
Hide and seek: worms digging at the Internet backbones and edges

Svetlana Gaivoronski

Computational Mathematics and Cybernetics dept.

Moscow State University

Moscow, Russia

Email: sadie@lvk.cs.msu.su

Dennis Gamayunov

Computational Mathematics and Cybernetics dept.

Moscow State University

Moscow, Russia

Email: gamajun@cs.msu.su

Abstract—The problem of malicious shellcode detection in
high-speed network channels is a significant part of the
more general problem of botnet propagation detection and
filtering. Many of the modern botnets use remotely exploitable
vulnerabilities in popular networking software for automatic
propagation. We formulate the problem of shellcode detection
in network flow in terms of formal theory of heuristics
combination, where a set of detectors are used to recognize
specific shellcode features and each of the detectors has its
own characteristics of shellcode space coverage, false negative
and false positive rates and computational complexity. Since the
set of detectors and their quality is the key to the problem’s
solution, we will provide a survey of existing shellcode detection
methods, including static, dynamic, abstract execution and
hybrid, giving an estimation to the quality of the characteristics
for each of the methods.

Keywords-shellcode; malware; polymorphism; metamor-
phism; botnet detection;

I. INTRODUCTION

Since the early 2000’s and until the present time botnets

are one of the key instruments used by cybercriminals

for all kinds of malicious activity: stealing users’ financial

information, bank accounts credentials, organizing DDoS

attacks, e-mail spam, malware hosting et cetera. Among

the recent botnet activity we could mention the Torpig

botnet, which was deeply investigated by the UCSB research

group Torpig, the Zeus botnet involved in FBI’ investigations

which ended in arrest of over twenty people in September

2010 [6], and also the Kido/Conficker botnet, which has

attracted the attention of security researchers since the end of

2008 and is still one of the most widespread trojan programs

found on end users computers [4].

Despite of the fact that malware tends to propagate via

web applications vulnerabilities, drive-by downloads, rogue

AV software and infecting legitimate websites more often,

the significance of remotely exploitable vulnerabilities in

widespread networking software does not seem to have faded

out in the following years, since the large installation base of

the vulnerable program warrants very high infection rates in

case of the zero-day attacks. Besides, drive-by downloads

often make use of remotely exploitable vulnerabilities in

the client software like Microsoft’s Internet Explorer, Adobe

Reader or Adobe Flash. A typical remotely exploitable

vulnerability is a kind of memory corruption error - heap

or stack overflows, access to the previously freed memory

and other overflow vulnerabilities. Modern malware utilizes

so called ”exploit packs”, commercially distributed suites of

shellcodes for many different vulnerabilities, some of which

may be unknown to the public. For example, the Conficker

worm exploited several attack vectors for propagation: the

MS08-67 vulnerability in Microsoft RPC service, dictionary

attack for local NetBIOS shares and propagation via USB

sticks autorun. Nevertheless, among all these propagation

methods exploitation of the vulnerabilities in the networking

software gives the attacker (or the worm) the best timing

characteristics for botnet growth, because it requires no user

interaction.

We could conventionally designate the following main

stages of the botnets life cycle: propagation, privilege esca-

lation on the infected computer, downloading trojan payload,

linking to the botnet, executing commands from the botnet’s

C&C, removal from the botnet. Comparing the ease of botnet

activity detection and differentiating it from normal Internet

users activity, the propagation stage would be the most

interesting as it involves computer attack, which is always

an anomaly. The stages that follow successful infection -

trojan extensions downloads, linking to botnet and receiving

commands are usually made using ordinary application level

protocols like HTTP or (rarely) IRC, different variations

of P2P protocols, so that these communications are fairly

easy to render to look like normal traffic. At the same

time the propagation stage almost always involves shellcode

transfer between attacker and victim, therefore it is easier

to detect then other stages. This is why memory corruption

attacks and their detection are important for modern Internet

security.

A. Shellcodes and memory corruption attacks

A memory corruption error occurs when some code within

the program writes more data to the memory, than the size of

the previously allocated memory, or overwrites some internal

data structures like malloc() memory chunks delimiters.

One typical example of a memory corruption attack is

stack overflow, where the attacker aims at overwriting the

function return address with an address somewhere within

Activator Decryption routine Shellcode payload Return address zone

Figure 1: Example of possible shellcode structure. Activator may be NOP-sled or GetPC code or alike.

the shellcode. Another example of a memory corruption

attack is a heap overflow which exploits dynamic memory

allocation/deallocation scheme in the operating system’s

standard library.

An example of a possible shellcode structure is shown

at figure 1. Conditionally, we could break shellcodes into

classes depending on which special regions they contain,

where each shellcode region carries out some specific shell-

code function, including detection evasion. For example,

these could be regios of NOP-equivalent instructions (NOP-

sled) or GetPC code as an activator, a decryption routine

region for encrypted shellcodes, shellcode payload or return

address zone.

In terms of classification theory we could define a shell-

code as a set of continuous regions of executable instructions

of the given architecture, where regions are associated by the

control flow (following each other sequentially or linked to

each other with control flow transfer instructions), and where

one or more shellcode features are present simultaneously

(i.e. it contains an activator, decryptor, shellcode payload

zone or return address zone, associated by control flow).

There are significant numbers of existing and ongoing

research activities which try to solve shellcode detection

in network flow problem. These methods can be grouped

into classes in two ways - by the type of analysis they

perform (static, dynamic, abstract execution, hybrid) or by

the types of shellcode features they are designed to detect

(for example, activator, decryptor, shellcode payload, return

address zone). An important observation is that most modern

research papers are focused on IA32 (EM64-T) architecture,

since most Internet-connected devices running Windows

platform use this architecture and, besides, some of Intel

Architecture instruction set features make memory corrup-

tion exploitation easier. This may change in the following

decade when the broadband wireless connections for mobile

devices become more common.

B. Computation complexity problem

Since we primarily aim at detecting network worms

propagation (botnet growth) and not just remote exploitation

of memory corruption vulnerabilities, our task has several

certain peculiarities. Like any massive phenomenon worm

propagation is best monitored in large scale, than at the

end point of the attacked computer. This means that we

should better try to detect worm propagation analyzing

network data in transit at the Tier-2 channels or even Tier-

1 channels. And in this case we inevitably fail because of

the lack of computational power. There are two famous

empiric laws which reflect the evolution of computation and

computer networks - these are Moore’s law and Gilder’s

law. Moore’s law states that the processing power of a

computer system available for the same price doubles every

18 months, and the Gilder’s law says that the total bandwidth

of communication systems triples every twelve months (see

figure 2). The computational power of a typical computer

system available for network channel analysis tends to grow

slower than the throughput of the channel. The real-time

restrictions for filtering devices also become more strict.

For example, the worst case scenario for 1Gbps channel

which is a flow of 64-byte IP packets at the maximum

throughput gives us about 600ns average time for each

packet analysis if we want to achieve wire-speed, and it gives

only about 60ns in case of 10Gbps channel. This trend makes

requirements for computational complexity of the algorithms

utilized by network security devices more severe each year.

That’s why algorithms used for inline shellcode mitigation

should have reasonable computational complexity and allow

implementation in the custom hardware (FPGA, ASIC).

We also should not forget that backbone network channels

like those connecting two or more different autonomous

systems are especially sensitive to the false positives of the

filtering device, because they lead to denial of service for

the legitimate users.

