
Horizontal Transformations of Visual Models

in MetaLanguage System

Alexander O. Sukhov

Department of Software and Computing Systems

Mathematical Support

Perm State University

Perm, Russian Federation

E-mail: Sukhov.psu@gmail.com

Scientific Advisor:

Lyudmila N. Lyadova

Department of Business Informatics

National Research University Higher School of Economics

Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract. Different specialists are involved in software

development at once: databases designers, business analysts, user

interface designers, programmers, testers, etc. It leads to creation

and usage in systems designing of various models fulfilled from

the different points of view, with different levels of details, which

use different modeling languages for the description. Thus there

is a necessity of models transformation as between different levels

of hierarchy, and within the same level between different

modeling languages for creation of united model of system and

exporting of models to external systems. The MetaLanguage

system is intended to visual domain-specific languages creation.

The approaches to development of a model transformation

component of MetaLanguage system are considered. This

component allows to fulfill vertical and horizontal model

transformations of “model-text” and “model-model” types. These

transformations are based on graph grammars described by

production rules. Each rule contains the left- and right-hand

sides. The algorithm of the left-hand side search in the source

model and the algorithms of execution of a right-hand side of a

rule are described. Transformations definitions for models in

ERD notation are presented as example.

Keywords: model-based approache; visual model; domain-

specific language; horizontal model transformation; language

workbench.

I. INTRODUCTION

In industrial production we often come to the fact that the
studying and creation of an object is done by constructing its
model. Since development of computer systems the idea of
creation and usage of models has come to computer science.

Model is an abstract description of system (object, process)
which contains characteristics and features of its functioning
which are important from the viewpoint of modeling purposes.
Metamodel is a language used for models development. For
metamodels description the meta-metamodels (metalanguages)
are used. Modeling is the process of creation and studying of
models.

Today the majority supposes that visual models are used
only at the early stages of software development, for creation
of certain “sketch” of system or transfer of high-level ideas of

designing, i.e. it is supposed that models play a secondary role,
and are primarily used only for documentation. However there
are approaches to system engineering in which the basic
elements are the visual models and their transformations –
model-based approaches.

The model-based approaches are capable at information
system creation to unite efforts of developers and domain
experts. These approaches make the system more flexible,
since for its change there is no necessity of modification of
source code “by hand”, it is enough to modify a visual model,
and with this task even nonprofessional programmers can cope.

For model-based approaches implementation it is necessary
to use toolkit which will be convenient to various participants
of system development process. The general-purpose modeling
languages, such as UML, are not able to cope with this task,
because they have some disadvantages:

 Diagrams are complicated for understanding not only
for experts, who take part in system engineering, but in
some cases even for professional developers.

 Object-oriented diagrams can not adequately represent
domain concepts, since work is being done in terms of
“class”, “association”, “aggregation”, etc., rather than in
domain terms.

That is why at implementation of model-based approaches
the domain-specific modeling languages (DSMLs, DSLs),
created to work in specific domains, are increasingly used.
Domain-specific languages are more expressive, simple on
applying and easy to understand for different categories of
users as they operate with domain terms. Therefore now a large
number of DSLs is developed for using in different domains
[1-3].

Despite all DSLs advantages they have one big
disadvantage – complexity of the designing. If general purpose
languages allow creating programs irrespectively to domain, in
case of DSLs for each domain, and in some cases for each task
it is necessary to create the domain-specific language. Another
shortcoming of domain-specific language is that it is necessary
to create convenient graphical editors to work with it.

This paper is supported by Russian Foundation for Basic Research
(Grant 12-07-00763)

The language workbench or DSM-platform is the
instrumental software intended to support development and
maintenance of DSLs. Usage at DSLs creation a language
workbench considerably simplifies the process of their
designing. The MetaLanguage [4] system is a language
workbench for creating visual dynamic adaptable domain-
specific modeling languages. This system allows fulfilling
multilevel and multi-language modeling of domain.

The different categories of users work at various stages of
system life cycle. At the stage of system creation the leading
role is played by professional developers with participation of
experts, specialists in the appropriate domain, and at the
operation stage – by experts, specialists and end-users, as they
detect all system shortcomings and mistakes in its
implementation. To attract experts and specialists to the
process of system adjustment of the ever-changing operating
conditions and user requirements it is necessary to provide
them with the convenient language, which is operates with
customary terms. Using this language they could make all
necessary modifications of information system.

On the other hand, several specialists are involved in
software development at once: databases designers, business
analysts, user interface designers, programmers, testers, etc.
Each of these specialists uses their own information about the
system and this information may describe the same objects, but
from the different points of view and with various modeling
languages (see fig. 1).

Студент

ID

ЧеловекID

Направление
Человек

ID

ФИО

АдресПреподаватель

ID

ЧеловекID

Должность

Прийти на

экзамен Вытянуть

билет
Написать

ответ

Fig. 1. Consideration of system objects from different points of view

Thus the software development process includes various
types of activity in which different categories of users
participate. It leads to creation and usage in systems designing
of various models fulfilled from the different points of view,
with different levels of details, which use for the description
different modeling languages (see fig. 2).

