
The Optimization of Methods of Finding the
Longest Common Subsequence and the

Development of Algorithms of Their
Implementation in a Graphical Processor
Grigoriev A.V., Manturov A. O., Terentiev A.A.,

Yuri Gagarin State Technical University of Saratov
E-mails: agrigorev@mirantis.com, manturovao@gmail.com, a_a_terentyev@mail.ru

Abstract
In the era of growing informatization of society more people deal with

and more computing power is consumed by producing, storing and
processing of information. One of the classic tasks of informatics is
searching for the longest common sub-sequence of two and more
sequences.

The task of finding the longest common sub-sequence is the task of
searching for a sequence which is a sub-sequence of several
sequences. A sub-sequence can be acquired from a certain finite
sequence if a certain set of its elements (possibly, an empty set) is
taken out of it. The array of tasks requiring finding the longest common
sub-sequence is fairly large: finding the difference between files (diff) for
a version control system (CVS), DNA sequencing, the task of finding
plagiarism, solving multi-criteria problems with the help of genetic
algorithm.

According to the latest research done by IDC and published in
“Extracting Value from Chaos” [1], the volume of information across the
world is doubled every two years, which is faster than what the Moore’s
law states. It is therefore necessary to develop algorithms working in a
correct and optimal way in order to process the information.

Dynamic programming
The technique of dynamic programming can be applied to produce

global alignments via the Needleman-Wunsch algorithm, and local
alignments via the Smith-Waterman algorithm. The dynamic
programming method is guaranteed to find an optimal alignment given a
particular scoring function; however, identifying a good scoring function
is often an empirical rather than a theoretical matter. Although dynamic
programming is extensible to more than two sequences, it is
prohibitively slow for large numbers of or extremely long sequences.
The technique of dynamic programming is theoretically applicable to
any number of sequences; however, because it is computationally
expensive in both time and memory, it is rarely used for more than three
or four sequences in its most basic form. This method requires
constructing the n-dimensional equivalent of the sequence matrix
formed from two sequences, where n is the number of sequences in the
query. Standard dynamic programming is first used on all pairs of query
sequences and then the "alignment space" is filled in by considering
possible matches or gaps at intermediate positions, eventually
constructing an alignment essentially between each two-sequence
alignment. Although this technique is computationally expensive, its
guarantee of a global optimum solution is useful in cases where only a
few sequences need to be aligned accurately.

Needleman-Wunsch algorithm
In Nidelman-Wunsch algorithm [2] a dynamic programming

approach is using. Required to find the maximum one occurrence to
another DNA sequence, the sequence length are n1 and n2 respectively.
Suppose that solutions are already exist for all subtasks (m1, m2), the
smaller the set one, where m1 and m2 - the length of the sequences
such that 0 ≤ m1 ≤ n1 and 0 ≤ m2 ≤ n2. Then the problem (n1, n2) is
reduced to a smaller subtasks by the follows:

substitute (n1, n2)={
0, n1=0∪n2=0
subtitute (n1−1, n2−1)+1, s1[n1]=s2[n2]

max (substitute (n1−1,n2) , subtitute (n1, n2−1)) , s1[n1]≠s2[n2]

(1)

Graphically, it can be represented as a
matrix M (Fig. 1), which includes solutions
subtasks (i, j) as its elements i, j .The arrows
in the diagram are the transitions between
subtasks solutions. Textured arrows indicate
the transitions in which the length of the
common subsequence increased, white
arrows - transitions, which produce or extend
breaks of one of the aligned sequences. In
each cell d i, j of the matrix M maximum

subsequences length is stored. The length can be obtained from first

i elements of the first and j elements of second sequences. It is clear that the
asymptotic estimate of the time of the algorithm is O (n1 * n2) [3], where n1 and
n2 - the length of the DNA sequences. Since all the information is stored in a
matrix, then the algorithm will occupy in memory capacity equal to n1 * n2.

The most economical on memory
consumption (will hold of ni) - is the Miller-
Myers algorithm [4]. Its working principle is
to break one of the sequences in two equal
parts. For each section there is a line x
weight (formula (1)), the optimal alignment
of origin (0, 0) at the end of the x and (n1,
n2) in the x: W+(x), W-(x). Weight optimal
alignment passing through the point x (Fig. 2): W (x) = W+(x) + W-(x). Weight
optimal alignment is W = maxx (W(x)). So, we have found a point through
which passes the optimal alignment. Found a point x breaks matrix M into four
quadrants (submatrix M), two of which are not to contain the optimal alignment
.For two quadrants containing the best way we can apply the same technique,
and remember the point x 'and x ".Continuing the process of division in two
quadrants, we find all the points through which the optimal path (Fig. 3).

The algorithm for GPU
Modern graphics cards almost as good as supercomputing by speed and

number of cores, but they have one very significant drawback: the graphical
processor arithmetic units are grouped into blocks, and all the devices that are
in the same block, perform the same operation. [5]This approach is ideally
suitable for computer graphics, where you have to handle an array of pixels, or
perform operations on matrix.

The Miller-Myers method will not be optimal to run on the graphics card. We
can run calculation in one quadrant by 2 flow: the first do perform calculations
from the beginning, the second - from the end of the matrix M and all
operations for the calculations will be identical. In the parallel computation of
several quadrants, we are faced with the following problem: there are usually
have quadrants with different dimensions, and when one quadrant has already
been calculated, the streams will have to wait to process the remaining
quadrants. This reduces the performance of the algorithm as a whole. Need to

parallelize computation within a quadrant-
stand. This can be done by changing the
order of computation each element. Usually
sequential algorithm calculation of the
matrix M is assumed[6]. We consistently go
around the matrix line by line from top to
bottom and by columns from left to
right. The proposed algorithm will be carried
out in an independent calculation of the
matrix M elements on a line parallel to the

secondary diagonal of the matrix. The above calculation procedure is shown in
Fig. 4 on the right. It shows that
the classical method (shown on
the left) runs in 16 stages, and
proposed an alternative
algorithm – 7.

Let's assemble calculation
order and Miller-Myers main
principle. We will split matrix M
by lines parallel to the secondary
diagonal of the matrix and find all
points are belongs to solution. Fig. 5 and Fig. 6.

Bibliography
1. http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-
ar.pdf
2. S.B. Needleman and C.D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins, Journal of Molecular Biology,
48 (1970) 443-453.
3. Greene, D. H. and Knuth, D. E. Mathematics for the Analysis of Algorithms, 3rd
ed. Boston, MA: Birkhäuser, 1990.
4. Jason Sanders, Edward Kandrot (2010) «CUDA by Example: An Introduction to
General-Purpose GPU Programming» - Addison-Wesley Professional – 312
5. E.W. Myers and W. Miller, Optimal alignments in linear space, Computer
Applications in the Biosciences, 4(1) (1988) 11-17.
6. http://www.ibm.com/developerworks/java/library/j-seqalign/index.html?ca=dgr-
jw17dynamicjava&S_TACT=105AGX59&S_CMP=GR

Fig. 1. Fragment of matrix M

Fig. 6 Proposed algorithm. Last step

Fig 2. First step of Miller-Myers Fig 3. Last step of Miller-Myers

Fig. 5 Proposed algorithm. Step 1

X

X

Fig. 4. Calculation order.
Needleman-Wunsch on the left,

alternatively on the right

http://www.amazon.com/exec/obidos/ASIN/0817635157/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0817635157/ref=nosim/weisstein-20

	Grigoriev A.V., Manturov A. O., Terentiev A.A.,
	Yuri Gagarin State Technical University of Saratov

