DPMine/C: C++ Library and Graphical Frontend
for DPMine Workflow Language

Sergey Shershakov
International Laboratory
of Process-Aware Information Systems (PAIS Lab)
National Research University Higher School of Economics
Moscow 101000, Russia
Email: sshershakov@hse.ru

Abstract—DPMine generic purpose workflow language is
rooted in DPMine/P scientific workflow language and a set of
plug-ins for ProM which originally were developed for convenient
piping of different plug-ins within ProM framework. DPMine/C
is a new version of DPMine workflow language and a C++
library. The main language concept was complemented by
comprehensive analysis of DPMine/C model execution semantics.
This paper also discusses approaches to the block types extension
concept relying on development of new block type classes and
customization of the model storage subsystem. Finally, we show
an approach for implementation of a GUI frontend.

Keywords: Workflow, Modelling Language, C++ Library, Ex-
tensible Tool, Process Mining, Processes, PAIS

I. INTRODUCTION

Today there exists a wide variety of workflow notations.
Some of them have a formal basis (such as Petri nets, finite
state automata), others have vendor specific notations. Among
them one can distinguish some notations that pretend to be
industry standards. BPMN []1] and BPEL [2] are, perhaps, just
the most known examples of such standards [3].

At the same time, being a standard does not mean being
appropriate for description of all kinds of workflow models.
As an example, we refer to the papers [4], [S] where a problem
of piping components (plug-ins) of ProM heterogenous system
arises. We had to obtain an ability to create a scientific work-
flow model that includes individual invocations of particular
processing algorithms (implemented, for example, with the
help of ProM plug-ins), cycles support, choice constructs
and other controls of the execution thread. As a result,
DPMINE/P language with a simple, transparent, flexible and,
most importantly, extensible semantics has been developed
and implemented as a set of ProM plug-ins [5].

Typically, workflow management systems are used for
maintaining various kinds of business processes. DPMine is
not another Business Process Management (BPM) system. We
rather call DPMine as a “technical workflow language”.

Unlike most workflow languages DPMine has much more
imperative rather than declarative nature. A model in DPMine
language is similar to a program in some way. As well as
a program, a model can be executed, thus we pay much
attention to its execution semantics. We explicitly state that
it is “execution”, not just a “simulation”. In the case of a
well-formed algorithm the model execution “outcomes” are

determined only by the model incoming resources and by the
model structure (depending, of course, on the nature of the
blocks contained in the model).

Along with the differences DPMine has also a lot of simi-
larities with existing workflow languages. Thus, DPMine uses
ports notations, just as BPEL (Web Services Business Process
Execution Language, WS-BPEL) [(] does. But in DPMine
the port is one of the main language building elements widely
used for setting relations between blocks — another important
building element.

There is a specific language family of Petri net based
workflow languages [[]]. One of the most known is YAWL —
a workflow language extended with additional features to
facilitate the modelling of complex workflows [§]. Unlike
YAWL, DPMine does not introduce a generic set of tasks!
that support control-flow tasks (such as AND/XOR split/join
and so on) as a part of the language core. We proposed instead
some control-flow blocks [§]. We considered them only as an
example of custom block type implementation. In this paper
we are primarily considering blocks as abstract objects.

Basically, the requirements for DPMine language have been
indicated through the requirements imposed on a scientific
workflow language for ProM tools. Moreover, one can say
that DPMine/C has been emerging as a way of generalizing the
solution of the piping task. One could consider incorporating
one of the existing BPEL engines into ProM, but this approach
is fraught with compatibility problems and leads to the use of
BPEL in an area not much related to it. A similar situation
happens with BPMN, but in this case the language application
would be even more harder.

Workflow notations can be considered from different per-
spectives [9]. Here, we are mainly focusing on the control-flow
perspective.

The rest of this paper is organized as follows. Section [l
describes the modular concept and the basic components
of DPMine language. Section [II discusses DPMine model
execution semantics and approaches to resources transfer-
ring. Certain aspects of the extendable storage subsytem are
presented in Section [V. Section V introduces an idea of
implementation of a GUI frontend for DPMine language using

'They could be treated as so-called task-blocks in terms of DPMine.

This work is licensed under the Creative Commons Attribution License.

