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Abstract  —  The concept  of  a  multi-tenant  database  cluster
offers new approaches in implementing a data storage for cloud
applications.  One  of  the  most  important  questions  to  solve  is
finding  a  load-balancing  algorithm  to  be  used  by  the  cluster,
which is able to effectively use all available resources. This paper
discusses  theoretical  foundations  for  such  an algorithm in  the
simplest case when the flow of incoming queries is constant, that
is, every tenant has a predefined intensity of the query flow and
there are no changes in the state of the tenant's data.
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I.  INTRODUCTION

When a company designs a high load cloud application, its
developers sooner or later face the problem of organizing the
storage  of  data  in  the  cloud  with  the  requirement  of  high
performance, fault-tolerance and reliable tenants’ data isolation
from each other. At the moment these tasks are usually solved
at the level of application servers by designing an additional
layer of an application logic. Such a technique is discussed in
many specialized papers for application developers and other
IT-specialists  [1,  2,  3].  There  are  also  some  projects  of
providing native multi-tenancy support at the level of a single
database  server  [4].  This  paper  is  devoted  to  an alternative
concept of a multi-tenant database cluster which proposes the
solution of the above problems at the level of a data storage
subsystem and discusses theoretical foundations of this concept
in a particular case.

II. THE ARCHITECTURE OF THE MULTI-TENANT DATABASE

CLUSTER

A multi-tenant database cluster [5,6] is an additional layer
of abstraction over ordinary relational database servers with a
single entry point which is used to provide the isolation  of
cloud  application  customer  data,  load-balancing,  routing  of
queries among servers and fault-tolerance. The main idea is to
provide an application interface  which has  most in common
with the interfaces of traditional RDBMS (relational database
management  system).  At the moment the typical  scenario of
interaction with the cluster from the developer's point of view
is seen as the following:

Connect( TenantId, ReadWrite / ReadOnly );
SQL-commands
Disconnect();

A multi-tenant cluster consists of a set of ordinary database
servers and specific control and query routing servers.

The query routing server is a new element in a chain of
interaction between application servers and database ones. This
is the component application developers will deal with. In fact,
this component of the system is just a kind of a proxy server
which hides the details of the cluster structure, and whose main
purpose is to find an executor for a query and route the query
to him as fast as possible. It makes a decision based on the map
of the cluster.

It  is  important  to  note that  a  query routing server  has  a
small choice of executors for each query.  If  a query implies
data modification, there is no alternative than to route it to the
master  database  of  a  tenant,  because  only  there  data
modification is permitted. If the query is read-only, it also can
be routed to a slave server, but in the general case there would
be just one or two slaves for a given master, so even in this
case the choice is very limited.

The data distribution and load balancing server is the most
important and complicated component of the system. Its main
functions are:

• initial distribution of tenants data among servers of a
cluster  during  the  system  deployment  or  addition  of
new servers or tenants;

Fig. 1. Multi-tenant database cluster architecture



• management of tenant data distribution, based on the
collected statistics, including the creation of additional
data copies and moving data to another server;

• diagnosis  of  the system for  the need of adding new
computing nodes and storage devices;

• managing the replication.
This component of the system has the highest value since the
performance of an application depends on the success of its
work.

III. MAIN CHARACTERISTICS OF THE QUERY FLOW

When  modeling  and  analyzing  the  multi-tenant  database
cluster the most important  things to study are characteristics
and  properties  of  the  incoming  query  flow.  The  quality  of
implementation of this model component significantly affects
the  adequacy  and  applicability  of  results  obtained  during
modeling.

The flow of incoming queries of the multi-tenant database
cluster can be divided into N non-intersecting and independent
sub-flows for each tenant λ i ,i∈1, N :

Λ=∑
1

N

λi

The  study  of  statistics  on  existing  multi-tenant  cloud
applications  shows  that  there  is  a  significant  dependency
between the size of data that the client stores in the cloud and
the  intensity of  a client's  query flow (the more data  has  the
client, the larger organization it represents and, therefore, the
more often these data are accessed by individual users of that
client). The analysis of the statistics also shows that the above
tendency is not comprehensive and there are clients within the
cluster which have the intensity of the query flow that does not
match the size of the stored data (it can be both more or less
intensive than  it is expected).  The client's query flow can be
divided  into  two  sub-flows:  read-only  queries  and
data-modifying ones.