System development

Database schema

description language

Business processes

description language

Documentation

description

language

User interface

description

language

Fig. 2. The usage of different languages for software development

So there is a necessity of models transformation as between
different levels of hierarchy, and within the same level between
different modeling languages, for creation of united model of
system and exporting of models to external systems (see fig. 3).

Data

Model

Metamodel

Meta-metamodel

Vertical

transformation

Horizontal

transformation

Entity-

Relation

Diagram

UML Class

Diagram

Fig. 3. Vertical and horizontal model transformations

In addition, there is an unresolved problem of models
exporting from one information system to another (for
example, business processes described in one system can not
be executed in another, that these systems use various notations
for business processes description).

Usage of domain-specific languages and tools for their
creation also affects a transformation problem as there is a need
of export of the created by the user models to external systems
which, as a rule, use one of the standard modeling languages
that is different from developed DSL. That is why one of the
main components of the MetaLanguage system is the
Transformer. This component uses graph grammars for
transformations describing. Implementation of graph grammars
in the MetaLanguage system is defined by assignment of this
language workbench.

II. BASIC CONCEPTS

The basic concept of transformation definition is a
production rule which looks like :p L R , where p is a rule

name, L is a left-hand side of the rule, also called the pattern,
and R is a right-hand side of the rule, which is called the

replacement graph. Rules are applied to the starting graph
named the host-graph.

Let’s suppose that four labeled graphs G, H, L, R are given,
and graph L is a subgraph of graph G. Applying of the rule

:p L R to the starting graph G is called the replacement in

graph G of subgraph L on graph R, which is a subgraph of
graph H. The graph H is the result of this replacement.

Graph grammar is a pair GG = (P, 0G), where P is a set of

production rules, 0G is a grammar starting graph.

Graph transformation is a sequenced applying to the

starting labeled graph 0G of finite set of rules

 1 2, nP p p p : n

ppp

GGG
n

 ...10

21

.

List of production rules is arranged according to the chosen
discipline, for example, by priorities. The transformation
process is completed when the list of rules does not contain any
rule which can be applied. There are also other disciplines of
rules ordering, so some systems use the control mechanism to
explicitly specify which rule should be applied as follows [5].

At transformations direction they can be classified as
vertical and horizontal. Vertical transformations convert the
models which belong to various hierarchy levels, for example,
at mapping of the metamodel objects to domain model objects.
Horizontal transformation is the conversion, in which the
source and target models belong to one hierarchy level. An
example of a horizontal transformation is a conversion of
model description from one notation to another (see fig. 3).

The models are described with some modeling languages.
Depending on the language on which source and target models
are described, horizontal transformations can be divided into
two types: endogenous and exogenous. Endogenous
transformation is the transformation of the models which are
described on the same modeling language. Exogenous
transformation is the transformation of models which are
described on various modeling languages [6].

Graph grammar often used to describe of any
transformations, performed on graphs: definition of the models
operational semantics [7, 8], the analysis of program systems
with dynamic evolving structures [9, 10], etc. These grammars
allow to describe the transformations that should occur in
system at performance over it of the operations, specified in
grammar.

The right-hand side of the rule may be not only a labeled
graph, but the code on any programming language, and also a
fragment of a visual model described in some notation. That is
why the graph grammar can be used for generation syntactic
correct models and for refactoring of existing models, code
generation and model transformations from one modeling
language to another [11].

Considering singularities and designation of MetaLanguage
system, it is necessary to make the following requirements to
its transformation component:

 To be obvious and easy to use for providing the

opportunity of involving to transformation description
not only programmers, but also experts, specialists in
domains. It can be achieved through the usage of visual
notation of transformations description language.

 To allow using the created transformations directly in
the system, i.e. to produce the models transformation in
the same user interface in which they were designed.

 To perform both horizontal and vertical
transformations, and availability of possibility to fulfill
the horizontal transformations from one notation to
another, including a “model-text” type.

 Metamodels from the left- and right-hand sides of the
rule can be described by a user created metalanguage.

 To allow specifying the transformations of entities and
relations attributes and constraints imposed on
metamodel elements.

III. RELATED WORKS

There are various approaches to model transformations,
some of them have the formal basis, so the systems AGG,
GReAT, VIATRA use graph rewriting rules to perform
transformations, and others apply technologies from other areas
of software engineering, for example, the technique of
programming by example.

Various modifications of the algebraic approach are
implemented in systems AGG, GReAT, VIATRA. In AGG
[12] the left- and right-hand sides of the production rule are the
typed attribute graphs, both sides of a rule should be described
in one notation, i.e. this system allows to fulfill only
endogenous transformations that does impossible its usage in
MetaLanguage system. Besides, this tool does not allow to
make transformation of a “model-text” type. However the
usage as the formal basis of the algebraic approach to graph
transformations allows to produce graph parsing, to verify
graph models, and the extension of graphs of Java possibilities
makes transformations more powerful from a functional point
of view.

