
Simulation-based Hardware Verification Back-end:
Diagnostics

Mikhail Chupilko, Alexander Protsenko
Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

{chupilko,protsenko}@ispras.ru

Abstract—Hardware development processes include verifica-
tion as one of the most important part. Verification is very
often done in simulation-based way. After comparison of design
behavior and its reference model behavior, the verdict about their
correspondence appears. It is very useful to have some means
of analyzing potential inconsistency of their output data. It is
exactly the subject of this work to supply verification engineers
with a method and a back-end tool for diagnostics of incorrect
behavior using wave diagrams and reaction trace analysis based
on recombination of reaction traces.

I. INTRODUCTION

The importance of hardware verification (taking up to 80%
of the total development efforts [1]) is raised by difficulties
in error correction in already manufactured devices. Many
methods address verification, some of them being more formal
(static analysis), the other ones using simulators (dynamic
verification). In the first case, the verification is carried out
in a strict mathematical way. For example, the approach to
verification known as model checking [2] means checking
satisfability of formally expressed specification and formulae
manually created by an engineer. If some error occurs, it is
connected with unsatisfiability of the properties set by the engi-
neer and the specification that should be checked and corrected.
Dynamic verification implies checking mutual correspondence
of output reactions of two models: design under verification
itself (DUV) and the reference model (possibly, expressed by a
set of assertions). The same stimulus sequence is applied to the
both models, their reactions are compared and if some problem
occurs, incorrect reactions are shown (the reactions can be
so due to their time, data, and possibility of their appearing).
As the unarmed looking at incorrect reactions is not always
enough to understand quickly the problem having occurred,
it seems to be very important to show more diagnostics
information, including the place of this error on the wave
diagram, and the answer to the question why such an error
has appeared.

In this paper, we will introduce the way of diagnostics,
which should be independent of the reference model organiza-
tion. It should be also supported by a wide range of test system
making technologies, including the one made by our team
(C++TESK Testing ToolKit [3], [4]) and widely distributed
world-known methods of test system development (Universal
Verification Methodology [5]).

This work evolves the research previously described in [6]
and extends it by new understanding of the explanatory rules
used in the analysis algorithm and visualization of diagnostics.

This work is licensed under the Creative Commons Attribution License.

The rest of the paper is organized as follows. The second
section is devoted to related works on the subject of diagnostics
and trace analysis. The third section introduces architecture of
test systems for simulation-based verification and the proposed
method of diagnostics subsystem construction. The fourth
section considers method implementation and examples of its
work with test system development library C++TESK Testing
ToolKit. The fifth section concludes the paper.

II. RELATED WORKS

The problem of diagnostics of event-based systems is
studied under different angles. Some researchers understand
the failt diagnostics as checking of formal properties in for-
mally expressed systems (e.g., [7]). In the other sources the
diagnostics is closer to our task where it means construction
of such timed automata, which can find a bug in behavior of
DUV according to some pattern during the simulation (e.g.,
[8] and [9]).

The processing of reaction traces produced by DUV and the
reference model can be also called trace rewriting (e.g., [10]).
This term is used for describing of symbolic trace reducing
methods based on some set of rules. There are several types of
objects, which can be removed from the trace without losing
of the trace expressiveness, including extra data, dependent
objects, and all the other objects not influencing the analyzed
result. In our case, the reaction trace can be represented as the
symbolic trace leading to an error occurred at some moment
of time. Having information about parent-child dependences
between stimuli and reactions, we can remove unnecessary
objects from the trace and provide verification engineer with
a meaningful essence for analysis of defect.

The task we formulated for the research is quite close
in general sense to trace rewriting but has some technical
differences including usage of wave diagrams for visualization
of diagnostics results, different set of rules accounting pecu-
liarities of HDL design traces, for example signal interfaces
(sets of HDL signals) where reactions appear.

