
Software mutation testing: towards combining

program and model based techniques

M. Forostyanova

Department of Information technologies

Tomsk State University

Tomsk, Russia

mariafors@mail.ru

N. Kushik

Department of Information technologies

Tomsk State University

Tomsk, Russia

ngkushik@gmail.com

Abstract — The paper is devoted to the mutation testing

technique that is widely used when testing different software

tools. A short survey of existing methods and tools for mutation

testing is presented in the paper. We classify existing methods:

some of them rely on injecting bugs into a program under test

while other use a formal model of the software in order to inject

errors. We also provide a short description of existing tools that

support both approaches. We further discuss how these two

approaches might be combined for the mutation based test
generation with the guaranteed fault coverage.

Keywords — Software testing, mutation testing, mutation
operator, model based testing, fault coverage.

I. INTRODUCTION

As the number of widely used information systems
increases quickly, the problem of software testing becomes
more important. Thorough testing is highly needed for software
being used in critical systems such as telecommunications,
banking, transportation, etc. [1]. An approach for mutation
testing has been proposed around thirty years ago but there still
remain some issues of this approach waiting for new effective
solutions. Those are fault coverage, equivalent mutants, etc.
that we further discuss. In order to solve these problems model
based methods for mutation testing are now appearing. In this
paper, we make an attempt to follow the chronology of
mutation software testing. We start with the initial
methodology of mutating programs and further turn to model
based mutation testing techniques. In both cases, we provide a
brief description of tools which are developed for
program/model based mutating testing.

As mentioned in [2], the mutation testing has been
introduced by a student Richard Lipton in 1971 [3] while the
first publication in this field has been prepared by DeMille,
Lipton and Sayward [4]. Meanwhile, the first tool for mutation
testing has been developed by Timothy Budd ten years later, in
1980 [5]. Next twenty years the popularity of mutation testing
techniques did not grow rapidly while after Millennium it
became more and more popular. Moreover, in 2000 the first
complete survey of existing methods for mutation testing has
appeared [3]. During the last decade there appeared more than
230 publications on mutation testing [2] and almost all existing
tools rely on injecting errors in a program under test. One may

turn to [2] to find various papers, PhD theses, etc. combined
together into one large repository [6], where the authors make
an attempt to cover mutation testing evolution from 1977 till
2009. However, there exist much less publications on model
based mutation testing and much less tools that support
corresponding formal methods.

In this paper, we first discuss mutation testing technique
when a program is mutated by injecting bugs into it. In this
case, a program with an injected bug is called a mutant. If the
behavior of the program is not changed after an injected bug
then such injection leads to an equivalent mutant. Most of
existing tools are developed for software that is written in high
level language, and thus, mutation operators are often adapted
to language operators. Moreover, ‘good’ tools usually inject
those errors that programmer often ignores in his/her programs.

When deriving a mutant based test suite two ways are often
used. The first way is to randomly generate test sequences and
to check which mutants (errors) are detected by these
sequences. Another option is to generate mutant based test
sequences such that all the injected errors are detected. The
first approach is mostly used when a model is the program
itself while the second approach is used more rarely and deals
with the formal specification of the program.

Considering the first approach there exist tools that are able
to inject bugs into programs written in Fortran [see, for
example 7], C/C++ [see, for example 8], Java [see, for example
9], and an SQL code [see, for example 10]. As for the second
approach, there exist tools that are developed for injecting
errors into software specifications on different abstraction level
such as Finite State Machines [see, for example 11], State
charts [see, for example 12], Petri Nets [see, for example 13],
XML-specification [14]. In this paper, we discuss a number of
methods and tools for mutation testing and divide the paper
into two parts. The first part is devoted to the program based
mutation testing where bugs are injected into programs and in
the second part the model based mutation testing is discussed.

The rest of the paper is organized as follows. Section II
contains the preliminaries. Section III is devoted to the
program based mutation testing. This section contains the
description of a testing method when a program is mutated and
a short description of tools for mutating programs written in

Java, C and SQL languages. The model based mutation testing
is discussed in Section IV. This approach is illustrated for
different kinds of program specifications such as finite state
machines, XML-specifications, etc. A number of tools
developed for injecting faults into the program specifications
are also described. Section V discusses an approach of
combining the program based mutation testing with the model
based one. Section VI concludes the paper.

