
DPMine: modeling and process mining tool
Sergey Shershakov

International Laboratory
of Process-Aware Information Systems (PAIS Lab)

National Research University Higher School of Economics
Moscow 101000, Russia

Email: sshershakov@hse.ru

Abstract—Volume of the data information system operate has
been rapidly increasing. Data logs have long been known, as
they are a useful tool to solve a range of tasks. The amount of
information that is written to a log during a specified length of
time leads to the so-called problem of “big data”. Process-aware
information systems (PAIS) allow developing models of processes
interaction, been monitoring accuracy of their performance and
correctness of interaction with each other. Studying logs of PAIS
in order to extract knowledge about the processes and construct
their models has to do with the process mining discipline. There
are available developed tools for process mining, both on a
commercial and on a free basis. We are proposing a concept
of a new DPMine tool for building a model of multistage process
mining from individual processing units connected to each other
in a processing graph. The resulting model is executed (simulated)
by making an incremental process from the beginning to the end.

Keywords: Process Mining, Model, Tool, Distributing, Work-
flow, Processes, PAIS

I. I
As a consequence of information systems (IS) development,

volume of the data they operate has rapidly increased. This
applies both to the data entered into the system in different
ways (automatic, semi-automatic and manual) and the data
obtained as a result of some processing which is output by
the system to various types of media. In the latter data type
one can distinguish a special subclass — the so-called data log
representing a trace left by some IS and storing information
about a set of partial states of the system at different times of
its work. These are so-called time logs, which include most
of the logs.
Data logs have long been known, as they are a useful

tool to solve a range of tasks, including diagnosing errors,
documenting a sequence of accessing different nodes of the
system, maintaining important system information, etc.
The amount of information that is written to a log during

a specified length of time can be quite substantial, making it
virtually impossible for a user to manually analyze the user
log, which leads to the so-called problem of “big data” [1]. For
studying large data represented by some orderly way (e.g. DB),
different data-oriented techniques such as machine learning,
data mining, etc. are involved.
Of particular interest are process-aware information sys-

tems, PAIS, the basic concept of which is the process (e.g.,
a business process or a workflow). These systems allow de-
veloping models of processes interaction, monitoring accuracy
of their performance and correctness of their interaction with

each other. These include systems such as BPMS (Business
Process Management Systems), CRM (Customer Relationship
Management), ERP (Enterprise Resource Planning), etc. As
in the case with many other IS such systems can produce
large logs containing information on interaction of processes
in time.
Study of such logs is of great interest from many points of

view. For example, this may be a study for obtaining a pattern
of processes interaction which reflects the real situation in a
subject field in the form of a mathematical and/or graphical
model (Petri nets, UML activity diagrams, BPMN, etc.); the
so-called process discovery problem. The opposite problem is
studying compliance of processes execution with an available
(developed manually or automatically obtained) model, i.e.
conformance checking problem. In general, process discovery
and conformance checking are related problems. Also, with
this model, one can make some adjustments that are designed
to show conceptual changes in regard to the subject area, or
can perform permanent enhancement.
Studying logs of process-aware information systems in

order to extract knowledge about the processes and construct
their models, as well as studying such models has to do with
the process mining discipline, which is relevant to data mining,
machine learning, process modeling and model-based analysis.
Is a relatively young discipline, its goals and objectives are
postulated in the Process Mining Manifesto [2] supported by
more than half a hundred organizations and a large number of
experts from various fields [3].
The event log is the starting point for process mining

research. Typically, such a log is a sequence of events united
by a common case (i.e., a process instance). Each event is
related to a certain activity which represents a well-defined
step in the process. A set of events relating to the same case
makes a so-called trace representing an imprint of processes
interaction in a particular case.
There is a variety of data mining techniques but most of

them employ the following types of information (resource):
device or person that initiates and then executes an activity,
event data elements and event timestamp.
One of the most frequently used forms of Process Mining

models representation is Petri nets [4]. Petri nets are used both
for internal representation of a model by different algorithms
[5], [6] and for visualization. Other models, such as heuristic
nets and C-nets, are reduced to Petri nets.



To date, there are available developed tools for process
mining, both on a commercial and on a free basis. Examples
of these tools include ProM, which is probably the most
widely used process mining tool. ProM is a framework, the
possibilities of which are enhanced by plugins, which are
several hundreds in number.
Yet for all its power, ProM has a significant architectural

constraint: use of the algorithms that are implemented by
numerous plugins, can only be done in a discrete mode with
direct participation of the user. In other words, one cannot
build a chain of processing operations conducting a multistage
procedure of log extraction, cannot analyze, transform, and
save (or visualize) data derived from such processing.
This paper proposes a concept of a new DPMine tool for

building a model of multistage process mining from individual
processing units (so called modular blocks) connected to
each other in a processing graph. The resulting model is
executed (simulated) by making an incremental process from
the beginning to the end and producing intermediate and final
results.
In the work, by real-world examples we will show differ-

ences in approaches to process mining used in tools like ProM
and the new DPMine instrument.
The rest of this paper is organized as follows. Section II

describes the modular concept and the basic components of
DPMine tool. Section III discusses some specific DPMine
blocks as applied to some tasks. Certain aspects of practical
implementation of the tool are presented in Section IV. Finally,
Section V concludes with an analysis of the work done and a
look at the future.