In this paper we formulate the task of the malicious

shellcode detection in the high-speed network channels as a

multi-criteria optimization problem: how to build a shellcode

classifier topology using a given set of simple shellcode

feature classifiers, where each simple classifier is capable

of detecting one or more simple shellcode features with

zero false negative rates, given computational complexity

and false positive rates within its shellcode classes, so

that to provide the optimum aggregate false positive rates

along with computational complexity. The key element of

any solution of this task is the set of simple classifires.

Thus, we provide a survey of the existing methods and

algorithms of shellcode detection, which could be used as

simple classifiers for the aggregate detector. In this survey

we pay special attention to the class coverage, false positives

rates and computational complexity of each method or

algorithm. The structure of this paper is as follows. In the

second section the classes of shellcode features are given

and the main part of the section is the shellcode detection

methods survey. In the third section we provide estimations

of the key methods characteristics, which are essential for

solving multi-criteria optimization problems. In the final two

sections we discuss the results of the survey and suggest

the formal task definition for building hybrid classifier as

a oriented filtering graph of simple classifiers with optimal

Figure 2: Moore and Gilder laws - the network channels throughput leaves the computational power behind.

computational complexity and false positive rates.

II. SHELLCODE DETECTION METHODS

This section provides a classification of malicious objects

and methods of shellcode detection. In addition, we will give

a description of existing methods. For each method, we will

briefly describe the basic idea. We will also describe classes

of shellcode and their coverage, false positive rates and,

where possible, we will give the computational complexity

for the methods.

Let S = {Seq1, . . . , Seqr} be a given set of sequences

of executable instructions, later referred to as object S.

We assume that all instructions in the object are valid

instructions of the target processor. Let us define several

definitions for S, using terminology from [1].

Let us consider a set of features Mal = {m1, ,mn}
of malicious instruction set (a malicious object) and a

set of features Leg = {l1, . . . , lk} of a legitimate set of

instructions.

Suppose we are given a set M of malicious objects. Set

M is covered by a finite number of subsets K1, . . . ,Kl:

M =
l⋃

i=1

Kl.

Subset Kj , j = 1, l is called the class of malware. Each

class Kj is associated to the set of features Mal(Kj)
and Leg(Kj) from the set of malicious features Mal and

legitimate features Leg respectively. In addition, the partition

of M to KJ classes conducted in a way that

Mal =
l⋃

i=1

Mal(Ki)

and

Leg 6=
l⋃

i=1

Leg(Ki)

in general.

Each class Kj is assigned with elementary predicate

Pj(S) = (S ∈ Kj), Pj(S) ∈ {0, 1,∆}

(object S ∈ Kj; S /∈ Kj ; unknown). The information about

the occurrence of object in the class K1, . . . ,Kl is encoded

by vector (α1α2 . . . αl), αi ∈ {0, 1,∆}, i = 1, l.

Definition 1: Instruction set S is called a legitimate, if its

information vector is null |α̃(S)| = 0. In other words, the

object is considered as legitimate iff it is not contained in

any of the classes Kj of malicious set M .

Definition 2: Instruction set S is called malicious if the

length of its information vector is equal to or greater than

1: |α̃(S)| ≥ 1. In other words, the object is considered as

shellcode if it is contained at least in one of the classes Kj

of malicious set M .

The problem of detecting malicious executable instruc-

tions is to calculate the values of the predicates Pj(S) =
(S ∈ Kj) and to construct information vector α̃A(S), where

A is the detection algorithm.

Definition 3: False negatives FN of algorithm A is the

probability that the information vector of S resulted by

algorithm A is null, but the veritable vector of object S
is not null.

FN(A) = P(|α̃A(S)| = 0 | |α̃(S)| ≥ 1) , S ∈ M .

In other words, it is probability that a malicious object is

not assigned to any of the classes Kj of malicious set M .

Definition 4: False positives FP of algorithm A is the

probability that the length of information vector of object S
returned by algorithm A is greater than or equal to 1, but

the veritable vector of object S is null.

FP (A) = P(|α̃A(S)| ≥ 1 | |α̃(S)| = 0) , S /∈ M .

In other words, it is the probability of classifying a legitimate

object to at least one of the classes Kj of malicious set M .

A. Shellcode features classification

As previously mentioned, the entire set of malicious ob-

jects M is covered by the classes K1, . . . ,Kl: M =
l⋃

i=1

Kl.

Let us define the classes K1, . . . ,Kl with respect to the

structure of malicious code. Thus, the set M can be classified

as follows:

1) Activators:

• KNOP1
- class of objects containing simple NOP-sled

- a sequence of nop (0x90) instructions ;

• KNOP2
- objects containing one-byte NOP-equivalents

sled;

• KNOP3
- objects containing multi-byte NOP-

equivalents sled;

• KNOP4
- objects containing four-byte aligned sled;

• KNOP5
- objects containing trampoline sled;

• KNOP6
- objects containing obfuscated trampoline-

sled;

• KNOP7
- objects containing static analysis resistant

sled;

• KGetPC - objects containing GetPC code.

2) Decryptors:

• KSELF UNP - self-unpacking shellcode class;

• KSELF CIPH - self-deciphering shellcode class.

3) Payload:

• KSH - non-obfuscated shellcode class;

• KDATA - class of shellcode with data obfuscation.

For example, ASCII character set can be replaced by

UNICODE;

• KALT OP - class of shellcode obfuscated by the inser-

tion of alternative operators;

• KR - class of shellcode, obfuscated by instruction

reordering in the code;

• KALT I - class of shellcode, obfuscated by replacing

the instructions with instructions with the same opera-

tional semantics;

• KINJ - class of shellcode, obfuscated by code injec-

tion;

• KMET - class of metamorphic shellcode - shellcode

whose body is changing with respect to semantic struc-

ture maintaining;

• KNSC - (non-self-contained) - class of polymorphic

shellcode which does not rely on any form of GetPC

code, and does not read its own memory addresses

during the decryption process.

4) Return address zone:

• KRET - class of shellcode which can be detected by

searching for the return address zone;

• KRET+
- class of shellcode whose return address is

obfuscated. For example, one can change the order of

lower address bits. In this case, the control will be

transferred to different positions of the stack, but always

in any part of NOP-sled. In this case, the functionality

of the exploit will not be compromised.

B. Methods classification

According to the principles at work, shellcode detection

methods can be divided into the following classes:

• static methods - methods of code analysis without

executing it;

• abstract execution - analysis of code modifications and

accessibility of certain blocks of the code without a real

execution. The analysis uses assumptions on the ranges

of input data and variables that can affect the flow of

execution;

• dynamic methods - methods that analyze the code

during its execution;

• hybrid methods - methods that use a combination of

static and dynamic analysis and the method of abstract

interpretation.

From a theoretical point of view, static analysis can

completely cover the entire code of the program and consider

all possible objects S, generated from the input stream.

In addition, static analysis is usually faster than dynamic.

Nevertheless, it has several shortcomings:

• A large number of tasks which rely on the program’s

behavior and properties, can’t be solved by using static

analysis in general. In particular, the following theo-

rems have been proved in the work of E. Filiol [13]:

Theorem 1: Problem of detecting metamorphic shell-

code by static analysis is undecidable.

Theorem 2: The problem of detection of polymorphic

shellcode is NP-complete in the general case.

• The attacker has the ability to create malicious code

which is static analysis resistant. In particular, one can

use various techniques of code obfuscation, indirect

addressing, self-modifying code techniques, etc.