Graphical Editor (Frontend)

Graphical
Representation

DPModel

Sk

Storage Subsystem
Figure 1.

Levels of language representation

Qt library. Finally, Section VI concludes with analysis of the
work done and a look at the future.

II. DPMINE LANGUAGE BAsIC ELEMENTS

The main work concept for DPMine/C toolset is the model,
which represents some workflow model under experiment. In
a C+t-based types system a model is represented as an object
of DPModel base class containing all necessary information
about the model such as model name, model author, and so
on. The most important object contained in the model is the so-
called main scheme to be executed during the model execution
procedure (see sec. I1I). Developing a DPMine/C library client
one can extend the DPModel defenition by adding project-
relevant features.

The rest of this section is devoted to the model concept, its
main components and their interaction.

A. Model Definition

A model can be considered from different points of view
(Fig. I)). At the lower level there is a C++-based object model
of the workflow model. At the medium level (it can also
be referred to as a storage level) there is an XML-based
model markup language or something similar such as JSON-
based text format. Finally, at the upper level a model can be
represented using a graphical notation, which allows defining
the process model as a set of building blocks.

An object model can be serialized to an underlying XML-
or JSON-based text file or deserialized from it (see. sec. [V).
One can extend a serialization mechanism to utilize any other
storage formats.

The graphical model is transformed into an object model
and vice versa, and it can be used both for user-friendly model
design and representing the model execution dynamic process.

B. Schemes, Blocks, Ports, and Connections Concept

Implementation of the basic language semantics is done
through the concept of schemes, blocks, ports and connectors.
Expansion of the language functionality should be based on
this very concept. The main idea is that no special extensions
for maintaining any kind of custom blocks are needed.

Let us examine these elements in more detail.

Block

AbstractTask

T

CPNTools Task

BodynessBlock

-

ControlFlowBlock Scheme

Aﬁ Acc

SForBlock

ConstBlock

ExpressionBlock

Figure 2. Blocks hierarchy scheme

1) Block: 1t is a basic language building element considered
as a solitary operation in an external representation but can be
complex in internal one. Blocks perform a specific task and
can be considered as statements in programming languages.
Blocks can have different functionality such as performing
a single task of a base platform (task blocks), representing
complex schemes into single blocks (scheme blocks), imple-
menting control workflow (control flow blocks) and so on.

The blocks are arranged by types into a hierarchy that is a
reflection of corresponding C++ block types hierarchy, whose
scheme is presented on Fig. 2.

2) Port: 1t is an object belonging to a certain block and
used for connection and data objects transfer to other ports.
Depending on data flow direction, one can distinguish three
types of ports: input, output, and so-called proxy (input-output
and output-input). Ports transfer resources of a specific data
type from one block to another. Depending on block type, they
can be either custom or built-in.

3) Connector: 1t is an object connecting two blocks through
their ports. Connectors have a link direction: a connector (with
its beginning) always connects an output port of a block with
an input port of another one (with its end). One output port
can be linked to several connectors, whereas one input port
can have only one connector linked (Fig. 3a).

Starting from this implementation of DPMine library it was
decided that it was not necessary to introduce a special data
type representing connector at the programming level. Instead,
we decided to use internal links between corresponding output
and input ports. Such links can be treated as connectors at
higher levels.

4) Scheme: It represents a number of interacting blocks
connected with each other by connectors. The schemes are
the main mechanism of implementing abstraction, isolation
and hierarchy of sub-processes. On Fig. 3b there is depicted
a connected scheme consisting of four blocks (A, B, C, D)
and four connectors (AB, AC, AD, BD).

One needs to implement a special container to represent
a scheme at the object model level. Such a container is a

(a) Ports and connectors

(i) B \
in2,

in2

E © out

(b) Scheme example

Figure 3. Various blocks, ports, connectors, and schemes elements

special type of block that is called Scheme-block (Fig. 2). The
Scheme-block is a direct (and most obvious) descendant of a
more general block type, namely Bodyness block. A Bodyness
block is a special kind of blocks whose distinguishing feature
is the ability to aggregate their so-called child-blocks inside
themselves. In other words, the Bodyness block represented
by BodynessBlock abstract class is the ancestor for all the
block types that can own child blocks.

