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Abstract
In the era of growing informatization of society more people deal with

and  more  computing  power  is  consumed  by  producing,  storing  and
processing  of  information.  One of  the  classic  tasks  of  informatics  is
searching  for  the  longest  common  sub-sequence  of  two  and  more
sequences.

The task of finding the longest common sub-sequence is the task of
searching  for  a  sequence  which  is  a  sub-sequence  of  several
sequences.  A  sub-sequence  can  be  acquired  from  a  certain  finite
sequence if  a  certain  set  of  its  elements  (possibly,  an empty set)  is
taken out of it. The array of tasks requiring finding the longest common
sub-sequence is fairly large: finding the difference between files (diff) for
a version control system (CVS), DNA sequencing, the task of finding
plagiarism,  solving  multi-criteria  problems  with  the  help  of  genetic
algorithm.

According  to  the  latest  research  done  by  IDC  and  published  in
“Extracting Value from Chaos” [1], the volume of information across the
world is doubled every two years, which is faster than what the Moore’s
law states. It is therefore necessary to develop algorithms working in a
correct and optimal way in order to process the information.

Dynamic programming
The technique of dynamic programming can be applied to produce

global  alignments  via  the  Needleman-Wunsch  algorithm,  and  local
alignments  via  the  Smith-Waterman  algorithm.  The  dynamic
programming method is guaranteed to find an optimal alignment given a
particular scoring function; however, identifying a good scoring function
is often an empirical rather than a theoretical matter. Although dynamic
programming  is  extensible  to  more  than  two  sequences,  it  is
prohibitively slow for  large numbers of  or  extremely long sequences.
The technique of  dynamic  programming is  theoretically  applicable  to
any  number  of  sequences;  however,  because  it  is  computationally
expensive in both time and memory, it is rarely used for more than three
or  four  sequences  in  its  most  basic  form. This  method  requires
constructing  the  n-dimensional  equivalent  of  the  sequence  matrix
formed from two sequences, where n is the number of sequences in the
query. Standard dynamic programming is first used on all pairs of query
sequences and then the "alignment space" is filled in by considering
possible  matches  or  gaps  at  intermediate  positions,  eventually
constructing  an  alignment  essentially  between  each  two-sequence
alignment. Although  this  technique  is  computationally  expensive,  its
guarantee of a global optimum solution is useful in cases where only a
few sequences need to be aligned accurately.

Needleman-Wunsch algorithm
In  Nidelman-Wunsch  algorithm  [2]  a  dynamic  programming

approach is using. Required to find the maximum one occurrence to
another DNA sequence, the sequence length are n1 and n2 respectively.
Suppose that solutions are already exist for all subtasks (m1, m2), the
smaller the set one, where m1 and m2 - the length of the sequences
such that 0 ≤ m1 ≤ n1 and 0 ≤ m2 ≤ n2.  Then the problem (n1,  n2) is
reduced to a smaller subtasks by the follows:

substitute (n1, n2)={
0, n1=0∪n2=0
subtitute (n1−1, n2−1)+1, s1[n1]=s2[n2]

max (substitute (n1−1,n2) , subtitute (n1, n2−1)) , s1[n1]≠s2[n2]

(1)

Graphically,  it  can be represented as a
matrix  M (Fig.  1),  which  includes  solutions
subtasks (i, j) as its elements i, j .The arrows
in  the diagram are  the transitions  between
subtasks solutions. Textured arrows indicate
the  transitions  in  which  the  length  of  the
common  subsequence  increased,  white
arrows - transitions, which produce or extend
breaks of one of the aligned sequences. In
each  cell  d  i,  j  of  the  matrix  M  maximum

subsequences  length  is  stored.  The  length  can  be  obtained  from  first

i elements of the first and j elements of second sequences. It is clear that the
asymptotic estimate of the time of the algorithm is O (n1 * n2) [3], where n1 and
n2 - the length of the DNA sequences. Since all the information is stored in a
matrix, then the algorithm will occupy in memory capacity equal to n1 * n2.

The  most  economical  on  memory
consumption (will hold of ni) - is the Miller-
Myers algorithm [4]. Its working principle is
to break one of the sequences in two equal
parts.  For  each  section  there  is  a  line  x
weight (formula (1)), the optimal alignment
of origin (0, 0) at the end of the x and (n1,
n2)  in the x:  W+(x),  W-(x).  Weight  optimal
alignment passing through the point x (Fig. 2): W (x) = W+(x) + W-(x). Weight
optimal alignment is W = maxx (W(x)).  So,  we have found a point  through
which passes the optimal alignment. Found a point x breaks matrix M into four
quadrants (submatrix M), two of which are not to contain the optimal alignment
.For two quadrants containing the best way we can apply the same technique,
and remember the point x 'and x ".Continuing the process of division in two
quadrants, we find all the points through which the optimal path (Fig. 3).

The algorithm for GPU
Modern graphics cards almost as good as supercomputing by speed and

number of cores, but they have one very significant drawback: the graphical
processor arithmetic units are grouped into blocks, and all the devices that are
in the same block, perform the same operation. [5]This approach is ideally
suitable for computer graphics, where you have to handle an array of pixels, or
perform operations on matrix.

The Miller-Myers method will not be optimal to run on the graphics card. We
can run calculation in one quadrant by 2 flow: the first do perform calculations
from  the  beginning,  the  second  -  from  the  end  of  the  matrix  M  and  all
operations for the calculations will be identical. In the parallel computation of
several quadrants, we are faced with the following problem: there are usually
have quadrants with different dimensions, and when one quadrant has already
been  calculated,  the  streams  will  have  to  wait  to  process  the  remaining
quadrants. This reduces the performance of the algorithm as a whole. Need to

parallelize  computation  within  a  quadrant-
stand.  This  can be done by  changing the
order of computation each element. Usually
sequential  algorithm  calculation  of  the
matrix M is assumed[6]. We consistently go
around the matrix  line by line from top to
bottom  and  by  columns  from  left  to
right. The proposed algorithm will be carried
out  in  an  independent  calculation  of  the
matrix M elements on a line parallel to the

secondary diagonal of the matrix. The above calculation procedure is shown in
Fig. 4 on the right. It shows that
the classical  method (shown on
the left)  runs in  16 stages,  and
proposed  an  alternative
algorithm – 7.

Let's  assemble  calculation
order  and  Miller-Myers  main
principle.  We will  split  matrix  M
by lines parallel to the secondary
diagonal of the matrix and find all
points are belongs to solution. Fig. 5 and Fig. 6.
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Fig. 1. Fragment of matrix M

Fig. 6 Proposed algorithm. Last step

Fig 2. First step of Miller-Myers Fig 3. Last step of Miller-Myers

Fig. 5 Proposed algorithm. Step 1
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Fig. 4. Calculation order.
Needleman-Wunsch on the left,

alternatively on the right
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