In contrast to static methods, dynamic methods are resis-

tant to the code obfuscation and to the various anti-static

analysis techniques (including self-modification). Neverthe-

less, the dynamic methods also have several shortcomings:

• they require much more overheads than static analysis

methods. In particular, a sufficiently long chain of

instructions can be required to conclude whether the

program has malicious behavior or not;

• the coverage of the program is not complete: the dy-

namic methods consider only a few possible variants of

program execution. Moreover, many significant variants

of program execution can not be detected;

• the environment emulation in which the program ex-

hibits its malicious behavior is difficult;

• there are detection techniques for program execution in

a virtual environment. In this case, the program has the

ability to change its behavior in order not to exhibit the

malicious properties.

C. Static methods

A traditional approach for static network-based intrusion

detection is signature matching, where the signature is a

set of strings or regular expression. Signature based designs

compare their input to known, hostile scenarios. They have

the significant drawback of failing to detect variations of

known attacks or entirely new intrusions. Signatures them-

selves can be divided into two categories: context-dependent

and signatures that verify the behavior of the program.

One example of signature-based methods is Buttercup

[12] - a static method that focuses on the search of the return

address zone. The algorithm solution is simply to identify the

ranges of the possible return memory addresses for existing

buffer-overflow vulnerabilities and to check the values that

lie in the fixed range of addresses. The algorithm considers

the input stream, divided into blocks of 32 bits. The value

of each byte in the block is compared with the ranges of

addresses from the signatures. If the byte value falls into

one of the intervals, an object S is considered as malicious.

Formally,

|α̃BUTTERCUP (S)| 6= 0 ⇔ ∃Ij ∈ S : val(Ij) ∈
[LOWER,UPPER],

where LOWER and UPPER - lower and upper limits

of the calculated interval, respectively. In the notions of

introduced model, we assume that the second part of the

expression is predicate Pj(S), defining membership of an

object S to one of the classes of malware. Since this method

relies on known return addresses used in popular exploits,

it becomes unusable when the target host utilizes address

space layout randomization (ASLR). Static return addresses

are rarely used in real-world exploits nowdays.

Another example of the signature-based methods is

the Hamsa [14] - static method that constructs context-

dependent signatures with respect to a malware training

sample. The algorithm selects the set

{Si | α̃j(Si) 6= {0,∆}}

from the training information. Then the algorithm constructs

a signature Sigj = {T1, . . . , Tk} from that set. The signature

itself is a set of tokens Tj = {Ij1 , . . . , Ijh}, where Iji
are instruction. In general, in [14] the following theorem

is represented:

Theorem 3: The problem of constructing a signature Sig
with respect to the parameter ρ < 1 such that FP (Sig) ≤ ρ
is NP-hard.

The authors make the following assumptions in the prob-

lem: let the parameters k∗, u(1), . . . , u(k∗) characterize a

signature. Then, the token t added to the signature during

signature generation iff

FP (Sig
⋃
{t}) ≤ u(i).

When the signature is generated, the algorithm checks

whether it matches to object S or not:

|α̃HAMSA(S)| 6= 0 ⇔ Sigj ∈ S.

Another considered static signature-based method is Poly-

graph [15]. The approach builds context-dependent signa-

tures. The algorithm takes different versions of the same

object S′ as a training set of objects S1, . . . , Sm for training

information. Versions of S are generated by applying the

operation of polymorphic changes for m times. With respect

to learning information the Polygraph builds three types of

signatures. If any of these signatures matches object S then

S is considered as malware. The types of signatures are

following: i) conjunction signatures SigC (consist of a set

of tokens, and match a payload if all tokens in the set are

found in it, in any order); ii) token-subsequence signatures

SigSUB (consist of an ordered set of tokens); iii) Bayes

signatures SigB = {(TB1
,M1), . . . , (TBr

,Mr)} (consist of

a set of tokens, each of which is associated with a score, and

an overall threshold). We define the following predicates:

PC(S) = (Sig ∈ S) -

predicate checks whether objects S matches to conjuction

signature;

PSUB(S) = (∀i, j,m, n, k, t : TSUBi
=

{Im, . . . , In}, TSUBj
= {Ik, . . . , It} : i < j ⇒ m < n) -

predicate checks if set of tokens in the objects is ordered;

PB(S) = (∀i : |TBi
| ≥ Mi) -

predicate checks whether token exceeds threshold. Then the

algorithm can be formally described as:

|α̃POLY GRAPHC

(S)| 6= 0 ⇔ PC(S),

|α̃POLY GRAPHSUB

(S)| 6= 0 ⇔ PC(S)&PSUB(S),

|α̃POLY GRAPHB

(S)| 6= 0 ⇔ PB(S).

Among the methods of static analysis, which generating

the signature of program behavior, we have considered the

method of structural analysis [9]. Let us call it Structural

in the rest of paper. By training on a sample of malicious

objects S1, . . . , Sm the approach constructs a signature base

of program behavior. The object S is considered as malware

if it matches any signature in the base. The method checks

whether object matches a signature contained in the base by

following steps:

• program structure is identified by analyzing the control

flow graph (CFG);

• program objects are identified by CFG coloring tech-

nique;

• for each signature and for each built program structure

the approach analyses, whether they are polymorphic

modifications of each other.

Nevertheless, a simple comparison of the control flow

graphs is ineffective due to the fact that this isn’t robust

to the simplest modifications. The authors of the method

propose the following modification: subgraphs containing

k vertices are identified. Identification of the subgraph is

carried out as follows:

• first, the adjacency matrix is built. The adjacency matrix

of a graph is a matrix with rows and columns labeled

by graph vertices, with a 1 or 0 in position (vi, vj)
according to whether there is an edge from vi to vj or

not;

• second, a single fingerprint is produced by concatenat-

ing the rows of the matrix;

• additionally, the calculation of fingerprints extended

to account for colors of verticles (graph is colored

according to the type of verticle). This is done by first

appending the (numerical representation of the) color

of a node to its corresponding row in the adjacency

matrix.

Definition 5: Two subgraphs are related if they are iso-

morphic and their corresponding vertices are colored the

same.

Definition 6: Two control flow graphs are related if they

contain related K-subgraphs (subgraph containing k ver-

tices). It is believed that if CFG(S) are related to any

control flow graph of a malicious object, then the object

S itself is malicious.

Let {ID} be the set of subgraphs identifiers. Subgraphs

contained in the malicious objects from the training data.

We define the predicate

PST = id(S) ∈ {ID}.

Thus,

|α̃Structural(S)| 6= 0 ⇔ PST (S).

The Stride [10] algorithm is NOP-sled detection method.

STRIDE is given some input data, such as a URL, and

searches each and every position of the data to find a sled.

STRIDE can be formally described as follows: it forms

object S from the input stream by disassembling, starting

at offset i+ j of the input data, for all j ∈ {0, . . . , n− 1}.

It is believed that the input stream contains a NOP-sled of

length n:

|α̃STRIDE(n)(S)| 6= 0,

if the object S = {I1, . . . , Ik} satisfies the following

conditions:

• k ≥ n;

• ∃i : ∀j : j = i, . . . , i + n ⇒ (Ij 6=
Privileged) || (∃k : i ≤ k < j Ik = JMP)

In other words, it is believed that a sled of length n starts at

position i if it is reliably disassembled from each and every

offset i+j, j ∈ {0, . . . , n−1} (or from each of the 4th byte)

and in any subsequence of S privileged instruction isn’t met

(or a jump instruction is encountered along the way).