The GReAT system [13] is based on the algebraic approach
with double-pushout, therefore for transformation description it
is necessary to create the domain that contains both the left-
and right-hand sides of the production rule simultaneously with
instructions of what element it is necessary to add, and what to
remove. This form of rule is unusual for the end-user and a bit
tangled. However it provides a possibility of execution the
transformation of several source metamodels at once, which is
significant advantage in comparison with other approaches. For
metamodels definition the GReAT uses UML and OCL, it does
not allow the user to choose the language of metamodels
specification or to change its description. It makes this
approach unsuitable for usage in MetaLanguage.

The QVT (Query/View/Transformation) is the proposed by
OMG approach to models transformation, which provides the
user with declarative and imperative languages [14].
Conversion is defined at the level of metamodels which is
described on MOF. The advantage of this approach is the
existence of standard of its description, and also usage of

standard languages OCL and MOF at the models
transformation definition process. However these advantages
also have the other side. Usage of MOF as a meta-
metamodeling language, does not allow the user to choose a
metalanguage convenient for him, or to change description of
the metalanguage which is integrated in the QVT. In addition,
this approach does not allow to make the transformation of a
“model-text” type, since each metamodel should be described
using the MOF standard. It imposes of some restrictions on a
possibility of QVT usage in the MetaLanguage system.

VIATRA [15] is a transformation language, based on rules
and patterns, which combines two approaches into a single
specification paradigm: the algebraic approach for models
description and the abstract state machines intended for
exposition of control flow. Thanks to constructions of state
machines the developers significantly raised the semantics of
standard languages of patterns definition and graph
transformation. Besides, powerful metalanguage constructions
allow to make multi-level modeling of domains.

One of shortcomings of the VIATRA is an inexpressive
textual language of metamodels description. Although the
developers of approach have criticized the MOF standard for
the lack of a possibility of multi-level modeling, they still
remain within limits of this paradigm at usage of visual
language for metamodels definition. VIATRA is not intended
for execution of horizontal model transformations. Its main
purpose is a verification and validation of the constructed
models by their transformation.

The ATL is the language, allowing to describe
transformations of any source model to a specified target
model [16]. Transformation is performed at the level of the
metamodels. The heart of ATL is the standard language of
constraints description OCL.

The disadvantage of this language is high requirements to
the conversion developer. Since ATL in most cases uses only
textual definition of transformation, then in addition to
knowledge of source and target metamodels the developer
needs to know language of transformation definition. Lack of
navigation on the target model complicates the process of rules
determination.

The ATL is a dialect of QVT language and therefore
inherits all its shortcomings. One of the differences from the
QVT is very strict restriction on created transformations: the
left-hand side of the rule should contain only one element. It
highly complicates the development, increasing an amount of
rules in system. All it does impossible the usage of this
approach in the MetaLanguage system.

MTBE approach [17] is quite non-standard and unusual.
The main purpose of MTBE is automatic generation of
transformation rules on a basis of an initial set of learning
examples. However implementations of this approach do not
guarantee that the generation of model transformation rules is
correct and complete. Moreover, the generated transformation
rules strongly depend on an initial set of learning examples.
Current implementations of MTBE approach allow to fulfill
only full equivalent mappings of attributes, disregarding the
complex conversions.

In summary, it is possible to say that all considered systems
have some disadvantages which restrict their applicability for
transformations definitions in the MetaLanguage system. But
the most appropriate and perspective, from the author’s point
of view, is the algebraic approach [12] with a single-pushout
under condition of inclusion in it of some modifications:

 The availability of multi-level description of
metamodels in the rule left- and right-hand sides.

 The description of transformation rules should be made
at one level of hierarchy, and their application – on
another.

 The existence of a possibility of exogenous
transformations description.

 The right-hand side of production rule can contain as
exposition of visual model, and some text.

 The availability of the opportunity to transform
attributes of metamodel elements and constraints
imposed on them.

Description of vertical transformations in MetaLanguage
system has been considered explicitly in [4], therefore we will
pass to reviewing of horizontal model transformations.

IV. HORIZONTAL MODEL TRANSFORMATIONS IN

METALANGUAGE SYSTEM

All horizontal transformations are described at level of
metamodels that allows to specify conversions which can be
applied to all models created on basis of this metamodels. For a
transformation creation it is necessary to select a source and
target metamodels and to define production rules that are
describing conversion.

To define the rule it is necessary to select objects (entities
and relations) in a source metamodel, to set constraints on
pattern occurrence and to define the right-hand side of the rule.
Depending on a type of transformation a right-hand side will be
a text template for code generation, or a fragment of a target
metamodel.

Transformation rules are applied according to their order.
At first all occurrences of a first rule pattern will be found, for
each of them the system will fulfill a rule right-hand side, then
the system will pass to the second rule and will begin to
execute it, etc.

Let's assume that the system has selected next production
rule of transformation and trying to execute it. For
implementation of rule application it is necessary to describe
two algorithms: the algorithm of the pattern search in the
source host-graph and the algorithm of execution of a right-
hand side of a rule.

