

SYRCoSE 2015

Editors:

Alexander Kamkin, Alexander Petrenko and

Andrey Terekhov

Preliminary Proceedings of the 9th Spring/Summer Young Researchers’

Colloquium on Software Engineering

Samara, May 28-30, 2015

2015

Preliminary Proceedings of the 9th Spring/Summer Young Researchers’

Colloquium on Software Engineering (SYRCoSE 2015), May 28-30, 2015 –

Samara, Russia.

The issue contains selected papers that have been accepted for presentation at

the 9th Spring/Summer Young Researchers’ Colloquium on Software Engineering

(SYRCoSE 2015) held in Samara, Russia on May 28-30, 2015. The paper selection

was based on originality and contributions to the field. Each paper was peer-reviewed

by at least three referees.

The colloquium’s topics include programming technologies, formal methods,

software and hardware verification, databases and information systems, software

safety and security, computer networks and others.

The authors of the selected papers will be invited to participate in a special issue

of The Proceedings of ISP RAS (http://www.ispras.ru/proceedings/), a peer-reviewed

journal included into the list of periodicals recommended for publishing doctoral

research results by the Higher Attestation Commission of the Ministry of Science and

Education of the Russian Federation.

Contents

Foreword ∙∙5

Committees ∙∙6

Referees ∙∙∙7

FRIS Language Service for Extended Fortran Support in Microsoft Visual Studio

 I. Ratkevich ∙∙8

Pitfalls of C# Generics and Their Solution Using Concepts

 J. Belyakova, S. Mikhalkovich ∙∙∙17

Visual Parallel Programming as PaaS cloud service with Graph-Symbolic Programming Technology

 D. Egorova, V. Zhidchenko ∙∙∙24

Procedures Classification for Optimizing Strategy Assignment

 O. Chetverina ∙∙28

Towards Finding Several Bugs at Once by CEGAR

 V. Mordan, V. Mutilin ∙∙∙34

Acceleration of Profile Creation for Three-Dimensional Vector Video with GPGPU

 A. Tsyganov ∙∙∙41

Two-Step Harmonious Melody Generator

 S. Latkina ∙∙∙45

A Crowdsourcing Engine for Mechanized Labor

 D. Ustalov ∙∙∙52

On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems

 V. Burenkov ∙∙∙56

A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore Multiprocessors

 A. Kamkin, M. Petrochenkov ∙∙∙62

An Approach to Test Program Generation Based on Formal Specifications of Caching and Address

Translation Mechanisms

 A. Kamkin, A. Protsenko, A. Tatarnikov ∙∙∙66

An Approach to Direct Memory Access Module Verification

 A. Meshkov, M. Ryzhov, P. Frolov ∙∙71

An Extended Finite State Machine-Based Approach to Code Coverage-Directed Test Generation for

Hardware Designs

 I. Melnichenko, A. Kamkin, S. Smolov ∙∙75

Remote Service of System Calls in Microkernel Hypervisor

 K. Mallachiev, N. Pakulin ∙∙∙82

Constructing Private Service with CRYP2CHAT Application

 A. Kiryantsev, I. Stefanova ∙∙87

3 of 174

Searching Method of Personal Details on the Basis of Fuzzy Comparison

 N. Limanova, M. Sedov ∙∙∙93

Seamless Development Applicability: an Experiment

 A. Naumchev ∙∙∙99

Intelligent Design of Class Structure Model based on Ontological Data Analysis

 A. Kovartsev, V. Smirnov, S. Smirnov ∙∙∙105

Method of Symbolic Test Scenarios Automated Concretization

 N. Voinov, P. Drobintsev, A. Veselov, V. Kotlyarov, A. Kolchin ∙∙109

Unified Model for Testing Object-Oriented Application Development Tools

 P. Oleynik ∙∙112

The Application of Coloured Petri Nets to Verification of Distributed Systems Specified by Message

Sequence Charts

 S. Chernenok, V. Nepomniaschy ∙∙∙119

Carassius: A Simple Process Model Editor

 N. Nikitina, A. Mitsyuk ∙∙129

Iskra: A Tool for Process Model Repair

 I. Shugurov, A. Mitsyuk ∙∙∙137

Comparing Process Models in the BPMN 2.0 XML Format

 S. Ivanov, A. Kalenkova ∙∙144

Developing of a Complex of Software Tools for Organization and Support of Distance Learning Game

System «3Ducation»

 L. Zelenko, V. Ivanov, A. Grigoriev, A. Semenov, M. Savachaev, E. Poberezkin, D. Konopelkin ∙∙149

Combined Classifier for Website Messages Filtration

 V. Tarasov, E. Mezenceva, D. Karbaev ∙∙154

Statistical Data Handling Program of Wireshark Analyzer and Traffic Incoming Research

 V. Tarasov, G. Gorelov, S. Malakhov ∙∙∙159

Automatic Virtual Link Configuration for Simple AFDX Networks

 A. Yalaletdinov, A. Khoroshilov ∙∙165

Effective Use of Cloud Computing Resources in the Distributed Information Systems for Providing Quality

Multimedia Services

 D. Parfenov, I. Bolodurina ∙∙168

4 of 174

Foreword

Dear participants, we are glad to meet you at the 9th Spring/Summer Young Researchers’

Colloquium on Software Engineering (SYRCoSE). The event is held in Samara, a major scientific

and educational center of the Volga area. The colloquium is hosted by Povolzhskiy (Volga

Region) State University of Telecommunications and Informatics (PSUTI), one of the most known

technical schools in Russian Federation. SYRCoSE 2015 is organized by Institute for System

Programming of the Russian Academy of Sciences (ISPRAS) and Saint Petersburg State

University (SPbSU) jointly with PSUTI.

In this year, Program Committee (consisting of more than 50 members from more than 25

organizations) has selected 29 papers. Each submitted paper has been reviewed independently by

three referees. Participants of SYRCoSE 2015 represent well-known universities, research

institutes and companies such as A.P. Ershov Institute of Informatics Systems of SB of RAS,

Aston, Bauman Moscow State Technical University, Everest Research, INEUM, Information

System Technology, Innopolis University, Institute for the Control of Complex Systems of RAS,

ISPRAS, Ivanovo State University of Chemistry and Technology, Kazan Federal University,

MCST, N.N. Krasovskii Institute of Mathematics and Mechanics of UB of RAS, National

Research University – Higher School of Economics, Nazarbayev University, Novaya Platforma,

Platov South-Russian State Polytechnic University, PSUTI, Saint-Petersburg State Polytechnic

University, Samara State Aerospace University, Samara State Technical University, SKB Kontur,

Southern Federal University, SPbSU, The All-Russian Research Institute of Experimental Physics,

Ulyanovsk State Technical University, Ural Federal University, V.M. Glushkov Institute of

Cybernetics of NAS of Ukraine, VERIMAG Laboratory, Yaroslavl Demidov State University (4

countries, 16 cities and 30 organizations).

We would like to thank all of the participants of SYRCoSE 2015 and their advisors for interesting

papers. We are also very grateful to the PC members and the external referees for their hard work

on reviewing the papers and selecting the program. Our thanks go to the invited speakers, Susanne

Graf (VERIMAG Laboratory), Nikolay Pakulin (ISPRAS) and Nikolay Shilov (Nazarbayev

University). We would also like to thank our sponsors and supporters: Russian Foundation for

Basic Research (grant 15-07-20201), Exactpro Systems and CyberLeninka. Finally, our special

thanks to local organizers, Veniamin Tarasov and Nadezhda Bahareva (PSUTI), for their

invaluable help in organizing the colloquium in Samara.

Sincerely yours,

Alexander Kamkin, Alexander Petrenko and Andrey Terekhov

May 2015

5 of 174

Committees

Program Committee Chairs

 Alexander K. Petrenko – Russia
Institute for System Programming of RAS

 Andrey N. Terekhov – Russia
Saint-Petersburg State University

Program Committee

Jean-Michel Adam – France
Pierre Mendès France University

Tiziana Margaria – Germany
University of Potsdam

Sergey M. Avdoshin – Russia
Higher School of Economics

Marek Miłosz – Poland
Institute of Computer Science, Lublin University of Technology

Eduard A. Babkin – Russia
Higher School of Economics

Igor A. Minakov – Russia
Institute for the Control of Complex Systems of RAS

Nadezhda F. Bahareva – Russia
Povolzhskiy State University of Telecommunications and Informatics

Alexey M. Namestnikov – Russia
Ulyanovsk State Technical University

Svetlana I. Chuprina – Russia
Perm State National Research University

Valery A. Nepomniaschy – Russia
Ershov Institute of Informatics Systems of SB of RAS

Pavel D. Drobintsev – Russia
Saint-Petersburg State Polytechnic University

Mykola S. Nikitchenko – Ukraine
Kyiv National Taras Shevchenko University

Liliya Yu. Emaletdinova – Russia
Kazan National Research Technical University

Yuri S. Okulovsky – Russia
Ural Federal University

Victor P. Gergel – Russia
Lobachevsky State University of Nizhny Novgorod

Sergey P. Orlov – Russia
Samara State Technical University

Efim M. Grinkrug – Russia
Higher School of Economics

Elena A. Pavlova – Russia
Microsoft

Maxim L. Gromov – Russia
Tomsk State University

Ivan I. Piletski – Belorussia
Belarusian State University of Informatics and Radioelectronics

Vladimir I. Hahanov – Ukraine
Kharkov National University of Radioelectronics

Vladimir Yu. Popov – Russia
Ural Federal University

Shihong Huang – USA
Florida Atlantic University

Yury I. Rogozov – Russia
Taganrog Institute of Technology, Southern Federal University

Iosif L. Itkin – Russia
Exactpro Systems

Rustam A. Sabitov – Russia
Kazan National Research Technical University

Alexander S. Kamkin – Russia
Institute for System Programming of RAS

Nikolay V. Shilov – Russia
Nazarbayev University

Vsevolod P. Kotlyarov – Russia
Saint-Petersburg State Polytechnic University

Ruslan L. Smelyansky – Russia
Moscow State University

Alexander N. Kovartsev – Russia
Samara State Aerospace University

Valeriy A. Sokolov – Russia
Yaroslavl Demidov State University

Vladimir P. Kozyrev – Russia
National Research Nuclear University “MEPhI”

Petr I. Sosnin – Russia
Ulyanovsk State Technical University

Daniel S. Kurushin – Russia
State National Research Polytechnic University of Perm

Veniamin N. Tarasov – Russia
Povolzhskiy State University of Telecommunications and Informatics

Peter G. Larsen – Denmark
Aarhus University

Sergey M. Ustinov – Russia
Saint-Petersburg State Polytechnic University

Roustam H. Latypov – Russia
Kazan Federal University

Vladimir V. Voevodin – Russia
Research Computing Center of Moscow State University

Alexander A. Letichevsky – Ukraine
Glushkov Institute of Cybernetics, NAS

Dmitry Yu. Volkanov – Russia
Moscow State University

Nataliya I. Limanova – Russia
Povolzhskiy State University of Telecommunications and Informatics

Mikhail V. Volkov – Russia
Ural Federal University

Alexander V. Lipanov – Ukraine
Kharkov National University of Radioelectronics

Nadezhda G. Yarushkina – Russia
Ulyanovsk State Technical University

Irina A. Lomazova – Russia
Higher School of Economics

Rostislav Yavorsky – Russia
Higher School of Economics

Lyudmila N. Lyadova – Russia
Higher School of Economics

Nina V. Yevtushenko – Russia
Tomsk State University

Victor М. Malyshko – Russia
Moscow State University

Vladimir A. Zakharov – Russia
Moscow State University

Vladimir A. Makarov – Russia
Yaroslav-the-Wise Novgorod State University

Sergey S. Zaydullin – Russia
Kazan National Research Technical University

Organizing Committee Chairs and Secretaries

 Alexander K. Petrenko – Russia
Institute for System Programming of RAS

 Veniamin N. Tarasov – Russia
Povolzhskiy State University of Telecommunications and Informatics

 Nadezhda F. Bahareva – Russia
Povolzhskiy State University of Telecommunications and Informatics

Alexander S. Kamkin – Russia
Institute for System Programming of RAS

6 of 174

Referees

Vitaly Antonenko Alexandr Naumchev

Eduard Babkin Valery Nepomniaschy

Nadezhda Bahareva Mykola Nikitchenko

Mikhail Chupilko Sergey Orlov

Pavel Drobintsev Elena Pavlova

Anton Ermakov Ivan Piletski

Victor Gergel Svetlana Prokopenko

Nikolay Glazyrin Delhibabu Radhakrishnan

Efim Grinkrug Yury Rogozov

Victor Grishchenko Marco Scavuzzo

Maxim Gromov Natalia Shabaldina

Shihong Huang Nikolay Shilov

Iosif Itkin Sergey Smolov

Alexander Kamkin Valeriy Sokolov

Vsevolod Kotlyarov Petr Sosnin

Artem Kotsynyak Alexey Stankevichus

Alexander Kovartsev Veniamin Tarasov

Vladimir Kozyrev Andrei Tatarnikov

Peter Gorm Larsen Alexander Tchitchigin

Roustam Latypov Andrei Tiugashev

Nataliya Limanova Pavel Vdovin

Nataliya Limanova Dmitry Volkanov

Irina Lomazova Mikhail Volkov

Lyudmila Lyadova Nadezhda Yarushkina

Victor Malyshko Rostislav Yavorskiy

Tiziana Margaria Nina Yevtushenko

Igor Minakov Vladimir Zakharov

Alexey Namestnikov

7 of 174

FRIS language service for extended Fortran support

in Microsoft Visual Studio

Irina Ratkevich

The All-Russian Research Institute of Experimental Physics (RFNC - VNIIEF)

Sarov, Nizhny Novgorod Region,

607188, Russian Federation

E-mail: ratkevichis@gmail.com

Abstract—This report deals with the construction of the

language service for extended support of the Fortran

programming language in the integrated development

environment (IDE) Microsoft Visual Studio. The model and

general approach for language service construction is offered.

The report focuses on the organization of this model, and the

proof of its operability, that is given on the example of the FRIS

language service developed by author. The material could be

equally applied for construction language services both for other

programming languages and for other development

environments.

Keywords—FRIS; Fortran Intelligent Solutions; Fortran;

Visual Studio Extensibility; Language Service; Visual Studio

I. INTRODUCTION

Fortran [1], [2] is one of the first high-level programming
languages. It was created in the 50s of XX century and it was
intended for development of programs for scientific
calculations. Fortran is still used by its intended purpose in the
development of simulation programs. Nowadays the most
widespread Fortran standard is Fortran 2003 [2] (however
there is the Fortran 2008 standard, and the Fortran 2015
standard is in development stage). It cardinally differs from
previous standards because it introduces the support of object-
oriented programming in a Fortran language. This feature
changes the language syntax, where many new statements are
added in conjunction with new conceptions. Definitely, such
modernizations are necessary, but at the same time they are
objectively making the language more complicated.

However these difficulties may be hidden or even
eliminated, if the Fortran-programmer will have appropriate
assistance from the IDE in which he writes his programs code.
The most widely used IDE on Windows is Microsoft Visual
Studio. It is extensible and allows adding practically any
feature into it. As an example, Visual Studio may be extended
to support various programming languages.

The most widely used Visual Studio integrations of the
Fortran language are being developed in Intel [3] and PGI [4]
in conjunction with corresponding compilers. However the
supported features of those integrations significantly inferior
to integrations developed by Microsoft, e.g. for C#
programming language. Primarily it applies to the support of

InlelliSense [5] technology, which consists of the following
features: List Members, Parameter Info, Quick Info и
Complete Word (table I).

TABLE I. THE INTELLISENSE TECHNOLOGY FEATURES

IMPLEMENTATION IN INTEL AND PGI

Function Intel PGI

List

Members
No No

Parameter

Info

Yes, excluding overloaded

procedures and type bound

procedures

Yes, only for intrinsic
procedures

Quick

Info

Yes, excluding fields and
procedures of derived types

Yes, only for intrinsic
procedures

Complete

Word

Yes, only for modules names,

functions names and subroutines
names

Yes, only for keywords

statements

It must be noted that in all implemented IntelliSense
features, excluding those for intrinsic procedures, there is
essentially absent any description of the elements except for
their definitions.

This great difference between Fortran support and support
for languages, developed by Microsoft, became a key factor
for author in the decision to implement the FRIS (Fortran
Intelligent Solutions) language service, that is intended to
cover this gap and implement all IntelliSense features to
support Fortran-programmer in effective development of
programs.

II. MAKING MODEL OF A LANGUAGE SERVICE

Language service [6] is responsible for providing
language-specific support for editing source code in the Visual
Studio IDE, or, generally speaking, in any IDE. Basic
language service must by definition [7] to provide a program
syntax highlighting, all other features, including the
IntelliSense support, are extra (or extended) features. The
main question that must be answered at first when starting a
new language service development is what features are needed
for a programmer. After that, those features must be ranked by
priority (or by usability).

Next, it is needed to identify the sources of data that must
be used in the implementation of the language service. The
main data source for any language service, no doubt, is source

8 of 174

mailto:ratkevichis@gmail.com

files containing programs text on a target language, but in
some cases additional data sources may be needed.

The next stage is to estimate implementation complexity of
needed functions. This estimation may include as the IDE
restrictions to different components of a language service, and
the analysis complexity of the target programming language
itself.

After this the aggregate language service model is
constructed, that reflects its major structural elements and
interconnections between them. This report contains
generalized and optimal, in author's opinion, language service
model, which provides extended support for a target
programming language.

When the aggregate language service model is constructed,
each of its structural elements is detailed according to specific
requirements to implementation of different features, and also
depending on the restrictions of the target programming
language.

Next in the report each of aforementioned steps in making
language service will be examined in details, on example of
the Fortran programming language, but the given material,
without loss of generality, could be applied to any other
programming language.

A. Analysis of requirements and the necessary features

The first thing, that definitely wants to see any
programmer is a program syntax highlighting, for keywords,
data type names, string literals, comments and so on. At the
same time, it’s important to provide the ability to configure
such highlighting, for example, for significant to user
procedure names and data type names of program libraries,
say, OpenMP, MPI, and others. Such syntax highlighting
helps to focus attention on the most important details.

The second thing, that is important to a programmer, is the
amount of provided context help, that at least must consist of
the definition for a programming language element with which
programmer works or wants to work (in the case of word
completion lists). But in most cases the element definition is
not enough to understand, how exactly the element must be
used, as an example, a procedure that has more than a dozen
parameters, some of which may be optional. In this case it’s
necessary to accompany the element definition with some
meaningful description. When the data that must be provided
to user, and, respectively, that must be collected and stored,
are identified, the sources, from which this could be obtained,
must be analyzed.

B. Analysis of data sources

The most obvious way to get the definitions of
programming language elements is the analysis of program
source files. The form of such definitions is fixed in the
programming language standard, e.g. in the Fortran standard.
The meaningful description of the elements may be obtained,
if to complement the program text with comments in a special
form – documentation comments. The XML documentation
comments are the standard for Visual Studio. So, the program

text contains two languages: the base language – Fortran, and
the embedded language – documentation comments language.

It should be noted, that Fortran has a distinctive feature in
using of the programming libraries. There are three ways to
connect the programming library to the main Fortran project:

 with source code files, that contains the library API,
including procedure definitions, data types definitions
and so on;

 with compiled binary files of Fortran modules, that
have a closed format, which understandable just by
compiler. Those files also contains the library API
definitions;

 without any descriptions of library API. In such case
the compiler will deduce the outer interfaces for used
procedures, and will try to resolve external references
by their names.

In the first case, it is possible to analyze source file that
contains the library API and get all necessary information
from it, but in the other two cases, it’s impossible to do so, and
it's necessary to provide other mechanisms to get such
information.

As a basis for implementation of this task, was taken the
idea that is used in the program for automatic documentation
generation for so called managed applications –
Sandcastle [8]. It uses two files for generation of program
documentation: one with the API description, and the other
with the documentation for the API.

Fortran isn’t managed language, so it’s impossible to use
the standard Sandcastle API format for description of its
elements. Therefore the model for description Fortran API was
developed in FRIS for this purpose. It is the XML file in the
special format, which contains a description of main Fortran
elements. FRIS can save (serialization) the structure of
elements, which is obtained from the analysis of program
texts, into XML format and restore (deserialization) Fortran
elements from their XML representation.

The XML model for Fortran documentation comments is
also developed, including the features for its serialization and
deserialization. This will allow to develop a special Sandcastle
plug-in, and to use files of Fortran API and documentation
comments description to automatically generate a developer
or/and user help files.

C. Analysis of main operating characteristics of a language

service

When developing a language service it’s necessary to take
into account that analysis of program texts will operate in a
real time. This means that in most cases the text under analysis
will be in the lexical, syntactic or semantic incorrect state, in
terms of programming language specification. This peculiarity
must be considered in the construction of corresponding
analyzers.

The second peculiarity is in the fact that the analysis for a
syntax highlighting is carried out in Visual Studio line-by-line
(one line a time). The analyzer, colorizer in terms of VS, is

9 of 174

transmitted for analysis a string of text and the analyzer state
in which it was at the end of analysis of the previous line. This
means that the corresponding analyzer must be constructed
with the ability to save its state in any time and to restore its
work from any such state. This approach makes it possible to
carry out incremental analysis, which is very important for
large source files (approx more than 10000 lines). Then, when
some lines are changed, it’s necessary to analyze just the
changed lines, but not a whole file.

The third peculiarity that must be considered to create
effective full-text analyzers is the need to take into account the
state of source files. In terms of using program project source
files in the IDE, file could be in a one of two essential states:

 opened in editor;

 doesn’t opened in editor.

In the first case, it’s needed to accomplish full-text
analysis of a source files, but in the second one it’s possible to
accomplish a simplified analysis to collect information about
just externally visible program elements. For example, it’s not
necessary to analyze whole body of procedure, because
information, say, about its local variables could be needed to
user just in a moment of editing a procedure body, which
automatically transfers file with procedure to the sate “opened
in editor”, and consequently, the other analysis rules will be
applied to it. Thus the requirement to analyzer to operate in
two modes, for convenience “full” and “simplified” analysis,
will significantly increase the analysis speed of programming
project source files.

III. GENERAL MODEL OF A LANGUAGE SERVICE

The author proposes the following general model for
building any language services, which is the result of
summarizing author’s experience in developing FRIS (Fig. 1).

IDE integration

block
Analysis block

Recognized

elements

storage block

Elements view

model block

Elements

serialization /

deserialization

block

Fig. 1. General language service model

As shown in Fig.1 any language service could be
represented as 5 base blocks. The arrows represent the data
exchange between blocks.

The IDE integration block contains interfaces
implementation, which are required for interaction with IDE.
It’s responsible for subscription of a language service on the
text editing editor events, and for corresponding responses, for
example, for syntax highlighting and information providing
for work of IntelliSense features.

The analysis block is responsible for lexical, syntactic and
semantic analysis. When it receives events from the IDE

integration block, it performs appropriate actions. For
example, in response to file open event or text changed event,
it will provide the information for syntax highlighting. It’s
also responsible for providing source files analysis depending
on their states.

The recognized elements storage block is central data
storage about all elements, necessary for language service. In
general case, it is kind of a symbol table. The storage block
could be filled from two sources: from analysis block, as a
result of analysis of a source files, and from
serialization/deserialization block, in the case of using model
of Fortran API for any program libraries.

The elements serialization/deserialization block performs
two functions. Firstly, it allows saving the content of
programming projects as XML files for description of Fortran
API and documentation comments. Secondary, it allows
restoring the content of programming projects from their XML
models. This approach reflects the dual nature of
programming projects. Thus, for author of programming
project, for example, program library, it is accessible in source
files and it is perceived as “internal”, but for a user of this
library, it is perceived as “external”, and its source files may
be inaccessible to user.

The elements view model block is a link, a kind of adaptor
for elements of storage block to their representation needed by
IDE integration block. Thus, recognized elements may contain
some information that is not necessary to IntelliSense
technology features, or on the contrary, does not contain some
needed information. The elements view model is playing this
interconnection role. It contains data types that are wrappers
for elements of storage block, which fulfils requirements of
the IDE integration block. There is also implemented various
functions of filtering and selecting of different kinds necessary
information. It could be said, that the storage block is like a
database, and the view model block is like a data selection
procedures.

A. IDE integration block

The IDE integration block connects a language service
with a basic IDE infrastructure. In the case of Visual Studio,
the base language service must implement the
IVsLanguageInfo [9] interface. This interface is responsible
for providing information about target language including its
name, associated file extensions, and component for a syntax
highlighting (colorizer). Colorizer must to implement the
IVsColorizer [10] interface, which is responsible for providing
character-by-character information about colors of buffered
program text representation in memory. In order to provide the
IntelliSense technology support it is needed to implement 5
additional interfaces [11]: IVsCodeWindowManager,
IVsMethodData, IVsCompletionSet, IVsTextViewFilter and
IOleCommandTarget.

To simplify for developers the task of creating new
language services, and the other tasks of Visual Studio
extension, Microsoft created MPF (Managed Package
Framework) [12] library, which supplies a set of base classes
that implements many needed interfaces, and thus provides to
developers the ability to implement only the features that is

10 of 174

needed to them. Let’s take a brief look at the key classes that
are necessary for the implementation of the language service
and its various features.

The LanugageService abstract class provides basic
implementation of a language service. It contains a number of
abstract methods responsible for different features of a
language service, such as syntax highlighting, and
initialization of full-text source files analysis in order to
provide information for various IntelliSense features, and so
on.

The Source class is a source file abstraction in terms of a
language service. It is used to store all information about
edited file, as well as for interoperability with other language
service model classes, which require information about current
source file. In particular, it contains an instance of the
Colorizer class, which is responsible for syntax highlighting.

The Colorizer class implements IVsColorizer interface.
This class is used by the core editor of IDE for providing of
syntax highlighting in current source file. For even more
flexibility and abstraction MPF Colorizer from concrete
programming language, the scanner abstraction is used.

The scanner must to implement IScanner interface. Each
scanner is essentially a specialized lexical analyzer, which
must to be able to save its current state and to restore its state
for continuation of analysis as if it is doing a simple linear
analysis of character stream.

The AuthoringScope class contains all information about a
source file which is the result of parsing of this file. It is the
central place for providing information for basic IntelliSense
technology features. In particular, method GetDataTipText –
returns a string that contains description of programming
language element, under the mouse cursor. It provides data for
Quick Info IntelliSense feature. Method GetDeclarations –
returns a list of programming language element definitions. It
provides data for List Members and Complete Word
IntelliSense features. Method GetMethods – returns a list of
method signatures with a given name, including their
overloaded versions. It provides data for Parameter Info
IntelliSense feature.

In FRIS implementation is used modified version of MPF
library, since a number of methods needed by FRIS were
inaccessible for overriding in Microsoft’s MPF classes.

B. Analysis block

The FRIS analysis block consists of two sub blocks:
analysis for syntax highlighting and full-text analysis (in “full”
and “simplified” mode) for a collection of information about
elements in a source file.

The FRIS analyzers are built with the ability to support
sublanguages. In this case, the base language is Fortran, and
sublanguages are any other languages, other than Fortran, that
are used in the program text, for example, the XML
documentation comments language and the OpenMP
directives language.

Fig. 2 shows the general scheme of working of the
analyzers stack, on the example of analysis of a part of XML

documentation comment. The base language analyzer
(Fortran) generates tokens, which are then passed through a
tokens filter. If token matches with one of registered
sublanguages, the appropriate analyzer is called. The output is
a set of fully recognized tokens for all supported languages.

Fortran Analyzer

(Base Language)

Special Token

!!!<summary>

XML DocStart

!!!
XML Tag

<summary>

Special Tokens Filter

(Sublanguages

switch)

XML Documentation

Comments Analyzer

(Sublanguage)

OpenMP Analyzer

(Sublanguage)

Fig. 2. The general analyzers operation scheme

The peculiarity of work of a syntax highlighting analyzing
block is that it is essentially some kind of extended version of
a lexical analyzer, since there are strict requirements on the
speed of operation of a syntax highlighting. Support for
arbitrary program library in FRIS is, in particular, in the
ability of a visual highlighting of their elements such as
procedures, modules, data types, etc. Such highlighting is
performed in a syntax highlighting block based on the current
context. For any identifier under analysis the check depending
on current scope is performed, whether it belongs to arbitrary
library, which elements necessary to highlight. Then, if
necessary, the identifier is highlighted with a defined earlier
color.

The peculiarity of full-text analysis is in the used analysis
strategy. Since the analysis is need to be performed in the real
time, while the user modifies the text of program, all analyzers
must to work in the error suppression mode. It must be noted
that Fortran is very complicated language for analysis, because
of its lexical and syntactical peculiarities. The most striking
examples are:

 the ability to use multiline tokens, for example,
identifiers. Next is given the sample of a multiline
identifier “my_id”. The special attention must be given
the fact that in between a start and end lines of any
multiline lexeme, it is allowed to use comments and
blank lines.

1 my_&
2 !comment
3
4 !another comment after blank line
5 &id

 the absence of reserved keywords. The decision
whether identifier is a keyword depends on a context of
its usage in a statement. Therefore, it is not statements
that are identified by keywords, as in languages with
reserved keywords, but the keywords are identified by
statements. Taking into account that analysis is
performed in a real time, it is impossible to determine

11 of 174

the identity of incomplete statement. For example, it is
unclear, whether “if” is a keyword that belongs to
conditional statement, or it is a name of an array, in the
following part of statement: “if(”.

The emphasized peculiarities greatly complicate the
development of analyzers for Fortran. But all of them are
taken into account in FRIS. In particular, the optimistic
parsing strategy is used. The parser processes a source file
statement-by-statement. For every statement the abstract
syntax tree (AST) is built. If the statement could not be
matched, e.g. as a result of that the user just not has time to
completely type it; the special AST is generated for it, which
includes all mismatched tokens.

In conjunction with a parser the full AST builder is
operating (Fig.3). It builds the full AST from the individual
statement ASTs. It also stores the AST that is already built.
The builder task is to track operations of opening and closing
of syntactical contexts, in particular their optimistic
completion.

Fortran Parser

(Returns AST per

statment)

AST_ASSIGN

=

Full AST builder

(builds file AST from

statement AST’s)

AST_ID

a

AST_ID

b

AST_PROGRAM

<virtual>

AST_ASSIGN

=

Fig. 3. The FRIS parser operation scheme

For example, if now the operator “if(…)then” is analyzed,
then according to standard, it could be completed only by
“endif” statement. However, the user could not have enough
time to fully type this statement, then the builder will interpret
the “end” statement as a completion of a “if(…)then” operator.
Similarly to it, if in the end of parsing of source file the stack
of open contexts of the builder is not empty, then they are
completing in a special mode – completion by the end of the
file. It is also have ability of priority processing of high level
element statements. For example, if the subroutine element is
processed now, and as a result of a parsing the function
element definition statement is discovered, then the current
subroutine element is being completed with a special flag, and
the function element processing is being started.

Thus, the parser is always outputs the correct AST, which
has no error nodes. This allows simplifying the semantic
analysis algorithm. The semantic analyzer walks the AST and
collects information about all needed Fortran elements, which
then stores in the recognized elements storage block.

C. The recognized elements storage block

The recognized elements storage block is a central storage
for all known in the current programming project elements
(modules, data types, variables, etc.). It is filled from two
sources: as a result of a source files parsing, and as a result of
deserializing information about arbitrary libraries.

This block is essentially a kind of a symbol table. Its
design must take into account that information in it will be
continuously updating as a result of the user editing of source
files.

Consider the proposed generic model of the storage block
(Fig. 4).

Symbol Table

General Element

Interface

General Scope

Interface

Specific element

descriptions

Fig. 4. The model of the recognized elements storage block

It consists of following parts:

 the class for a symbol table description;

 the class for an interface description for a typical
element of the programming language;

 the class for an interface description for a typical scope
of the programming language;

 the classes describing specific elements of the
programming language, that implement interfaces of a
typical element and of a typical scope, for elements,
which are scopes.

The class for a symbol table description must be built as
indexed data storage, in order to effectively processing
operations of update and elements search. For maximum
flexibility it must store the references on the interface for a
typical element, instead of references to specific elements. The
specific element could be obtained from an abstract interface
as a result of type casting. The following scheme of a symbol
table is proposed (Table II).

TABLE II. THE MODEL OF A SYMBOL TABLE

Field Data type Description

Names map<long,
string>

Map unique identifier to string

Elements map<long,

object>

Map element unique identifier to

element object

Projects map<string,
map<string,

list<long>>>

Map program project name to
map of project file names to list of

file elements unique identifiers

ProjectDependencies map<string,
list<string>>

Map program project to program
projects it depends from

In this approach, firstly there is an access to all elements
(Elements field). Secondly, for any project there is a list of its
dependencies from other projects, which allows simplify a
search procedure of needed elements, and to exclude from the
search result the elements that is not visible in target project.
Thirdly, every project contains a dictionary of its source files,
and elements, which contained in every file that allows to
effectively performing the update operations. The update
operation is a result of a source file parsing operation, due to a

12 of 174

text changes made by user. Thus, since all elements that are
connected with file is known, so their deletion from other
dictionaries and insertion a newly recognized elements, is a
relatively simple task.

Next consider the proposed interface for a typical element
of a programming language (table III).

TABLE III. THE MODEL OF INTERFACE FOR A TYPICAL ELEMENT OF A

PROGRAMMING LANGUAGE

Field Data type Description

Name string Name of element

Scope Scope Outer scope of element

Description string Description of element. For instance from
documentation comments

Location Location Element location: definition location,

declaration location. Location consists of

file name and region. Region consists of 4
integer indexes: start line, start line

character index, end line, end line character

index.

Every element must have at least a name, a scope, where
it’s defined, a description, for example, that is obtained from
documentation comments, and a location. An element location
consists from a declaration location and a definition location.
Each of which is in turn consists from a file name, and an
element region in it.

Consider the proposed interface for a typical scope of the
programming language (table IV). The scope, in a general
case, is a container of elements.

TABLE IV. THE MODEL OF A TYPICAL SCOPE OF THE PROGRAMMING

LANGUAGE

Field Data type Description

Scope Scope Outer scope of this scope

Elements list<Element> List of elements of the scope

Every scope contains a reference to a parent scope and a
list of elements that make up this scope.

Every specific element of a programming language must
be derived from an interface for a typical element, and if it is a
scope, from an interface of a typical scope.

D. The elements serialization/deserialization block

The elements serialization/deserialization block is a key
element for the implementation of a mechanism to support
arbitrary user libraries. The serialization mechanism performs
a saving of a given programming project in a form of two
special XML files: description of Fortran API and description
of documentation comments. The optional level of refinement
could be additionally specified. In the case, when the
serialization is performed for creation a developer
documentation of a programming project, then all elements are
saved, but in the case of creation a user documentation or
interface for a programming project as an external library,
then just externally visible elements are saved. It should be
recalled that for each element in the Fortran module, could be
specified the access mode: public or private. The public
elements are externally accessible when the module is used,
but the private elements could be used just inside the module
and inaccessible outside of it.

The deserialization mechanism operation is slightly
different, because in deserialization there is just one operation
mode – reading all information describing an arbitrary library.
In this case, even if there will be provided XML files, that
contains full description of arbitrary library, only externally
visible elements will be read. This allows reducing the amount
of memory needed to store a library description, and also
eliminates the need to store elements, which will not be
accessed to user under no circumstances, for example, private
module elements, or internal elements of procedures.

For serialization and deserialization are used the models
for description of Fortran API and XML documentation
comments, that is developed by author and are expressed in
the form of appropriate XML Schema Definitions (XSD) [13],
[14]. Let’s consider each of these models.

The model of Fortran API (Fig.5) allows describing
external interfaces of any library as a Fortran interfaces. The
meaning and purpose some of the model elements are given in
table V.

reflection
assemblies assembly

apis1

1 +

*

api

apidata

...

