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Abstract— Static verifiers usually stop after they find a first 
bug in a program under analysis. This slows down the process of 
finding and fixing of bugs of the same kind in a given Linux 
kernel module. In order to solve this problem we used the static 
verifier CPAchecker with option to continue analysis after 
finding of a first bug. Besides we extended LDV Tools – a toolset 
for verification of Linux kernel modules – for finding several 
bugs in a given module against a specified rule specification. But 
first experiments revealed a new problem – the verifier produced 
too many similar traces. The given paper introduces a formal 
definition of equivalent traces and presents different comparison 
algorithms and a semi-automated approach, which makes 
possible to find several bugs in a given Linux kernel module 
against a specified rule specification at once. 

Keywords—Linux kernel module; correctness rule; static 
verifier trace; equivalence class. 

I. INTRODUCTION 
The Linux kernel is one of the most fast-paced software 

projects [1]. The number of its active developers is more than 
one thousand. A new release comes out in 2-3 months, it 
contains thousands of changes. At present the Linux kernel 
consists of more than 15 million lines of code. At the same 
time every bug in the Linux kernel is critical [2]. Researches 
revealed that most of bugs in the Linux kernel are located in its 
modules (modules contain approximately 7 times more bugs 
than the kernel itself) [3]. One of the approaches to find those 
bugs is using static verifiers. At the moment just LDV Tools 
[4] among all toolsets that allow to apply static verifiers for 
Linux kernel modules are under active development. This 
toolset has already helped to find 150 bugs in Linux kernel 
modules and corresponding patches were applied by the Linux 
kernel developers [5]. 

Each Linux kernel module can contain any number of bugs. 
At the same time most of static verifiers stop after they find a 
first bug. One can fix this bug and repeat verification until no 
bugs will be detected in a given module but this approach may 
take a lot of time and can not be automated. 

Let us consider the following program (Fig. 1). There is 
function getnchar which works properly only with positive 
values of its parameter. A static verifier needs to check that all 

calls of this function is correct. A formal task for the static 
verifier is to check that label ERROR can not be reached. 

 

Fig. 1.  Program with 2 bugs. 

There are two bugs in this program: at lines 9 and 10 
correspondingly. Most of static verifiers most likely will find 
the first one and will stop their analysis. After fixing of this bug 
the user may think the program is safe but it is not the case the 
program still has another bug.  

For simple programs this problem is not so critical. But for 
such big projects like the Linux kernel, where checking of all 
modules against one rule specification requires more than 1 
day and where fixing of bugs requires preparing and applying 
of corresponding patches, this problem greatly increases time 
for finding all bugs. 

This paper presents an approach to reduce time for finding 
all bugs in Linux kernel modules. The approach based on 
Linux Driver Verification Tools (LDV Tools), which are an 
open source toolset for checking correctness of Linux kernel 
modules against rule specifications with help of different static 
verifiers [6]. The LDV Tools architecture is presented in Fig. 2.  

LDV Tools provide an interface to verify a set of modules 
against a set of rule specifications. When verification is 
complete, verification results will be placed in an archive. After 
that, this archive can be uploaded to a database. LDV Analytics 
Center allows to analyze the verification results. It is integrated 
with Error Trace Visualizer that visualize traces from a static 
verifier to allow the user either to find actual bugs or to identify 
source of false alarms. Also LDV Analytics Center provides an 

1:  void getnchar(int n) 
2:  { 
3:    if (n <= 0) 
4:      ERROR: goto ERROR; 
5:    ... 
6:  } 
7:  int main() 
8:  { 
9:    getnchar(-1); 
10:   getnchar(-2); 
11:   return 0; 
12: } 



interface to Knowledge Base that keeps information on all 
already analyzed unsafes. Knowledge Base scripts mark new 
uploaded static verifier traces if they are equivalent to any of 
already analyzed traces by specified criteria. 