II. PRELIMINARIES

As mentioned above, software testing becomes more and

more important and there appear new methods and techniques

for this kind of testing. Nevertheless, all methods for software

testing can be implicitly divided into two large groups.

Methods of the first group rely on the informal program

specification or the informal software requirements while

methods of the second group require a formal model to derive
a test suite for a given program. The main advantage of the

first approach is the speed of testing that might be rather high

because of short length of test sequences and because of a the

cardinality of a test suite. However, the main problem of this

technique is the fault coverage that is not guaranteed. This

problem can be partially solved for model based testing

techniques where a test suite is derived based on the formal

specification of a given program. This formal specification

may be finite transition model [15], pre-post conditions [16],

etc. However, the speed of the software testing may fall down

exponentially since a long time is needed for deriving formal
specifications as well as for deriving a test suite on the basis of

this specification. Thus, a good compromise might be to

combine somehow methods of the first and the second groups

in order to increase the testing speed and to guarantee the fault

coverage at least for some classes of program bugs.

Mutant based software testing is not an exception of this

tendency and methods for mutation testing can be also

implicitly divided into those that rely on a program itself and

those that are based on the formal model of a given program.

Hereafter, we refer to methods of the first groups as methods

of program based mutation testing while methods of the

second group are called model based methods. The main idea
of the mutation testing is to change a program or a model in

such way that this change corresponds to possible errors in

program implementation. Another nontrivial task is to derive a

test sequence or a test suite such that all ‘inappropriate’

changes could be detected by applying test sequences.

Each tool for the program based mutation testing relies on

a set of mutation operators and this set describes types of

errors that can be detected in the source code by a

corresponding test suite. The bigger is the set of mutation

operators the more test properties can be verified by these

mutants.
In this paper, when discussing the program based mutation

testing we consider programs written in high level languages

like C + + and Java. We further turn to the model based

mutation testing and consider finite state machines (FSMs)

and extended FSMs (EFSMs) as formal specifications that are

widely used for the software test derivation.

Model based testing allows to detect those implementation

bugs that cannot be detected by random testing or other

techniques of program based testing. Thus, in this paper we

discuss which methods and tools are developed for the

program based mutation testing as well as for the model based

mutation testing. In Section V we make a step towards
combining those methods, i.e., we establish a correspondence

between software bugs (program mutants) and formal

specification errors (model mutants).

III. PROGRAM BASED MUTATION TESTING

In case of the program based mutation testing mutated
programs (mutants) are often used for evaluating the quality of
a given test suite, i.e., a mutant is used for checking whether
corresponding types of program bugs can be detected by the
test suite or not. If some mutants cannot be detected or killed
the test suite is extended by corresponding test sequences. This
approach is illustrated in Fig. 1. [2]. One may turn to [2] to find
out more about the scheme presented in Fig 1.

Fig. 1. Generic Process of Mutation Analysis

The program based mutation testing described above has
been implemented as several software tools. Most of the tools
are developed only for injecting bugs into a source code and
only several tools support a test generation process. Moreover,
almost every tool for program based mutation testing is
commercial. We further provide a short description of existing
tools for mutation testing of C/C++ and Java programs.

A. Tools for C program Mutation testing

Agrawal et al. [8] have proposed a comprehensive set of
mutation operators for the ANSI C programming language in
1989. There are 77 mutation operators defined in this set.
Moreover, Vilela et al. [17] proposed a number of mutation
operators to represent bugs associated with static and dynamic
memory allocations.

Now there exist a number of tools for injecting errors into
C programs. Some of these tools are briefly presented in Table
I.

TABLE I

A LIST OF TOOLS FOR PROGRAM BASED MUTATION TESTING FOR C++/C PROGRAMS

Name Date of first

release

Accessibility

Is improving

currently

Features

PlexTest [18] 2005 The commercial product + Only an instruction removal is supported

Insure++ [19] 1998 The commercial product + Injects and detects bugs for identifiers,
memory/stack bugs and bugs that concern to

linking libraries

Proteum/IM

2.0 [20]

2000 The free download utility - Supports 71 mutation operators and calculates the

number of mutants being killed

Certitude [21] 2006 The commercial product + Can be used for C/ C + + and HDL programs;

Combines the mutation approach with the static

code analysis;

Allows to verify an environment of the program

under test

MILU [22] 2008 The free download utility + Allows a user to choose the desired number of

mutants and to specify their types;

77 mutation operators are supported

One may conclude from Table I that almost all existing

tools are developed for injecting bugs, probably except of

PlexTest, Insure++ and Certitude that also provide test

generation. In spite of the fact that these products are

commercial they do not guarantee the guaranteed fault

coverage with respect to their specifications.