There is an algorithm Racewalk [11] which improves

performance of the algorithm STRIDE through the decoded

instructions caching. Moreover, Racewalk uses pruning tech-

niques of instructions that are not a valid NOP-sled (for

example, if we meet an invalid or a privileged instruction

at some position h, it is obvious that the run from offset

j = h%4 is invalid. Consequently, the object S formed

from the offset j = h%4 will not appear in any of

the classes KNOP1
, . . . ,KNOP7

). Racewalk also uses the

instruction prefix tree construction to optimize the process

of disassembling.

Styx [8] is a static analysis method, based on CFG

analyzing. Object S is believed to be malware if sliced

CFG contains cycles. Cycles in the sliced CFG indicate the

polimorphic behavior of the object. For such an object the

signature is generated in order to use it in its signature base.

Given the object S algorithm builds a control flow graph

(CFG). The vertices are the blocks of instruction chains.

Such blocks do not contain any transitions. The edges are

the corresponding transitions between the blocks. All the

blocks in the graph can be divided into three classes:

• valid (the branch instruction at the end of the block has

a valid branch target);

• invalid (the branch target is invalid);

• unknown (the branch target is unknown).

Styx constructs a sliced GFG from control flow graph.

All invalid blocks and blocks to which invalid ones have

the transitions are removed from sliced CFG. Some of the

blocks are excluded as well using the technique of data flow

analysis, described in [16]. From sliced CFG Styx constructs

a set of all possible execution chains of instructions. Next,

method considers each of chains to check whether it contains

cycles or not. To formalize the algorithm we describe the

following predicates. Let SIG = {Sig1, . . . , Sign} be the

signatures base which constructed from training information.

Thus,

PSIG(S) = ∃i : (Sigi ∈ SIG) & Sigi ⊂ S

is the predicate which verifies that the object matches to

one of the previously generated signatures. Pcycle(S) is

the predicate which checks sliced CFG of S for cycles.

Consequently,

|α̃STY X(S)| 6= 0 ⇔ PSIG(S) || Pcycle(S).

In contrast to this algorithm, a method SigFree [17] stati-

caly analyses not CFG but an instruction flow graph (IFG).

Vertices of CFG contain blocks of instruction while IFG

vertices contain instructions only. An object is considered

as malware if its behavior conforms to the behavior of real

programs, rather than a random set of instructions. Such

heuristic restricts applicability of method on the channels

such that the profile of the traffic allows for the transfer of

executable programs.

Definition 7: An instruction flow graph (IFG) is a di-

rected graph G = (V,E) where each node v ∈ V cor-

responds to an instruction and each edge e = (vi, vj) ∈ E

corresponds to a possible transfer of control from instruction

vi to instruction vj .

The analysis is based on the assumption that a legitimate

object S, consisting of instructions encountered in the input

stream, can not be a fragment of a real program. Real

programs are assigned with two important properties:

1) The program has specific characteristics that are in-

duced by the operating system on which it is running,

for example calls to the operating system or kernel

library. A random instruction sequence does not carry

this kind of characteristics.

2) The program has a number of useful instructions

which affects the results of the execution path.

With respect to these properties, the method provides two

schemes of IFG analysis. In the first scheme SigFree based

on training information constructs a set {TEMPL} of

instructions call templates. Then algorithm checks whether

object S satisfies these patterns or not. Let us describe the

predicate

P1 = ∃t ∈ {TEMPL} : t ∈ IFG(S)

which checks if IFG of S satisfies to any of the templates.

Thus,

|α̃SigFree1 (S)| 6= 0 ⇔ P1(S).

The second scheme is based on an analysis of the data

stream. In this scheme, each variable can be mapped from

the set

Q = {U,D,R,DD,UR,DU},

where the six possible states of the variables are defined

as following. State U : undefined; state D: defined but

not referenced; state R: defined and referenced; state DD:

abnormal state define-define; state UR: abnormal state

undefine-reference; and state DU : abnormal state define-

undefine. SigFree constructs for an object S state variables

diagram - an automaton

DSV = (Q,Σ, δ, q0, F),

where Σ is the alphabet, consisting of instruction of object

S, and q0 = U is the initial state. If there is the transition

to the final (abnormal state) when parsing S, it is believed

that the instruction is useless. All useless instructions are

excluded from the object S, resulting in an object S′ ⊂ S.

Let us describe the following predicate:

P2(S) = |S′| > K ,

where K - threshold. Thus,

|α̃SigFree2 (S)| 6= 0 ⇔ P2(S).

There is an algorithm STILL [18] which improves the

method SigFree. The method based on techniques to detect

self-modifying and indirect jump exploit code are called

static taint analysis and initialization analysis. The method is

based on the assumption that self-modifying code and code

using the indirect jump, must obtain an absolute address of

the exploit payload. With respect of this the method searhes

subset S′ ∈ S which obtains the absolute address of the

payload at runtime. The variable that records the absolute

address is marked as tainted. The method uses the static

taint analysis approach to track the tainted values and detect

whether tainted data are used in the ways that could indicate

the presence of self-modifying and indirect jump exploit

code. The variable can infect others through data transfer

instructions (push, pop, move) and instructions that

perform arithmetic or bit-logic operations (add, sub,

xor).

The method uses initialization analysis in order to reduce

the false positive rates. The analysis is based on the assump-

tion that the operands of self-modifying code and code using

the indirect transitions, must be initialized. If not, object s
is considered as legitimate. Formally, P1 = tainted(S) ,

P2 = initialized(S) ,

|α̃STILL(S)| 6= 0 ⇔ P1(S)&¬P2(S).

Semantic-aware malware detection [19] is a signature-

based approach. The method creates a set of behavior

signature patterns by training on a sample of malicious

objects. The object S is considered as malware if its behavior

conforms to at least one pattern from this set.

In [19] authors have proved the following theorem:

Theorem 4: The problem of determining whether S sat-

isfies a template T of a program behavior is undecidable.

Thus, the authors notice that their method can not have

full coverage of classes of malicious programs. The method

identifies a malicious object to a limited number of program

modification techniques. The algorithm constructs a set {T }
of patterns of a programs malicious behavior. It is believed

that the object S matches the pattern, if the following

conditions are satisfied:

• The values in the addresses, which were modified dur-

ing execution, are the same after the template execution

with the appropriate context;

• A sequence of system calls in template is a subsequence

of system calls in S;

• If the program counter at the end of executing the

template T points to the memory area whose value

changed, then the program counter after executing S
should also point into the memory area whose value

changed.

In order to check whether object S matches the behavior

pattern, the method checks that the vertices of the template

correspond to vertices of S. The method also implements

the construction of”def-use”ways and its checking. Matching

of template nodes to program nodes is carried out by

constructing a control flow graph CFG, with respect to

the following rules (we also describe the predicate P1(S)
checking whether nodes match each other) :

• A variable in the template can be unified with any

program expression, except for assignment expressions;

• A symbolic constant in the template can only be unified

with constant in S;

• The function memory can be unified with the function

memory only;

• An external function call in the template can only be

unified with the same external function call in the

program.

Preservation of def-use paths. A def-use path is a se-

quence of template nodes (or CFG(S)). The first node of

def-use path defines the variable and the last uses it. Each

def-use path in a template should correspond to the program

def-use path. Next, method checks whether a variable is

stored in an invariant meaning or not in the paths. To

solve the problem of preservation of the variable using the

following procedures are implemented:

• first, the NOP-sled lookup using simple signature

matching;

• second, search of such code fragments in which values

of variables are not preserved. If found, the correspond-

ing fragment of code is executed with a random initial

state;

• finally, using the theorem prover like the Simplify

method [20] or the UCLID method [21].