Global scope

elements

Module

elements

moduledata

imports

Fig. 5. The part of Fortran API XSD

TABLE V. THE DESCRIPTION OF SOME ELEMENTS OF THE FORTRAN API
MODEL

Element (tag) Description

reflection Root tag

assemblies Describes set of projects that API contained in this file

assembly Describes individual project

apis Root for all API description

api Element description

apidata
Describes group and subgroup of element. I.e. for
function: group – method, subgroup - function

moduledata Module description switch

referencedata Reference element switch

typedata Derived type description switch

variabledata Variable description switch

proceduredata Procedure description switch

interfacedata Interface description switch

methoddata Method description switch

namelistdata Name list description switch

commonblockdata Common block description switch

imports Module imports description

elements List of inner elements

As can be seen from the above figure, tag “apis” contains a
description of all project elements. The tag “api” is used for a
direct element description. In order to uniquely identify the

13 of 174

type of element: a module, a function, a subroutine, a data
type and so on, the special switches, like a “moduledata” tag,
are used.

One more remark should be made regarding the tag
“elements”, which is used to describe the internal elements of
current element. It’s allowed to specify here references – fully
qualified element names, and their description place next in a
main “apis” tag, and also it’s allowed to provide the
description of child elements directly in this tag.

It should be noted that description of Fortran API may be
used for a creation of Fortran procedure interfaces for their
calls from other programming languages, that is solves the
inverse problem.

Consider the model of documentation comments. It
conceptually consists of two interconnected parts: a
description of documentation tags for documenting program
elements (Fig.6), and a description of documentation
comments XML file format (Fig. 7). The meaning and purpose
of the model elements are given in table VI.

functionentry

derived type subroutineany element

summary

remarks

see

typeparam para param

result

Fig. 6. The usage of documentation tags for different Fortran elements

doc

members

1

*

summary

...

derived type

typeparammember

remarks

function

param

result

Fig. 7. The part of Fortran Documentation XSD

TABLE VI. THE ELEMENTS DESCRIPTION OF THE FORTRAN

DOCUMENTATION MODEL

Element (tag) Description

doc Root element

members Container for all documentation elements

member Contains documentation for single element

summary Element summary

remarks Additional information for element

see Internal tag, makes reference to given element

para Internal tag, creates paragraph in parent tag

typeparam Describes derived type parameter

param Describes argument of subroutine or function

result Describes function result

For description of any element may be used 4 tags, two of
which are high-level: “summary” and “remarks”, and other

two are nested, it means that they could be used just inside of
other tags: “see” and “para”. In addition to them, for
description of:

 derived type parameters is used “typeparam” tag;

 arguments of subroutines, functions and entry points is
used “param” tag;

 result of function is used “result” tag.

Thus, files for description of the model of Fortran API and
documentation comments form the basis not only for work
with arbitrary libraries in Fortran, but also form the basis for
the generation of the reference documentation, for example
with a Sandcastle tool. It should be noted that Fortran API
model can be used for solving the inverse problem –
description of API for a Fortran procedures for their using
from other programming languages.

E. The elements view model block

The elements view model block is a link between the IDE
integration block and the data storage block. It performs two
basic functions: converts a data from a storage block to a form
required by the IDE, and performs various search operations
in a storage block.

The convert operation of stored data to the form required
by the IDE produces elements that are complemented by the
properties of visual representation. For example, such
properties as text color and element icon, which used in
various completion lists, are set. In other words, the elements
view model block contains various aspects of data
presentation to user. Thus the structure of the view model
block is analogue to the structure of the storage block. It also
defines interfaces for typical presentation elements and
scopes, and a set of their specific implementations for each
element of the storage block.

The second function of this block is the search function.
Here are performed various operations of elements resolution
in a scope, a search for elements with the specified name and
type, etc. That is, it performs the selection of needed elements
from the storage block that taking into account a different
aspects of a programming language. Then, selected data
converted to the form required for user representation.

IV. PROOF OF CONCEPT

The FRIS language service is built on the basis of the
general model of a language service, and implements all
described blocks. Figures 8-13 are examples of work of its
various functions, proving the presented conception of a
generalized language service model, including providing
extended support for user libraries.

Fig. 8. The extended support of user libraries (before and after)

14 of 174

Fig. 9. List Members

Fig. 10. Parameter Info and Complete Word

Fig. 11. Parameter Info for overloaded subroutine

Fig. 12. Complete word for a derived type name

Fig. 13. Code Snippet Sample

Consider the pivot table of the language services from
Intel, PGI and FRIS (table VII).

TABLE VII. THE INTEL, PGI AND FRIS LANGUAGE SERVICES

COMPARISON

Function Intel PGI FRIS

List Members No No Yes

Parameter Info

Yes, excluding
overloaded

procedures and

type bound
procedures

Yes, only for

intrinsic

procedures

Yes

Quick Info

Yes, excluding

fields and

procedures of
derived types

Yes, only for
intrinsic

procedures

Yes

Complete Word

Yes, only for

modules
names,

functions

names and
subroutines

names

Yes, only for

keywords

statements

Yes

Code Snippet [15]

Support

Yes, but only

as menu
command or

shortcut

No

Yes. Snippets

included in

Completion Lists

Documentation

comments

support

No No

Yes.
Documentation

included in all

tooltips

Support of user

libraries
No No Yes

Thus, due to use of the developed general language service
model, FRIS provides extended support of a Fortran in
Microsoft Visual Studio.

V. CONCLUSION

The report presents the general model of a language
service for extended support of a Fortran programming
language developed by author. This model can be easily
applied not only to create new language services for other
languages, but also to create a language services in other
IDEs.

All aspects that must be taken into account in development
of a language service are given in details, including the
analysis of user requirements, the analysis of a data sources
for a language service, and the analysis of operation
peculiarities of a language service in a specific IDE.

As a result of executing described analysis kinds, in every
particular case, the plan of a language service development
must be created. For a language service development
simplification, the general model of a language service is
given and each its block is described in details on example of
its implementation in FRIS.

At last, the proof of proposed concept of constructing
language services is given, on example of comparison FRIS
with existing language services from Intel and PGI. The model
that is used in FRIS provides its significant advantage over
other language services.

It especially should be noted that FRIS implements a
model for supporting user libraries. It includes a model of
Fortran API and a model of documentation comments,
developed by author. The Fortran API model allows not only
to describe the interfaces of any library in terms of Fortran,

15 of 174

but also allows solving the inverse problem, by known Fortran
interfaces obtain API for target language. The documentation
comments model allows user to document different Fortran
elements straight in the program text, and then obtain
documentation in various types of context help. The model of
Fortran API in conjunction with the model of documentation
comments can be used to create a developer and/or user
documentation, for example with a Sandcastle tool.

REFERENCES

[1] The Fortran automatic coding system for the IBM 704 EDPM.
Programmers reference manual. IBM, 1956

[2] ISO. ISO/IEC 1539-1:2004 Information technology - Programming
languages - Fortran -Part 1: Base Language, pp. 569

[3] Intel Fortran Composer (Visual Fortran) URL:
http://software.intel.com/en-us/articles/intel-fortran-composer-xe-2013-
sp1-release-notes

[4] PGI Visual Fortran URL: https://www.pgroup.com/products/pvf.htm

[5] Using IntelliSense URL: http://msdn.microsoft.com/en-
us/library/hcw1s69b(v=vs.80).aspx

[6] Language Services URL: http://msdn.microsoft.com/en-
us/library/bb165099.aspx

[7] Model of a Language Service URL: http://msdn.microsoft.com/en-
us/library/bb166518(v=vs.100).aspx

[8] Eric Woodruff’s Sandcastle Help File Builder Documentation URL:
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bb1a-
ce2135d3a909.htm

[9] IVsLanguageInfo Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v
=vs.80).aspx

[10] IVsColorizer Interface URL: https://msdn.microsoft.com/en-
us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.
80).aspx

[11] Language Service Interfaces URL: http://msdn.microsoft.com/en-
us/library/bb164598(v=vs.80).aspx

[12] Managed Package Framework Classes URL:
http://msdn.microsoft.com/en-us/library/bb164709(v=vs.80).aspx

[13] W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures
URL: http://www.w3.org/TR/xmlschema11-1/

[14] W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes
URL: http://www.w3.org/TR/xmlschema11-2/

[15] Creating and Using IntelliSense Code Snippets URL:
https://msdn.microsoft.com/en-us/library/ms165392(v=vs.80).aspx

16 of 174

http://software.intel.com/en-us/articles/intel-fortran-composer-xe-2013-sp1-release-notes
http://software.intel.com/en-us/articles/intel-fortran-composer-xe-2013-sp1-release-notes
https://www.pgroup.com/products/pvf.htm
http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/hcw1s69b(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb165099.aspx
http://msdn.microsoft.com/en-us/library/bb165099.aspx
http://msdn.microsoft.com/en-us/library/bb166518(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/bb166518(v=vs.100).aspx
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bb1a-ce2135d3a909.htm
http://ewsoftware.github.io/SHFB/html/bd1ddb51-1c4f-434f-bb1a-ce2135d3a909.htm
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivslanguageinfo(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/microsoft.visualstudio.textmanager.interop.ivscolorizer(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164598(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164598(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/bb164709(v=vs.80).aspx
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-2/
https://msdn.microsoft.com/en-us/library/ms165392(v=vs.80).aspx

Pitfalls of C# Generics and Their Solution Using
Concepts

Julia Belyakova
Institute for Mathematics, Mechanics

and Computer Science
Southern Federal University

Rostov-on-Don, Russia
Email: julbel@sfedu.ru

Stanislav Mikhalkovich
Institute for Mathematics, Mechanics

and Computer Science
Southern Federal University

Rostov-on-Don, Russia
Email: miks@sfedu.ru

Abstract—In comparison with Haskell type classes and C++
concepts, such object-oriented languages as C# and Java provide
much limited mechanisms of generic programming based on
F-bounded polymorphism. Main pitfalls of C# generics are
considered in this paper. Extending C# language with concepts
which can be simultaneously used with interfaces is proposed
to solve the problems of generics; a design and translation of
concepts are outlined.

I. INTRODUCTION

Generic programming is supported in different program-
ming languages by various techniques such as C++ templates,
C# and Java generics, Haskell type classes, etc. Some of
these techniques were found more expressive and suitable for
generic programming, other ones more verbose and worse
maintainable [1]. Thus, for example, the mechanism of ex-
pressive and flexible C++ unconstrained templates suffers from
unclear error messages and a late stage of error detection [2],
[3]. New language construct called concepts1 was proposed
for C++ language as a possible substitution of unconstrained
templates. A design of C++ concepts2 conforms to main
principles of effective generic tools design [1].

In comparison with concepts and Haskell type classes [1],
[7], such mainstream object-oriented languages as C# and Java
provide much limited mechanisms of generic programming
based on F-bounded polymorphism. Pitfalls of C# generics
are analysed in this paper in detail (Sec. II): we discuss
some known drawbacks and state the problems of subtle
semantics of recursive constraints (Sec. II-B) and constraints-
compatibility (Sec. II-C). To manage the pitfalls considered
extending of C# with concepts is proposed: a design of
concepts is briefly presented in Sec. IV. We also discuss a
translation of such extension to standard C#.

C# language is used in this paper primarily for the sake
of syntax demonstration. As for the pitfalls of C# generics,
they hold for Java as well with slight differences. However,
while the concepts design proposed in the paper could be

1 Term “concept” was initially introduced in a documentation of the
Standard Template Library (STL) [4] to describe requirements on template
parameters in informal way.

2There were several designs of C++ concepts [3], [5], [6]; all of them share
some general ideas.

(ICmp-1) interface IComparable<T> {int CompareTo(T other);}
(ICmp-2) interface IComparer<T> {int Compare(T x, T y);}

(s-1) Sort<T>(T[]) where T : IComparable<T>;
(s-2) Sort<T>(T[], IComparer<T>);

Fig. 1. IComparable<T>/IComparer<T> interfaces and its applications

easily adapted for Java (and also for any .NET-language with
interface-based generics), the technique of language extension
translation (which we consider in Sec. IV) cannot be applied
for Java directly. Unlike Java Virtual Machine, .NET Frame-
work preserves type information in its byte code, this property
being crucial for the translation method.

II. PITFALLS OF C# GENERICS

C# and Java interfaces originally developed to be an entity
of object-oriented programming were later applied to generic
programming as constraints on generic type parameters. There
are several shortcomings of this approach.

A. Lack of Retroactive Interface Implementation

Interfaces cannot be implemented retroactively, i. e. it is im-
possible to add the relationship “type T implements interface
I” if type T is already defined. Consider a generic algorithm
for sorting arrays Sort<T> with the following signature:
Sort<T>(T[]) where T : IComparable<T>;

If some type Foo provides an operation of comparison but does
not implement the interface IComparable<Foo>, Sort<Foo>

is not a valid instance of Sort<>. What one can do in
this case? If type cannot be changed (it may be defined
in external .dll, for instance), the only way to cope with
sorting is to define an adapter class FooAdapter which imple-
ments Sort<FooAdapter> interface, pack all Foo objects into
FooAdapter ones, sort them and unpack back to an array of
Foo objects. Apparently, there must be a better approach.

Fortunately, in the .NET Framework standard library the
Array.Sort<T> method [8] is provided with two “branches”
of overloads:

1) For any type T which implements IComparable<T> in-
terface ((s-1) example, Fig. 1).

17 of 174

mailto:julbel@sfedu.ru
mailto:miks@sfedu.ru

(1) interface IComparableTo<S> { int CompareTo(S other); }

(2) interface IComparable<T> where T : IComparable<T>
{ int CompareTo(T other); }

Fig. 2. IComparable<T> vs IComparableTo<S> example

2) For any type T with an external comparer of type
IComparer<T> provided ((s-2) example, Fig. 1).

Hence, if some type is already defined, values of this
type can be compared, but this type does not implement
IComparable<> interface (as in the Foo example above),
Sort<> with IComparer<> (branch 2) is to be used. Thus
one can simulate retroactive modeling property (in Scala the
similar approach is referred to as a programming with the
“concept pattern” [9]). Consequently, if retroactive modeling
is required, a programmer has to write a generic code twice —
in “interface-oriented” and in “concept pattern” styles. The
amount of necessary overloads grows exponentially: if one
needs two retroactively modeled constraints on generic type,
corresponding generic code would consist of four “twins”, if
three — eight “twins” and so on.

B. Drawbacks of Recursive Constraints

Example 1. The following reason about the Sort<T>

method for IComparable<T> may be not obvious. The no-
tation of Sort<T> in (s-1) example (Fig. 1) looks a little
bit redundant; such a recursive constraint on type T might
look even frightening, but it is well formed. Furthermore, the
word “comparable” in this context is very likely associated
with the ability to compare values of type T with each other.
But the interface IComparable<T> ((ICmp-1), Fig. 1) does
not correspond this semantics: it designates the ability of
some type (which implements this interface) to be comparable
with type T. The same problem with Comparable<X> interface
in Java is explored in [10]. The particular role of recursive
constraints in generic programming is explored in [11].

It would be better to split the single IComparable<> inter-
face into two different interfaces (Fig. 2):

1) IComparableTo<S> which requires some type (which
implements this interface) to be comparable with S.

2) IComparable<T> which requires values of type T to be
comparable with each other.

Note that the definition of the latter interface needs the
constraint where T : IComparable<T> (q.v. Fig. 2).

Example 2. As an another example consider a generic
definition of graph with peculiar structure: graph stores some
data in vertices; every vertex contains information about its
predecessors and successors thereby defining arcs. A graph
itself consists of set of vertices instead of set of edges. Such
kind of graph is suitable for a task of data flow analysis in the
area of optimizing compilers [12] because “movement along
arcs up and down” is intensively used action in an analysis of
a control flow graph.

Fig. 3 illustrates parts of the corresponding definitions:
IDataGraph<Vertex, DataType> describes interface of a data
graph; IDataVertex<Vertex, DataType> describes interface

interface IDataVertex<Vertex, DataType>
where Vertex : IDataVertex<Vertex, DataType> // (*)

{ ...
IEnumerator<Vertex> OutVertices { get; }
... }

interface IDataGraph<Vertex, DataType>
where Vertex : IDataVertex<Vertex, DataType> // (#)

{ ... }

Fig. 3. IDataGraph<,> and IDataVertex<,> interfaces

static HashSet<T> GetUnion<T>(HashSet<T> s1, HashSet<T> s2)
{

var us = new HashSet<T>(s1, s1.Comparer);
us.UnionWith(s2);
return us;

}

Fig. 4. Union of HashSet<T> objects

of a vertex in such graph. While the graph interface really
depends on type parameters Vertex and DataType, we have
to include Vertex as a type parameter into the vertex interface
IDataVertex<,> as well. Similarly to IComparable<> example
the constraints (*) and (#) in Fig. 3 are not superfluous.
Suppose we have the following types:

class V1 : IDataVertex<V1, int> { ... }
class V2 : IDataVertex<V1, int> { ... }

Thanks to the constraints (*) and (#) the instantiation of
graph IDataGraph<V2, int> is not allowed, since type V2

does not implement interface IDataVertex<V2, int>. Without
these constraints we might accept some inconsistent graph
with vertices of type V2 which refer to vertices of type V1.

Vertex and graph interface definitions are unclear and non-
obvious. If programmers might be used to use interface
IComparable<>, it is more difficult to manage such things as
IDataGraph<,> example. In some cases one may prefer to
abandon writing generic code because of this awkwardness.

C. Ambiguous Semantics of Generic Types

When using flexible Sort<T> method with an external
IComparer<T> parameter (Fig. 1), a programmer has clear un-
derstanding of how elements are sorted, since such a comparer
is a parameter of an algorithm. But when one uses generic
types, this information is implicit. For instance, SortedSet<T>
class takes IComparer<T> object as a constructor parameter,
HashSet<T> class taking IEqualityComparer<T>. Therefore,
given two sets of the same generic type one cannot check
at compile time whether these sets are constraints-compatible
(in case of HashSet<T> “constraints-compatibility” means that
the given sets use the same equality comparer). And it seems
that a programmer usually does not suppose that objects of the
same type can have different comparers (or addition operators,
coercions, etc). But they can, and it leads to subtle errors.

Suppose we have a simple function GetUnion<T> (q.v.
Fig. 4) which returns a union of the two given sets. If some
arguments a and b provide different equality comparers (e.g.,
case-sensitive and case-insensitive comparers for type string),
the result of GetUnion(a, b) would differ from the result of
GetUnion(b, a). Note that Haskell type classes do not suffer

18 of 174

interface IObserver<O, S> where O : IObserver<O, S>
where S : ISubject<O, S>

{ void update(S subj); }

interface ISubject<O, S> where O : IObserver<O, S>
where S : ISubject<O, S>

{ List<O> getObservers();
void register(O obs);
void notify(); }

Fig. 5. Observer pattern in C#

from such an ambiguity because every type provides only one
instance of a type class.

D. The Problem of Multi-Type Constraints

The well-known problem of multi-type constraints holds
for C# interfaces. Requirements concerning on several types
cannot be naturally expressed within interfaces. The paper [10]
deals with the example of Observer pattern in Java. The
Observer pattern connects two types: Observer and Subject.
Both types has methods which take the another type of this
pair as an argument: the Observer provides update(Subject),
the Subject — register(Observer).

Fig. 5 shows the interface definitions IObserver<O, S> for
Observer and ISubject<O, S> for Subject in standard C#. We
need two different interfaces and have to duplicate the con-
straints on O and S in both definitions to establish consistent
connection between type parameters O and S. And again we
face with recursive constraints on types O (which represents the
Observer) and S (which represents the Subject). This example
looks even worse than the case of vertex and graph interfaces
presented in Fig. 3. But it is the only way to define a type
family [13] of Observer pattern correctly.

E. Constraints Duplication and Verbose Type Parameters

All constraints required by a definition of generic type
are to be repeatedly specified in every generic compo-
nent which uses this type. Consider the generic algorithm
GetSubgraph<,,> depending on type parameter G which im-
plements IDataGraph<,> interface (q.v. Fig. 3).
G GetSubgraph<G, Vertex, DataType>(

G g, Predicate<DataType> p)
where G : IDataGraph<Vertex, DataType>, new()
where Vertex : IDataVertex<Vertex, DataType> { ... }

GetSubgraph<G, Vertex, DataType> method is not correct
without explicit specification of constraint on type param-
eter Vertex. This constraint is induced by the definition
of IDataGraph<Vertex, DataType> interface and should be
repeated every time one uses IDataGraph<,>.

Another property of GetSubgraph<...> definition is a
plenty of generic parameters. Clearly, vertex and data types
are fully determined by the type of specific graph. At the
level of GetSubgraph<...> signature vertex type even does
not matter at all. Such types are often referred to as asso-
ciated types. Some programming languages allow to declare
associated types explicitly (SML, C++ via traits, Scala via
abstract types and some other), but in C# and Java they can
only be represented by extra type parameters. It makes generic
definitions verbose and breaks encapsulation of constraints on

associated types. Issues of repeated constraints specification
and lack of associated types are considered in [14], [1] in
more detail.

III. RELATED WORK

We consider two studies concerning modification of generic
interfaces in this section:

1) [14] proposes the extension of C# generics with associ-
ated types and constraint propagation.

2) [10] generalizes Java 1.5 interfaces enabling retroactive
interface implementation, multi-headed interfaces (ex-
pressing multi-type constraints) and some other features.

Both studies revise interfaces to improve interface-based
mechanism of generic programming and to approach to C++

concepts and Haskell type classes, which are considered being
rather similar [7]. Some features of Scala language in respect
to problems considered in Sec. II will also be mentioned.

A. C# with Associated Types and Constraint Propagation

Member types in interfaces and classes are introduced
in [14] to provide direct support of associated types. A
mechanism of constraint propagation is also proposed to lower
verbosity of generic components and get rid of constraints
duplication as was mentioned in Sec. II-E. The example
of Incidence Graph concept from the Boost Graph Library
(BGL) [15] is considered. It is shown that features proposed
can significantly improve a support of generic programming
not only in C# language but in any object-oriented language
with F-bounded polymorphism.

But the problems of multi-type constraints and recursive
constraints cannot be solved with this extension. Thus, the
code of Observer pattern (Fig. 5) cannot be improved at
all because of recursive constraints; the same holds for
IComparable<T> interface. The issue of retroactive implemen-
tation is also not touched upon in [14]: extended interfaces are
still interfaces which cannot be implemented retroactively.

B. JavaGI: Java with Generalized Interfaces

In contrast to [14], the study [10] is mainly concentrated
on the problems of retroactive implementation, multi-type
constraints (solved with multi-headed interfaces) and recur-
sive interface definitions3. For instance, Observer pattern is
expressed in JavaGI with generalized interfaces as shown
in Fig. 6 [10]. Methods of a whole interface are grouped
by a receiver type with keyword receiver. A syntax of an
interface looks a little bit verbose but it is essentially better
than two interfaces with duplicated constraints shown in Fig. 5.
Moreover, JavaGI interfaces allow default implementation of
methods (as register and notify). Retroactive implementa-
tion of interfaces is also allowed, but it is possible to define
only one implementation of an interface for the given set of
types in a namespace.

3This problem is usually connected with so-called binary methods problem.

19 of 174

interface ObserverPattern[O, S] {
receiver O { void update(S subj); }
receiver S {

List<O> getObservers();
void register(O obs) { getObservers().add(obs); }
void notify() { ... }

}
}
class MultiheadedTest {

<S,O> void genericUpdate(S subject, O observer)
where [S,O] implements ObserverPattern {

observer.update(subject);
}

}

Fig. 6. Observer pattern in JavaGI

It turns out that interfaces become some restricted version
of C++ concepts [5], [16] (in particular, they do not support as-
sociated types) and, moreover, they lose a semantics of object-
oriented interfaces4. JavaGI interfaces only act as constraints
on generic type parameters, but they cannot act as types, so
one cannot use JavaGI interfaces as in Java.

C. “Concept Pattern” and Context Bounds in Scala

The idea of programming with “concept pattern” has been
reflected in Scala language [9]. Due to the combination of
generic traits (something like interfaces with abstract types
and implementation), implicits (objects used by default as
function arguments or class fields) and context bounds (like
T : Ordering in Fig. 7) Scala provides much more powerful
mechanism of generic programming than C# or Java. Fig. 7
illustrates the examples of sorting and observer pattern.

Context bounds provide simple syntax for single-parameter
constraints: the sugared (s-s) version of Sort[T] algorithm is
translated into (s-u) one by desugaring. Retroactive modeling
is supported since one can define new Ordering[] object and
use it for sorting. And one does not need to provide two
versions of the sort algorithm as for C# language (q.v. Fig. 1):
Sort[] with one argument would use default ordering due
to implicit keyword. ObserverPattern[S, O] looks rather
similar to corresponding JavaGI interface (Fig. 6). There is no
syntactic sugar for multi-parameters traits, so the notation of
genericUpdate[S, O] cannot be shortened.

In respect to the constraints-compatibility problem dis-
cussed in Sec. II-C Scala’s “concept pattern” reveals the same
drawback as C#. Generic types take “concept objects” as con-
structor parameters. In such a way TreeSet[A] [17] implicitly
takes Ordering[A] object, therefore, for instance, the result of
intersection operation would depend on an order of arguments
if they use different ordering.

IV. DESIGN OF CONCEPTS FOR C# LANGUAGE

A. Interfaces and Concepts

It seems that a new language construct for generic program-
ming should be introduced into such object-oriented languages
as C# or Java. If we extend interfaces preserving their object-
oriented essence [14], a generic programming mechanism be-
comes better but still not good enough, since such problems as

4The way to preserve compatibility with Java code is considered in [10],
but “real interfaces” no longer exist in JavaGI.

(s-s) def Sort[T : Ordering](elems: Array[T]) { ... }
(s-u) def Sort[T](elems: Array[T])

(implicit ord: Ordering[T]) { ... }

trait ObserverPattern[S, O] {
def update(obs: O, subj: S);
def getObservers(subj: S): Seq[O];
def setObservers(subj: S, observers: Seq[O]);
def register(subj: S, obs: O)
{ setObservers(subj, getObservers(subj) :+ obs); }
def notify(subj: S) { ... }

}
object MultiheadedTest {

def genericUpdate[S, O](subject: S, observer: O)
(implicit obsPat: ObserverPattern[S, O]) {

obsPat.update(observer, subject);
}

}

Fig. 7. Sort[T] and ObserverPattern[S,O] examples in Scala

retroactive modeling or constraints-compatibility remain. If we
make interfaces considerably better for generic programming
purposes [10], they lose their object-oriented essence and can
no longer be used as types.

We advocate the assertion that both features have to be
provided in an object-oriented language:

1) Object-oriented interfaces which are used as types.
2) Some new construct which is used to constrain generic

type parameters. C++ like concepts are proposed to serve
this goal.

B. C# with Concepts: Design and Translation

In this section we present a sketch of C# concepts design.
Concept mechanism introduces the following constructs into
the programming language:

1) Concept. Concepts describe a named set of requirements
(or constraints) on one or more types called concept
parameters.

2) Model. Models determine the manner in which specific
types satisfy concept. Models are external for types; they
can be defined later than types. It means that a type can
retroactively model a concept if it semantically conforms
to this concept. Types may have several models for the
same concept. In some cases a default model can be
implicitly generated by a compiler.

3) Constraints are used in generic code to describe re-
quirements on generic type parameters.

Concepts support the following kinds of constraints:
• associated types and associated values;
• function signatures (may have default implementation);
• nested concept requirements (for concept parameters and

associated types);
• same-type constraints;
• subtype and supertype constraints;
• aliases for types and nested concept requirements.
The main distinction of C# concepts proposed in compari-

son with other concepts designs (C++, G [16]) is the support of
subtype constraints and anonymous models (like anonymous
classes). Concept-based mechanism of constraining generic
type parameters surpasses the abilities of interface-based one.

20 of 174

Construct of extended language Construct of base language
Concept Abstract class
Concept parameter Type parameter
Associated type Type parameter
Concept refinement Subtyping
Associated value Property (only read)
Nested concept requirement Type parameter
Concept requirement in generic code Type parameter
Model Class

Fig. 8. Translation of C# extension with concepts

At the same time interfaces can be used as usual without any
restrictions.

Concepts can be implemented in existing compilers via the
translation to standard C#. Fig. 8 presents correspondence be-
tween main constructs of extended and standard C# languages.
To preserve maximum information about the source code
semantics, some additional metainformation has to be included
into translated code. In particular, one needs to distinguish
generic type parameters in the resultant code as far as they
may represent concept parameters, associated types or nested
concept requirements. To resolve such ambiguities we propose
using attributes.

The method of translation suggested is strongly determined
by the properties of .NET Framework. Due to preserving type
information and attributes in a .NET byte code, translated
code can be unambiguously recognized as a result of code-
with-concepts translation. Moreover, it can be restored into
its source form, what means that modularity could be pro-
vided: having the binary module with definitions in extended
language one can add it to the project (in extended language
either) and use in an ordinary way.

Fig. 9 illustrates several concept definitions (in the left
column) and their translation to standard C# (in the right
column). Basic syntax of concepts is shown: concept decla-
rations (start with keyword concept), signature constraints,
signature constraints with default implementation (NotEqual
in CEquatible[T]), refinement (concept CComparable[T] re-
fines CEquatible[T], i.e. it includes all requirements of re-
fined concept and adds some new ones), associated types
(Data in CTransferFunction[TF]), multi-type concept COb-

serverPattern[O, S], nested concept requirements (CSemi-
lattice[Data] in CTransferFunction[TF]).

Concepts are translated to generic classes. Function signa-
tures are translated to abstract or virtual (if implementation is
provided) class methods. Concept parameters and associated
types are represented by type parameters (marked with at-
tributes) of a generic abstract class as well as nested concept
requirements. For instance, CSemilattice_Data type param-
eter of CTransferFunction<> denotes CSemilattice[Data]

concept requirement because this parameter is attributed with
[IsNestedConceptReq], corresponding subtype constraint be-
ing in a where-clause.

Some examples of generic code with concept constraints are
presented in the left column of Fig. 10. Concept requirements
can be used with alias (as CComparable[T] in the class of
binary search tree). Note that a singular definition of generic
component is sufficient. Translated generic code (in the right

static bool Contains<T>(T x, IEnumerable<T> values)
where CEquatible[T] { ... }

static void TestContains
{

Rational[] nums = ...;
var hasNumer5 = Contains[model CEquatible[Rational] {

bool Equal(Rational x, Rational y)
{ return x.Num == y.Num; }

}](new Rational(5), nums);
}

Fig. 12. Anonymous model example

Feature G C++ C#ext JGI Scl C#cpt

multi-type constraints + + ±1 + +2 +
associated types + + + – + +
same-type constraints + + + – + +
subtype constraints – – + + + +
retroactive modeling + + ±1 + +3 +
multiple models + – ±1 – + +
anonymous models – – – – +3 +
concept-based overloading + + – – ±4 –
constraints-compatibility + + – + – +

“C#ext” means C# with associated types [1].
“Scl” means Scala [9].
“C#ext” means C# with concepts.
1partially supported via “concept pattern”
2supported via “concept pattern”
3supported via “concept pattern” and implicits
4partially supported by prioritized overlapping implicits

Fig. 13. Comparison of “concepts” designs

column) demonstrates significant property of translation: con-
cept requirements are translated into extra type parameters
instead of extra method and constructor parameters (as it is
in Scala and G [16]). Therefore, constraints-compatibility can
be checked at compile time, methods and objects being saved
from unnecessary arguments and fields.

Fig. 11 presents the model of concept CComparable[] for
class Rational of rational number. It is translated to derived
class CComparable_Rational_Def of CComparable<Rational>
and then used as the second type argument of generic instance
BST<,>. Fig. 12 demonstrates using of anonymous model to
find a number with a numerator equal to 5.

V. CONCLUSION AND FUTURE WORK

Many problems of C# and Java generics seem to be well
understood now. Investigating generics and several approaches
to revising OO interfaces, we faced with some pitfalls of these
solutions which were not considered yet.

1) Recursive constraints used to solve the binary method
problem appear to be rather complex and often do not
correspond a semantics assumed by a programmer.

2) The “concept pattern” breaks constraints-compatibility.
3) Using interfaces both as types and constraints on generic

type parameters leads to awkward programs with low
understandability.

To solve problems considered we proposed to extend C#
language with the new language construct — concepts. Keep-
ing interfaces untouched, concept mechanism provides much
better support of the features crucial for generic program-
ming [1]. The support of these features in C# with concepts

21 of 174

concept CEquatible[T]
{ bool Equal(T x, T y); // function signature

// function signature with default implementation
bool NotEqual(T x, T y) { return !Equal(x, y); }

}
// refining concept
concept CComparable[T] refines CEquatible[T]
{ int Compare(T x, T y);

// overrides Equal from refined concept CEquatible[T]
override bool Equal(T x, T y) { ... }

}
concept CTransferFunction[TF]
{ type Data; // associated type

// nested concept requirement
require CSemilattice[Data];
Data Apply(TF trFun, Data d);
TF Compose(TF trFun1, TF trFun2);

}

concept CObserverPattern[O, S]
{ void UpdateSubject(O obs, S subj);

ICollection<O> GetObservers(S subj);
void RegisterObserver(S subj, O obs)
{ GetObservers(subj).Add(obs); }
void NotifyObservers(S subj) { ... }

}

[Concept] abstract class CEquatible<[IsConceptParam]T>
{ public abstract bool Equal(T x, T y);

public virtual bool NotEqual(T x, T y)
{ return !this.Equal(x, y); }

}
[Concept] abstract class CComparable<[IsConceptParam]T>

: CEquatible<T>
{ public abstract int Compare(T x, T y);

public override bool Equal(T x, T y) { ... }
}
[Concept] abstract class CTransferFunction<

[IsConceptParam]TF, [IsAssocType]Data,
[IsNestedConceptReq]CSemilattice_Data>

where CSemilattice_Data : CSemilattice<Data>, new()
{ public abstract Data Apply(TF trFun, Data d);

public abstract TF Compose(TF trFun1, TF trFun2);
}

[Concept] abstract class CObserverPattern<
[IsConceptParam]O, [IsConceptParam]S>

{ public abstract void UpdateSubject(O obs, S subj);
public abstract ICollection<O> GetObservers(S subj);
public virtual void RegisterObserver(S subj, O obs)
{ GetObservers(subj).Add(obs); }
public virtual void NotifyObservers(S subj) { ... }

}

Fig. 9. Concept examples and their translation to basic C#

static void Sort<T>(T[] values)
where CComparable[T] { ... }

class BinarySearchTree<T>
// concept requirement with alias
where CComparable[T] using cCmp

{
private BinTreeNode<T> root;
...
private bool AddAux(T x, ref BinTreeNode<T> root)
{

...
// reference to concept by alias
if (cCmp.Equal(x, root.data)) return false;

...
}

[GenericFun] static void Sort<[IsGenericParam]T,
[IsRequireConceptParam]CComparable_T>(T[] values)

where CComparable_T : CComparable<T>, new() { ... }

[GenericClass] [ConceptAlias("CComparable_T", "cCmp")]
class BinarySearchTree<[IsGenericParam]T,
[IsRequireConceptParam]CComparable_T>

where CComparable_T : CComparable<T>, new()
{ private BinTreeNode<T> root;

...
private bool AddAux(T x, ref BinTreeNode<T> root)
{ ...

CComparable_T cCmp =
ConceptSingleton<CComparable_T>.Instance;

if (cCmp.Equal(x, root.data)) return false;
...

}

Fig. 10. Generic code and its translation to basic C#

// class for rational number with properties
// Num for numenator and Denom for denominator
class Rational { ... }
model CComparable[Rational]
{

bool Equal(Rational x, Rational y)
{ return (x.Num == y.Num) && (x.Denom == y.Denom); }
int Compare(Rational x, Rational y) { ... }

}
...

BST<Rational> rations = new BST<Rational>(); // *

class Rational { ... }
[ExplicitModel] class CComparable_Rational_Def

: CComparable<Rational>
{

public override bool Equal(Rational x, Rational y)
{ return (x.Num == y.Num) && (x.Denom == y.Denom); }
public override int Compare(Rational x, Rational y){...}

}
...

BST<Rational, CComparable_Rational_Def> rations // *
= new BST<Rational, CComparable_Rational_Def>();

* “BST” is used instead of “BinarySearchTree” for short.