A. Algorithm of the Pattern Search in the Host-graph

There are various algorithms of search of subgraph
isomorphic to the given pattern [18]: Ullmann algorithm,
Schmidt and Druffel algorithm, Vento and Foggia algorithm,
Nauty-algorithm, etc. These algorithms are the most elaborated
and often used in practice.

However difference of the proposed approach from the
classical task of graph matching is that in this case it is
necessary to find a pattern in the metamodel graph, i.e. it is
required to lead matching of graphs which belong to various
hierarchy levels, thus it is necessary to consider type of nodes
and arcs, as between two nodes of the metamodel graph the
several arcs of various type can be led [19].

The described algorithm for finding a pattern in the graph
model is a kind of backtracking algorithm that takes
exponential time.

Since the amount of arcs in the model graph is less than
amount of the nodes usually, each arc uniquely identifies
nodes, that are incident to it, and the degree of node can be
more than two, that does not allow to select the following node
of the model graph, entering into a pattern, it was decided to
start subgraph search in a model graph on the basis of search of
particular type arcs.

At the first step of algorithm all instances of some arbitrary
relation of the pattern will be found, i.e. search of an initial arc
with which execution of the second step of algorithm will
begin is carried out. At the second stage it is necessary to find
one of possible occurrence of all relations instances of the

pattern-graph PG in the source model graph SG . At the third

step necessary nodes will be add to target graph TG and right-

hand side of the rule will be execute.

The first step is a procedure FindPattern:

Algorithm 1. Procedure FindPattern

1.1. To clear the set of the source graph nodes viewed during
search – VisitedEntities.

1.2. To select from the pattern-graph PG one of relations, denote

it as rel . If there are not such relations, then go to the

procedure AddNodes of adding of nodes in the graph TG .

1.3. To find all instances of the relation rel in the source model

graph SG . The set of these instances denote as

FoundRelations.
1.4. For each instance of the relation from the set FoundRelations

execute procedure FindSubGraph to find a subgraph TG ,

which corresponds to a pattern and contain the instance of

relation relI , in the source model graph SG .

Procedure of search of a subgraph containing the specified
instance of relation FindSubGraph consists of following steps:

Algorithm 2. Procedure FindSubGraph

2.1. To add arc relI to the set of arcs of the required graph TG .

2.2. If after adding of arc it has appeared that the amount of arcs of

the graph TG equal the amount of arcs of the pattern-graph

PG then it is necessary to execute the procedure of nodes

adding in the graph TG , and then to return and remove arc

relI from the set of arcs of the graph TG , since in the source

graph can exist other instances of the same type relation.
Otherwise, go to step 2.3.

2.3. To review the first node 1entI which is incident to the arc

relI , if it does not belong to the set VisitedEntities:

a. To add the node 1entI to the set VisitedEntities.

b. To review all arcs of the graph SG incoming to node

1entI , if the preimage some of them
1()I

ifr rI
 belongs

to the pattern PG and it was not considered earlier, it is

necessary to search a subgraph, that contains an instance

of the relation
I

irI , starting from the second step of this

algorithm.

c. To review all arcs of the graph SG outgoing from node

1entI , if the preimage some of them
1()O

ifr rI
 belongs

to the pattern PG and it was not considered earlier, it is

necessary to search a subgraph, that contains an instance

of the relation
O

irI , starting from the second step of this

algorithm.

2.4. To consider the second node 2entI which is incident to the

arc relI , if it does not belong to the set VisitedEntities.

Reviewing is made similarly to how it has been described in
step 2.3.

2.5. To execute the procedure of nodes adding to the graph TG .

The procedure AddNodes of nodes adding to graph consists
of three steps:

Algorithm 3. Procedure AddNodes

3.1. To consider all arcs of the graph TG . If preimage of any

node, that is incident to current arc, belongs to the pattern-

graph PG , it should be added to the set of nodes of the graph

TG .

3.2. To find in the graph SG nodes, preimages of which in the

graph PG are isolated, and add them in the graph TG .

3.3. To call the procedure of the rule right-hand side execution
ExecuteRightSide. It is determined by a type of the
transformation rule.

B. Algorithms of Rule Right-hand Side Execution

It is necessary to execute a right-hand side of production
rule after the left-hand side subgraph has been found in a
source graph. The algorithm of execution will depend on a type
of transformation: whether transformation is a “model-model”
or a “model-text”.

Transformation “model-text”. The transformation of this
type allows the user to generate the source code on any target
programming language on the basis of the constructed models
as well as any other text representation of model, for example,
its description on XML. In this case the right-hand side of
production rule contains some template consisting of as static
elements, which are independent of the found pattern, and
dynamic parts, i.e. elements which vary depending on the
found fragment of model.

For transformation fulfillment it is necessary to find all
occurrences of a pattern in a source graph and to produce an
insertion of an appropriate text fragment with a replacement of

a dynamic part by appropriate names of entities, relations,
values of their attributes, etc.

