
The Formal Statement of the Load-Balancing
Problem for a Multi-Tenant Database Cluster with a

Constant Flow of Queries
Evgeny A. Boytsov
Valery A. Sokolov

Computer Science Department
Yaroslavl State University

Yaroslavl, Russia
{boytsovea, valery-sokolov}@yandex.ru

Abstract — The concept of a multi-tenant database cluster
offers new approaches in implementing a data storage for cloud
applications. One of the most important questions to solve is
finding a load-balancing algorithm to be used by the cluster,
which is able to effectively use all available resources. This paper
discusses theoretical foundations for such an algorithm in the
simplest case when the flow of incoming queries is constant, that
is, every tenant has a predefined intensity of the query flow and
there are no changes in the state of the tenant's data.

Keywords — database; cluster; multi-tenancy; load-balancing;
quadratic assignment problem; imitation modeling;

I. INTRODUCTION

When a company designs a high load cloud application, its
developers sooner or later face the problem of organizing the
storage of data in the cloud with the requirement of high
performance, fault-tolerance and reliable tenants’ data isolation
from each other. At the moment these tasks are usually solved
at the level of application servers by designing an additional
layer of an application logic. Such a technique is discussed in
many specialized papers for application developers and other
IT-specialists [1, 2, 3]. There are also some projects of
providing native multi-tenancy support at the level of a single
database server [4]. This paper is devoted to an alternative
concept of a multi-tenant database cluster which proposes the
solution of the above problems at the level of a data storage
subsystem and discusses theoretical foundations of this concept
in a particular case.

II. THE ARCHITECTURE OF THE MULTI-TENANT DATABASE

CLUSTER

A multi-tenant database cluster [5,6] is an additional layer
of abstraction over ordinary relational database servers with a
single entry point which is used to provide the isolation of
cloud application customer data, load-balancing, routing of
queries among servers and fault-tolerance. The main idea is to
provide an application interface which has most in common
with the interfaces of traditional RDBMS (relational database
management system). At the moment the typical scenario of
interaction with the cluster from the developer's point of view
is seen as the following:

Connect(TenantId, ReadWrite / ReadOnly);
SQL-commands
Disconnect();

A multi-tenant cluster consists of a set of ordinary database
servers and specific control and query routing servers.

The query routing server is a new element in a chain of
interaction between application servers and database ones. This
is the component application developers will deal with. In fact,
this component of the system is just a kind of a proxy server
which hides the details of the cluster structure, and whose main
purpose is to find an executor for a query and route the query
to him as fast as possible. It makes a decision based on the map
of the cluster.

It is important to note that a query routing server has a
small choice of executors for each query. If a query implies
data modification, there is no alternative than to route it to the
master database of a tenant, because only there data
modification is permitted. If the query is read-only, it also can
be routed to a slave server, but in the general case there would
be just one or two slaves for a given master, so even in this
case the choice is very limited.

The data distribution and load balancing server is the most
important and complicated component of the system. Its main
functions are:

• initial distribution of tenants data among servers of a
cluster during the system deployment or addition of
new servers or tenants;

Fig. 1. Multi-tenant database cluster architecture

• management of tenant data distribution, based on the
collected statistics, including the creation of additional
data copies and moving data to another server;

• diagnosis of the system for the need of adding new
computing nodes and storage devices;

• managing the replication.
This component of the system has the highest value since the
performance of an application depends on the success of its
work.

III. MAIN CHARACTERISTICS OF THE QUERY FLOW

When modeling and analyzing the multi-tenant database
cluster the most important things to study are characteristics
and properties of the incoming query flow. The quality of
implementation of this model component significantly affects
the adequacy and applicability of results obtained during
modeling.

The flow of incoming queries of the multi-tenant database
cluster can be divided into N non-intersecting and independent
sub-flows for each tenant λ i ,i∈1, N :

Λ=∑
1

N

λi

The study of statistics on existing multi-tenant cloud
applications shows that there is a significant dependency
between the size of data that the client stores in the cloud and
the intensity of a client's query flow (the more data has the
client, the larger organization it represents and, therefore, the
more often these data are accessed by individual users of that
client). The analysis of the statistics also shows that the above
tendency is not comprehensive and there are clients within the
cluster which have the intensity of the query flow that does not
match the size of the stored data (it can be both more or less
intensive than it is expected). The client's query flow can be
divided into two sub-flows: read-only queries and
data-modifying ones.