III. DIAGNOSTICS SUBSYSTEM

The being developed diagnostics subsystem should be a
back-end to common simulation-based test system architecture.
To understand the position of the back-end better, let us
review quite common architecture with names of objects from
C++TESK (see Figure 1). The concrete architecture selection
is not specific as the set of objects in mentioned above wide-
distributed UVM is very similar to those in C++TESK ([11]).

Fig. 1. Common architecture of test system

The typical components of simulation-based test sys-
tems are stimulus generator, test oracle (including reaction
matcher), adapter making the interface between transaction
level test system and signal-level DUV, test coverage collector.
The diagnostics subsystem is also shown in the Figure 1 to
clarify its position. After reaction matcher having checked
correspondence of two reaction traces, the one from DUV,
another from the reference model and produced the false
verdict at the current cycle, all this information is given to
the diagnostics subsystem, which can work as an extern plug-
in for the test system.

The input data for the diagnostics subsystem is a trace
including reactions from reference model and DUV, applied
stimuli, dependences between them (by some parent identifier).
All this objects can be provided in XML. The diagnostics sub-
system can also process wave diagrams to show the important
signals and position of defect reactions. The latter also requires
mapping of DUV signals to reactions in XML.

Let the reaction checker use two sets of reactions:
Rspec = {rspeci}

N
i=0 and Rimpl = {rimplj}

M
j=0.

Each specification reaction consists of four elements:
rspec = (data, iface, timemin, timemax). Each implemen-
tation reaction includes only three elements: rimpl =
(data, iface, time). Notice that timemin and timemax show
an interval where specification reaction is valid, while time
corresponds to a single time mark: generation of implementa-
tion reaction always has concrete time.

The reaction checker has already attempted to match each
reaction from Rspec with a reaction from Rimpl, having
produced reaction pairs. If there is no correspondent reaction
for either specification or implementation ones, the reaction
checker produces some pseudo reaction pair with the only one
reaction. Each reaction pair is assigned with a certain type
of situation from the list of normal, missing, unexpected, and
incorrect.

For given reactions rspec ∈ Rspec and rimpl ∈ Rimpl,
these types can be described as in Table I. Remember that
each reaction can be located only in one pair.

The diagnostics subsystem has its own simplified inter-
pretation of reaction pair types (see Table II). In fact, the
subsystem translates original reaction pairs received from the
reaction checker into the new representation. This process can
be described as M ⇒ M∗, where M = {(rspec, rimpl, type)i}
is a set of reaction pairs marked with type from the list above.

TABLE I. REACTION CHECKER REACTION PAIR TYPES

Type name Reaction pair Definition of type

NORMAL (rspec, rimpl) dataspec =
dataimpl & ifacespec =
ifaceimpl & timemin < time <
timemax

INCORRECT (rspec, rimpl) dataspec 6=
dataimpl & ifacespec =
ifaceimpl & timemin < time <
timemax

MISSING (rspec, NULL) @rimpl ∈ Rimpl \
Rnormal,incorrect

impl : ifacespec =
ifaceimpl & timemin < time <
timemax

UNEXPECTED (NULL, rimpl) @rspec ∈ Rspec \
Rnormal,incorrect

spec : ifaceimpl =
ifacespec & timemin < time <
timemax

TABLE II. DIAGNOSTICS SYSTEM REACTION PAIR TYPES

Type name Reaction pair Definition of type

NORMAL (rspec, rimpl) dataspec = dataimpl

INCORRECT (rspec, rimpl) dataspec 6= dataimpl

MISSING (rspec, NULL) @rimpl ∈ Rimpl\Rnormal,incorrect
impl

UNEXPECTED (NULL, rimpl) @rspec ∈ Rspec \Rnormal,incorrect
spec

M∗ = {(rspec, rimpl, type
∗)i} is a similar set of reactions

pairs but with different label system. It should be noticed that
there might be different M∗ according to the algorithm of its
creation (accounting for original order, strategy of reaction pair
selection for recombination, etc.).

