
This work is licensed under the Creative Commons Attribution License

Minimizing the number of static verifier traces to
reduce time for finding bugs in Linux kernel modules

Vitaly Mordan
Institute for System Programming

Russian Academy of Sciences
Moscow, Russia

Email: mordan@ispras.ru

Evgeny Novikov
Institute for System Programming

Russian Academy of Sciences
Moscow, Russia

Email: novikov@ispras.ru

Abstract— Static verifiers usually stop after they find a first
bug in a program under analysis. This slows down the process of
finding and fixing of bugs of the same kind in a given Linux
kernel module. In order to solve this problem we used the static
verifier CPAchecker with option to continue analysis after
finding of a first bug. Besides we extended LDV Tools – a toolset
for verification of Linux kernel modules – for finding several
bugs in a given module against a specified rule specification. But
first experiments revealed a new problem – the verifier produced
too many similar traces. The given paper introduces a formal
definition of equivalent traces and presents different comparison
algorithms and a semi-automated approach, which makes
possible to find several bugs in a given Linux kernel module
against a specified rule specification at once.

Keywords—Linux kernel module; correctness rule; static
verifier trace; equivalence class.

I. INTRODUCTION
The Linux kernel is one of the most fast-paced software

projects [1]. The number of its active developers is more than
one thousand. A new release comes out in 2-3 months, it
contains thousands of changes. At present the Linux kernel
consists of more than 15 million lines of code. At the same
time every bug in the Linux kernel is critical [2]. Researches
revealed that most of bugs in the Linux kernel are located in its
modules (modules contain approximately 7 times more bugs
than the kernel itself) [3]. One of the approaches to find those
bugs is using static verifiers. At the moment just LDV Tools
[4] among all toolsets that allow to apply static verifiers for
Linux kernel modules are under active development. This
toolset has already helped to find 150 bugs in Linux kernel
modules and corresponding patches were applied by the Linux
kernel developers [5].

Each Linux kernel module can contain any number of bugs.
At the same time most of static verifiers stop after they find a
first bug. One can fix this bug and repeat verification until no
bugs will be detected in a given module but this approach may
take a lot of time and can not be automated.

Let us consider the following program (Fig. 1). There is
function getnchar which works properly only with positive
values of its parameter. A static verifier needs to check that all

calls of this function is correct. A formal task for the static
verifier is to check that label ERROR can not be reached.

Fig. 1. Program with 2 bugs.

There are two bugs in this program: at lines 9 and 10
correspondingly. Most of static verifiers most likely will find
the first one and will stop their analysis. After fixing of this bug
the user may think the program is safe but it is not the case the
program still has another bug.

For simple programs this problem is not so critical. But for
such big projects like the Linux kernel, where checking of all
modules against one rule specification requires more than 1
day and where fixing of bugs requires preparing and applying
of corresponding patches, this problem greatly increases time
for finding all bugs.

This paper presents an approach to reduce time for finding
all bugs in Linux kernel modules. The approach based on
Linux Driver Verification Tools (LDV Tools), which are an
open source toolset for checking correctness of Linux kernel
modules against rule specifications with help of different static
verifiers [6]. The LDV Tools architecture is presented in Fig. 2.

LDV Tools provide an interface to verify a set of modules
against a set of rule specifications. When verification is
complete, verification results will be placed in an archive. After
that, this archive can be uploaded to a database. LDV Analytics
Center allows to analyze the verification results. It is integrated
with Error Trace Visualizer that visualize traces from a static
verifier to allow the user either to find actual bugs or to identify
source of false alarms. Also LDV Analytics Center provides an

1: void getnchar(int n)
2: {
3: if (n <= 0)
4: ERROR: goto ERROR;
5: ...
6: }
7: int main()
8: {
9: getnchar(-1);
10: getnchar(-2);
11: return 0;
12: }

interface to Knowledge Base that keeps information on all
already analyzed unsafes. Knowledge Base scripts mark new
uploaded static verifier traces if they are equivalent to any of
already analyzed traces by specified criteria.

