = %name, SGL3 = %name

float2 TexCoord : SDX9 = TEXCOORD2, SDX10 = %name, SGL3 = %name

%code_main

 float4 worldPosition4 = mul(float4(INPUT(Position), 1.0), World);

 OUTPUT(Position) = mul(worldPosition4, ViewProjection);

 OUTPUT(WorldPosition) = worldPosition4.xyz;

 OUTPUT(WorldNormal) = normalize(

 mul(float4(INPUT(Normal), 0.0), WorldInverseTranspose).xyz);

 OUTPUT(TexCoord) = INPUT(TexCoord);

As you can see, %meta, %ubuffers, %input, and %output
blocks can be easily parsed using a finite-state automaton and
translated into either HLSL or GLSL in an obvious way
(slotDX9 and SDX9 are needed for vs_2_0 HLSL profile used
by Direct3D 9). But to translate the code inside the main
function, the author had to use a more ‘exotic’ tool – C macros,
which, fortunately, are supported by both HLSL and GLSL.

Using macros helps to level out many of the language
differences. Type names are translated easily, so are many
intrinsic functions. Input and output macros for GLSL while
being not so obvious are, nevertheless, absolutely possible. For
example, input/output declaration that is generated by the
framework for OpenGL looks simply like this.

#define INPUT(x) bs_to_vertex_##x

in float3 bs_to_vertex_Position;

in float3 bs_to_vertex_Normal;

in float2 bs_to_vertex_TexCoord;

#define OUTPUT(x) bs_to_pixel_##x

#define bs_to_pixel_Position gl_Position

out float3 bs_to_pixel_WorldPosition;

out float3 bs_to_pixel_WorldNormal;

out float2 bs_to_pixel_TexCoord;

While using macros does not make the unified shader
language as beautiful and concise as it could be if it was being
parsed and analyzed completely, it still makes writing a shader
for all APIs at once not much harder than writing a single
shader for a specific API, which is the main goal of a unified
shader language.

VI. PITFALLS OF USING OPENGL AS DIRECT3D

Since Direct3D and OpenGL are being developed
independently and only the fact that they must work with the
same hardware makes them be based on similar concepts, it
comes with no surprise that the APIs have many subtle
differences that complicate the process of making one API

146 of 173

work like another. In this section we will discuss the most
notable of such differences and ways to overcome them.

A. Rendering to a Swap Chain

While Direct3D, being tightly integrated into Windows
infrastructure, applies the same restrictions for both on-screen
(swap chain) render targets and off-screen ones, in OpenGL the
restriction can be unexpectedly different. For example, at the
time of writing, Intel HD3000 on Windows does not support
multisampling and several depth-stencil formats for on-screen
rendering that it supports for off-screen rendering using
OpenGL.

To counter this, Beholder Framework uses a special off-
screen render target and an off-screen depth-stencil surface
when a developer wants to render to a swap chain, and then
copies render target contents to the screen when Present
method of a swap chain is called. This may seem like overkill,
but as you will see in the next section, it has more benefits to it
than just being an easy way to overcome OpenGL limitations.

B. Coordinate Systems

Despite the common statement that “Direct3D uses row
vectors with left hand world coordinates while OpenGL uses
column vectors with right hand world coordinates”, it is simply
not true. When using shaders, an API itself does not even use
the concept of world coordinates, and, as demonstrated in the
previous section, GLSL has the same capabilities of working
with row vectors (which means doing vector-matrix
multiplication instead of a matrix-vector one) as HLSL.
Nevertheless, there are still two notable differences between
OpenGL and Direct3D pipelines that are related to coordinate
systems.

The first difference is Z range of homogeneous clip space.
While Direct3D rasterizer clips vertex with position p when
p.z / p.w is outside of [0,1] range, for OpenGL this range is
[-1,1]. Usually, for cross-platform applications it is
recommended to use different projection matrices for Direct3D
and OpenGL to overcome this issue [10]. But since we are
controlling the shader code, this problem can be solved in a
much more elegant way by simply appending the following
code to the last OpenGL shader before rasterization:

gl_Position.z = 2.0 * gl_Position.z - gl_Position.w;

This way, Z coordinate of a vertex will be in the correct
range, and since the Z coordinate is not used for anything else
other than clipping at the rasterization stage, this will make
Direct3D and OpenGL behave the same way.

The second coordinate-related difference is texture
coordinate orientation. Direct3D considers the Y coordinate of
a texture to be directed top-down, while OpenGL considers it
to be directed bottom-up.

While the natural workaround for this difference would
seem to be modifying all the texture-access code in GLSL
shaders, such modification will significantly affect
performance of shaders that do many texture-related
operations. But since the problem lies in texture coordinates,

which are used to access the texture data, it can be also solved
by inverting the data itself.

For texture data that comes from CPU side this is actually
as easy as feeding OpenGL the same data that is being fed to
Direct3D. Since OpenGL expects the data in bottom-up order,
it can be inverted by feeding in in top-down order, in which it
is expected by Direct3D.

For texture data that is generated on the GPU using render-
to-texture mechanisms the easiest way to invert the resulting
texture is just to invert the scene before rasterization by
appending the following code to the last shader before the
rasterization stage (the same place where we appended the Z-
adjusting code):

gl_Position.y = -gl_Position.y;

This will make off-screen rendering work properly, but
when rendering a final image to the swap chain, it will appear
upside-down. But, as you can remember, we are actually using
a special off-screen render target for swap-chain drawing. And
thus, to solve this problem, we only need to invert the image
when copying it to the screen.

C. Vertex Array Objects and Framebuffer Objects

Starting from version 3.0, OpenGL uses what is called
“Vertex Array Objects” (usually called VAOs) to store vertex
attribute mappings. This makes them seem to be equivalent to
Direct3D Input Layout objects and makes one want to use
VAOs the same way. Unfortunately, VAOs do not only contain
vertex attribute mappings, but also the exact vertex buffers that
will be used. That means that for them to be used as
encapsulated vertex attribute mapping, there must be a separate
VAO for each combination of vertex layout, vertex buffers,
and vertex shader. Since, compared to just layout-shader
combinations, such combination will most likely be different
for almost every draw call in a frame, there will be no benefit
from using different VAOs at all. Therefore, Beholder
Framework uses a single VAO that is being partially modified
on every draw call where necessary.

Unlike Direct3D 11 that uses “Render Target Views” and
“Depth-Stencil Views” upon usual textures to enable render-to-
texture functionality, OpenGL uses a special type of objects
called “Framebuffer Objects” (usually called FBOs). When
actually doing rendering to a texture, FBO can simply be used
like a part of the device context that contains current render
target and depth-stencil surface. But clearing render targets and
depth-stencil surfaces, which in Direct3D is done using a
simple functions ClearRenderTargetView and
ClearDepthStencilView, in OpenGL also requires an FBO.
Furthermore, this FBO must be “complete”, which means that
render target and depth-stencil surface currently attached to it
must be compatible.

When clearing a render target, this compatibility can be
easily achieved by simply detaching depth-stencil from the
FBO. But when clearing a depth-stencil surface, there must be
a render target attached with dimensions not less than ones of
the depth-stencil surface.

147 of 173

Therefore, to implement Direct3D 11 – like interface for
render-to-texture functionality on OpenGL while minimizing
the number of OpenGL API calls, Beholder Framework uses
three separate FBOs for drawing, clearing render targets, and
clearing depth-stencil surfaces. Render target FBO has depth-
stencil always detached, and depth-stencil FBO uses a dummy
renderbuffer object that is large enough for the depth-stencil
surface being cleared.

VII. CONCLUSION AND FUTURE WORK

Supporting both Direct3D and OpenGL at the lowest level
possible is not an easy task, but, as described in this paper, a
plausible one. At the moment of writing a large part of
Direct3D 11 API is implemented for Direct3D 9, Direct3D 11,
and OpenGL 3.x/4.x and the project’s source code is available
on GitHub [11].

After collecting public opinion on the project, the author
plans to implement the missing parts that include staging
resources, stream output (transform feedback), compute
shaders, and queries. After that the priorities will be a better
shader language and more out-of-the-box utility like text
rendering using sprite fonts.

REFERENCES

[1] About ‘bind-to-edit’ issues of OpenGL API. http://www.g-truc.net/post-
0279.html#menu

[2] Performance comparison of Direct3D and OpenGL using Unigine
benchmarks. http://www.g-truc.net/post-0547.html

[3] List of best-selling PC video games.
http://en.wikipedia.org/wiki/List_of_best-selling_PC_video_games

[4] History of competition between OpenGL and Direct3D.
http://programmers.stackexchange.com/questions/60544/why-do-game-
developers-prefer-windows/88055#88055

[5] Official site of the OGRE project. http://www.ogre3d.org/

[6] “Scenegraphs: Past, Present, and Future”.
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-
and-future/

[7] Noel Llopis. “High-Performance Programming with Data-Oriented
Design” Game Engine Gems 2. Edited by Eric Lengyel. A K Peters Ltd.
Natick, Massachusetts 2011.

[8] Official site of Unity project. http://unity3d.com/

[9] Official site of Unigine project. http://unigine.com/

[10] Wojciech Sterna. “Porting Code between Direct3D9 and OpenGL 2.0”
GPU Pro. Edited by Wolfgang Engel. A K Peters Ltd. Natic,
Massachusetts 2010.

[11] Beholder Framework repository on GitHub.
https://github.com/Zulkir/Beholder

148 of 173

http://www.g-truc.net/post-0279.html#menu
http://www.g-truc.net/post-0279.html#menu
http://www.g-truc.net/post-0547.html
http://en.wikipedia.org/wiki/List_of_best-selling_PC_video_games
http://programmers.stackexchange.com/questions/60544/why-do-game-developers-prefer-windows/88055#88055
http://programmers.stackexchange.com/questions/60544/why-do-game-developers-prefer-windows/88055#88055
http://www.ogre3d.org/
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-and-future/
http://www.realityprime.com/blog/2007/06/scenegraphs-past-present-and-future/
http://unity3d.com/
http://unigine.com/
https://github.com/Zulkir/Beholder

Image key points detection and matching

Mikhail V. Medvedev
Technical Cybernetics and Computer Science Department

Kazan National Research Technical University
Kazan, Russia

mmedv@mail.ru

Mikhail P. Shleymovich
Technical Cybernetics and Computer Science Department

Kazan National Research Technical University
Kazan, Russia
shlch@mail.ru

Abstract—In this article existing key points detection and
matching methods are observed. The new wavelet transformation
based key point detection algorithm is proposed and the
descriptor creation is implemented.

Keywords—key points, descriptors, SIFT, SURF, wavelet
transform.

I. INTRODUCTION

Nowadays the information technology based on artificial
intelligence develops rapidly. Typically database with sample
based retrieval becomes the major component of such
intelligent systems. Biometrical identification systems, image
databases, video monitoring systems, geoinformation systems,
video tracking and many other systems can be considered as an
example of intelligent systems with such databases.

For intelligent systems database retrieval the sample of data
is defined, major characteristics are extracted and then the
objects with similar characteristics are found in the database. In
many cases images become the database objects. So we need
some mechanism of characteristics extraction and their
following comparison for finding identical or similar objects.

At the same time the intelligent systems of object 3D
reconstruction are widely spread. Such systems can be used in
robotic technology, architecture, tourism and other spheres.
There are two major approaches to the 3D reconstruction
problem solving: active and passive methods. In active
methods depth sensors are used. They should be attached to the
object directly, but in many cases this is impossible because of
inaccessibility of an object. Such systems become very
complex and demand additional equipment.

In passive method case photo camera is used as the sensor.
Camera gets photos of an object for different points of views. It
is not necessary to use depth sensors in this approach, and
that’s why it can be applied in any cases under all conditions.
However, the object reconstruction accuracy substantively
depends on the quality of collected images and the
reconstruction algorithm. The first step of such an algorithm is
to compare the images and identify the same key points for the
further 3D reconstruction scheme evaluation. For solving such
problems we need a computationally simple mechanism for
image comparison and their similarity finding. The key point
based description of and object is not very complex and rather
reliable, that’s why it can be used in object identifying tasks.

So we can see that the problem of identifying the same
object in different pictures becomes very actual.