II. M

Consider the following problem. Suppose there is a log
represented in the computer as an XML-file of a specified
format. This log should be processed, for this it should be
loaded to an appropriate tool that must support this format. An
internal representation of the log is formed after downloading
the file (partially or fully).
Suppose one wants to create a model as a Petri net, using

some of the implemented algorithms, such as conventional x-
miner, by executing which the desired Petri net will be formed.
Next, assume that one needs to build a skeleton graph from

this Petri net and then to convert it to a passage graph, and to
save the results to a file.
To do this using ProM, one should follow these steps:
1) Run importing a log file (e.g. in XES format).
2) In Actions mode select as Input object “Anonymous log

imported from ‘file-name.ext’”.
3) In the list of actions choose the right one for Input object

such as “Mine for a Petri Net using Alpha-algorithm”.
4) Run the action (Petri net construction).
5) Set the resulting net as Input Object.
6) ...
By consistently performing steps 2–4 for each type of input

object and appropriate action resulting in an output object1,
one can solve the task given above step by step.
Suppose now that after having completed the sequence of

actions, the user discovers that at the second stage, while
producing a Petri net from the original log, it would have
been desirable to use other options of the miner algorithm.
This means that all the results obtained after having processed
this net become useless and only “obstruct” the resources
list. Another example: if a similar sequence of processing
operations has to be applied to ten input logs. Or a hundred.
Or during mining of the original log one needs to get two
models of Petri net, then to compare their similarity.
Obviously, for a flexible solution of such problems a fun-

damentally different approach to multiprocessing is required,
and we proposed it in a tool called DPMine2.
Program allows creating a model of multistep process min-

ing as a graphical diagram (processing model) consisting of
modular blocks. An example of such a scheme is shown in
Fig. 1.
This model defines processing sequence for the initial log

(input object) present in the form of a file (for example, in
XML format). It is then consistently submitted to the mining
module, the result in the form of Petri net is replicated by a
splitter module and sent in three copies respectively to skeleton
module construction, visualization module and the module for
saving the Petri net model to a file in one of the available
formats.
Blocks are executed sequentially, each block begins its work

as it receives input data to its input port from the output
port of the previous block. Depending on block type, for
starting block’s execution all the data (from all the ports)
or partial data may be needed. The modules located “on
the right” of the splitter module (Fig. 1) can be executed
in parallel, and this can be quasi-parallel in the case of a
single processor in a multitasking operating system or “real”
parallel if they are run in different threads on a multiprocessor
system. There is another version of “true” parallelism: use
of special modules for distributed processing that employ as
nodes remote computers, which are identified, for example,
by IP addresses.
In case of a change in parameters (or input data) of a

particular module which is “on the left” in the chain of
consecutive executions, the interim data developed “on its
right” are announced invalid (invalidation procedure) and are
automatically rebuilt (if the model settings are set so). At this,
the user does not have to think about how, in what order and
at what point he or she needs to perform such a rebuilding:
once the scheme is developed, it will then run as many times
as it is required to produce a final result satisfying the user.

1Actually ProM allows manually setting type of output object before step
3, thus narrowing the range of possible actions.

2Letter ‘D’ in the title has many meanings, among which are such as
‘Distinguished’, ‘Direct’ and ‘Distributed’ (as it will be shown below, one
of the key features of the new tool is structural distribution of the original
objects for analysis, including that on the set of computers (nodes) for splitting
task).



Log file source

Discovery 

module

(x-Miner)

Skeleton 

maker

PN-replicator PN visualizer

Graph 

visualizer

Log

Log file

PN

PN

PN

Skeleton graph

Saving model 

as a file

PN

Figure 1. Example of a sequential processing of a log specified in a file

x-Miner properties

0,8

0,3

Tol

Noise

OK Cancel

Figure 2. Example of a dialog box for setting parameters of x-miner module

A processing model is stored to a file, which allows creating
a library of processing models for multiple use for different
sets of input data. In addition to information about modules
and relationships among them, a processing model stores
modules parameters, that is a set of characteristics that allow
customizing behavior of the modules, for which it is provided.
Examples of these parameters can be tolerance params, names
of input, output and intermediate files, display options for the
modules with a graphical user interface, and so on (see Fig. 2).
As with many other tools, DPMine is developed in a

modular fashion that allows extending its functionality through
plugins. This way it is possible to connect a large number of
third-party modular blocks and significantly expand opportu-
nities for construction of the processing model. Of course,
for the entire model to function properly regardless of what
modular block is included in its composition, relevant soft-
ware, implementing their functionality, should be developed
in accordance with certain requirements, some of which are
covered in the next section.