We define the predicate P2 which checks the Preservation

of def-use paths. Thus, T ∼ S ⇔ P1(S) & P2(S). The

algorithm itself can be formaly described as following:

|α̃Semantic aware(S)| 6= 0 ⇔ ∃Ti ∈ {T } : Ti ∼ S.

D. Dynamic methods

One example of the dynamic method is the emulation

method (Emulation) proposed by Markatos et al in [23].

The main idea of the approach is to analyze the chain of

instructions received during execution in a virtual environ-

ment. The execution starts from each and every position

of the input buffer since the position of the shellcode is

not known in advance. Thus, the method generates a set of

objects

{S′

i | S
′

i ⊂ S}

from object S. If at least one of the objects Si satisfies

the following heuristics, object S is considered as malware.

These heuristics include the execution of some form of

getPC code by an execution chain of S′

i; another heuristic is

checking whether the number of the memory accesses excess

a given threshold. The object S′

i is considered as legitimate

if during its execution an incorrect or privileged instruction

was met. Let us define the following predicates:

P1(Si) = getPC ∈ Si & mem access number(Si) ≥
Thr,

where Thr is threshhold;

P2(Si) = ∀j : Ij ∈ Si & invalid(Ij).

Thus, [23] can be formally described as:

|α̃Emulation(S)| 6= 0 ⇔ ∃i : Si ⊂ S & P1(Si) & ¬P2(Si).

Method NSC emulation [26] is an extension of [23].

The method focuses on non-self-contained (NSC) shellcode

detection. The execution of executable chains also starts

from each and every position of the input buffer. Object

S is considered as malware, if it satisfies the following

heuristic. Let unique writes be the write operations to

different memory locations and let wx-instruction be an

instruction that corresponds to code at any memory address

that has been written during the chain execution. Let W and

X be thresholds for the unique writes and wx-instructions,

respectively. The object belongs to the class KNSC , if after

its execution emulator has performed at least W unique

writes (P1(S) = unique writes ≥ W) and has executed

at least X wx-instructions (P2 = wx ≥ X). Thus,

|α̃NSC(S)| 6= 0 ⇔ P1(S) & P2(S).

Another method, which uses emulation is IGPSA [25].

The information about instruction is processed by automa-

ton. All the instructions are categorized into five categories,

represented by patterns P1, . . . , P5. If an instruction writes

PC into certain memory location, it is categorized into P1;

if it reads PC from the memory, it belongs to P2; if it reads

from memory location the instruction sequence resides in,

it belongs to P3; if it writes data into memory location

PC, it belongs to P4; otherwise it belongs to P5. Method

generates a sequence of transformed patterns W which

consists of elements of the set {P1, . . . , P5}. Thus, the object

classification problem is the problem of determining whether

its transformed pattern sequence W is accepted by atomaton

IGPSA = (Q,Σ, δ, q0, F),

where Q is the set of states, Σ = {P1, . . . , P5} is the

alphabet, δ : Q × Σ → Q is the transition function,

q0 is the initial state and F is set of final states. Each

state corresponds to polymorphic shellcode behavior. Let us

describe the predicate P (S) which checks whether W is

accepted by IGPSA. Formally,

|α̃IGPSA(S)| 6= 0 ⇔ P (S).

E. Hybrid methods

One of the examples of the hybrid method is the method

for detecting self-decrypting shellcode [24], proposed by K.

Zhang. Let us call it HDD in the rest of the paper. The

static part of the method includes two-way traversal and

backward data flow analysis. By which the analysis method

finds seeding subsets of instructions of S. The presence

of malicious behavior is verified by the emulation of these

subsets.

Firstly, static analysis method performs recursive traversal

analysis of the instruction flow, starting at the seeding

instruction. A seeding instruction that can demonstrate the

behavior of GetPC code (for example, call, fnstenv,

etc.). The method starts the backward analysis, if a target

instruction, an instruction that is either (a) an instruction that

writes to memory, or (b) a branching instruction with indirect

addressing, is encountered during the forward traversal. The

method follows backwards the def-use chain in order to

determine the operands of the target instruction. Then the

method checks such chains Si ⊂ {two way analysis(S)}
for the presence of cycles (P1(Si)). Moreover, it checks

whether chains write to memory in the code address space

(that fact is considered as self-modification behaviour). Let

it be the P2(Si) predicate. Let us also consider

P3(Si) = ∀j : Ij ∈ Si & invalid(Ij).

Thus,

|α̃Hybrid dec detection(S)| 6= 0 ⇔ ∃i : Si ⊂
{two way analysis(S)} & P1(Si) & P2(Si) & ¬P3(Si).

Another hybrid method is PolyUnpack [27]. This method

is based on statical constructing of a program model and

verification of this model by the emulation technique. The

object S is said to be legitimate if it does not produce any

data to be executed. Otherwise, the object is a self-extracting

program. At the stage of static analysis, the object S is

divided into code blocks and data blocks. These code blocks,

separated by blocks of data, are a sequence of instructions

Sec0, . . . , Secn, which represent the program’s model. The

statically derived model and object S are then transited into

the dynamic analysis component where S is executed in

an isolated environment. The execution is paused after each

instruction and its execution context is compared with the

static code model. If the instruction corresponds to the static

model, then the execution continues. Otherwise, the object

S is considered as malware. Let us describe the predicate

P (S) which checks whether object S satisfies its static code

model. Then we can formally describe PolyUnpack as

|α̃PolyUnpack(S)| 6= 0 ⇔ ¬P (S).

F. Methods of abstract execution

At the present day, this class represented the only method

that is called APE [28]. APE is NOP-sled detection method,

which is based on finding sufficiently long sequences of

valid instructions, whose operands in memory are in the

protected address space of the process. There are a small

number of positions in the experimental data, from which

abstract execution should be started, which are chosen in

order to reduce the computational complexity. The abstract

execution is used to check the instruction’s correctness and

validity.

Definition 8: A sequence of bytes is correct, if it rep-

resents a single valid processor instruction. A sequence of

bytes is valid if it is correct and all memory operands of the

instruction reference the memory addresses that the process

which executes the operation is allowed to access.

The number of correct instructions, which are decoded from

each selected position, are denoted as MEL (Maximum

Executable Length). It is possible that a byte sequence

contains several disjoint abstract execution flows and the

MEL denotes the length of the longest. The NOP-sled is

believed to be found in S, if the value of MEL reaches a

certain threshold Thr. Formally,

|α̃APE(S)| 6= 0 ⇔ (MEL ≥ Thr).

III. EVALUATION AND DISCUSSION

This section provides an analysis and comparison of the

above methods with respect to three criteria: the complete-

ness of classes handling, the false positive rates and the

computational complexity. The key difficulty here is that all

the research papers observed in this paper use completely

different testing conditions and testing datasets. Therefore it

is not very helpful to compare the published false positives

rates or throughput of the algorithms. For example, the

STRIDE method was tested using only HTTP URI dataset,

where the possibility of finding executable byte sequences is

indeed relatively low. Some of the methods like SigFree are

designed to detect ”meaningful” executables and distinguish

them from random byte sequences which only look like

executable, but such method would definitely have high false

positive rates when used for shellcode detection in the net-

work channel where ELF executable transfer is quite normal.

This means that the results provided in the original research

papers can not be used directly for solving the problem of

aggregate classifier generation. A real performance and false

positive profiling should be performed, with some kind of

representative dataset and a solid experiment methodology.