B. Tools for Java program mutation testing

 As many Java programs support the object-oriented
paradigm, tools that inject bugs into such programs are mainly
concentrated on disturbing inheritance and/or polymorphism
features.

Kim et al. [23] were the first to define mutation operators
for Java programming language taking into account object-
oriented paradigm. This team has proposed 20 mutation
operators for Java programs. Moreover, Kim has introduced
Class Mutations, which were divided into six groups:
Types/Variables, Names, Classes/interface declarations,
Blocks, Expressions and others.

Following the tendency from Section A we further describe
several tools developed for Java program mutation testing.
Differently from C based mutation testing most of the tools
developed for the Java program mutation testing are distributed
for free. A brief description of available tools is presented in
Table II.

Looking at this table one may conclude that there exist

tools that support injecting bugs concerned on encapsulation,

polymorphism and inheritance. Those are MuJava,

Javalanche, and Jester. Moreover, these tools support mutation

testing based on corresponding mutation operators. However,

the fault coverage of these tests remains unknown. One of the

reasons could be the problem of equivalent mutants that are

not automatically excluded from the mutants being generated.

Therefore, the program based mutation testing needs to be
extended with the formal specification of a program under test

in order to provide the guaranteed fault coverage of a test

suite.

TABLE II

A LIST OF TOOLS FOR PROGRAM BASED MUTATION TESTING FOR JAVA PROGRAMS

Name Date of first

release

Accessibility

Is improving

currently

Features

Jester [24] 2001 The free download utility + Supports object-oriented mutation operators;

Shows equivalent mutants to a user

MuJava [25] 2004 The free download utility + Supports 24 mutation operators which specify

object-oriented bugs;

Mutants are generated and executed

automatically;

Equivalent mutants have to be excluded manually

MuClipse [26] 2007 The free download utility

(plugin for Eclipse)

+ This is the MuJava version developed for Eclipse

Javalanche [27] 2009 The commercial product + Detects around 10% of equivalent mutants;
Allows a user to manipulate with a bytecode;

Most mutants are concerned about the

replacement of an arithmetic operator, constants,

function calls;

Can execute several mutations in parallel and

might be used for testing parallel and distributed

systems

IV. MODEL BASED MUTATION TESTING

The first steps in model based mutation testing have been
made in 1983 by Gopal and Budd. They have proposed a
technique for the software mutation testing describing
software requirements taking into account the predicate
structure of the program under test.

When generating a test using the model based mutation
testing, errors are injected into the model, i.e. the model is
mutated. Moreover, similar to the program based mutation
testing equivalent mutants need to be deleted. The model
based mutation testing has been studied for a number of
formal models such as automata models [15], Petri nets, etc
described in UML, XML, etc.

By the use of automata models such as FSMs, EFSMs,
Petri nets, tree automata, labeled transition systems (LTS),
etc. there were proposed a number of approaches for
specifying informal software requirements. A number of
mutation operators have been proposed for such finite state
models. One may turn, for example, to [28] where the
authors propose 9 mutation operators representing faults
related to states, inputs and outputs of an FSM that is
mutated. This set of mutation operators has been
implemented in the tool PROTEUM [20]. In [29], the
authors investigated an application of mutation testing for
probabilistic finite automata (PFAs). They have defined 7
mutation operators and have specified a number of rules how
to exclude equivalent mutants.
 Mutation operators have been also defined for EFSMs in
[30]. In this work, the author has discussed changing
operators and/or operands in functions and predicates.
Nevertheless, only some types of mutants are formally
specified in this work. Thus, in our paper we make an
attempt to classify EFSM mutants and to establish a
correspondence between EFSM mutants and bugs in the
corresponding software implementations.