λ i=λ i read
+λ i write

Such a division only has sense when the data replication is
used  within  the  cluster  or  when  the  solution  is  tuned  to
specifics of the particular database server or operating system.
The higher-level analysis can omit this division.

Another  obvious  characteristics  of  the  query  flow  is  an
average duration μ of a query at the server. The duration of
different operations is not equal and this consideration should
be taken into account during the modeling. This value has  a
significant  impact  on  the  quality  of  load-balancing,  since  it
affects  the  formation of  the total  cluster load.  As  we know
from the queuing theory, if Λμ>N queries , where N queries is
the maximum amount of queries that can run in parallel in the
cluster, then the cluster will fail to serve the incoming flow of
requests.  It  is also known that  intensities of incoming query
flows are changed during the lifetime of the application, that is,

λ i=λ(t ) , i∈1, N . Some clients begin to use the application
more intensively, the activity of others decreases, new clients
appear  and  existing  clients  disappear.  Besides,  some
applications may have season peaks of load.

IV. THE LOAD-BALANCING PROBLEM WITH A CONSTANT

FLOW OF QUERIES

A. General problem

The present paper is devoted to the study of load-balancing
the cluster in the case when flows of incoming queries have a
constant  intensity,  i.e. λ i=const , i∈1, N .  The  solution  of
this problem can be considered  as  a  solution of  the general
problem «at the point».  Clusters without data replication  will
be  studied (that  is,  without  providing  fault-tolerance). For
simplicity  we  assume  that μ=1 (or,  equivalently,  the
bandwidth of each server in the cluster is divided by μ ).

Let C be a multi-tenant database cluster that consists of М
database servers (S 1 , ... , S M ) ,  for each of which we know
the following values:

1. λ̄ i ,i∈1,.. , M -  the  bandwidth  of  the  database
server;

2. v̄ i , i∈1,.. , M - the capacity of the database server.

There are also N clients,  comprising the set T,  for each of
which we also know two values:

1. λ j , j∈1,.. , N -  the  intensity  of  j-th  client  query
flow;

2. v j , j∈1, .. ,N - the data size of j-th client.

We will call the M ×N matrix X a distribution matrix
(of clients in the cluster), if X satisfies the following constraints
and conditions:

1. xi , j=1 when data of  the j-th client are placed at
the i-th server and xi , j=0 otherwise;

2. ∀ j∈1,.. , N ∃ ! i∈1, .. ,M : xi , j=1 -  the  data  of
each client are placed at the single server;

3. ∀ i∈1,.. , M ∑
j=1

N

xi , j v j⩽v̄ i -  the  total  data  size  at

each server is less than or equal to the server capacity;

4. ∀ i∈1,.. , M ∑
j=1

N

xi , j λ j⩽λ̄ i -  the  total  query  flow

intensity at  each  server  is  less  than  or  equal  to  the
server bandwidth.

We  will  call  the  matrix X̃ the  optimal  matrix  of
distribution of clients set T in the cluster C if for some function
f( C, T, X ) the following condition is met:

f (C ,T , X̃ )=min{ f (C ,T , X ):
X −distribution matrix }

The  function  f in  this  definition  is  the  measure  of
load-balancing efficiency among the servers of the cluster. The
problem of effective cluster load-balancing in this formulation
reduces  to  finding  an optimal  distribution matrix X̃ for a
given cluster C, a set of clients T and the measure of efficiency
f.