But for the task of the survey and making some prelim-

inary relative comparison of the detection methods within

the same shellcode feature classes the data provided in

the original research papers could be useful. Therefore, we

collected it into a series of summary tables, along with

short descriptions of the testing conditions. The computa-

tional complexity estimation was made using the algorithm

descriptions from the research papers and general knowl-

edge of computational complexity of the typical tasks like

emulation or sandboxing. The drawback of such estimation

is that it gives only classes of complexity, not the real

throughput in any given conditions. The actual throughput

of the considered methods was analytically evaluated for

the normalized machine 2.53 GHz Pentium 4 processor

and 1 GB RAM with running Linux on it. Throughput

is considered below when discussing the advantages and

disadvantages of the methods.

Table I shows the comparison results for the completeness

of classes coverage.

B
u
tt

er
cu

p

H
am

sa

P
o
ly

g
ra

p
h

S
tr

id
e

R
ac

ew
al

k

S
ty

x

S
tr

u
ct

u
ra

l
an

al
y
si

s

S
ig

F
re

e

S
T

IL
L

S
em

an
ti

c
aw

ar
e

E
m

u
la

ti
o
n

H
D

D

N
S

C

IG
P

S
A

P
o
ly

U
n
p
ac

k

A
P

E

KNOP1

KNOP2

KNOP3

KNOP4

KNOP5

KNOP6

KNOP7

KSH

KDATA

KALT OP

KR

KALT I

KINJ

KSELF UNP

KSELF CIPH

KRET

KRET+

KMET

KNSC

Table I: Methods coverage evaluation

Table II shows the comparison results of false positive

and false negative rates for the above methods. The rate was

calculated for those classes of malicious objects, which were

covered by the appropriate method. It is important to note

the following fact. As table II shows, rates of false positive

are low enough. Nevertheless, the number of false positives

on the real channels reach very high values, because of the

large volume of transmitted data.

Table III shows computational complexity of the methods.

We consider the methods in terms of their applicability

to the analysis of traffic on high-speed channels, as well as

provide deeper understanding the space of the algorithms,

comparison and tradeoffs between them.

For example, it is known that the method ButterCup

could detect the exploits with many kinds of obfuscation

(see table I). But the method usage on real channels is

problematic. This is due to the fact that the method uses

signatures of the return address, but a static return address

in the modern exploits isn’t used. In addition, the ButterCup

usage as the only one detection method implies a large

number of false positives. Nevertheless, the method can be

used as an additional check with other tools, as it doesn’t

require much time and computing costs. The method can

be applied to channels with any traffic profile (with any

probability of executable code will appear in the channel),

as well as permits analysis of high-speed data in real time.

Average throughtput of the method, calculated analytically,

is 4, 34Mb/s.

Both Polygraph and Hamsa have similar pre-processing

requirements. Both of these methods are based on the

automatic generation of context-dependent signatures and

provide similar shellcode classes coverage. Nevertheless,

the method Hamsa isn’t suited for polymorphic versions

of the virus detection because of specifics of generated

signatures. Different kinds of Polygraph’s signatures provide

a more flexible method. Although, the polymorphic version

of the virus isn’t detected by Polygraph in general case.

All three Polygraph’s signature classes have advantages

and disadvantages. The token-subsequence signatures are

more specific than the equivalent conjunction signatures.

However, some exploits may contain invariants that can

appear in any order. In that case, the token-subsequence

signatures are more preferable. The Bayes signatures are

generated more quickly than the others and are more useful

when the invariants arise in exploits some of the time. The

authors recommend to use all three types of signatures at

the same time, but it implies a large overhead. For example,

Polygraph in the best case 64 times slower than the Hamsa

algorithm, in the worst case this value reaches 361 times.

Average throughput of the Hamsa, estimated analytically,

is 7, 35Mb/s which makes the method applicable in real-

time analysis of high-speed traffic. Average throughput of

Polygraph without clustering reaches the value of 10Mb/s,

but the accuracy of the method decreases in the same time.

Average throughput of the method with clustering reaches

the value of 0.04Mb/s only. In that case method can be

used only as off-line analyzier.

In contrast to the Hamsa and Polygraph, the Structural

analysis method cam detect some types of obfuscated

shellcode. Moreover, in some cases it is able to detect

Method FP, % FN, % Testing sets

Buttercup 0.01 0 TCPdump files of network traffic from the MIT Lincoln Labratory IDS evaluation Data Set

Hamsa 0.7 0 Suspicious pool: Polygraphs pseudo polymorphic worms; polymorphic version of Code-Red II; polimorphic
worms, created with CLET and TAPiON; Normal traffic: HTTP URI

Polygraph 0.2 0 Malicious pool: the Apache-Knacker exploit, the ATPhttpd exploit, BIND-TSIG exploit;
Network traces: 10-day HTTP trace (125,301 flows); 24-hour DNS trace

Stride 0.0027∗ 0 Malicious pool: sleds, generated by the Metasploit Framework v2.2; Network traffic: HTTP URI;

Racewalk 0.0058 0 Malicious pool: sleds, generated by the Metasploit Framework v2.2; Normal traffic: HTTP URI, ELF
executables, ASCII text, multimedia, pseudo-random encrypted data.

Styx 0 0 Malicious pool: exploits generated using the Metasploit framework; Normal data: network traffic collected
at a enterprise network, which is comprised mainly of Windows hosts and a few Linux boxes.

Structural 0.5 0 Malicious pool: malicious code that was disguised by ADMmutate;
Normal traffic: data consists to a large extent of HTTP (about 45%) and SMTP (about 35%) traffic

The rest is made up of a wide variety of application traffic: SSH, IMAP, DNS, NTP, FTP, and SMB traffic.

SigFree 0∗∗ 0 Malicious pool: unencrypted attack requests generated by Metasploit framework, worm Slammer, CodeRed
Normal data: HTTP replies (encrypted data, audio, jpeg, png, gif and flash).

STILL 0∗∗ 0 Malicious pool: code that was generated using Metasploit framework, CLET, ADMmutate

Semantic aware 0 0 Malicious pool: set of obfuscated variants of B[e]agle;
Normal data: set of 2,000 benign Windows programs

Emulation 0.004 0 Malicious pool: code generated by Clet, ADMmutate, TAPiON and Metasploit framework;
Normal data: random binary content

HDD 0.0126 0 Malicious pool: code generated by Metasploit Framework, ADMmutate and Clet;
Normal data: UDP, FTP, HTTP, SSL, and other TCP data packets; Windows binary executables

NSC 0 0 Malicious pool: code generated by Avoid UTF8/tolower, Encoder and Alpha2
Normal data: three different kinds of random content such as binary data, ASCII-only data, and

printable-only characters

IGPSA 0 0 Malicious pool: code generated by Clet, ADMmuate, Jempiscodes, TAPioN, Metasploit Framework
Normal data: two types of traffic traces: one contains common network applications HTTP and

HTTPs, of port 80 and 443; the other contains traces of port 135, 139 and 445

PolyUnpack 0 0 Malicious pool: 3,467 samples from the OARC malware suspect repository.

APE 0 0 Malicious pool: IIS 4 hack 307, JIM IIS Server Side Include overflow, wu-ftpd/2.6-id1387,
ISC BIND 8.1, BID 1887 exploits; Normal data: HTTP and DNS requests.