Key points or salient points concern the major information
about the image. They can be found in the areas, where the
brightness of the image pixels significantly changes. The
human eye finds such points in the image automatically. These
points can be characterized with two major features: the
amount of key points mustn’t be very big; their location
mustn’t change accord to the changing of the image size and
image orientation; key point position must not depend on the
illumination. In this paper we discuss the most popular SIFT
and SURF method, and also present the new method based on
wavelet transformation.

II. EXISTING KEY POINT DETECTION METHODS

A. Harris Corner Detector

Harris corner detector [2] uses corners as the key points,
because they are unique in two dimensions of the image and
provide locally unique gradient patterns. They can be used on
the image, when we have a small movement. The corner
detection method looks at an image patch around an area
centered at (x,y) and shifts it around by (u,v). The method uses
the gradients around this patch. The algorithm can be described
in the following steps.

1. The calculation of the weighted sum of square
difference between the original patch and the translated
patch.

I(u+x, v+y)≈I(u,v)+Ix(u,v)x+Iy(u,v)y (1)

2. Approximation by a Taylor expansion.

(2)

 3. Construction of weighted local gradients in matrix
form, where Ix and Iy are partial derivatives of I in the x and y
directions.

(3)

4. Choosing the point with two "large" eigenvalues a and b,
because a corner is characterized by a large variation of S in all
directions of the vector [x,y].

S (x , y)≈∑
u
∑

v
w(u , v)(I x(u , v)x+ I y (u , v) y)

2

A=∑
u
∑

v

w(u ,v)[I x
2

I x I y

I x I y

I y
2]=[〈 I x

2〉

〈 I x I y 〉

〈 I x I y〉

〈 I y
2〉]

149 of 173

5. If a=0, b=0, then the pixel (x,y) has no features of
interest.

 If a=0, b>>0, the point is counted as an edge.

 If a>>0, b>>0, a corner is found.

However, the eigenvalues computation is computationally
expensive, since it requires the computation of a square
root. In the commercial robotics world, Harris corners are used
by state-of-the-art positioning and location algorithms, various
image-processing algorithms for asset tracking, visual
odometry and image stabilization.

Fig. 1. Original image and Harris corner key points.

B. SIFT (Scale Invariant Feature Transform)

The most popular method for key point extraction is SIFT.
Features are invariant to image scaling, translation, rotation,
partially invariant to illumination changes, and affine
transformations or 3D projection. It uses Differences of
Gaussians (DoG) with fitted location, scale and ratio of
principal curvatures for feature detection. These features are
similar to neurons located in the brain’s inferior temporal
cortex, which is used for object recognition in primate vision.
Features are efficiently detected through a staged filtering
approach that identifies stable points in scale space. Image keys
are created that allow for local geometric deformations by
representing blurred image gradients in multiple orientation
planes and at multiple scales.

The algorithm can be described in following steps.

1. The convolution of image and Gauss filter is made
with different σ values.

η (x , y , σ)=
1

2π σ 2
exp (

−x2
−y2

2σ 2
) (4)

where k – scale coefficient, and * - convolution. The
candidates for key points are formed by D(x,у,σ) extremal
points calculation.

D(x,y,σ)-(η(x,y,σ))*I(x,y) (5)

2. The points allocated along the edges are excluded
with the help of Hesse matrix, calculated in candidate
points of the previous step.

H=(D xx Dxy

D xy D yy
) (6)

Because of the fact that the main curving along the edges
have larger values, than in case of normal direction and the fact
that Hesse matrix eigenvalues are proportionat to the main
curving of the D(x, у, σ), we need only to compare the Hesse
matrix eigenvalues.

3. For the rotational invariance the orientation histogram
is calculated over the key point neighbourhood with
chosen step. For every σ the algorithm finds the
orientation histogram extremal values.

Θ (x , y)=arctg
L (x , y+1)−L (x , y−1)

L (x+1, y)−L (x−1, y)
 (7)

L(х, у) = η(х, у, σ)* I(х, у) (8)

For invariant description of the key point the following
algorithm is used.

1. Choosing the neighbourhood around the key
point.

2. Calculation of the gradient value in the key point
and its normalizing.

The neighbourhiood describing salient feature pattern is
formed with the help of the replacemetn of a gradient vector
by the number of its main components. It conduces to the
salient feature number reduction and the affine transformation
invariance is achieved, because the first main components are
located along the main axes in computed gradients space. Fig.
2 illustrates the result of SIFT key point detection.

Fig. 2. Key points detection and matching using SIFT method

The major disanvantage of SIFT is that the algorithm
takes too long to run and computationally expensive. In some
cases it produces too few features for tracking.

C. SURF (Speeded Up Robust Features)

Another useful method of key point extraction is SURF
(Speeded Up Robust Features) [1]. The descriptor comes in
two variants, depending on whether rotation invariance is
desired or not. The rotation invariant descriptor first assigns an
orientation to the descriptor and then defines the descriptor
within an oriented square. The other version, called U-SURF,
for Upright-SURF, which is not rotation invariant, simply skips

150 of 173

the orientation assignment phase. In this method the search of
key point is made with the help of Hesse matrix.

(9)

The Hessian is based on LoG (Laplasian of Gaussian) using
the convolution of pixels with filters. This approximation of
Laplasian of Gaussian is called Fast-Hessian.

The Hessian reaches an extreme in the points of light
intensity gradient maximum change, that's why it detects spots,
angles and edges very well. Hessian is invariant to the rotation,
but not scale-invariant. For this reason SURF uses different-
scale filters for Hessian finding.

 The maximum light intensity change direction and the
scale formed by Hesse matrix coefficient are computed for
each key point. The gradient value is calculated using Haar
filter (Fig. 3).

Fig. 3. Haar filters

For effective Hesse and Haar filter computation image
integral approximation is used.

 (10)

where I(i,j) — light intensity of image pixels.

After key points are found, SURF algorithm forms the
descriptors. Descriptor consists of 64 or 128 numbers of for
each key point. These numbers display a fluctuation of a
gradient near a key point. The fact that a key point is a
maximum of Hessian guarantees the existence of the regions
with different gradients [1]. Fig. 4 illustrates the results of
SURF key point detection.

The rotation invariance is achieved, because gradient
fluctuations are calculated by the gradient direction over the
neighborhood of a key point. The scale invariance is achieved
by the fact that the size of the region for descriptor calculation
is defined by the Hesse matrix scale. Gradient fluctuations are
computed using Haar filter.

Fig. 4. SURF method key points detection.

SURF approximated, and even outperformed, previously
proposed schemes with respect to repeatability,
distinctiveness, and robustness. SURF also computed and
compared much faster than other schemes, allowing
features to be quickly extracted and compared. But for some
classes of images with homogeneous texture it shows low level
of key points matching precision.

III. KEY POINTS DESCRIPTORS

For detected features matching we need key points
descriptors. Key point descriptor is a numerical features vector
of the key points neighborhood.

D(x)=[f1(w(x))...fn(w(x))] (11)

Feature descriptors are used for making the decision of
images identity. The simplest descriptor is a key point
neighborhood itself.

The major property of any feature matching algorithm is
distortion varieties, which an algorithm can manage with. The
following distortions usually are considered:

1) scale change (digital and optical zoom, movable
cameras etc.);

2) image rotating (camera rotating over the object, object
rotating over the camera);

3) luminance variance.

A. Scale change invariance.

While using scale-space feature detector it can be possible
to achieve scale change invariance. Before descriptor
calculation normalizing is held according to feature local scale.
For example, for the scale-space coefficient of 2 we need to
scale the feature neighborhood with the same value of scale
coefficient.

 If descriptor consists of equations only with normalized
differential coefficients, space scaling operation is not
necessary. It is sufficient to calculate differential coefficients
for the scale associated with the feature.

B. Rotating invariance.

The simplest way to achieve rotating invariance is to use
descriptors formed of rotating invariant components.

II (x , y)= ∑
i=0, j=0

i ≤ x , j≤ y

I (i , j)

H (f (x , y))=[
∂2 f
∂ x 2

∂2 f
∂ x ∂ y

∂2 f
∂ x ∂ y

∂2 f
∂ y 2] ,

detH =
∂ 2 f
∂ x2

∂2 f
∂ y2

−(∂ 2 f
∂ x ∂ y)

2

.

151 of 173

The major disadvantage of such an approach lies in the fact
that it is impossible to use components with rotating
dependence, but the amount of rotating invariant components is
restricted.

The second way to achieve the rotating invariance is
previous key point neighborhood normalizing for rotate
compensation. For key point neighborhood normalizing we
need feature orientation estimation. There are a lot of feature
local orientation estimation methods, but all of them are
connected with feature neighborhood gradient direction
calculation. For example, in SIFT method the rotation
invariance is achieved as follows.

1) All gradient directions angles from 0 to 360 degrees are
divided into 36 equal parts. Every part is associated with a
histogram column.
2) For every point from the neighborhood a phase and a
vector magnitude are calculated.

grad(x0,δ)=(Lx,norm(x0,δ)Ly,norm(x0,δ)) (12)

Θ=Ly,norm(x0,δ)/Lx,norm(x0,δ) (13)

A=|grad(x0,δ)| (14)

H[iΘ]=H[iΘ]+Aw (15)

where i – index of gradient phase cell, w – weight of a
point. It can be possible to use the simplest weight of 1 or
use Gaussian with the center in point a.
3) After that for every key point neighborhood direction
φ=i*10o is chosen, where i is index of maximum from
histogram elements. After orientation calculation the
normalizing procedure is produced. A key point
neighborhood rotates over the neighborhood center.
Unfortunately, for some features orientation becomes
wrong, and that descriptors cannot be used in further
comparison. For every point from the neighborhood a
phase and a vector magnitude are calculated.

C. Luminance invariance

For luminance invariance measurement we need the model
of image luminance. Usually an affine model is used. It
considers the luminance of the pixels changes according to the
rule:

IL=a*I(x)+b (16)

This luminance model doesn't conform to real actuality
correctly, and the luminance processes are much more
complex, but it is sufficient for small local regions luminance
representation.

According to affine luminance model to avoid luminance
influence on pixels values in the key point neighborhood.

Imean(w(x))=I(w(x))-mean(I(w(x))) (17)

Iresult(w(x))=Imean(w(x))/std(I(w(x))) (18)

where mean(I(w(x))) and std(I(w(x))) denote sample average
and mean square deviation in neighborhood of w, Imean(w(x)) –
the translated neighborhood and Iresult(w(x)) - the resulting
neighborhood, which must be used for luminance invariance
calculation.

IV. WAVELET TRANSFORMATION BASED KEY POINT
DETECTION

Another way of key points extraction is using of discrete
wavelet transformation. Discrete wavelet transformation
produces a row of image approximations. For image processing
Mall algorithm is used. The initial image is divided into two
parts: high frequency part (details with sharp luminance
differences) and low-frequency part (smoothed scale down
copy of the original image). Two filters are applied to the
image to form the result. It is an iterative process with the
scaled down image copy as the input.

A. Descrete Wavelet Transformation

Wavelet transformation is rather new direction of theory
and technique of signal, image and time series processing. It
has been discovered at the end of the XX century and now is
used in different spheres of computer science such as signal
filtration, image compression, pattern recognition etc. The
reason of its widely spread using is based on wavelet
transformation ability of exploring inhomogeneous process
structure.

Discrete wavelet transformation produces a row of image
approximations. For image processing Mall algorithm is used
(Fig. 5). The initial image is divided into two parts: high
frequency part (details with sharp luminance differences) and
low-frequency part (smoothed scale down copy of the original
image). Two filters are applied to the image to form the result.
It is an iterative process with the scaled down image copy as
the input. [5]

Fig. 5. Mall algorithm

B. Key Points Detection

Wavelet image transformation can be used for key points
detection. The saliency of the key point is formed by the
weights of wavelet coefficients. [3]

152 of 173

In the method proposed in this article the key point
extraction algorithm calculates the weight of every image pixel
using the following equation:

(19)

where Ci(f(x,y)) – the weight of the point on the level i of
detalization, dhi(x,y) – horizontal coefficient on the level i,
dvi(x,y) – vertucal coefficient on the level i, ddi(x,y) – diagonal
coefficient on the level i. At the first step all weights are equal
to zero. Then wavelet transformation is carried out until it
reaches the level n. Each rather large wavelet coefficient
denotes a region with a key point of the image. Weight is
calculated using the following formula (19) then recursive
branch is exercised.

Fig. 6. Key point weight calculation.