There are several examples of more than one bug for a 
given rule and a given Linux kernel module, which were found 
by LDV Tools [5]. For example, bug reports L00291 and 
L00342 are devoted to a lack of mutex release in different 
functions in the kernel of versions 2.6.38 and 2.6.39 
correspondingly. Bug report  L00303 deals with a lack of 
mutex release in a couple of places and so on. These examples 
show that sometimes it is possible to find similar bugs if a 
verification toolset is able to find one of them. In order to solve 
this problem it was decided to extend LDV Tools so that the 
toolset could find all bugs in a given module against a specified 
rule specification. 

 

Fig. 2.  LDV Tools architecture. 

First, we need a static verifier that is able to continue 
analysis after a first bug is found. CPAchecker is a tool for 
configurable software verification [7]. It aims at easy 
integration of new verification components. With revision 
r83874 it has an option “find and report multiple specification 
violations”. Also it already has been integrated with LDV 
Tools [6]. That is why it was decided to use CPAchecker as the 
static verifier for finding all bugs in a given Linux kernel 
module against a specified rule specification in LDV Tools. 

                                                           
1 http://linuxtesting.org/results/report?num=L0029 
2 http://linuxtesting.org/results/report?num=L0034 
3 http://linuxtesting.org/results/report?num=L0030 
4 https://svn.sosy-lab.org/software/cpachecker/trunk/ 

Second, some components of LDV Tools were improved so 
that they can process multiple traces (formal definitions will be 
given in Section II) from CPAchecker. The CPAchecker  
wrapper was extended to get multiple traces from the static 
verifier and to send them to Reachability C Verifier. 
Reachability C Verifier was improved to put all traces into a 
final report. Finally, LDV Uploader, which uploads analysis 
results into a database, was extended for uploading several 
traces for a given module. 

After that we conducted experiments. At first LDV Tools 
with CPAchecker were checked on known issues (L0029, 
L0034 and L0030). 2 bugs were found for L0029/L0034 and 3 
bugs were found for L0030 – as expected. More thorough 
evaluation of LDV Tools with CPAchecker was made on 
known bugs in Linux kernel 3.12-rc1 (in total 15 modules and 
4 rule specifications). Then a main issue of this approach was 
revealed – the total number of found traces was 1998 for only 
15 modules. Manual examination revealed only 23 different 
bugs (see Table 1), a lot of traces were similar. 

In order to find several bugs in Linux kernel modules in 
practice the number of found traces should be minimized, but 
we should pay much attention to keep those traces that 
correspond to different bugs. 

Next section gives some formal definitions. Section III 
describes comparison algorithms for traces. In section IV semi-
automated approach was suggested to further improve 
comparison algorithms. In Section V the results are presented. 

II. FORMAL DEFINITIONS 
Below some formal definitions are given. 

Static verifier trace – is a sequence of operations 
(assignments, function calls, assumptions, etc.) in program 
source files that leads from a specific entry point to a specific 
label. By default entry point main and label ERROR are used. 
Different static verifiers use different formats for their traces, 
so in LDV Tools all such traces are converted into the common 
format [8]. There are 4 types of nodes which can be used in 
traces in the common format: 

• CALL – call of a specified function; 
• RETURN – return from the last called but not yet 

returned function; 
• ASSUME – choosing a specified branch in conditional 

clauses; 
• BLOCK – contains assignments and some auxiliary 

operators (like goto).  

There is also information on a line number, on a source file 
and formal arguments (for function calls) for each operation. 
For example, the static verifier trace in the common format for 
the program in Fig. 1: 

8  “test.c” CALL     : main() 
10 “test.c” CALL 'n' : getnchar(-1) 
3  “test.c” ASSUME   : (n < 0) 
4  “test.c” BLOCK    : goto ERROR 

Function call tree – a tree corresponding to function calls 
in a static verifier trace. Hereafter we suppose that all function 



calls in function call trees are ordered. It can be obtained by 
removing ASSUME and BLOCK nodes from static verifier 
trace. 

LDV model functions – functions in rule specifications, 
which contains the main logic of correctness rules [9]. 

Bug – a reason which causes a violation of a specified 
correctness rule. For example, it is “lack of mutex release in 
probe function”. Fixing of a bug is usually represented as a 
patch. 