Fig. 11. Model CComparable[Rational] and its translation to basic C#

extension and its comparison with some other generic mech-
anisms are presented in Fig. 13. The design of C# concepts is
rather similar to C++ concepts designs, but it supports subtype
and supertype constraints.

We also suggested a novel way of concepts translation: in
contrast to G concepts [16] and Scala “concept pattern” [9], C#
concept requirements are translated to type parameters instead
of object parameters; this lowers the run-time expenses on
passing extra objects to methods and classes.

Much further investigation is to be fulfilled. First of all,
type safety of C# concepts has to be formally proved. The

design of concepts proposed seems to be rather expressive,
but it needs an approbation. So the next step is developing of
the tool for compiling a code in C# with concepts. Currently
we are working on formalization of translation from extended
language into standard C#.

ACKNOWLEDGMENT

The authors would like to thank the participants of the study
group on the foundations of programming languages Vitaly
Bragilevsky and Artem Pelenitsyn for discussions on topics
of type theory and concepts.

22 of 174

REFERENCES

[1] R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock, “An Extended
Comparative Study of Language Support for Generic Programming,” J.
Funct. Program., vol. 17, no. 2, pp. 145–205, Mar. 2007.

[2] B. Stroustrup and G. Dos Reis, “Concepts — Design Choices for Tem-
plate Argument Checking,” C++ Standards Committee Papers, Technical
Report N1522=03-0105, ISO/IEC JTC1/SC22/WG21, October 2003.

[3] G. Dos Reis and B. Stroustrup, “Specifying c++ concepts,” in Con-
ference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’06. New York,
NY, USA: ACM, 2006, pp. 295–308.

[4] M. H. Austern, Generic Programming and the STL: Using and Extending
the C++ Standard Template Library. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1998.

[5] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lums-
daine, “Concepts: Linguistic Support for Generic Programming in C++,”
in Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’06. New York, NY, USA: ACM, 2006, pp. 291–310.

[6] B. Stroustrup and A. Sutton, “A Concept Design for the STL,” C++ Stan-
dards Committee Papers, Technical Report N3351=12-0041, ISO/IEC
JTC1/SC22/WG21, January 2012.

[7] J.-P. Bernardy, P. Jansson, M. Zalewski, S. Schupp, and A. Priesnitz, “A
Comparison of C++ Concepts and Haskell Type Classes,” in Proceedings
of the ACM SIGPLAN Workshop on Generic Programming, ser. WGP
’08. New York, NY, USA: ACM, 2008, pp. 37–48.

[8] “System.Array.Sort(T) Method,” URL: http://msdn.microsoft.
com/library/system.array.sort.aspx.

[9] B. C. Oliveira, A. Moors, and M. Odersky, “Type Classes As Objects
and Implicits,” in Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, ser.
OOPSLA ’10. New York, NY, USA: ACM, 2010, pp. 341–360.

[10] S. Wehr, R. Lmmel, and P. Thiemann, “JavaGI: Generalized Interfaces
for Java,” in ECOOP 2007 Object-Oriented Programming, ser. Lecture
Notes in Computer Science, E. Ernst, Ed., vol. 4609. Springer Berlin
Heidelberg, 2007, pp. 347–372.

[11] B. Greenman, F. Muehlboeck, and R. Tate, “Getting F-bounded Poly-
morphism into Shape,” in Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’14. New York, NY, USA: ACM, 2014, pp. 89–99.

[12] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006, ch. Code Optimization.

[13] E. Ernst, “Family Polymorphism,” in Proceedings of the 15th European
Conference on Object-Oriented Programming, ser. ECOOP ’01. Lon-
don, UK, UK: Springer-Verlag, 2001, pp. 303–326.

[14] J. Järvi, J. Willcock, and A. Lumsdaine, “Associated Types and Con-
straint Propagation for Mainstream Object-oriented Generics,” in Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, ser.
OOPSLA ’05. New York, NY, USA: ACM, 2005, pp. 1–19.

[15] The Boost Graph Library: User Guide and Reference Manual. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[16] J. G. Siek, “A Language for Generic Programming,” Ph.D. dissertation,
Indianapolis, IN, USA, 2005, aAI3183499.

[17] “TreeSet[A] Class,” URL: http://www.scala-lang.org/api/current/
#scala.collection.mutable.TreeSet.

23 of 174

http://msdn.microsoft.com/library/system.array.sort.aspx
http://msdn.microsoft.com/library/system.array.sort.aspx
http://www.scala-lang.org/api/current/#scala.collection.mutable.TreeSet
http://www.scala-lang.org/api/current/#scala.collection.mutable.TreeSet

Visual Parallel Programming as PaaS cloud service

with Graph-Symbolic Programming Technology

Darya Egorova

Software Systems Department, Information Science Faculty

Samara State Aerospace University (SSAU)

Samara, Russia

Victor Zhidchenko

Software Systems Department, Information Science Faculty

Samara State Aerospace University (SSAU)

Samara, Russia

vzhidchenko@yandex.ru

Abstract—In this paper we present the visual approach to

parallel programming provided by Graph-Symbolic

Programming Technology. The basics of this technology are

described as well as advantages and disadvantages of visual

parallel programming. The technology is being implemented as a

PaaS cloud service that provides the tools for creation, validation

and execution of parallel programs on cluster systems. The

current state of this work is also presented.

Keywords—parallel; programming; visual; graph; tool; cluster;

cloud

I. INTRODUCTION

Text is traditionally used for describing computer
programs. While programs are sequential, it is convenient to
express them as text, because the nature of text is sequential. A
sequence of letters comprises a word. A sequence of words
comprises a sentence. A sequence of sentences forms a text. An
order of letters in a word, an order of words in a sentence and
an order of sentences in a text are very important. Changing
any of them can substantially change the text, especially when
this text describes some computer program.

On the other hand, when a program is parallel, its text
representation becomes inconvenient. In parallel program you
want to see which parts of a program can run concurrently and
sequential text form can not show it. You have to imagine
interdependencies between different program parts and guess
possible combinations of their concurrent execution. When the
program is large you have to scroll it up and down to see the
parts which actually can run concurrently.

This is where a graphical representation can help. A
graphical or visual form is usually bidirectional, so you can
easily distinguish sequential and parallel parts of a program.
Another important factor is that visual representation is more
suitable for human comprehension then a text. When you want
to explain something you often get a piece of paper and begin
to draw a scheme. The drawing is usually more explanative
than a text, it is more compact and is easier to remember.

There is also a substantial disadvantage in using graphics
for parallel programs representation. A parallel program often
consists of hundreds or thousands of threads or processes and
the actual number of them is may be unknown prior to
program’s execution. Moreover, the number of threads can

vary during execution. When you write such a program in the
text, it can be very compact. The clarity still suffers but due to
the compactness it is quite easy to imagine the threads
structure. Trying to depict such program graphically leads to
more complex representation of it. As you can not display
thousands of threads on one picture, you have to replace them
with some abstract graphics structure. The clarity suffers as
well as in the case of the text. So instead of the intuitively clear
picture you get some abstraction which is less compact than
text and whose usability depends on the chosen abstract form.

There are many ways the visual means are used in
programming. Most of them are auxiliary to the "traditional"
text programming as they help to perform some particular tasks
like building class diagrams, dependency graphs or trace logs.
Natural visual programming is provided by visual
programming languages. Most of them represent a program as
a graph which consists of nodes connected to each other by
some links (directed or undirected). Depending on the meaning
of nodes and links there are many different approaches to
represent a program which can be split into several sets:

• UML diagrams [1]

• Domain-specific Visual Languages

• Petri Nets

• Finite-state and Automata-based Programming [2]

• Data Flow Diagrams

• Control Flow Diagrams

In this paper we describe the present results of the work
carried out during several years in Samara State Aerospace
University (SSAU) in developing methods and tools for visual
parallel programming. We use as a basis the visual
programming technology for sequential programming, which is
called Graph-Symbolic Programming Technology (GSP-
technology) also developed in SSAU [3]. We have extended
this technology to describe parallel programs and have evolved
it through several desktop versions to development
environment working with computing cluster. Today we are
working on migrating this technology to the cloud and making
PaaS service for visual parallel programming. The results of
our work have been used as methods and tools of parallel

24 of 174

programming in the education process in SSAU and in research
activity in the area of numerical analysis.

II. THE BASICS OF GRAPH-SYMBOLIC PROGRAMMING

TECHNOLOGY

GSP-technology represents the program as a graph. The
nodes of this graph are little programs (modules), which
perform simple operations on variables of project domain. The
set of variables form a data dictionary.

The nodes are connected with links. The links show the
flow of control between the nodes. Every link is provided with
the predicate – a logic condition, which permits or denies the
flow of control by this link. This condition is a logical function,
defined on variables from the data dictionary.

There are situations, when several links going from one
node have a true predicate. To resolve this issue, each link has
a priority. The link with the highest priority defines the flow of
control.

A graph may contain another graph as a node – so, the
program is a graph hierarchy. Fig. 1 shows an example graph
that solves quadratic equations.

Fig. 1. Graph of a program for solving quadratic equations

The benefits of GSP are:

• Clear and compact representation of the control flow in
a program.

• Elimination of many programming errors as graphic
representation is very simple for a human and helps to
see many logic errors and inconsistencies.

• Simplicity of the program modification.

• Automatic data flow between the nodes. A
programmer is protected from making an error on this
stage.

• The program structure is stored into a database. It helps
to perform many automatic tasks, such as graph
structure verification, measuring of graph complexity,

automatic control of graph hierarchy consistency,
automatic testing and convenient debugging of
programs, automatic creating of program
documentation.

Being sequential by default, the GSP-technology was
further developed for creating parallel programs. GSP graphic
representation of programs helps to solve main parallel
programming problems:

• Program's visualization.

• Complexity of the interprocess synchronization.

Many tasks have explicit parallelism. The trivial example is
determination of real roots of a quadratic equation. GSP
graphic representation is very suitable for such tasks. You can
simply draw two (or several) parallel branches instead of
thinking how to put in order different tasks and how to
represent them in a convenient manner.

The graphic language of GSP-technology is expanded with
two types of links:

• The parallel link (a link that shows the beginning of a
parallel branch) is labeled with the circle in the
beginning.

• The terminating link (a link which determines the end
of a parallel branch) is labeled with inclined segment.

The program is divided into several processes, which can
be performed in parallel. Each process is represented as a
separate branch - a set of nodes interconnected with ordinary
links and executed sequentially. The number of branches is
unlimited. It is forbidden to connect two nodes from different
branches.

All branches operate on the same set of data defined in data
dictionary. Sometimes, for the purposes of performance
optimization and convenience, it is necessary to define local
copies of the same data for each parallel branch. It is
accomplished by setting the flag "local" for the corresponding
variable in data dictionary. The variables with "local" flag set
are created in each process separately during execution.

Synchronization is accomplished with a semaphore
technique. A special “synchronization graph” is constructed
together with the main program graph. The nodes remain
unchanged while the links represent nodes interdependences. A
link, drawn from Node1 to Node2, means, that Node2’s
execution depends on Node1’s state. Transmitting of Nodes’
state is made by means of messages.

Lc = [C
k
i0,j0, C

k
i1,j1, … C

k
im,jr] is a Message list, where C

k
i,j is

a message with the number k, sent to Nodei from Nodej.

If Lc contains Ci,j, then Nodei informs Nodej about the
finish of its execution.

Every node checks messages addressed to it, before
execution. A special semaphore predicate is evaluated on these
messages. In accordance with the previous example:

Rj = f(C
k
i0,j, C

k
i1,j, …, C

k
im,j) is a semaphore predicate of

Nodej. Rj is a logical function. If Rj = TRUE, then Nodej starts
execution, in other case it waits for the truth of Rj.

25 of 174

If all data in a program are independent and there is no need
to synchronize parallel branches, the synchronization graph
becomes unnecessary and is not built. When it is necessary to
synchronize some parts of parallel branches, the user draws
synchronization links between the corresponding nodes
depicting the sources and targets of synchronization messages.
The rest of synchronization graph is implicit and is built
automatically.

The process of parallel program development in GSP-
technology includes the following steps:

• Data dictionary setup – determining types and variables,
needed to solve a problem.

• Modules generation. Modules are written in one of the
programming languages (C++ is now supported). They
are executed sequentially.

• Drawing the program graph.

• Predicates generation. Predicates are written as boolean
functions in the same programming language as
modules.

• Drawing the synchronization graph if necessary.

• Semaphore predicates generation for the nodes being
synchronized.

• Program compiling and building an executable file.

Fig. 2 shows an example of the graph of the parallel
program.

Fig. 2. Graph of a parralel program for global optimizaion

The programming environment of GSP-technology
comprises the visual editor for drawing of graphs and defining
data and modules, the graph compiler for generating C-source
files from graphs and the C-compiler for generating of
executable file. Execution environment of GSP-technology

uses Message Passing Interface (MPI) for parallel programs
execution. Programs generated with GSP-technology can work
on clusters and other systems with MPI support.

Each parallel branch is presented with dedicated MPI
process.

To emulate shared memory model in MPI environment, a
special memory manager is developed. It allocates memory for
data dictionary, initializes program’s variables, transmits data
to and from the processes and frees unused memory. Memory
manager is executed in dedicated MPI process. It is a program
that receives data requests from different processes and
reads/writes data to or from the memory. Memory manager
eliminates memory conflicts between processes.

The parallel program can contain many processes. When
there are hundreds or thousands of processes it is inconvenient
or just impossible to draw such number of parallel branches on
the graph. For such cases GSP-technology uses a special kind
of graph nodes called "multitop".

Multitop is represented as one node on the graph and has
three parameters associated with it: the module or graph being
executed with many processes, the number of parallel
processes (branches) represented by the multitop, and the name
of the variable which holds the sequence number of each
process generated by the multitop. The variable is used within
the multitop’s module or graph to define its actual function in
the same manner as the process rank is used in MPI.

Fig. 3 shows an example of the graph which uses multitops
to describe the program similar to that on the Fig. 2 running on
500 processes.

Fig. 3. Graph of a parralel program for global optimizaion with multitops

Large number of processes in parallel program is usually
used to perform some similar tasks on different independent
data without synchronization between the processes.
Representation of such tasks as a multitop seems to be a
tradeoff between the clarity and the compactness.

26 of 174

III. PRESENT STATE AND FUTURE DEVELOPMENT

For a long time the graph editor in GSP-technology was a
desktop application. It comprised graph compiler as a
component and was dependent on external C-compiler and
database management system (DBMS). This had led to the
difficulties in deployment of the system. To install the system
in some new location (for example in laboratory classes) one
should install the graph editor, then install and properly
configure an external C-compiler and DBMS. Using a cluster
as a target system for the programs built in GSP-technology
requested the direct access to the cluster through the SSH
protocol.

To make the use of the GSP-technology easier the web-
version of the graph editor was developed. The web-server and
DBMS were installed together on the same host and provided
remote access to the editor. The editor worked with the
database locally and had an SSH connection to the cluster. The
main disadvantage of such a system is that the web-interface
applies some restrictions to the editor making it less convenient
for the users than a desktop application.

Cloud computing has made it possible to combine the rich
interface capabilities of desktop graph editor with the
centralized management of the hole system for many users. We
are working on the development of the Platform as a Service
(PaaS) system which will provide visual parallel programming
with GSP-technology. PaaS system comprises one virtual
machine which hosts the web-server and database and has an
SSH connection to the cluster. Many virtual machines can also
be run in the same cloud environment each hosting the desktop
version of the graph editor. As the database is the same for the
web-based and desktop graph editors, it is possible to work on
the same project for the team of developers using both versions
of editors concurrently.

Some additions have been made to the desktop version of
the system. The registration and subsequent authorization of
the users running the desktop version was added. During the
logon process the user can see the status of other users
(online/offline or working with the same project as the current
user). All changes made by the user during the session are
logged to the database. It is necessary for producing the
snapshots - the states of the project development process when
some valuable results are achieved, for example, for saving the
intermediate working versions of the algorithm which is under
development. Another goal of user activity logging is to track
the changes made by different users and by the same user in
different versions of the system. With logging it is much easier
to remember what exactly you have changed while working
with the project from the other place (for example, from home)
or to understand (and also to explain) the changes made to the
graphic model of the program by some other person.

Visual programming can benefit from cloud computing as
it provides the capability of shared development that text
programming lacks. With text programming the basic tool of
team software development is version control system. The
concurrent editing of the same file with source code is
practically useless. The basic approach is the division of
project to smaller tasks, assigning them to different developers
and combining results with version control system. With visual

programming tool running in the cloud it becomes possible to
work on the same graph concurrently. Such shared work is
meaningful and can be convenient due to the compactness of
visual representation. Editing the same graph concurrently you
can easier develop the proper solution of a problem or find the
error in a program faster. The visual editing process is similar
to the process of discussing something, while graphically
illustrating the main ideas being discussed. The visual
programming in such implementation gains the features of the
visual modeling.

The main issues to resolve in PaaS visual programming
service being developed are the following: concurrent work of
several users with one project, versioning, compiling and
running parallel programs from the desktop virtual machines
on the cluster, optimization of the communication between the
system and the cluster.

There are also many tasks in the development of the GSP-
technology: dynamic processes creation in MPI programs
generated by GSP-technology, direct local data exchange
between the parallel branches, creation of graph compilers for
other parallel programming technologies like OpenMP and
CUDA, making interfaces with other programming languages,
technologies and libraries in order to leverage code reuse.

REFERENCES

[1] H. Gomaa, "Designing Concurrent, Distributed, and Real-Time
Applications with UML," Addison Wesley Object Technology Series,
Reading MA, 2000.

[2] N.I. Polikarpova, A.A. Shalyto "Automata-based programming," SPb.:
Piter, 2009 [� � � � � �Поликарпова Н. И., Шалыто А. А. Автоматное
программирование. СПб:Питер, 2008. – 167 с.]

[3] A.N. Kovartsev, V.V. Zhidchenko, D.A. Popova-Kovartseva, P.V.
Abolmasov "The basics of graph-symbolic programming technology,"
Proceedings of the Open semantic technologies for intelligent systems
(OSTIS-2013) III international conference, pp. 195-204, 2013
[Коварцев, А.Н. "Принципы построения технологии
графосимволического программирования" / А.Н. Коварцев, В.В.
Жидченко, Д.А. Попова-Коварцева, П.В. Аболмасов // Труды II
Международной научно-технической конференции «Открытые
семантические технологии проектирования интеллектуальных
систем». -2013. - C. 195-204.]

27 of 174

Procedures classification for optimizing strategy
assignment

Olga A. Chetverina
ZAO MCST

Moscow, Russia
Chetverina_o@mcst.ru

Abstract— Optimizing compilers make significant
contribution to the performance of modern computer systems.
Among them VLIW architecture processors are the most
compiler-dependent, since their performance is ensured by
effective compile time scheduling of multiple commands in a
single clock. This leads to an eventual complication of VLIW
compilers. Taking as an example optimizing compiler
developed for the Elbrus family processors, it runs
consequently over 300 stages of code optimization in basic
mode. Such an amount of stages is needed to obtain decent
performance, but it also makes compilation quite time
consuming. It turns out that the main reason for compilation
time increase when using high level compilation is applying
some aggressive unreversable code transformations, which
eventually leads to code size increase that is also unwanted. In
addition, there remains the problem of using a number of
optimizations that are useful for rare contexts. To reach the
objectives, namely increasing performance, decreasing
compilation time and code size, it is reasonable to choose an
appropriate strategy on an early compilation stage according
to some procedure specific characteristics. This paper
discusses the procedures classification problems for this task
and suggests several possible solutions.
 (Abstract)

Keywords—optimizing compiler, optimizing phases sequence,
performace tuning, reducing compilation time, procedures
classification

I. INTRODUCTION
To obtain decent performance modern optimizing

compilers apply a huge sequence of code transformations.
Usually compilers use a fixed optimization sequence for all
procedures according to optimization level (-O0, -O1, -O2, -
O3) and each optimization stage tries to improve performance
of available code segments using statistically proven heuristics
which leads to suboptimal results in most cases [1, 2]. In order
to achieve the best possible performance for a given program it
is important to find the most suitable optimization sequence for
each procedure. This could be done with iterative approaches,
which compile procedures in a given program using different
optimization sequences with either executing the resulting code
[3,4] or estimating the execution time [5] and choosing the best
one. Although both techniques achieve good performance
results on a number of tasks, their weak spots is a need of a

large compilation time which is not always acceptable and a
necessity to execute tasks on appropriate input data so that the
training runs would match the further execution in terms of
branch probabilities and code coverage. The importance and
difficulty of constructing a good training input data can be
demonstrated with profiling data that was collected using train
execution of the spec2000 benchmark [6] using Elbrus
compiler. It was found out for this benchmark that applying a
low-optimizing sequence to the procedures with zero train
profile data leads to a 6% performance degradation of CFP
tasks of spec2000 on average. The biggest decelerations
occurred on 179.art (-18%) and on 301.apsi (-47%), where the
reason for 301.apsi degradation is that one of its main
procedures never executes during train run. As for huge
applications it is often too difficult to generate good train data,
which will cover all important parts of code, moreover, for
some types of code like libraries or operational system it is
nearly impossible. Also it should be mentioned that in most
cases high compilation time corresponds with the resulting
code size growth, this happens because most time-consuming
phases including hyper-blocks construction, scheduling and
loop software pipelining are located in the end of optimization
line and the time they work corresponds with the size of the
intermediate code that was made as result of different
aggressive loop and acyclic transformations such as splitting,
peeling, tail duplication etc.

Earlier researches in the field of iterative compilers [7,8]
offer techniques that allow to construct a set of optimization
sequences that cover the given procedures space rather well. In
those works to minimize the needed execution time authors
choose a possibly small set of options or sequences that show
performance increase on most tests. To reach good
performance results with affordable compilation time and
resulting size of code and avoid the need of training executions
it is reasonable to try to choose a compilation sequence from
such a set on an early compilation stage using some
characteristics of the procedure. The main goal of this research
is to explore and construct the possible methods of procedures
classification that would allow to perform this objective.

First of all it would be shown that to make a good selection
of optimization sequences for a set of procedures using
characteristics a compilation quality functional is needed
(section 2). It would also be explained how to construct a
functional to take several factors into consideration, like
execution time, compilation time, resulting code size and other

28 of 174

possible limits. Then the task of predicting good sequences
selection for a given number of procedures would be
formulated in terms of minimizing constructed quality
functional (section 3). After a list of main existing methods of
classification and clusterizations would be described and given
a possible one that allows to solve the task. In section 4 some
experimental results would be provided.

II. COMPILATION QUALITY FUNCTIONAL

To make a statistical solution of procedures types selection
a large training set is needed. For this purpose all procedures
of spec2000 benchmark with a full input data were used. The
reason for this pack choice is that it is well balanced in terms
of different types of tasks and is used as a performance
benchmark for most high-performance computers. The steps
for solution is to choose the best sequences assignment for the
training set using full statistic on compilation, execution or
other important characteristics and then to make an attempt to
predict it using only procedures information available on early
compilation stage.

Any type of classification and clusterization methods
perform allocation of areas in parameters space, which are
then respectively called classes or clusters and could be used
to make some assignment of type, in our case an assignment
of optimization sequence. Using an example from Table1 it
could be easily seen that a need to construct a quality
functional comes up even when the only goal of classification
is to minimize execution time.

TABLE I. EXAMPLE OF SEQUENCE CHOICE

 Sequence 1 time Sequence 2 time Best sequence
 Procedure 1 100 50 2
 Procedure 2 95 100 1
 Procedure 3 100 105 1
 Sum time 295 255 2

Suppose there are 3 procedures that hit the same area in
parameters space, in the shown example the best sequence
choice for 2 out of 3 procedures would lead to decrease of
performance both in sum and on average. It could be assumed
that procedures with different optimal sequences should be in
different areas but actually this assumption is wrong because
even the same procedure with different input data could lead
to different best choices results. This means that there is a
need to construct a numerical evaluation method that would
qualify the sequences assignments on the whole set of
procedures. The most common technique to formalize the
understanding of the best choice is to construct a functional,
which reaches minimum at decision point. In this case the
domain for such functional is an assignment space for
procedures:

𝑃 = {𝑝!,… 𝑝!} – all procedures in a set

𝐿 = {𝑙!,… 𝑙!} – the list of optimization sequences,

𝐹(𝑙(𝑝!),… 𝑙(𝑝!))→ 𝑅 – a functional defined on the space
𝐿!, where 𝑙:𝑃 → 𝐿

To minimize the execution time the following functionals
could be chosen:

𝑒𝑥𝑒(𝑝! , 𝑙 𝑝!) - execution time of procedure 𝑝! when compiled
using 𝑙(𝑝!) sequence, then

𝐹 𝑙 𝑝! ,… 𝑙 𝑝! = 𝑒𝑥𝑒 𝑝! , 𝑙(𝑝!) ! (1)

𝐹 𝑙 𝑝! ,… 𝑙 𝑝! = 𝑒𝑥𝑒 𝑝! , 𝑙(𝑝!)! (2)

A functional that considers not only the execution time,
but also compilation time could be constructed:

𝑐𝑜𝑚𝑝(𝑝! , 𝑙 𝑝!) - compilation time of procedure 𝑝! when
compiled using 𝑙(𝑝!) sequence

𝐹 𝑙 𝑝! ,… 𝑙 𝑝! =

𝑒𝑥𝑒 𝑝! , 𝑙(𝑝!)!
! 𝑐𝑜𝑚𝑝 𝑝! , 𝑙(𝑝!)! (3)

This functional describes the acceptable ratio of performance
loss and compilation gain, larger values of “r” mean higher
importance of performance over compilation. Though even
with infinite value of r compilation could be reduced in case if
2 sequences produce the same code in terms of execution time.
Other important limitation as code size could be introduced
into quality functional similarly.

III. FUNCTIONAL MINIMIZING CLASSIFICATION
Suppose a quality functional was already chosen, then

classification task could be formulated in the following terms:

𝑃 = {𝑝!,… 𝑝!} – all procedures in a set
𝐿 = {𝑙!,… 𝑙!} – the list of optimization sequences,
𝐻– the space of procedures characteristics
𝐶ℎ:𝑃 → 𝐻 – assignment of characteristic vector for
procedures
𝐹(𝑙(𝑝!),… 𝑙(𝑝!))→ 𝑅 is defined on the space 𝐿!, where
𝑙:𝑃 → 𝐿

Then the classification is an allocation of areas S in the space
H with a sequence vector in L that produces a constant
assignment for each area S, that is:

∀𝑆 𝑙 𝐶ℎ!! 𝑆 = 𝑐𝑜𝑛𝑠𝑡

The goal is to make a classification (with some minimal
number of training elements in the area = q), that minimizes
the given functional:

𝐹 𝑙 𝑝! ,… 𝑙 𝑝! → 𝑚𝑖𝑛 (4)

To substantiate the statistical approach it is reasonable to
require for each procedure 𝑝! having a locality 𝐷 in
characteristic space containing at least 𝑞 points for which

29 of 174

 𝐻 𝑝 = 𝑙 𝑝! , 𝑝 ∈ 𝐷
𝑑𝑒𝑓𝑎𝑙𝑡, 𝑝 ∉ 𝐷 (5)

 𝐹 𝐻 𝑝! ,…𝐻 𝑝! ≤ 𝐹(𝑑𝑒𝑓𝑎𝑢𝑙𝑡,… 𝑑𝑒𝑓𝑎𝑢𝑙𝑡)

A. Procedures characteristics

As was mentioned earlier the major use of such early
compilation stage sequence prediction is expected on codes
that for some cases are not suitable for training execution. So
the goal is to choose a number of characteristics that work
well enough to predict a good optimization sequence and do
not depend on precise profile information. To choose the best
set different characteristics were considered and using
correlation matrix the most valuable were picked and
normalized. The best characteristics that were found to predict
the optimal compilation sequence with no train profiling
information are:

• number of operations in the procedure;

• average node size, which in some sense stand for the
branch frequency;

• number of call operations;

• maximum loop level in a procedure;

• average operation counter, which could also be
considered as procedure density;

• percentage of operation of field reads;

• percentage of operations with floating point;

• percentage of operations that calculate an address for a
read.

Most of those are profiling data independent, though the
average operation counter is not. In case of no train profile
information Elbrus compiler uses a predicted profiling based
on statistical information. It was found to be good enough to
use this static profiling for classification.

B. Ideal theoretical solultion

First of all for the given training space that includes all
characteristics, which are used in quality functional, an optimal
solution that stands for the minimum functional point could be
calculated. For the chosen functional (3) and the considered
lines finding the minimum required making about 2*n steps of
gradient descent, that is 2*n steps, where on each we make a
change of a coordinate in assignment vector that gives the
maximum functional value decrease. To check the stability of
the resulting vector in 𝐿! several starting points with the
constant assignment of each line for all set of procedures were
used. The solution is a vector with n coordinates where n is the
number of procedures in the training set:

 𝑙!! , 𝑙!! … 𝑙!! (6)

Sequence vector (6) would be called the optimal theoretical
vector of sequences for procedures P, where 𝑙!! is the optimal
theoretical sequence for procedure 𝑝!. It should be noted that

𝑙!! would not always afford the best performance or
performance with compile time result on procedure 𝑝!. It is
optimal only in sense of the whole set of considered
procedures, which is due to functional minimum.

As it would be shown in experimental section solution (6)
doesn’t always lead to best results on a real run when assigning
the corresponding compilation sequences for all procedures in
program, and therefore it is declared theoretical. This occurs
because statistical information for each procedure is collected
with simultaneous sequences assignment for other procedures
in the program, modification of those procedures sometimes
leads to other memory usage interaction and as a result to
different execution time. The only way to completely avoid this
effect is to collect statistical information for all possible
configurations, which is not feasible and even to be partially
used requires availability of information for all additionally
executable procedures to make the right choice for the given
one. Therefore, it was decided to drop out this fact in the
currently constructed solution, though keep it in consideration
for future researches in case of –fwhole-program compilation
mode.

C. Existing classification and clusterization methods

Unlike to methods of clusterization [9] in this situation it is
impossible to construct a metric that would determine the
valuable in terms of our needs distance between procedures.
The reason is that the distance between couples of procedures
would depend on the other procedures in same cluster. For this
case the clusterization methods allow to selects areas
according to only characteristic metrics, but it is possible only
with appropriate characteristics normalization. The uniform
normalization by itself works out bad for this task, thought
probably some techniques that use functional value movement
with characteristic change could be developed.

Classification methods (support vector machine - SVM,
Bayesian network) don’t require to construct a metric that
would divide classes. But as was mentioned before it is not
enough to increase the possibility of picking the best sequence
when using procedures characteristics for prediction. Though
in the first attempt to make a classification solution a Bayesian
network [10] has been tried. Although it showed a high
percent of an optimal sequence prediction (above 95%) the
resulting execution time of training tasks set increased by 21%
on average. It was found out that the most frequently optimal
sequence reduced the performance of some weighty
procedures, which required a number of aggressive
transformations to achieve acceptable performance. Due to
this reason even a small percent of mistakes leaded to
unacceptable result. Other considered methods have the same
problem - the maximum that they allow is to add a weight to
the mistake when choosing the wrong solution, which in our
case means not optimal, but they don’t differ the value of a
mistake.

30 of 174

D. Procedures classification

To solve this problem a cluster error minimization
algorithm was developed. First we construct the full error
table. For each sequence 𝑙!! and for each procedure 𝑝! the
minimization error is the following

𝑒𝑟𝑟 𝑝! , 𝑙!! = log (𝐹 𝑙!! … 𝑙!! … 𝑙!! /𝐹 𝑙!! , 𝑙!! … 𝑙!!)(7)

For optimal sequence of procedure 𝑝! functional

𝐹 𝑙!! … 𝑙!! … 𝑙!! = 𝐹 𝑙!! , 𝑙!! … 𝑙!! ,

so error (7) is zero for the optimal sequence and could be zero
or positive for the other sequences.

The main idea is to allocate on each step an area with new
sequence assignment that would give a good functional value
decrease comparing to the current. Which in terms of
calculated errors would mean minimizing the summary error.

The clusters construction:

• Start.
• Assign the default sequence for each

procedure. Calculate sum error W for all procedures.
• Repeat:
Choose not marked procedure p with maximum

current error and the optimal sequence 𝑙!!.
Calculate the distances to all characteristics borders.

Calculate sum error for all space with 𝑙!!.
Define it as a current cluster.

• Repeat for each characteristic:
• Repeat until cluster size ≥ 𝑞 and the

calculated error decrease: with coefficient
𝑡! < 1.0 decrease the distance to one of the
borders of the cluster

• Repeat until the calculated error decrease:
with coefficient 𝑡! < 1.0 increase the distance to
one of the borders of the cluster

Accept the cluster if it decreases error by 𝑑𝑊 ≥ 𝑡! ∗
𝑊. Mark the starting procedure with the flag.

• End.

The constructed areas are 𝑞 − 𝑑𝑖𝑚𝑒𝑠𝑖𝑜𝑛𝑎𝑙 rectangles and
could intersect. To choose the sequence for a procedure with
the set of constructed cluster borders we take the sequence that
corresponds with the last cluster that procedure belongs to.
Parameters 𝑡!, 𝑡!, 𝑡! are heuristically chosen so borders
movement would capture enough procedures to get more
precise direction of error change.

Classes’ construction can be started with any sequence; in
proposed algorithm the default sequence was chosen because
it is optimal on average. Also was made an attempt to start
cluster construction with all procedures and choose the one
that gives the highest minimization of functional value.

The received clusters with both attempts are very similar,
though the last one is much more time-consuming. The other
variant that was tested is the binary search of boundaries. This
gave also a close result, and this mechanism could be assumed
preferable because of no border parameters need.

The possible weakness of proposed classification is the
absence of functional monotony by parameter coordinates; this
could lead to inaccurate border calculation. Parameters t1, t2
or binary search of boundaries should reduce this effect
because in both cases first steps in parameter space are big in
terms of considered procedures number thus are statistically
proven. One more limitation of constructed classes is that
they are 𝑞 − 𝑑𝑖𝑚𝑒𝑠𝑖𝑜𝑛𝑎𝑙 rectangles, though with the allowed
intersection could actually take other forms. This could
perform less accurate area selection but further significantly
reduces required time for compiler to compute the proper class
for a procedure.

IV. EXPERIMENTAL RESULTS

The proposed clusterization was implemented in Elbrus
compiler. As the training set 9183 procedures of spec2000
benchmark were used. The whole amount of procedures in the
given pack is much greater but it was possible to use only the
procedures with a measurable execution time. In all cases the
clusterization was constructed using full information on
execution and compilation time corresponding with each
sequence assignment to each procedure, then the solver, that
computes procedures characteristics on early compilation stage
and chooses the cluster according to calculated borders, was
developed in the compiler. The assignment takes place in the
end of interprocedural compilation stage, thus the time required
for the sequences selection is included in whole task
compilation time and is counted in the recieved compilation
speedup.

As was already explained, the effectiveness of sequences
assignment depends not on the highest probability of choosing
the best line for procedure alone but on integral characteristic
for the whole set. So to show the quality of constructed
clusterization it is reasonable to consider all the tasks and not
procedures separately. For this purpose results of implementing
sequences assigned by optimal and clusterization selections
were compared on whole spec2000 benchmark tasks. In this
case we used functional that minimizes only performance time

Figure 1. Optimal and cluster solution, spec2000, 7 clusters

31 of 174

(1) and constructed 7 clusters. The result is shown on Figure 1.
As it was already discussed in section III “Ideal theoretical
solution” the optimal solution for the tasks was combined of
optimal theoretical sequence for each procedure. It was noted
that because of the memory interaction some tasks, for
example, 200.sixtrack, slowed down even with applying this
optimal solution. As the result the real measure of optimal
solution gained almost 5% less performance increase than it
was supposed to be according to theoretical calculations. The
same comparison with functional (3) – considering both
execution and compilation time yielded worse clusterization
results, it occurred mainly because a large amount of
procedures are not executed and optimal solution gave much
better compilation time results on them.

