
From Abstract Parsing to Abstract Translation

Semen Grigorev

St. Petersburg State University

198504, Universitetsky prospekt 28

Peterhof, St. Petersburg, Russia

Email: rsdpisuy@gmail.com

Iakov Kirilenko

St. Petersburg State University

198504, Universitetsky prospekt 28

Peterhof, St. Petersburg, Russia

Email: jake@math.spbu.ru

Abstract—String-embedded language transformation is one of
the problems which can be faced during database and information
system migration. The conventional solution which is provided by
a number of tools is based on run-time translation. We present a
static abstract translation approach which originates from the ab-
stract parsing technique [9] initially developed for syntax analysis
of string-embedded languages. We present abstract translation
algorithm and some optimization techniques, and discuss the
results of its evaluation on a real-world industrial application.

I. INTRODUCTION

Complex information systems are often implemented using
more than one programming language. Sometimes this variety
takes form of one host and one or few string-embedded lan-
guages. Textual representation of clauses in a string-embedded
language is built at run time by a host program and then
analyzed, compiled or interpreted by a dedicated runtime
component (database, web browser etc.) Most general-purpose
programming languages may play role of the host; one of
the most evident examples of string-embedded language is
dynamic SQL which was specified in ISO SQL standard in
1992 [7] and since then is supported by the majority of DBMS.

String-embedded languages may help to compensate the
lack of expressivity of general-purpose language in a domain-
specific settings or to integrate heterogeneous components of
large system; however this approach comes with some price.
In particular even the syntax analysis of string-embedded
part of a system is undecidable in general case since its
source code is represented implicitly using string-manipulation
primitives, procedures and libraries, and generated “on the
fly”. In a naı̈ve implementation syntax analysis of embedded
clauses is completely outsourced to the runtime environment
which postpones many errors from being discovered prior to
execution and thus compromises the ideas of code safety and
static control.

Abstract parsing is the approach which was developed to
overcome the aforementioned deficiency. In abstract parsing
the source code of a host application is statically analyzed to
provide some constructive representation of the set of string-
embedded language clauses which can possible be generated
at run time [9], [4]. This representation is then analyzed by a
certain parsing algorithm which is usually derived from some
existing one for plain strings [5]. Abstract parsing technique
is utilized in a number of tools [8], [10], [2], [3] for program
analysis and understanding.

This work is licensed under the Creative Commons Attribution License.

While abstract parsing can help in application analysis it
cannot handle the case of application transformation. As a
practical use case for string-embedded language transforma-
tion we can mention reengineering. During reengineering it
is sometimes necessary to migrate from one database man-
agement system to another; this migration may require a
transformation of string-embedded clauses.

One of the options is dynamic translation at run time [1].
However this solution not always desirable. First, it may
degrade the performance of the system due to introduction
of extra processing stage. Next, with dynamic translation the
ultimate goals of the reengineering are not achieved since some
part of the original system escaped transformation.

Another approach includes translation of stored SQL which
is supported by a number of existing production tools for
database application development [11], [13], [12]. However,
these tools do not support dynamic SQL translation and thus
provide only partial solution.

The contribution of this paper is an approach for abstract
translation. Similar to abstract parsing first we perform static
analysis to build an approximation for the set of all generated
clauses. Then our algorithm performs analysis which, unlike
abstract parsing, produces parsing forest — a family of syntax
trees, each of which represents the result of translation of cer-
tain input sequence. New correct assignments for all relevant
string values in the host program are calculated then. Our
approach works only when the source and the target languages
are syntactically close enough (e.g. when they are two dialects
of the same language). We discuss some heuristic which helps
to reduce the complexity of the algorithm in many practical
cases and present the results of its application for the migration
of a real-world industrial project from MS-SQL Server 2005
to Oracle 11gR2 platform.

II. GRAPH-BASED INPUT REPRESENTATION

As we mentioned above, the first stage of abstract parsing
is static approximation of relevant string values. Two main rep-
resentations for approximated values were used so far. In [4],
[2], [3] the sets of potential string values are described using
regular expressions; in [9] approximations are represented in
more implicit form as a solutions of a system of (recursive)
dataflow equations.

We did not find a way to scale either of these repre-
sentations to abstract translation case. Instead, we represent
the input stream for abstract translation via flow graph with
one source and one sink nodes and string-labeled edges. The

{tables.get(i)}

ε

ε

,

ε
select ∗ from

;10
3

2

4

Fig. 1. Correct finite automaton (graph representation)

select ∗ from ;,

ε

{tables.get(i)}
10 32 4

Fig. 2. Result of cycles approximation

labels of edges in this graph represent the results of constant
propagation so that every path in input graph corresponds to
one potential value of dynamic query. Moreover, we perform
lexical analysis on graphs which converts the initial string-
labeled graphs into graphs, labeled by tokens.