λ i=λ i read
+λ i write

Such a division only has sense when the data replication is
used within the cluster or when the solution is tuned to
specifics of the particular database server or operating system.
The higher-level analysis can omit this division.

Another obvious characteristics of the query flow is an
average duration μ of a query at the server. The duration of
different operations is not equal and this consideration should
be taken into account during the modeling. This value has a
significant impact on the quality of load-balancing, since it
affects the formation of the total cluster load. As we know
from the queuing theory, if Λμ>N queries , where N queries is
the maximum amount of queries that can run in parallel in the
cluster, then the cluster will fail to serve the incoming flow of
requests. It is also known that intensities of incoming query
flows are changed during the lifetime of the application, that is,

λ i=λ(t) , i∈1, N . Some clients begin to use the application
more intensively, the activity of others decreases, new clients
appear and existing clients disappear. Besides, some
applications may have season peaks of load.

IV. THE LOAD-BALANCING PROBLEM WITH A CONSTANT

FLOW OF QUERIES

A. General problem

The present paper is devoted to the study of load-balancing
the cluster in the case when flows of incoming queries have a
constant intensity, i.e. λ i=const , i∈1, N . The solution of
this problem can be considered as a solution of the general
problem «at the point». Clusters without data replication will
be studied (that is, without providing fault-tolerance). For
simplicity we assume that μ=1 (or, equivalently, the
bandwidth of each server in the cluster is divided by μ).

Let C be a multi-tenant database cluster that consists of М
database servers (S 1 , ... , S M) , for each of which we know
the following values:

1. λ̄ i ,i∈1,.. , M - the bandwidth of the database
server;

2. v̄ i , i∈1,.. , M - the capacity of the database server.

There are also N clients, comprising the set T, for each of
which we also know two values:

1. λ j , j∈1,.. , N - the intensity of j-th client query
flow;

2. v j , j∈1, .. ,N - the data size of j-th client.

We will call the M ×N matrix X a distribution matrix
(of clients in the cluster), if X satisfies the following constraints
and conditions:

1. xi , j=1 when data of the j-th client are placed at
the i-th server and xi , j=0 otherwise;

2. ∀ j∈1,.. , N ∃ ! i∈1, .. ,M : xi , j=1 - the data of
each client are placed at the single server;

3. ∀ i∈1,.. , M ∑
j=1

N

xi , j v j⩽v̄ i - the total data size at

each server is less than or equal to the server capacity;

4. ∀ i∈1,.. , M ∑
j=1

N

xi , j λ j⩽λ̄ i - the total query flow

intensity at each server is less than or equal to the
server bandwidth.

We will call the matrix X̃ the optimal matrix of
distribution of clients set T in the cluster C if for some function
f(C, T, X) the following condition is met:

f (C ,T , X̃)=min{ f (C ,T , X):
X −distribution matrix }

The function f in this definition is the measure of
load-balancing efficiency among the servers of the cluster. The
problem of effective cluster load-balancing in this formulation
reduces to finding an optimal distribution matrix X̃ for a
given cluster C, a set of clients T and the measure of efficiency
f.

B. The measure of efficiency

What is the best way to measure the efficiency of
load-balancing among servers? Uniformity of the load is a
good criteria here, therefore the target function which will
measure this characteristics should be searched. At the first
approximation, it may seem that the sum of squares of
differences between the load of the i-th server and the average
load of servers in the cluster can be used as the above measure.
This can be written as:

∑
i=1

M (∑j=1

N

x i , j λ j

λ̄ j
−Z)

2

, where Z — is the average load of

the cluster servers, that is

Z =

∑
i=1

M ∑
j=1

N

x i , j λ j

λ̄i

M

However, on closer examination this measure is consistent
only if the cluster C consists of servers with a uniform
performance, otherwise it leads to an intuitively wrong result.
This consideration can be illustrated by the following example.
Let the cluster C consist of twelve servers and two of them are
45 times more powerful than other ten (that is