Any descendant of a Bodyness block (including Scheme-
blocks) can be considered both at the external and the internal
level. At the external level a Bodyness block is nothing more
than just a regular block, which can have input and output
ports that can be connected to some ports of some other blocks
(at the same level). At the internal level the same block can
be treated as an isolated scheme (maybe having some special
behavior based on individual characteristics of the specific
descendant?).

This scheme has the only way to communicate with external
blocks at a higher level: by using its own port “everted” and
represented at the internal level in the opposite direction. Thus,
the ports viewed at the external level as input flip to be output
at the internal level, and vice versa. This is why these ports
are named “proxy”.

III. MoDEL EXECUTION

One of the main goal for constructing a DPMine model is its
subsequent execution. Outcome results of the executed model
is the sum of results of its individual executed blocks. They
are based on the subject domain of the task blocks contained
in the model.

One can consider an example of workflow model containing
some tasks that perform phased processing of a set of source

2For example, consider For-loop block, see [B].

tex-files with a view to obtaining a PDF-document. This
produced PDF is such an outcome result.

Model execution consists in executing the main scheme of
the model (upper level scheme) and producing an execution
report (about errors, etc.). Model execution is done by a special
agent — Executor, whose implementation is closely related to
the client application design (see sec. LI-C).

A. Block Execution

When considering the execution of a scheme one needs to
mention the execution concept for an individual block. Block
execution is an operation done by the underlying block’s type
class method execute () based on the block’s individual state.
In the example above there could be a special block type
performing invocation of some LaTeX tool like pdftolatex
as its execution procedure.

From the technical point of view execute () method is vir-
tual, which means that it must be implemented individually for
each type of blocks. It is also possible to modify the behavior
of any previously defined block type by reimplementing this
virtual method.

In order for a given block to be able to be executed it is
necessary that all the external dependencies of the block be
satisfied.

For a given block B its dependencies are considered satisfied
if:

1) the block does not have input ports, or

2) the block has input ports and for each port the following

conditions are met:

a) there is no “must be connected” flag for the port
set, this way the port can be not connected by a
connector to another (output) port of another block;

b) the input port is connected by a connector to
another (output) port of another block and this
output port is ready to give requested resource
to the input port; in most cases, the latter means
the status of parent block of the output port is
“executed”.

The block with satisfied dependencies is referred to as
“executable” block.

B. Scheme Execution

As it was mentioned above every scheme is represented
by its Scheme-block. So, speaking about the execution of a
scheme one needs to consider the execution of its block.

Since the Scheme-block is a descendant of the Bodyness
block, it does not define its own execution algorithm but
utilizes an algorithm given by Bodyness block class®.

In fact, this algorithm is the heart of DPMine execution
semantics, so it has to be discussed in greater detail.

The mentioned algorithm is iterative. Some subset of the
full set of scheme body blocks is tried to be executed in
each iteration. During its execution the algorithm defines some

3This also holds for many other Bodyness block descendants like For-loop
block, etc.

1O

end

O
o
%)

end

(@) —{ A

start

“O-

Figure 4. Equivalent (system) Petri net for the scheme on Fig. 3b

state flags. The first is incomplete flag indicating whether
there are still some blocks that have not been executed. Then,
hasExecution flag indicates that there is at least one body block
that has been executed during the whole iteration. Finally,
hasPending flag indicates that there are some blocks being
executed at the moment.

One has to mention that the latter flag can be set only in case
of assigning a task for execution in asynchronous mode with
multiple concurrent executing threads. Assignment of blocks
for execution is done by a special component — Executor,
which determines a strategy of forming such assignments
(see sec. [II-C).

There are some steps performed by the executing algorithm
in each iteration.

1) All three flags are set to false state indicating that no
information about state of blocks-to-execute is available
yet.

2) An effort to execute a body block is applied to each
block contained in the scheme body:

a) It checks whether the block has already been
executed previously. If so, it simply goes to the
next block.

b) It checks whether the block is being executed (in
pending state). If so, hasPending flag is set, and it
goes to the next block.

¢) Finally, it checks whether the block can be ex-
ecuted (has executable state). If so, there is a
request for Executor to execute the current block
(see sec. [II-C).

3) If there is at least one block with a state that is different
from “executed” (e.g. a block could either be not started
at all or be started and still being executed) — that is
incomplete flag is set up, and there has been at least one
block execution, the next iteration is performed.