There are several examples of more than one bug for a
given rule and a given Linux kernel module, which were found
by LDV Tools [5]. For example, bug reports L00291 and
L00342 are devoted to a lack of mutex release in different
functions in the kernel of versions 2.6.38 and 2.6.39
correspondingly. Bug report L00303 deals with a lack of
mutex release in a couple of places and so on. These examples
show that sometimes it is possible to find similar bugs if a
verification toolset is able to find one of them. In order to solve
this problem it was decided to extend LDV Tools so that the
toolset could find all bugs in a given module against a specified
rule specification.

Fig. 2. LDV Tools architecture.

First, we need a static verifier that is able to continue
analysis after a first bug is found. CPAchecker is a tool for
configurable software verification [7]. It aims at easy
integration of new verification components. With revision
r83874 it has an option “find and report multiple specification
violations”. Also it already has been integrated with LDV
Tools [6]. That is why it was decided to use CPAchecker as the
static verifier for finding all bugs in a given Linux kernel
module against a specified rule specification in LDV Tools.

1 http://linuxtesting.org/results/report?num=L0029
2 http://linuxtesting.org/results/report?num=L0034
3 http://linuxtesting.org/results/report?num=L0030
4 https://svn.sosy-lab.org/software/cpachecker/trunk/

Second, some components of LDV Tools were improved so
that they can process multiple traces (formal definitions will be
given in Section II) from CPAchecker. The CPAchecker
wrapper was extended to get multiple traces from the static
verifier and to send them to Reachability C Verifier.
Reachability C Verifier was improved to put all traces into a
final report. Finally, LDV Uploader, which uploads analysis
results into a database, was extended for uploading several
traces for a given module.

After that we conducted experiments. At first LDV Tools
with CPAchecker were checked on known issues (L0029,
L0034 and L0030). 2 bugs were found for L0029/L0034 and 3
bugs were found for L0030 – as expected. More thorough
evaluation of LDV Tools with CPAchecker was made on
known bugs in Linux kernel 3.12-rc1 (in total 15 modules and
4 rule specifications). Then a main issue of this approach was
revealed – the total number of found traces was 1998 for only
15 modules. Manual examination revealed only 23 different
bugs (see Table 1), a lot of traces were similar.

In order to find several bugs in Linux kernel modules in
practice the number of found traces should be minimized, but
we should pay much attention to keep those traces that
correspond to different bugs.

Next section gives some formal definitions. Section III
describes comparison algorithms for traces. In section IV semi-
automated approach was suggested to further improve
comparison algorithms. In Section V the results are presented.

II. FORMAL DEFINITIONS
Below some formal definitions are given.

Static verifier trace – is a sequence of operations
(assignments, function calls, assumptions, etc.) in program
source files that leads from a specific entry point to a specific
label. By default entry point main and label ERROR are used.
Different static verifiers use different formats for their traces,
so in LDV Tools all such traces are converted into the common
format [8]. There are 4 types of nodes which can be used in
traces in the common format:

• CALL – call of a specified function;
• RETURN – return from the last called but not yet

returned function;
• ASSUME – choosing a specified branch in conditional

clauses;
• BLOCK – contains assignments and some auxiliary

operators (like goto).

There is also information on a line number, on a source file
and formal arguments (for function calls) for each operation.
For example, the static verifier trace in the common format for
the program in Fig. 1:

8 “test.c” CALL : main()
10 “test.c” CALL 'n' : getnchar(-1)
3 “test.c” ASSUME : (n < 0)
4 “test.c” BLOCK : goto ERROR

Function call tree – a tree corresponding to function calls
in a static verifier trace. Hereafter we suppose that all function

calls in function call trees are ordered. It can be obtained by
removing ASSUME and BLOCK nodes from static verifier
trace.

LDV model functions – functions in rule specifications,
which contains the main logic of correctness rules [9].

Bug – a reason which causes a violation of a specified
correctness rule. For example, it is “lack of mutex release in
probe function”. Fixing of a bug is usually represented as a
patch.

Two or more static verifier traces are called equivalent if
they correspond to the same bug. In other words, for all
equivalent static verifier traces a reason of a correctness rule
violation is the same.

Therefore all static verifier traces can be divided into
equivalence classes. Each equivalence class contains only
equivalent static verifier traces, i.e. corresponding to the same
bug. After such dividing it will be necessary to manually
analyze only one static verifier trace from each equivalence
class. In this case only one static verifier trace for each bug will
be in the final report and their number can be reduced without
missing any bugs.