λ̄1,2=45 λ̄k , k ∈3, .. ,12). In this case these two servers
constitute 90 percent of total cluster computational power and
therefore they play a crucial role in solving the problem of
effective load-balancing. The operation mode of other ten
servers is not important in such a configuration (for example,
they can not serve any queries at all). But the above formula
assumes that all terms are equivalent and therefore these ten
servers will bring a decisive contribution to the measure. This
example shows the need to somehow normalize the terms in
accordance with the powers of the cluster components. So the
desired situation can be formulated in the following way: the
share of a total query flow at each server should be as close as
possible to the share of this server in the total computational
power of the entire cluster. Using this formulation, the function
f can be written as follows:

f (C ,T , X)=∑
i=1

M (∑j=1

N

xi , j λ j

∑
j=1

N

λ j

−
λ̄ i

∑
i=1

M

λ̄ i)
2

 (1)

C. Additional considerations

Since a set of distribution matrices X is discrete and finite,
then, if it is not empty (that is there are some feasible cluster
configurations), there is a non-empty subset X min , whose
elements are the points of minimum of the target measure
function f, that is, the problem of optimal cluster
load-balancing always has a solution.

V. THE LOAD-BALANCING PROBLEM AS THE QUADRATIC

ASSIGNMENT PROBLEM

The above problem is a special case of the generalized
quadratic assignment problem (GQAP) which, in turn, is a

generalization of the quadratic assignment problem (QAP),
initially stated in 1957 by Koopmans and Beckmann[7] to
model the problem of allocating a set of n facilities to a set of n
locations while minimizing the quadratic objective function
arising from the distance between the locations in combination
with the flow between the facilities. The GQAP is a
generalized problem of the QAP in which there is no restriction
that one location can accommodate only a single equipment.
Lee and Ma[8] proposed the first formulation of the GQAP.
Their study involves a facility location problem in
manufacturing where facilities must be located among fixed
locations, with a space constraint at each possible location. The
aim is to minimize the total installation and interaction
transportation cost. The formulation of the GQAP is:

min∑
i=1

M

∑
j=1

N

∑
k =1

M

∑
n=1

N

f ik d jn xij xkn+∑
i=1

M

∑
j=1

N

bij xij

subject to:

∑
i=1

M

s ij≤S j , j ∈1, N ,

∑
j=1

N

xij=1, i∈1, M ,

xij={0,1} , i∈1, M , j∈1, N ,

 where:

M is the number of facilities,

N is the number of locations,

f ik is the commodity flow from a facility i to a facility
k,

d jn is the distance from a location j to a location n,

bij is the cost of installing a facility i at a location j,

sij is the space requirement if a facility i is installed at a
location j,

S j is the space available at a location j,

xij is a binary variable which is equal to 1 if a facility i
is installed at a location j.

The objective function sums the costs of installation and
quadratic interactivity. The knapsack constraints impose space
limitations at each location, and the multiple choice constraints
ensure that each facility is to be installed at exactly one
location.

The QAP is well known to be NP-hard [9] and, in practice,
problems of moderate sizes, such as n=16, are still being
considered very hard. For recent surveys on QAP, see the
articles by Burkard [10], and Rendl, Pardalos, Wolkowicz [11].
An annotated bibliography is given by Burkard and Cela [12].
The QAP is a classic problem that defies all approaches for its
solution and where the problems of dimension n=16 can be
considered as of large scale. Since GQAP is a generalization of
QAP, it is also NP-hard and even more difficult to solve.

The above load-balancing problem for a multi-tenant
database cluster deals with hundreds of database servers and
hundreds of thousands of clients. Due to NP-hardness of the

GQAP, it is obvious that such a problem can not be solved
exactly or approximately with a high degree of exactness by an
existing algorithm. So we can conclude that to solve the
load-balancing problem we need to suggest some heuristics
that can provide acceptable performance and measure its
efficiency and positive effect in comparison with other
load-balancing strategies.