Table II: Accuracy of the methods. FP stands for “False Positives” and FN stands for “False Negatives”

Method Complexity Remarks

Buttercup O(N) N is the lenght of S

Hamsa O(T ×N) N is the lenght of S,
T is the number of tokens in signature

Polygraph O(N) without clusters
N is the lenght S

O(N + S2) with clusters
S is the number of clusters

O(M2
× L) method’s training

M the lenght of malware training information
L - the lenght of legitimate training information

Stride O(N × l2) N is the lenght of S,
l is the lenght of NOP-sled

Racewalk O(N × l) N is the lenght of S,
l is the lenght of NOP-sled

Styx O(N) N is the lenght of S

Structural O(N) N is the lenght of S

SigFree O(N) N is the lenght of S

STILL O(N) N is the lenght of S

Semantic O(N) N is the lenght of S

Emulation O(N2) N is the lenght of S

N is the lenght of S

HDD O(N +K2
× T 2) K is the number of suspicious chains

T is maximum lenght of suspicious chains

NSC O(N2) N is the lenght of S

IGPSA O(N2) non-optimized
O(CN) optimized

PolyUnpack O(N) N is the lenght of S

APE O(N × 2l) N is the lenght of S
l is the lenght of NOP-sled

Table III: Methods complexity

metamorphic shellcode as it generates program’s structure

dependent signatures. In spite of the fact the algorithmic

complexity of all three algorithms is comparable (see table

III), Structural analysis slower than the others. Because of

the time complexity of algorithm, traffic analysis is possible

in off-line mode only. Average throughtput of the method

reaches the value of 1Mb/s. In addition,technique cannot

detect malicious code that consists of less than k blocks.

That is, if the executable has a very small footprint method

cannot extract sufficient structural information to generate a

fingerprint. The authors chose 10 for k in their experiments.

The Racewalk method improves the Stride algorithm

by significally reducing of computational complexity. Both

Racewalk and Stride can be used in real-time analysis

of high-speed channels. When comparing the methods of

false positives rate it is necessary to consider the following

observation fo the Stride algorithm. There is a possibility

that NOP-equivalent byte sequence can occur in legitimate

traffic. For example, a sequence of bytes may appear as

part of ELF executable, ASCII text, multimedia or pseudo-

random encrypted data. Thus, the value presented in Table

II for this type of legitimate traffic may vary from what is

represented. Both of these methods significantly exceed the

speed of the APE method of abstract interpretation which

also detects NOP-sled. In that case it is diffucult to use APE

on real channels.

The Styx method is able to detect self-unpacked and self-

ciphered shellcode. Nevertheless, in the average case Styx

is slower than similar methods of dynamic analysis. Partic-

ularly, the average throughput of the method is 0.002Mb/s.

That significantly decreases the method’s applicability. Nev-

ertheless, it can be used as a supplement to other shellcode

detection algorithms. The method as an additional tool to

others can increase the shellcode space coverage. Another

considered method which is based on CFG construction is

Semantic aware algorithm. It is also characterized by low-

speed analysis. In that case the method cannot be used in

real-time mode even on channels with low bandwidth. The

second limitation of method comes from the use of def-

use chains.The def-ude relations in the malicious template

effectively encode a specific ordering of memory updates.

Thus, the algorithm can detect only those program that

exhibit the same ordering of memory updates. Nevertheless,

the method can be used as additional checking tool to others

shellcode detection algorithms.

Methods SigFree and STILL together providing particu-

larly complete coverage of all shellcode classes. In addition,

methods are able to work in real-time mode on high-

speed channels. However, the value of false positives rates

of SigFree and STILL methods represent only the traffic

profile, which does not allow any kind of executables. For

the other traffic profile false positive rates of these methods

are extemely high. That fact decreases the aplicability of

SigFree and STILL.

Significant advantage of methods Emulation, NSC Em-

ulation, IGPSA is their resistance to anti-static evasion

techniques. At the same time, all these methods have a

limitated applicability since they can detect only shellcode

classes that contain anti-static obfuscation. As example, the

Emulation method detects only polymorphic shellcodes that

decrypt their body before executing their actual payload.

Plain or completely metamorphic shellcodes that do not per-

form any self-modifications are not captured by algorithm.

However, polymorphic engines are becoming more prevalent

and complex. The method’s throughput is analytically evalu-

ated as 1Mb/s. Method NSC Emulation, running at average

throughput 1.25− 1.5Mb/s is focused on finding non-self-

contained shellcode which practically doesn’t occur in real

traffic. Thus, the applicability of the method isn’t clear.

The average throughput of IGPSA algorithm is 1.5Mb/s/

Algorithms IGPSA and Emulation can interchanged with

each other.

Average estimated throughput of the hybrid method HDD

is 1.5Mb/s. That allows to use the method on the channels

characterized by a relatively low bandwidth in real-time

mode. An important advantage of the method is its ability to

detect metamorphic shellcode, along with other classes that

use anti-static obfuscation techniques. However, the authors

didn’t test the method on non-exploit code that uses code

obfuscation. code encryption, and self-modification. That

fact can potentially change the false positives rate proposed

by the authors. Thus, this is true for the other methods which

detects polymorphic and metamophic shellcodes.

The throughput of PolyUnpack hybrid method is sig-

nificantly lower than HDD and estimated as 0.05Mb/s.

This is due to time requirement to model generation and

long delays between running program request and model

responce. In addition, with decreasing of the program size,

the throughtput of method desreases respectively. Neverthe-

less, the method characterized by 100% detection accuracy

and zero false positives rate. That makes possible to use

method as an additional analyzer to other shellcode detection

algorithms.

IV. PROPOSED APPROACH AND CONCLUSION

This paper discusses techniques to detect malicious ex-

ecutable code in high-speed data transmission channels.

Malicious executable code is characterized by a certain set of

features by which the entire set of malware can be divided

into the classes. Thus, the problem of shellcode detection

can be formulated in terms of recognition theory. Each

shellcode detection method can be considered as a classifier

which assigns the executable malicious code to one of the

classes Ki of shellcode space. Each classifier has its own

characteristics of shellcode space coverage, false negative

and false positive rates, computational complexity.

Using the set of classifiers we can formulate the problem

of automatic synthesis of such hybrid shellcode detector,

which will cover all shellcode feature classes and reduce

the false positive rates while reducing the computational

complexity of the method compared with the simple linear

combination of algorithms. The method should be synthe-

sized in conformance with the profile of traffic channel data.

In other words, the method should consider the probability of

executable code transmission through the channel, etc. Let us

consider the problem of algorithm synthesis as construction

of a directed graph G = (V,E) (see Fig. 3) with a specific

topology, where {V } is the set of nodes which are classifiers

themselves, {E} is the set of arcs. Each arc represents the

route of flow data. We decided to include in the graph

such classifiers (methods) that provide the most complete

coverage of the shellcode classes K1, . . . ,Kl. Each of the

selected classifiers is assigned with two attributes: false

positive rates and complexity. The attributes’ values can be

calculated by profiling, for example.

This qualifier must change the corresponding bit in the

information vector from the delta to 0 or 1. If the corre-

sponding bit different from the delta, the classifier produces

for him a logical or operation.

Each arc (vi, vj) is marked with one of the classes

Kr if vi classifier checks whether the object (flow data)

belongs to class Kr. The vi classifier changes the cor-

responding bit αr(S) in the information vector α̃(S) =
(α1(S), α2(S), . . . , αl(S)) from ∆ to value from {0, 1}.

If αr(S) 6= ∆ then the classifier produces for it a logical

or operation: αr(S) = αrCURRENT
(S) || αrPREV IOUS

(S).
If the classifier vi checks whether the object S belongs

to several classes of shellcode space, then the vertex vi
has several outgoing arcs with the corresponding notes.