III. STATIC VERIFIER TRACE COMPARISON ALGORITHMS
In order to divide all static verifier traces into equivalence

classes we propose to use special algorithms for their
comparison. Ideally results of theses algorithms should satisfy
the definition of equivalent traces. But in practice it is often
impossible to automatically understand where is a reason of a
correctness rule violation in a static verifier trace.

Static verifier trace comparison algorithms should
somehow reduce the number of static verifier traces, but do not
remove traces that correspond to different bugs. They can take
into account specifics of Linux kernel modules and correctness
rules. For example, the main logic of correctness rules is in
LDV model functions.

All suggested below static verifier trace comparison
algorithms are not absolutely correct in terms of the given
definition but in practice it is expected that the number of
static verifier traces corresponding to different bugs, which
were called equivalent by an algorithm, to be minimal (or even
zero) because of specifics of Linux kernel modules and LDV
Tools rule specifications.

A. Function call tree comparison algorithm
The first algorithm is aimed to not consider BLOCKs and

ASSUMEs in static verifier traces while comparing these traces.
BLOCKs usually are used for assignments which can not lead
to the ERROR label unless they are inside a model function. If
ASSUME adds some new branch in a static verifier trace it will
be revealed in function calls in that branch if so. So only
CALLs and RETURNs from static verifier traces are considered
by this algorithm.

Function call tree comparison algorithm: static verifier
traces are considered equivalent if their function call trees are
equal.

For example, next two static verifier traces for the same
program will be equivalent:

CALL : function_1()
ASSUME : (x != 1)
BLOCK : x = 0;
CALL : function_2()
BLOCK : y = 1;
RETURN

and

CALL : function_1()
ASSUME : (x == 1)
CALL : function_2()
BLOCK : y = 1;
RETURN

This algorithm was implemented as a function in the
Reachability C Verifier component. The CPAchecker wrapper
gets all found static verifier traces and sends them to
Reachability C Verifier as before. But before adding them into
the final report Reachability C Verifier will call the function
implementing the given comparison algorithm, if the specific
option was specified in launching LDV Tools. This function
will filter received traces and will return only the first static
verifier trace from each equivalence class. After that, those
traces will be added into the final report.

Unfortunately this algorithm is far from optimal since there
is still a lot of equivalent static verifier traces from different
equivalence classes. In experiments 1998 static verifier traces
from 15 Linux kernel modules were divided into 1812
equivalence classes while the ideal result is 23.

In general case this algorithm can add static verifier traces,
that correspond to different bugs, into the same equivalence
class. For example, assignments and assumes outside function
calls can lead to different bugs (Fig. 3).

Fig. 3. Example of incorrect operation of the function call tree
comparison algorithm.

There are two different static verifier traces:
CALL : func
ASSUME : arg == 1
CALL : mutex_unlock

and

1: void func(int arg)
2: {
3: if (arg == 0)
4: mutex_lock(&mutex);
5: elsif (arg == 1)
6: ...// no function calls <- 1st bug
7: else
8: ...// no function calls <- 2nd bug
9: mutex_unlock(&mutex);
10: }

CALL : func
ASSUME : arg != 0
ASSUME : arg != 1
CALL : mutex_unlock

which will belong to the same equivalence class.

B. Model functions comparison algorithm
Since the main logic of rule specifications is in LDV model

functions, the previous algorithm was improved to shrink
function call trees so that each their leaf is a model function
call.

Model functions comparison algorithm: static verifier
traces are considered equivalent if they have equal model
function call trees, in which any subtree have a model function
call.

Thus in order to compare two static verifier traces with this
algorithm the following steps are required:

1) Find function call trees for both static verifier traces
(like in the previous algorithm).

2) Determine all model functions, that were called in a
module under analysis (all of them have specific comments
"LDV_COMMENT_MODEL_FUNCTION_DEFINITION").

3) Delete from both trees all subtrees, that does not have
any model functions calls at all.

4) Compare resulting model function trees.

For example, next two parts of static verifier traces will be
equivalent (functions f(), g() and h() do not have any calls of
model functions in their function call trees):

CALL : f()
RETURN
CALL : g()
CALL : h()
RETURN
CALL : ldv_func()
RETURN
RETURN

and

CALL : g()
CALL : ldv_func()
RETURN
RETURN

This algorithm was implemented as a function in
Reachability C Verifier component similar to the function call
tree comparison algorithm.