This algorithm repeats for all decomposition levels. The
final value of the weight of pixel is formed by the wavelet
coefficients of previous levels. After key points sorting the
point larger than the desired threshold are chosen.

In the image on Fig. 1 and Fig. 4 the key points are detected
using Harris detector and wavelet based method. In case of
Harris detector key points are located in the corners and have
little dispersion over the image. In the case of wavelet based
method the image is covered with key points proportionally.

Fig. 7. Original image and wavelet
based key points.

C. Key Points Descriptor

For points matching we need to create a descriptor, which
can describe the point and tell the differences between them.
SIFT and SURF descriptors are based on pixels luminance over
the region in the point neighborhood. In this paper we offer
using the wavelet coefficient, which are produced form the
luminance are stable for various luminance changes.

The descriptor is formed from the pixel wavelet
coefficients, received from the wavelet decomposition of key
point neighborhood. Each neighbor is characterized by 4
wavelet coefficients: the base coefficient, horizontal, diagonal
and vertical ones. The dimension of in the descriptor is fixed
on 4*16. The size of the neighborhood region depends on the
size of image and the wavelet decomposition level. The
experiments have shown that it is possible to use the depth of
wavelet decomposition equal or greater than 3. For example,
for the region size of 64 neighbors we need the 3rd
decomposition level to form the descriptor of 4*8 and in the
case of the dimensionality of neighborhood increase we should
also increase the level of transformation. Experiments have
shown that such an increase takes more time for computation,
but in some cases it allows to avoid matching errors.

Fig. 8 illustrates wavelet based key point extraction and
matching result. The software application was implemented
with the use of C# programming language in Microsoft Visual
Studio 2008.

Fig. 8. Key points detection and matching using wavelet based method

D. Segmentation using wavelet key points

Wavelet based key points detection algorithm can be used
for image segmentation. On the the first step wavelet based key
points retrieval is carried out. All key points are marked with
black color, and other points of the image are marked with
white color. Then connected components retrieval algorithm is
applied. This algorithm considers the black color of key points
as the background and the white color of ordinary points as
objects on the foreground. After that key points spaceless
sequence surrounded pixels joining is produced. For different
segments marking the algorithm of connected components line-
by-line marking is used.

Described above segmentation algorithm is
computationally efficient. It can be used in systems with
restricted resources. The computational efficiency is reached
because of the fact that this algorithm finds only large objects
on the image. Wavelet transformation explorers an image on
different scales and finds only the points, which have saliency
on all levels. This property is owned by the points with major
luminance change. In resulting image we “loose” all little
components and see only the larger ones. Fig. 9 shows the
segmentation results produced. The software application was
implemented with the use of C# programming language in
Microsoft Visual Studio 2008 and was evaluated on mobile
devices with restricted resources. (The photos are made of the
mobile device emulator on PC.)

C
i
(f (x,y))=√dh

i
2(x,y)+dv

i
2(x,y)+dd

i
2(x,y)

153 of 173

Fig. 9. Segmentation result on mobile device: a –original image, b – wavelet
based key points, c – segmented image.

E. Future Work

Future work will be referred to the improvement of the
proposed method of wavelet based key point detection. It is
necessary to increase the accuracy of key point matching and to
decrease the computational complexity of descriptor finding.

For another thing we need more experiment results for
detecting rotation, scale and luminance invariance of the
proposed method.

REFERENCES

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Gool, "SURF: Speeded Up Robust
Features," Computer Vision and Image Understanding, vol. 110, no. 3,
pp. 346-359, 2008.

[2] C. Harris and M. Stephens, "A Combined Corner and Edge Detector," in

[3] Proceedings of the 4th Alvey Vision Conference, 1988, pp. 147-151.

[4] E. Loupias, N. Sebe. “Wavelet-based Salient Points: Applications to
Image Retrieval Using Color and Texture Features.” Lecture Notes in
Computer Science.

[5] D. G. Lowe, "Object Recognition from Local Scale-Invariant Features,"
in Seventh IEEE International Conference on Computer Vision, vol. 2,
Kerkyra, Greece, 1999, pp. 1150-1157.

[6] E.J. Stollnitz, T. DeRose, and D. Salesin, "Wavelets for computer
graphics - theory and applications", ;presented at The Morgan
Kaufmann series in computer graphics and geometric modeling, 1996,
pp.1-245.

ba c

154 of 173

Voice Control of Robots and Mobile Machinery

Ruslan Sergeevich Shokhirev
Institute of Technical Cybernetics and Informatics,

Kazan State Technical University,
Kazan, Russia

ruslan.shohirev@gmail.com

Abstract—I develop a system of Russian voice commands
recognition. Wavelet transformation is used to analyze the signal
key characteristics. Kohonen neural network is used to recognize
spoken sound based on these characteristics. Besides, I'll give a
brief overview of the current state of the problem of speech
recognition

Keywords—speech recognition; voice control; wavelet; neural
network

I. INTRODUCTION

One of the ways to improve the human-machine interaction
is using of voice control interface. This approach allows to
control activities of the technical devices in situations where
the operator’s hands are busy another work, as well as people
with disabilities. In addition, this approach can be used to
improve ease of use device.

There are many approaches to solving the problem of voice
control at the present moment. There are many speech
recognition systems in Russia and in the world. The main
problems of modern Russian language recognition systems
include the following:

1) Phonetics and semantics of the Russian language be
formalized much worse compared with the English
language.

2) There has been a little research and produced a few
works on the subject of speech recognition in Russia
since the USSR. This complicates the task of creating
systems of recognition, because there is no well
documented theoretical basis and description of
modern approaches to solving this problem[1].

3) Existing systems that recognize the Russian language
are often built on the principle of client-server, which
makes them dependent on availability and quality of
communication from global network of Internet. In
addition it often puts the user in relation to
corporations that own these servers. This is not always
possible from the point of view of safety.

The most popular speech recognition systems today can be
called the client-server solutions from the corporations Google
and Apple: Google Voice Search and Apple Siri. These
systems are similar in their work and are based on distributed
cloud computing made in corporate date-centers. Systems have
extensive vocabularies in different languages, including
Russian. The number of recognizable words by Google is
hundreds of billion[2]. The main application of these systems is

mobile devices and gadgets. Disadvantages are the dependence
on the Internet and corporate data centers.

Both foreign and Russian companies are currently engaged
in a number of studies related to speech recognition. However,
to date there is no public system of Russian speech recognition.

II. STATEMENT OF THE PROBLEM

One of the applications of speech recognition systems is the
control of mobile machines. At present, manual data input from
the keyboard, and specialized controllers – joystick are widely
used to interaction with mobile machinery. However, there are
situations where it is impossible or inefficient to use these
interfaces for control. Operator‘s hands may be busy doing
other work. For example, voice commands can be used to
control external video cameras during outdoor work on the
space station, while the operator’s hands are operating the
manipulators. Just such systems can be used to control various
household devices by people with limited physical abilities. In
such systems the reliability speech recognition and
independence of the system from external factors plays an
important role, even at the expense of the number of
recognizable words. On the other side the recognition of
spontaneous speech does not required for these systems. They
are used to enter predefined control commands in most cases.

Thus had the following research objectives:

1) The developed system must be autonomous and
independent. I.e. all calculations related to the speech
recognition must be made directly on the device, or on
the local server.

2) The developed system should have a limited
vocabulary of recognizable words. The system must
be universal, namely: adding and removing
commands must be performed as quickly as possible.

III. COMPOSITION OF SPEECH RECOGNITION SYSTEMS

A. General Scheme

In the general case speech recognition system (SRS) can be
represented by scheme in figure 1[3]. But some units may be
missing or combined into one in real SRS. SRS that used to
control some devices requires a limited set of commands, and
we can use more simple scheme (figure 2) for our system.

155 of 173

Auxiliary algorithms for pre-filtering and system learning
are also used in addition to these basic steps.

The second part is often skipped in voice commands
recognition and whole words are recognized at once.
Advantages of this approach is reducing the number of
calculations. But retraining such system for recognition new
commands will take more time than retraining system which
recognizes phonemes. Because in the second case phonemes of

which consists the new command is already in the system
database, and we only need to train it to identify a new order of
phonemes.

B. Selection of Signal Characteristics

Frequency spectrum changing in time is the natural
characteristic of speech signal. The human brain recognizes
speech exactly based on its time-frequency characteristics.
Correct identification of the signal characteristics is extremely
necessary for successful speech recognition. There are many
approaches to solve this problem:

• Fourier spectral analysis.

• Linear prediction coefficients.

• Cepstral analysis.

• Wavelet analysis.

• And other.

Wavelet is a mathematical function that analyzes different
frequency components of data. Graph of the function looks like
a wavy oscillations with amplitude decreases to zero away
from the origin. However, this is particular definition.
Generally, the signal analysis is performed in the plane of the
wavelet coefficients. Wavelet-coefficients are determined by
the integral signal transformation. The resulting wavelet
spectrogram clearly ties spectrum of various characteristics of
the signals to the time[4]. This way they are fundamentally
different from the usual Fourier spectra. This difference gives
the advantage of wavelet transformation in the analysis of
speech signals that non-stationary in time.

The wavelet transformation of the signal (DWT)
consistently selects more and more high-frequency parts, thus
breaking the signal into several levels of wavelet coefficients.
The coefficients on the first levels are the lowest frequency
signal. These coefficients give a good frequency resolution and
low time resolution. The coefficients on the last levels of
decomposition are the highest frequency of the signal. They
give good time resolution and low frequency resolution.

Thus, selection of the signal characteristics using wavelet
analysis is transformation of signal into wavelet-coefficients
and calculation of average values of these coefficients at each
level of the wavelet decomposition.

Segmentation of the signal on phonemes is performed at
this stage. A phoneme is the minimal unit of the sound
structure of language. DWT can solve this problem. The signal
is changing on many decomposition-levels at once in transition
between phonemes. Thus, the determination of the phonemes
boundaries can be reduced to finding the moments of the
wavelet-coefficients changing in most of the decomposition-
levels[5].

 First signal is divided into overlapping regions (frames),
each of witch applies DWT. We can calculate energy for each
frame i and decomposition-level n:

 En(i)=∑
j=1

2n
−1

d
n , j+2n−1i

2
(1)

Fig. 1. SRS Common scheme

Fig. 2. Command recognition system scheme

156 of 173

The signal energy (1) rapidly changes from frame to frame
for each level. This is due to unavoidable noise during speech
signal recording. We define E'n to smooth energy changes. For
this we replace value of En in window of 3 – 5 frames on the
maximum value of Emax in this window. We calculate
derivative R to determine the rate of energy change. The
transition between phonemes are characterized by small and
rapid changes of energy level at one or more decomposition-
levels. Thus, criterion of the phonemes boundary finding is fast
change of the derivative at a low energy level[6].

C. Recognition of Phonemes

The recognition result depends on the correct identification
of the detected phonemes in many respects. However, the
solution of this task is not trivial. Person never pronounces
sounds the same. Pronunciation depends on physical health of
speaker and his emotional state. Therefore it is impossible to
identify phoneme simply comparing its characteristics with the
characteristics of the standard phoneme. However, all versions
of pronouncing the same phoneme will somehow resemble the
standard pronunciation. In other words, they will be around in
the signal characteristics domain. Identification of the
pronounced phoneme can be reduced to solving the problem of
clustering.

Clustering of phonemes in the developed system uses a
network of vector quantization based on Kohonen neural
network[7][8]. The advantage of neural network over k-means
algorithm is that it less sensitive to outliers as it uses universal
approximator – neural network.

Kohonen neural networks is a class of neural networks,
their main element is the Kohonen layer. Kohonen layer
consists of adaptive linear combiners. Typically, the output
signals of Kohonen layer are processed by the rule “winner
takes all”: the largest signal is converted into one, others in
zeros. Problem of vector quantization with k code vectors Wj

for a given set of input vectors S is formulated as a problem of
minimizing the distortion in encoding. The basic version
Kohonen network uses the method of least squares and
distortions D is given by:

D=∑
j=1

k

∑
x∈K j

∥x−W j∥
2

where Kj is consists of those points of x∈S , which are
closer to Wj than to other Wl (l≠ j) . In other words, Kj

consists of those points x∈S , which are encoded code
vector Wj. Set S is not known when the network not configured
to the speaker. In this case online method is used to learn
network. Input vectors x are processed one by one. The nearest
code vector (a “winner” who "takes all”) Wj(x) is sought for
each of them. After that, this code vector is recalculated as
follows:

W j (x)
new

=W j (x)
old

(1−θ)+ xθ

where θ∈(0,1) is learning step. The rest of the code
vectors do not change in this step. The online method with
fading rate of learning is used to ensure stability: if T is the
number of steps of training, then we put θ=θ(T) .
Function of θ(T)>0 is chosen so that the θ(T)→0

monotonically as T→∞ and the series ∑
T =1

∞

θ(T)

diverges such, θ(T)=θ0/T .