Two or more static verifier traces are called equivalent if 
they correspond to the same bug. In other words, for all 
equivalent static verifier traces a reason of a correctness rule 
violation is the same. 

Therefore all static verifier traces can be divided into 
equivalence classes. Each equivalence class contains only 
equivalent static verifier traces, i.e. corresponding to the same 
bug. After such dividing it will be necessary to manually 
analyze only one static verifier trace from each equivalence 
class. In this case only one static verifier trace for each bug will 
be in the final report and their number can be reduced without 
missing any bugs. 

III. STATIC VERIFIER TRACE COMPARISON ALGORITHMS 
In order to divide all static verifier traces into equivalence 

classes we propose to use special algorithms for their 
comparison. Ideally results of theses algorithms should satisfy 
the definition of equivalent traces. But in practice it is often 
impossible to automatically understand where is a reason of a 
correctness rule violation in a static verifier trace.  

Static verifier trace comparison algorithms should 
somehow reduce the number of static verifier traces, but do not 
remove traces that correspond to different bugs. They can take 
into account specifics of Linux kernel modules and correctness 
rules. For example, the main logic of correctness rules is in 
LDV model functions. 

All suggested below static verifier trace comparison 
algorithms are not absolutely correct in terms of the given 
definition but in practice it is expected that the number of  
static verifier traces corresponding to different bugs, which 
were called equivalent by an algorithm, to be minimal (or even 
zero) because of specifics of Linux kernel modules and LDV 
Tools rule specifications. 

A. Function call tree comparison algorithm 
The first algorithm is aimed to not consider BLOCKs and 

ASSUMEs in static verifier traces while comparing these traces. 
BLOCKs usually are used for assignments which can not lead 
to the ERROR label unless they are inside a model function. If 
ASSUME adds some new branch in a static verifier trace it will 
be revealed in function calls in that branch if so. So only 
CALLs and RETURNs from static verifier traces are considered 
by this algorithm. 

Function call tree comparison algorithm: static verifier 
traces are considered equivalent if their function call trees are 
equal.  

For example, next two static verifier traces for the same 
program will be equivalent: 

CALL   : function_1() 
ASSUME : (x != 1) 
BLOCK  : x = 0; 
CALL   : function_2() 
BLOCK  : y = 1; 
RETURN 

and 

CALL : function_1() 
ASSUME : (x == 1) 
CALL : function_2() 
BLOCK  : y = 1; 
RETURN 

This algorithm was implemented as a function in the  
Reachability C Verifier component. The CPAchecker wrapper 
gets all found static verifier traces and sends them to 
Reachability C Verifier as before. But before adding them into 
the final report Reachability C Verifier will call the function 
implementing the given comparison algorithm, if the specific 
option was specified in launching LDV Tools. This function 
will filter received traces and will return only the first static 
verifier trace from each equivalence class. After that, those 
traces will be added into the final report. 

Unfortunately this algorithm is far from optimal since there 
is still a lot of equivalent static verifier traces from different 
equivalence classes. In experiments 1998 static verifier traces 
from 15 Linux kernel modules were divided into 1812 
equivalence classes while the ideal result is 23. 

In general case this algorithm can add static verifier traces, 
that correspond to different bugs, into the same equivalence 
class. For example, assignments and assumes outside function 
calls can lead to different bugs (Fig. 3).  

 

Fig. 3. Example of incorrect operation of the function call tree 
comparison algorithm. 

There are two different static verifier traces: 
CALL   : func 
ASSUME : arg == 1 
CALL   : mutex_unlock 

and 
 
 

1:  void func(int arg) 
2:  { 
3:    if (arg == 0) 
4:      mutex_lock(&mutex); 
5:    elsif (arg == 1) 
6:      ...// no function calls <- 1st bug 
7:    else 
8:      ...// no function calls <- 2nd bug 
9:    mutex_unlock(&mutex); 
10: } 



CALL   : func 
ASSUME : arg != 0 
ASSUME : arg != 1 
CALL   : mutex_unlock 

which will belong to the same equivalence class. 