Since any cycle in the input graph generates infinite se-
quence of tokens which upon translation is turned into infinite
forest we simplify the graph even more. We replace each cycle
with the single repetition. For example in the order to get
regular approximation of query value set from code presented
below we should build the next regular expression:

”select * from ” · ({tables.get(i)}|ε)∗ · ”;”

and the corresponding finite automaton (see Fig. 1). Note that
we do not care about approximation for tables.get(i) expression
because it depends on a constant propagation algorithm. But
we will get the graph where cycle replaced with only one
repetition of its body. The result of such approximation is
presented in Fig. 2.

query = "select * from ";

for(int i = 0; i < tables.size(); i++)

{

if(i != 0) query += ", ";

query += tables.get(i);

}

query += ";";

As you can see, in our example we do not produce
strings like select * from tbl1, tbl2; or
select * from ;. So, we can not check it. We
process only two strings and all of them are in
original infinite set: select * from tbl1; and
select * from, tbl1;. As a result, we do not
process all possible values but we process all variables used
for query construction and it is enough for such tasks as code
highlighting or transformations because all parts of expression
are processed.

Thus the graph becomes cycle-free and we can process all
vertices in the topological order. While this drastic simplifica-
tion is completely heuristic our experience of dynamic SQL
translation for real information systems showed that DAG is
still a good approximation for practical use.

As an example consider the following code snippet:

(1) IF @X = @Y

� �
�������	

�
���
���

�
�������

�
���
�������

���
������

Fig. 3. Tokenized input graph

(2) SET @TABLE = ’#tbl1’

(3) ELSE

(4) SET @TABLE = ’tbl2’

(5) SET @S = ’SELECT x FROM ’ + @TABLE

(6) EXECUTE (@S)

Variable @S contains dynamically generated query and can
have two potential values at the point of query execution.
During approximation we can build a graph which represents
the set of potential values of the variable @S at the line 6. Each
edge of this graph is labeled by a token which represents a part
of the query (see Fig. 3).

Note that real-world systems can communicate with other
systems source of which may be inaccessible to analyze. These
systems can contain parts of queries to process and we should
use some approximations. For example, clients applications of
information system can sent conditions for filters (conditions
for where clause of select statement) as part of requests.

III. ABSTRACT TRANSLATION ALGORITHM

Our approach for abstract traslation borrows the idea of
reusing the control structures used in classical parsing from [9].
Control tables of LALR analyzer may be generated by some
conventional tool (e.g. yacc1). The interpreting automaton,
however, has then to be modified to be able to compute all
possible parser states for each vertex of the input graph.

For example, let we have the following grammar:

s -> Ae

e -> BD

e -> CD

An input graph is shown on the Fig. 4. The set of parser
states for each vertex of the graph can be calculated during
syntax analysis. The result of state calculation is shown on the
Fig. 5.

A B

C

D

10 32

Fig. 4. Input graph for abstract parsing

A B

C

D

s → A.es → .Ae s → Ae.
e→B.D

e→C.D

Fig. 5. Parser states

In the case of translation (not parsing) the parsing state
consists of state of the automaton and some semantic value

1http://dinosaur.compilertools.net

KW SELECT IDENT(myTbl)IDENT(fld1)

IDENT(fld2)

KW FROM
V1 V3V2 V5V4

Fig. 6. Graph with states possible to merge

L1

...

Ln1

M1

...

Mn2

V1
... VkV2 V3

Fig. 7. Graph which requires an exponential resources for translation

which represents the result of translation built so far. In
particular, the translation algorithm works not only with token
types, but also token values.

One of the possible solution of translation is abstract pars-
ing algorithm with mechanism of stack splitting for semantic
calculation support. It disallows to merge states and creates a
new copy of the whole stack for the each branch of the input
graph.

However, this approach faces the exponential memory
usage problem. For example parser states for vertex V3 on
the Fig. 6 should be equal for two input edges but if we want
to calculate semantics, then we get two different states because
identifiers has different values.

Queries which contain a huge number of branches is a big
problem. The number of states is an exponential function of
the number of branches because for each branch we should
produce n ∗ k states where n is a number of states in the root
of the fork vertex and k is the number of branches. One of the
most frequent example of queries with big number of branches
is select query. Each of fields to select can be calculated
with if-statement or case-statement. Example of such graph is
presented on the Fig. 7.

If we use only sequentially concatenated if-statements then
the number of parsing trees is 2n where n is a number of
if-statements (or number of branches). In some real-world
systems we have faced the queries which contains more than
100 branches. The full forest calculation by naive adaptation
of abstract parsing is impossible for such queries.