To make the translation, the diagnostics subsystem uses
a set of reaction trace transformation rules. Each of the rules
transforms the reaction pairs from the trace but does not change
their data. To find the best rule for application, the subsystem
uses a distant function, showing the closest reactions among
the pairs. The distant function can be implemented in three
possible ways.

Metric 1: Reaction closeness correlates with the number
of equal data fields of two given reactions.

Metric 2: Reaction closeness correlates with the number of
equal bits in data fields of two given reactions (the Hamming
distance).

Metric 3: Reaction closeness correlates with the number
of equal bits in data fields of two given reactions, order of
equal and unequal areas, and their mutual disposition.

The measure of closeness between two given reactions is
denoted as c(rspec, rimpl).

Each rule processes one or several reaction pairs. In case
of missing reaction or unexpected reaction, one of the pair
elements is undefined and denoted as null. Each reaction pair
is assigned with a signal interface. The left part of the rule
shows initial state; the right part (after the arrow) shows result
of the rule application. If the rule is applied to several reaction
pairs, they are separated with commas.

In general, the algorithm of rule application consists of two
stages. At the first stage, reactions with equal data are joined
and transformed by the rules. In case of such a transformation,
the application order of rules is of importance. The second
stage includes processing of the rest reactions and new ones

made at the first stage. Here rule priority is less important than
values of the selected distant function.

Now, let us review all the six rules that we found including
the first two rules being basic. In description of the rules c
means the selected distant function but at the first stage of the
algorithm it is always full equivalence of data. At the second
stage of the algorithm a rule may be applied only if c value
for this rule is the best among c values for the other rules for
given reactions.

Rule 1: If there is a pair of collapsed reactions, it should
be removed from the list of reaction pairs. (null, null) ⇒ ∅.

Rule 2: If there is a normal reaction pair
(aspec, aimpl) : dataaspec = dataaimpl

, it should be
collapsed. (aspec, aimpl) ⇒ (null, null).

Rule 3: If there are two incorrect reaction pairs with
mutual correlation of data, the reaction pairs should be
regrouped. {(aspec, bimpl), (bspec, aimpl)} : c(aspec, aimpl) <
c(aspec, bimpl) & c(aspec, aimpl) < c(bspec, aimpl) or
c(bspec, bimpl) < c(aspec, bimpl) & c(bspec, bimpl) <
c(bspec, aimpl) (this closeness is the best amoung
the other rules), {(aspec, bimpl), (bspec, aimpl)} ⇒
{(aspec, aimpl), (bspec, bimpl)}

Rule 4: If there is a missing reaction pair and an un-
expected reaction pair with mutual correlation of data,
these reaction pairs should be united into one reaction
pair. (aspec, null), (null, aimpl) and c(aspec, aimpl) is the
best among the other rules: {(aspec, null), (null, aimpl)} ⇒
{(aspec, aimpl)}.

Rule 5: If there is a missing reaction pair and an incorrect
reaction pair with mutual correlation of data, these reaction
pairs should be regrouped. (aspec, null), (bspec, aimpl) and
c(aspec, aimpl) < c(bspec, aimpl) (this closeness is the best
amoung the other rules), {(aspec, null), (bspec, aimpl)} ⇒
{(aspec, aimpl), (bspec, null)}.

Rule 6: If there is an unexpected reaction pair and an
incorrect reaction pair with mutual correlation of data, these re-
action pairs should be regrouped. (null, aimpl), (aspec, bimpl)
and c(aspec, aimpl) < c(aspec, bimpl) (this closeness is the
best amoung the other rules), {(null, aimpl), (aspec, bimpl)} ⇒
{(aspec, aimpl), (null, bimpl)}.

The first stage of the algorithm is shown in Figures 2 and
4. The first stage having passed, the sets Rspec and Rimpl does
not contain any not yet collapsed reactions with identical data.
The time of the second stage comes (see Figures 3 and 5). Both
stages of the algorithm having passed, the list of reaction pairs
may contain some reaction pairs with both specification and
implementation parts but not collapsed due to their unequal
data. To show diagnostics info for them too, they are collapsed
using modified second rule, not requiring equality of data in
the reaction pairs.