The presence of some pending blocks with no block
executed is another variation of this case.

The semantics of scheme execution can be represented by
an equivalent system net [|LQ]. Thus, for the scheme on Fig. 3b
containing no choice blocks the equivalent (system) Petri net
would appear as on Fig. 4.

C. Model Executor

Model Executor (or just Executor) is another important
component of the executing subsystem. It is a special agent

Model Model
Source m » m) log P log) Log
Processor
e

Figure 5. Pull (white) and push (yellow) ports

linking DPMine workflow model and client software together.
Technically, an Executor is an object of some class implement-
ing IExecutor interface which declares some methods used
for executing individual blocks of a workflow model.

Among these methods one can distinguish a couple of the
most important ones. The executeBlock() method is in-
voked by some blocks of some special types such as Bodyness
block whenever there is another block to be executed. The
block is passed to executeBlock() as a parameter, and the
method should be considered as a request from a model to the
Executor for executing another model’s block. The way the
Executor performs the request is completely determined by
the policy implemented in each specific Executor class. As an
example, one can consider synchronous model of execution.
In this case control is not returned to the calling method until
the current block is executed or switched to a broken state.
Another scenario involves asynchronous tasks assignment to
different concurrent threads.

The very first call to executeBlock() procedure is per-
formed when the model is being executed, and its Main
Scheme becomes the very first block passed as a parameter
to executeBlock().

Another important method to be implemented by a specific
Executor class is execNotify (). It is used to send to a client
application event notifications about the state of a model block
being executed. The pointer to the block being processed is the
first parameter of the method, and the event notification type
is the second. Notification type is a constant from a predefined
set including begin, end, cancel, and others. This notification
callbacks may be used by the client application for updating
its information about the blocks’ states.

D. Resource Transferring

Now let us consider the process of transferring resources
through the ports of blocks. We distinguish two different
approaches for resources transferring: pulling and pushing.
Pulling is an approach where a block being executed requests
all necessary resources from its input ports which are con-
nected to the corresponding output ports of other “source”
blocks. As it was mentioned before, the ability to supply
resources for an ahead standing block by the “source” blocks
is the main requirement for the current block to be executed.
Then, the request for the input ports is redirected to the
corresponding output ports through established connectors.
Finally, the output ports ask their owner blocks to supply data
for the requested resources and give them to the requesting
block.

Pushing is another approach illustrated on the Fig. 5.
There is a Log block having connected to a processing

ModelProcessor block. If executed ModelProcessor gen-
erates some log entries (events) and tries to “send” them
synchronously through a dedicated output port to all the
recipients connected. If a receiving block is ready to get such
a “message” it could process it. In the example, the Log block
obtains messages from ModelProcessor for displaying and
storing.

IV. MODEL STORAGE

In the preceding sections we looked at DPMine workflow
models from the object model point of view. Now let us
consider how a model can be represented as some formal
definition in a text-based format.

In the paper [5] we have shown that a model of process
mining experiment can be described by using a well-formed
XML-based notation. Moreover, this kind of model description
was the main form used for importing DPModel objects in
ProM.

Having started developing this library we decided to sepa-
rate the storage subsystem from the core of DPMine library.
According to Fig. 1| the storage engine is used for the trans-
formation of an object model to some persistent form such as
a text-based file (serialization) and back (deserialization).

As previously, we suppose an XML-based format is one
of the best notations for representing a hierarchical irregular
structure, which a DPMine model is. In addition, we are now
proposing another well-known format with the same XML
expression but also which is much more compact and, what is
more important, much more appropriate for manual writing:
JSON [1L1].

The main idea is that, as much as the DPMine core
system can be extended by developing new block type classes,
the storage subsystem can be simultanecously extended to
maintain the core extension mirrored. For this very pur-
pose we introduce two special classes: XMLModelLoader and
JSONModelLoader. Both of these classes have methods for
working with text streams. These streams are used to serialize
to and deserialize from a given object model. Some of specific
descendants of these classes specify whether a stream is
implemented as a file-stream or as another kind of stream.

By processing a file to be loaded as a workflow object
model XModelLoader parses the file standard header contain-
ing the model description and the model body containing the
workflow itself. At a higher level, the model body normally
contains only one Scheme-block corresponding to the main
scheme. It means the parsing process should start from parsing
this very block.