We propose the following solution for the forest size
minimization problem. We have previously mentioned that the
result of translation is a new values for all variables which
were used for queries construction. It is sufficient to construct
not the full forest but only the minimal set of trees such that
after translation every variable gets new value.This way, we
can process not all paths in the input graph but only minimal
set which contains all edges. Note that we cannot calculate
this set prior to the parsing because we cannot be sure that
every path produces syntactically correct value. If some path
contains error than the tree for that path is not constructed
and we may lose information about variables. For example
consider the graph presented on the Fig. 8.

The one possible set of paths which we can calculate before
syntax analysis is {(L1;M1); (L2;M2)}. But every path here
contains syntax errors and the result forest would be empty

L1

L2

M1

M2

V1 V3V2

Fig. 8. Graph for minimal paths set selection.

instead of containing two trees. We should choose another set
(for example {(L1;M2); (L2;M1)}) to get the correct result.

So, path calculation is an iterative process. We perform
state filtering during syntax analysis for each vertex with
multiple input edges. Let describe the steps of the process:

• Initial state. Set of states for the vertex is empty.

• Step. For each step if the current vertex has multiple
input edges then we should add new state to a state set
for the current vertex if one of the following conditions
is true:

◦ new state corresponds to a path, which con-
tains some edges which are not contained in
any of the paths, which correspond to any state
of the currently processing set;

◦ new state corresponds to a parser state which
is not yet presented in the currently processing
set.

A pseudo code for the described algorithm is presented
below.

/*
V list of input graph vertices in the topological order.

v_s start vertex of input graph.

*/

let filterStates v =

let groupedByParserState =

v.States.GroupBy (fun state -> state.Item)

v.States = Set.empty

for group in groupedByParserState do

/* Each state corresponds with path from v_s to v.

Set of paths specify set of edges of graph E_s.

We should construct minimal set of paths which

contains all edges of E_s. The next greedy algorithm

can be applied to solve this problem.

1) Order paths by length ascent.

2) While current path contains edges which are not

in the result set add this path in the result set.*/

let ordered =

group.OrderBy (fun s -> -1 * s.Path.Lenght)

for s in ordered do

if (s.Path contains edges which are

not contained in any path corresponded

with states from v.States || not s in v.States)

then v.States.Add s

for v in V do

v.States <- /*step of syntax analysis*/

/*If input degree of the vertex v more

then 1 then try to filter states.*/

if v.InEdges.Count > 1 then filterStates v

This way we can get state set which contains all parser
states from input set but is not greater than it. Correspond-
ing paths contain all possible edges in processed subgraph.
Described algorithm of filtration allows to increase the perfor-
mance of parsing by decreasing the number of parsing trees.

IV. EVALUATION

We implemented our algorithm of abstract translation in a
tool built on top of FsYacc2. We completely reused LALR gen-
erator, but implemented custom interpreter with stack copying
ability.

Our tool was evaluated on a migration of a real-world
project from MS-SQL Server 2005 to Oracle 11gR2. The
original system contained 850 stored procedures and more
than 3000 dynamic queries. The total size of the system was
2,7 million lines of code. More than half of all queries were
complex; the number of query-generating operators varied
from 7 to 212. The average number of query-generating
operators was 40. We used PC workstation with Intel Core
i7 2.6 GHz and 16 GB of RAM.

The results of comparison of two abstract translation im-
plementations are presented in the Table I.

The first implementation was directly based on abstract
parsing algorithm. That version was not adapted to process
complex queries and turned system into active swapping. The
analysis did not finish in acceptable time. Timeout (64 seconds)
was added to limit one query processing time. Experiments
showed that increasing timeout did not increase the number
of processed queries. The number of queries, whose analysis
was terminated by a timeout is shown in the table under the
category ”Dynamic SQL-queries with exponential growth of
parsing forest”.

The second implementation utilized state merging. State
merging reduced the number of queries with exponential
growth of parsing forest from 253 to 42, i.e. approximately
in six times.

In the table below we present statistics for dynamic SQL
query processing by two algorithms: original algorithm with
timeout and algorithm with states merging.

Partially processed queries are those with non-empty pars-
ing forest but with parsing or lexing errors. This category is
the most difficult to deal with because error may be a false
positive. Such situation may occur if query which triggers error
can not actually be generated at run time.

V. CONCLUSION AND FUTURE WORK

Semantics calculation for embedded languages is also the
source of problems. The main problem is that we cannot
guarantee semantics correctness during syntax analysis: we
can get correct tree with incorrect semantic. Example of this
situation is shown on Fig. 9. In presented graph we can
choose 2 paths which contain all variables used for query
value calculation. For example, let we choose the paths which
produce the next queries: ”Select fld1 from myTbl1”
and ”Select fld2 from myTbl2”. Both chosen paths
are syntactical correct but in the real system the table myTbl1
may not contain the field fld1, and the table myTbl2 may
not contain the field fld2.