After the application of each rule, the history of trans-
formation is traced and then it is possible to reconstruct the
predecessors of the given reaction pairs and all the rules
they were processed by. Such a reconstruction of the rule
application trace we understand as the diagnostics information.

In the result, verification engineers are provided with a list

1: function MATCH1((r1spec , r1impl
), (r2spec , r2impl

), rnumb)
2: RP1 = (r1spec , r1impl

), RP2 = (r2spec , r2impl
)

3: c = total equivalence
4: for all rule ∈ |Rules| do
5: if rule.isApplicable(RP1, RP2, c) then
6: rnumb ⇐ rule.number
7: return true
8: end if
9: end for

10: return false
11: end function

Fig. 2. Action 1 — match1

1: function MATCH2((r1spec , r1impl
), (r2spec , r2impl

), rnumb)
2: RP1 = (r1spec , r1impl

), RP2 = (r2spec , r2impl
)

3: c = selected metric function
4: metric ⇐ 0
5: for all rule ∈ |Rules| do
6: metric∗ ⇐ rule.getMetric(RP1, RP2, c)
7: if (metric∗ > metric then
8: metric ⇐ metric∗

9: rnumb ⇐ rule.number
10: end if
11: end for
12: return metric
13: end function

Fig. 3. Action 2 — match2

of problems occurred during verification and with a set of hints
making bug localization easier.

IV. IMPLEMENTATION OF THE METHOD

The proposed approach to diagnostics of incorrect output
reactions has been implemented as a plugin in C++ and Java
languages and attached to C++TESK Testing ToolKit [4].

If the verification process fails, the information provided by
the diagnostics subsystem is shown. It looks like tables with
all found errors (see Figure 6) and rule application history:
new reaction pair sets and the way of their obtaining.

Now let us proceed to the following part of diagnostics
subsystem work — the visualization of bugs on wave diagrams.

1: function APPLY STAGE1({(rspec, rimpl)i})
2: for all r ∈ |{(rspec, rimpl)i}|&!r.collapsed do
3: for all p ∈ |{(rspec, rimpl)i|}&!p.collapsed do
4: if match(r, p, rule number) then
5: (rspeci+1 , rimpli+1), (rspeci+2 , rimpli+2) ⇐
6: Rules[rule number].apply(r, p)
7: r.collapsed ⇐ true
8: p.collapsed ⇐ true
9: return

10: end if
11: end for
12: end for
13: end function

Fig. 4. Action 3 — apply stage1

1: function APPLY STAGE2({(rspec, rimpl)i})
2: for all r ∈ |{(rspec, rimpl)i}|&!r.collapsed do
3: metric∗ ⇐ 0
4: for all p ∈ |{(rspec, rimpl)i|}&!p.collapsed do
5: metric = fuzzy match(r, p, rule number)
6: if metric > metric∗ then
7: metric∗ ⇐ metric
8: rule number∗ ⇐ rule number
9: s1 ⇐ r

10: s2 ⇐ p
11: end if
12: end for
13: if metric∗ > 0 then
14: (rspeci+1 , rimpli+1), (rspeci+2 , rimpli+2) ⇐
15: Rules[rule number∗].apply(s1, s2)
16: s1.collapsed ⇐ true
17: s2.collapsed ⇐ true
18: return
19: end if
20: end for
21: end function