The template is described in the target language. For
selection of a dynamic part of a template the special
metasymbols are used: symbol “<<” (double opening angle
brackets) to indicate the beginning of a dynamic part, “>>”
(double closing angle brackets) to indicate the end of a
dynamic part. As entities and relations can have the same
name, then for entity describing before its name the prefix “E.”
is specified, and for relation describing before its name the
prefix “R.” is specified.

At the transformation specifying it is possible to set
constraints on pattern occurrence. These constraints allow to
define the context of the rule. They contain conditions with
which found fragment of model should satisfy.

Let's consider an example: define the transformation that
allows on the basis of Entity-Relation Diagrams (ERD) to
generate a SQL-query, building the schema of a corresponding
database.

Fig. 4. Fragment of metamodel for Entity-Relation Diagrams

At the first step it is necessary to choose the metamodel of
Entity-Relation Diagrams (see fig. 4) and to set the
transformation rules. The metamodel contains the entities
“Abstract”, “Attribute”, “Entity”, “Relation”. Attributes of the
entity “Abstract” are “Name” that identifies an entity instance,
and “Description”, containing the additional information about
the entity. The entity “Abstract” is abstract, i.e. it is impossible
to create instances of this entity in the model. “Abstract” acts
as a parent for entities “Entity” and “Relation” (in the figure it
is shown by an arrow with a triangular end). Both child entities
inherit all parent attributes, relations, constraints. “Entity” does
not have own attributes and constraints. “Relation” has the own
attribute “Multiplicity”. The entity “Attribute” has following
attributes: “Name”, “Type” and “Description”.

The bidirectional association “Linked_Links” connects
entities “Relation” and “Entity”. It means that it is possible to
draw equivalent relation between these entity instances in
ERD-models. The second unidirectional association
“SuperClass_SubClass” binds entity “Entity” with itself, it
allows any instance of “Entity” to have parent (another instance

of “Entity”) in ERD-models. In ERD metamodel between
entities “Attribute” and “Abstract” the aggregation “Belongs”
is set (in figure this relation is represented by an arc with a
diamond end), therefore in ERD-models instances of entities
“Relation” and “Entity” can be connected by aggregation with
the instances of entity “Attribute”.

For correct transformation execution the additional
attributes in the source metamodel should be added. To
determine what entity is a parent, and what entity is a child it is
necessary to add the mandatory attributes of a reference type
“Child” and “Parent” to relation “SuperClass_SubClass”. The
entity “Relation” should be transformed to the reference
between relational tables, therefore we will add to “Relation”
additional mandatory attributes-references of “LeftEntity” and
“RightEntity” and attribute of logical type “Has_Attribute”,
which will facilitate the execution of the right-hand side of
production rule.

For transformation definition we will use the traditional
rules of conversion of the ERD notation to a relational model,
for this purpose we will define the following rules.

The rule “Entity” which transforms the instance of entity
“Entity” to the single table looks like:


CREATE TABLE <<E.Entity.Name>>

(id INTEGER primary key)

Here <<E.Entity.Name>> is a dynamic part of the
template which allows to get a name of corresponding model
entity.

As there is not inheritance relation in a relational model, it
is necessary to specify the rule “Inheritance”, which for each
instance of the relation “SuperClass_SubClass” in the
“SubClass” table creates foreign key for connection with the
“SuperClass” table. This rule looks like:



ALTER TABLE

<<R.SuperClass_SubClass.Child>> ADD

<<R.SuperClass_SubClass.Parent>> ID

INTEGER

ALTER TABLE

<<R.SuperClass_SubClass.Child>> ADD

FOREIGN KEY

(<<R.SuperClass_SubClass.Parent>>ID)

REFERENCES

<<R.SuperClass_SubClass.Parent>> (id)

The rule “Relation_1M” allows to transform instance of
entity “Relation”, which does not have attributes and its
multiplicity is “1:M”, to the reference between tables. The rule
has the following appearance:



ALTER TABLE <<E.Relation.LeftEntity>>

ADD <<E.Relation.RightEntity>>ID INTEGER

ALTER TABLE <<E.Relation.LeftEntity>>

ADD FOREIGN KEY

(<<E.Relation.RightEntity>>ID)

REFERENCES <<E.Relation.RightEntity>> (id)

In this rule at first in the table corresponding to the left
entity the additional column with the name
<<E.Relation.RightEntity>>ID is added, and then the
foreign key (correspondence between this additional column

and a column containing the identifiers of right table rows) is
created. This rule contains the constraint on pattern occurrence:

E.Relation.Multiplicity = 1:М AND

E.Relation.Has_Attribute = False

The rule “Relation_M1” allows to transform instance of
entity “Relation”, which does not have attributes and its
multiplicity is “M:1”, to the reference between tables. The rule
looks like:



ALTER TABLE <<E.Relation.RightEntity>>

ADD <<E.Relation.LeftEntity>>ID INTEGER

ALTER TABLE

<<E.Связь.Relation.RightEntity>> ADD

FOREIGN KEY (<<E.Relation.LeftEntity>>ID)