B. Model functions comparison algorithm 
Since the main logic of rule specifications is in LDV model 

functions, the previous algorithm was improved to shrink 
function call trees so that each their leaf is a model function 
call. 

Model functions comparison algorithm: static verifier 
traces are considered equivalent if they have equal model 
function call trees, in which any subtree have a model function 
call. 

Thus in order to compare two static verifier traces with this 
algorithm the following steps are required: 

1) Find function call trees for both static verifier traces 
(like in the previous algorithm). 

2) Determine all model functions, that were called in a 
module under analysis (all of them have specific comments 
"LDV_COMMENT_MODEL_FUNCTION_DEFINITION"). 

3) Delete from both trees all subtrees, that does not have 
any model functions calls at all. 

4) Compare resulting model function trees. 

For example, next two parts of static verifier traces will be 
equivalent (functions f(), g() and h() do not have any calls of 
model functions in their function call trees): 

CALL   : f() 
RETURN 
CALL   : g() 
CALL   : h() 
RETURN 
CALL   : ldv_func() 
RETURN 
RETURN 

and 

CALL   : g() 
CALL   : ldv_func() 
RETURN 
RETURN 

This algorithm was implemented as a function in  
Reachability C Verifier component similar to the function call 
tree comparison algorithm. 

In practice this algorithm showed much better results – 
1998 static verifier traces were divided into 482 equivalence 
classes (Table 1). For some modules (like drivers/usb/misc/ftdi-
elan.ko) this algorithm made significant improvement – 947 
static verifier traces were divided into 47 equivalence classes. 
But there are still cases (like drivers/input/tablet/gtco.ko), 
where this algorithm could not reduce the number of static 
verifier traces at all. 

C. Probe comparison algorithm. 
In the previous algorithms only types of nodes from static 

verifier traces and LDV model functions of specified rule 
specifications were used. But also there are some specific 
functions in Linux kernel modules, that also can be used in 
order to compare static verifier traces. Examples, where the 
previous algorithms failed, may provide information on what 
can be helpful. 

More detailed analysis revealed that probe functions of 
modules (these functions initialize new attached devices for 
instances) can be called any number of times. So if this 
function has a bug, which will be revealed lately (e.g. memory 
leak), it can be called any number of times before this bug 
finally will be found (Fig. 4). 

 

Fig. 4. One bug in the probe function can cause a lot of 
different static verifier traces. 

Thus we have a lot of different static verifier traces that 
actually correspond to the same bug. This issue should be 
resolved in order to reduce the number of equivalent static 
verifier traces.  

Probe comparison algorithm: static verifier traces are 
considered equivalent if they are equivalent by the model 
functions algorithm and all sequences of calls of a probe 
function with the same name are considered as one function 
call.  

Theoretically there can be static verifier traces, that are not 
equivalent, but were called equivalent by this algorithm. But in 
practice, there were no such cases so far.  

The main idea of this algorithm is the following. If there 
was a bug in some function, there is no need to call that 
function again and again, a first trace already corresponds to 
that bug. That is why it is enough to call such the function only 
once. And it turned out that probe functions were often the 
reason of such problems. 

In practice this algorithm showed the best results – 1998 
static verifier traces were divided into 64 equivalence classes 
(Table 1). For some modules (like drivers/input-/tablet/gtco.ko, 
drivers/media/rc/imon.ko, 
drivers/staging/media/lirc/lirc_sasem.ko etc.) the result was 
ideal. Only in one case there was still many static verifier 
traces – 35 for drivers/usb/misc/ftdi-elan.ko. Nevertheless it is 
much more easy to analyze 64 static verifier traces than 482. 

It is unlikely that this algorithm will be used in practice 
together with the previous algorithms in the future, because it is 
rather specific. But for a given research it has helped to 
significantly reduce the number of equivalent static verifier 
traces and has made possible to analyze them. This revealed 
more common problems that can not be solved simply with 
comparison algorithms. 