Also we have problems which correspond with syntax of
analyzes language and its specification in documentation and
grammar. For example, such clauses of Select statement

2http://fsharppowerpack.codeplex.com/wikipage?title=FsYacc

TABLE I. COMPARISON OF THE ORIGINAL ALGORITHM WITH

TIMEOUT AND THE ALGORITHM WITH STATE MERGING

Category description Original

algorithm

with

timeout

The algo-

rithm with

state merg-

ing

The total number of dynamic SQL queries 3122 3122

The number of successfully processed dynamic

SQL queries

2181 2253

The number of partially processed dynamic

SQL queries

408 522

Lexer errors 283 289

Parser errors 354 468

The number of not processed dynamic SQL

queries

533 347

Lexer errors 140 134

Parser errors 280 305

Dynamic SQL queries with exponential growth of

parsing forest.

253 42

Percentage of successfully processed dynamic

SQL queries

69.86% 72.17%

Percentage of partially processed dynamic SQL

queries

13.07% 16.72%

Percentage of dynamic SQL queries with non-

empty forest

82.93% 88.89%

KW SELECT IDENT (myTbl1)

IDENT (myTbl2)

IDENT (fld1)

IDENT (fld2)

KW FROM
V1 V3V2 V5V4

Fig. 9. All path in this graph are syntactical correct but semantics of some
path may be incorrect.

as group by or order by. Any of these clauses can be
omitted, but when the optional clauses are used, they must ap-
pear in the appropriate order and only one time per statement.
But some simple approximation which allows to omit explicit
enumeration of all variants of permutation is often used in the
documentation and the grammar. Such approximation allows
to accept input strings with arbitrary repetition of clauses
(multiple repetition of one clause also possible). In the stored
code such situation is not possible because this code should
be correct but during graphs processing we can get Select
query with multiple group by clause. This situation is not
correct. The preferred solution of such problems is to use a
special constructions in translation specification language. Also
we can manually check correctness of parsing forest but this
solution looks more difficult and less preferred.

REFERENCES

[1] Shapot M., Popov E. Database reengineeing // Open Systems.DBMS.
Number 4. 2004.

[2] Annamaa A., Breslav A., Kabanov J. e.a. An interactive tool for ana-
lyzing embedded SQL queries. Programming Languages and Systems.
LNCS, vol. 6461. Springer: Berlin; Heidelberg. 2010. P. 131-138.

[3] Annamaa A., Breslav A., Vene V. Using abstract lexical analysis and
parsing to detect errors in string-embedded DSL statements // Proceed-
ings of the 22nd Nordic Workshop on Programming Theory. Marina
Walden and Luigia Petre, editors. 2010. P. 20-22.

[4] Aske Simon Christensen, Mller A., Michael I. Schwartzbach. Precise
analysis of string expressions // Proc. 10th International Static Analysis
Symposium (SAS), Vol. 2694 of LNCS. Springer-Verlag: Berlin; Heidel-
berg, June, 2003. P. 1-18.

[5] Grune D., Ceriel J. H. Jacobs. Parsing techniques: a practical guide. Ellis
Horwood, Upper Saddle River, NJ, USA, 1990. P. 322.

[6] Costantini G., Ferrara P., Cortesi F. Static analysis of string values //
Proceedings of the 13th international conference on Formal methods and
software engineering, ICFEM11. Springer-Verlag: Berlin; Heidelberg,
2011. P. 505-521.

[7] ISO. ISO/IEC 9075:1992: Title: Information technology Database lan-
guages SQL. 1992. P. 668.

[8] Java String Analyzer. URL: http://www.brics.dk/JSA/

[9] Kyung-Goo Doh, Hyunha Kim, David A. Schmidt. Abstract parsing:
Static analysis of dynamically generated string output using LR-parsing
technology // Proceedings of the 16th International Symposium on Static

Analysis, SAS09. Springer-Verlag: Berlin; Heidelberg, 2009. P. 256-272.

[10] PHP String Analyzer. URL: http://www.score.is.tsukuba.ac.jp/∼minamide/phpsa/

[11] PL/SQL Developer. URL: http://www.allroundautomations.com/plsqldev.html

[12] SQL Ways. URL: http://www.ispirer.com/products

[13] SwissSQL. URL: http://www.swissql.com/

[14] Xiang Fu, Xin Lu, Peltsverger B. e.a. A static analysis framework for
detecting SQL injection vulnerabilities // Proceedings of the 31st Annual
International Computer Software and Applications Conference. Vol. 01,
COMPSAC07, Washington, DC, USA, IEEE Computer Society, 2007.
P. 87-96.

http://www.brics.dk/JSA/
http://www.score.is.tsukuba.ac.jp/~minamide/phpsa/
http://www.allroundautomations.com/plsqldev.html
http://www.ispirer.com/products
http://www.swissql.com/

	Introduction
	Graph-based Input Representation
	Abstract Translation Algorithm
	Evaluation
	Conclusion and Future Work
	References