When using functional (3) most effect was achieved after
constructing first 5 clusters. The corresponding sequence
assignment for those clusters reduced compilation time by 17%
on average and increased performance by 8.5% on the training
set. Figure 2 shows the improvement obtained on certain tasks
of spec2000 benchmark. As a test pack for the clusterization
spec95 [6] benchmark was used. The execution and
compilation result for this pack is shown on Figure 3. The
average increase of performance reached 3% and the average
compilation time decrease was over 16%.

Measured results prove effectiveness of classification
algorithm, though due to the absence of functional coordinate
monotony it is not proved that the best possible solution is
received. Another question is the quality of available
procedures characteristics choice, which showed to be good
enough for the considered set of compilation sequences but
could appear not to be representative to make quality selection
from different set of sequences.

V. FUTURE WORKS
Results presented in experimental section show the

possibility of good sequence prediction using classification
methods. But some questions should be cleared and researches

to be done. First, it could be possible to make hierarchical
clustering if inserting some metric that would allow to avoid
problems with sporadic points that give inaccurate values for
some reasons, this could allow better cluster borders
calculation. Another question is how to construct the best
training set in sense of avoiding procedures execution
interaction. As it can be seen on Figure 1 the execution
profiling of the whole task with one sequence can lead to errors
in future procedure sequence selection. Also it could be more
effective to combine sequences construction with some
estimation of future prediction possibility using available
procedures characteristics. Finally, there could be done some
researches on ascertainment if the found procedure
characteristics are good enough to provide maximum possible
potential in best classes allocation.

VI. CONCLUSION

This paper introduces problems that come up on the way to
develop automatic optimizing sequence selector that provides
performance increase and reduces the needed compilation time
for each procedure. Necessity of a quality functional on the
space of all possible assignment is explained. Also it should be
mentioned that such functional could include any possible
limitations besides compilation and execution, in some cases it
could be valuable to limit code size increasing or reduce the
number of registers that are allowed for code planning. The
last limit could be useful to lower register spill fill blocking
between the calls and returns from large procedures.

An effective algorithm that can be used to select clusters in
the procedures characteristics space is suggested.

The classification methods were implemented in Elbrus
compiler. It was shown that a good optimization sequence
could be chosen even when it is impossible to execute the
code and no train profiling information is available. The
results were achieved and introduced using spec2000 and
spec95 benchmarks.

Figure 2. spec2000 no train execution, 5 clusters

Figure 3. spec95 no train execution, out of train set, 5 clusters

32 of 174

REFERENCES

[1] Kulkarni., W.Zhao, H.Moon, et al. “Finding Effective Optimization

Phase Sequence”, [A]. Proc. of ACM SIGPLAN 2003 Conference on
Languages, Compilers and Tools for Embedded Systems, US:2003.

[2] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, David
I. August. “Compiler optimization-space exploration. Proceedings of the
international symposium on Code generation and optimization:
feedback-directed and runtime optimization”, March 23-26, 2003, San
Francisco, California.

[3] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven
Reeves, Devika Subramanian, Linda Torczon, Todd Waterman.
“ACME: adaptive compilation made efficient”, LCTES '05 Proceedings
of the 2005 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, Pages 69 – 77

[4] Prasad A. Kulkarni , David B. Whalley , Gary S. Tyson, “Evaluating
Heuristic Optimization Phase Order Search Algorithms”, Proceedings of
the International Symposium on Code Generation and Optimization,
p.157-169, March 11-14, 2007

[5] Prasad A. Kulkarni, Michael R. Jantz, David B. Whalley, “Improving
both the performance benefits and speed of optimization phase sequence
searches”, LCTES '10 Proceedings of the ACM SIGPLAN/SIGBED
2010 conference on Languages, compilers, and tools for embedded
systems , April 2010

[6] Standard Performance Evaluation Corporation, http://www.spec.org/
[7] Suresh Purini, Lakshya Jain. “Finding good optimization sequences

covering program space”. Transactions on Architecture and Code
Optimization (TACO), January 2013.

[8] M. Haneda , P. M. W. Knijnenburg , H. A. G. Wijshoff, “Generating
new general compiler optimization settings”, Proceedings of the 19th
annual international conference on Supercomputing, June 20-22, 2005,
Cambridge, Massachusetts

[9] Jain, Murty and Flynn: “Data Clustering: A Review”, ACM Comp.
Surv., 1999.

[10] Judea Pearl, Stuart Russell. “Bayesian Networks”. UCLA Cognitive
Systems Laboratory, Technical Report (R-277), November 2000.

33 of 174

Towards Finding Several Bugs at Once by CEGAR

Vitaly Mordan
Institute for System Programming

Russian Academy of Sciences
Moscow, Russia

mordan@ispras.ru

Vadim Mutilin
Institute for System Programming

Russian Academy of Sciences
Moscow, Russia

mutilin@ispras.ru

Abstract — Every program should meet a lot of requirements.
In order to prove programs correctness, static verifiers, which
are based on Counterexample Guided Abstraction Refinement
(CEGAR), check programs against each requirement separately,
since in general case checking of one requirement may interfere
with another. In that case a lot of resources is wasted, since
similar actions are performed during checking of different
requirements, such as construction of abstraction of the program
in CEGAR. The paper suggests preliminary ideas of CEGAR
approach modifications, which are aimed at checking programs
against several requirements at once, taking into account that
every program may contain several bugs violating the same
requirement. The suggested CEGAR modifications potentially
can significantly reduce total verification time and get the same
results as basic CEGAR.

Keywords — static verification, counterexample guided
abstraction refinement, bug, requirement.

I. INTRODUCTION

Static verification is a formal means of checking program
source code without its execution by exploring all possible
program paths [1]. The main benefit of static verification is that
it aims at proving correctness of the software instead of simply
finding frequent bugs. The main disadvantage, which makes it
much less applicable in practice, is a large amount of required
resources (such as processor time and memory), especially for
large software systems.

The other part of the problem is that every single program
in a big software system may contain any number of different
bugs. In order to find them with help of static verification, all
specified requirements to a program must be checked. This
obstacle further increases required resources for the
verification process.

Let us consider an example, based on using of static
verification in practice. Linux Driver Verification Tools (LDV
Tools) are an open source toolset for checking correctness of
Linux kernel modules against rule specifications
(requirements) with help of different static verifiers [2]. It has
already helped to find more than 190 bugs in Linux kernel
modules [3]. The process of verification of all Linux kernel
modules with help of LDV Tools against a single rule
specification with static verifiers BLAST [4] or CPAchecker
[5] takes about 2 days. But the number of those rule
specifications is more than 50 and more are under
development. That is why only the major releases of Linux

kernel are checked with help of LDV Tools and only against a
few selected rule specifications.

This paper presents some ideas of new verification method,
which potentially can significantly reduce required time even if
the number of requirements to be checked is growing. Multi-
Aspect Verification is aimed at checking more than one
requirement (or aspect) at once. The main demand to this
method is to prove correctness of the program against
requirements and to find their violations as CEGAR approach,
but faster. Also this method should consider that each specified
requirement may be violated more than once. The suggested
method will be implemented and the experiments will be
conducted in order to evaluate it, corresponding results are
going to be published later.

Next section describes basic static verification approach
and definitions, which are used in the paper. Section III
presents existing extensions of basic static verification
approach. In section IV the main ideas of Multi-Aspect
Verification are suggested.

II. BACKGROUND

One of the most scalable static verification approach is
Counterexample Guided Abstraction Refinement
(CEGAR), which was demonstrated in Competition on
Software Verification (SV-COMP) [6-7]. We took CEGAR as
a basis for our static verification technique.

A. Aspect definition

Aspect is a formal representation of checked requirement
to the program [9]. Aspect represents what we intend to check
in the program. For example: “allocated resources should be
correctly freed”. Aspects are also called safety properties or
rule specifications (LDV Tools). Hereafter only notion of
aspect will be used.

Error location is an internal representation of an aspect for
static verifier. Error location represents what static verifier is
checking during the analysis. For example, predefined function
error() or predefined label ERROR, which correspond to an
aspect violation.

Verification task is a task for a static verifier, built on a
program and an aspect. In CEGAR verification tasks usually
are represented as reachability tasks, which are aimed at
proving, that corresponding error location cannot be reached
from specific entry point in the program (for example, call of
function main).

34 of 174

Error trace is a sequence of operations in program source
files that leads from a specific entry point to the aspect
violation (which is represented as reached error location). Error
traces are also called static verifier traces [13].

Verdict is a result of solving verification task by a static
verifier. Usually there are 3 possible verdicts:

• Safe: a program is correct against a specified aspect;
• Unsafe: an aspect is violated in a program

(corresponding error trace was found);
• Unknown: static verifier cannot solve a given

verification task.

Since static verification is an undecidable problem in
general case, verdicts Unknown are unavoidable even if we
consider that static verifiers are free of bugs. That is why static
verifiers are working with limited resources in practice.
Therefore verdicts Unknown can be divided into 3 types:

1) Time limit exhaustion.
2) Memory limit exhaustion.
3) Abnormal termination of static verifier. First,

verification task can be incorrectly created (for example,
program source code is not compiling). Second, static verifier
can contain bugs. Third, static verifier cannot decide some task
and terminates itself.

B. Counterexample Guided Abstraction Refinement

CEGAR approach is based on the following notions.

Control Flow Automaton (CFA) [4] is a graph
representing a program, in which nodes correspond to program
locations and edges correspond to program operators.

Since it is usually impossible to analyze a precise model of
a program in reasonable time, an abstract model of the program
is analyzed.

Concrete state [4] consists of variables assignment, which
assign to each variable its concrete value, and current program
location.

Abstract state [4] is a set of concrete states of a program.

Abstract Reachability Graph (ARG) [4] is an abstraction
of a program, in which nodes correspond to abstract states and
edges correspond to edges from CFA.

Verification fact [8] result of the verification process
(possibly intermediate), that is necessary for verifying specified
aspect.

Abstraction precision (precision) [8] verification fact,
which instructs the analysis, which information should be
tracked and which information should be omitted in abstraction
of the program. For example, in predicate analysis precision
defines, which predicates should be tracked, in explicit value
analysis precision defines, which variables should be tracked.
Thus precisions defines the current level of abstraction in
ARG.

CEGAR algorithm is presented in Fig. 1 [1]. At the
beginning ARG is built based on initial precision (for example,
empty precision). If no specified error location was reached,
then the program is safe. Otherwise the found counterexample
is checked for feasibility. If it is feasible then an error trace is

built for found counterexample and analysis terminates.
Otherwise the precision is refined based on infeasible
counterexample and the CEGAR loop is continued.

Initialization

Build ARG

error location
reached?

Build
counterexample

feasible?

Safe

UnsafeRefine

no

no yes

yes

Fig. 1. CEGAR approach.

C. Example

Let us consider an example. There are three aspects:

1) Aspect_1: “all allocated resources by usb_alloc_urb()
should be freed by usb_free_urb(urb)”.

2) Aspect_2: “same mutexes should not be acquired or
released twice in the same process”.

3) Aspect_3: “offset should not be greater than size of the
array”.

Verification task is created based on program source code
and specified aspect. There selected aspect corresponds to
some error location. For example, aspect_i can correspond to
error label ERROR_i, i=1,2,3. Then aspect_3 may be
represented by auxiliary checks in verification task:

if (offset > size)
 ERROR_3 : error();

In order to get verdicts for all specified aspects with basic
CEGAR algorithm we need to prepare 3 different verification
tasks and run CEGAR algorithm 3 times. Let us assume, that
for some program corresponding to these aspects verification
tasks get the following verdicts in CEGAR:

• Aspect_1: Unknown (time limit exhaustion);
• Aspect_2: Safe;
• Aspect_3: Unsafe.

In this paper suggested method should prepare only one
verification task and find the same verdicts as CEGAR.

III. RELATED WORK

The idea of modifying CEGAR algorithm in order to
reduce verification time is not new. By adding auxiliary actions
in different points of CEGAR algorithm (Fig. 1) it is possible
to solve specific tasks faster.

A. Regression verification

Even if a program was verified and absolutely correct,
sooner or later it will be modified. For example, average
number of changes per hour in Linux kernel modules is more

35 of 174

than 4 [10]. Every single modification of the program
potentially may add new bugs. Such bugs are called
regressions.

Regression verification is aimed at verifying program
revisions in order to find regressions. One of the approaches to
do it is to reuse verification results [11]. The main idea of these
approaches is the following. CEGAR algorithm spends a lot of
time to find needed level of program abstraction, which is
defined by verification facts (for example, by precisions [8]).
Those verification facts can be stored as result of the
verification and then used on Initialization step of CEGAR
algorithm (Fig. 1) to start analysis with known level of
abstraction, for example, to verify next revision of that
program. Experiments confirms [8, 11], that reuse of
verification facts reduces time for regression verification.

At the same time in some cases reuse of verification results
may increase time of the analysis. For example, abstraction
may become too accurate for the new revision and analysis will
take much more time than without reuse (for some verification
task time with precision reuse was increased almost in 2
times [8]).

B. Conditional model checking

Verdict Unknown means that static verifier fails to solve the
verification task, it is still unclear if the given program correct
or not, resources were spent for nothing.

In order to solve this problem Conditional model checking
approach is suggested [12]. Static verifier saves its result even
if it cannot solve verification task for the whole program. This
result is somehow should show, which parts of the program
(for example, abstract states in ARG) were successfully
verified and which were not. Then another static verifier (or the
same with different configuration) takes this result at
Initialization step of CEGAR algorithm (Fig. 1) and verifies
only those parts of the program, which were not verified.
Conditional model checking helps to solve problems, which
cannot be solved by a single launch of static verifier [12].

C. Multiple error analysis

Any program can contain any number of bugs against
given aspect. Basic CEGAR algorithm stops after it finds a first
bug. In practice it significantly increases time for finding and
fixing similar bugs.

In order to solve this problem Multiple Error Analysis
(MEA) was suggested [13] (Fig. 2). Its main idea is to continue
analysis after finding error trace. Obviously, time for the
analysis will be increased (in comparison with basic CEGAR),
but time for finding and fixing similar bugs will be reduced.

MEA adds new type of verdict – Unsafe-incomplete, which
means that some number of error traces were found, but the
analysis was not completed (i.e. there may be more error
traces).

The main issue of MEA is that it finds a lot of similar error
traces [13]. For example, instead of 23 error traces representing
different bugs 1998 were found. In order to solve this problem
static verifier trace comparison algorithms were suggested [13].
The main idea of these algorithms is to compare only the parts
of error traces instead of the whole error traces. Lately this idea

was extended for multi-level filtering. Three levels of filtering
were suggested to reduce number of error traces:

Initialization

Build ARG

error location
reached?

Build
counterexample

feasible?

Safe

UnsafeRefine

no

no yes

yes

Internal filter

Fig. 2. MEA method.

1) Internal filter. Error traces are filtered in MEA
algorithm itself (Fig. 2) based on their internal representation.
This filter must be efficient and thus simple. For example, filter
by ABE [14] in CPAchecker static verifier.

2) External filter. Error traces are filtered after MEA
algorithm, taking into account specifics of programs under
analysis and checked aspects. This filter may be more complex
and thus less efficient. For example, filter by model functions
in LDV Tools (see model functions comparison algorithm
in [13]).

3) Expert filter. An expert marks up some bounds (i.e.
operations in error trace) of the bug in a given error trace, then
all error traces, that contain marked part (in terms of selected
by expert comparison algorithm), are called equivalent to the
first one and can be excluded from the further analyses (see
semi-automated approach in [13]).

With help of three levels of filtering it is possible to
minimize the number of error traces up to the ideal result (i.e.
when every error trace correspond to different bug) with
minimal effort of the expert.

IV. MULTI-ASPECT VERIFICATION

Multi-Aspect Verification (MAV) is aimed at configurable
checking of several aspects for a given verification task at
once. In this paper MAV is suggested as an extension of
CEGAR algorithm, but potentially the same ideas can be
applied to the other static verification approaches.

MAV solves the same verification tasks as CEGAR (i.e.
reachability tasks). It is supposed that verification task has
already been built for selected aspects. The main requirement
to MAV is to get the same result for each aspect (i.e. prove
correctness or find error traces), as basic CEGAR, but faster.

First problem, that must be resolved, is that in basic
CEGAR error location is always one and it corresponds to one
aspect. Obviously it is possible to check for several error
locations (for example, check for error labels ERROR_1,
ERROR_2 and ERROR_3 at once), but those error locations
will not have any connection to checked aspects. So, if we are
checking for so called combined error location (which is

36 of 174

consisted of usual error locations), we need to know which
aspect is also being checked (to get verdicts as CEGAR).

Second, such combined error location makes it hard to
determine, which corresponding error location is checked at the
moment of time. If an error trace was found, it is unclear, what
was violated (which aspect should get verdict Unsafe). Also it
is impossible to limit resources for some aspect separately.
Thus even if a single aspect cannot be checked by CEGAR (for
example, it reaches time limit) then analysis for all aspects will
be terminated.

MEA method cannot be used directly to solve MAV tasks.
First, in order to get the same results as CEGAR, MAV should
be able to find only the first error trace for each aspect. Second,
MEA may get Unsafe-incomplete verdict meaning that
violation of some aspect is missed as far as not all error traces
were found. At the same time it could be useful to be able to
find all violations for selected aspects at once.

So, MAV must satisfy the following requirements:

• to differentiate one aspect from another (in terms of
error locations);

• to continue analysis after finding an error trace
(verdict Unsafe);

• to find verdicts Unknown for each aspect separately
and to continue analysis after them;

• to have an option for finding multiple errors for each
aspects like MEA;

• to get the same verdicts for aspects as basic CEGAR
(ideally);

• to consume less resources (in comparison with basic
CEGAR).

A. Multi-Aspect Verification method

MAV algorithm was designed to meet the requirements
(Fig. 3). It extends basic CEGAR algorithm and checks for
combined error location.

Build ARG

Initialization

error location
reached?

Build
counterexample

feasible?

Safe

unsafeRefine unknown

Disable LCA

Initialize Aspects

ATL?

Change LCA

no

no

yes

exhaustion

yes

LCA Changing point

LCA Changing point

Change LCA

Fig. 3. MAV method.

Aspect (in terms of MAV) is the representation of checked
aspect (which was defined in section II) into error location.
Each aspect in terms of MAV have the following attributes:

• unique identifier (from the original aspect);
• corresponding error location (for example, specific

label);
• aspect verdict;
• consumed resources (processor time, wall time, etc.);
• corresponding verification facts.

Hereafter the notions aspect from section II and aspect in
terms of MAV represent the same entity (the only difference is
that aspect in terms of MAV is an internal representation of
aspect from section II for MAV algorithm).

At Initialize Aspects step (Fig. 3) links between aspects and
error locations are created, attributes for each aspect are set to
initial values.

Aspect verdict is an internal verdict of an aspect. Aspect
verdict takes the following values:

• checking: aspect is currently being checked;
• safe: correctness of this aspect have been proved;
• unsafe: violation of this aspect has been found (along

with corresponding error trace);
• unknown: algorithm suggests this aspect cannot be

proved in the given verification task;
• unsafe-incomplete: violation of this aspect has been

found, but the full analysis has not been completed
(for MEA).

In order to know, which aspect is being checked (to change
aspect verdicts, to keep records of consumed resources, etc.),
the notion of Latest Checked Aspect (LCA) is suggested.
LCA is the latest aspect, which was checked during the
analysis.

During the ARG construction more than one aspect can be
checked at once (i.e. ARG can be built based on few aspects at
once). The following approximation is suggested: only one
aspect is being checked at the moment of time and the latest
checked aspect is LCA.

At the start of the algorithm LCA is unset, since no aspect
was checked before. Then all time of the analysis can be
divided by LCA changing points, which are moments of time,
when LCA changes. Current checked aspect is considered
equal to LCA until new LCA changing point.

LCA changing points can be added after Build
counterexample step (it is always possible to determine which
aspect was violated based on counterexample) or at Build ARG
step (for example, in explicit value analysis it is possible to
bind LCA changing points to specified variables changes). The
main idea of these points is that they represent that algorithm is
building ARG for the selected aspect. After that it is possible to
divide analysis time line for LCA intervals which are time
intervals between two LCA changing points. LCA intervals are
used for calculations of time, consumed by each aspect. At
Change LCA step (Fig. 3) time of the interval is added to new
LCA time.

In general case verification facts for each aspect are
obtained after Change LCA step for new LCA. For example, if
we take precisions as verification facts they can be obtained for

37 of 174

built counterexample (if it is infeasible), or if we take abstract
states as verification facts they can be obtained during Build
ARG step. Such verification facts are considered as being
relevant for the LCA and we store them for the aspect.

The main benefit of the suggested approximation is that it is
possible to more or less accurate (depending on LCA changing
points) track time spent for each aspect and corresponding
verification facts. In case of finding error trace it is always
clear, which aspect was violated (Change LCA step after Build
counterexample step).

Tracking aspect time gives us the possibility for Aspect
Time Limit (ATL) for each aspect. ATL is aimed at limiting
total time for the aspect. In case of ATL exhaustion, LCA will
be disabled on the step Disable LCA (Fig. 3). Naturally ATL
should be checked after Change LCA step (since LCA time is
increased by time of the interval). But in general case the LCA
interval can exceed ATL by itself, that is why ATL should be
checked asynchronously inside LCA interval (i.e. during Build
ARG step). In that case time of the current interval is
temporarily added to LCA, since in terms of current
approximation analysis is still checking for the same aspect.
Note that time of the interval is added only to new LCA at
Change LCA step (at that point we know that analysis was
actually built ARG for new LCA).

Aspect verdicts are changed during the analysis in the
following way:

1) At first every aspect gets checking verdict (Initialize
Aspects step).

2) In case of finding an error trace for some aspect, its
aspect verdict is changed to unsafe.

3) In case of exhaustion of ATL, its aspect verdict is
changed to unknown. But in case of MEA and if current aspect
verdict is unsafe, it is changed to unsafe-incomplete.

4) If the algorithm has finished with verdict Safe, then all
aspects with aspect verdict checking are changed to safe.

Disable LCA step consists of the following operations:

1) Stop checking error location, which correspond to LCA.
2) Remove verification facts relevant to LCA.
3) Unset LCA.

On the one hand verification facts, which were obtained for
one aspect, could be useful for the others. On the other hand, if
we have reached ATL and the verdict is unknown,
corresponding verification facts may specify too accurate level
of abstraction for proving correctness of other aspects in
reasonable time. Therefore it is better to remove such
verification facts from ARG. Same is true for verdicts unsafe,
since the basic CEGAR stops after finding them.

But we should take into account that any operation with full
ARG may not be efficient (since ARG can consist of millions
abstract states), so we should have options for storing and
removing verification facts.

The Disable LCA step unsets LCA, thus, for the next
interval we do not have LCA until the next LCA changing
point. We call such interval the Interval without LCA (except
the first one). In terms of current approximation such intervals
means that analysis does not check any aspect and thus time is
wasted. It leads to necessity of limiting time for intervals
without LCA.

The idea of ATL was extended for the notion of Internal
Time Limit (ITL). The main idea of any ITL is to limit time
for some operation (or sequence of operations) and then
execute predetermined action in case of its exhaustion. ATL is
ITL, which limits total time for the aspect and in case of its
exhaustion that aspect will be disabled. The potential
operations to be limited in MAV are: LCA interval, first
interval, interval without LCA, etc. Such ITLs are heuristic, so
they should be used with caution.

The suggested approximation can be extended for more
general case, in which more than one LCA can be at the time.
In that case the notion of Set of Latest Checked Aspects
(SLCA) is suggested. The main benefit of the SLCA is more
accurate approximation. On the other side, it is not clear, how
to track time and verification facts during Change LCA step.
Whether add time to all SLCA or partially, the accuracy of
tracking time will be lower. Also SLCA approximation
requires much more auxiliary actions (for example, more
Change LCA steps during Build ARG step).

MAV is based on the ideas of MEA (to continue CEGAR
algorithm after Unsafe verdict), but they solve different tasks.
While MEA is aimed at finding several bugs against a given
aspect (and thus at reducing time for fixing similar bugs) even
if analysis time is also increasing, the main goal of MAV is to
reduce time for the analysis. That is why MAV should have an
option for MEA. MAV with first error analysis (or just MAV)
checks each aspect only until its first error (like basic
CEGAR). After finding an error trace, LCA is disabled as well.
MAV with multiple error analysis (or MAV with MEA) checks
for several violations of specified aspects. MAV with MEA
requires an internal filter (like in MEA) for found error traces.
This type of analysis will consume a lot more resources, but
potentially it can find all violations of specified aspects in a
given program. MAV with MEA option method is presented in
Fig. 4.

Build ARG

Initialization

error location
reached?

Build
counterexample

feasible?

Safe

unsafeRefine

Internal filter

unknown

Disable LCA

MEA?

unsafe-incomplete

Initialize Aspects

ATL?

MEA?

unsafe?

no

no

no

no

yes

exhaustion

yes

yes

yes

yesno

LCA Changing point

LCA Changing point

Change LCA

Change LCA

Fig. 4. MAV with MEA option method.

B. Conditional Multi-Aspect Verification method

The main disadvantage of MAV is that it cannot continue
analysis if algorithm was somehow terminated. If time limit
exhaustion can be found with ATL, memory limit exhaustion

38 of 174

and abnormal termination of static verifiers are still remain as
unresolved problems. In such cases for all aspects with verdict
checking we get aspect verdict unknown. For example, if only
one aspect exceeds memory limit we could expect that MAV
isolates it.

In order to achieve this MAV was extended based on ideas
of Conditional model checking [12]. The main idea is the
following. MAV saves intermediate result during its work.
After termination of MAV the intermediate result is being
analyzed. If analysis was not finished (for example, some
aspect verdicts are checking) then algorithm will be restarted,
but without aspects, that caused abnormal termination.
Otherwise analysis is completed for a given verification task.
This extension is called Conditional MAV (CMAV). CMAV
method is presented in Fig. 5.

CMAV

MAVVerification task

complete?

Process result

no yes

result

Change
verification task

Fig. 5. CMAV method.

In order to save all actual information about verification
process common format for intermediate results was suggested,
in which every aspect keeps the following information:

• aspect identifier;
• current aspect verdict;
• consumed time;
• list of error trace identifiers, which were found for the

aspect (only for aspect verdicts unsafe or unsafe-
incomplete, in case of MAV with MEA after internal
filtering);

• the reason of unknown (unsafe-incomplete in case of
MAV with MEA). For example, reaching ATL.

Also LCA identifier should be stored.

The suggested information could be taken from aspect
attributes and stored into the specified file. For each changes
during the verification information in this file should be
updated. Thus in case of any abnormal termination that file will
contain all relevant information, including LCA, which might
cause the termination.

Each launch of MAV algorithm is called an iteration of
CMAV. After each iteration CMAV determines if analysis is
completed based on the file with intermediate results. If
algorithm was terminated abnormally, the reason of its
termination should be determined and which aspect caused it.
If there was global problem, then analysis should be
completed, all aspects get aspect verdict unknown. If it was
caused by some aspect, that aspect should get aspect verdict
unknown. If analysis was not completed, then new iteration
will be started, but it only should check aspects, which have
previously had aspect verdict checking. In any case next
iteration will get at least one less aspect to check. Thus,
number of all iterations will be less or equal than the number of
all aspects. After the last iteration is completed intermediate

information from all iterations should be united and presented
as the final result for the given verification task.

Also the ideas of CMAV helps to solve problem, in which
ARG is too complex. In that case after executing Disable LCA
not all verification facts from previous LCA may be removed
(or removing them requires too much time). Then it will be
easier and faster to rebuild the whole ARG. For that reason
Restart Time Limit (RTL) is suggested. RTL is ITL, which
limits interval without LCA. In case of RTL exhaustion the
whole algorithm will be restarted (new iteration of CMAV will
start). In that case LCA is unset, because RTL limits intervals
without LCA, but at least one aspect verdict is unsafe,
unknown or unsafe-incomplete, since intervals without LCA
are possible only after Disable LCA step. Therefore the next
iteration of CMAV gets at least one aspect less to check.

Based on this consideration we think that CMAV satisfies
the requirements in the beginning of this section.

V. CONCLUSION

The suggested method extends CEGAR approach and
provides means to check several aspects at once. CMAV with
MEA method can be used to find all potential violations of
specified aspects in a program. Also CMAV method can be
configured by using different options (specifying ITLs,
removing different verification facts at disable LCA step, using
option for MEA, choosing between LCA and SLCA) for
specific verification task and user demands.

We plan to implement the suggested method as an
extension of LDV Tools and CPAchecker static verifier and
then to evaluate it on verification of industrial based software
systems in future. Such experiments will show potential
benefits as well as unexpected degradations in comparison with
basic CEGAR in terms of verification time and verdicts, the
method constraints will be revealed.

CMAV method was presented as CEGAR extension, but
potentially the same ideas could be used for the other static
verification approaches.

REFERENCES

[1] M.U. Mandrykin, V.S. Mutilin, A.V. Khoroshilov. Vvedenie v metod
CEGAR — utochnenie abstraktsii po kontrprimeram [Introduction in
CEGAR – counterexample guided abstraction refinement]. Sbornik
trudov ISP RAN [The Proceedings of ISP RAS], vol. 24, pp. 219-292,
2013 (in Russian).

[2] Mutilin V.S., Novikov E.M., Strakh А.V., Khoroshilov А.V., Shved P.E.
Аrkhitektura Linux Driver Verification [Linux Driver Verification
Architecture]. Trudy ISP RАN [The Proceedings of ISP RAS], vol. 20,
pp. 163-187, 2011 (in Russian).

[3] Bugs found in Linux kernel modules with help of LDV Tools.
http://linuxtesting.org/results/ldv.

[4] Beyer D., Henzinger T., Jhala R., Majumdar R. The Software Model
Checker Blast: Applications to Software Engineering. Int. Journal on
Software Tools for Technology Transfer (STTT), vol. 5, pp. 505-525,
2007. doi: 10.1007/s10009-007-0044-z

[5] Beyer D., Keremoglu M.E. CPAchecker: A Tool for Configurable
Software Verification. In Proc. Computer Aided Verification (CAV),
LNCS, vol. 6806, pp. 184–190, 2011. 10.1007/978-3-642-22110-1_16.

[6] Beyer D. Competition on Software Verification. In Proc. Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
LNCS, vol. 7214, pp. 504-524, 2012. doi: 10.1007/978-3-642-28756-
5_38

39 of 174

[7] Beyer D. Software Verification and Verifiable Witnesses. In Proc. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS)
2015. 2015.

[8] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, P. Wendler. Precision
Reuse for Efficient Regression Verification. In Proceedings of the 9th
Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on Foundations of Software Engineering
(ESEC/FSE 2013), pp. 389-399, 2013.

[9] Novikov E.M. Razvitie metoda kontraktnykh spetsifikatsij dlya
verifikatsii modulej yadra operatsionnoj sistemy Linux [Development of
a contract specification method for the verification of Linux kernel
modules]. Dissertatsiya na soiskanie uchenoj stepeni k.f.-m.n. [PhD
thesis], 2013 (in Russian).

[10] Corbet J., Kroah-Hartman G., McPherson A. Linux kernel development.
How Fast it is Going, Who is Doing It, What They are Doing, and Who
is Sponsoring It. http://go.linuxfoundation.org/who-writes-linux-2012,
2012.

[11] D. Beyer, P. Wendler. Reuse of verification results. In Proceedings of
the 20th International Workshop on Model Checking Software (SPIN
2013), LNCS, vol. 7976, pp. 1-17, 2013.

[12] D. Beyer, T.A. Henzinger, M.E. Keremoglu, P. Wendler. Conditional
model checking: a technique to pass information between verifiers. In
Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering (FSE 2012), article 57, 2012.

[13] V. Mordan, E. Novikov. Minimizing the number of static verifier traces
to reduce time for finding bugs in Linux kernel modules. In Proceedings
of the 8th Spring/Summer Young Researchers' Colloquium on Software
Engineering (SYRCoSE 2014), editors A. Kamkin, A. Petrenko, A.
Terekhov, Saint Petersburg, Russia, May 29-31. ISP RAS, Moscow,
2014. DOI: 10.15514/SYRCOSE-2014-8-5.

[14] D. Beyer, M. Erkan Keremoglu, and P. Wendler. Predicate Abstraction
with Adjustable-Block Encoding. In Proceedings of the 10th
International Conference on Formal Methods in Computer-Aided
Design (FMCAD 2010, Lugano, October 20-23), pages 189-197, 2010.
FMCAD.

40 of 174

Acceleration of profile creation for three-dimensional

vector video with GPGPU

Aleksandr Tsyganov

Chair of Computer technology

Samara State Technical University

244 Molodogvardeyskaya Str., Samara, 443100, Russian Federation

hitrolisk@gmail.com

Abstract—In the report the optimization of image similarity

metric computation method for three dimensional vector video

with general-purpose computations on graphical processor unit

(GPGPU) is discussed. The use of stream processors in graphics

accelerators and Compute Unified Device Architecture (CUDA)

platform allows significant performance gain in comparison to

calculations on general-purpose processors, while solving

problems of computer vision and image similarity determination.

The performance of the GPGPU metric value computation is

measured and researched.

Keywords—three-dimensional video, graphical processor unit,

computer vision, metrics, key points.

I. INTRODUCTION

Video playback systems for three-dimensional vector
format need to determine parameter types of shader programs
contained in the video stream. This can be accomplished by
creating profiles for each video source type. Profiling is
resource-intensive task and the calculations cannot be
performed in real time while running the application for which
the profile is compiled. The longest stage of the method is the
metric calculation. The paper proposes to move its computation
to graphics processing unit (GPU) in order to speed up the
algorithm.

II. PROFILING METHOD

Method for automated profiling based on a comparison of
images obtained with the original shader parameters and ones
found after applying shaders with modified parameters.

For each shader it is necessary to find the correct types of
values transmitted to its parameters. For implementation of
stereoscopic effects, parameters containing projection matrixes
are important. Thereby the problem is reduced to search such
matrixes among parameters of the shader program. Parameters
type search in the method is carried out by their search for each
separate parameter. The assumption of correctness for the
selected type is checked by similarity evaluation of images
received from frame visualization of a video stream without
modification of parameters and with modification of
parameters according to the assumption made.

The selected frame V of the initial video stream is modified
by transform T(V, S) which changes set of shader parameters S
concerning of which assumption was made about their certain
type. The initial frame of V and the modified frame V’ are

rasterized by R(V) resulting in two images I and I’ respectively.
This images are represented by function of brightness in the
given point I = fI(x, y). They are compared by using a metric.
The result of applying this metric is the set D, consisting of two
integral values, which are passed to the decision A(D):

 D = {DB, DS}, (1)

  









mSmB

mSmB

sDbD

sDbD
DA

,0

,1
, (2)

where bm and Sm are the boundary values of the metric

components.

Metrics computing algorithm for two images processes raw
data in a few steps. Under the original data we will assume two
images obtained with initial visualization parameters Io and
with modified visualization parameters Im. Two color
histograms H(Io) and H(Im) are calculated from the original
image by dispersion method. Initial evaluation of the distance
between the images performed by using Bhattacharya distance
DB(Ho, Hm). Second component of metric is specified by
comparing sets of control points in the original image. Sets of
control points Po and Pm, received from the image Im and Io,
respectively, are used to calculate the distance DS(Po, Pm).
Speeded Up Robust Features (SURF) method is used for point
detection, the implementation of which is also available for
GPU [1, 2].

III. GPGPU IMPLEMENTATION

The architecture of modern graphics cards is designed for
vector operations with the data in the form of multi-
dimensional arrays. This allows to achieve high memory speed
when using SIMD vector processors with independent L1 and
L2 caches. In comparison to a general purpose processor, GPU
has fewer steps and a smaller amount of the conveyors cache.
Exchange of data between video memory and general purpose
memory is implemented via the PCI-E x16 bus. The sample
data in the cache transfers through a 256-bit bus. As a result,
the efficiency of scientific algorithms on the GPU depends on
the efficient use of memory and cache [3].