D. Recognition of Words

After receiving the sequence of phonemes from the original
signal we must map this sequence to voice command in the
system database or indicate that the spoken word is not
recognized. However, this problem is also a non-trivial.
Differences in the pronunciation of sounds can be so
significant that the same sound pronounced by a person will be
identified by the system as two entirely different phonemes.
Thus, only based on comparison the sequence of spoken
phonemes to the standard sequence of phonemes of command,
we can not say that this or that command was pronounced. One
of solutions this problem is using of algorithm for finding the
shortest distance between spoken word and standard system
commands.

In the developed system Levenshtein distance (edit
distance) is used as a measure of distance between the words.
The Levenshtein distance is a string metric for measuring the
difference between two sequences[9]. Informally, the
Levenshtein distance between two words is the minimum
number of single-character edits (insertion, deletion,
substitution) required to change one word into the other.
Mathematically, the Levenshtein distance between two strings
a, b is given by lev(|a|,|b|) where

In this case, the characters is a phoneme, the source string
is pronounced sequence of phonemes, and the resulting string
is a sequence of phonemes in the standard command

IV. CONCLUSION AND FUTURE WORKS

At the moment, I realize algorithms described above in
Matlab environment. The most immediate problem is study of
selected algorithms efficiency and taking action to improve it.
Here are some possible directions for improving the system:

• Using of pre-filtering algorithms.

• Experiments on the choice of the most suitable
wavelet for speech processing.

• Check the efficiency of the wavelet packet analysis
instead of the usual.

• Check the efficiency of the Kohonen neural in
comparison with the other clustering algorithms.

• Check of efficiency of other algorithms to determine
the distance between the spoken word and standards.

• Assessing the impact of size and composition of the
commands dictionary on the system performance.

Later, algorithms tested in Matlab environment will allow
us to develop software system in the C++ language. After that I

lev(i , j)={
max(i , j) ,min(i , j)=0

min{
lev(i−1, j)+1
lev(i , j−1)+1
lev(i−1, j−1)+[a i≠b j]

, else

157 of 173

will be able to make field testing of the system in controlling
educational mobile robot.

REFERENCES

[1] Hitrov M. “Распознавание русской речи: состояние и
перспективы” in “Речевые технологии”, vol.1, 2008, pp. 83-87.

[2] M. Pinola “Speech Recognition Through the Decades: How We
Ended Up Siri” article on PCWorld web-site, 2011. URL:
http://www.pcworld.com

[3] Li U. “Методы автоматического распознавания речи”, vol.1,
vol.2, Moscow, “Наука”, 1983.

[4] Daubechies I. “Ten Lectures on Wavelets”, SIAM, 1 edition, 1992.

[5] Ermolenko T., Shevchuk V. “Алгоритмы сегментации с
применением быстрого вейвлет-преобразования” Papers

accepted for publication on the website of the international
conference “Диалог”, 2003. URL: http://www.dialog-21.ru

[6] Vishnjakova О., Lavrov D. “Автоматическая сегментация
речевого сигнала на базе дискретного вейвлет-преобразования”
in “Математические структуры и моделирование” vol. 23, 2011,
pp. 43-48

[7] Tan Keng Yan, Colin “Speaker Adaptive Phoneme Recognition
Using Time Delay Neural Networks” National University of
Singapore, 2000

[8] Hecht-Nielsen R., “Neurocomputing”, Reading, MA: Addison-
Wesley, 1990

[9] Levenshtein V. “Двоичные коды с исправлением выпадений,
вставок и замещений символов”. Доклады Академий Наук
СCCP 163 (4), pp. 845–8, 1965.

158 of 173

http://www.pcworld.com/
http://www.dialog-21.ru/

Service-oriented control system for a differential
wheeled robot

Alexander Mangin, Lyubov Amiraslanova, Leonid Lagunov, Yuri Okulovsky

Ural Federal University
Yekaterinburg, Lenina str. 51

Email: yuri.okulovsky@gmail.com

Abstract—Double-wheeled robot is a classical yet populair
architecture for a mobile robot, and many algorithms are created
to control such robots. The main goal of the paper is to decompose
some of this algorithms into services in service-oriented system
with an original messaging model. We describe data types that are
common for robotics control, and ways to handle them in .NET
Framework. We bring a list of various services’ types, and each of
them can be implemented in several ways and linked with other
services in order to create flexible and highly adjustable control
system. Service-oriented systems are scalable, can be distributed
on many computers, and provides huge debugging capacities.The
service-oriented representation is also very useful when teaching
robotics, because each service is relatively simple, and therefore
algorithms can be presented to students gradually. In this paper,
we also focus on a particular services’ types, which provides
the correction of the robot by the feedback, decribe the original
algorithm to do so, and compare it with several others.

Index Terms—robotics, service-oriented approach, double-
wheeled robots

INTRODUCTION

A differential wheeled robot is a mobile robot whose
movement is based on two separately driven wheels, placed
on either side of the robot body. Examples of this architecture
are Roomba vacuum cleaner [2], Segway vehicle [6], various
research and educational robots (e.g., [7]).

Differential wheeled robot is a very simple and effective
architecture, both in mechanic and control means, and many
various algorithms were developed to control it. In this paper
we decompose some of these algorithms within the service-
oriented approach. In SOA, the functionality of the program
is decomposed into a bunch of services, which communicate
by TCP/IP protocol, or by shared memory, or by other means.
Each of the services performs a single and simple task, and
provides some result in response to an input in a contract-
defined format.

Service-oriented approach is widely used in robotics [12],
[17]. Its main advantages are as follows. The system can be
distributed among several computers, which is important, be-
cause the real robotics is very resource-expensive. The system
is also decentralized, which allows it to operate even if some
auxiliary parts stop working due to errors. The service-oriented
approach also has a great value in education. The service-
oriented decomposition allows making a step-by-step acquain-
tance with complex algorithms, by dividing them to small
and well-understandable parts, therefore simplifying teaching

the algorithms to students. The decomposition also facilitates
research and development. While running the algorithm, all
the information that passes between services can be stored in
logs and then viewed, which offers a great debugging feature.
Also, modern development techniques, like agile development,
become more applicable, because the parts that the algorithm
is divided into can be distributed between developers, can
evolve gradually, and can be thoroughly tested with unit and
functional tests.

Overall, service-oriented approach to robot’s control is one
of the most populair and promising. Many control system are
founded on it, and most prominent are Microsoft Robotics
Developer Studio [3] and Robotic Operating System [10], [5].
In [11] we propose RoboCoP, a Robotic Cooperation Pro-
tocol, which introduces an innovative messaging model into
service-oriented robotics. In RoboCoP, services have inputs
and outputs, which are interconnected in a strict topology.
For example, when analyzing images, a Camera services
output is plugged in to a Filter services input, and the Filter
in turn is connected to a Recognizer service in the save
way. So the signal propagates along the control system from
service to service, and is subsequently processed by them. This
messaging model is used in LabView [18], DirectShow [19]
and other software, but is new for robotics. For example, in
MRDS, services exchange messages via a central switch, in
ROS they use broadcast messaging model, etc. [11].

In [11], we implemented this new messaging model for
interconnection of independent applications with an open
and simple protocol. We also built a control system for a
manupulator’s control, and therefore assert the effectiviness
of our approach. In this paper, we bring another example
of decomposition into RoboCoP services, this time for the
control system for a differential wheeled robot. All the services
and algorithms, described in the paper, are implemented. The
system was tested on the real differential-wheeled robots
during the Intertational contest on autonomous robots control
“Eurobot” [1].

In section I, we describe the data types that are important
for control of the differential wheeled robot. We also describe
an innovative LINQ-style [15] approach to their processing. In
section II, we bring the service-oriented control systems for
differential wheeled robots, and in section III we explore the
peculiarities of some used algorithms.

159 of 173

I. PRESENTING AND PROCESSING ROBOTICS DATA

A. Data types

Service-oriented control system consists of services, which
transform the information from one type to another. In this
section we describe the important data types in our system.
The most fundamental structure is a differential wheeled
movement (DWM), which is a tuple(v0,l, v0,r, v1,l, v1,r, T)
wherev0, s are linear speeds of left (s = l) and right (s = r)
wheels at the beginning of movement,v1, s are speeds at the
end of movement, andT is a time the movement lasts. One
DWM describes the movement with constant acceleration of
wheels, which is a reasonable physical model of real engines.

Let as be an acceleration of the corresponding wheel,
as =

v1,s−v0,s
T

. Let a be the linear acceleration of the robots
coordinate system,a = ar+al

2 . Similarly, vs(t) is a speed of
the corresponding wheel at the timet, so vs(t) = v0,s + ast,
and v(t) is the linear speed of the robot,v(t) = vl(t)+vr(t)

2 .
We can now compute a directionα(t) as follows

α(t) =
Br(t)−Bl(t)

∆

where∆ is the distance between wheel, andBs(t) is the total
path covered bys-th wheel at the timet, Bs(t) = v0,st+

ast
2

2 .
The curvatureR(t) of the robot trajectory can be obtained as
R(t) = ∆

2
vr(t)−vl(t)
vr(t)+vl(t)

.
LetL(t) be the offset of the robot at timet along the tangent

of the direction at timet = 0, andh(t) be the offset at the
normal to the initial direction. It can be shown that

L(t) =

∫ t

0

v(τ) cos(α(τ))dτ

h(t) =

∫ t

0

v(τ) sin(α(τ))dτ

Depending on DWM, the robot covers trajectories of differ-
ent shape.

1) The straight line whenv0,l = v0,r andv1,l = v1,r, and
L(t) = v(0)t+ at2/2.

2) The turn at the spot whenv0,l = −v0,r and v1,l =
−v1,r. In this case,L(t) = h(t) = 0, andα(t) gives the
direction of the robot at the timet.

3) The circle arc whenv0,l/v0,r = v1,l/v1,r, so R(t) =
R is constant, andL(t) = R cosα(t) and h(t) =
R sinα(t).

4) The spiral arc whenal = ar and vl(0) 6= vr(0). Let
q(t) = (vr(t)− vl(t))/∆, and in this case

L(t) =
1

q

[

v(0) sin tq + at sin tq +
a

q
(1− cos tq)

]

h(t) =
1

q

[

v(0)(1 − cos tq)− at cos tq
a

q
sin tq

]

5) The clothoid segment otherwise.

Clothoid is the most general case, and one need Fresnel inte-
gralsS(t) =

∫ t

0
sinπτ2/2dτ andC(t) =

∫ t

0
sinπτ2/2dτ to

compute the robots location. Let us consider some intermediate
values:

X =
ar + al
ar − al

vc(t) =
vr(t) + vl(t)

2
+X

vr(t)− vl(t)

2

∆c = ∆X/2

U(t) =
vr(t)− vl(t)

2∆|ar − al|

δ = sign(ar − al)

With this definitions, we computeL(t) andh(t) as follows

L(t) = ∆c sinα(t) + Vc(C(t) cosU(t) + S(t) sinU(t))

h(t) = ∆c(cosα(t)−1)+ δVc(S(t) cosU(t)+C(t) sinU(r))

To specify the shape the robot should cover, we use data
structures, called geometries. Currently, there are threege-
ometries available: the straight line, which is parametrized
by its length; the turn on the spot, which depends on the
desired angle; and the circle arc. We can set the arc by its
radius and the total rotation angle, or by the radius and the
total distance that should be covered. Spirals and clothoids
are not implemented, because they are hard to define, and
generally, by our opinion, the benefits of their use are greatly
overwhelmed by the complexity of their handling.

Another important kind of data is sensors measurements.
Encoders are devices that count the rotations of wheels and
store the measurements in EncodersData structure. Encoders
are considered the most fundamental sensors, and many algo-
rithms use them. Accelerometers and gyroscopes are some-
times used to collect data about acceleration and direction
of the robot. This data is used in the processed format
of NavigatorData, which consists of the robots basis in 2-
dimensional space and of the time when measurements were
taken. Aside from using in control algorithms, the series of
NavigatorData is also used for drawing charts.