The extensible nature of (de)serialization mechanism con-
sists in the fact that processing each type of blocks is per-
formed by its dedicated block loader, custom block loaders
for custom block types being added dynamically. The col-
lection of all types of loaders including the standard ones
(like Scheme-block loader based on bodyness block loader,
const block loader, etc.) is managed by a family of so-called
LoadersFactory classes existing for each branch of persistent
formats: XML, JSON, and so on (Fig. 6).

)

ConstLoader

A 4

o

+parse() : AbstractBlock

[int
const
[y str

ExpressionLoader

+parse() : AbstractBlock

" i { "string" :

e
"A string"}
1

}

LoadersFactory

Figure 6. Const loader used for deserialization a JSON-defined “const” block

Registering a new block loader for a corresponding block
type is done during the library initialization process (normally
only once) that uses the underlying collection, which maps the
block type name as it appears in the file (as an XML node
or a JSON parameter) to a parsing object (normally it is a
pointer to a method). When a file loader meets another block
description (an XML node or a JSON parameter) it tries to
find an appropriate block loader and eventually invokes this
block loader and passes to it the cursor to a file position the
block description start is located at. After that, the block loader
performs the reading of all the necessary data from the stream,
constructs a new block object and returns it.

V. GRAPHICAL FRONTEND

Along with the library we supply a GUI application de-
mostrating the ability to integrate DPMine/C library into a
GUI client. The application is based on cross-platform Qt
library allowing to consider the application as cross-platform.
Nevertheless, we are focusing here on a Windows edition to
be specific.

The topics to be considered are:

1) How to visualize a workflow model?

2) How to enable user to interact with individual schemes?

3) How to deal with the fact a model can contain custom
block types?

4) How to use different look-and-feels?

A. Ot Graphics View Framework

We use Qt Graphics View Framework to make the graphical
part of the application. The main components of the frame-
work are the following.

1) QGraphicsView object provides a widget for display-
ing the contents of a graphic scheme implemented by
QGraphicsScene descendant.

2) DPMScheme inherits QGraphicsScene class and adds
functionality to handle DPModel specific graphical
items in addition to the items handled by its super class.

3) QGraphicsItem is an abstract class for a family of
classes representing flowchart shapes — main and mis-
cellaneous.

Flowchart shapes implemented by QGraphicsItem descen-

dants are placed on DPMScheme object, and the latter is
visualized by a QGraphicsView container. The goal is to

n| MainWindow
File Action

Main Scheme

ru. xidv.dpmil
A

ru. xidv.dpmil
B

ru. xidv.dpmil
C

Figure 7. GUI demo application

provide an appropriate graphical renderer for specific block
types taking into account the ability to change easily its
graphical representation just by changing the renderer. This
is the so-called look-and-feel feature.

B. Custom Block Renderers

Just as in the case of custom block loaders we pro-
pose a dynamic extensible mechanism of block renderers.
BlocksRenderers is the main class supporting a collec-
tion of block renderers. It contains methods for adding
and getting a renderer for a block type given by its type
name. Method getRendererByBlockTypeName returns an
appropriate BlockTypeRenderer object used for rendering
a given block. If no appropriate BlockTypeRenderer for a
given block type is found, a default BlockTypeRenderer is
returned.

BlockTypeRenderer is the base abstract class for all
the block renderer classes. The main method they have to
implement is renderBlock. It returns a QGraphicsItem
specifically representing a given block type. This represen-
tation can take into account any necessary graphical aspects
of a block the developer would like to implement. The base
implementation DefBlocksRender that can be used for all the
block types renders a given block using DPMDefBlockItem
(a descendant of QGraphicsItem). It only shows the block’s
name and its type as a text label and, of course, renders its
ports (Fig. [7).

Block ports are also presented as separate objects of
QGraphicsItem descendant class (DPMDefPortItem is de-
fault) grouped by the owner block shape. This is done in order
to enable the user to communicate with ports as individual
objects.

The presented graphical solution is one of the significant
plug-ins for “VTMine framework™ (under development) [[12].

VI. CONCLUSION

In this paper we discussed DPMine workflow language and
its implementation as a C++ based library. We introduced
DPMine main concept and looked at its building elements.