B. The measure of efficiency

What  is  the  best  way  to  measure  the  efficiency  of
load-balancing  among  servers?  Uniformity  of  the  load  is  a
good  criteria  here, therefore  the  target  function  which  will
measure  this  characteristics  should  be  searched. At the first
approximation,  it  may  seem  that  the  sum  of  squares  of
differences between the load of the i-th server and the average
load of servers in the cluster can be used as the above measure.
This can be written as:

∑
i=1

M (∑j=1

N

x i , j λ j

λ̄ j
−Z )

2

, where Z — is the average load of

the cluster servers, that is

Z =

∑
i=1

M ∑
j=1

N

x i , j λ j

λ̄i

M

However,  on closer examination this measure is consistent
only  if  the  cluster  C consists  of  servers  with  a uniform
performance,  otherwise it leads to  an intuitively wrong result.
This consideration can be illustrated by the following example.
Let the cluster C consist of twelve servers and two of them are
45  times  more  powerful  than  other  ten  (that  is

λ̄1,2=45 λ̄k , k ∈3, .. ,12 ).  In  this case  these  two  servers
constitute 90 percent of total cluster computational power and
therefore  they play  a  crucial  role in  solving the problem of
effective  load-balancing.  The  operation  mode  of  other  ten
servers is not important in such  a configuration (for example,
they can not serve any queries at all). But the above formula
assumes that all terms are equivalent and therefore  these ten
servers will bring a decisive contribution to the measure. This
example shows  the  need to somehow normalize the terms in
accordance with the powers of the cluster components. So the
desired situation can be formulated in  the following way: the
share of a total query flow at each server should be as close as
possible to the share of this server in the total computational
power of the entire cluster. Using this formulation, the function
f can be written as follows:

f (C ,T , X )=∑
i=1

M (∑j=1

N

xi , j λ j

∑
j=1

N

λ j

−
λ̄ i

∑
i=1

M

λ̄ i )
2

 (1)

C. Additional considerations

Since a set of distribution matrices X is discrete and finite,
then, if it is not empty (that is there are  some feasible cluster
configurations), there  is  a  non-empty subset X min ,  whose
elements  are  the  points  of  minimum of  the  target  measure
function  f, that  is,  the  problem  of  optimal  cluster
load-balancing always has a solution.

V. THE LOAD-BALANCING PROBLEM AS THE QUADRATIC

ASSIGNMENT PROBLEM

The  above  problem is  a  special  case  of  the  generalized
quadratic  assignment  problem  (GQAP)  which,  in  turn,  is  a

generalization  of  the quadratic  assignment  problem  (QAP),
initially  stated  in  1957  by  Koopmans  and  Beckmann[7]  to
model the problem of allocating a set of n facilities to a set of n
locations  while  minimizing  the  quadratic  objective  function
arising from the distance between the locations in combination
with  the  flow  between  the  facilities.  The  GQAP  is  a
generalized problem of the QAP in which there is no restriction
that one location can accommodate only a single equipment.
Lee and Ma[8] proposed the first formulation of the GQAP.
Their  study  involves  a  facility  location  problem  in
manufacturing where  facilities  must be located  among fixed
locations, with a space constraint at each possible location. The
aim is  to  minimize  the  total  installation  and  interaction
transportation cost. The formulation of the GQAP is:

min∑
i=1

M

∑
j=1

N

∑
k =1

M

∑
n=1

N

f ik d jn xij xkn+∑
i=1

M

∑
j=1

N

bij xij

subject to:

∑
i=1

M

s ij≤S j , j ∈1, N ,

∑
j=1

N

xij=1, i∈1, M ,

xij={0,1} , i∈1, M , j∈1, N , 

 where:

M is the number of facilities,

N is the number of locations,

f ik is the commodity flow from a facility i to a facility
k,

d jn is the distance from a location j to a location n,

bij is the cost of installing a facility i at a location j,

sij is the space requirement if a facility i is installed at a
location j,

S j is the space available at a location j,

xij is a binary variable which is equal to 1 if a facility i
is installed at a location j.

The objective function sums the costs of installation and
quadratic interactivity. The knapsack constraints impose space
limitations at each location, and the multiple choice constraints
ensure  that  each  facility  is  to  be  installed  at  exactly  one
location.