When measurements are considered, it is convenient to
introduce spans between them. NavigatorDataSpan contains
a time interval between two NavigatorData, and displacement
of the last basis relatively to the first one. Encoders data span
contains a time interval and differences of distances performed
by the left and the right wheels.

B. Conversions

Let us examine some possible conversions between the
described data types. This conversions are widely used in
control algorithms, to answer the questions like “where a
robot, driven by a given DWM, is situated”.

DWM can be converted to NavigatorDataSpan. Backwards
conversion is impossible because some displacements, e.g.a
shift to the right side, cannot be achieved by the differential
wheeled robot at all. DWM and EncodersDataSpan are mutu-
ally convertible.

DWM and geometries are conventionally convertible. DWM
can be converted to a geometry, but since spirals and clothoids

160 of 173

Fig. 1. A map of conversions between robotics data types

are not implemented, this conversion currently works only
for a limited set of DWM. Many DWMs corresponds to one
geometry, and for movement planning, we should consider
velocity and acceleration limitations, the finishing speedof
the robot at the previous path, and so on. Therefore, turning
geometry into DWM can be done in several ways, and we
should use a proper service to achieve it. However, converting
geometry to some DWM is useful, and therefore we intro-
duced a normalized DWM for lines, circles and turns. A
normalized DWM is a DWM without acceleration, and has
max(v0,l, v0,r, v1,l, v1,r) = 1. This conversion is used only for
further conversion to NavigatorDataSpan and NavigatorData,
in order to draw charts for geometries.

Two measurements NavigatorData and EncodersData can
be converted into a span between them of the corresponding
NavigatorDataSpan and EncodersDataSpan types. A measure-
ment and a corresponding span can be converted into the final
measurement. We call this types of conversion spreading and
accumulating, and they can be applied to arbitrary measure-
ments.

Finally, we define symmetric data, i.e. data that can be natu-
rally divided into “left” and “right” part. For example, DWM
and EncodersData are symmetric. DWM can be subdivided
into DWMHalf that describes the command for one wheel,
and EncodersData can be subdevided into EncodersDataHalf
that descbes the wheels state.

The map of these methods is shown in the Figure 1, where
L-R/W arrows depicts transformations of symmetric data, S/A
corresponds to spreading and accumulating, and Conv denotes
conversions. In Figure 1 we may see, that any data type can be
turned into NavigatorData, and therefore drawn at the chart.

C. Conversions of series

Control algorithms usually deal with the series of robotics
data, and so we developed means to handle such series.
.NET Framework provides an incredibly powerful and con-
venient tool for series processing, named language-integrated
queries, LINQ. An example of LINQ is shown in the
Listing 1. The code in the example processes IntArray, a
collection of integers. The collection is filtered with the
lambdanumber=>number>=10 , which maps an integer

into boolean value. With this lambda, all the integers less
than 10 will be thrown off. Then the resulting collection
is sorted, and converted into a collection of strings. Fi-
nally, the collection of strings is aggregated with the lambda
(stacker,str)=>stacker+","+str, i.e. strings are
subsequently accumulated in a stacker through commas. LINQ
changes the very view on how the collections should be
processed, and increases enormously the codes readabilityand
reliability.

Listing 1 The LINQ code for processing collections
IntArray

.Where(number => number>=10)

.OrderBy(number => number)

.Select(number=>number.ToString())

.Accumulate(
(stacker,str)=>stacker+","+str);

We have developed the following LINQ extensions for
handling robotics data:

1) Conversion extensions. For example,
encSpans.ToDWM().ToNavigatorDataSpans()
gets a sequence of displacements that corresponds to
initial encoders data.

2) Spreading and accumulating. For example,
navData.Spread().Accumulate(newBasis)
shifts the navData from initial basis to the new one.

3) SymmetricData handling. For example,
encData.Lefts() and dwms.Lefts() give
the states and commands correspondingly for the left
wheel.

Our extensions are compatible with the original LINQ, for
example,

encData.Lefts()
.Select

(spanHalf => spanHalf.Distace)
.Sum()

gives the total distance, covered by the left wheel.
The tricky moment in our LINQ implementation is

to support adequate type-inference. On other words,
how the extension methodSpread knows if it
should return the sequence of EncodersDataSpan
or NavigatorsDataSpan, depending on its arguments,
EncodersData or NavigatorData? To do that, we developed
the generic interfaces, presented in the Listing 2. The
type TSpan in the methodSpread is determined from
the argument, and because NavigatorData implements
interface ISpannableDeviceData<NavigatorData,
NavigatorDataSpan>, TSpan is assign to
NavigatorDataSpan. This implementation is extendable,
because the methodSpread will appear for any type that
supports ISpannableDeviceData.

161 of 173

Listing 2 The hierarchy of interfaces for the correct type-
inference
public interface

ISpannableDeviceData<TData, TSpan>
{ ... }

public interface
IDeviceDataSpan<TData, TSpan>

{ ... }

public class NavigatorData
: ISpannableDeviceData

<NavigatorData, NavigatorDataSpan>
{ ... }

public class NavigatorDataSpan
: IDeviceDataSpan

<NavigatorData,NavigatorDataSpan>
{ ... }

public class Helpers {
public static IEnumerable<TSpan>

Spread<TData, TSpan>
(this IEnumerable

<ISpannableDeviceData
<TData,TSpan>> data)

{ ... }
}

II. SERVICE-ORIENTED DECOMPOSITION OF CONTROL

ALGORITHMS

In this section we offer the decomposition of a control
system for a differential wheeled robot into services, which
process data, described in the previous section. The whole
control process is represented as a sequence of small and
simple algorithms, each representing a single responsibility:
creating a path for robot to go, processing data from sensors,
etc. Such sequences can be best described in schematic way,
as in the Figure 2. We should stress, that such decomposition
is in fact half of the work while creating a service-oriented
control system, because it is not easy to invent he design that
looks naturally, is easy to expand and allows implementation
of different kinds of control algorithms.

Here boxes are services that run simultaneously and pro-
cesses data, which is depicted as arrows. The work of the
control system starts, when it accepts a task from the user.
The task can be expressed as a WayTask type, which is a
collection of points that are to be visited by the robot. WayTask
can be processed by the Pathfinder service to the collection
of geometries that represents the desired path. The simplest
strategy is to go from one point to another and then to turn
the robot on the spot in the direction of the next point. More
sophisticated versions were also developed [14].

In fact, more than one control system is depicted in the

Fig. 2. Service-oriented decomposition of the control system for double
wheeled robot

Figure 2, because each type of the data can be processed in
many ways. Instead of going to the Pathfinder, WayTask can
be used for the direct control of the robot, which is performed
by the W-Corrector service. Note the important difference
between W-Corrector and Pathfinder. Pathfinder completes its
job at once, and we call such services “functional services”,
because they are a program model of a single function. Unlike
Pathfinder, when W-Corrector receives the task, it starts a
continuous process of the robots control. Corrector performs
an iteration for each 50-200 milliseconds, depending on its
settings. At each iteration, it collects the sensors data from
the Source service, which plays the role of a buffer for
the measurements; then it determines the best command at
the current time, and sends it further. The algorithm of W-
Corrector is described in the section III.

The collection of Geometry can also be processed by its
own G-Corrector. The idea of G-Corrector is that in order to
follow the line, turn and circle geometries, the robot completes
some given distance by one of its wheel, and travel along with
the constant rate of its left and right speeds (1 for line, -1 for
turn, another constant for a circle). The peculiarities of G-
Correction is also described in the section III.

The collection of geometry may instead go to the Pathdriver,
which converts geometries into DWM commands. Again,
various strategies are possible: to stop completely after each
geometry, which is very accurate but time-consuming, or to
proceed to the next geometry maintaining non-zero speed. The

162 of 173

Pathdriveris not the corrector: it completes the job at once,
taking a collection of geometry and producing a collection of
DWM, therefore being a functional service. This collection
is later processed by the D-Corrector, also described in the
section III.

When the DWM is produced by some of the Correctors, it
may be sent to the robot. In this case, the speeds should be
converted into discrete signals, representing the duty cycles
in the pulse-width modulation. This is done by the Calibrator
service, which provides the correspondence between speeds
and signals. The correspondence is established in the calibra-
tion process, when signals are sent to the robot, and then the
rotation speed of engines is measured by encoders. Complex
Calibrators may correct that correspondence while the robot
is operating.

The program model of the real robot is a Robot service,
which accepts discrete signals and produce the measurements
of gyroscopes, accelerometers and encoders. The Robotis not
the functional service: it does not return the measurementsin
response to the command. Instead, it produces measurements
constantly and asynchronously. Robot service communicates
with a controller board, Open Robotics [4] in our case. This
board contains ATMega128 controller, slots for servos, I2C
and analogous sensors, can be connected to PC via USB-
UART adapter or Bluetooth adapter, and can be augmented
with the amplifier board for ommutator motors. We have
developed our own firmware for this board, which accepts
commands in DWM format, manages servos and continuously
examines sensors, collects the data and sends it to the computer
in text format. It improves the built-in firmware, because
sensors are monitored constantly, while built-in firmware re-
quires sending a command to get sensors data. Other versions
of Robot service can be developed for other boards and
firmwares.

Instead of going to Robot, the initial DWM may be passed to
Emulator, which is used for debugging. Emulator is a software
that applies DWM commands to the robots current locations,
computes due values of accelerometers, gyroscopes, and other
sensors, adds noise into control action and feedback.

Measurements, generated by the Robot or the Emulator
services, are used to get more programmer-friendly infor-
mation about robots location, i.e. NavigatorData, by simple
integration or Kalmans filter [8]. Alternatively, NavigatorData
can be obtained directly from Emulator, but, of course, not
from Robot. All measurements are stored in buffers of Source
service, and when corrector starts the iteration, it reads the
buffers.

III. T HE CORRECTION ALGORITHMS

A. D-Correction

D-correction is the most trivial correction algorithm, andis
a variation of the PID-controller [16]. At each iterationi, the
due state of robot isdi vector, which is a pair of distances,
covered by the left and the right wheel. Due vectors are
computed by D-corrector from the input, which is a collection
of DWM, and therefore can be converted into a collection of

EncoderDataSpan. Real state of the robot can be obtained from
encoders, and, assuming the work of the encoders is synchro-
nized with iterations of D-Corrector, a serieri of real states
on each iteration can be achieved. PID controller computes
the next control action as a weighted sum of three terms. Let
ei = ri − di, i.e. the error at the iterationi, and proportional
term at the iterationk is TP = ek. Integration termTI
is defined as

∑k
i=0 ek∆T , where∆T is the time between

correction iterations, and derivative termTD =
ek−ek−1

∆T
. The

resulting valueck = dk+gPTP +gITI+gDTD, wheregP , gI
andgI are the weights of corresponding terms. Soc = (cl, cr)
is the state of the robot that should be achieved by the next
iteration, and consists of the desired distances for both wheels.
D-Corrector should now construct DWM. Letvi,l andvi,r be
the end velocities of DWM, assigned at(i − 1)-th iteration,
v0,l = v0,r = 0. Therfore, ati-th iteration D-corrector should
construct DWM with starting speedvi−1,r andvi−1,l such that
this DWM covers distancescl andcr within the time∆T , and
thereforevi,s = 2cs

∆T
+ vi−1,s for s ∈ {l, r}.

B. G-Correction

In D-correction, DWMs are used as a source of control
actions. In G-correction, the geometries are. Suppose we need
to travel along a circle, or line, or turn on the spot. The only
thing needed to be done is to cover some distanceL by one
of the wheels, e.g. the left one, while keeping a constant rate
k between the speeds of the left and right wheels. For the
line k = 1, for the turn on the spotk = −1, for an arc of a
circle k depends on circles radius. We have implemented G1-
Correction, using encoders to get the current speed values,and
PID-controller to maintain the proper value ofk.