Semantics of the model execution has been presented in detail.
DPMine block extension approach has been mentioned with
regard to the addition of new block types and extension of the
storage subsystem and a graphical frontend.

Among the challenges for the future a number of tasks
can be identified, namely forming a strong formal semantic
system, extending the functionality of DPMine language by
introducing some default block types and presenting more
complex workflow use cases.

Finally, we have launched a web-site for a DPMine project:
https://prj.xiart.ru/projects/dpmine. It is based on a Redmine
bug-tracking system and we consider it as a platform for the
future DPMine development.

ACKNOWLEDGMENT

The study was implemented in the framework of the Basic
Research Program at the National Research University Higher
School of Economics (HSE).

REFERENCES

[1] O. M. G. (OMG), “Business process model and notation (BPMN)
version 2.0,” Tech. Rep., Jan 2011. [Online]. Available: http:
//taval.de/publications/BPMN20

[2] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera,
M. Ford, Y. Goland, A. Guzar, N. Kartha, C. Liu, R. Khalaf,
D. Koenig, M. Marin, V. Mehta, S. Thatte, D. Rijn, P. Yendluri, and
A. Yiu, “Web Services Business Process Execution Language Ver-
sion 2.0 (OASIS Standard),” WS-BPEL TC OASIS, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

[3] W. M. P. van der Aalst, “What makes a good process model?
- lessons learned from process mining.” Software and System
Modeling, vol. 11, no. 4, pp. 557-569, 2012. [Online]. Available:
attp://dblp.uni-trier.de/db/journals/sosym/sosym11.html#Aalst12

[4] S. Shershakov, “DPMine: modeling and process mining tool,” in Pro-
ceedings of the 7th Spring/Summer Young Researchers’ Colloquium on
Software Engineering, SYRCoSE 2013, 2013.

“DPMine/P: modeling and process mining language and
ProM plug-ins,” in Proceedings of the 9th Central & Eastern
European Software Engineering Conference in Russia, A. N. Terekhov
and M. Tsepkov, Eds. ACM New York, NY, USA, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2556622&CFID=
415147702&CFTOKEN=35395117

[6] Web Services Business Process Execution Language Version 2.0, OASIS
Std.

[77 W. M. P. van der Aalst, “Three good reasons for using a Petri-net-
based workflow management system.” in Proceedings of the Interna-
tional Working Conference on Information and Process Integration in
Enterprises (IPIC’96), Cambridge, Massachusetts, Nov. 14-15, 1996,
Navathe, S. and Wakayama, T., Eds., 1996, pp. 179-201.

[8] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: Yet another
workflow language,” Inf. Syst., vol. 30, no. 4, pp. 245-275, Jun. 2005.
[Online]. Available: http://dx.doi.org/10.1016/].1s.2004.02.002

[9] S.Jablonski and C. Bussler, Workflow Management: Modeling Concepts,

Architecture, and Implementation. International Thomson Computer

Press, London, UK, 1996.

W. M. P. van der Aalst, “Decomposing Petri nets for process mining. A

generic approach,” 2012.

The application/json media type for JavaScript object notation (JSON).

[Online]. Available: http://tools.ietf.org/html/rfc4627

P. Kim, O. Bulanov, and S. Shershakov, “Component-based VTMine/C

framework: Not only modelling,” 2014, in press.

[5]

[10]
[11]
[12]

https://prj.xiart.ru/projects/dpmine
http://taval.de/publications/BPMN20
http://taval.de/publications/BPMN20
http://dblp.uni-trier.de/db/journals/sosym/sosym11.html#Aalst12
http://dl.acm.org/citation.cfm?id=2556622&CFID=415147702&CFTOKEN=35395117
http://dl.acm.org/citation.cfm?id=2556622&CFID=415147702&CFTOKEN=35395117
http://dx.doi.org/10.1016/j.is.2004.02.002
http://tools.ietf.org/html/rfc4627

	Introduction
	DPMine Language Basic Elements
	Model Definition
	Schemes, Blocks, Ports, and Connections Concept
	Block
	Port
	Connector
	Scheme

	Model Execution
	Block Execution
	Scheme Execution
	Model Executor
	Resource Transferring

	Model Storage
	Graphical Frontend
	Qt Graphics View Framework
	Custom Block Renderers

	Conclusion
	References