The main purpose of the GPU method implementation is to
minimize the number of data exchanges between video
memory and general-purpose memory. Communication
between the CPU and graphics core negatively affect

41 of 174

performance. To reduce the data used by the various stages of
the algorithm, it loaded into video memory only once. The
result is also available in video memory for the following
stages. The essence of the developed method is the efficient
use of the cache and loading video streaming GPU cores
uniformly. Transfer of resources between the stages of the
algorithm is carried out through the video memory, as shown in
Fig. 1, which speeds up processing using the GPU.

Fig. 1. Data exchange between general-purpose memory and video memory

Images Im and Io are loaded into video memory for
processing. On their basis histograms are calculated to find the
first components of the metric using Bhattacharya distance.
The same source images used by SURF algorithm to calculate
set of points, which are used as the basis for the second
component of the metric. Only calculated components of the
metric unloaded from video memory to general-purpose
memory. Their size is extremely small, and video memory
reading will not stop the process of computing on the GPU,
resulting in high performance parallel computing.

IV. HISTOGRAM COMPUTATION

Calculation of the metric component DB is performed by
using the histograms H(I

O
) and H(I

S
) of corresponding images.

The calculation of the histogram on the GPU can be performed
using both classical shader programs, and using CUDA
technology for general-purpose computation on the GPU.
CUDA technology usage described in the works of
Podlozhnyuk [4] and Shams [5]. These algorithms provide
better performance than those based on the use of conventional
means of graphical programming interfaces, as shown by
Nugteren et al. [6]. Work of Fluck [7] is an example of the
second approach.

Since the main objective is to accelerate the metrics
calculation then most appropriate methods for histogram
computation are based on CUDA. Such as method of
Podlozhnyuk, that implemented in CUDA SDK. Method is
cache effective and does not contain steps of data upload into
shared memory that allows it to be integrated into the process
of metric component calculation.

In this method, the original data is divided into blocks
between threads executed on the GPU. Output data stream is
stored in individual histogram. In the final pass all histogram
are combined by different threads into one. To efficiently use

shared memory of streams each individual histogram is created
in group of threads called rope. This allows to store histograms
of a larger volume, up to 6 kilobytes on G80 hardware
architecture.

Bhattacharya distance calculation based on the histogram
for two sets of statistics. It is expressed by the following
formula:

 



n

i

imioB IHIHD
0

)()(, (3)

where n - the number of the histogram elements.

Calculation of histogram elements sums can be done by
reduction of the initial data array on the GPU. It is proposed to
use an optimized method of parallel reduction on CUDA,
described by Mahardito et al. [8].

V. KEY POINTS DETECTION

The second component DS of the metric calculated with

SURF algorithm [9]. With its help search is performed for two
sets of points P and P’, available in the original and the
modified frames, respectively. The value of component
determined by the following expression:

P

PP
DS

'
 . (4)

SURF is one of the most common and efficient image
points search algorithms. It used in automatic object
recognition and tracking, video recording, panoramic image
combining and in many other areas of computer vision. The
algorithm can process images in HD resolution at more than 30
frames per second.

SURF detects points by approximating the Hessian.
Approximation performed by application of block filters to the
image. It makes good use of the integral representation of the
image II, which is determined by the following formula:

    





yjxi

ji

jiIyxII
,

0,0

,, . (5)

The calculation of the integral image representation on the
GPU is the longest stage of the SURF algorithm and can be
implemented by the algorithm of the pyramid points as
described in Terriberry et al. [10]

Construction of the integral image is the task of the prefix
sum. Pyramid algorithm offers a solution to this problem on the
GPU in two stages. At the first stage, pyramid images
constructed extending upward, each of which divides into four
parts half the width and height than the previous level. Image

content is determined by three components of U(k), H(k), V(k):

General memory Video memory

Io, Im

Io, Im

H(Io), H(Im)

DB(Io, Im)

Po, Pm

DB(Io, Im)

DS(Po,Pm)

DS(Po,Pm)

42 of 174

     
  
  
  ,12,12

12,2

2,12

2,2,

1

1

1

1

















yxU

yxU

yxU

yxUyxU

k

k

k

kk

 (6)

     
  ,2,12

2,2,

1

1

yxU

yxUyxH

k

kk









 (7)

        ,12,22,2, 11   yxUyxUyxV kkk

 (8)

where k - level of the pyramid, x and y - coordinates of the
image.

It requires two half-sum of H (k) and V (k) to calculate the
sum of the even rows and columns, using formula:

      ,,,
1

0







x

i

kk yiHyxX (9)

      





1

0

,,
y

j

kk jxVyxY . (10)

Using the obtained image pyramid, a reverse pass going
from the top downwards. This value is used to calculate four
different versions of the formula, that depend on the parity
argument. For even x and y

   ),
2

,
2

(, 1

















  yx

WyxW kk (11)

for odd x and even y

  

),
2

,
2

(

)
2

,
2

(,

1

1









































yx
Y

yx
WyxW

k

kk

 (12)

for even x and odd y

   ),
2

,
2

()
2

,
2

(, 11


































  yx

X
yx

WyxW kkk (13)

for odd x and y

  

  .1,1

)
2

,
2

()
2

,
2

(

)
2

,
2

(,

1

11

1






























































yxU

yx
Y

yx
X

yx
WyxW

k

kk

kk

 (14)

The values of the top-level assumed to be zero.

Using the integral image, the key points are determined by
searching the extremum of the Hessian determinant. Block
filters used for this purpose as described by Bay et al. [9] Their
GPU computation requires only 17 texture samples per pixel.
Search for a local Hessian maximum can be made by the
method of neighboring points 3x3x3.

Each found key point is described by the descriptor, which
is a normalized vector calculated using filters similar to the
Haar block filter for Hessian. Sets of elements P and P' are
compared using descriptors, which calculates the value of DS
with expression (4).

VI. PERFORMANCE EVALUATION

An experimental study with various sources of graphic
information was carried to determine the performance gain of
GPGPU implementation in comparison with the general-
purpose processor implementation. Sources of graphical
information were selected by statistics of streaming video
services.

The first series of experiments aimed at assessing the
dependence of the duration profiling on the recording. The
results are shown in Fig. 2. As can be seen, the work time
increases insignificantly, since longer records contains almost
no new shader programs. However, there is a significant
reduction in execution time by 8-12 times when using a GPU
implementation.

Fig. 2. The diagram of time depending on the duration of the record

Composition of the shader programs in each application is
heterogeneous. The main feature affecting the complexity of
the specific shader program analysis is the number of its
parameters of interest for the algorithm. To evaluate the impact
of this amount on processing time for each shader program, a
series of experiments was carried with same sources of image
information, as in the previous case.

The values are averaged over all shader programs with a
given number of parameters of matrix type for a ten minute
record. The results are shown in Fig. 3.

0

50

100

150

200

250

300

350

1 5 10 30

Ti
m

e
, s

e
c

Recording duration, min

CPU

GPU

43 of 174

Fig. 3. Diagram of time depending on the number of parameters

Number of recognizable parameters affects their
recognition duration exponentially. Speed of data processing
strongly depends on the complexity of video source rendering
system. However, GPGPU calculations can reduce it by 8-12
times. This allows comparison of vector video frames and
subsequent profiling on the terms that are acceptable to use
these methods in practice.

REFERENCES

[1] Thorsten Scheuermann, and Justin Hensley, “Efficient histogram
Generation Using Scattering on GPUs” in Proceedings of the 2007
symposium on Interactive 3D graphics and games, ACM New York,
NY, USA, 2007, pp. 33-37.

[2] N. Cornelis, and L. Van Gool, “Fast Scale Invariant Feature Detection
and Matching on Programmable Graphics Hardware”, IEEE Computer

Society Conference on Computer Vision and Pattern Recognition
Workshops, 2008, pp. 1-8.

[3] N. K. Govindaraju, E. S. Larsen, J. Gray, and D. Manocha, “A memory
model for scientific algorithms on graphics processors”, in Proceedings
of the ACM/IEEE Conference on Supercomputing (SC’06), no. 89, NY,
USA: ACM Press, 2006, pp. 6-15.

[4] V. Podlozhnyuk, “Histogram calculation in CUDA. Technical report”,
NVIDIA, 2007,
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_webs
ite/projects/histogram64/doc/histogram.pdf

[5] Ramtin Shams, and R. A. Kennedy, “Efficient Histogram Algorithms for
NVIDIA CUDA Compatible Devices”, Australia, Gold Coast, ICSPCS,
2007. pp. 418-422.

[6] Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, and Bart
Mesman, “High Performance Predictable Histogramming on GPUs:
Exploring and Evaluating Algorithm Trade-offs” in Proceedings of the
Fourth Workshop on General Purpose Processing on Graphics
Processing Units, NY, USA: ACM New York, 2011. pp. 1-9.

[7] O. Fluck, S. Aharon, D. Cremers, and M. Rousson, “GPU histogram
computation”, in ACM SIGGRAPH 2006 Research posters,
SIGGRAPH ’06. ACM, 2006, p. 53.

[8] Adityo Mahardito, Adang Suhendra, and Deni Tri Hasta, “Optimizing
Parallel Reduction In Cuda To Reach GPU Peak Performance”, in
Proceedings of The Second International Workshop on Open source and
Open Content WOSOC 2010, Indonesia, Depok.: Gunadarma University,
2010, pp. 48-57.

[9] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool,
“Speeded-Up Robust Features (SURF)”, Computer Vision and Image
Understanding, vol. 110, New York, USA, 2008, pp. 346-359.

[10] Timothy B. Terriberry, Lindley M. French, and John Helmsen. “GPU
Accelerating Speeded-Up Robust Features”, in Proceedings of the
Fourth International Symposium on 3D Data Processing, Visualization
and Transmission, Georgia Institute of Technology, Atlanta, GA, USA,
2008. pp. 355-362.

0

100

200

300

400

500

600

1 2 3 4

Ti
m

e
, m

s

Number of parameters

CPU

GPU

44 of 174

Two-step Harmonious Melody Generator
Sofya Latkina

#Software Engineering Department, Faculty of Computer Science,

National Research University Higher School of Economics

Russia, Moscow, 20 Myasnitskaya, 20
1latkina.sofya@gmail.com

salatkina@edu.hse.com

Abstract — This paper describes the problem of creating

computer music without interruption of humankind in

generating algorithm working. It contains review of existing

solutions, description of their key features and brand new

approach explanation, which lets generate music in non-

traditional way and uses research achievements from another

scientific field.

Keywords — music creating, algorithm, computer music,

harmony, 3 dimensional, cybernetics, data analysis, random,

generation

I. INTRODUCTION

A. Problematic area

As man develops and explores new levels of technological

progress, appearance of high-speed computers broadened the

range of non-mathematical problems, allowing algorithmic

description and simulation at the information level of

processes related to human creative activity. The computer as

a technological unit has evolved from a simple calculator to a

distributed system, supporting million non-recurring processes,

sophisticated mechanism of artificial intelligence emulation,

or a life support equipment. Essentially, Hi-Tech invades to

every sphere of human activity, even to the complicated ones,

related to nonlinear thinking and abstract mindset, like an art.

Specifically, music as a piece of art is not a trivial product

for being produced by computer as is requires integrity,

variability, and harmoniousness. Generally, discussions about

the definition of music are reduced to two contradictory

definitions: “Music is the language of our emotions”, and

"Music — a calculation of the mind, unsuspecting of these

calculations" (Leibniz). Music is composed of elements and

refined sequences of them that affects listeners’ perception

and sensations. Moreover, man is able to differ melodic

elements depending on their "pleasantness" of exposure. This

acoustic "pleasantness" is easily amenable to analysis and

explanation, while the simulation of these effects and

machinery reproduction is still under investigation.

B. Background observation

The first attempts to use the information approach in the

study of musical art are related to the achievements of classic

statistical information theory. This theory in the classical

Shannon version has had a purely technical orientation. It was

designed for communications and was almost bounded by this

area. However, in 1950-60 it began to rapidly penetrate into

various research area.

One of the first statistical study of music theory with the

methods of information theory was undertaken in 1956 by

American scientist Robert K. Pinkerton. In the article

“Information Theory and Melody” [1] he questioned what

makes a melody attractive; he discussed the issue in

mathematical term. For that Pinkerton analyzed information

theory in popular American tunes and children’s songs to

determine the probability of individual notes and paired

combinations appearance. Moreover, he calculated the entropy

per one note and the information redundancy. Basing on the

probability of two consecutive notes with a help of random

selection, he was able to make few tunes, similar to analyzed

ones. Unfortunately, most of them seemed to be monotonous

and not attractive enough. This fact allowed scientist to admit

that not only every single note conveys a certain amount of

information but also that for obtaining “attractive” tunes some

redundancy is needed.

The same goal (making up new tunes by probabilistic

selection) has become the basis of the study, named “The

experiment in music song” [2], which was implemented in

1957 in the laboratory of computers at Harvard University.

Several scientists analyzed excerpts from 37 hymns of

different composers and epochs. Scientists used computer

equipment for counting frequencies of all the individual

elements as well as all combinations of two, three, and so on

up to eight neighboring elements. But the discovery of

statistical regularities was only the initial stage of their study.

Basing on these results, scientists have tried to build a

computer model for the creation of music. The resulting table

of sounds probability and their connections have been used for

the synthesis of melodies via a random process. In total,

scientists have made about 6,000 attempts of a synthesis, and

created approximately 600 hymns. It should be noted that the

calculations in this study were made without direct bearing on

the mathematical apparatus of information theory. Incidentally,

this is indirect evidence that the necessary and sufficient

sought computational results can be obtained, limiting the

methods of probability theory.

Since then appeared a substantial amount of applications

and systems that challenge computing technology in music

composition. As the development in this area has started,

many new theories and concepts appeared. Human taught

computer basic aspects of music: sound synthesis, digital

signal processing, sound design, sonic diffusion, acoustics,

and psychoacoustics. The complex path of computer music

investigation can be traced back to the origins of electronic

45 of 174

mailto:1latkina.sofya@gmail.com
mailto:salatkina@edu.hse.com

music creation, and the first innovations and experiments with

electronic instruments at the turn of the XX century.

There is a big selection of systems that provide digital

music. Some of them require human interruption to a greater

extent, like those ones developed in 50s (CSIRAC, playing

Colonel Bogey March [3], Ferranti Mark 1 computer (MUSIC

I [5]), the biggest achievement of which were the incipience

of algorithmic composition programs beyond rote playback.

Some of concepts are more independent, like TOSBAC

computer [6] which caused resonance in the area and became

an origin of computer music carried out for commercial

purposes in popular music (this has led to the use of

computers in widespread in the editing of pop songs). For the

current moment, the terms of “computer music” or “computer-

generated music” are related to any music which uses

computers in its composition (that implies a kind of music

which cannot be created without the use of computers).

Nowadays, intensive researches in the field of computer

music creation are continuously carried out. Several mighty

organizations are engaged (ICMA 1, IRCAM 2, SEAMUS 3)

and some institutions of higher learning also.

Besides scientific studies, the specialists and composers

have also created some software solutions, which can be

considered as basic concepts: topical for today and for

contemporary computer music concepts.

In the current context it is worth to mention widely known

numerous experiments and studies of R. H. Zaripov. For

simulating the process of composing music, he has created

several programs, which were based on different principles.

At first he used the principle of synthesizing music from

individual sounds; next he subdued an algorithm to certain

structural, rhythmic, of pitch and harmonic laws [7, pp. 90-

118; 79]; then he treated musical pattern as well as poetic text

[7, pp. 119-140]; finally he approached borrowing the most

common melodic turns in intonation in order to create similar

melody [8]. Furthermore, it was established program-

harmonizer, which imitates the process of solving the problem

of melodies harmonization by students of music schools [7, pp.

141-175].

C. Composition

The method of new melodies composing plays vital role in

concepts of computer music creation. Musical composition

simultaneously relates to the notion of an original piece of

music, to the structure of a musical piece, to the process of

creating some new melody. In general, the composition

consists of manipulation of each aspect of music (harmony,

melody, form, rhythm, and timbre). When computer music is

created, it usually means that new musical notation appeared

as a result of improvisation or selection and completion of

patterns but more often as a result of sophisticated algorithm

operating.

1 The International Computer Music Association
2 Institut de Recherche et Coordination Acoustique/Musique

(France)
3 Society for Electro Acoustic Music in the United States

There can be roughly defined several common types of

algorithms, basing on which exact instruments are used in a

process of composing:

 Mathematical models,

 Knowledge-based systems,

 Grammars,

 Evolutionary methods,

 Systems that learn,

 Hybrid systems.

The specificity of each type is clearly implied by its name.

Currently, intensive and promising researches are

undertaken in the fields of generative and evolutionary music.

Also the improvisation as an efficient method of computer

music making can be highlighted.

1) Generative music: The original term was popularized by

Brian Eno, English composer and well-known innovator in

ambient music; it implies the music, which is created by a

computer and appears to be constantly changing and different.

For an explicit indication that some clarification is needed;

according to R. Wooller [9], there are four primary

interpretations of generative music:

 Linguistic/structural: Music made up using analytic

theoretical constructs, explicit as much as it is needed

for generating structurally coherent material. The

roots can be traced back to the generative principles

in grammar of language and music, where generative

instead refers to mathematical recursive tree structure.

 Interactive/behavioural: Music created by a system

component with no discernible musical inputs, i.e.,

“not transformational”. Example: engine Koan,

developed by SSEYO.

 Creative/procedural: Music composed as a result of

processes set which are designed and/or set in motion

by the composer. Examples of result: “In C” by Terry

Riley and “Its gonna rain” by Steve Reich.

 Biological/emergent: Music which can be defined as

non-deterministic, revolved around the idea of using

"farming" parameters for creating different variation

of sounds (such as wind chimes). Example:

collaborative electronic noise music symphony

“Viral symphony” by Joseph Nechvatal.

2) Evolutionary music: This type of computer music is

created using an evolutionary algorithm (a subset of

evolutionary computation that is based on mechanisms of

biological evolution, such as reproduction, mutation,

recombination, and selection, and is aimed at optimization of

processed essence). The whole process initiates with a set of

individuals which produce audio (a piece of music, or melody,

or loop): these can be generated randomly or produced by

human mind. Then, through the repetitious taking steps of

computation, this population becomes optimized, more

sounding like a piece of customary music. As it is quite a

complicated task for a computer to determine how exactly

piece of art is sounding, typically the user or audience is used

46 of 174

as fitness function (objective function that is used as a single

figure of merit) of interactive evolutionary algorithm.

Additionally, methods of evolutionary processing are

commonly applied to harmonization and accompaniment tasks.

It is worth noting, that research in the field of automated

measures of musical quality, which can be implemented by a

simple computer, is also conducted nowadays. Example:

NEUROGEN software uses a genetic algorithm for producing

and combining musical fragments and a set of neural networks

(initial population of individuals is based of real music) [10].

3) Computer-Aided Algorithmic Composition: The most

common method of machine improvisation is a recombination

of different musical phrases. As the resulting computer music

has to be credible and nice-sounding, machine learning and

pattern matching algorithms are inevitably used. That

normally causes creating of variations “in the style” of

original melody or pieces of music.

Modelling the particular style is a complicated objective, it

requires statistical handling, big data to some extent. The

algorithm can use musical surface to distinguish key stylistic

features. This approach uses terms of pattern dictionaries for

subsequent generating the new audio. This long musical

tradition was started on 60s with Markov chains and

stochastic processes. Nowadays lossless data compression for

incremental parsing, pattern searching, prediction suffix tree

and other new methods of data processing were added.

The factor of convenient usage of natural interface, where the

musician has no need for coding musical algorithms, leads to

prevalence of such systems in live performances.

Example: OMax, developed in IRCAM.

D. Main purposes and objectives

It should be emphasized that the researches in the field of

computer music creating and different generative,

evolutionary, or improvisation approachess, the development

of the original algorithm, and the grasp of the concept of

intuitive human-computer interaction, which will allow to

manage the process of music creating, pursue the same goal.

The primary aim of the entire project is to create computer

music generator which will be able to create melodies

according to the settings, specified by user, but without actual

interruption of user to the generation of melodic pattern.

Undoubtedly, it is vital to perform specific objectives in

order to reach the goal of the research. It seems to be

important to clarify them in detail. The first objective will be

accomplished by inventing an algorithm of computer music

generating. Inevitably, it will be based on existing

methodologies (generative, evolutionary), but it also has to be

sharpened by the principle of flexibility and ability of

changing according to adjustments, made by user. Next

objective is to implement software shell, which will satisfy

potential user and allow to manipulate melody relatively

effortless and without necessity of code changing. Finally,

output methods have to be elaborated: the way of music

sounding is one of the most important things in the sphere of

computer music creating.

Essentially, there is can’t be any need to verify and prove

what way of music creating is better, more efficient, of

aesthetical: the traditional one, or the innovative variations.

The interlinear mission of the whole work is to extend musical

thinking or composition practice which is current computer-

music practice.

II. METHODOLOGY

The destination of software which is able to produce music

is to create the successions of musical tones that can be

perceived as melodies, pieces of art. Considering a definition

given by Alexander l. Ringer, “melody” is a pitched sounds

arranged in musical time in accordance with given cultural

conventions and constraints [11]. It can be noted that in some

cultures rhythmic considerations may take precedence over

melodic expression, so the cultural and regional context

largely determines what exactly a human accepts as music.

For example, Chinese and European perception of music

differs a lot; this is due to many factors, in particular: the time

of development of the national understanding of musical

composition.

According to ancient Chinese encyclopedic works Lüshi

Chunqiu, the scale has to contain twelve tones. The situation

differs for European music, which is younger and fully

aligned with the Well-Tempered Clavier of Bach. Current

paper corresponds to the European scale and standards of

Western music. In this concept a pitch space includes octaves

sized 12 semitones — this specific distance reflects physical

distance on keyboard instruments, orthographical distance in

Western musical notation, and musical distance as measured

in psychological experiments [9].

A. Tones and scale

Tones, which construct a melody, equal to the sum of two

semitones and hence referred to as a ‘whole tone’, usually

perceived as a major 2nd; in equal temperament, the sixth part

of an octave. As it is defined for European scale, the semitone

seems to be the ration of the frequencies as 1 to the 12th

degree of 2. Thus, the tone of particular note can be identified

with function: 𝑓(𝑥𝑖) = √2
12

∗ 𝑓(𝑥𝑖−1), where xi is a current

note and xi-1 – the previous one.

Tones are used in musical theory for calculating intervals,

which inevitably appear “between” every two notes. Literally

speaking, this circumstance affects a lot on how a person

perceives a melody, whether he likes it or not, recognizes as

music or not.

The set of intervals is restricted, each of them has two vital

characteristics: the amount of semitones and harmoniousness.

Shortly, mostly used intervals can be presented in the

following list:

 Perfect unison, perfect octave — the best

consonance;

 Perfect fourth, perfect fifth — middle consonance;

 Third (minor, major), sixth (minor, major) —

imperfect consonance;

47 of 174

 Second (minor, major), seventh (minor, major) —

sharp dissonance.

B. Harmony

According to the New Grove Dictionary of Music and

Musicians, harmony can be defined as combining of notes

simultaneously, to produce chords, and successively, to

produce chord progressions. The term is used descriptively to

denote notes and chords so combined, and also prescriptively

to denote a system of structural principles governing their

combination [11]. Creating a harmonic and logical melody is a

sophisticated task, which is complicated by a sufficient

number of rules, restrictions, and preconditions. Important

mention: “logical” in this context implies symmetry of melody,

adherence to pre-defined rules, compliance with the

restrictions, exactly. Logical construction of melody includes

controlling what next note will be, where the start and the end

of melody are, at what time the next transition can be

performed. Existing tools can provide the solution of these

important tasks.

C. Petri nets

Once an issue of polyphony is raised, the usage of Petri

nets seems to be relevant. Creating computer music becomes

more complicated if second (third, fourth, etc.) voice is added.

Without proper synchronization, created music will become

cacophonic.

The dynamic system can model a “Conductor”: like a

conductor in real life, this model manages two or more

musical threads. It is necessary to keep tracking of hitting the

strong bit and maintaining mode and harmony. Due to what

can this monitoring be achieved?

Fig. 1 Example of timed petri net

The key feature of timed Petri nets is a usage of limited

execution time, which makes the transition disabled from

occurring for the duration time; but it is fired immediately

after becoming enabled. In the presented primitive net (see in

Fig. 1) the time delay (or execution time) is 4 time units. In

the initial state “Play” in enabled will therefore immediately

fire, i.e., the token in A is consumed. Next there occurs a

delay in 4 time units before the firing is complete and tokens

are deposited into A and B. Now Play is again enabled and

will again fire.

Practical application of the concept can be demonstrated on

the following example (see in Fig.2): in the first bar (Bar0)

only one violin plays, next the second violin joins, then the

first violin sounds together with two viols, finally, all

instruments play together, and in the last bar the first violin is

again sounding lonely (see the information about tokens

motion in table I). This example can provide representation of

how actual conductor deals with four different musicians.

Fig. 2 Example of timed Petri net, model “Conductor”

TABLE I
CHRONOLOGY OF TOKENS MOTION

 Violin Violin2 Viola Viola2

<initial>

(Bar0)
1 0 0 0

trans1

(Bar1)
1 1 0 0

trans2,

trans3

(Bar2)

1 0 1 1

trans1

(Bar3)
1 1 1 1

trans0,

trans5,

trans6

(Bar4)

3 0 0 0

Within the scope of current paper only monophonic

melodies will be considered; but usage of timed Petri nets

stays suitable for the project, perspectively.

III. TWO-STEP HARMONIOUS COMPUTER MUSIC CREATION

ALGORITHM

The process of creating computer music with a melody as a

resulting form can be divided in two phases: first, computer

constructs durational pattern of melody, then, it is filled with

tones.

A. Durational pattern construction

A typical melody is a combination of pitches and rhythm. It

is not essential what element of combination will be created

first; in the current work it will be the rhythm.

All rhythmic units can be classified as (see in Fig. 3):

 Metric — even patterns, such as steady eighth

notes or pulses;

 Intrametric—confirming patterns, such as dotted

eighth-sixteenth note and swing patterns;

 Contrametric—non-confirming or syncopated

patterns;

 Extrametric—irregular patterns, such as tuplets.

48 of 174

Fig. 3 Rhythmic units

The realization of each kind of rhythmic units becomes

possible with a proper standardization of a variety of notes

durations. In this way, for every duration (eights, pulses) the

time is given: exact amount of seconds, for which a single

note with this duration sounds. This parameter (the time) can

be accordingly changed if a tempo of the whole melody is

changed.

By creating durational pattern, a program complies with

necessary restrictions, like: an overall sum of beats doesn’t

exceed time (meter) signature. It also avoids syncopation for

the first and last beats of pattern and adheres to the principle

of symmetry.

Durational pattern of musical compositions appears to be

holistic and logical if it uses principles of symmetry and

repetition. Like in poems, rhythmical phrases have to alternate.

By this reason, algorithm considers the amount of bars, which

have to be filled with various durations, and constructs an

alteration of several rhythmic patterns, just as if it comes to

the rhyme in the poem. The process is organized in the

following way: A, B, C, D – rhythmical phrases, the

combination of several durations, overall amount of which

doesn’t exceed time signature. Program generates from 1 to 4

different phrases and constructs the durational pattern like a

poem, using one of the six schemes (each named by similar

rhyme scheme), described in Table II.

TABLE II
RHYTHM SCHEMES

Name of scheme Phrases alternation (for 4 bars)

Alternate A B A B

Enclosed A B B A

Monorhyme A A A A

Rubaiyat A A B A

Simple 4-line A B C B

Clerihew A A B B

After 4 bars of durational pattern are constructed, program

deals with next ones, using the same rhythmic scheme or

another one.

Here is a short example of how algorithm creates

durational pattern for eight bars with time signature or
𝟒

𝟒
 in

Table III (here only metric patterns are used in order to

facilitate understanding).

TABLE III
EXAMPLE OF DURATIONAL PATTERN CONSTRUCTING

Rhythmic phrase ‘A’
Crotchet + Quaver + Quaver +

Crotchet + Crotchet

Rhythmic phrase ‘B’

Quaver + Quaver + Quaver +

Quaver + Quaver + Crotchet +
Crotchet

Rhythmic phrase ‘C’
Quaver + Crotchet + Quaver +

Quaver + Crotchet + Quaver

Rhythmic phrase ‘D’
Crotchet + Quaver + Quaver +

Minim

Chosen scheme(-s)

Alternate (using phrases A,B) +

Simple 4-line (using phrases A, D,

C)

Resulting scheme A B A B A D C D

Bar 1

Bar 2

Bar 3

Bar 4

Bar 5

Bar 6

Bar 7

Bar 8

B. Melodic pattern construction

The basis of this part of the algorithm lies in the rules of

harmonic melody construction (rules will be explained

further).

In mathematics, there is one key rule: a plane can be

described through three points. Literally saying, the whole

two-dimensional surface, a flat, that contains endless amount

of points, can actually be defined by only three of them. A

figure “3” has significant in a context of music creating also.

Three notes form a chord, which determines vital

characteristics of musical composition: whether it is major of

minor, harmonious or disharmonious. As it is needed to create

harmonious melodies, chords can be uses as basic elements,

sequential playback of which is finally a musical canvas.

Back to the Western music: it occurs that this concept is a

product of two subjects, harmony and counterpoint (voice

leading). The first discipline appoints the acceptable chords,

which sound simultaneously or successively. The second one

connects the individual notes in a series of chords so as to

49 of 174

https://en.wikipedia.org/wiki/File:Commontime_inline.png
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Half_note.gif
https://en.wikipedia.org/wiki/File:Half_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Half_note.gif
https://en.wikipedia.org/wiki/File:Half_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Quarter_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif
https://en.wikipedia.org/wiki/File:Eighth_note.gif

form simultaneous melodies. According to Dmitri Tymoczko,

composer and music theorist, these key features “facilitate

musical performance, engage explicit aesthetic norms, and

enable listeners to distinguish multiple simultaneous melodies”

[12].

This researcher has developed an interesting model of

melody’s motion analysis. He supposed that there can be a

geometric shape which can represent all possible notes and

their combinations. This shape is an orbifold (see in Fig. 4) —

that is the space of unordered pairs of pitch classes. The

orbifold is singular at its top and bottom edges, which act like

mirrors. In this way, and melody or voice leading between

pairs of pitches (or pitches classes) can be associated with a

path on the picture. And as it follows, consonant chords of

traditional Western music can be connected by efficient voice

leading, visualized on this shape. There are a lot of

sophisticated nuances and features in the description of this

model, which can be unclear for uninitiated reader. The most

essential conclusion is that, after all necessary investigations,

researcher has proved that most of famous classical melodies

subject to common rules: they consist of symmetrical voice

leadings, which can be easily traced with orbifold. This rule

applies for canonical music, hence, it can be inversed. The

aim of this part of algorithm in the current project is to use

inversed rule and build a melody, basing on harmonious

permutations and combinations.

Fig. 4 Orbifold

For the particular objective simplified shape can be

considered. It is a cube with eight vertices: for each pitch in

octave and one for the first one of the next octave (see in Fig.

5). This cube is carried out specifically for Cdur.

Fig. 5 Cube of pitches sequences constructing

The essence of this method is that program constructs a

melody by moving along the edges: from one vertex to

another. These movements are caused by the chords; program

is trained to use the most harmonious ones, vary sequences,

and always resolve to the tonic. How exactly does it work? It

would be rational to explain the approach with an example:

0. A program has already defined durational pattern

so this is not an issue anymore;

1. Program appoints C (tonic) as the first pitch;

2. Program chooses next pitch from E, F, and D. This

can result in intervals: major third, quart, or major

second. Program chooses F;

3. Program chooses next pitch from A, C, or C of the

next octave. Only one option can result in chord,

so program chooses A. End of iteration (chord is

done);

4. Program chooses next pitch from H, D, or F.

Program chooses H;

5. Program chooses next pitch from G, A, and D.

This can result in intervals: major third, major

second, or major seventh. Program chooses G;

6. Program chooses next pitch from D, E, or H. Two

option can result in chord (D – to major one, E –

to minor one), so program chooses D, because it

deals with Cdur. End of iteration (chord is done);

7. Program chooses next pitch from A, C, or G.

Program chooses A;

8. Program chooses next pitch from F, H, and D.

This can result in intervals: major third, major

second, or major sixth. Program chooses F;

9. Program chooses next pitch from C, C of the next

octave, or A. Two option can result in chord (C

and C of the next octave – both to the major ones),

so program chooses C. End of iteration (chord is

done);

10. And so on…

One of the key limitations for this endless process is to

return to the tonic at the end of voice leading. The entropy of

melodic pattern can be increased if it is allowed to move not

only along edges (those ones which are drawn on the picture).

But the principle has to stay unchanged: the motion considers

chords and gives priority to the consonant ones.

Program picks an amount of pitches which correspond the

durational pattern created earlier. At the final stage algorithm

creates and object: melody, which consist of notes (objects

with appropriate properties: tone and durations). This is the

end of algorithm work.

IV. CONCLUSION

The problem of this paper is considered upon the problem

of creating music by computer, which sounds rhythmically

and harmonically and appears to be received as a complete

melodic pattern without actual interruption of humankind. Its

specifics is related to the consonantly sounded melodies, to

simplicity of construction algorithm, and to its flexibility: in a

case cancelation of some of limitation, program will provide

qualitatively different piece of art, hence, the ability of

50 of 174

computer improvisation can become unlimited within the

scope of this project while the final produce stays holistic.

REFERENCES

[1] R. Pinkerton. “Information Theory and Melody”, Scientific American,

vol. 194. #2, pp. 77-86, 1956.

[2] F. Brooks, A. Hopkins, P. Neumann, W. Wright. “An experiment in
musical composition”, IRE Transactions on Electronic Computers, vol.

EC-6, № 3, pp. 175–182, 1957.

[3] P. Doornbusch, The Music of CSIRAC, Melbourne School of
Engineering, Department of Computer Science and Software

Engineering, Ed. Melbourne, Australia: Common Ground, 2005.

[4] J. Fildes, “'Oldest' computer music unveiled”, BBC News, Dec. 2008,
retrieved Dec. 4, 2013.

[5] V. Bogdanov, All Music Guide to Electronica: The Definitive Guide to
Electronic Music, Russia: Backbeat Books, 2001

[6] T. Shimazu, “The History of Electronic and Computer Music in Japan:

Significant Composers and Their Works”, Leonardo Music Journal
(MIT Press), vol. 4, pp. 102-106, 1994.

[7] R. Zaripov, Cybernetics and music, Moscow, Russia: Nauka (1971) (in

Russian).

[8] R. Zaripov, “The production system in the music”, Proceedings of the

Academy of Sciences of the USSR. Technical Cybernetics, v. 2, pp.

207-216, 1987 (in Russian).
[9] R. Wooller, A. Brown, “A framework for comparing algorithmic music

systems”, in Symposium on Generative Arts Practice (GAP), 2005.

[10] P. M. Gibson, J. A. Byrne (1991) NEUROGEN, musical composition
using genetic algorithms and cooperating neural networks. [Online].

Available:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber
=140338.

[11] The New Grove Dictionary of Music and Musicians, 2nd ed., S. Sadie,

Ed., J. Tyrrell, Ed. Oxford, UK: Oxford University Press, 2004.
[12] D. Tymocsko (2006) The Geometry of Musical Chords. [Online].

Available: http://www.sciencemag.org/content/313/5783/72.full.

[13] D. G. Loy, The Music Machine: Selected Readings from Computer
Music Journal, Roads, Curtis, Ed. Cambridge, USA: MIT Press, 1992.

[14] B. Varga, U. Dimen, and E. Loparitz, Language, music, mathematics,

Moscow, Russia: Mir (1981) (in Russian).

51 of 174

A Crowdsourcing Engine for Mechanized Labor

Dmitry Ustalov
N.N. Krasovskii Institute of Mathematics and Mechanics

Ural Branch of the Russian Academy of Sciences
16 Sofia Kovalevskaya st., Yekaterinburg, Russia

Email: dau@imm.uran.ru

Abstract—Crowdsourcing is an established approach for pro-
ducing and analyzing data that can be represented as a human-
assisted computation system. This paper presents a crowdsourc-
ing engine that makes it possible to run a highly customizable
hosted crowdsourcing platform controlling the entire annotation
process including such elements as task allocation, worker rank-
ing and result aggregation. The approach and the implementa-
tion have been described, and the conducted experiment shows
promising preliminary results.