The QAP is well known to be NP-hard [9] and, in practice,
problems  of  moderate  sizes,  such  as  n=16,  are  still  being
considered  very  hard.  For  recent  surveys  on  QAP,  see  the
articles by Burkard [10], and Rendl, Pardalos, Wolkowicz [11].
An annotated bibliography is given by Burkard and Cela [12].
The QAP is a classic problem that defies all approaches for its
solution and where  the  problems of dimension  n=16 can be
considered as of large scale. Since GQAP is a generalization of
QAP, it is also NP-hard and even more difficult to solve.

The  above  load-balancing  problem  for  a  multi-tenant
database cluster  deals with hundreds of database servers and
hundreds of thousands  of  clients. Due to NP-hardness  of the



GQAP, it  is obvious that such  a problem can not be solved
exactly or approximately with a high degree of exactness by an
existing  algorithm. So  we  can  conclude  that  to  solve  the
load-balancing  problem we  need  to  suggest  some  heuristics
that  can  provide  acceptable  performance  and  measure  its
efficiency  and  positive  effect  in  comparison  with  other
load-balancing strategies.

VI. LOAD-BALANCING ALGORITHM HEURISTICS AND ITS

EXPERIMENTAL VERIFICATION

To  test  the  above-mentioned target  function  used  to
evaluate  the  efficiency  of  multi-tenant  database  cluster
load-balancing strategy,  an  experiment was conducted  on the
simulation model of  the cluster.  The structure of  the cluster
with  N database  servers  of  different  bandwidth  (N is  a
parameter  of  the  experiment  )  was  created  by  using  the
modeling environment. At the initial moment the cluster had no
clients. The model of the query flow was configured so that it
provided progressive registration of new clients at the cluster
and  due  to  it the  corresponding  increase  of  query  flow
intensity.  Subsystems  of  the  model  which  provide  data  size
refreshing  and  recalculation  of  tenants  activity  coefficients
were disabled. Since the above subsystems are responsible for
the  dynamism  of  the  model,  the  resulting  configuration
corresponded to a cluster with constant intensities of incoming
query flows. Since the computational power of the cluster is
limited  and  the  total  intensity  of  incoming  query  flow
constantly  increases,  it  is  obvious  that  the  cluster  will  stop
serving queries at some point in time. It is also obvious that if
one load-balancing strategy allows  to place more clients than
another  within  similar  external  conditions,  then  this
load-balancing  strategy  is  more  effective  and  should  be
preferred  in  real  systems.  The  experiment  was  meant  to
compare the simple algorithm, that is based on the analysis of
incoming query flows intensities and  the minimization of the
above  target  function,  with  other  simple  load-balancing
strategies which do not take intensities into account at all. It
should  be  mentioned,  that  the  ratio  between  read-only  and
data-modifying  queries  is  not  important  in  this  experiment,
since data replication is not used.

Three  load-balancing  algorithms  are used  in the
experiment. The first algorithm tries to balance the load of the
cluster  by balancing the size of  data that  are stored at  each
server according to the server bandwidth ratio. When deciding
to host a new client on the server, this algorithm calculates the
ratio  of  the  total  data size  of  clients  that  are  hosted on the
server  to  the  bandwidth  of  the  server  for  all  servers  in  the
cluster (the amount of stored data per the processor core), and
selects a server with the minimal ratio (if there are several such
servers, it randomly selects one of them). The algorithm takes
into account only the servers that have enough free space to
host  a  new  client.  In  a  pseudo-code  this  algorithm  can  be
written as the following:

min_servers = {};
min_ratio = max_double();
for each s in S

if datasize( s ) + sz > capacity( s )
continue;

ratio = num_clients( s ) / bandwidth( s );
if ratio < min_ratio

min_ratio = ratio;
min_servers.clear();

if ratio == min_ratio
min_servers.add( s );

return random( min_servers );

Here  S  denotes  a set of database servers  within the cluster ,
min_servers is a set of servers with minimum amount of clients
taking into account server bandwidth, sz is a data size of a new
client . This algorithm will be referred to as “Algorithm 1”.