VI. LOAD-BALANCING ALGORITHM HEURISTICS AND ITS

EXPERIMENTAL VERIFICATION

To test the above-mentioned target function used to
evaluate the efficiency of multi-tenant database cluster
load-balancing strategy, an experiment was conducted on the
simulation model of the cluster. The structure of the cluster
with N database servers of different bandwidth (N is a
parameter of the experiment) was created by using the
modeling environment. At the initial moment the cluster had no
clients. The model of the query flow was configured so that it
provided progressive registration of new clients at the cluster
and due to it the corresponding increase of query flow
intensity. Subsystems of the model which provide data size
refreshing and recalculation of tenants activity coefficients
were disabled. Since the above subsystems are responsible for
the dynamism of the model, the resulting configuration
corresponded to a cluster with constant intensities of incoming
query flows. Since the computational power of the cluster is
limited and the total intensity of incoming query flow
constantly increases, it is obvious that the cluster will stop
serving queries at some point in time. It is also obvious that if
one load-balancing strategy allows to place more clients than
another within similar external conditions, then this
load-balancing strategy is more effective and should be
preferred in real systems. The experiment was meant to
compare the simple algorithm, that is based on the analysis of
incoming query flows intensities and the minimization of the
above target function, with other simple load-balancing
strategies which do not take intensities into account at all. It
should be mentioned, that the ratio between read-only and
data-modifying queries is not important in this experiment,
since data replication is not used.

Three load-balancing algorithms are used in the
experiment. The first algorithm tries to balance the load of the
cluster by balancing the size of data that are stored at each
server according to the server bandwidth ratio. When deciding
to host a new client on the server, this algorithm calculates the
ratio of the total data size of clients that are hosted on the
server to the bandwidth of the server for all servers in the
cluster (the amount of stored data per the processor core), and
selects a server with the minimal ratio (if there are several such
servers, it randomly selects one of them). The algorithm takes
into account only the servers that have enough free space to
host a new client. In a pseudo-code this algorithm can be
written as the following:

min_servers = {};
min_ratio = max_double();
for each s in S

if datasize(s) + sz > capacity(s)
continue;

ratio = num_clients(s) / bandwidth(s);
if ratio < min_ratio

min_ratio = ratio;
min_servers.clear();

if ratio == min_ratio
min_servers.add(s);

return random(min_servers);

Here S denotes a set of database servers within the cluster ,
min_servers is a set of servers with minimum amount of clients
taking into account server bandwidth, sz is a data size of a new
client . This algorithm will be referred to as “Algorithm 1”.

The second algorithm tries to balance the load of the cluster
by balancing the amount of clients at each server according to
the server bandwidth ratio. When deciding to host a new client
on the server, this algorithm calculates the ratio of the number
of clients that are hosted on the server to the bandwidth of the
server for all servers in the cluster (the number of clients per
the processor core), and selects the server with a minimal ratio
(if there are several such servers, it randomly selects one of
them). As the previous algorithm, this algorithm also takes into
account only the servers that have enough free space to host a
new client. In a pseudo-code this algorithm can be written as
the following:

min_servers = {};
min_ratio = max_double();
for each s in S

if datasize(s) + sz > capacity(s)
continue;

ratio = datasize(s) / bandwidth(s);
if ratio < min_ratio

min_ratio = ratio;
min_servers.clear();

if ratio == min_ratio
min_servers.add(s);

return random(min_servers);

The meaning of variables here is the same as in the previous
example. This algorithm will be referred to as “Algorithm 2”.

The third algorithm is based on the minimization of the
target function (1). For the sake of simplicity this algorithm
was connected to the query generator information subsystem of
the model to get exact values of incoming query flow
intensities for each client. In reality such an approach cannot be
implemented and values of query flow intensities should be
obtained by some statistical procedures, but for experimental
purposes and testing theoretical model this approach is
applicable. The main principle of the algorithm is simple: it
alternately tries to host a new client at each server and
computes the resulting value of the target function (1). Finally,
the client is hosted at the server which gave the minimal value
of all the above. In a pseudo-code this algorithm can be written
as the following:

min_server = null;
min_ratio = max_double();
for each s in S

if datasize(s) + sz > capacity(s)
continue;

ratio = F(S | new client hosted at s);
if ratio < min_ratio

min_ratio = ratio;
min_server = s

return min_server;

In this example F denotes the target function (1). This
algorithm will be referred to as “Algorithm 3”.