Keywords—crowdsourcing engine, mechanized labor, human-
assisted computations, task allocation, worker ranking, answer
aggregation.

I. INTRODUCTION

Nowadays, crowdsourcing is a popular and a very practical
approach for producing and analyzing data, solving complex
problems that can be splitted into many simple and verifiable
tasks, etc. Amazon’s MTurk1, a well known labor marketplace,
promotes crowdsourcing as the artificial artificial intelligence.

In the mechanized labor genre of crowdsourcing, a re-
quester submits a set of tasks that are solved by the crowd
workers on the specialized platform. Usually, the workers
receive micropayments for their performance, hence, it is
of high interest to reach the happy medium between the
cost and the quality. The work, as described in this paper,
makes the following contributions: 1) it presents a survey on
crowdsourcing control approaches and 2) presents an engine
for controlling a crowdsourcing process.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III defines the problem of
lacking the control software for crowdsourcing. Section IV
presents a two-layer approach for crowdsourcing applications
separating the engine from the end-user application. Section V
describes the implementation of such an engine. Section VI
briefly tests the present system. Section VII concludes with
final remarks and directions for the future work.

II. RELATED WORK

There are several approaches for controlling the entire
crowdsourcing process.

Whitehill et al. proposed the GLAD2 model that, for the
first time, connects such variables as task difficulty, worker
experience and answer reliability for image annotation [1].

1http://mturk.com/
2http://mplab.ucsd.edu/∼jake/

Bernstein et al. created the Soylent word processor, which
automatically submits text formatting and rewriting tasks to
the crowd on MTurk [2]. The paper also introduces the Find-
Fix-Verify workflow, which had highly influenced many other
researchers in this field of study.

Demartini, Difallah & Cudré-Mauroux developed Zen-
Crowd, another popular approach for controlling crowdsourc-
ing, which was originally designed for mapping the natural
language entities to the Linked Open Data [3]. ZenCrowd is
based on the EM-algorithm and deploys the tasks to MTurk.

The idea of providing an integrated framework for a
crowdsourcing process is not novel and has been addressed by
many authors both in academia and the industry, e.g. WebAnno
[4], OpenCorpora [5] and Yet Another RussNet [6].

However, the mentioned products are problem-specific and
using them for crowdsourcing different tasks may be non-
trivial. Moreover, that software do often force the only possible
approach for controlling the process of crowdsourcing, which
in some cases may result in suboptimal performance.

A. Task Allocation

Lee, Park & Park created a dynamic programming method
for task allocation among workers showing that consideration
of worker’s expertise increases the output quality [7].

Yuen, King & Leung used probabilistic matrix factorization
to allocate tasks in the similar manner that recommender
systems do [8].

Karger, Oh & Shah proposed a budget-optimal task al-
location algorithm inspired by belief propagation and low-
rank matrix approximation being suitable for inferring correct
answers from those submitted by the workers [9].

B. Worker Ranking

Welinder & Perona presented an online algorithm for es-
timating annotator parameters that requires expert annotations
to assess the performance of the workers [10].

Difallah, Demartini & Cudré-Mauroux used social network
profiles for determining the worker interests and preferences
in order to personalize task allocation [11].

Daltayanni, de Alfaro & Papadimitriou developed the
WorkerRank algorithm for estimating the probability of getting
a job on the oDesk online labor marketplace utilizing employer
implicit judgements [12].

52 of 174

C. Answer Aggregation

The answers are often aggregated with majority voting,
which is highly efficient for small number of annotators per
question [9]. Some works use a fixed number of answers to
aggregate [5].

Sheshadri & Lease released SQUARE3, a Java library
containing implementations of various consensus methods for
crowdsourcing [13], i.e. such methods as ZenCrowd [3], ma-
jority voting, etc.

Meyer et al. developed DKPro Statistics4 implementing
various popular statistical agreement, correlation and signif-
icance analysis methods that can be internally used in answer
aggregation methods [14].

D. Cost Optimization

Satzger et al. presented an auction-based approach for
crowdsourcing allowing workers to place bids on relevant tasks
and receive payments for their completion [15].

Gao & Parameswaran proposed algorithms to set and vary
task completion rewards over time in order to meet the budget
constraints through the use of Markov decision processes [16].

Tran-Thanh et al. developed the Budgeteer algorithm for
crowdsourcing complex workflows under budget constraints
that involves inter-dependent micro-tasks [17].

III. PROBLEM

Hosseini et al. defines the four pillars of crowdsourcing
making it possible to represent the crowdsourcing system C
as the following quadruple [18]:

C = (W,R, T, P) (1)

Here, W is the set of workers who benefit from their participa-
tion in the process C, R is the task requester who benefits from
the crowd work deliverables, T is the set of human intelligence
tasks provided by the requester R, and P is the crowdsourcing
platform that connects these elements.

Unfortunately, there is no open and customizable software
for controlling C. This problem is highly topical since using
MTurk, the largest crowdsourcing platform, is not possible out-
side the U.S. making it interesting to develop an independent
substitution that can be hosted.

IV. APPROACH

The reference model of a typical mechanized labor crowd-
sourcing process is present at Fig. 1 and consists of the
following steps repeated until either convergence is achieved
or the requester stops the process:

1) a worker requests a task from the system,
2) the system allocates a task for that worker,
3) the worker submits an answer for that task,
4) the system receives and aggregates the answer,
5) the system updates the worker and task parameters.

3http://ir.ischool.utexas.edu/square/
4https://code.google.com/p/dkpro-statistics/

Fig. 1. Reference Model

A. Use Case Diagram

Modern recommender systems like PredictionIO5 and
metric optimization tools like MOE6 separate the application
layer from the engine layer to simplify integration into the
existent systems. In crowdsourcing, it is possible to sepa-
rate the worker annotation interface (the application) and the
crowdsourcing control system (the engine) for the same reason.

The use case diagram present at Fig. 2 shows two actors—
the requester and the application—interacting with the engine.
The application works with the engine through the specialized
programming interface (API) and the requester works with the
engine using the specialized graphical user interface (GUI).

Fig. 2. UML Use Case Diagram

B. Sequence Diagram

The sequence diagram at Fig. 3 shows the interaction
between those elements: a worker uses the end-user application
that is connected to the engine that actually controls the process
and provides the application with the appropriate data.

V. IMPLEMENTATION

The proposed system is implemented in the Java program-
ming language as a RESTful Web Service through the use
of such APIs as JAX-RS7 and JDBI8 within the Dropwizard9

framework. The primary data storage is PostgreSQL10, a
popular open source object-relational database.

A. Class Diagram

The class diagram at Fig. 4 represents the crowdsourcing
system as according to the equation 1. The Process class

5http://prediction.io/
6https://github.com/Yelp/MOE
7https://jcp.org/en/jsr/detail?id=339
8http://jdbi.org/
9http://dropwizard.io/
10http://www.postgresql.org/

53 of 174

Fig. 3. UML Sequence Diagram

defines a system C and specifies how its elements W , T and
A should be processed by the corresponding implementations
of the abstract Processor class.

Particularly, an actual processor inherits that abstract
class and implements one or many of the following
interfaces: WorkerRanker, TaskAllocator,
AnswerAggregator. The reason for that is the dependency
uncertainty of each particular processor implementation
that has been approached by the dependency injection
mechanism11.

Fig. 4. UML Class Diagram

For example, a processor for majority voting, which
is a popular approach for answer aggregation, should ex-
tend the Processor class and provide the implemen-
tation of the aggregate method inherited from the
AnswerAggregator interface. In order to access the an-
swers stored in the database, the corresponding data access
object—AnswerDAO—should be injected.

On startup, the application configures itself with the pro-
vided configuration files and database entries, sets up the
Guice12 dependency injector and creates an instance of each
defined process. Then, the application calls the bootstrap

11https://jcp.org/en/jsr/detail?id=330
12https://github.com/google/guice

method of each process, which initializes the processors spec-
ified in the process configuration. Finally, these resources are
getting exposed by the RESTful API.

B. Package Diagram

The system is composed of several packages responsible
for its functionality. Since that the Dropwizard framework is
used, the most of boilerplate code is already included in the
framework. However, such a sophisticated initialization re-
quires additional middleware resulting in the package hierarchy
represented at Fig. 5 detailed in Table I.

Fig. 5. UML Package Diagram

TABLE I. PACKAGES

Package Description
mtsar Utility classes useful to avoid the code repetition.
mtsar.api Entity representations.
mtsar.api.jdbi JDBI’s data access objects and object mappers.
mtsar.cli Command-line tools for maintenance and evaluation tasks.
mtsar.dropwizard Middleware for Dropwizard.
mtsar.processors Actual implementations of the methods for controlling

workers, tasks, answers.
mtsar.resources Resources exposed by the RESTful API.
mtsar.views View models used by the GUI.

VI. EVALUATION

The system functionality is tested using JUnit13.
At the present moment, only classes contained in the
mtsar.processors and mtsar.resources packages
are provided with the appropriate unit tests. The continuous
integration practice is followed by triggering a build on
Travis CI14 for each change to ensure that all the unit tests
have been successfully passed.

In order to make sure the system works, the RUSSE15

crowdsourced dataset has been used. The russe process has
been configured to use the zero worker ranker that simply
ranks any worker with zero rank, inverse count task allocator
that allocates the task with the lowest number of available
answers, and the majority voting answer aggregator (Fig. 6).
Then, the workers, tasks and answers stored in this dataset
have been submitted into the system via the RESTful API
and the conducted experiment showed that no data have been

13http://junit.org/
14https://travis-ci.org/
15http://russe.nlpub.ru/

54 of 174

Fig. 6. Graphical User Inferface

lost during this activity and the engine does allocate tasks and
aggregate answers correctly w.r.t. the chosen processors.

VII. CONCLUSION

In this study, a crowdsourcing engine for mechanized labor
has been presented and described among the used approach and
its implementation. Despite the conducted experiment showing
promising preliminary results, there are the following reasons
for the further work.

Firstly, it is necessary to conduct a field study, which was
not possible due to the lack of time. Secondly, it is necessary
to integrate state of the art methods for worker ranking, task
allocation and answer aggregation into the engine to provide
a requester with the best annotation quality at the lowest cost.
Finally, it may be useful to extend the engine API and GUI in
order to make it more convenient and user-friendly.

The source code of the system is released on GitHub16

under the Apache License. The documentation in Russian is
available on NLPub17.

ACKNOWLEDGMENT

This work is supported by the Russian Foundation for the
Humanities, project no. 13-04-12020 “New Open Electronic
Thesaurus for Russian”. The author is grateful to the anony-
mous referees who offered useful comments on the present
paper.

REFERENCES

[1] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan, “Whose
Vote Should Count More: Optimal Integration of Labels from Labelers
of Unknown Expertise,” in Advances in Neural Information Processing
Systems 22. Curran Associates, Inc., 2009, pp. 2035–2043.

[2] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman,
D. R. Karger, D. Crowell, and K. Panovich, “Soylent: A word processor
with a crowd inside,” in Proceedings of the 23Nd Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’10.
New York, NY, USA: ACM, 2010, pp. 313–322.

16https://github.com/dustalov/mtsar
17https://nlpub.ru/MTsar

[3] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux, “ZenCrowd:
Leveraging Probabilistic Reasoning and Crowdsourcing Techniques for
Large-Scale Entity Linking,” in Proceedings of the 21st International
Conference on World Wide Web, ser. WWW ’12. New York, NY, USA:
ACM, 2012, pp. 469–478.

[4] S. M. Yimam, I. Gurevych, R. E. de Castilho, and C. Biemann,
“WebAnno: A Flexible, Web-based and Visually Supported System for
Distributed Annotations,” in Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics: System Demonstrations.
Sofia, Bulgaria: Association for Computational Linguistics, 2013, pp.
1–6.

[5] V. Bocharov, S. Alexeeva, D. Granovsky, E. Protopopova, M. Stepanova,
and A. Surikov, “Crowdsourcing morphological annotation,” in Com-
putational Linguistics and Intellectual Technologies: papers from the
Annual conference “Dialogue”, vol. 12 (19). Moscow: RSUH, 2013,
pp. 109–124.

[6] P. Braslavski, D. Ustalov, and M. Mukhin, “A Spinning Wheel for
YARN: User Interface for a Crowdsourced Thesaurus,” in Proceedings
of the Demonstrations at the 14th Conference of the European Chapter
of the Association for Computational Linguistics. Gothenburg, Sweden:
Association for Computational Linguistics, 2014, pp. 101–104.

[7] S. Lee, S. Park, and S. Park, “A Quality Enhancement of Crowd-
sourcing based on Quality Evaluation and User-Level Task Assignment
Framework,” in 2014 International Conference on Big Data and Smart
Computing (BIGCOMP). IEEE, 2014, pp. 60–65.

[8] M.-C. Yuen, I. King, and K.-S. Leung, “TaskRec: A Task Recommenda-
tion Framework in Crowdsourcing Systems,” Neural Processing Letters,
pp. 1–16, 2014.

[9] D. R. Karger, S. Oh, and D. Shah, “Budget-Optimal Task Allocation for
Reliable Crowdsourcing Systems,” Operations Research, vol. 62, no. 1,
pp. 1–24, 2014.

[10] P. Welinder and P. Perona, “Online crowdsourcing: Rating annotators
and obtaining cost-effective labels,” in 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2010, pp. 25–32.

[11] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux, “Pick-A-Crowd:
Tell Me What You Like, and I’ll Tell You What to Do,” in Proceedings
of the 22Nd International Conference on World Wide Web, ser. WWW
’13. Rio de Janeiro, Brazil: International World Wide Web Conferences
Steering Committee, 2013, pp. 367–374.

[12] M. Daltayanni, L. de Alfaro, and P. Papadimitriou, “WorkerRank:
Using Employer Implicit Judgements to Infer Worker Reputation,”
in Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, ser. WSDM ’15. New York, NY, USA:
ACM, 2015, pp. 263–272.

[13] A. Sheshadri and M. Lease, “SQUARE: A Benchmark for Research on
Computing Crowd Consensus,” in First AAAI Conference on Human
Computation and Crowdsourcing, 2013, pp. 156–164.

[14] C. M. Meyer, M. Mieskes, C. Stab, and I. Gurevych, “DKPro Agree-
ment: An Open-Source Java Library for Measuring Inter-Rater Agree-
ment,” in Proceedings of COLING 2014, the 25th International Confer-
ence on Computational Linguistics: System Demonstrations. Dublin,
Ireland: Dublin City University and Association for Computational
Linguistics, 2014, pp. 105–109.

[15] B. Satzger, H. Psaier, D. Schall, and S. Dustdar, “Auction-based crowd-
sourcing supporting skill management,” Information Systems, vol. 38,
no. 4, pp. 547–560, 2013.

[16] Y. Gao and A. Parameswaran, “Finish Them!: Pricing Algorithms for
Human Computation,” Proceedings of the VLDB Endowment, vol. 7,
no. 14, 2014.

[17] L. Tran-Thanh, T. D. Huynh, A. Rosenfeld, S. D. Ramchurn, and
N. R. Jennings, “Crowdsourcing Complex Workflows under Budget
Constraints,” in Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI-15). AAAI Press, 2015, pp. 1298–1304.

[18] M. Hosseini, K. Phalp, J. Taylor, and R. Ali, “The Four Pillars of
Crowdsourcing: a Reference Model,” in 2014 IEEE Eighth International
Conference on Research Challenges in Information Science (RCIS),
2014, pp. 1–12.

55 of 174

On the Implementation of a Formal Method for
Verification of Scalable Cache Coherent Systems

Vladimir Burenkov
Bauman Moscow State Technical University

MCST
Moscow, Russian Federation

burenkov_v@mcst.ru

Abstract—This article analyzes existing methods of verification
of cache coherence protocols of scalable systems. Based on the
research literature, the paper describes a method of formal
parameterized verification of safety properties of cache coherence
protocols. The paper proposes a design of a verification system for
cache coherence protocols. The article analyzes the method in
terms of development and examination of the corresponding
Promela model of the German cache coherence protocol and
discusses extension and automation of the method needed to adapt
it to verification challenges of the Elbrus microprocessors.

Keywords—formal verification; model checking; deductive
verification; cache coherence protocol; Elbrus

I. INTRODUCTION
Modern microprocessor systems are scalable – the number

of cores per chip increases and chips are combined into
clusters. Each processor of the system has access to the shared
address space. However, memory is physically distributed
among the processors in order to increase the bandwidth and
reduce the latency to local memory. Thus, access to the local
memory is faster than access to the remote memory. To
decrease the memory bandwidth demands of a processor,
processors are equipped with multilevel caches. Caching of
shared data introduces the problem of cache coherence.

To solve the problem, computer architects often use
hardware mechanisms that implement cache coherence
protocols. Concurrent work of many hardware devices (for
example, cache and main memory controllers), which
exchange information in accordance with a cache coherence
protocol, results in a colossal size of the protocol’s state space.
This, in turn, makes verification of cache coherence protocols
an extremely hard task.

To work out the problem, scientists have been conducting
research in the direction of formal methods for the past few
decades and achieved a level of success. However, scalable
verification is still an issue.

Scalability leads to the need for formal verification
methods that are capable of adapting to it. As the size of
systems increases, the fully automated method of model
checking reaches its limits and can no longer be used due to
the state space explosion problem.

As a rule, existing formal approaches to verification are
either inapplicable to industrial-strength microprocessor
systems or require an enormous amount of manual work.

II. PRIMARY VERIFICATION METHODS
Formal methods provide a mathematical proof of the

correspondence between a model of the object under
verification and the object’s specification, that is, a set of
properties it is supposed to satisfy. A mathematical model of
reactive systems – and cache coherence protocols are
examples of reactive systems – that allows to systematically
represent systems components, their coordination and
interaction, is a transition system [1].

The main approaches to formal verification are model
checking and deductive verification.

The method of model checking [2] systematically explores
the finite state space of the protocol under verification by
means of specific algorithms. The advantages of model
checking are full automation and generation of
counterexamples that help us find the sources of bugs. The
main disadvantage is the state space explosion problem.
Modern cache coherence protocols have too many states for an
effective state space inspection to be feasible.

Let us consider verification of safety properties, which are
described by linear temporal logic (LTL) formula Gp, where p
is an assertion – a formula constructed by applying logical
connectives to variables of the model. If the assertion is true in
each state of the model, then p is an invariant of the model.
According to the method of deductive verification, in order to
prove Gp, it is necessary to develop an auxiliary assertion ϕ ,
which is an over-approximation of the state space, and then
show that ϕ implies p (i.e., that ϕ is stronger than p). The
method is based on the following inference rule [1]:

p
p

G
.3I

preservestransitionAll.2I
modeltheofstatesinitialtheintrueis .1I

→ϕ
ϕ

ϕ

56 of 174

An assertion ϕ is called inductive if it satisfies the
premises I1 and I2. An inductive assertion is always an over-
approximation of the set of reachable states. If p is an
invariant of the system under verification, then there always
exists an inductive assertion ϕ stronger than p [1]. The initial
assertion p is rarely inductive. As a rule, the verification
engineer must develop an auxiliary assertion and check the
validity of the premises I1-I3.

Deductive verification allows us to work with systems
with infinite number of states. Theorem provers assist in using
formal logic for reasoning about mathematical objects.
Popular tools are ACL2, PVS, Isabelle. The underlying logics
of theorem provers vary substantially. However, all theorem
provers support rich and expressive logics. In general,
expressiveness of a logic leads to its undecidability. That
means that there is no automatic procedure that, given a
formula, can always determine if there exists a derivation of
the formula in the logic. The use of theorem proving presumes
interaction with an expert user and is a complicated creative
process. When the theorem prover cannot find the derivation
of a formula given a proof outline, it is very hard to find the
actual bug in the system under verification.

Reference [3] describes the experience of using the PVS
theorem prover for parameterized verification of the FLASH
cache coherence protocol. During the proof construction,
authors manually looked for candidates for inductive assertions
many times. When they failed to prove their inductiveness,
they analyzed the reasons for that and devised additional
conditions that transformed the assertion into an inductive one.
This process is extremely laborious, which is why methods that
are solely based on theorem proving can only find a limited
usage in verification of cache coherence protocols.

III. VERIFICATION METHODS FOR SCALABLE SYSTEMS
Development of verification methods for scalable systems

may be carried on in several directions: 1) improvement of
methods based on model checking; 2) improvement of
methods based on deductive verification; 3) combination of
the methods from the first and the second groups.

Methods of verification of cache coherence protocols
deployed in industrial-strength microprocessor systems must
satisfy a number of requirements: 1) possibility of conducting
verification in a reasonable amount of time; 2) high level of
automation; 3) ability to provide information about sources of
bugs.

Model checking or deductive verification on their own do
not meet these needs. Consequently, building a general
infrastructure that would combine and further develop
methods of model checking and deductive verification seems
to be the most promising approach to verification of scalable
systems.

IV. ABSTRACTION AND COMPOSITIONAL MODEL CHECKING
The main approaches allowing the application of model

checking to verification of scalable systems are abstract model

checking and compositional verification [2]. Abstraction
methods diminish the number of states of the model under
verification and preserve the properties of interest at the same
time.

Equivalence relations, which guarantee that the models
will have the same behaviors, usually do not decrease the
number of states sufficiently. Instead, simulation relations,
which relate models to their abstractions, are used. The
simulation guarantees that every behavior of a model is a
behavior of its abstraction. However, the abstraction might
have behaviors that are not possible in the original system.

Abstract state spaces may be obtained by means of under-
approximation methods, which remove behaviors, or over-
approximation methods, which add new behaviors. Thus, in
case of under-approximation, a bug in the abstract model
implies a bug in the concrete model, and in case of over-
approximation, correctness of the abstract model implies
correctness of the concrete model. Further in this article we
only consider over-approximations, also known as
conservative abstractions.

Developing abstract models involves finding a
compromise between two conflicting goals: 1) generation of
small abstract models that can be model checked; 2)
generation of precise abstract models.

Usually, the smaller the model, the more behaviors it
allows. This may lead to spurious counterexamples that are
not present in the concrete model. There are at least two ways
out: 1) construction of precise abstract models; 2) analysis of
counterexamples and modification of the abstract model
according to the acquired information (counterexample-guided
abstraction refinement).

Methods that create precise abstract models (for example,
based on counter abstraction or environment abstraction [4])
lead to models of big size in case of complicated protocols.

The idea of compositional verification [5] is to exploit the
natural decomposition of a distributed system into processes.
Processes are verified individually (with a generalized
environment), then the results are combined, and a verdict
about correctness of the initial model is made. A compositional
approach must provably lead to simplified models satisfying
the properties of the initial model.

V. A METHOD OF COMPOSITIONAL MODEL CHECKING

A. General Idea
The method described in this paper adapts the method [6]

to work with a subset of Promela. The method is based on a
combination of model checking and theorem proving. The
choice of Spin is motivated by the fact that Spin is a modern
and constantly evolving tool that supports many optimizations
and verification modes. The Promela language is convenient
for description of distributed systems, including cache
coherence protocols. Moreover, Spin may be used as the basis
for generators of test programs the purpose of which is

57 of 174

verification of implementations of cache coherence protocols
[7].

The method shows how to build an abstract model that
simulates a given concrete model of a cache coherence
protocol. The construction is performed by means of syntactic
transformations of the concrete Promela model.

B. A Mathematical Model of Cache Coherence Protocols
Cache coherence protocols may be seen as asynchronous

systems of communicating processes in which a process is a
finite automaton. Then a mathematical model of a cache
coherence protocol is a system of communicating finite
automata.

A Promela model specifies the behavior of a set of
asynchronously executing processes in a distributed system.
Each Promela process defines an extended finite automaton.
Thus, Promela is suitable for describing models of cache
coherence protocols.

By simulating the execution of a Promela model we can
build a digraph of all reachable states of the model. Each node
in the graph represents a state of the model, and each edge
represents a single possible execution step by one of the
processes. This graph is always finite [8].

Safety properties can be interpreted as statements about the
presence or absence of specific types of nodes in the
reachability graph.

Let us consider the transition system corresponding to the
reachability graph. The following discussion considers a
subset of Promela.

A transition system is a triple),,(0 ESSTS = , where S is
a finite non-empty set of states, SS ⊆0 is a non-empty set of
initial states, SSE ×⊆ is a transition relation on S such that

EssSsSs ∈∈∃∈∀)',(:)'()(

In order to be able to formally define syntactic
transformations of a Promela model, we will represent models
by means of a triple),,(RVP Θ= , where

• V is a set of variables of the model, each variable is
of its own type;

• Θ is the initialization predicate;

• R is the set of transition rules represented as guarded
commands consisting of a condition and a set of assignments:

}:;;:{ 11 kk tvtvcond ==→  ,

where cond is the condition (predicate), Vvi ∈ are model
variables, each it is a term of the same type as iv ; := denotes
assignment.

An interpretation of a set of typed variables V is a
mapping that assigns to each variable Vvi ∈ a value in the
domain of iv .

A triple),,(RVP Θ= determines a transition system

),,(0 ESSTS P = in the following way. Each state Ss∈ is an
interpretation of the set V . For every term t we write)(ts
for the value of t in the state s . For a predicate ϕ , we denote

ϕ=|s if and only if trues =)(ϕ . A predicate ϕ is an
invariant of a model P, denoted by ϕ=|P , if ϕ=∈∀ |: sSs .

0S is the set of states Ss∈ such that Θ=|s .

There exists a transition 'ss → , which means Ess ∈)',(,
if there exists a transition rule

}:;;:{ 11 kk tvtvcond ==→  ,

such that conds =| and 's is a state in which

))()('(}),,1{(ii tsvski =∈∀ 

and

))()('(}),,{\(1 jjkj vsvsvvVv =∈∀  .

C. The Abstract Model
Let },,{ 1 nppN = be a parameter set, where npp ,,1 

are constants of the type used to represent processes in the
model and n is a natural number defined by the number of
cache agents in the system.

Let),,(RVP Θ= be a symmetric model [9] and
},,{ 1 mppM = be a subset of the set },,{ 1 nppN = ,

nm ≤ . Let abs be the element that is an abstraction of
elements nm pp ,,1 + and }{absMM abs ∪= . We define the
abstract model),,(absabsabs RVP Θ= with the parameter set

absM as follows.

Let S be the set of states of the model P and absS be the set
of states of the model absP .

The predicate absΘ is obtained by the syntactic
transformations PTrans .

The transition rules absR are obtained by syntactic
transformations RTrans that include transformations of
conditions PTrans and transformations ATrans of the
assignments that appear in the rules:

)}:(;);:({)(
}):;;:{(

11

11

kkAAP

kkR

tvTranstvTranscondTrans
tvtvcondTrans

==→
===→





58 of 174

The transformations of terms TTrans are defined in the
following way.

VvvvTransT ∈= eachfor)(,





>
≤

=
miabs

mip
pTrans i

iT for
,for

)(,

cccTransT constantsotherallfor)(= .

This definition is extended inductively to work with
composite term expressions.

Suppose),,(1 ktt ϕ is a predicate, i.e., a logical
combination of ktt ,,1  . Then)),,((1 kT ttTrans ϕ is the
same logical combination of)(,),(1 kTT tTranstTrans  .
Define)(ϕPTrans to be the same logical combination of

ktt ',,'1  , where









≠
≠

=
=

.innegativelyoccursand)(if,
,inpositivelyoccursand)(if,

,)(if,
'

ϕ
ϕ

iiiT

iiiT

iiTi

i

tttTransfalse
tttTranstrue

ttTranst
t

Now let us define the transformations of assignments
ATrans . Denote by ∅ the absence of assignment and let



 =

=
otherwise,ofdomaintheinvalueany

,)(if,
'

t
ttTranst

t T .

Table 1 lists the allowed types of assignments and their
corresponding transformations. Define Array to be a Promela
array and absMNf →:2 to be a mapping that maps

mpp ,,1  to themselves and maps nm pp ,,1 + to abs.

The abstract set of transitions is defined as follows:

}|)({ RrrTransR Rabs ∈= .

D. Justification of the Abstraction Rules
It can be shown [9] that the abstraction map absSS →:α

preserves transitions, that is

))'()(()'(: ssssSs αα →⇒→∈∀

Then, safety properties are preserved: If a state is reachable in
the concrete model, it is reachable in the abstract model. In
other words, the abstraction map is a simulation relation.

Table 1. Syntactic Transformations of Assignments

Type of assignment Assignment
transformation

tv =: ': tv =
tpArray i =:][

mitpArray
mi

i ≤=
>∅

if,':][
if,

iptArray =:][)(:][2 ipftArray =

E. The Method
The verification method is based on two observations. The

first one is the fact that the abstraction map is a simulation
relation. The second one is the guard strengthening principle
[9] that makes the following strategy correct.

Given a model P and a predicate ϕ , in order to prove that
ϕ=|P : 1) add ϕ to the conditions of transition rules of P by

means of conjunction; 2) prove that ϕ is an invariant of the
newly acquired model.

The method consists of the following steps. Input objects
are a symmetric model P with parameter set },,{ 1 nppN =
and a safety property ϕ .

1. Construct absP , using the syntactic transformations
from section V.C. Let absPQ = .

2. If ϕ=|Q , the verification is finished: we conclude that
ϕ=|P .

3. Otherwise, examine a counterexample provided by
Spin, devise an invariant ψ and modify Q as
described in [9]. Set ψϕϕ ∧= . Go to step 2.

VI. DESIGN OF A CACHE COHERENCE PROTOCOLS
VERIFICATION SYSTEM

The syntactic transformations described in section V.C can
be fully automated. Performing them by hand is tedious and
impractical, especially in an industrial setting. Therefore, in
order to alleviate this problem, a tool may be developed,
which would build an internal representation of the concrete
Promela model, modify it according to the transformations,
and produce the abstract model. An abstract syntax tree may
be the internal representation.

The transformations of Promela models are shown in Fig.
1.

The question of automating the refinement transformations
is significantly harder. Further research is needed in this
direction.

Internal
representationConcrete

Promela model

Modified internal
representation

Abstract
Promela model

Promela translator and abstract
transformations subsystem

Figure 1. The transformations of Promela models

59 of 174

Processor core Home processor

Cache with a
shared copy

Cache with a
shared copy

1. Initial request

2. Coherent request -
invalidate

2. Coherent request -
invalidate

3. Coherent answer –
invalidate_ack

3. Coherent answer –
invalidate_ack

4. Access grant -
grant

.

.

.

Figure 2. Processing of the read/write requests of the
German cache coherence protocols

VII. VERIFICATION OF THE GERMAN CACHE COHERENCE
PROTOCOL

I developed a Promela model of the German protocol. The
model is written in the style of [10]. The model implements
the algorithm of memory access requests processing shown in
Fig. 2.

A processor core and the corresponding cache controller
are represented by the Promela process core and the home-
processor is represented by the process home. Thus, the model
consists of one process home and N processes core where N
is a natural number. Interaction between the processes is
accomplished by means of the three Promela arrays
channel1, channel2, and channel3 (see Fig. 3).

The array channel1 is for the initial requests req_* sent
by a processor to the home processor. The array channel2 is
for the snoop requests invalidate sent by the home
processor to cache controllers and for grants grant_*. The
array channel3 is used for coherence answers sent by cache
controllers to the home processor (invalidate_ack).

The German protocol uses three main states of a cache
line: Invalid, Exclusive, and Shared.

According to the transformations described in section V.C,
I developed the initial version of the abstract model. The
abstract model contains one process home, two processes
core, and one abstract process home_abs. One of the most
complicated parts of creating the abstract model – the
transformation of assignments – is depicted in Table 2. Table
2 shows examples of the corresponding transformations of the
German cache coherence protocol Promela model.

Process core Process home

channel1

channel2

channel3

Figure 3. Communication channels between processes in
the Promela model of the German cache coherence protocol

Table 2. Examples of the syntactic transformations of the
Promela model of the German protocol

Assignment Assignment
transformation

curr_command
= req_shared

curr_command
= req_shared

sharer_list[i]
= true

mi
mi

≤
>∅

if, true= t[i]sharer_lis
if,

curr_client = i curr_client = i

in a concrete process

curr_client = abs
in the abstract process

The verified property stated that it is impossible for a
cache line to be in state Exclusive in one cache and in state
Shared in some other cache. For example:

never { do :: assert((!(cache[0] ==
exclusive && cache[1] == shared))) od }

This property did not hold on the initial abstract model.
According to section V.E, I performed the refinement process.
Two additional invariants were developed and the verification
process was finished due to the absence of counterexamples.
The refinement process was similar to that described in [6].

For the experimental check of the method’s ability to find
bugs, I verified two buggy versions of German described in
[4]. In the first buggy version, after the home processor grants
exclusive access to a cache, it fails to set the
exclusive_granted variable to true. Thus, when another
cache requests shared access, it gets the access even though
the first cache holds it in exclusive state. In this case Spin
issues a counterexample because the assertion

assert((!(cache[0] == exclusive &&
cache[1] == shared)))

is violated.

In the second buggy version, the home processor grants a
shared request even if exclusive_granted variable is true.
In this case Spin issued a counterexample because of the
violation of one of the invariants found during the abstraction
process.

VIII. CONCLUSION AND DIRECTIONS FOR FUTURE WORK
Formal methods for verification of cache coherence

protocols fall into two groups: methods based on model
checking and methods based on deductive verification. Model
checking is fully automated but suffers from the state space
explosion problem. Deductive verification is scalable but
requires a lot of expert’s hand work. Combination of the two
approaches seems promising because of its potential ability to
lead to a scalable method that requires an acceptable amount
of hand work.

On the basis of existing literature, a method that is such a
combination is described. Although the method can be used
for parameterized verification, it has some drawbacks. It

60 of 174

supports a very limited subset of Promela constructs and poses
unnecessary limitations on the way verification engineers
should write their Promela models. The style of the Promela
model used in this paper is less intuitive than the style of the
model described in [7]. The model from [7] was obtained by a
natural decomposition of the Elbrus system-on-chip under
verification and organizing process communication through
Promela channels. The model was successfully used in
verification of several Elbrus systems.

Future work directions include provable extension of the
Promela subset that can be dealt with by the verification
method, the examination of the impacts of different styles of
descriptions of cache coherence protocols, and development of
tools that would automate parts of the verification process.
The verification process will be applied to Elbrus
microprocessors.

REFERENCES
[1] Z. Manna, A. Pnueli, “The temporal logic of reactive and concurrent

systems: specification,” Springer-Verlag, 427 pp., 1992.
[2] E.M. Clarke, O. Grumberg, D. Peled, “Model checking,” MIT Press, 314

pp., 1999.

[3] S. Park, D. Dill, “Verification of FLASH cache coherence protocol by
aggregation of distributed transactions,” Proceedings of the 8th annual
ACM symposium on parallel algorithms and architectures, pp. 288–296,
1996.

[4] M. Talupur, “Abstraction Techniques for Parameterized Verification,”
PhD Thesis, 2006.

[5] E. Clarke, D. Long, K. McMillan, “Compositional model checking,”
Proceedings of the fourth IEEE symposium on logic in computer
science, 1989.

[6] C. Chou, P. Mannava, S. Park, “A simple method for parameterized
verification of cache coherence protocols,” Formal methods in
computer-aided design, vol. 3312, pp. 382–398, 2004.

[7] V. Burenkov, “Generator testov dlya verifikatsii protocola cogerentnosti
kesh pamyati [A test generator for cache coherence protocol
verification],” Voprosi radioelektroniki, seria EVT, 3, pp. 56–63, 2014.

[8] G. Holzmann, “The Spin model checker: primer and reference manual,”
Addison-Wesley Professional, 608 pp., 2003.

[9] S. Krstic, “Parameterized system verification with guard strengthening
and parameter abstraction,” Automated verification of infinite state
systems, 2005.