Fig. 5. Action 4 — apply stage2

Each specification reaction produced during test process keeps
its parents — stimuli and other events making this reaction.
Therefore, it is possible to reconstruct the whole chain from
the very first stimulus up to the reaction with one of the error
types. Each reaction contain data that correspond to signals of
HDL model. Typically, the HDL signals are grouped into input
and output interfaces and correlate with names of data fields in
reactions. There should be a map between signals of interfaces
and data fields. Such a map is usually created manually before
development of test system. Basing on the resulted reaction
pairs, a wave diagram produced by simulator (VCD file [12]),
and the signal mapping the diagnostics subsystem creates a
set of source files for GTKWave [13] to make errors be
visual. The diagnostics subsystem creates separated directory
with VCD and SAV files for each incorrect reaction pair.
According to these files, GTKWave is asked to show the
error situation with its history (predecessors), highlighting
only those signals which are necessary for understanding the
situation. These signals include ones from output interfaces
used in reactions and some common signals like clock, reset
and so on. It is possible to show the reference values of signals
by injecting into VCD files special signals and labeling them
as the reference ones for so and so signals. This possibility
has not been implemented yet but there is no technological
difficulty as the diagnostics subsystem already parses VCD
files and creates new files with subset of signals.

Example of visual representation of the error from Figure 6
is shown in Figure 7. The situation described by these figures
is as follows. The reaction expected at the 38th interface was
received at the 41st interface. First, it resulted in missing
and unexpected reactions, and then the diagnostics subsystem
joined these reactions to create a normal one. The situation
of the reaction appearing at the 41st interface and the reaction
absence at the 38th interface is exactly shown in the Figure 7.

Fig. 6. Result of the diagnostics subsystem work

V. CONCLUSION

The proposed means for trace analysis and bug visualiza-
tion allows in some sense to make the verification easier. It
allows to avoid extra information from the reaction trace and
to show only meaningful information for verification engineers
related to the occurred and examined bug in HDL designs.

Our future research is connected with localization of prob-
lems and bugs found in HDL designs using static analysis of
source code.

REFERENCES

[1] J. Bergeron, Writing Testbenches: Functional Verification of HDL
Models. Kluwer Academic Pub, 2003.

[2] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[3] M. Chupilko and A. Kamkin, “Specification-driven testbench develop-
ment for synchronous parallel-pipeline designs,” in Proceedings of the
27th NORCHIP, nov. 2009, pp. 1–4.

[4] C++tesk homepage. [Online]. Available:
http://forge.ispras.ru/projects/cpptesk-toolkit/

[5] Unified verification methodology. [Online]. Available:
http://www.uvmworld.org

[6] M. Chupilko and A. Protsenko, “Recognition and explanation of incor-
rect behaviour in simulation-based hardware verification,” in Proceed-
ings of the 7th SYRCoSE, 2013, pp. 1–4.

[7] S. Jiang and R. Kumar, “Failure diagnosis of discrete event systems with
linear-time temporal logic fault specifications,” in IEEE Transactions on
Automatic Control, 2001, pp. 128–133.

[8] S. Tripakis, “Fault diagnosis for timed automata,” in Proceedings of the
7th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2, ser. FTRTFT
’02. London, UK, UK: Springer-Verlag, 2002, pp. 205–224. [Online].
Available: http://dl.acm.org/citation.cfm?id=646847.707114

[9] P. Bouyer and F. Chevalier, “Fault diagnosis using timed automata,”
in Foundations of Software Science and Computational Structures: 8th
International Conference, FOSSACS 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2005. Springer-Verlag, 2005, pp. 219–233.

[10] M. Alpuente, D. Ballis, J. Espert, and D. Romero, “Backward trace
slicing for rewriting logic theories,” in Automated Deduction CADE-23,
ser. Lecture Notes in Computer Science, vol. 6803. Springer Berlin
Heidelberg, 2011, pp. 34–48.

[11] A. S. Kamkin and M. M. Chupilko, “Survey of modern technologies
of simulation-based verification of hardware,” Program. Comput.
Softw., vol. 37, no. 3, pp. 147–152, May 2011. [Online]. Available:
http://dx.doi.org/10.1134/S0361768811030017

[12] Value change dump description. [Online]. Available:
http://en.wikipedia.org/wiki/Value change dump

[13] Gtkwave. [Online]. Available: http://gtkwave.sourceforge.net

Fig. 7. Visual example of diagnostics