In practice this algorithm showed much better results –
1998 static verifier traces were divided into 482 equivalence
classes (Table 1). For some modules (like drivers/usb/misc/ftdi-
elan.ko) this algorithm made significant improvement – 947
static verifier traces were divided into 47 equivalence classes.
But there are still cases (like drivers/input/tablet/gtco.ko),
where this algorithm could not reduce the number of static
verifier traces at all.

C. Probe comparison algorithm.
In the previous algorithms only types of nodes from static

verifier traces and LDV model functions of specified rule
specifications were used. But also there are some specific
functions in Linux kernel modules, that also can be used in
order to compare static verifier traces. Examples, where the
previous algorithms failed, may provide information on what
can be helpful.

More detailed analysis revealed that probe functions of
modules (these functions initialize new attached devices for
instances) can be called any number of times. So if this
function has a bug, which will be revealed lately (e.g. memory
leak), it can be called any number of times before this bug
finally will be found (Fig. 4).

Fig. 4. One bug in the probe function can cause a lot of
different static verifier traces.

Thus we have a lot of different static verifier traces that
actually correspond to the same bug. This issue should be
resolved in order to reduce the number of equivalent static
verifier traces.

Probe comparison algorithm: static verifier traces are
considered equivalent if they are equivalent by the model
functions algorithm and all sequences of calls of a probe
function with the same name are considered as one function
call.

Theoretically there can be static verifier traces, that are not
equivalent, but were called equivalent by this algorithm. But in
practice, there were no such cases so far.

The main idea of this algorithm is the following. If there
was a bug in some function, there is no need to call that
function again and again, a first trace already corresponds to
that bug. That is why it is enough to call such the function only
once. And it turned out that probe functions were often the
reason of such problems.

In practice this algorithm showed the best results – 1998
static verifier traces were divided into 64 equivalence classes
(Table 1). For some modules (like drivers/input-/tablet/gtco.ko,
drivers/media/rc/imon.ko,
drivers/staging/media/lirc/lirc_sasem.ko etc.) the result was
ideal. Only in one case there was still many static verifier
traces – 35 for drivers/usb/misc/ftdi-elan.ko. Nevertheless it is
much more easy to analyze 64 static verifier traces than 482.

It is unlikely that this algorithm will be used in practice
together with the previous algorithms in the future, because it is
rather specific. But for a given research it has helped to
significantly reduce the number of equivalent static verifier
traces and has made possible to analyze them. This revealed
more common problems that can not be solved simply with
comparison algorithms.

1: probe(); // probe failed
2: // ... any number of failed probe calls
3: probe(); // probe failed
4: ldv_check_final_state(); // bug will be
found

IV. SEMI-AUTOMATED APPROACH
In order to find a better solution to minimize the number of

static verifier traces more thorough analysis of probe
comparison algorithm results was made.

A. Probe comparison algorithm results analysis.
For 9 modules eventually results are ideal (see Table 1). 2

modules among them contains more than one bug
(drivers/media/rc/imon.ko and drivers/media/rc/imon.ko). For
drivers/media/rc/imon.ko there were 3 equivalence classes.
There are 3 paths in function imon_probe that lead to missing
of put after get. For
drivers/net/wireless/ath/carl9170/carl9170.ko there were 7
equivalence classes which correspond to 7 different bugs (rcu
calls inside critical section).

For drivers/staging/media/as102/dvb-as102.ko additionally
found static verifier trace is actually a false alarm because of an
incorrect environment model (release was called without
probe). So this problem is beyond static verifier trace
comparison algorithms.

Module drivers/usb/misc/ftdi-elan.ko introduces a new
problem. There is one bug, that was revealed later in different
places which becomes different static verifiers traces. The
same problem is in module
drivers/media/usb/pvrusb2/pvrusb2.ko. This problem is the
general case of an issue with probe functions considered
earlier.