 Tree automata are also of a big help when dealing with
software verification. Moreover, each tree automaton can be
described as an XML document, and thus, a number of
mutation operators is defined especially for XML-
documents. One may turn to [14] where Lee and Offut
discuss how to inject errors into XML-documents and how to
apply this technique for mutation testing of web-servers. The
authors have proposed 7 mutation operators and they have
further extended their work in 2001 introducing a new
approach to XML mutation. This work is based on deriving
invalid XML-data using seven mutation operators. All the
XML mutation operators introduced in [32] have been
combined together and have been implemented in the tool
XTM. XTM supports 18 mutation operators and allows to
test XML-documents. Nevertheless, the authors of [31]
‘complain’ that only 60% of injected errors have been
detected in their experiments.

V. ESTABLISHING A CORRESPONDENCE BETWEEN

PROGRAM MUTANTS AND MODEL MUTANTS

In order to somehow combine methods and tools for the
program based mutation testing with that based on formal
models we are now interested in establishing a
correspondence between bugs in a program under test and
faults in a model of this program. We are planning to
experimentally solve this problem and we focus on testing
C/C++ programs. Moreover, we choose one of finite state
models discussed above and define a number of mutation
operators for this model. A model of an EFSM [32] is rather
close to C/C++ implementation because it extends a classical
FSM with input and output parameters and context variables.
Predicates can be also specified in the EFSM model and a
transition can be executed if a corresponding predicate is
true. Thus, we establish a correspondence between bugs in
C/C++ programs and EFSM faults. Such correspondence can
be further used for deriving a test suite for C/C++
implementations based on program mutants but preserving
the same fault coverage as if a test suite is derived based on a
corresponding EFSM.

We first classify EFSM mutants and then establish to
which C/C++ program errors they correspond to.

1. Predicate EFSM mutant is derived when a predicate
formula is mistaken or the predicate is deleted, i.e. ,transition
becomes unconditional.

2. Transition EFSM mutant is derived when a transition
is deleted, unspecified transition is added to EFSM or the
next state of some transition is wrong.

3. Function EFSM mutant occurs when changing a
formula for calculating the next value of a context variable or
an output parameter.

We now discuss which C/C++ bugs correspond to the
above mutants.

A. Predicate mutants

Each EFSM predicate corresponds to a switch/case or
if/else instruction of a corresponding C/C++ code, and thus,
the following cases are possible.

1. An EFSM predicate is deleted and this fault
corresponds to eliminating the if/else instruction
from the C code.

2. An EFSM predicate consists of several conditions
and one of these conditions is deleted. In this case,
the corresponding C code contains a complex
condition under if or while and one of its conditions
is deleted.

3. Changing logical connectives of a predicate
corresponds to a software implementation with an
invalid condition.

4. An EFSM predicate can be also changed with
respect to a corresponding formula, i.e., operators
and/or operands may be changed. These changes
correspond to the same changes under if or while
conditions in the C code.

B. Transition mutants

 This type of EFSM faults is rather difficult to correlate
with C/C++ implementation changes. The reason is that this
correspondence strongly depends on how states are defined
in the program. If each EFSM state corresponds to one of
special program state variable then EFSM transition mutant
can correspond to changing the identifier of the next state in
the program. If the transition is deleted in the EFSM then a
corresponding instruction is deleted from the C/C++ code.

Establishing such correspondence is much more difficult
when state semantics is different in the program and by now
this option is out of the scope of this paper.

C. Function mutants

 When changing formula for calculating values of a
context variable or output parameters corresponding C/C++
program is changed in the same way. Thus, EFSM function
mutants correspond to those program mutants that are
derived by changing corresponding operators and/or
operands in the C/C++ instructions.

In Table III the correspondence between EFSM mutants
and bugs in software implementations is presented.

TABLE III

 A CORRESPONDENCE BETWEEN EFSM MUTANTS AND PROGRAM BUGS

VI. CONCLISUION

In this paper, we have discussed different methods and
tools developed for the software mutation testing. The paper
clearly shows that there exists a list of tools that support
program based mutation testing when a bug is injected into
the original program. Much less tools are developed for
model based software testing in spite of the fact that this
technique allows to guarantee the fault coverage of a test
suite. As a result, we are planning to combine the program
based mutation testing with the model based one in order to
derive tests with the guaranteed fault coverage rather fast.
For this purpose we have tried to establish a correspondence
between program bugs and model mutants. Such
correspondence can be further used for deriving a test suite
for C/C++ implementations based on program mutants but
preserving the same fault coverage as if a test has been
derived based on corresponding EFSM. Developing such
testing method based on this correspondence is an open
problem for a future work.