Similarly, the classifier changes the values of corresponding

bits in information vector α̃(S). In addition, if vertex vi has

several incoming arcs, then the results of classifiers, from

which the arcs are outgoing, merge with each other.

We assume that each node is associated with the type of

the set {REDUCING,NON REDUCING}. If a node

vi has type REDUCING, then if the classifier vi concludes

object S to be legitimate, the flow is not passed on. That

implies the computational cost decreases and input flow is

reduced. The reduced flow example is shown in Fig. 4

We associate each path in the graph G with its weight.

The weight consists of a combination of two parameters: i)

the total processing time, and ii) the false positive rates. it

is necessary to include a classifier with lowest false positive

rates to each path in G.

As part of the problem being solved it is necessary to

propose a topology of graph G such that: i) the traffic profile

will be taken into account; ii) all pathes will be completed

in the shortest time, and iii) all pathes will be completed

with the lowest false positive rates. We will consider that

problem in terms of multicriteria optimization theory.

Figure 3: Graph example. Solid arrow represents the route

of shellcode candidates. The arc (vi, vj) is marked with one

of the classes Kx if vi classifier checks whether shellcode

candidate belongs to class Kx.

Figure 4: Example of flow reducing. Arrows represent the

flow of shellcode candidates. The Classifiers 1, 2 and 3

consider part of the objects as legitimate, so they are not

passed on.

REFERENCES

[1] Y. I. Zhuravlev, Algebraic approach to the solution of
recognition or classification problems. Pattern recognition
and image analysis, 1998, vol. 8; no.1, 59-100.

[2] Team Cymru Malware Infections
Market. [PDF] http://www.team-
cymru.com/ReadingRoom/Whitepapers/2010/Malware-
Infections-Market.pdf

[3] B. Stone-Gross et al., Your Botnet is My Botnet: Analysis of a
Botnet Takeover. Technical report, University of California,
May 2009.

[4] K. Kruglov, Monthly Malware Statistics: June
2010. Kaspersky Lab Report, June 2010. [HTML]
http://www.securelist.com/en/analysis/204792125/Monthly

Malware Statistics June 2010

[5] P. Porras, H. Saidi, V. Yegneswaran, An Analysis of Con-
ficker’s Logic and Rendezvous Points. Technical Report, SRI
International, Feb 2009.

[6] FBI, International Cooperation Disrupts Multi-Country Cy-
ber Theft Ring. Press Release, FBI National Press Office,
Oct 2010.

[7] U. Payer, M. Lamberger, P. Teufl, Hybrid engine for poly-
morphic shellcode detection. In: Proceedings of the Confer-
ence on Detection of Intrusions and Malware & Vulnerabil-
ity Assessment (DIMVA05). Berlin: Springer-Verlag, 2005.
19-31

[8] R. Chinchani, E. Berg, A fast static analysis approach to
detect exploit code inside network flows. In: Proceedings
of the 8th International Symposium on Recent Advances
in Intrusion Detection (RAID’05). Berlin: Springer-Verlag,
2005. 284-308

[9] C. Kruegel, E. Kirda, D. Mutz, et al., Polymorphic worm
detection using structural information of executables. In:
Proceedings of the 8th International Symposium on Re-
cent Advances in Intrusion Detection (RAID’05). Berlin:
Springer-Verlag, 2005

[10] P. Akritidis, E. Markatos, M. Polychronakis, and K Anag-
nostakis, Stride: Polymorphic sled detection through instruc-
tion sequence analysis. In Proc. of the 20th IFIP Interna-
tional Information Security Conference (SEC’05), 2005.

[11] D. Gamayunov, N. T. Minh Quan, F. Sakharov,
E. Toroshchin Racewalk: fast instruction frequency
analysis and classification for shellcode detection in
network flow In: 2009 European Conference on Computer
Network Defense. Milano, Italy, 2009

[12] A. Pasupulati, J. Coit, K. Levitt, et al., Buttercup: On
network-based detection of polymorphic buffer overflow
vulnerabilities. In: Proceedings of Network Operations and
Management Symposium 2004. Washington: IEEE Com-
puter Society, 2004

[13] E. Filiol, Metamorphism, formal grammars and undecidable
code mutation. International Journal of Computer Science,2,
2007

[14] Z. Li, M. Sanghi, Y. Chen, et al., Hamsa: Fast signature
generation for zero-day polymorphic worms with provable
attack resilience. In: Proceedings of 2006 IEEE Symposium
on Security and Privacy (S&P’06). Washington: IEEE Com-
puter Society, 2006. 32-47

[15] J. Newsome, B. Karp, D. Song, Polygraph: automatically
generating signatures for polymorphic worms. In: Proceed-
ings of 2005 IEEE Symposium on Security and Privacy
(S&P’05). Washington: IEEE Computer Society, 2005. 226-
241

[16] M. Weiser, Program Slicing: Formal, Psychological and
Practical Investigations of an Automatic Program Abstrac-
tion Method. PhD thesis, The University of Michigan, Ann
Arbor, Michigan, 1979

[17] X. Wang, C. C. Pan, P. Liu, S. Zhu, Sigfree: A signature-
free buffer overflow attack blocker. In 15th Usenix Security
Symposium, July 2006

[18] X. Wang, Y. Jhi, S. Zhu, Protecting Web Services from
Remote Exploit Code: A Static Analysis Approach In Proc.
of the 17th international conference on World Wide Web
(WWW’08), 2008.

[19] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant, Semantics-aware malware detection. In
Proc. of 2005 IEEE Symposium on Security and Privacy
(S&P’05), 2005.

[20] D. Detlefs, G. Nelson, J. B. Saxe Simplify: A Theorem
Prover for Program Checking

[21] R. E. Bryant, S. k. Lahiri, S. A. Seshia, Modeling and
verifying systems using a logic of counter arithmetic with
lambda expressions and uninterpreted functions. In: CAV
02: International Conference on Computer-Aided Verifica-
tion

[22] A. Stavrou, M. E. Locasto, Y. Song, On the Infeasibility
of Modeling Polymorphic Shellcode In Proc. of the 14th
ACM conference on Computer and communications security
(CCS’07), 2007.

[23] M. Polychronakis, K. G. Anagnostakis, E. P. Markatos,
Network-level polymorphic shellcode detection using emu-
lation. In:Proceedings of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment. Berlin:
Springer-Verlag, 2006

[24] Q. Zhang, D. S. Reeves, P. Ning, et al., Analyzing network

traffic to detect self-decrypting exploit code. In: Proceedings
of the 2nd ACM Symposium on InformAtion, Computer and
Communications Security, New York: ACM, 2007. 4-12

[25] L. Wang, H. Duan, X. Li, Dynamic emulation based model-
ing and detection of polymorphic shellcode at the network
level Science in China Series F: Information Sciences Vol-
ume 51, Number 11, 1883-1897.

[26] M. Polychronakis, K. G. Anagnostakis, E. P. Markatos
Emulation-based Detection of Non-self-contained Polymor-
phic Shellcode In Proc. of the 10th international conference
on Recent advances in intrusion detection (RAID’07), 2007.

[27] P. Royal, M. Halpin, D. Dagon, R. Edmonds, W. Lee,
PolyUnpack: Automating the Hidden-Code Extraction of
Unpack-Executing Malware In: Computer Security Appli-
cations Conference (ACSAC’06), 2006.

[28] T. Toth, C. Kruegel, Accurate Buffer Overflow Detection
via Abstract Payload Execution In Proc. of the 5th interna-
tional conference on Recent advances in intrusion detection
(RAID’02), 2002.