Module drivers/net/tun.ko contains 1 bug –
hlist_add_head_rcu call inside critical section. But it also
contains 4 different traces to the given bug. The same problem
(different paths to the bug) is in 2 other modules. In module
net/rxrpc/af-rxrpc.ko an additional path with lock-unlock was
found. In both cases bugs were the same. In module
drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko a second trace
consists of a correct and incorrect calls of function probe.
Sometimes other paths to a bug can be helpful for
understanding and for fixing the bug, but we consider them
excessive.

B. Revealed problems.
The distribution of reasons of diversities from ideal results

on 15 Linux kernel modules for probe comparison algorithm is
presented in Fig. 5.

Fig. 5. The distribution of reasons of diversities from ideal
results on 15 Linux kernel modules.

Static verifier trace comparison algorithms do not aim to
deal with false alarms, so we are not going to consider this
problem in the given paper. But other problems ('one bug
revealed later in different places' and 'different paths to the
same bug') should be resolved. The probe algorithm has solved
the problem when one bug was revealed later in many places
for one special case. But in the general case this problem can
not be solved so easily.

For example, there is one bug in function probe (a lock is
acquired but not released), that could be revealed in different
places later (Fig. 6). As one can see there is no sequences of
calls of failing function probe – they were assigned to the same
equivalence class by the probe comparison algorithm. In
examples below lock acquires locks and unlock releases locks.

Fig. 6. 4 static verifier traces that correspond to the same bug.

At the same time there could be a situation with different
bugs and different static verifier traces. For example, there are
2 bugs (release of an unacquired lock) in 2 different functions
(Fig. 7).

Fig. 7. 2 static verifier traces that correspond to different bugs.

C. Suggested approach.
To solve the problems presented above we suggest a semi-

automated approach:

1) When all static verifier traces are added into the final
report after some comparison algorithm was applied (for
example, the probe comparison algorithm)

2) Then an expert marks up a some bug in LDV Analytics
Center.

3) After that a special script finds all static verifier traces,
that are equivalent to the trace corresponding to the bug, and
excludes them from further analysis.

This approach was implemented as a script for LDV Tools
Knowledge Base. The expert can mark up specified place in
the static verifier trace (for example, function with a bug) and

use this script. The script will automatically mark all static
verifier traces, that contains the same bug, among all traces
relevant a given module. After that the expert can see in LDV
Analytics Center which static verifier traces were considered to
have the same bug and ignore them.

This approach has helped to resolve both problems. For 4
modules (net/rxrpc/af-rxrpc.ko,
drivers/media/usb/pvrusb2/pvrusb2.ko,
drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko and
drivers/net/tun.ko) only one bug was found as in ideal results
(Table 1). For module drivers/usb/misc/ftdi-elan.ko 31 static
verifier traces were marked as corresponding to the same bug,
one trace is appeared to be a false alarm because of an incorrect
environment model (same as above) and 3 traces are appeared
to be false alarm because of pointer analysis in CPAchecker
1.2, which was used for conducting experiments (this problem
was resolved in CPAchecker 1.3.4).

So, the number of static verifier traces was reduced to ideal
results (if not consider false alarms) by means of the probe
comparison algorithm and the semi-automated approach.

V. RESULTS
The results of all experiments are presented in Table 1. In

experiments LDV Tools rule specifications 39_7a5, 106_1a6,
132_1a7 and 147_1a8 were used.

Linux kernel module RS FE Tree MF Probe SAA Manual
39_7a 6 5 2 2 1 1

106_1a 3 3 2 2 1 1
132_1a 65 65 65 1 1 1
132_1a 17 17 2 1 1 1
132_1a 136 76 15 3 3 3
132_1a 4 4 4 1 1 1
132_1a 6 6 5 1 1 1

drivers/staging/media/as102/dvb-as102.ko 132_1a 2 2 2 2 2 1
132_1a 394 278 15 1 1 1
132_1a 234 234 234 1 1 1

drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko 132_1a 2 2 2 2 1 1
132_1a 947 938 47 35 5 1
132_1a 154 154 76 1 1 1
147_1a 17 17 4 4 1 1
147_1a 11 11 7 7 7 7