C. W-Correction

Way task is a set of points with coordinates(xi, yi) for i =
1, . . . , n. For eachi we construct a vector fieldFi, which indi-
cates the proper vector of robots speed in point(x, y) while it
heads toward(xi, yi). Let Fi(x, y) = (wi,x(x, y), wi,y(x, y)),
and

wi,x(x, y) = k(x, y)(x − xi)

wi,y(x, y) = k(x, y)(y − yi)

andk(x, y) > 0 is a normalizing coefficient such that

||(wi,x(x, y), wi,y(x, y)|| =

= min






vmax,√
2||(x− xi, y − yi)||amax,√
2||(x− xi−1, y − yi−1)||amax,






where vmax and amax are maximum allowed speed and
acceleration of the robot. This definition ofF assures that
if the robot is heading to the point(xi, yi), and is found in the
point (x, y), it should direct to(xi, yi) with allowed speed,
and also should be able to stop with the allowed acceleration.

When W-Corrector drives the robot toi − th point and
constructs the next DWM, it uses the sensors measurement
to determine the current state: location(x, y), direction φ,

163 of 173

speeds of the left and the right wheelsvl andvr, linear speed
v = vl+vr

2 and torsionq = vl
vr

. If (x, y) is close enough to
(xi, yi), W-Corrector incrementsi. Then it calculates the due
speed vector(wx, wy) = Fi(x, y), its modulew and direction
ψ. The W-Corrector asserts new linear speed tov, which
equals tovcv if v < w, and to v/cv otherwise. Similarly,
new torsionq is increased bycq if direction ψ is on the left
side fromφ, and decreased otherwise. Finally, usingv and
q, speedsvl and vr are obtained from it, and new DWM is
constructed.

D. Comparison of correction algorithms

We have implemented aforementioned algorithms and tested
them to choose the best one for Eurobot competitions [1]. The
preliminary results of comparison are as follows.

• D-correction is a very accurate algorithm, but is hardly
compatible with electronics we possess. The problem is
that in the end of movement, the small but frequent os-
cillations occurs, driving wheels backwards and forwards
to achieve the requested position. Such oscillations puts
out of action the motors amplifiers.

• W-correction is a great way to understand the control of
the robot, and to visualize the correction algorithms. Still,
further researches are needed to ascertain its effectiveness
and obtain optimal values for its coefficients.

• G-correction is currently our best solution to correction.

IV. CONCLUSION AND FUTURE WORKS

In this paper, we presented a decomposition of a control
system for a double wheeled robot into a bunch of services.
We have developed the architecture of services, as well as
the services themselves, and were able to use this system for
control of an autonomous double wheeled robot in Eurobot
2013 competitions.

The primary direction of our future works is to introduce
more correction algorithms. For example, we are developing
the G-correction algorithm, which uses gyroscope data, and
the services for elimination of gyroscope noise. Also, we are
developing more sophisticated services for conversion of ac-
celerometers and gyroscope measurements into NavigatorData
for using it in D-Correction algorithms. Also, we plan the
further decomposition of D-correction into fields generator and
fields driver, and work on different sources of vector fields,
such as geometries.

Other planned works in the area of double wheeled robots
control includes the following topics.

• Shifting the current SOA Framework, RoboCoP, to a
better solution, based on Redis [9] common memory
service.

• Integrating emulator, described in [13], into the system
for better visual feedback about robots location, and for
getting emulated images from camera.

• Publishing the solution and some of the developed algo-
rithms for an open access of community.

• Thorough statistical comparison for correction algo-
rithms.

V. ACKNOWLEDGMENTS

We thank Pavel Egorov for valuable commentaries and
suggestions, which help us design W-correction algorithm.

The work is supported by RFFI grant 12-01-31168, “In-
telligent algorithms for planning and correction of robot’s
movements”.

REFERENCES

[1] Eurobot competitions.http://eurobot.org.
[2] The irobot company. irobot roomba.

http://www.irobot.ru/aboutrobots.aspx.
[3] Microsoft robotics developer studio. http://msdn.microsoft.com/en-

us/robotics/default.aspx.
[4] Open robotics.http://roboforum.ru/wiki/OpenRobotics.
[5] Robotics operating system.http://www.ros.org.
[6] Thesegway company. segway.http://www.segway.com/.
[7] The willow garage company. turtlebot.http://turtlebot.com/.
[8] A. V. Balakrishnan. Kalman filtering theory. Optimization Software,

Inc., Publications Division, 1984.
[9] J. L. Carlson.Redis in Action. Manning, 2012.

[10] J. L. Foote, E. Berger, R. Wheeler, and A. Ng.
Ros: an open-source robot operating system.
http://www.robotics.stanford.edu/ ang/papers/icraoss09-ROS.pdf,
2009.

[11] D. O. Kononchuk, V. I. Kandoba, S. A. Zhigalov, P. Y. Abduramanov,
and Y. S. Okulovsky. Robocop: a protocol for service-oriented robot
control system. InProceedings of international conference on Research
and Education in Robotics - Eurobot 2011. Springer, 2011.

[12] J. Kramer and M. Scheutz. Development environments forautonomous
mobile robots: A survey.Autonomous Robots, 22:132, 2007.

[13] M. Kropotov, A. Ryabykh, and Y. Okulovsky. Eurosim - therobotics
emulator (russian). InProceedings of the International (43-th Russian)
Conference ”The contemporary problems of mathematics”, 2012.

[14] A. Mangin and Y. Okulovsky. The implementation of the control
system for double wheeled robot (russian). InProceedings of the
International (44-th Russian) Conference ”The contemporary problems
of mathematics”, 2013.

[15] F. Marguerie, S. Eichert, and J. Wooley.LINQ in Action. Manning,
2008.

[16] R. C. Panda, editor.Introduction to PID Controllers - Theory, Tuning
and Application to Frontier Areas. InTech, 2012.

[17] M. Somby. Software platforms for service robotics.
http://www.linuxfordevices.com/c/a/Linux-For-Devices-
Articles/Updated-review-of-robotics-software-platforms/, 2008.

[18] J. Travis.LabVIEW for Everyone. Prentice Hall, 2001.
[19] P. Turcan and M. Wasson.Fundamentals of Audio and Video Program-

ming for Games (Pro-Developer). Microsoft Press, 2004.

164 of 173

Schedulling the delivery of orders by a freight train

A.Lazarev
V.A.Trapeznikov Institute

of Control Sciences
of Russian Academy of Sciences,

M.V.Lomonosov Moscow State University,
National Research University
Higher School of Economics

Email: jobmath@mail.ru

E.Musatova
V.A.Trapeznikov Institute

of Control Sciences
of Russian Academy of Sciences,

Email: nekolyap@mail.ru

N.Khusnullin
V.A.Trapeznikov Institute

of Control Sciences
of Russian Academy of Sciences,

Email: nhusnullin@gmail.com

Abstract—In this research it was considered the particular
case of a railway problem, specifically, the construction of orders
delivery schedule for one locomotive plying among three railway
stations. In this paper it was suggested a polynomial algorithm
and were shown the results of a computing experiment.

I. INTRODUCTION

Nowadays, problems of the rail planning are attracting
attention of specialists due to the fact that they are challenging,
tough, nontrivial and, what is more important, are of practical
significance.

In this research we consider the problem of making up
a freight train and the routes on the railway. It is necessary
from the set of orders available at the stations to determine
time-scheduling and destination routing by railways in order
to minimize the total completion time.

In this paper it was studied the particular case of the
problem, specifically, the construction of orders delivery sched-
ules among 3 railway stations by one locomotive (Fig. 1).
Application of dynamic programming is very effective for the
solution of this problem. In this paper it was suggested a
polynomial algorithm and shown the results of the computing
experiment.

II. PROBLEM STATEMENT

At each station there is a set of orders available for delivery.
Each order is characterized by a release date and a destination
station. If the order consists of a few cars k > 1 then for each
car there will be created a separate order.

Let us introduce the following notations:

• q – the maximal number of the cars (wagons);

• O – set of all orders;

• n – total number of orders;

• nij – set of orders available for delivery between
stations i and j;

• Jijk – k-th order for delivery from station i to desti-
nation station j;

• rijk – release time of the orders;

• pij – travelling time.

1

2 3

Fig. 1. The railway station location

To simplify the description of our algorithm we will assume
that pij = p ∀i 6= j.

The objective function which tries to minimize total com-
pletion time is the following:

minF =
∑

Jijk∈O

Cijk, (1)

where Cijk is the completion time to destination station.
Also, this function describes the average time of order delivery
so it can be rewritten in the form:

F =
∑

Jijk∈O

Cijk − rijk
n

.

This problem is the generalization of the two stations
problem for which polynomial algorithms are known.

It is not difficult to notice that the locomotive can have the
following strategies of its route management.

1. Moving. If the locomotive stays at any station, moving
is possible in one from two directions with maximum of orders
available but not more than q.

2. Waiting. This point is possible if the total number of
orders available for delivery is less than q (cars capacity of

165 of 173

a train). And this mode is impossible if the flow of the new
orders is not expected.

3. Idle. This mode is necessary if the number of orders is
not available for delivery. Obviously, the ”idle” is impossible
to use twice in succession. Also, the locomotive can idle only
after departure to the station or at the starting time.

It is easy to show that using of these strategies does not cut
optimal schedule that minimize the objective function. There-
fore, let us assume that the locomotive movement satisfies
these rules.

Definition 1. Let us suppose, that the locomotive is in the
state S(s, t, k12, k23, k31, k13, k32, k21) if at the time moment
t ∈ T , it is at the station s and by the current time moment has
been delivered k12 orders from the first to the second station,
k23 orders from the second to the third station and etc.

Let the objective function value of the state
S(s, t, k12, k23, k31, k13, k32, k21) be denoted by
C(s, t, k12, k23, k31, k13, k32, k21)

The transition from one state to another occurs according to
the strategies mentioned above. In this case, if the locomotive
can move from the state S1 to S2 directly, then the objective
value of the state can be calculated with the help of the
following formula:

C2 = C1 + (t′ + p) ∗ k,

where t′ is the time moment from the state S1 and k is
the number of the orders delivery when transforming into the
new state.

The objective function value does not change if the loco-
motive moves to another station in idle or waiting mode.

In the case of different travelling times p12, p23, p13 the
set of possible moments of the locomotive departure equals to

T = {t = rijk +m1p12 +m2p23 +m3p13}∪

∪{t = m1p12 +m2p23 +m3p13},

where i, j ∈ {1, 2, 3}, k ∈ {1, . . . , nij}, m1 + m2 + m3 ∈
{0, . . . , 2n−1}. It means that the power of the set T is O(n5).

III. CONCEPTS OF THE ALGORITHM

The main idea of the algorithm is the following: first of
all, the graph of states in ascending order of t is built. The
states are generated by the strategies mentioned above. From
the same two states in the tree remains the only one that has a
lower value of objective function. The solution to the problem
is to reach the state which has the lowest value of the objective
function from the set of the states completed:

min
s,t

C(s, t, n12, n23, n31, n13, n32, n21).

Complexity of the algorithm is estimated by the total
number of states in the graph. Since the number of time
moments t from the set T is O(n2), the total number of
states can be estimated as O(n2

∏
i 6=j

(nij+1)) or O(m8), where

m = max
ij

nij .

One of the key moments of our approach is the merge of
the same nodes. The states are considered equal if at the time
moment t both locomotives are on the same station and the
numbers of the orders delivered to each station are also equal.
Obviously, from two states in the tree remains the only one
that has a lower value of the objective function. If the state
was added to the tree before, the algorithm will replace it,
otherwise we choose just added one.

This situation is represented in the Fig. 2. As you can see
the value of the state S(1,7,2,0,0,0,0,2) equals to 22, if its
parents were enclosed in the quadrilateral and equals to 24,
if its parents were enclosed in the pentagon. This condition
can be an important factor in choosing between them (parent’
branch). Thereby, on each step it is necessary a full tree survey.

In the simpliest implementation of the algorithm the so-
lution tree can be stored in the memory. But this approach
it not optimal. For minimization of the memory used and
increasing the performance this work suggests the other tree
representations in the memory and also creats a garbage
collector. In the RAM arestored only the states which belong
to [ti − p; tk], where ti is the current time moment, p is the
traveling time and tk is the maximum value of the time of
the set T . States that do not satisfy this condition should be
relocated to the hard disk. They will be needed later when it
is necessary to build and show a full branch of the tree.

During the tree creation process, as well as for the branch
and bound scheme, one of the important factors is a cutting off
an ”unpromising” branch. We obtain the upper bound C when
the first complete state (all orders were delivered) is received.