All three algorithms were tested in the same environment,
that is, with the same mean of query cost and tenants activity
coefficient distribution. The results of experiments are given in
the table 1. The first three columns show the parameters of the
model and the algorithm used in the particular experiment. The
fourth column shows the average amount of clients hosted at
the cluster when the model met the experiment stop condition
(one of the servers had the queue with more than 200 pending
requests). Algorithm number 3 has shown significantly better
results than others for all three models.

TABLE I. RESULTS OF EXPERIMENTS

Number of
servers

Algorithm Number of
experiments

Average
number of

hosted
clients

5 1 30 701,95

5 2 30 1197,63

5 3 30 1353,45

9 1 30 1090,6

9 2 30 1851,7

9 3 30 2155,45

15 1 30 1766,5

15 2 30 3235,35

15 3 30 3835,2

VII. CONCLUSION

The experiment has shown that the load-balancing strategy
based on the analysis of incoming query flow intensities is
more effective than others. This fact leads to the conclusion
that the above-mentioned theoretical concepts are correct and
can be applied to construct more complicated load-balancing
strategies which take into account more factors and can be used
in a more complicated environment. Some interesting
questions to study are:

• How to determine the incoming query flow intensity of
a client in a real environment;

• What algorithms can be used to find a better solution
for the clients assignment problem;

• Are all solutions of the client assignment problem
equally valuable when the intensities of incoming query
flows are not constant;

• How to deal with the data replication and how the
intensity of a client query flow should be divided
among servers which have copies of the client data;

• What strategy should be used to relocate the clients
data when the load balancing subsystem decides to do
so.

All these questions are crucial in implementing an efficient
load-balancing strategy for the cluster.

[1] F. Chong, G. Carraro, “Architecture Strategies for Catching the Long
Tail“, Microsoft Corp. Website, 2006.

[2] F. Chong, G. Carraro, R Wolter, “Multi-Tenant Data Architecture“,
Microsoft Corp. Website, 2006.

[3] K.S. Candan, W. Li, T. Phan, M. Zhou, "Frontiers in Information and
Software as Services", proceedings of ICDE, 2009, pages 1761-1768.

[4] Oliver Schiller, Benjamin Schiller, Andreas Brodt, Bernhard Mitschang,
“Native Support of Multi-tenancy in RDBMS for Software as a
Service“, proceedings of the 14-th International Conference on
Extending Database Technology, 2011.

[5] E.A. Boytsov, V.A. Sokolov, “The Problem of Creating Multi-Tenant
Database Clusters”, proceedings of SYRCoSE 2012, Perm, 2012 , pages
172-177.

[6] E.A. Boytsov, V.A. Sokolov, “Multi-tenant Database Clusters for SaaS”,
proceedings of BMSD 2012, Geneva, 2012 , page 144.

[7] Koopmans, T.C. and M.J. Beckmann, “Assignment problems and the
location of economic activities”, Econometrica 25, 1957, pages 53-76.

[8] Lee C.-G. and Z. Ma, “The generalized quadratic assignment problem”,
Research Report, Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Canada, 2004.

[9] S. Sahni and T. Gonzales, “P-complete approximation problems”,
Journal of ACM, 1976.

[10] R.E. Burkard, “Locations with spatial interactions: the quadratic
assignment problem”, Discrete Location Theory. John Wiley, 1991.

[11] P. Pardalos, F. Rendl, and H. Wolkowitz. “The quadratic assignment
problem: A survey and recent developments”, proceedings of the
DIMACS Workshop on Quadratic Assignment Problems, volume 16 of
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 1-41, 1994.

[12] R.E. Burkard and E. Cela, “Quadratic and three-dimensional assignment
problems”, Technical Report SFB Report 63, Institute of Mathematics,
University of Technology Graz, 1996.

	I. Introduction
	II. The architecture of the multi-tenant database cluster
	III. Main characteristics of the query flow
	IV. The load-balancing problem with a constant flow of queries
	A. General problem
	B. The measure of efficiency
	C. Additional considerations

	V. The load-balancing problem as the quadratic assignment problem
	VI. Load-balancing algorithm heuristics and its experimental verification
	VII. Conclusion