Total – 15 modules 4 1998 1812 482 64 28 23

net/rxrpc/af-rxrpc.ko
drivers/media/usb/pvrusb2/pvrusb2.ko
drivers/input/tablet/gtco.ko
drivers/isdn/gigaset/bas_gigaset.ko
drivers/media/rc/imon.ko
drivers/staging/gdm724x/gdmulte.ko
drivers/staging/gdm72xx/gdmwm.ko

drivers/staging/media/lirc/lirc_imon.ko
drivers/staging/media/lirc/lirc_sasem.ko

drivers/usb/misc/ftdi-elan.ko
drivers/usb/wusbcore/wusb-cbaf.ko
drivers/net/tun.ko
drivers/net/wireless/ath/carl9170/carl9170.ko

Table 1. Summary table
(‘RS’ – rule specification, ‘FE’ – first experiment,
‘Tree’ – function call tree comparison algorithm,

‘MF’ – model function comparison algorithm,
‘Probe’ – probe comparison algorithm,

‘SAA’ – semi-automated approach,
‘Manual’ – manual examination).

The suggested approach has helped to find 8 new bugs in
Linux kernel 3.12-rc1 modules drivers/media/rc/imon.ko and
drivers/media/rc/imon.ko.

5 http://forge.ispras.ru/issues/867
6 http://forge.ispras.ru/issues/2742
7 http://forge.ispras.ru/issues/3306
8 http://forge.ispras.ru/issues/3832

VI. CONCLUSION
The suggested approach provides means to reduce the

number of static verifier traces by dividing them into
equivalence classes. Proposed algorithms for static verifier
trace comparison show acceptable results and they allow to
reach ideal results with not big efforts of the experts. This
approach makes possible to analyze all bugs in a given Linux
kernel module against a specified rule specification found by
LDV Tools and CPAchecker static verifier.

The suggested approach should also be tested on known
false positives to make sure that it also works as expected. In
future this approach will be extended to check several rule
specifications at once, that is very promising area of research.
This will further reduce time for finding bugs in Linux kernel
modules.

The suggested approach can be applied in other areas
outside of Linux kernel modules and LDV Tools.

REFERENCES
[1] Corbet J., Kroah-Hartman G., McPherson A. Linux kernel development.

How Fast it is Going, Who is Doing It, What They are Doing, and Who
is Sponsoring It. http://go.linuxfoundation.org/who-writes-linux-2012,
2012.

[2] Beyer D. Petrenko A. Linux Driver Verification. In Proc. Leveraging
Applications of Formal Methods, Verification and Validation.
Applications and Case Studies, LNCS, vol. 7610, pp. 1-6, 2012. doi:
10.1007/s10009-007-0044-z.

[3] Chou A., Yang J., Chelf B., Hallem S., Engler D. An Empirical Study of
Operating System Errors. In Proc. 18th ACM Symposium on Operating
Systems Principles (SOSP), pp. 73-88, 2001. doi:
10.1145/502034.502042.

[4] Mutilin V.S., Novikov E.M., Strakh А.V., Khoroshilov А.V., Shved P.E.
Аrkhitektura Linux Driver Verification [Linux Driver Verification
Architecture]. Trudy ISP RАN [The Proceedings of ISP RAS], vol. 20,
pp. 163-187, 2011 (in Russian).

[5] Bugs found in Linux kernel modules with help of LDV Tools.
http://linuxtesting.org/results/ldv.

[6] Khoroshilov A., Mutilin V., Novikov E., Shved P., Strakh A. Towards
an Open Framework for C Verification Tools Benchmarking. In Proc.
Perspectives of Systems Informatics (PSI), LNCS, vol 7162, pp. 82-91,
2012. doi: 10.1007/978-3-642-29709-0_17.

[7] Beyer D., Keremoglu M.E. CPAchecker: A Tool for Configurable
Software Verification. In Proc. Computer Aided Verification (CAV),
LNCS, vol. 6806, pp. 184–190, 2011. 10.1007/978-3-642-22110-1_16.

[8] Novikov E.M. Uproshhenie analiza trass oshibok instrumentov
staticheskogo analiza koda. [Simplification of static verifier traces
analysis]. АPSPI, 2011. (in Russian).

[9] Novikov E.M. Razvitie metoda kontraktnykh spetsifikatsij dlya
verifikatsii modulej yadra operatsionnoj sistemy Linux [Development of
a contract specification method for the verification of Linux kernel
modules]. Dissertatsiya na soiskanie uchenoj stepeni k.f.-m.n. [PhD
thesis], 2013 (in Russian).