[10] A. Pnueli, S. Ruah, L. Zuck, “Automatic deductive verification with
invisible invariants,” Tools and algorithms for the construction and
analysis of systems, vol. 2031, pp. 82–97, 2001.

61 of 174

A Model-Based Approach to Design Test Oracles for

Memory Subsystems of Multicore Multiprocessors

Alexander Kamkin

ISP RAS

Moscow, Russian Federation

kamkin@ispras.ru

Mikhail Petrochenkov

MCST

Moscow, Russian Federation

petroch_m@mcst.ru

Abstract—The paper describes a method for constructing test

oracles for memory subsystems of multicore microprocessors.

The method is based on using nondeterministic reference models

of systems under test. The key idea of the approach is on-the-fly

determinization of the model behavior by using reactions from

the system. Every time a nondeterministic choice appears in the

reference model, additional model instances are created and

launched (each simulating a possible variant of the system

behavior). When the testbench receives a reaction from the

system under test, it terminates all model instances whose

behavior is inconsistent with that reaction. An error is detected if

there is no active instance of the model. The suggested method

was used to verify the L3 cache of Elbrus-8C microprocessor and

allowed finding three bugs.

Keywords—multicore microprocessors, cache memory, memory

consistency, coherence protocols, functional verification, model-

based testing, testbench automation, test oracle, Elbrus-8C.

I. INTRODUCTION

A key feature of modern microprocessor architectures is
multicoreness, which is implementation of several processing
units, so-called cores, on a single chip. To reduce time to
access data from the main memory, each core has a local
cache, often with two levels, L1 and L2; in addition, all cores
can share the L3 cache. The presence of several data storages
makes it possible to have multiple copies of the same data
within the system and requires special mechanisms to ensure
the storages to be in a coherent state. At the heart of such
mechanisms is a coherence protocol, a set of rules that
governs interactions between storage devices and guarantees
memory consistency for all possible data access scenarios [1].

State-of-the-art coherence protocols are complicated; their
implementation in hardware is difficult and error-prone.
Accordingly, thorough verification of memory subsystems is
required [2]. A widely accepted approach to ensure the
correctness of complex hardware designs is simulation-based
verification, or testing. A test system, also known as a
testbench, solves two main tasks: first, it generates a stream of
stimuli; second, it checks whether the design behavior satisfies
the requirements [3]. This paper addresses the second problem,
i.e. checking the reactions of a memory subsystem in response
to an arbitrary series of stimuli; it introduces a method for
constructing test oracles (reaction checkers) based on high-
level reference models of memory subsystems.

The rest of the paper is organized as follows. Section II
reviews the existing techniques for designing test oracles.
Section III suggests an approach to the problem. Section IV
describes a case study on using the suggested approach in an
industrial setting. Section V concludes the paper.

II. RELATED WORK

A memory subsystem as an object of testing has a number
of distinctive features that should be taken into consideration
when designing a test oracle. First, it consists of many devices
that work in parallel and can receive requests (stimuli) and
send responses (reactions) through several input and output
channels (interfaces with the microprocessor cores). Second,
its behavior essentially depends on the order of requests to
separate data blocks (cache lines); which, in turn, depends on
the time of the requests initiation as well as on the subsystem’s
microarchitecture. Third, requests to a single cache line are
processed mostly one at a time (in other words, requests are
serialized).

It is also worth considering how reference models of
memory subsystems are developed. Many implementation
details, such as the timing of request execution, are typically
ignored: operations are described as atomic actions, while
interactions between blocks are modeled by “zero-time”
function calls. Such kind of models are often called functional
models. The simplified nature of reference models makes them
more tolerant to changes in the subsystem implementation, but
at the same time it makes building test oracles a more difficult
task. Models of that kind cannot predict the exact order of
request execution basing solely on the request timestamps. In
this sense, functional models are surely nondeterministic. The
problem of building test oracles from nondeterministic models
is well known; there are several approaches to solve it.

In [4], a reference model (specification) and a system
under test (implementation) are represented as Partial Order
Input/Output Automata. In such an automaton, each transition
is labeled not by a “stimulus-reaction” pair, but by a partially
ordered multiset (multiple stimuli and reactions are allowed).
An implementation is said to conform to its specification if for
each specification trace there is an implementation trace of the
same length in which the order of events corresponds to the
order given in the specification trace. A similar approach is
presented in [5], where a model of Asynchronous Finite State
Machine is used. In both methods, checking is carried out

62 of 174

some time after the last stimulus (the time should be long
enough to allow all reactions to occur and the implementation
to enter in a stationary state). The scheme is applied under the
assumption that a stimulus generator is “idle” every now and
then during testing.

In [6], a similar concept of correspondence is used, but the
approach focuses on “continuous” event flows (with no stops
in stationary states). A test oracle is based on a so-called trace
matcher, which acts as follows: it receives reactions from the
specification and the implementation and adds them into the
corresponding partially ordered multisets (Y is for the
specification, and Z is for the implementation); before adding
reactions, the minimal (in a sense of the precedence relation)

events (min(Y)  min(Z)) are removed from both multisets; if
the amount of time a reaction stays in a multiset exceeds some
predefined limit, an error is indicated. As compared with [4]
and [5], the method requires more deterministic reference
models: the order of implementation reactions may not be the
same as of specification ones, but the sets of specification and
implementation reactions should coincide (this requirement
can be weakened by marking some reactions as being
optional). To apply the approach to a complex system, a
testbench needs to use “hints” from the implementation that
help to decide what functionality of the reference model is to
be executed [7].

Our work tries to combine [4] and [6]: it allows using
nondeterministic models without restrictions on test sequences
and without using “hints” from implementations. A general
approach is as follows. As soon as there are several possible
ways to continue the execution of the reference model (such a
situation is referred to as a nondeterministic choice), additional
instances of the model are created and launched (the base
instance goes on with one of the branches). When the testbench
receives a reaction from the device under test, the reaction
itself and its characteristics (such as a response type, message
data, etc.) are used to determine what behavior is infeasible and
what instances to terminate. If there is no active instance of the
reference model, an error is reported. Obviously, in the general
case the number of states (and variants of behavior) grows
exponentially with the number of decision points. However, for
memory subsystems the suggested scheme can be effectively
implemented: first, requests to different cache lines are almost
independent (existing dependencies can be neglected); second,
requests to a single cache line are serialized.

III. SUGGESTED APPROACH

Let us clarify what kind of reference models are used by
test oracles for checking behavior of memory subsystems.
Stimuli are divided into two groups: primary stimuli, which
are requests from clients (cores, controllers, etc.) to perform
certain operations with the memory, and secondary stimuli,
which are responses of the test environment to some reactions
of the memory subsystem (every reaction and every secondary
stimulus is caused by some primary stimulus). A memory
subsystem model is decomposed into a number of operation
models, one for each type of primary stimulus. An operation
model has the following interface (the detailed structure is not
of importance):

 p  start(x) – the model creates a process p that
handles the primary stimulus x;

 p.receive(x) – the process p receives the secondary
stimulus x from the environment;

 p.send(y) – the process p sends the reaction y to the
environment (a callback function);

 p.finished() – the model checks whether the process p
has completed.

From the structural point of view, a memory subsystem
model consists of cache line models and a switch. Given a
stimulus, the switch determines what cache line is addressed
and sends the stimulus to the corresponding model. A cache
line model works as follows. To preserve the order of requests
from the same client, it has a set of request queues, Q1, ..., QN,
where N is a number of clients (only requests from the heads
of the queues can be processed). Additionally, it contains a
state model, which represents data stored in the cache line and
auxiliary information that affects the behavior of the operation
models. A cache line model is nondeterministic and can be
described by the following pseudo-code:

while true do

 wait i=1,N Qi  

 Q  {(head(Qi), i) | i  {1, ..., N}  Qi  }

 (x, i)  select(Q)
 dequeue(Qi)

 pi  start(x)
 wait pi.finished()
end

If there are requests from clients (i=1,N Qi  ), a set of
candidates for processing (Q) is built. After that, one of the

requests is nondeterministically selected ((x, i)  select(Q)).
The chosen request is removed from the corresponding queue

(dequeue(Qi)), and its processing is initiated (pi  start(x)).
When the process is completed (pi.finished()), the procedure
described above is repeated.

A cache line model has the following interface methods:

 receive(x, i)  enqueue(Qi, x) – the model receives the
primary stimulus x from the client i;

 receive(x)  p.receive(x) – the model receives the
secondary stimulus x from the environment.

The test oracle structure follows from the reference model
structure: one can distinguish a memory subsystem oracle, a
cache line oracle and an operation oracle. An oracle of each
type is built upon a model of the corresponding type. Thus, a
memory subsystem oracle consists of cache line oracles and a
switch; a cache line oracle includes request queues, operation
oracles, a state model and a message matcher (the
component’s functions will be described later on); an
operation oracle contains an operation model. It should be
noted that there is a distinction between oracle and model
switches: an oracle switch routes not only stimuli but also
reactions. The design of a cache line oracle based on operation
oracles is of the most interest (see Fig. 1).

63 of 174

receive(stimulus)

send(reaction)

finished()

Operation

Model

Operation Oracle

(environment)

check(stimulus)

check(reaction)

enabled()

receive(stimulus)

send(reaction)

finished()

Operation

Model

Operation Oracle

(environment)

check(stimulus)

check(reaction)

enabled()
...

Message

matcher

Request Queue

of Client 1

Request Queue

of Client N

State

Model

get(state)

set(state)

Stimulus

Generator

Primary

Stimuli

Secondary

Stimuli

Verdict

Subsystem

under Test

Reactions

cancel() start(stimulus) cancel()start(stimulus)

receive(stimulus, i)

check(stimulus) check(reaction)

Cache Line Oracle

Figure 1. Structure of a cache line oracle

An operation oracle checks the correctness of reactions
(and possibly validity of secondary stimuli) for the individual
operation (provided that this operation is processed by the
memory subsystem). A cache line oracle does not impose any
restrictions on how operation oracles are implemented. If a set
of reactions caused by the operation depends solely on the
cache line state, the approach presented in [6] can be applied.
In the simplest case, checking is carried out as follows. Every
time the operation model invokes send(y), the reaction y is
added to the multiset Y. When receiving a reaction z from the
implementation, the check(z) method of the operation oracle is
called. It checks whether z belongs to Y: in case of the positive
answer, z is removed from Y; otherwise, the error is indicated.
Also, the operation oracle overrides the finished() method of
the operation model: in addition to checking the operation
completion, it tests whether the set Y is empty.

The model does not provide enough information to
determine the exact order in which requests from different
clients are handled. A cache line oracle launches the operation
oracles for all possible request choices in parallel (only one
request is to be processed by the memory subsystem, but for
now, one cannot decide which one). The cache line oracle is
described by the following pseudo-code (pi refers to an
operation oracle for the client i):

while true do

 wait i=1,N enabled(Qi)

 Q  {(head(Qi), i) | i  {1, ..., N}  enabled(Qi)}

 for (x, i)  Q do
 dequeue(Qi)

 pi  start(x)
 end
end

enabled(Qi)  Qi    ((pi = null)  pi.finished())

The message matcher analyzes implementation reactions
(and possibly secondary stimuli) and identifies the request
being executed by the memory subsystem. Having received a
reaction z from the implementation, the check(z) method of the
message matcher is invoked, which, in turn, calls check(z) in

all active ((pi  null)  pi.finished()) operation oracles.

count  0

for i  {1, …, N} do

 if (pi  null)  pi.finished() then
 if pi.check(z) then

 count  count + 1
 else
 pi.cancel()

 pi  null
 push(Qi, x)
 end
 end
end

assert (count  0)

If an operation oracle (pi) returns the negative verdict
(pi.check(z) = false), the oracle process is forcibly stopped
(pi.cancel()), and the primary stimulus having initiated the
process is returned to the head of the corresponding queue
(push(Qi, x)). If there are no active processes (count = 0), then
the cache line oracle returns the negative verdict. Secondary
stimuli are handled in a similar way; a difference is that if an
operation oracle’s verdict is positive (pi.check(x) = true), the
stimulus is transmitted to the operation model (pi.receive(x)).

To construct a test oracle in the suggested way, a system
under test is expected to meet the following conditions (in
addition to request serialization): first, the behavior of each
operation is unambiguously defined by the system state at the
operation start time; second, each operation changes the global
state of the system just before its completion; third, a client

64 of 174

being served can be unambiguously identified by matching
primary requests with reactions.

IV. CASE STUDY

The presented method for designing test oracles was used
to develop a test system for the L3 cache of the Elbrus-8C
octal-core microprocessor (total volume – 16 MB; size of a
cache line – 64 B; number of banks – 8; bank associativity –
16) [8]. The L3 cache is a point of serialization for the read
and write requests from the microprocessor cores and the
snoop requests (auxiliary requests for maintaining cache
coherence) from the system interface controller. For each
message it is possible to identify the affected cache line; for
this purpose, the oracle switch stores a relation between
primary request addresses and resource identifiers used in
reactions and secondary stimuli. In general, the cache line
oracle follows from the suggested scheme, but has some
particular features described below.

First of all, operations on cache lines of the same set
(cache lines located at the same index) are surely dependent:
inclusion of a cache line might trigger eviction of another one.
It should be emphasized that a victim line cannot be
determined without using a cycle-accurate reference model
and without getting “hints” from the implementation. To solve
this problem and to make all cache lines to be served
independently, we assume that any cache line (whose state is
not Invalid) can be evicted at any moment. This assumption is
implemented by adding a virtual client Eviction to all cache
line oracles (such a trick is legal, because eviction requests are
serialized like any other stimuli).

In most of the cases, a requesting client can be identified
based on reactions, but there are two exceptions. First, writing
data with eviction from L2 (Write-Back) – if the data are not in
the L2 cache, the request is canceled (it completes without
sending any reaction and without changing the state). Second,
prefetching data into L3 (Prefetch) – if the data are in the L3
cache, the request is canceled. The first situation is solved by
forcibly stopping a model of the Write-Back operation as soon
as it is known that the core (the L2 cache of the core) has no
data (such a solution is correct, because requests from cores
cannot load data into other cores; requests from the requesting
core cannot be chosen until the Write-Back operation is
completed). The second problem is solved by “detaching” the
prefetch requests from the cores and moving them to
additional clients (the completion of a prefetch request is
detected indirectly by identifying the completion of one of the
following requests from the same core).

If a cache line (stored in the L3 cache) is in the Shared
state and no core has its copy in the L2 cache, the line can be
evicted (become Invalid) without sending messages to the
environment. Therefore, if a cache line model is in the Shared
state, it means that the corresponding cache line of the
implementation is either Shared or Invalid. Being executed in
the Shared state (without copies of the data in the cores), an
operation oracle spawns two operation models: one operates
on the assumption that the line is Shared; the other operates on
the assumption that the line in Invalid.

It should be noted that L3 under test has no strict
requirements on serialization of so-called special operations
(noncoherent reads and uncacheable writes). It is allowed to
concurrently process any number of such operations over the
same cache line. This exception does not complicate the test
oracle structure: first, special requests are permitted only in
the Invalid state (otherwise, an eviction starts); second, special
operations do not change the state of the cache and do not
affect other operations.

The use of the suggested approach allowed to discover
three errors in the L3 design. The first one concerns the
operation of reading data with storing them in L3 (R32L3 and
R64L3) – the internal directory erroneously marks the line as
having been stored in the L2 cache of the requesting core. The
second one is an unnecessary delay in data eviction caused by
a special operation. Finally, the third one relates to reading of
invalid data from the write-back buffer.

V. CONCLUSION

Memory subsystems of multicore microprocessors are
extremely complex devices; their implementation should be
thoroughly tested. Test oracles play a key role in testbench
automation; the main part of an oracle is a reference model, i.e.
a simplified software implementation of the device under test.
Models of memory subsystems are usually nondeterministic in
a sense that given a set of stimuli, one cannot accurately
determine a set of reactions. In this article, we have proposed a
method for designing test oracles for memory subsystems
based on reaction-driven refinement of a set of behavior
variants. An error is reported if the refinement process leads to
the empty set of variants. The suggested approach was applied
to verify the L3 cache of Elbrus-8C microprocessor and
allowed finding three errors.

REFERENCES

[1] Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency
and Cache Coherence. Morgan and Claypool, 2011. 195 p.

[2] Kamkin A., Petrochenkov M. Sistema podderzhki verifikatsii realizatsii
protokolov kogerentnosti s ispol'zovaniem formal'nykh metodov [A
system to support formal methods-based verification of coherence
protocol implementations]. Voprosy radioelektroniki, seriya EVT, 2014,
3. p. 27-38.

[3] Bergeron J. Writing Testbenches: Functional Verification of HDL
Models. Kluwer Academic Publishers, 2000. 354 p.

[4] von Bochmann G., Haar S., Jard C., Jourdan G.V. Testing Systems
Specified as Partial Order Input/Output Automata. ICTSS, 2008. p. 169-
183.

[5] Kuliamin V., Petrenko A., Pakoulin N., Kossatchev A., Bourdonov I.
Integration of Functional and Timed Testing of Real-Time and
Concurrent Systems. PSI, 2003. p. 450-461.

[6] Chupilko M., Kamkin A. Runtime Verification Based on Executable
Models: On-the-Fly Matching of Timed Traces. MBT, EPTCS 111,
2013, p. 67-81.

[7] Baratov R., Kamkin A., Maiorova V., Meshkov A., Sortov A.,
Yakusheva M. Trudnosti modul'noi verifikatsii apparatury na primere
bufera komand mikroprotsessora «El'brus-2S» [Difficulties of the unit-
level hardware verification on the example of the instruction buffer of
the Elbrus-2S microprocessor]. Voprosy radioelektroniki, seriya EVT,
2013, 3. p. 84-96.

[8] Kozhin A., Kozhin E., Kostenko V., Lavrov A. Kesh tret'ego urovnya i
podderzhka kogerentnosti mikroprotsessora «El'brus-4S+» [L3 cache
and cache coherence support in «Elbrus-4C+» microprocessor]. Voprosy
radioelektroniki, seriya EVT, 2013, 3. p. 26-38.

65 of 174

An Approach to Test Program Generation Based on

Formal Specifications of Caching and Address

Translation Mechanisms

Alexander Kamkin, Alexander Protsenko, Andrei Tatarnikov

Institute for System Programming of the Russian Academy of Sciences (ISP RAS)

Moscow, Russian Federation

Email: {kamkin, protsenko, andrewt}@ispras.ru

Abstract—In this work, an approach to generate test programs

for functional verification of memory management units of

microprocessors is proposed. The approach is based on formal

specification of memory access instructions, namely load and

store instructions, and memory devices such as cache units and

address translation buffers. The use of formal specifications helps

automate development of test program generators and makes

verification systematic due to clear definition of testing goals. In

the suggested approach, test programs are constructed by using

combinatorial techniques, which means that stimuli – sequences

of loads and stores – are created by enumerating all feasible

combinations of instructions, situations (instruction execution

paths) and dependencies (sets of conflicts between instructions).

It is of importance that test situations and dependencies are

automatically extracted from specifications. The approach has

been used in a number of industrial projects and allowed to

discover critical bugs in memory management mechanisms.

Keywords—microprocessors, memory management, caching,

address translation, functional verification, formal specifications,

test program generation, instruction stream generation.

I. INTRODUCTION

A computer memory is known to be a complex hierarchy of
data storage devices varying in volume, latency and price [1].
In addition to registers and main memory, microprocessors
include a multi-level cache memory and address translation
buffers. The set of devices responsible for handling memory
accesses is referred to as a memory subsystem or a memory
management unit (MMU). Being one of the key microprocessor
components, the memory subsystem is strongly required to be
correct and reliable. Due to the complicated structure of the
memory, the number of situations that can occur in processing
load and store instructions is huge; this makes it improbable to
verify the subsystem “manually”.

In the current practice, tests – programs in the assembly
language of the microprocessor under test – are created in an
automated way with the intensive use of random generation. A
tool that constructs test programs is called a test program
generator (TPG) or an instruction stream generator (ISG) [2].
In a typical use case, a TPG accepts probability distributions
for instructions types and operand values as well as other
parameters and produces a set of programs in compliance with
the settings. Though the randomization-based approach is able

to find “high-quality” bugs, it is not systematic and does not
guarantee the verification completeness.

In the present work, an approach to generate test program
for memory subsystems of single-core microprocessors is
discussed (the multi-core issues, such as memory consistency
and cache coherence [3], are out of the scope of the paper). The
proposed approach complements the random-based testing and
enables thoroughly checking situations in the MMU behavior.
It uses specifications of memory access instructions, i.e. load
and store instructions, and specifications of memory devices
including, first of all, caches and address translation buffers.
The formal specifications serve as a source of test coverage
information and allow automatically extracting instruction-
level situations and dependencies. Test programs are built by
composing possible situations and dependencies for instruction
sequences of bounded length.

The rest of the paper is organized as follows. Section II is a
primer on microprocessor memory organization. Section III
provides a brief overview of the related work. Section IV
describes in detail the mentioned approach to test program
generation. Section V considers industrial applications of the
described approach. Finally, Section VI concludes the paper
and outlines directions for future research and development.

II. MEMORY SUBSYSTEM

In a nutshell, a memory subsystem of a microprocessor is
intended for handling memory accesses, namely instruction
fetch requests, data loads and data stores. Its functions include
translation of virtual addresses into physical ones, memory
protection, code and data caching, etc. [1]. Let us consider the
essential concepts of the memory management.

From a programmer’s perspective, a computer memory is a
linear array of bytes. However, the underlying mechanisms and
techniques – usually referred to as a virtual memory – are
rather sophisticated. A virtual address space, i.e. a range of the
byte array indices available for programs to use, is commonly
divided into disjoint segments. Given a segment and a virtual
address, the MMU acts as follows. If the microprocessor mode
satisfies the segment’s privilege level, the virtual address is
translated into the physical address, and an access to the
physical memory is performed; otherwise, an address error
exception is thrown.

66 of 174

Segments are divided into mapped and unmapped; the
latter, in turn, are subdivided into cached and uncached.
Addresses of mapped segments are translated with the help of
translation lookaside buffers (TLB), which store the mapping
between virtual page numbers (VPN) and physical frame
numbers (PFN). If there is a match, the VPN bits of the virtual
address are replaced with the PFN bits, and the process
continues. Otherwise, a TLB refill exception is thrown, which
triggers the operating system to look up the page table and
update the TLB. Unmapped addresses are translated directly
with no use of the buffers. Accessing cached segments, as
opposed to uncached ones, activates the caching mechanisms.

A cache is an intermediate storage responsible for speeding
up access to frequently used data. An average microprocessor
has two- or three-level cache memory. Typically, an Li cache
stores a subset of Li+1 contents; the highest-level cache is the
largest one; it interacts immediately with the main memory. A
cache works as follows. As soon as data are requested, the
cache controller checks whether they are in the buffer. If they
are (it is said to be a cache hit), the data are taken from there
and returned to the requester. Otherwise (it is said to be a cache
miss), the controller chooses a victim among the data blocks
stored in the buffer and replaces it with the data loaded from
the higher-level cache or the main memory.

In the general case, a cache comprises a number of sets;
each set consists of a number of lines; each line includes data
and a tag. Let S = 2s be the number of sets; W be the number of
lines in a set; B = 2b be the size of a data block. Depending on
the values of S and W, the following types of cache memory
are recognized: (1) a direct-mapped cache (W = 1); (2) a fully
associative cache (S = 1); (3) a set-associative cache (W > 1
and S > 1). The bit representation of an address is interpreted as
follows: the bits [0, …, b–1] refer to a byte inside a data block;
[b, …, b+s–1] identify a set; [b+s, …, m–1], where m is the
address length, define a tag. To determine whether the cache
contains data for a given address, first, the set is identified;
then, the tags of the set’s lines are concurrently compared with
the tag extracted from the address. If there is a match, then the
requested data are available in the cache.

III. RELATED WORK

There are several TPG tools based on formal specifications
of memory subsystems. DeepTrans (IBM Research) [4] is one
of them. The approach is targeted at testing address translation
mechanisms and uses a special-purpose modeling language. A
process of address translation is depicted as a directed acyclic
graph whose vertices correspond to the process stages and
whose edges relate to the transitions between the stages. A path
from the source of the graph to the sink defines a particular
situation in the address translation. Such situations can be
referred from high-level descriptions of test programs, so-
called templates. The latter are processed by the Genesys-Pro
generator [2], which formulates constraints on instruction
operands, solves them and transforms the results into the
instruction sequences. The major advantage of the approach is
the use of the highly developed languages for modeling address
translation and describing test templates. The disadvantage is
that the tool is not able to automatically extract conflicts and

dependencies between instructions. Verification engineers have
to manually specify such kind of information in test templates.

In [5], the Java programming language coupled with a
specialized library is used to specify MMU. As in DeepTrans,
the situations correspond to the paths in the graph describing
the subsystem under test; here is an example: {Mapped (data
are requested via a mapped segment), TLBHit (there is a TLB

hit), TLBValid (the matched TLB entry is valid), L1Hit (a
miss in the first-level cache occurs)}. In addition, the approach
provides means for specifying instruction dependencies; an

example is as follows: {TLBEqual (instructions use different
TLB entries), L1IndexEqual (data are mapped to the same set

of the first-level cache), L1TagEqual (data belong to different
cache lines)}. Test templates are constructed automatically by
combining situations and dependencies for short sequences of
instructions. Building templates and creating programs on their
basis is done by the MicroTESK generator (ISP RAS) [6]. The
strength of the approach is systematic test enumeration that
takes into consideration instruction execution paths as well as
dependencies between instructions. The principal weakness is
underdeveloped specification facilities.

IV. APPROACH DESCRIPTION

The main goal of the presented research is to combine the
advantages of the methods [4] and [5] as well as to avoid their
drawbacks. It can be achieved by using formal specifications.
Accordingly, microprocessor instructions, an MMU and test
templates are described in formal domain-specific languages.
Specifications are analyzed to extract testing knowledge, that
is, situations and dependencies. The information having been
extracted is used to automatically generate test programs from
templates as well as to automatically construct templates in a
systematic way. The suggested method is supported by the
MicroTESK TPG [7].

A. Formal Specifications

Formal specification of a microprocessor under test touches
on the instruction set and the memory subsystem. Instructions
are described in the nML language [8]. Descriptions declare the
registers and define the assembly syntax, binary image and the
semantics of the instructions. Semantics is specified in the
usual imperative form by means of the bit-vector and floating
point operations. Here is an nML specification of the MIPS [9]
integer addition instruction (ADD):

op ADD (rd: REG, rs: REG, rt: REG)

 syntax = format("add %s, %s, %s",

 rd.syntax, rs.syntax, rt.syntax)

 image = format("000000%s%s%s00000100000",

 rs.image, rt.image, rd.image)

 action = {

 temp = rs<31>::rs<31..0> +

 rt<31>::rt<31..0>;

 if temp<32> != temp<31> then

 exception("IntegerOverflow");

 else

 rd = coerce(DWORD, temp<31..0>);

 endif;

 }

67 of 174

Being rather simple, nML does not have adequate facilities
to describe memory management. Though the language is
powerful enough to specify caching and address translation
mechanisms, pure nML specifications of MMU are awkward
and hardly analyzable; in particular, it is difficult to extract
testing knowledge to automate test program generation. In that
situation, a domain-specific language has been introduced. A
memory access instruction is described in nML in an intuitive
manner by reading or writing data from or to the byte array
representing the physical memory. Every access to the array
triggers the MMU logic specified in a separate file. An nML
specification of the MIPS load byte instruction (LB) may look
as follows:

op LB (rt: REG, offset: SHORT, base: REG)

 syntax = format("lb %s, %d(%s)",

 rt.syntax, offset, base.syntax)

 image = format("100000%s%s%s",

 base.image, rt.image, offset)

 action = {

 rt = MEM[base + offset];

 }

where MEM is an array declared as mem MEM[2**36, BYTE];
2**36 (that is 236) is the memory size in bytes. Note that
notwithstanding the array is specified as the physical memory,
it is accessed through the virtual address.

Memory management is described in a special language.
MMU specifications include address types, memory segments,
buffers, such as TLB and caches, and detailed algorithms for
handling load and store instructions. Addresses and segments
are described straightforwardly; buffers are specified with the
following parameters: the associativity (ways), the number of
sets (sets), the entry (line) format (entry), the index calculation
function (index), the tag calculation function (tag) and the data
eviction policy (policy). Here is a description of the virtual and
physical addresses (VA and PA correspondingly), user segment
(XUSEG), address translation buffer (TLB) and the first-level
cache memory (L1) of a MIPS microprocessor:

address VA (64)

address PA (36)

segment XUSEG (va: VA)

 range = (0x0, 0x00ffFFFFffff)

buffer TLB (va: VA)

 ways = 64

 sets = 1

 entry = (VPN2: 27, V0: 1, PFN0: 24, ...)

 index = 0

 tag = va<39..13>

 policy = NONE

buffer L1 (pa: PA)

 ways = 4

 sets = 128

 entry = (TAG: 24, DATA: 256)

 index = pa<11..5>

 tag = pa<35..12>

 policy = LRU

Processing of loads and stores is specified by requesting the
buffers and handling their responses. The syntax is similar to
nML though allows using such conditions as XUSEG(va).hit
(the address va belongs to the segment XUSEG) and L1(pa).hit
(the buffer L1 contains the data for the address pa). Here comes
an example:

mmu MEM (va: VA)

 ...

 read = {

 if XUSEG(va).hit then

 if TLB(va).hit then

 tlbEntry = TLB(va);

 else

 exception("TLBRefill");

 endif;

 if va<12> == 0 then

 v = tlbEntry.V0;

 pfn = tlbEntry.PFN0;

 ...

 endif;

 if v == 1 then

 pa = pfn::va<11..0>;

 else

 exception("TLBInvalid");

 endif;

 ...

 endif;

 if L1(pa).hit then

 l1Entry = L1(pa);

 data = l1Entry.DATA;

 ...

 endif;

 }

 write = { ... }

B. Coverage Extractor

Formal specifications are parsed and the control flow graph
(CFG) is build. A coverage extractor traverses the CFG and
constructs the set of all possible execution paths (the graph is
assumed to be acyclic). A single path, so-called a situation,
describes processing of an individual request and finishes
either with a memory access or with an exception (incorrect
address, TLB refill, etc.). Each transition of the path is labeled
with a guard, i.e. a condition that enables the transition, and an
action to be performed. Here is an example of a load situation
(for the sake of simplicity, the transition actions are omitted):
{XUSEG(va).hit, TLB(va).hit, va<12> = 0, v = 1, L1(pa).hit}.

Given a pair of execution paths, the coverage extractor may
be demanded to construct the set of all possible dependencies.
A dependency is a map from the set of buffers common for the
two given execution paths to the set of conflicts. Speaking

formally, a dependency is a partial map d: B  C, where B is
the set of buffers and C is the set of conflicts. The following
types of buffer usage conflicts are predefined in the tool:

 AddrEqual – using the same data;

 AddrNotEqual – using different data:
o IndexEqual – using data of the same set:

 TagEqual – using data of the same line;
 TagReplaced – using data of the replaced line;
 TagNotReplaced – otherwise;

o IndexNotEqual – using data of different sets.

To illustrate the concept, let us consider two simple situations:
the first one is {…, TLB(va1).hit, …, L1(pa1).hit}; the second is
{…, TLB(va2).hit, …, L1(pa2).miss, …}. The situations share
two buffers, namely TLB and L1. A possible dependency is
{TLB.TagEqual, L1.IndexNotEqual}, that is, two instructions
access the same TLB entry (va1<39..13> = va2<39..13>), but

use different L1 sets (pa1<11..5>  pa2<11..5>).

68 of 174

C. Template Iterator

A template is a sequence of situations linked together with
a number of dependencies. A template iterator systematically
enumerates templates to cover a representative set of cases of
the memory subsystem behavior. Let S be the set of situations;
D be the set of dependencies; n be the length of templates.

Formally, a test template of the length n is a pair , , where

 = (s1, ..., sn)  Sn is the template skeleton and  = {dij}, where
i = 1, ..., n-1 and j = i+1, ..., n, is the template ligaments. An
example of a two-situation template is given below:

s1: {XUSEG(va1).hit, TLB(va1).hit, va1<12> = 1, v1 = 1, L1(pa1).hit};
s2: {XUSEG(va2).hit, TLB(va2).hit, va2<12> = 0, v2 = 0};
d12: {TLB.TagEqual (va1<39..13> = va2<39..13>)}.

The main, but not the only, approach supported by the tool
is combinatorial generation. Test templates are constructed by
enumerating all possible skeletons of the given length and
creating all possible ligaments for each of them. The template
iterator checks whether the produced templates are consistent.
For each template, it formulates the set of constraints and
invokes a solver [10]; if the constraints are unsatisfiable, the
template is discarded. Here is an example of an inconsistency:

s1: {..., va1<12> = 0, v1 = 1, ...};
s2: {..., va2<12> = 0, v2 = 0};
d12: {TLB.TagEqual (va1<39..13> = va2<39..13>)}.

TLB.TagEqual implies that both instructions access the same
TLB entry, whereas va1<12> = 0 and va2<12> = 0 result in
v1 = v2 = tlbEntry.V0, which contradicts to v1 = 1 and v2 = 0.

To avoid the combinatorial explosion, special heuristics are
in use. Among them, factorization of situations and limitation
of the depth of dependencies are essential. Description of the
heuristics are out of the scope of the paper.

D. Test Data Generator

Templates are symbolic representation of test programs. To
produce a test program from a template, the latter should be
instantiated. A test data generator plays the key role in this
activity. Test data, in a sense, are a solution to the constraints
stipulated in the template. They include virtual addresses to be
used by the instructions as well as some auxiliary information
intended for setting up the state of the microprocessor under
test such as indices of TLB entries, VPN-to-PFN mappings,
sequences of addresses to be accessed to load or evict data to or
from the buffers, etc.

The test data generator acts in compliance with one of the
following strategies: (1) heavyweight template elaboration with
an attempt to find an exact solution to the problem or (2)
lightweight processing targeted at constructing an approximate
solution. In the main, our approach follows the second strategy.
Detailed analysis of templates makes sense only for accurate
MMU specifications, while instruction-level models are rather
abstract. Another argument is that the lightweight approach
gives a significant benefit in terms of performance, while the
quality of testing is comparable.

Given a template (s1, ..., sn), {dij}, consider how test data
are generated. First, for each situation sj of the template, a

united dependency depj: B  C  2{1, ..., j-1} is built. For each

buffer b and conflict c, depj(b, c) contains indices i < j such

that b  dom(dij) and dij(b) = c, that is, the situations si and sj
access the buffer b and there is the access conflict c. Then, the
template’s situations are processed one after another. Given a
situation sj, the buffers affected in sj are sequentially inspected.
For each buffer b, the actions listed below are performed:

 if depj(b, AddrEqual)  , then

data(sj).addr  data(si).addr,

where data(sj) denotes the test data associated with sj;
addr is the virtual or physical address depending on the
b type; i is any index from depj(b, AddrEqual);

 otherwise, if depj(b, IndexEqual)  , then

data(sj).addr<I>  data(si).addr<I>,

where I is the bit range given in the index section of the
b specification;

o if depj(b, TagEqual)  , then

data(sj).addr<T>  data(si).addr<T>,

where T is the bit range given in the tag section of
the b specification;

o if depj(b, TagReplaced) = , then

data(sj).addr<T>  tagb(data(sj).addr<I>),

where tagb(index) is a previously unused tag of b
for the given index;

 otherwise (if depj(b, IndexEqual) = ),

data(sj).addr<I>  indexb,

where indexb is a previously unused index of b.

TagReplaced conflicts – referred to as dynamic conflicts –
are handled in a special way. As soon as all other constraints,
including hits and misses (see the next paragraph for details),
are resolved, the created sequence of instructions is simulated
on a simplified model derived from the MMU specifications.
This enables the generator to predict the lines being evicted and
replaced with recently accessed data. If there is a TagReplaced
conflict between two instructions (template situations, to be
more precise), the evicted tag having been predicted for the
first instruction is copied into the address of the second one.