The second algorithm tries to balance the load of the cluster
by balancing the amount of clients at each server according to
the server bandwidth ratio. When deciding to host a new client
on the server, this algorithm calculates the ratio of the number
of clients that are hosted on the server to the bandwidth of the
server for all servers in  the cluster (the  number of clients per
the processor core), and selects the server with a minimal ratio
(if there are several  such servers,  it  randomly selects one of
them). As the previous algorithm, this algorithm also takes into
account only the servers that have enough free space to host a
new client.  In  a pseudo-code this algorithm can be written as
the following:

min_servers = {};
min_ratio = max_double();
for each s in S

if datasize( s ) + sz > capacity( s )
continue;

ratio = datasize( s ) / bandwidth( s );
if ratio < min_ratio

min_ratio = ratio;
min_servers.clear();

if ratio == min_ratio
min_servers.add( s );

return random( min_servers );

The meaning of variables here is the same as in the previous
example. This algorithm will be referred to as “Algorithm 2”.

The third algorithm is  based  on the minimization of  the
target  function (1).  For the sake of simplicity this algorithm
was connected to the query generator information subsystem of
the  model  to  get  exact  values  of  incoming  query  flow
intensities for each client. In reality such an approach cannot be
implemented and values  of  query flow intensities  should be
obtained by some statistical procedures, but for experimental
purposes  and  testing  theoretical  model  this  approach  is
applicable.  The main principle of the algorithm is simple:  it
alternately  tries  to  host  a  new  client  at  each  server  and
computes the resulting value of the target function (1). Finally,
the client is hosted at the server which gave the minimal value
of all the above. In a pseudo-code this algorithm can be written
as the following:

min_server = null;
min_ratio = max_double();
for each s in S

if datasize( s ) + sz > capacity( s )
continue;

ratio = F( S | new client hosted at s );
if ratio < min_ratio

min_ratio = ratio;
min_server = s

return min_server;

In  this  example  F denotes  the  target  function  (1). This
algorithm will be referred to as “Algorithm 3”.



All three algorithms were tested in the same environment,
that is, with the same mean of query cost and tenants activity
coefficient distribution. The results of experiments are given in
the table 1. The first three columns show the parameters of the
model and the algorithm used in the particular experiment. The
fourth column shows the average amount of clients hosted at
the cluster when the model met the experiment stop condition
(one of the servers had the queue with more than 200 pending
requests).  Algorithm number 3 has shown significantly better
results than others for all three models.

TABLE I. RESULTS OF EXPERIMENTS

Number of
servers

Algorithm Number of
experiments

Average
number of

hosted
clients

5 1 30 701,95

5 2 30 1197,63

5 3 30 1353,45

9 1 30 1090,6

9 2 30 1851,7

9 3 30 2155,45

15 1 30 1766,5

15 2 30 3235,35

15 3 30 3835,2

VII. CONCLUSION

The experiment has shown that the load-balancing strategy
based  on  the  analysis  of  incoming query flow intensities  is
more effective than others.  This fact  leads to the conclusion
that the above-mentioned theoretical concepts are correct and
can be applied to construct more complicated load-balancing
strategies which take into account more factors and can be used
in  a more  complicated  environment.  Some interesting
questions to study are:

• How to determine the incoming query flow intensity of
a client in a real environment;

• What algorithms can be used to find  a better solution
for the clients assignment problem;

• Are  all  solutions  of  the  client  assignment  problem
equally valuable when the intensities of incoming query
flows are not constant;

• How to  deal  with  the  data  replication  and how the
intensity  of  a  client  query  flow  should  be  divided
among servers which have copies of the client data;

• What strategy should be used to relocate  the clients
data when the load balancing subsystem decides to do
so.

All these questions are crucial in implementing an efficient
load-balancing strategy for the cluster.
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