REFERENCES

[1] О. Г. Степанов. Методы реализации автоматных
объектно-ориентированных программ. Диссертация
на соискание ученой степени кандидата
технических наук, СПбГУ ИТМО: 2009, 115 с.

[2] Yue Jia, M. Harman, IEEE, ”An Analysis and Survey
of the Development of Mutation Testing”, pp 33

[3] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting
the Orthogonal,”In Proceedings of the 1st Workshop on
Mutation Analysis (MUTATION’00), published in
book form, as Mutation Testing for the New Century.
San Jose, California, 6-7 October 2001, pp. 34–44

[4] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints
on Test Data Selection: Help for the Practicing
Programmer,” Computer, vol. 11, no. 4, pp. 34–41,
April 1978

[5] T. A. Budd, “Mutation Analysis of Program Test Data,”
PhD Thesis,Yale University, New Haven, Connecticut,
1980

[6] Repository: [web-site]. URL:
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/, 2010

[7] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayward,“Theoretical and Empirical Studies on Using
Program Mutation to Test the Functional Correctness of
Programs,” in Proceedings of the 7th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL’80), Las Vegas, Nevada, 28-30
January 1980, pp. 220–233

[8] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W.
Hsu, E. W. Krauser, R. J. Martin, A. P. Mathur, and E.
Spafford, “Design of Mutant Operators for the C
Programming Language,” Purdue University, West
Lafayette, Indiana, Technique Report SERC-TR-41-P,
March 1989.

Program bugs EFSM mutants

Removal of instruction block if / else Predicate mutant (a transition becomes unconditional)

Removal of a part of composite condition Predicate mutant

Sign changing in an if condition Predicate mutant

Operators and/or operands changes in an if condition Predicate mutant

Change of identifier in an if condition Predicate mutant

Return of a wrong variable from a function Output mutant

Changing a sign in an arithmetic operation Function mutant

Removal of instruction block after if (or else) Transition mutant

http://www.dcs.kcl.ac.uk/pg/jiayue/repository/

[9] S. Kim, J. A. Clark, and J. A. McDermid, “Investigating
the effectiveness of object-oriented testing strategies
using the mutation method,” in Proceedings of the 1st
Workshop on Mutation Analysis (MUTATION’00),
published in book form, as Mutation Testing for the
New Century. San Jose, California, 6-7 October 2001,
pp. 207–225.

[10] SQLmutation : [web-site]. URL:
http://in2test.lsi.uniovi.es/sqlmutation/, 2005

[11] S. S. Batth, E. R. Vieira, A. R. Cavalli, and M. U. Uyar,
“Specification of Timed EFSM Fault Models in SDL,”
in Proceedings of the 27th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’07), ser. LNCS, vol.
4574. Tallinn, Estonia: Springer, 26-29 June 2007, pp.
50–65.

[12] G. Fraser and F. Wotawa, “Mutant Minimization for
Model-Checker Based Test-Case Generation,” in
Proceedings of the 3rd Workshop on Mutation Analysis
(MUTATION’07), published with Proceedings of the
2nd Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART’07).
Windsor, UK: IEEE Computer Society, 10-14
September 2007, pp. 161–168.

[13] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M.
E. Delamaro, and W. E. Wong, “Mutation Testing
Applied to Validate Specifications Based on Petri
Nets,” in Proceedings of the IFIP TC6 8th International
Conference on Formal Description Techniques VIII,
vol. 43, 1995, pp. 329–337.

[14] S. C. Lee and A. J. Offutt, “Generating Test Cases for
XML-Based Web Component Interactions Using
Mutation Analysis,” in Proceedings of the 12th
International Symposium on Software Reliability
Engineering (ISSRE’01), Hong Kong, China,
November 2001, pp. 200–209.