1: probe(); // probe failed 
2: // ... any number of failed probe calls 
3: probe(); // probe failed 
4: ldv_check_final_state(); // bug will be 
found 



IV. SEMI-AUTOMATED APPROACH 
In order to find a better solution to minimize the number of 

static verifier traces more thorough analysis of probe 
comparison algorithm results was made.  

A. Probe comparison algorithm results analysis. 
For 9 modules eventually results are ideal (see Table 1). 2 

modules among them contains more than one bug 
(drivers/media/rc/imon.ko and drivers/media/rc/imon.ko). For 
drivers/media/rc/imon.ko there were 3 equivalence classes. 
There are 3 paths in function imon_probe that lead to missing 
of put after get. For 
drivers/net/wireless/ath/carl9170/carl9170.ko there were 7 
equivalence classes which correspond to 7 different bugs (rcu 
calls inside critical section).  

For drivers/staging/media/as102/dvb-as102.ko additionally 
found static verifier trace is actually a false alarm because of an 
incorrect environment model (release was called without 
probe). So this problem is beyond static verifier trace 
comparison algorithms.  

Module drivers/usb/misc/ftdi-elan.ko introduces a new 
problem. There is one bug, that was revealed later in different 
places which becomes different static verifiers traces. The 
same problem is in module 
drivers/media/usb/pvrusb2/pvrusb2.ko. This problem is the 
general case of an issue with probe functions considered 
earlier. 

Module drivers/net/tun.ko contains 1 bug – 
hlist_add_head_rcu call inside critical section. But it also 
contains 4 different traces to the given bug. The same problem 
(different paths to the bug) is in 2 other modules. In module 
net/rxrpc/af-rxrpc.ko an additional path with lock-unlock was 
found. In both cases bugs were the same. In module 
drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko a second trace 
consists of a correct and incorrect calls of function probe. 
Sometimes other paths to a bug can be helpful for 
understanding and for fixing the bug, but we consider them 
excessive. 

B. Revealed problems. 
The distribution of reasons of diversities from ideal results 

on 15 Linux kernel modules for probe comparison algorithm is 
presented in Fig. 5. 

 

Fig. 5. The distribution of reasons of diversities from ideal 
results on 15 Linux kernel modules. 

Static verifier trace comparison algorithms do not aim to 
deal with false alarms, so we are not going to consider this 
problem in the given paper. But other problems ('one bug 
revealed later in different places' and 'different paths to the 
same bug') should be resolved. The probe algorithm has solved 
the problem when one bug was revealed later in many places 
for one special case. But in the general case this problem can 
not be solved so easily. 

For example, there is one bug in function probe (a lock is 
acquired but not released), that could be revealed in different 
places later (Fig. 6). As one can see there is no sequences of 
calls of failing function probe – they were assigned to the same 
equivalence class by the probe comparison algorithm. In 
examples below lock acquires locks and unlock releases locks. 

 

Fig. 6.  4 static verifier traces that correspond to the same bug. 

At the same time there could be a situation with different 
bugs and different static verifier traces. For example, there are 
2 bugs (release of an unacquired lock) in 2 different functions 
(Fig. 7).  

 

Fig. 7.  2 static verifier traces that correspond to different bugs. 

C. Suggested approach. 
To solve the problems presented above we suggest a semi-

automated approach:  

1) When all static verifier traces are added into the final 
report after some comparison algorithm was applied (for 
example, the probe comparison algorithm) 

2) Then an expert marks up a some bug in LDV Analytics 
Center. 

3) After that a special script finds all static verifier traces, 
that are equivalent to the trace corresponding to the bug, and 
excludes them from further analysis. 

This approach was implemented as a script for LDV Tools 
Knowledge Base. The expert can mark up specified place in  
the static verifier trace (for example, function with a bug) and 



use this script. The script will automatically mark all static 
verifier traces, that contains the same bug, among all traces 
relevant a given module. After that the expert can see in LDV 
Analytics Center which static verifier traces were considered to 
have the same bug and ignore them. 