REFERENCES <<E.Relation.LeftEntity>>(id)

The content of this rule right-hand side is similar to the
content of the right-hand side of the rule “Relation_1M”. This
rule contains the constraint on pattern occurrence:

E.Relation.Multiplicity = M:1 AND

E.Relation.Has_Attribute = False

For each instance of entity “Relation”, which has the
attributes, or has the multiplicity “1:1” or “М:М”, it is
necessary to create the single table that contains the key
columns of each entity involved in relation. We call this rule
“Relation_MM”, it has the following appearance:



CREATE TABLE <<E.Relation.Name>>

(id INTEGER primary key,

<<E.Relation.LeftEntity>>ID INTEGER,

<<E.Relation.RightEntity>>ID INTEGER)

ALTER TABLE <<E.Relation.Name>> ADD

FOREIGN KEY (<<E.Relation.LeftEntity>>ID)

REFERENCES <<E.Relation.LeftEntity>> (id)

ALTER TABLE <<E.Relation.Name>> ADD

FOREIGN KEY (<<E.Relation.RightEntity>>ID)

REFERENCES <<E.Relation.RightEntity>> (id)

This rule contains the constraint on pattern occurrence:

E.Relation.Multiplicity = M:M OR

E.Relation.Multiplicity = 1:1 OR

E.Relation.Has_Attribute = True

The rule “Attribute” adds the columns corresponding to
attributes of instances of entities and relations to the created
tables:



ALTER TABLE

<<E.Abstract.Name>> ADD

<<E.Attribute.Name>>

<<E.Attribute.Type>>

Let's consider an example, apply the described
transformation to the model “University” presented in fig. 5.

Fig. 5. Model “University” on the ERD notation

As a result the following text had been generated by the
MetaLanguage system:

CREATE TABLE Man (id INTEGER primary key)

CREATE TABLE Student (id INTEGER primary key)

CREATE TABLE Lector (id INTEGER primary key)

CREATE TABLE ExamCards (id INTEGER primary key)

ALTER TABLE Lector ADD ExamCardsID INTEGER

ALTER TABLE Lector ADD FOREIGN KEY (ExamCardsID)

REFERENCES ExamCards (id)

ALTER TABLE ExamCards ADD StudentID INTEGER

ALTER TABLE ExamCards ADD FOREIGN KEY (StudentID)

REFERENCES Student (id)

CREATE TABLE PassExam (id INTEGER primary key,

StudentID INTEGER, LectorID INTEGER)

ALTER TABLE PassExam ADD FOREIGN KEY (StudentID)

REFERENCES Student (id)

ALTER TABLE PassExam ADD FOREIGN KEY (LectorID)

REFERENCES Lector (id)

ALTER TABLE Student ADD ManID INTEGER

ALTER TABLE Student ADD FOREIGN KEY (ManID)

REFERENCES Man (id)

ALTER TABLE Lector ADD ManID INTEGER

ALTER TABLE Lector ADD FOREIGN KEY (ManID)

REFERENCES Man (id)

ALTER TABLE Man ADD Name nvarchar(MAX)

ALTER TABLE PassExam ADD Duration nvarchar(50)

ALTER TABLE Lector ADD Post nvarchar(50)

ALTER TABLE Student ADD Direction nvarchar(MAX)

It should be noted that this transformation does not take
into account complex conversions the ERD notation to the
database schema, for example, those which would allow to
create single dictionary table on the base of attribute, because it
requires a special description language of templates and it is
one of the areas for further research. Although such a
conversion could be done by adding to the entity “Attribute”
the attribute “Is_a_Dictionary” of logical type and setting the
constraints on pattern occurrence.

Transformation “model-model”. Transformation of this
type allows to produce conversion of model from one notation
to another or to perform any operations over model (creation of
new elements, reduction, etc.). Such transformation will allow
to export model to external systems, and to provide the ability
to convert the domain-specific language that was created by the

user in one of most common modeling language, for example,
UML, ERD, IDEF0, etc.

The left-hand side of a production rule of this type
transformation is a pattern, which is some fragment of the
source metamodel, and the right-hand side of the rule is a some
fragment of the target metamodel. At the production rule
definition also it is necessary to describe the rules for
converting the attributes of entities and relations. The created
model should not contain dangling pointers, therefore the
process of the transformation executions begins with the
creation of entity instances and only then instances of relations
are created. If in the process of model building the dangling
pointers are still found the system will delete them.

At transformation execution it is necessary to consider the
following elementary conversions:

 conversion “entity entity”;

 conversion “relation relation”;

 conversion “entityrelation”;

 conversion “relationentity”.

Let's suppose that in the source model the instances of
entities and/or relations of pattern are already found.

For fulfillment of the conversion : L Ree Ent Ent it is

necessary to create in the new model the instance
REntI of the

appropriate entity of a rule right-hand side and to perform the
specified transformation rules of attributes. The created
instance of entity will have the same name, as the name of
source entity instance.