[15] N.Shabaldina, Khaled El-Fakih, N. , "Testing
Nondeterministic Finite State Machines with Respect to
the Separability Relation", TestCom/FATES, 2007,
pp:305-318

[16] S. S. Batth, E. R. Vieira, A. R. Cavalli, and M. U. Uyar,
“Specification of Timed EFSM Fault Models in SDL,”
in Proceedings of the 27th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’07), ser. LNCS, vol.
4574. Tallinn, Estonia: Springer, 26-29 June 2007, pp.
50–65.

[17] P. Vilela, M. Machado, and W. E. Wong, “Testing for
Security Vulnerabilities in Software,” in Software
Engineering and Applications, 2002.

[18] PlexTest : [web-site]. URL:
http://www.itregister.com.au/products/plextest, 2005

[19] Insure++: [web-site]. URL:
http://www.parasoft.com/jsp/products/insure.jsp?itemId
=63, 1998

[20] M. E. Delamaro, J. C. Maldonado, "Proteum/IM 2.0:
An Integrated Mutation Testing Environment", Univ. de
Sao Paulo, Sao Paulo, Brazil, 2001, pp. 91 - 101

[21] Cetress, “Certitude,”: [web-site]. URL:
http://www.certess.com/product/ , 2006

[22] Y. Jia and M. Harman, “MILU: A Customizable,
Runtime-Optimized Higher Order Mutation Testing
Tool for the Full C Language,” in Proceedings of the
3rd Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART’08).
Windsor, UK: IEEE Computer Society, 29-31 August
2008, pp. 94–98.

[23] S. Kim, J. A. Clark, and J. A. McDermid, “The
Rigorous Generation of Java Mutation Operators Using
HAZOP,” in Proceedings of the 12th International
Cofference Software and Systems Engineering and their
Applications (ICSSEA 99), Paris, France, 29
November-1 December 1999.

[24] Jester : [web-site]. URL: http://jester.sourceforge.net/,
2001

[25] MuJava : [web-site]. URL:
http://cs.gmu.edu/~offutt/mujava/, 2004

[26] B. H. Smith and L. Williams, “An Empirical Evaluation
of the MuJava Mutation Operators,” in Proceedings of
the 3rd Workshop on Mutation Analysis
(MUTATION’07), published with Proceedings of the
2nd Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART’07).
Windsor, UK: IEEE Computer Society, 10-14
September 2007, pp. 193–202.

[27] Schuler, D., Dallmeier, V., and Zeller, A. 2009.
Efficient mutation testing by checking invariant
violations. In Proceedings of the 18th international
Symposium on Software testing and Analysis (2009),
pp. 69–80.

[28] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and
P. Masiero, “Mutation Analysis Testing for Finite State
Machines,” in Proceedings of the 5th International
Symposium on Software Reliability Engineering,
Monterey, California, 6-9 November 1994, pp. 220–
229.

[29] R. M. Hierons and M. G. Merayo, “Mutation Testing
from Probabilistic Finite State Machines,” in
Proceedings of the 3rd Workshop on Mutation Analysis
(MUTATION’07), published with Proceedings of the
2nd Testing: Academic and Industrial Conference
Practice and Research Techniques (TAIC PART’07).
Windsor, UK: IEEE Computer Society, 10-14
September 2007, pp. 141–150.

[30] А. В. Коломеец. Алгоритмы синтеза проверяющих
тестов для управляющих систем на основе
расширенных автоматов. Дис. … канд. техн. наук.
Томск: 2010, 129 с.

[31] Ledyvania Franzotte and Silvia Regina Vergilio,
“Applying Mutation Testing to XML Schemas”,
Computer Science Department, Federal University of
Parana (UFPR), Brazil, pp 6

[32] El-Fakih K., Prokopenko S., Yevtushenko N.,
Bochmann G. "Fault diagnosis in extended finite state
machines",In Proc. of the IFIP, 15th Intern. Conf. on
Testing of Communicating Systems, France -2003.

http://in2test.lsi.uniovi.es/sqlmutation/
http://www.itregister.com.au/products/plextest
http://www.parasoft.com/jsp/products/insure.jsp?itemId=63
http://www.parasoft.com/jsp/products/insure.jsp?itemId=63
http://www.certess.com/product/
http://jester.sourceforge.net/
http://cs.gmu.edu/~offutt/mujava/