This approach has helped to resolve both problems. For 4 
modules (net/rxrpc/af-rxrpc.ko, 
drivers/media/usb/pvrusb2/pvrusb2.ko, 
drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko and 
drivers/net/tun.ko) only one bug was found as in ideal results 
(Table 1). For module drivers/usb/misc/ftdi-elan.ko 31 static 
verifier traces were marked as corresponding to the same bug, 
one trace is appeared to be a false alarm because of an incorrect 
environment model (same as above) and 3 traces are appeared 
to be false alarm because of pointer analysis in CPAchecker 
1.2, which was used for conducting experiments (this problem 
was resolved in CPAchecker 1.3.4). 

So, the number of static verifier traces was reduced to ideal 
results (if not consider false alarms) by means of the probe 
comparison algorithm and the semi-automated approach. 

V. RESULTS 
The results of all experiments are presented in Table 1. In 

experiments LDV Tools rule specifications 39_7a5, 106_1a6, 
132_1a7 and 147_1a8 were used. 

Linux kernel module RS FE Tree MF Probe SAA Manual
39_7a 6 5 2 2 1 1

106_1a 3 3 2 2 1 1
132_1a 65 65 65 1 1 1
132_1a 17 17 2 1 1 1
132_1a 136 76 15 3 3 3
132_1a 4 4 4 1 1 1
132_1a 6 6 5 1 1 1

drivers/staging/media/as102/dvb-as102.ko 132_1a 2 2 2 2 2 1
132_1a 394 278 15 1 1 1
132_1a 234 234 234 1 1 1

drivers/net/wireless/rtl818x/rtl8187/rtl8187.ko 132_1a 2 2 2 2 1 1
132_1a 947 938 47 35 5 1
132_1a 154 154 76 1 1 1
147_1a 17 17 4 4 1 1
147_1a 11 11 7 7 7 7

Total – 15 modules 4 1998 1812 482 64 28 23

net/rxrpc/af-rxrpc.ko
drivers/media/usb/pvrusb2/pvrusb2.ko
drivers/input/tablet/gtco.ko
drivers/isdn/gigaset/bas_gigaset.ko
drivers/media/rc/imon.ko
drivers/staging/gdm724x/gdmulte.ko
drivers/staging/gdm72xx/gdmwm.ko

drivers/staging/media/lirc/lirc_imon.ko
drivers/staging/media/lirc/lirc_sasem.ko

drivers/usb/misc/ftdi-elan.ko
drivers/usb/wusbcore/wusb-cbaf.ko
drivers/net/tun.ko
drivers/net/wireless/ath/carl9170/carl9170.ko

Table 1. Summary table  
(‘RS’ – rule specification, ‘FE’ – first experiment,  
‘Tree’ – function call tree comparison algorithm,  

‘MF’ – model function comparison algorithm,  
‘Probe’ – probe comparison algorithm,  

‘SAA’ – semi-automated approach, 
‘Manual’ – manual examination). 

The suggested approach has helped to find 8 new bugs in 
Linux kernel 3.12-rc1 modules drivers/media/rc/imon.ko and 
drivers/media/rc/imon.ko. 

                                                           
5 http://forge.ispras.ru/issues/867 
6 http://forge.ispras.ru/issues/2742 
7 http://forge.ispras.ru/issues/3306 
8 http://forge.ispras.ru/issues/3832 

VI. CONCLUSION 
The suggested approach provides means to reduce the 

number of static verifier traces by dividing them into 
equivalence classes. Proposed algorithms for static verifier 
trace comparison show acceptable results and they allow to 
reach ideal results with not big efforts of the experts. This 
approach makes possible to analyze all bugs in a given Linux 
kernel module against a specified rule specification found by 
LDV Tools and CPAchecker static verifier.  

The suggested approach should also be tested on known 
false positives to make sure that it also works as expected. In 
future this approach will be extended to check several rule 
specifications at once, that is very promising area of research. 
This will further reduce time for finding bugs in Linux kernel 
modules.  

The suggested approach can be applied in other areas  
outside of Linux kernel modules and LDV Tools. 
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