III. S

Connection of modular blocks between each other is made
by means of ports that can be either input or output and
correspond to the data types they support. Thus, a logical
connection (displayed as directed arrows) in the diagram can
be achieved only between output (connector start) and the

input (connector end) ports, provided that both ports support
the same data type (Fig. 4).
All modular blocks available in DPMine are divided into

three groups: source blocks, action blocks and render blocks.
They differ in what place in the data processing chain they
can occupy.
Consider the purpose of each type of blocks closer.

A. Source blocks
Source blocks have only output ports and, as their name

implies, are the source of data to process (Fig. 5). The most
obvious example of this block is a log file source that loads
a log from the file. Another example would be a block that
retrieves a log from some IS, e.g. databases.
Semantically, the source block is a (multi-valued) function

with no parameters3 that returns results which can be used by
other functions.

B. Render blocks
Render blocks act as consumers of data obtained as a result

of processing and have only input ports. By analogy with the
source blocks one of the purposes of render blocks is to store
results in a file or export to an IS, for example, to a database
(Fig. 6).
Along with that, an equally important feature that the render

block provides is results visualization. As soon as DPMine is
a modeling tool with a user interface, it means that it must
support the graphical representation of models in the form of
charts, diagrams, graphs, reports, etc. The framework itself
does not restrict users to a few possibilities for visualization
of results, but instead offers to plug in visualization modules
as render-function blocks.
It is a natural question how to proceed in the development

of a model when it is necessary both to visualize results and
to save them to a file. Here come to rescue special types of
blocks — replicator blocks discussed in Section III-E.

3Parameters in this context refers to input and output ports. We should not
confuse them with blocks settings, which we shall call properties.



Discovery algo

PN

Log replicator

Log

Conformance 

Checker

PN

Log

NFB

ε -params

ReportReport

PN replicator

PN visualizer

P

Figure 3. Example of a multistage Process Mining problem solving

Discovery 

module

(x-Miner)

IPetriNet

Skeleton 

maker

IPetriNet

Graph 

visualizer

IGraphIGû
Figure 4. Example of acceptable ports and ports not acceptable for connection
(denoted by triangles) which support different types of data

Log file source

Log

Log DB source

Log

Figure 5. Examples of action blocks

Semantically, the render block is a function of no return
values that has results produced by other functions as input
parameters.

C. Action blocks

Action blocks are the largest group of blocks having both
input and output ports. Semantically, the action block is a
function that receives parameters, performs their processing
and return them for passing to following functions.
Consider some of the action blocks classes.

Graph 

visualizer

Skeleton graph

PN visualizer

PN

Saving model 

as a file

PN

Figure 6. Examples of render blocks

D. Action blocks for solving PM tasks
The main purpose of action blocks for solving PM tasks

is execution of serial conversion of input data into outputs
for solving a particular PM problem. These are block miners
for solving Process Discovery task, comparator blocks for
solving Conformance Checking, blocks with feedback for
Enhancement task (Fig. 7), etc.
There is a variety of blocks in this class that transfer

computational load of their tasks to a cloud or any other system
of distributed computing grids, etc. (Fig. 8).
Most of the ProM plugins can be attributed to this very

class of action blocks.

E. Control action blocks
A separate class includes action blocks not operating data

transformation as such but organizing the structure of their
execution model. Their purpose in a way is ideologically
close to program control command in programming languages.
Previously there was cited an example of a problem when the
mine-resulting Petri net has to be visualized by a display block



Skeleton 

maker

PN Skeleton graph

Conformance 

Checker

PN

LogLog

ReportReport

Discovery 

module

(x-Miner)

Log PN

Figure 7. Examples of actions blocks for solving PM tasks

Distributed

Conformance 

Checker
LogLog

ReportReport

Harness of submodels

You th
ere

Figure 8. Action block which implements the Conformance Checking task
by using distributed calculating nodes

PN-replicator

PN

PN

PN

PN

Figure 9. Replicator block performs replication of the inbound PN to multiple
outputs

and simultaneously stored (in the form of a model with a set
of vertices, transitions, labels, and other support elements) in
an external file or database. Here comes to the aid the so-
called replicator block (Fig. 9) performing the multiplication
of incoming network into multiple outputs. Then one of these
outputs can be connected to a visualizer block, another — to
a file saving block.