After that, the algorithm tries to check the execution of the
inequation for all of the following states in order to cut off the
nodes that have the worst value of the objective function:

C ′ +
∑
Jijk

[max{t, rijk + p}] > C,

where C ′ is the value of the current state, t is the current
time moment. The left side of the inequation is the lower
bound for the current state (all unfulfilled orders delivered to
the destination after they are received immediately).

In order to illustrate our approach, let us the following
example and set n=6, r1,2=r2,3=r3,1={1,3}, q=2, p=2. The
locomotive at the initial time t = 0 is at the station 1 and has
the following options:

• to stay at the station s = 1 until the time of order
receipt t = 1, thus go to state S(1, 1, 0, 0, 0, 0, 0, 0);

• to move to the station s = 2 by the idle,
S(2, 2, 0, 0, 0, 0, 0, 0);

• to move to the station s = 3 by the idle,
S(3, 2, 0, 0, 0, 0, 0, 0).

If at the initial time t=0, the locomotive stays at the station
s=1 until the time of order receipt then it is possible to deliver
the first order available either to the station s=2 at the next
time moment, S(2, 3, 1, 0, 0, 0, 0, 0), or to stay at the station
s=1 until the time of order receipt, S(1, 3, 0, 0, 0, 0, 0, 0). If
at the initial time t=0 the locomotive moves to the station

166 of 173

Fig. 2. The same states merging process

(1,0,0,0,0,0,0,0)

(1,1,0,0,0,0,0,0) (2,2,0,0,0,0,0,0) (3,2,0,0,0,0,0,0)

(3,4,0,1,0,0,0,0) (2,3,0,0,0,0,0,0)

(3,5,0,2,0,0,0,0)

(1,7,0,2,2,0,0,0)

(2,9,2,2,2,0,0,0)

Fig. 3. The part of states graph

s=2 by the idle, then at the next time moment the locomotive
can transport all orders available to the station s=3 or stay
at the station s=2 until the time of the order receipt. In
the latter case the locomotive has the only one choice: to
carry all orders available at this time moment to the station
s=3, S(3, 5, 0, 2, 0, 0, 0, 0). It should be noted that for the
locomotive there are no any other options for the transition
from the previous state. When the locomotive stays at the
station s=3, he has the only one possible way: to carry all
orders available to the station s=1, S(1, 7, 0, 2, 2, 0, 0, 0). After
that the locomotive can ship remaining orders to the station
s=2, S(2, 9, 2, 2, 2, 0, 0, 0) and in this state the locomotive
delivers all orders available. The part of states graph is shown
in the Fig. 3

IV. COMPUTING EXPERIMENT

Table I shows the results of a computing experiment. The
first column contains input parameters – time moments, the
second column contains the total number of orders, the third –
the number of the nodes in the tree if the problem was solved
through the blind search, the fourth – the number of theoretical
nodes, in the last one - the number of the nodes which were
obtained in practice. In all examples set p = 2, q = 2. Also,

TABLE I. RESULTS OF COMPUTING EXPERIMENT

input values cars
count

blind
search

theoretic
dynamic
prgrm.

practic
dynamic
prgrm.

r1,2 = r2,3 = r3,1 =
{1, 3} 6 327 648 38

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3}
12 351 753 387

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3, 5}
18 377 166 212 2 260

r1,2 = r2,3 = r3,1 =
r1,3 = r3,2 = r2,1 =

{1, 3, 5, 7}
240 3725

1 154 289
852 1 268 585

from this table it may be seen that the practical complexity is
much lower than it is theoretical estimation.

V. CONCLUSION

In this research it was analysed the problem of making
up a freight train and its routes on the railway. Also, it was
proposed a polynomial algorithm for the construction of orders
delivery schedules for one locomotive plying among 3 railway
stations. As an example, were represented the steps of making
up a freight train and destination routing in order to minimize
the total completion time. Also, there were shown the results of
the computing experiments, the upper bound of the complexity
and the total number of nodes while solving the problem
by different approaches. The complexity of this algorithm is
O(n8) operations.

Future research

• Creation of a fast and accurate technique to determine
a lower bound for cutting off an unpromising branch;

• Consideration of more complex arrangement of the
stations in the limits of which a locomotive will have
an opportunity to deliver orders;

• Investigation of the case when orders are delivered by
means of several locomotives;

• Improvement of the algorithm performance and de-
creasing the RAM usage;

• Parallelizing the algorithm.

REFERENCES

[Lazarev et al. ”Theory of Scheduling. The tasks of railway planning”(2012)]
Lazarev A.A., Musatova E.G., Gafarov E.R.,
Kvaratskheliya A.G. Theory of Scheduling. The tasks of railway
planning. – M.: ICS RAS, 2012. – p.92

[Lazarev et al. ”Theory of Scheduling. The tasks of transport systems management”(2012)]
Lazarev A.A., Musatova E.G., Gafarov E.R.,
Kvaratskheliya A.G. Theory of Scheduling. The tasks of transport
systems management. – M.: Physics Department of M.V.Lomonosov
Moscow State University, 2012. – p.160

[Caprara(2011)] A. Caprara, L. Galli, P. Toth. Solution of the Train
Platforming Problem Transportation Science. 2011. - 45 (2), P. 246-
257.

[Zwaneveld(2001)] Zwaneveld P. J., Kroon L. G., van Hoesel S.P.M. Routing
trains through a railway station based on a node packing model.
European Journal of Operational Research. 2001. - No. 128 P.14-33.

167 of 173

[Lazarev et al. ”The integral formulation the tasks of making up a trains and their movement schedules”(2012)]
Lazarev A.A. Musatova E.G. The integral formulation the tasks of
making up a trains and their movement schedules. The managing a
large systems. The issue 38. M.: ICS RSA, 2012. – p.161-169.

[Liu(2012)] Liu S.-Q., Kozan E. Scheduling trains as a blocking parallel-
machine job shop scheduling problem. Computers and Operations
Research. - 36(10) P. 2840-2852.

[Baptiste ”Batching identical jobs”(2000)] Baptiste Ph. Batching identical
jobs. Math. Meth. Oper. Res. 2000. - No. 52 P.355-367.

[Hagai Ilani et al. ”A General Two-directional Two-campus Transport Problem”(2012)]
Hagai Ilani, Elad Shufan, Tal Grinshpoun. A General Two-directional
Two-campus Transport Problem. Proceedings of the 25th European
Conference on Operational Research, Vilnius, 8-11 July, 2012. - P.200.

168 of 173

Optimization of electonics component placement
design on PCB using genetic algorithm

Zinnatova L.I.
Kazan State Technical University named after A.N.Tupolev

KSTU named after A.N.Tupolev
Kazan, Russia

Lileka-leka@yandex.ru

Suzdalcev I.V.
Kazan State Technical University named after A.N.Tupolev

KSTU named after A.N.Tupolev
Kazan, Russia

iliasuzd@mail.ru

Abstract—This article presents modified genetic algorithm

(GA) of the placement of electonic components (EC) on a
printed circuit board (PCB) considering criterias of thermal
conditions and minimum weighted sum.

Keywords— electronics component; printed circuit board;
genetic algorithm; guillotine cutting; electronic device.

I. INTRODUCTION
The trend of most electronic companies is towards

designing more functionality but smaller packages electronic
system. Therefore, solving these problems requires using a
large number of criteria and constraints with high dimension
initial data.

The objective is to reduce the time, increase quality
and lower the cost of design for the design of PCB using CAD
systems. The best results of PCB designer was achieved by
such companies as Altium Designer, Mentor Graphics,
National Instruments, Zuken. These companies develop
packages for designing PCB, which have some advantages:
large elements libraries, conversion of the files, inerrability of
them in other CAD-systems, comfortable interface and etc.
However, these systems have several disadvantages: the tasks
consist only one criteria, ignore criteria of thermal conditions,
in several systems there is also no automated placement of the
EC on PCB.In this regard, there is a need to improve math and
CAD software. The novelty of this work is to use the
algorithm, for solving multi-criteria problem for placement EC
on PCB.

II. PROBLEM STATEMENT

A. The purpose of the work
The purpose of the work is the development of a modified

genetic algorithm of electronics component placement on a
PCB, considering criteria of thermal conditions and minimum
weighted sum.

В. Problem statement
Statement of the placement problem is to find the location

coordinates of EC placement on PCB with the predefined
criteria and constraints.

III. CRITERIA AND COONDITIONS FOR LOCATION PROBLEM

A criterion of thermal conditions is proposed for placement
of elements. Fitness function for this criteria can be expressed
as:

௧݂ = ∑ ⃒∑ (௜ܲ − ௝ܲ)݀௜௝⃒ே
௝ୀଵ,
௝ஷ௜

ே
௜ୀଵ → min (1)

where N is number of EC located on PCB; ௜ܲ		and	 ௝ܲ are the
thermal power dissipation i and j EC; ݀௜௝ - distance between i
and j EC.

Using this criterion allows evenly distributing the EC on
PCB, which allows improving the quality of PCB.

Furthermore, it is proposed to take into account the criteria
of minimum weighted sum. Fitness function for this criteria
can be expressed as:

௖݂=∑ ∑ ܿ௜௝݀௜௝௡
௝ୀ଴

௡
௜ୀଵ → min (2)

where ܿ௜௝ – number of links between i and j EC.

Using this criterion allows reducing the distance between
the maximal connected EC, which simplifies the subsequent
tracing and improves the electrical characteristics of the
device.

III. GENETIC ALGORITHM FOR PLACEMENT EC ON PCB

A. Genetic algorithm
GA – is a search heuristic that mimics the process of

natural evolution.

169 of 173

Key terms for using GA:
 Individual is one potential solution.
 Population is a set of potential solutions.
 Chromosome is code representation of solutions. Gen

is cell chromosomes, which can change its value.
 Allele is numeric value of gene.
 Locus is location of a gene in chromosome.
 Fitness function
 Generation - one cycle of the GA, including a

procedure for breeding, mutation breeding [3].

B. Genetic algorithm for placement EC on PCB
Genetic algorithm using of the guillotine cutting of

material. The plan of cutting is carried a binary tree.

The algorithm of placement EC on PCB using GA include
next steps:

Step 0. Input of initial data.

Initial data of the problem are:
1. The number of the EC.
2. The number of links between i and j EC.
3. The thermal power dissipation i and j EC.
4. The number of individuals in a population.
5. The number of generations of evolution.

Step 1. Creation of a new population. While creation of

initial population a number individuals set at random. Each
gene of chromosome gets its unique value.

Each solution is encoded by two chromosomes: ХР1, ХР2.

In contracts to the encoding of chromosomes proposed in
articles [5], [6], we suggest another method of encoding
chromosome XP1.

Chromosome ХР1 contains coded information about the
laying of the tree leaves, which indicate the order of the
placement of EC on PCB: ХР1= {g1i | i = 1, 2, .., n}. Each
gene g1i can take any value in the range [1; n].

For example, n=9, ХР1 (Fig.1): <4,2,1,3,5,9,6,7,8>.

Fig.1. Binary tree for chromosome XP1

The proposed modification of the algorithm can
significantly reduce the calculating time to solve the problem.

Chromosome XP2 contains coded information about the
type of cut of PCB space.

Chromosome XP2= {g2i | i = 1, 2, .., n•} is the type of the
cut (H or V).

The number of the gene ХР2 is n•= n -1.

The gene value is 0 or 1, with 0 – 7 corresponds to V -
vertical cutting, аnd 1 – H – horizontal cutting.

For example:

Lets, n=9, XP2=<0, 1, 0, 0, 1, 1, 0,1> (Fig. 2).

Fig. 2. Binary tree for chromosome ХР2

Step 2. Crossover. All individuals of the population are
formed in pairs at random. As soon as 2 solution-parents are
selected, they are applied to a single-point crossover, which
create two new solutions-offspring on their bases. Randomly
selects one of the possible break point (Break point is the area
between the adjacent bits in the string). Both parental structure
are torn into two segments at this point. Then, segments of
different parents stick together and produce two offsprings
(Fig.3).

Fig.3. One point crossover

Step 3. Mutation. In case of mutations chromosomes
undergoes some accidental modifications. In this work we
propose using one-point mutation, where one bit in
chromosome selects randomly and changes its value to the
opposite one (Fig.4).

170 of 173

Fig.4. One-point mutation

Step 4. Designer of a binary tree cuts. Knowing the
number EC, we can design the binary tree.