For execution the conversion : L Rrr Rel Rel at first it is

necessary to found in the source model the instances of entities

.LRelI SEI and .LRelI TEI , which are connected by the

relation instance LRelI , then the images of these instances

(.)Lfe RelI SEI , (.)Lfe RelI TEI should be found in the new

model, and an instance of the relation from a rule right-hand
side should be lead between them. After that it is necessary to
fulfill transformation rules of attributes.

For fulfillment of the conversion : L Rer Ent Rel it is

necessary to find in source model the nodes SEntI , TEntI

which are adjacent to entity instance LEntI . Let’s denote their

images in the target model as Source and Target. In the target

model the relation instance RRelI between nodes Source,

Target should be lead. Further it is necessary to execute
defined transformation rules of attributes. The algorithm of

conversion : L Rer Ent Rel on the pseudocode can be

described as follows:

Algorithm 4. Conversion “entityrelation”

LEntI  Find_instance(,L SEnt G);

SEntI  Find_adjacent_node(LEntI);

TEntI  Find_adjacent_node(LEntI);

SourceFind_node_image(SEntI);

Target  Find_node_image(TEntI);

RRelI  Add_new_arc(Source ,Target);

Execute_attributes_transformation(,L REntI RelI);

The complexity of the function “Find_instance” is equal to

()O N , where N is an amount of instances of various entities in

model. The complexity of the function “Find_adjacent_node”
is equal to a constant, since for its performance it is necessary
to pass on the corresponding arc of the graph model. To find
the image of node it is necessary to pass on arc-reference, i.e.
the complexity of function “Find_node_image” is equal to a
constant. The complexity of executing of function

“Execute_attributes_transformation” is equal to
1

()
k

i
i

O A


 ,

where k is an amount of specified transformation rules of

attributes,
iA is the complexity of the performance of i-th rule.

Thus, the complexity of the presented algorithm is equal to

1

()
k

i
i

O A N


 .

Conversion : L Rre Rel Ent transforms the instance of

relation LRelI found in the source model to the entity instance

REntI of target model. For conversion execution it is

necessary to create the entity instance REntI , to perform the

specified transformation rules of attributes. The name of

REntI will be the same as the name of the relation instance

LRelI . At the next step it is necessary to find entities instances

.LRelI SEI , .LRelI TEI , which are connected by relation

instance LRelI .

Further the instances of relations that connect an entity

instance REntI with nodes Source and Target, which are

images of the nodes .LRelI SEI and .LRelI TEI , accordingly,

with keeping of orientation of relation instance.

Thus, the conversion algorithm will be following:

Algorithm 5. Conversion “relationentity”

LRelI Find_instance(,L SRel G);

Add_new_node(, .R TEntI G V);

Execute_attributes_transformation(,L RRelI EntI);

SourceFind_node_image(.LRelI SEI);

Target  Find_node_image(.LRelI TEI);

Add_new_arc(Source , REntI);

Add_new_arc(REntI ,Target);

The complexity of algorithm of conversion

“relation  entity” performance is equal to
1

()
k

i
i

O A N


 .

It is possible to present the rest conversions of “model-
model” type by a combination of these elementary operations.

Let's consider an example, perform the transformation of
the model on Entity-Relation Diagrams notation to UML Class
Diagrams.

Since the transformation is done at the metamodel level,
then at the first step it is necessary to create/open source and
target metamodels. The ERD metamodel was presented in the
fig. 4. Metamodel of UML Class Diagrams is shown in the
fig. 6. It contains the following elements: the entity “Class” and
three relations “Inheritance”, “Association”, “Aggregation”.
Let’s define the production rules that determine the
transformation.

Fig. 6. Fragment of metamodel for Class Diagrams

The rule “Abstract-Class” allows to convert the instances of
entities “Entity” and “Relation”, which are connected at least
with one instance of entity “Attribute”, to the instance of entity
“Class”. This rule has the following appearance:



The rule “Entity-Class” allows to convert the instance of
entity “Entity”, which is not associated with any instance of the
entity “Attribute”, to the instance of an entity “Class”. The rule
has the following form:



The rule “Relation-Association” converts instances of the
entity “Relation” of the source model to instances of the
relation “Association” of the target model.

This rule looks like:



The rule “Inheritance” puts in correspondence to each
instance of the relation “SuperClass_SubClass” of source

model a particular instance of the relation “Inheritance” of
target model. This rule has the following form:



After definition of all rules, which are included in the
transformation, it is possible to execute conversion on a
specific model. Let’s perform this transformation on the
considered earlier model “University” (see fig. 5). The result of
the transformation execution is presented in fig. 7.

Fig. 7. Model “University” on the Class Diagrams notation, generated by

MetaLanguage system

V. CONCLUSION

Models transformations are a central part of the model-
based approach to system development, since an existence in
one system of models fulfilled from the different points of
view, with a different level of detail and using for the
description different modeling languages, demands presence of
model transformation tools both between various levels of
hierarchy, and within single level: at transition from one
modeling language to another.