F. Action blocks for distributed calculations
Another major challenge being actively studied in PM is the

problem of distributing calculations ([6], [7], [8]). It follows
from the computational complexity of the algorithms used
in Process Discovery and Conformance Checking, which is
manifested in medium and large sets of input data (logs and
models), commonly found in experience. It is shown that
decomposition of source data (logs section and selection of

PN H-splitter

PN

Submodels harness

Figure 10. Splitter block with output port in a harness of Petri nets

submodels out of a large model) can significantly reduce
the computational load, which stems from the logarithmic
complexity of these algorithms.
One can identify three types of distribution: replication,

horizontal partitioning of event logs, and vertical partitioning
of event logs.
It has been written about replication above, now consider

how h-partitioning (h-splitting) and v-partitioning (v-splitting)
blocks can be implemented. Based on some heuristic assump-
tions, the original log is divided into a number of sublogs,
which is generally not known in advance. Therefore use of
“one sublog — one output port” can be uncomfortable. The
answer to this situation is introduction of a special type of
data port: logs harness and models harness (Fig. 10). Of
course, to work with a harness, an action block must have
an appropriate input port, as in the case with Conformance
checking block (Fig. 8). However, one can implement a special
demultiplexer block that accepts a harness to input port and
its individual elements to outputs ports, and issuing its output
ports individual elements of the input harness.
By combining the approaches suggested above, one can

build a complex branching model with feedback and get
exactly the functionality that is required in each case (Fig. 3).

IV. P

The last question that to be treated in this paper relates to
practical aspects of implementing DPMine tool.
By the time of writing this paper two parallel development

works codenamed DPMine/C and DPMine/J have been going
on. As the names might suggest, the first fork of the tool
is developed mainly in C++ language using Qt 4.8 library
as a framework for building GUI, which allows making it
cross-platform. Plugin support is performed using dynamic
link libraries, for OS Microsoft Windows these are DLLs.
DPMine/J edition is developed in Java, and the main pur-

pose of this line is to attempt to utilize numerous ProM plugins
by designing corresponding wrapper classes to use them with
DPMine/J framework interfaces. One of GUI options being
considered is to utilize IDE Eclipse with a custom plugin
implementing the functionality of DPMine tool.
Because at the moment DPMine project is a pure research,

probably at some point later a decision will be taken to focus
only on one of the forks — either DPMine/C or DPMine/J.
Probably the main arguments in favor of the first or second
decision will be to what extent it will be possible to utilize
ProM plugins and at which cost.



V. C
In this paper DPMine tool concept was discussed. It builds

up research models in process mining area. Despite the fact
that works on the tool are at the beginning, some of the tasks
have already found their realization. Another part is subject to
change in the process of working on it.
Among the challenges for the future the following task can

be identified, namely developing a declarative language of the
underlying graphical model that allows describing complex
models.

A
The study was implemented in the framework of the Basic

Research Program at the National Research University Higher
School of Economics (HSE) in 2013.
The author would like to thank Prof. Irina A. Lomazova for

her vital encouragement and support.

R
[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and

A. H. Byers, “Big data: The next frontier for innovation, competition,
and productivity,” Tech. Rep., 2011.

[2] IEEE Task Force on Process Mining, “Process Mining Manifesto,” in
BPM 2011 Workshops, ser. Lecture Notes in Business Information Pro-
cessing, F. Daniel, S. Dustdar, and K. Barkaoui, Eds., vol. 99. Springer-
Verlag, Berlin, 2011, pp. 169–194.

[3] W. M. P. van der Aalst, Process Mining - Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[4] C. A. Petri and W. Reisig, “Petri net,” Scholarpedia, vol. 3, no. 4, p.
6477, 2008.

[5] J. Carmona, J. Cortadella, and M. Kishinevsky, “A region-based algorithm
for discovering petri nets from event logs,” in BPM, 2008, pp. 358–373.

[6] W. Aalst, “Decomposing Process Mining Problems Using Passages,”
in Applications and Theory of Petri Nets 2012, ser. Lecture Notes in
Computer Science, S. Haddad and L. Pomello, Eds., vol. 7347. Springer-
Verlag, Berlin, 2012, pp. 72–91.

[7] W. M. P. van der Aalst, “Distributed process discovery and conformance
checking,” in FASE, 2012, pp. 1–25.

[8] ——, “Decomposing petri nets for process mining. a generic approach,”
Department of Mathematics and Computer Science, Technische Univer-
siteit Eindhoven, The Netherlands., Tech. Rep., 2012.


	Introduction
	Modular model concept
	Some peculiarities of modular blocks
	Source blocks
	Render blocks
	Action blocks
	Action blocks for solving PM tasks
	Control action blocks
	Action blocks for distributed calculations

	Practical implementation
	Conclusion
	References