The total amount of EC (ܧ௜) – is the top of parent (଴ܸ). If
 ௜ will divide by 2. The obtained valuesܧ ,௜ is not equal 2 or 3ܧ
are rounded: the first figure in the smallest way, the second
figure in the biggest way. The obtained tops (second level) are
daughter vertex for ଴ܸ. The first figure will be the first
daughter vertex ଵܸ for ଴ܸ, the second figure will be the second
daughter vertex ଶܸ for ଴ܸ.

If the value of obtained daughter vertex ଵܸ and ଶܸ is not
equal 2 or 3, they are the top – parents, and they again might
be halved. Halving will continue until all of the number of
top-parents will be equal to two or three. With each
subsequent level, the number of vertices will increase by 2௞,
where k – level (Fig.5).

Fig.5. Binary tree cuts

When the number of top-parents is equal to 2, then top-
parent correspond to the two binary tree leaves (Fig.6).

Fig.6. The example of the design binary tree cut

When number of top-parents is equal to 3, then top-parent
corresponds to another top-parent, which owns two of the
leaves and another binary tree leaf (Fig.7).

Fig.7. The example of the design of binary tree cut

Step 5. Binary convolution method. On the basis of this
information, binary tree designer is carried out by means of
serial binary convolution areas on the tree incisions, srarting
with tree leaves. Each inner top of binary tree corresponds the
area, obtained in the result of the binary convolution of a sub
tree, with the root of the inner top. Consider that cut with
number i is cutting the top ݀௜ (area is ݑ௜). In the beginning of
convolution each top ݀௜, which is the leaf of the tree, is
corresponding the area ݏ௜ with dimension ݔ௜ = ܽ௜, ݕ௜ = ܾ௜,,that
is equal to module size ܧ௜. For each inner vertex ݀௜ of tree
corresponds the area ݑ௜,which is formed by convolution
subtree cuts, and has as its root vertex ݀௜.

Let's consider, that vertexes ݀௜ and ௝݀ are daughter vertex
of ݀௞ and the areas ݑ௜ и ݑ௝- corresponding ݀௜ and ௝݀- are
determined lower limits of their siz (ݕ ,ݔ௜), (ݔ௝ ௝). The binaryݕ ,
convolution is a fusion of areas ݑ௜ and ݑ௝ , formation of ݑ௞,
dimensioning for ݑ௞ and new sizes for ݑ௜ and ݑ௝ . Let us
introduce two infix operators H and V.

The record ݑ௞ = ݑ௜ݑܪ௝ , means, that areas ݑ௜ and ݑ௝ merge
horizontally in one area ݑ௞. If ݑ௞ = ݑ௜ݑ ܤ௝ , then the areas ݑ௜
and ݑ௝ merge vertically.

Designate that max(ݔଵ,	ݔଶ) is maximum value of
 .ଶݔ	and	ଵݔ

At the confluence of the horizontal:

,௞ = max(ܾ௜ݕ ௝ܾ);

	+௞ = ܽ௜ݔ ௝ܽ;

௜ݕ 	and	ݕ௝ will have the size equal max(ܾ௜, ௝ܾ).

At the confluence of the vertical:

+ ௞ = ܾ௜ݕ ௝ܾ;

	,௞ = max(ܽ௜ݔ ௝ܽ);

௝ݔ ௜ andݔ will have the size max(ܽ௜, ௝ܽ) [4].

For example:
The module dimensions <4,2,1,3,5,9,6,7,8> are fixed. The

area dimensions in accordance with the consistent
convolution, will be defined as follows:

଼ݑ .1 = ;8	ܪ	7

଼ݕ = ܾ଻ +	଼ܾ;

଼ݔ 	= .(଼ܽ	;଻ܽ)	ݔܽ݉	

171 of 173

଻ݑ .2 	=	6 V ଼ݑ;

଻ݕ = ;(଼ݕ	;଺ܾ)	ݔܽ݉

଻ݔ 	= ܽ଺ 	+ .and etc	(଼ݔ	

The final plan of allocated modules is presented in figure
8.

Fig.8. The final plan of allocated modules

Step 6. Fitness function calculation.

Step 7. Selection. At each step of the evolution,
individuals for next iteration are selected with the help of
randomly selection operator. Selection allocates more copies
of those solutions with higher fitness values and thus imposes
the survival-of-the-fittest mechanism on the candidate
solutions. The main idea of selection is to prefer better
solutions to worse ones.

Step 8. The condition for the completion of the algorithm
is the examination of the required number of iterations of the
algorithm.

Step 9. Definition of the best individual (solution). The
best solution of placement EC on PCB is the solution, which
has the least result of fitness function.

Step 10. Result output.

IV. ACKNOWLEDGMENT
To confirm the efficiency of the algorithm for placement

EC on PCB using the genetic algorithm of guillotine cutting
method a special software was developed.

The study of the efficiency was carried out.

Investigation №1. Test launches of the program with
constant initial data and the change in the number of
generations of evolution were carried out.

The source and resulting data are presented in table 1.

TABLE I.

The number
of the

placement EC

The number
of individuals

in a
population

The number
of generations
of evolution

 сࢌ

50 10 10 666985
50 10 15 652074
50 10 20 587125
50 10 25 562158
50 10 30 478745
50 10 35 436585
50 10 40 395781
50 10 45 325641
50 10 50 284578
50 10 55 256485
50 10 60 256484
50 10 65 256484
50 10 70 256484

The table I is shown that with the increase of the generations

of the evolution, the fitness-function decreases or remains
unchanged, which testifies the optimal placement of the EC on
the PP.

Investigation №2. Made a comparison of an iterative
algorithm (IA) with our GA placement of EC on the PCB
with the constant initial data.

TABLE II.

The number
of the

placement EC
 ࡭ࡵсࢌ ࡭ࡳсࢌ

10 5201 10257
20 82114 320458
30 157482 658921
40 304580 845225
50 478745 1036586
60 658148 1203558
70 851482 1698014
80 1201425 2003688
90 1582012 2365247
100 1965214 2875218

The table II is shown, that the values of the fitness-function

GA is significantly less than the target function of iterative
algorithm. Therefore, GA is more efficient than the standard
algorithm.

V. CONCLUSION

In this paper proposed a developed software that
implements automated procedures EC on PCB.

An important advantage of this software lies in the
possibility taking into account the criteria of thermal
conditions, while implementing the project the procedures,
that will allow to increase the quality and reliability of the
device.

172 of 173

The developed software integrates CAD-system Mentor
Graphics Expedition PCB, which significantly increases the
ease of use for end users.

In the future, the developed software product will be applied
on a number of enterprises of Tatarstan for the design and
development of printed circuit boards: "Радиоприбор",
"Electronics", etc.

REFERENCES
[1] Воронова В.В. Автоматизация проектирования электронных

средств: Учебное пособие. Казань: Изд-во гос. техн. ун-та им.
А..Туполева, 2000.-67 с/

[2] Родзин С.И. Гибридные интеллектуальные системы на основе
алгоритмов эволюционного программирования // Новости
искусственного интеллекта. 2000. №3. С. 159-170.

[3] Овчинников В.А., Васильев А.Н., Лебедев В.В. Проектирование
печатных плат:Учебное пособие. 1-е изд. Тверь: ТГТУ, 2005.116 с.

[4] Лебедев Б.К., Лебедев В.Б., Адаптивная процедура выбора
ориентации модулей при планировании СБИС// Известия ЮФУ.
Технические науки. Тематический выпуск «Интеллектуальные
САПР». – Таганрог: Изд-во ТТИ ЮФУ, 2010, № 7 (108). – 260 с.

[5] Лебедев Б.К., Лебедев В.Б., Планирование на основе роевого
интеллекта и генетической эволюции// Известия ЮФУ.
Технические науки. Тематический выпуск «Интеллектуальные
САПР». – Таганрог: Изд-во ТТИ ЮФУ, 2009, № 4 (93). – 254 с.

173 of 173

	02_annotation.doc
	03_content.doc
	04_foreword.doc
	05_committee.doc
	Committees
	Program Committee Chairs
	Program Committee
	Organizing Committee Chairs and Secretaries
	 Referees

	01_syrcose2013_submission_29.pdf
	Introduction
	Petri nets
	Nested Petri Nets
	User interface
	Backend
	Import
	Dynamic construction
	Algorithms

	Experiment
	Conclusions and further work
	Appendix A: Algorithm for checking m-bisimilarity
	Appendix B: Walking philosophers
	References

	02_syrcose2013_submission_23.pdf
	03_syrcose2013_submission_34.pdf
	Introduction
	Modular model concept
	Some peculiarities of modular blocks
	Source blocks
	Render blocks
	Action blocks
	Action blocks for solving PM tasks
	Control action blocks
	Action blocks for distributed calculations

	Practical implementation
	Conclusion
	References

	04_syrcose2013_submission_35.pdf
	05_syrcose2013_submission_3.pdf
	06_syrcose2013_submission_27.pdf
	07_syrcose2013_submission_4.pdf
	08_syrcose2013_submission_31.pdf
	09_syrcose2013_submission_26.pdf
	10_syrcose2013_submission_30.pdf
	11_syrcose2013_submission_19.pdf
	12_syrcose2013_submission_13.pdf
	13_syrcose2013_submission_14.pdf
	14_syrcose2013_submission_36.pdf
	I. Introduction
	II. Race Conditions
	III. Existing methods for detecting race conditions
	A. Helgrind
	B. ThreadSanitizer
	C. DataCollider

	IV. Linux driver verification
	A. Kmemleak, kmemcheck
	B. KEDR
	C. Static methods

	V. RaceHound
	A. Implementation features

	VI. Conclusion

	15_syrcose2013_submission_6.pdf
	I. Introduction
	II. E-learning and M-learning
	III. Usage of Mobile Technologies
	IV. System Design

	16_syrcose2013_submission_12.pdf
	17_syrcose2013_submission_9.pdf
	18_syrcose2013_submission_17.pdf
	19_syrcose2013_submission_11.pdf
	I. Introduction
	II. The architecture of the multi-tenant database cluster
	III. Main characteristics of the query flow
	IV. The load-balancing problem with a constant flow of queries
	A. General problem
	B. The measure of efficiency
	C. Additional considerations

	V. The load-balancing problem as the quadratic assignment problem
	VI. Load-balancing algorithm heuristics and its experimental verification
	VII. Conclusion

	20_syrcose2013_submission_15.pdf
	21_syrcose2013_submission_10.pdf
	22_syrcose2013_submission_24.pdf
	23_syrcose2013_submission_22.pdf
	24_syrcose2013_submission_38.pdf
	25_syrcose2013_submission_2.pdf
	26_syrcose2013_submission_21.pdf
	I. Introduction
	II. Existing key point detection methods
	A. Harris Corner Detector
	B. SIFT (Scale Invariant Feature Transform)
	C. SURF (Speeded Up Robust Features)

	III. Key points descriptors
	1) scale change (digital and optical zoom, movable cameras etc.);
	2) image rotating (camera rotating over the object, object rotating over the camera);
	3) luminance variance.
	1) All gradient directions angles from 0 to 360 degrees are divided into 36 equal parts. Every part is associated with a histogram column.
	2) For every point from the neighborhood a phase and a vector magnitude are calculated.
	where i – index of gradient phase cell, w – weight of a point. It can be possible to use the simplest weight of 1 or use Gaussian with the center in point a.
	3) After that for every key point neighborhood direction φ=i*10o is chosen, where i is index of maximum from histogram elements. After orientation calculation the normalizing procedure is produced. A key point neighborhood rotates over the neighborhood center. Unfortunately, for some features orientation becomes wrong, and that descriptors cannot be used in further comparison. For every point from the neighborhood a phase and a vector magnitude are calculated.

	IV. Wavelet Transformation Based Key Point Detection
	A. Descrete Wavelet Transformation
	B. Key Points Detection
	C. Key Points Descriptor
	D. Segmentation using wavelet key points
	E. Future Work

	27_syrcose2013_submission_18.pdf
	I. Introduction
	II. Statement of the Problem
	III. Composition of Speech Recognition Systems
	A. General Scheme
	B. Selection of Signal Characteristics
	C. Recognition of Phonemes
	D. Recognition of Words

	IV. Conclusion and Future Works
	References

	28_syrcose2013_submission_20.pdf
	29_syrcose2013_submission_7.pdf
	30_syrcose2013_submission_28.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