The presented approaches have been implemented in a
transformer of MetaLanguage system. This component allows
to convert models, described on visual domain-specific
languages, to text or other graphic models. The component has
a convenient and simple user interface, therefore not only
professional developers, but also domain specialists, for
example, business analysts, can work with it.

REFERENCES

[1] Брыксин Т.А., Литвинов Ю.В. Среда визуального
программирования роботов QReal:Robots / Материалы
международной конференции "Информационные технологии в
образовании и науке". Самара, 2011. – С. 332-334.

[2] Демаков А. Язык описания абстрактного синтаксиса TreeDL и его
использование / Препринт ИСП РАН. – 2006. – № 17. – С. 1-24.

[3] Межуев В.И. Предметно-ориентированное моделирование
распределенных приложений реального времени / Системы
обработки информации. – 2010. – № 5(86). – С. 98-103.

[4] Sukhov A.O., Lyadova L.N. MetaLanguage: a Tool for Creating Visual
Domain-Specific Modeling Languages / Proceedings of the 6th
Spring/Summer Young Researchers’ Colloquium on Software
Engineering (SYRCoSE 2012). М.: Изд-во Института системного
программирования РАН, 2012. – P. 42-53.

[5] Сухов А.О., Серый А.П. Использование графовых грамматик для
трансформации моделей / Материалы конференции "CSEDays
2012". Екатеринбург: Изд-во Урал. ун-та, 2012. – С. 48-55.

[6] Mens T., Czarnecki K., Gorp P.V. A Taxonomy of Model
Transformations / Electronic Notes in Theoretical Computer Science.
Amsterdam: Elsevier Science Publishers, 2006. Vol. 152. – P. 125-142.

[7] Подкопаев А.В., Брыксин Т.А. Генерация кода на основе
графической модели / Материалы межвузовского конкурса-
конференции студентов, аспирантов и молодых ученых Северо-
Запада "Технологии Miscrosoft в теории и практике
программирования". СПб.: Изд-во СПбГПУ, 2011. – С. 112-113.

[8] Montanari U., Rossi F. Graph Rewriting, Constraint Solving and Tiles
for Coordinating Distributed Systems // Applied Categorical Structures.
Netherlands: Springer, 1999. – P. 333-370.

[9] Миков А.И., Борисов А.Н. Графовые грамматики в автономном
мобильном компьютинге / Математика программных систем:
межвуз. сб. науч. ст. / под ред. А.И. Микова, Л.Н. Лядовой. Пермь:
Изд-во Перм. гос. нац. исслед. ун-та, 2012. – Вып. 9. – С. 50-59.

[10] Konig B. Analysis and Verification of Systems with Dynamically
Evolving Structure / Habilitation thesis. – 238 p. [Электронный
ресурс]. URL: http://jordan.inf.uni-
due.de/publications/koenig/habilschrift.pdf (дата обращения:
17.02.2013).

[11] Rekers J., Schuerr A. A Graph Grammar approach to Graphical Parsing /
Proceedings of the 11th IEEE International Symposium on. Washington:
IEEE Computer Society, 1995. – P. 195-202.

[12] Ehrig H., Ehrig K., Prange U. et al. Fundamentals of Algebraic Graph
Transformation. New York: Springer-Verlag, 2006. – 388 p.

[13] Balasubramanian D., Narayanan A., Buskirk C.P. et al. The Graph
Rewriting and Transformation Language: GReAT / Electronic
Communications of the EASST. – 2006. – Vol. 1. – P. 1-8.

[14] Gardner T., Griffin C., Koehler J. et al. A review of OMG MOF 2.0
Query/Views/Transformations Submissions and Recommendations
towards the final Standard / Proccedings of the 1st International
Workshop on Metamodeling for MDA. York, 2003. – P. 1-20.

[15] Csertan G., Huszerl G., Majzik I. et al. VIATRA – Visual Automated
Transformations for Formal Verification and Validation of UML
Models. Available at: http://static.inf.mit.bme.hu/pub/ase2002_varro.pdf
(accessed 17 March 2013).

[16] ATL: Atlas Transformation Language / ATL Starter’s Guide. LINA &
INRIA Nantes, 2005. – 23 p.

[17] Wimmer M., Strommer M., Kargl H. et al. Towards Model
Transformation Generation By-Example / Proceedings of the 40th
Annual Hawaii International Conference on System Sciences.
Washington: IEEE Computer Society, 2007. – P. 1-10.

[18] Серый А.П. Алгоритмы сопоставления графов для решения задач
трансформации моделей на основе графовых грамматик /
Математика программных систем: межвуз. сб. науч. ст. Пермь: Изд-
во Перм. гос. нац. исслед. ун-та, 2012. – Вып. 9. – С. 60-73.

[19] Лядова Л.Н., Серый А.П., Сухов А.О. Подходы к описанию
вертикальных и горизонтальных трансформаций метамоделей /
Математика программных систем: межвуз. сб. науч. ст. Пермь: Изд-
во Перм. гос. нац. исслед. ун-та, 2012. – Вып. 9. – С. 33-49.