In between static Equal/NotEqual and dynamic Replaced
conflicts, hits and misses are considered. For a hit, an access to
the designated address is appended to the template test data:
hit(b).add(data(sj).addr), where hit(b) is a set-separated data
structure that stores sequences of addresses targeted at loading

data into the buffer b. For a miss, an address sequence  is

added: miss(b).add(), where miss(b) is a storage of addresses

used to evict data from b, and  = {addr1, ..., addrW} is a so-
called evicting sequence, that is, addrk<I> = data(sj).addr<I>,

addrk<T>  data(sj).addr<T> and addrk<T>  addrl<T> for all

k, l  {1, ..., W} such that k  l; W is the b associativity. Note
that appending an address to the hit(b) structure may require
adding evicting sequences for the preceding buffers with the
miss constraint having been set.

E. Test Data Adapter

Indeed, test data concretize symbolic templates, but being
instruction set independent they are still too general to be
immediately applied to testing. It is a test data adapter who

69 of 174

translates a template coupled with test data into a sequence of
specific instructions, so-called a test case. Such a sequence
usually consists of two parts: a preparation, which sets up the
microprocessor state, and a stimulus, which performs a series
of memory accesses to stress the microprocessor’s MMU.

Making a stimulus is straightforward: each situation of the
template skeleton is converted into a load or a store depending
on the specification section, read or write, the execution path
belongs to. A particular type of the instruction, i.e. the size of a
data block being accessed, is either derived from the template /
specifications or randomized. The instruction is allowed to use
any registers from the user-defined set. Note that the procedure

requires a mapping from {read, write}  {byte, word, ...} to the
set of memory access instructions implemented in the design.

Constructing a preparation sequence is more intricate. The
main problem is that placing data into a buffer may change the
state of others. Here is how the problem is solved. First, virtual
address based buffers, e.g., TLB, are handled before buffers
accessed by physical addresses, e.g., L1 and L2. Initialization
of the latter can be carried out by using unmapped addresses,
which does not affect the former. Second, the “largest buffer
first” strategy is applied. Typically, a set of lines of a smaller
buffer maps several sets of lines of a larger one, which gives a
possibility to change the smaller buffer with no tangible effect
to the larger one. Given a buffer, the preparation sequence is
cut into pieces corresponding to particular sets of the buffer.
Each piece is the catenation of the miss and hit sequences. It is
implied that each buffer is provided with a code pattern to be
used to place data for a given address. Here comes a simplistic
test case for the MIPS architecture:

// Preparation:

// Fill TLB: VPN0=0x4, V0=1, PFN0=0x10222

tlbwi ...

// Fill L1: VA=0x80261026 (PA=0x261026)

lui t0, 0x8026

ori t0, t0, 0x1026

lb t0, 0(t0)

// Address 0: VA=0x80261026 (PA=0x261026)

lui s0, 0x8026

ori s0, s0, 0x1026

// Address 1: VA=0x4059 (PA=0x10222059)

ori s1, zero, 0x4059

// Stimulus:

// KSEG0.hit (Mapped=0), L1.hit

lb a0, 0(s0)

// XUSEG.hit (Mapped=1), TLB.hit, VA[12]=0, V=1

sb a1, 0(s1)

The instructions here are as follows [9]: TLBWI writes a TLB
entry; LUI loads a constant into an upper half of a word; ORI
does a bitwise OR with a constant; LB loads a byte from
memory; SB stores a byte to memory.

Preparations may be of significant length, but the tool is
able to reduce the volume of such kind of code. It keeps track
of the microprocessor state during test generation and skips
useless initialization (e.g., it does not load data into a buffer if
they are already there). Moreover, the generator can choose a
data tag so as to fit the desired event, a hit or a miss. On the
other hand, preparation sequences are of interest as they – as
our experience shows – can stress the memory subsystem and
discover “high-quality” bugs.

V. INDUSTRIAL APPLICATION

The proposed approach is implemented in the MicroTESK
test program generator [6, 7]. Since 2006, different versions of
the tool – including one described in [5] – have been applying
to functional verification of several industrial microprocessors
with the MIPS architecture [9]. MMU specifications take into
account such buffers as a JTLB (a joint TLB), a DTLB (a micro
TLB used to speed up data address translation), an L1 (a first-
level cache) and an L2 (a second-level cache). Besides, they
involve mapped and unmapped memory segments (XUSEG,
KSEG0, KSEG1 and XKPHYS), TLB control bits (Valid, Dirty
and Global) and cache policies (various combinations of Write-
Through, Write-Allocate and Write-Back flags). Stimuli are
composed from load and store instructions. The approach has
allowed revealing a great number of critical bugs (e.g., reading
incorrect data from memory) in the MMU designs, which had
not been detected by randomly generated test programs.

VI. CONCLUSION

Functional verification of a microprocessor MMU is surely
a hard nut to crack. Automation facilities are undoubtedly of
high value and importance. Our work contributes its mite to
improving verification quality and productivity. The proposed
solution is based on the memory subsystem specification, i.e.
on formal descriptions of caching and address translation. The
distinctive features of the approach are high automation and
systematicness. The suggested method is implemented in the
MicroTESK test program generator, which is freely distributed
open-source software. The tool has been used and is being used
in industrial projects on microprocessor development. A bad
news is that the recent release has no support for multicore
designs. Avoiding this shortcoming is a priority task for the
nearest future. More particularly, we are going to extend the
approach to multiprocessor systems with distributed memory.

REFERENCES

[1] Bryant R.E., O’Hallaron D.R. Computer Systems: A Programmer’s
Perspective. Pearson, 2010. 1080 p.

[2] Adir A., Almog E., Fournier L, Marcus E., Rimon M., Vinov M., Ziv A.
Genesys-Pro: Innovations in Test Program Generation for Functional
Processor Verification. Design & Test of Computers, 2004. pp. 84-93.

[3] Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency
and Cache Coherence. Morgan and Claypool, 2011. 195 p.

[4] Adir A., Fournier L., Katz Y., Koyfman A. DeepTrans – Extending the
Model-based Approach to Functional Verification of Address
Translation Mechanisms. High-Level Design Validation and Test
Workshop, 2006. pp. 102-110.

[5] Vorobyev D., Kamkin A. Generatsiya testovykh programm dlya
podsistemy upravleniya pamyat'yu mikroprotsessora [Test Program
Generation for Memory Management Units of Microprocessors]. Trudy
ISP RAN [The Proceedings of ISP RAS], 2009, vol. 17. pp. 119-132 (in
Russian).

[6] Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable
Test Program Generator for Microprocessors. Spring/Summer Young
Researchers’ Colloquium on Software Engineering, 2012, pp. 64-69.

[7] MicroTESK page — http://forge.ispras.ru/projects/microtesk

[8] Freericks M. The nML Machine Description Formalism. Technical
Report TR SM-IMP/DIST/08, TU Berlin CS Department, 1993.

[9] MIPS64™ Architecture For Programmers. MIPS Technologies Inc.

[10] Fortress page — http://forge.ispras.ru/projects/solver-api

70 of 174

http://forge.ispras.ru/projects/microtesk
http://forge.ispras.ru/projects/solver-api

An approach to Direct Memory Access module
verification

Aleksey Meshkov
MCST

Russia, Moscow, Vavilova 24
Email: alex@mcst.ru

Mikhail Ryzhov
MCST

Russia, Moscow, Vavilova 24
Email: ryzhov@mcst.ru

Pavel Frolov
MCST

Russia, Moscow, Vavilova 24
Email: opium@mcst.ru

Abstract—A method of direct memory access subsystem verifi-
cation used for Elbrus series microprocessors has been described.
A peripheral controller imitator has been developed in order to
reduce verification overhead. The model of imitator has been
included into the functional machine simulator. A pseudorandom
test generator for verification of the direct memory access
subsystem has been based on the simulator.

I. INTRODUCTION

Modern computer systems require very intensive data ex-
change between the peripheral devices and the random-access
memory. In the most cases this exchange is performed by
the direct memory access (DMA) subsystem. The increasing
demands for the performance of the subsystem lead to an
increase in its complexity, therefore requiring development of
effective approaches to DMA subsystem verification [1], [2].

This article is based on a result of a comprehensive
project than combined implementation of a there co-designed
verification techniques based on the consecutive investigation
of the DMA subsystem employing one the three models:
1) a functional model written in C++ that corresponds to
behaviour of the subsystem in the environment determined by
a real computer system configuration, 2) RTL model in Verilog
and 3) FPGA-based prototype. This article describes the first
method that enables verifying correctness of the design at an
early stage of the verification and eliminate a large quantity of
bugs using simple tests.

The most important problem that significantly affects the
quality of the subsystem verification is the exhaustiveness of
the representation of the external devices connected to it and
input vectors they generate. In this case, the problem has been
solved by introducing a device imitating a peripheral controller
and capable of generating a comprehensive range of DMA
subsystem interaction patterns into the functional model. The
basic aspects of DMA imitator implementation are presented
in the second section.

The exhaustiveness of the subsystem in question verifi-
cation is achieved with a test generator allowing to provide
necessary inputs using the imitator. The generator produces
a test program that performs the DMA imitator scenarios
setup for all of its agents, launches their concurrent execution,
provides memory access by the CPU cores during the DMA
access scenarios execution and checks the final memory state.
The generator operation principles are described in the fourth
section of the paper.

The generation of final memory state checking code re-
quires a golden model of the memory subsystem being avail-
able for the generator. A functional model library that will be
described in the third section has been reused from previous
projects in order to fulfill this requirement.

II. PERIPHERAL DEVICE IMITATOR

Considering the computer system containing the subsystem
(fig. 1a) in question it should be noted that difficulties con-
nected to precise modeling of the southbridge devices caused
by the usage of the complex device drivers can be avoided via
imitating behavior of the real DMA agents. A masked DMA
copy operation has been used as a basic operation that allows to
implement the significant number of the direct memory access
scenarios. In order to achieve a high-speed test execution, the
imitator is integrated into to IO link between the northbridge
and the chipset (southbridge, fig. 1b). The positioning of the
imitator as a standard IO controller allows to apply this scheme
to any modern Elbrus series processor.

The imitator represents a simplified version of the south-
bridge. It includes adjustable number of identical agents
(fig. 3), each capable of working in normal or table modes.
In the table mode the memory access scenario specification is
simplified by providing them via tables placed in the memory.

Agent is capable of the following operations:

• copying data from one area of the memory to another
in normal and table modes,

• reading copy operation parameters from memory,

• data transformation.

The imitator is implemented as a PCI-compatible device,
each agent is created as an independent device that is con-
trolled by a common bus via load and store operations to
the configuration space. Agents can perform an exchange
with the memory using standard read and write packets. The
commutation between the agents is performed by the DMA
Switch module.

The structure of the DMA-agent is shown at this fig. 3.
ConfigResigters module is an array of configuration
space registers containing setup operation modes, base ad-
dresses and other parameters. In the normal mode the addresses
are written to the ConfigRegisters are used to access
the memory. In the table mode the TMHandler module uses
written address to fetch and process the table with address

71 of 174

Core 0

Core 0

Core 0

Core 0

Core 0

Core 0

Core 0Core 0

...

Memory controllers

Interprocessor links

Host controller

Core 0

Core 0

Core 0IO link controller
Core N

Commutator

Core 1

CPU

Southbridge

Core 0IO link controllerCore 0

Core 0Peripheral controller 1

Core 0Peripheral controller N

...

Northbridge

Core 0RAM

Commutator

(a) Real configuration

Core 0

Core 0

Core 0

Core 0

Core 0

Core 0

Core 0Core 0

...

Memory controllers

Interprocessor links

Host controller

Core 0

Core 0

Core 0DMA imitator
Core N

Commutator

Core 1

CPU
Northbridge

Core 0RAM

(b) Model configuration (integration of the DMA imitator into the northbridge

Fig. 1. The structure of the computer systems:

Core 0DMA
agent N

Core 0DMA Switch

dev N

Core 0DMA
agent 0

dev 0

Core 0DMA
agent 1

dev 1

…...

store_conf
load_conf

Imitator

store_data
load_data

Fig. 2. The structure of the DMA-imitator

of reads and writes. The Format module is responsible for
masking the data and correct merging of data in the table mode.
The DMAEngine module implemented as a FIFO buffer with
data performs loads and stores of the data using the DMA write
and DMA read functions provided by the functional model.

III. FUNCTIONAL MODEL OF THE DMA IMITATOR

The approach to the problem is based on presenting the
direct memory access as two independent modules: the simu-

Core 0Config Registers

Core 0TMHandler

Table
mode?

Core 0

Core 0DMA Engine

store from chipset load to chipset

Format

yes

no

Fig. 3. The DMA-agent

lator, that imitates the work the computer system architecture
objects that are directly employed in the process, and a test
generator that provides the modes and parameters for the direct

72 of 174

memory access, sets up the logic of the these objects and
controls the correctness of the outcome (fig. 4). The structural
and functional independence of these modules significantly
increases the flexibility of the system in such aspects as
content and interaction of objects under study, the spectrum
of generated inputs and results checking.

The configuration of the simulator that has been developed
contains four processor each one containing several general-
purpose cores and a northbridge, the southbridge and an
imitator that consists of an array of peripheral devices and
their interfaces [3]. According to the second section the com-
munications of the imitator and the northbridge are performed
by the functions of the programming model described in the
PCI standard.

The simulator works according to interpretation principle.
In each virtual tick execution of one command in each of
the processor cores is performed. In addition, different asyn-
chronous actions in respect to the commands execution actions
such as counter and timer ticks and external interrupt handling
are also performed during a single tick.

In order to enable the communication of the simulator with
the generator it has been decided to implement a working cycle
of the simulator available through a set of library functions.

Core 0

Core 0

Core 0

Core 0Core 0

...
Core 0

Core 0Generator interface

Core N

Generator

Core 0

Generator core

Core 0

Memory model

Core 0Code area

Core 0Data area

Simulator

Core 0Core 1 Core 0Imitator

CPU 0

CPU 3

step()callback

Static
initialization

code

Core 0
Library control and

communication

Core 0Code generators

Core 0Data generators

Northbridge

Fig. 4. Components of the DMA subsystem functional model

IV. TEST GENERATOR

The generator contains the static initialization code, the
memory model and the core of the generator. The initialization
code is a sequence of instructions that performs the initial setup
of the hardware performed by the test.

The core of the generator contains the library control
and communication module as well as the code and data
generators [5]. The library control and communication module
is responsible for interaction with the simulator. It invokes the

step() function that implements execution of instructions
of the modeled hardware and the analysis the result of its
execution. The code generator writes the code that controls the
operation of each of the DMA-agents and the data generator
writes the blocks of the data to be send. The flexibility
of the DMA-imitator parameterization is fully supported by
the pseudorandom test generator that sets up pseudorandom
parameters for the DMA-exchange such as addresses of the
memory buffers, ranges of the DMA-packet sizes as well as
different transfer modes.

Both static initialization code and dynamically generated
code is placed into the code area that is one of the components
of the memory model. When code fetch takes place during the
program execution the requests are directed by the callback
function to the code area of the generator. The data area that
is another memory model component is handled in a similar
manner. The requests for the data — the loads and stores can
be initiated by both the CPU cores and the DMA-agents. All
of the requests are redirected to the data structure containing
the array dynamically allocated by the data generator.

The step-by-step algorithm of the simulator main modules
interaction with the generator is presented in the fig. 5.

Core 0Library initialization

Is all the data
required for the
step avaliable?

Core 0\
Model (including

DMA-imitator)
startup

Core 0Invoking step()

Core 0
Memory ranges

selection

Core 0
Instruction
execution

Test termination
code found?

Yes

Yes

Core 0\Writing test file. Exit

Core 0
Memory access

request decoding

Core 0
Code/data
genration

No

No

Generator Model

callback function

Fig. 5. The control flow of the generator that employs DMA subsystem
functional model

The general scenario of working with the DMA-imitators
has the following outline: the basic system initialization, the
initialization of the DMA buffers with the data designated for
transmission, the configuration of the DMA-imitator and the
launch of the DMA-exchange. Different system parameters
such as number of processors and available physical address
ranges can be varied in a random way to create different DMA
routing scenarios. The system initialization procedure can also
turn on input/output memory management unit (IOMMU) and
fill its translation table with random entries.

73 of 174

The initialization of the DMA buffers is performed by the
CPU cores causing the data for the transfer to be located at
different levels of the coherent memory hierarchy that includes
both caches and memory [6]. During the configuration of the
imitator the specification of the operation mode and the base
address of the memory to be processed are determined. The
DMA exchange is performed while the CPU cores access
memory regions that intersect with the DMA buffers. After the
completion of the exchange the reference values are generated
based on the contents of the memory final state. These values
are used to perform self-checking during test execution on the
target model or device.

Any test produced by the generator can be executed on
either the RTL model, the simulator or the FPGA-based
prototype without any additional test modification. The test
generator provides an opportunity to use any device connected
to real southbridge instead of the DMA imitator such an
ethernet controller as a source of DMA-packets.

V. FUTURE WORK

In this work the basic infrastructure for the DMA sub-
system verification was developed and implemented. The fur-
ther work is supposed to be focused on the test generator
elaboration. There is a need to customize the test generation
parameters to reproduce specific test situations (corner cases),
actual for the verification not only of the DMA subsystem,
but also of system caches, IOMMU, interrupts and so on in
the presence of the DMA activity. The generator must support
arbitrary test generation scenarios, which can define certain
parameter constraints for the random generation as well as test
code patterns. The test generation scenarios support is under
development.

VI. CONCLUSION

In this study the problem of the direct memory subsystem
verification when applied to “Elbrus” series microprocessors
has been investigated. In order to enable the execution of
sufficient number of tests and speeding up the development of
the test generators and bug analysis a method of verification
based on the replacement of DMA-capable real devices with
imitator device with a simple programming interface and
ability to completely consume the bandwidth of the direct
memory access data path was introduced. The application of
the developed method enables to achieve the operation modes
of the DMA subsystem analogous to the real-world ones.
The unification of the DMA imitator interface for the RTL-
model, the computer complex simulator and the FPGA-based
prototype allows to increase the pace of DMA subsystem tests
generator development.

REFERENCES

[1] Grosso, M. et al. Functional Verification of DMA Controllers - Journal of
Electronic Testing: Theory and Applications Volume 27 Issue 4, August
2011, Pages 505-516.

[2] A.K. Kim, M.S.Mikhailov, V.M.Fel’dman. Podsistema vvoda-vyvoda
dlya sistem na kristalle “MCST-4R” i “Elbrus-S” na osnove mikroskhemy
kontrollera periferiinykh interfeisov. Voprosy radioelektroniki, seriya
EVT, vypusk 3, 2012.

[3] Gurin K.L., Meshkov A.N., Sergin A.V., Yakusheva M.A. Razvitie
modeli podsistemy pamyati vychislitel’nykh kompleksov serii El’brus.
Voprosy radioelektroniki, seriya EVT, 2010, vypusk 3.

[4] Nohl, A., Braun, G., Schkiebusch, O., Leupers, R., Meyr, H., A Universal
Technique for Fast and Flexible Instruction-Set Architecture Simulation,
DAC2002, June 10-14, New Orleans, Louisiana, USA, 2002.

[5] Frolov P.V. Generatsiya sluchainykh testov sistemnogo urovnya dlya
mikroprotsessorov s arkhitekturoi El’brus. Voprosy radioelektroniki,
seriya EVT, 2014, vypusk 3.

[6] Isaev M.V., Polyakov N.Yu. Primenenie kesha i spravochnika DMA-
obmenov v NUMA-sistemakh dlya povysheniya proizvoditel’nosti pod-
sistemy vvoda-vyvoda. Pervaya vserossiiskaya nauchno-tekhnicheskaya
konferentsiya Raspletinskie chteniya : sb. tez. dokl. Moskva, 2013. S.
169-170.

74 of 174

An Extended Finite State Machine-Based Approach

to Code Coverage-Directed Test Generation for

Hardware Designs

Igor Melnichenko

INEUM

Moscow, Russian Federation

igor.melnitxenko@gmail.com

Alexander Kamkin, Sergey Smolov

ISP RAS

Moscow, Russian Federation

{kamkin, smolov}@ispras.ru

Abstract—Model-based test generation is widely spread in

functional verification of hardware designs. The extended finite

state machine (EFSM) is known to be a powerful formalism for

modelling digital hardware. As opposed to conventional finite

state machines, EFSM models separate datapath and control,

which makes it possible to represent systems in a more compact

way and, in a sense, reduces the risk of state explosion during

verification. In this paper, a new EFSM-based test generation

approach is proposed and compared with the existing solutions.

It combines random walk on a state graph and directed search of

feasible paths. The first phase allows covering “easy-to-fire”

transitions. The second one is aimed at “hard-to-fire” cases; the

algorithm tries to build a path that enables a given transition; it

is carried out by analyzing control and data dependencies and

applying symbolic execution techniques. Experiments show that

the suggested approach provides better transition coverage with

shorter test sequences comparing to the known methods and

achieves a high level of code coverage.

Keywords—hardware design; hardware descripton language;

simulation-based verification; test generation; modelling; extended

finite state machine; graph traversal; random walk; backjumping;

symbolic execution; constraint solving

I. INTRODUCTION

Functional verification is a labor-intensive and time-
consuming stage of the hardware design process. According
to [1], it spends about 70% of the effort, while the number of
verification engineers is usually twice the number of designers.
Moreover, the “verification gap”, i.e. a difference between
verification needs and capabilities, seems to grow over
time [2]. In such a situation, improvement of the existing
verification methods and development of new ones is of high
value and importance. Simulation-based verification, often
referred to as testing, is a widely accepted approach to
hardware verification. It requires a testbench [1], a special
environment that generates inputs, so-called stimuli, vectors or
patterns, and optionally observes the outputs, so-called
reactions.

Among the methods for stimulus generation, model-based
approaches are of interest. Being formal representations of
designs under test, models serve as a valuable source of
“testing knowledge”. There are a lot of model types used for
specifying hardware: finite state machines (FSM) [3], extended

FSM (EFSM) [4], Petri nets [5], etc. The key distinction of the
EFSM formalism is clear separation of data and control flows.
It is worth mentioning that EFSM models can be automatically
extracted from HDL descriptions making it possible to generate
code coverage-directed tests [6].

This article advances the FATE approach to EFSM-based
functional test generation (FTG) [7]. The main feature of
FATE is backjumping: if an EFSM traverser fails to cover a
transition, it tries to detect a cause of the failure (that is, a
transition which must be traversed in order to enable the target
one) and constructs a path directly from the found transition.
Another important part of the approach is a special heuristic
addressing counters and loops. However, FATE is hardly
applicable to hardware designs with complicated data and
control dependencies.

The rest of the paper is organized as follows. Section II
defines the EFSM model and briefly describes an EFSM
extraction method having been used. Section III considers the
original FATE approach, while Section IV introduces a number
of improvements to it. Section V proposes a new EFSM-based
FTG method and shows how it works by the example of two
simple EFSMs. Section VI contains an experimental
comparison of the abovementioned approaches. Section VII
concludes the paper and outlines directions for future
improvement of the suggested algorithm.

II. EFSM MODEL AND HDL-TO-EFSM EXTRACTION

Let 𝑉 be a set of variables. A valuation is a function that
associates each variable with a value from the corresponding
domain. The set of all valuations over V is denoted as DV. A

guard is a Boolean function defined on valuations (DV 
{true, false}). An action is a transformation of valuations

(DV  DV). A pair   , where  is a guard and  is an action,
is called a guarded action. When we speak about a function, it
is implied that there is a description of the function in some
formal language (thus, we can reason about the function’s
syntax, not only the semantics).

An EFSM is a tuple M = SM, VM, TM, where SM is a set of

states, VM = (IM  OM  RM) is a set of variables, consisting of
inputs (IM), outputs (OM) and registers (RM), and TM is a set of
transitions (all sets are supposed to be finite). Each transition

75 of 174

t  TM is a tuple (st, tt, st), where st and st are respectively

the initial and the final state of t, whereas t and t are

respectively the guard and the action of t. A valuation   DVM

is referred to as a context, while a pair (s, )  SM  DVM is
called a configuration. A transition t is said to be enabled for a

configuration (s, ) if st = s and t() = true.

Given a clock C (a periodic event generator) and an initial

configuration (s0, 0), the EFSM operates as follows. In the

beginning, it resets the configuration: (s, )  (s0, 0). On
every tick of C, it computes the set of enabled transitions:

E  {t  TM | st = s  t() = true}. A single transition t  E
(chosen nondeterministically) fires; the EFSM changes the
configuration (updates the context and moves from the initial

state to the final one): (s, )  (st, t()).

In this paper, we do not discuss in detail the way the EFSM
models are extracted. At the experimental phase, we use an
implementation of the method introduced in [8]. The method
deals with HDL descriptions written in synthesizable subsets of
VHDL and Verilog [9]. The major advantage of the approach
is high automation – it requires no information except HDL
code. The method uses heuristics for identifying states and
clock signals and extracts the EFSM from the control flow
graph-based representation. For every process defined in the
HDL description, a single EFSM is usually built; all EFSM
models of the description are defined over the same set of
variables. It should be emphasized that EFSM actions have the
“flat” syntax, which means that each action is a linear sequence
of assignments.

We have enhanced the cited method by adding a new
heuristic aimed at recognizing the initial configuration. A

guarded action r  r is said to be resetting if the following

properties hold: (1) r depends on exactly one clock signal,

which is called a reset; (2) r consists solely of assignments of

the kind v = c, where v  (OM  RM) and c is a constant
expression. Provided that there is only one resetting action, that
action is supposed to lead to the initial EFSM configuration.

III. THE ORIGINAL FATE ALGORITHM

The aim of the FATE algorithm is to generate a test that
covers all transitions of a given multi-EFSM system. A test is a
set of test sequences, i.e. sequences of test vectors. A test
vector is a valuation over the joint set of the EFSMs’ inputs.
The algorithm includes three phases: an EFSM analysis, a
random traversal and a directed traversal.

A. EFSM Analysis

In the beginning, for each EFSM of the system, data and
control dependencies between its transitions are derived. Let t

and  be transitions and v be a variable. v is said to be defined

in t (v  Deft) if t contains an assignment to v; v is said to be

used in  (v  Use) if v appears either in  (v  Use) or in the

right hand side of  (v  Use). It is said that  is data
dependent on t (via v) if there exists a variable v such that

v  (Deft  Use) and there exists a path 𝑃 = {𝑡𝑖}𝑖=1
𝑛 from t to

 (st = st1 and stn = s) that does not define v. Note that if

v  Def, there should be ’s assignment with v in the right

hand side that precedes the assignments to v. It is said that  is

control dependent on t (via v) if there exists a variable v such

that v  (Deft  Use) and there exists a path from t to  that
does not define v.

The derived data and control dependencies are represented
by the directed graphs whose vertices are the transitions and
arcs are the dependencies. Thus, each EFSM is associated with
two such graphs (one is for the control dependencies; another is
for the data dependencies).

The second step of the analysis is counter detection. A
register 𝑟 is said to be a counter if there is a loop in the EFSM
such that: (1) there is a transition t that defines r; (2) r is
defined recurrently (the current value depends on the previous

one); (3) there is a transition t that is control dependent on t via
r. For each counter, all data dependency loops are saved.

B. Random Traversal

After the analysis, the random traversal phase is launched.
The phase is parameterized with two values, L and N, where L
is the length of a test sequence and 𝑁 is the number of test
sequences in the test. The random traversal is described by the
following pseudo-code ({𝑀𝑖 = 〈𝑆𝑖 , 𝑉, 𝑇𝑖〉}𝑖=1

𝑚 are the EFSMs
being tested; result is the generated test):

result  

coverage  

while |result| < N  coverage  i Ti do
 reset({Mi})

 sequence  
 while |sequence| < L do

 vector  

 for i  {1, ..., m} do

 out  {t  Ti | st = si)}

 while out   do

 t  choose(out)

 out  out \ {t}

 constraint  refine(t, vector  )
 if isSAT(constraint) then

 vector  vector  solve(constraint)

 coverage  coverage  {t}
 break
 end
 end // while out
 end // for i
 apply(vector, {Mi})

 sequence  sequence  {vector}
 end // while sequence

 result  result  {sequence}
end // while result

The pseudo-code above is based on the following functions:
reset({Mi}) initializes the configurations of the models {Mi};
choose(T) returns a random item of the non-empty set T;

refine(, ) replaces variables of the formula  with their values

according to the partial valuation ; isSAT() checks whether

the constraint  is satisfiable; solve() returns a valuation  such

that () = 1; apply(, {Mi}) assigns the inputs of the models

{Mi} according to the partial valuation  and executes the
enabled transitions (uninitialized inputs are randomized). The

symbols si and  denotes respectively the current state of the
model Mi and the context (shared among all models).

76 of 174

Being defined over the same set of variables, the EFSM
models may affect each other while being co-executed. To
minimize the influence, the following technique is applied.
Each EFSM Mi is supplied with two parameters, Fi and Ai,
where Fi is a constant inversely proportional to the number of
inputs used in the Mi’s guards (the more such inputs Mi has, the
more models are expected to be affected by Mi) and Ai is a so-
called aging factor (initially set to zero). The sum (Fi + Ai) is
supposed to be the priority for choosing the model Mi. The
priorities specify the order in which the models are handled

(for i  {1, ..., m} do ... end). The main idea with the aging
factor is as follows. If test vector generation for Mi fails
(isSAT(constraint) returns false for an outgoing transition), Ai

is increased by a constant A. Note that [7] has no particular

definition of A; we use the value A = mini=1,m Fi. After the
model selection loop, the aging factor of the most priority
model is set to zero.

C. Directed Traversal

If there are uncovered transitions after the random traversal,
FATE proceeds with the directed generation. Before describing
the phase, let us make a remark. The procedure below, applies
Dijkstra’s algorithm for finding a shortest path in a graph [10];
it is assumed that an arc weight is the number of registers used
in the transition’s guard. The directed traversal is performed
separately for each EFSM. Here is the pseudo-code (M is the
EFSM being tested; result is the generated test):

targets  TM \ coverage

while targets   do

 t  choose(targets)
 covered = false

 for prefix  reach(M, st) do
 reset(M)

 sequence  

 for vector  prefix do
 apply(vector, M)

 sequence  sequence  {vector}
 end // for vector

 constraint  refine(t, )
 if isSAT(constraint) then

 vector  solve(constraint)
 apply(vector, M)

 sequence  sequence  {vector}

 result  result  {sequence}

 coverage  coverage  {t}

 covered  true
 break
 end
 end // for prefix

 if covered then

 if process(M, t) then
 warning “The transition t cannot be reached”
 end
 end

 targets  targets \ {t}
end // while targets

Besides the auxiliary functions defined above, this pseudo-code
uses reach(M, s), which returns the set of known test sequences
reaching the state s of the model M, and process(M, t), which
tries to cover the transition t of the model M by taking into
account the control dependencies (it will be described later on).

Note that if targets includes transitions outgoing from the
covered states, choose(targets) returns one of them; transitions
whose initial states has not been reached are selected only if
there are no others. Here is the description of process(M, t):

registers  RM  Uset

for reg  registers do

 defines  {t  TM | reg  Deft}

 for def  defines do

 for prefix  reach(M, sdef) do
 reset(M)

 sequence  

 for vector  prefix do
 apply(vector, M)

 sequence  sequence  {vector}
 end

 path  shortestPath(M, sdef, st)

 path  path  {t}
 if isCounter(reg) then

 constraint  refine(def, )

 vector  solve(constraint)
 apply(vector, M)

 sequence  sequence  {vector}

 loop  processCounter(M, sdef, t, reg)
 if loop = null then
 return false
 end

 path  loop  path
 else

 path  {def}  path
 end

 covered  true

 for p  path do

 if reg  Defp  p = t then

   p

 else

   p  t|reg[p]
 end

 constraint  refine(, )
 if isSAT(constraint) then

 vector  solve(constraint)
 apply(vector, M)

 sequence  sequence  {vector}
 else

 covered  false
 break
 end
 end // for p
 if covered then

 result  result  {sequence}

 coverage  coverage  {t}
 return true

 end
 end // for prefix
 end // for def
end // for reg
return false

The following notations are used: shortestPath(M, s, s) finds

the shortest path between the states s and s of the M’s state

graph using Dijkstra’s algorithm; |v denotes the minimal sub-

constraint of the constraint  that depends on the variable v

such that   |v holds; [] stands for the constraint produced

from  by applying the substitution corresponding to the action

. Here is the pseudo-code for processCounter(M, s, t, reg).

77 of 174

if t|reg() then
 return {}
end

loop  null

loopIterator  init(M, s, reg)

while t|reg() do
 while hasNext(loopIterator) do

 tempContext  

 tempSequence  sequence

 loop  next(loopIterator)

 for l  loop do

 constraint  refine(l, )
 if isSAT(constraint) then

 vector  solve(constraint)
 apply(vector, M)

 sequence  sequence  {vector}
 else

   tempContext

 sequence  tempSequence

 loop  null
 break
 end

 if loop  null  t|reg() then
 return loop
 end
 end // for loop
 end // while hasNext

end // while 
return null

The pseudo-code utilizes three special functions: init(M, s, r)
constructs all possible elementary loops in the M’s state graph
that start from the state s and include transitions dependent via
the register r and returns the iterator that combines a bounded
number of elementary loops into complex ones (the elementary
loops are constructed by using Dijkstra’s algorithm to connect
dependent transitions); hasNext(i) checks whether the iterator i
can produce more loops; next(i) returns the next loop and
updates the iterator i. Note that the limit on the loop length is
chosen individually for each design.

IV. THE FATE+ ALGORITHM

To get rid of evident bottlenecks, we have implemented a
slightly modified version of the original FATE algorithm, so-
called FATE+. Let us consider the changes having been made.

A. Transition Selection

In FATE+’s random traversal, choose(T), where T is a non-
empty set of transitions, works a bit differently. If there exist
uncovered transitions, the function randomly chooses one of
them; otherwise, it returns an arbitrary item of T. This minor
change significantly increases the effectiveness of the random
generation phase.

B. Symbolic Execution

FATE implements an approximate method for checking

whether a given path is feasible (for p  path do ... end). Let P

be a path, t be the last transition of P, r be a register used in t,

and  be a context. Given a transition p of P, the algorithm
checks whether d defines r. If it does, the following constraint

is constructed and tried to be satisfied:   p  t|r[p]. It is

worth reminding that t|r is the minimal conjunctive member of

t that includes all occurrences of r, while t|r[p] is the formula

produced from t|r by applying the substitution corresponding

to the action p. The method looks inadequate in the sense that

if  is unsatisfiable for some p, it does not really mean that P is
infeasible.

We suggest replacing the approximate approach with full-
scale symbolic execution that takes into consideration all the
variables defined and used along the path. To be more precise,
we suggest using the well-known method for computing the
weakest precondition of a loop-free program, i.e. a sequence of
guarded actions, with respect to a postcondition [11]. The main

idea is as follows. Let   true. Starting from the end of P, for

each transition p, including t, the following transformation of 

is performed:   p  [p]. Note that the input variables are
renamed in such a way that each transition refers to a unique
copy of the inputs. As soon as P is processed, all occurrences

of the registers are replaced by the values taken from :  

refine(, ). P is feasible if and only if  is satisfiable. A test
sequence can be constructed by solving the constraint.

C. Test Reduction

In FATE, there is a frequent situation where multiple test
vectors cover the same transition. To overcome the issue, we
have introduced a simple test reduction technique. While
generating tests, each test sequence is associated with the
transitions having been covered. At the end of the process, the
set of test sequences W and the set of covered transitions Tcov
are available. The technique is as follows. First, the transitions
reached by unique test sequences are identified. Each test
sequence that covers at least one such transition is moved from
W to the reduced test R; all transitions covered by the sequence
are excluded from Tcov. Then, while Tcov is not empty, the
following actions are performed. The test sequences that cover
largest subsets of Tcov are determined; among them, a shortest
one is chosen. The selected sequence is moved from W to R,
while the covered transitions are removed from Tcov.

V. THE RETGA ALGORITHM

The algorithm proposed in this paper is called RETGA
(Retrascope EFSM-based Test Generation Algorithm). It has
the same phases as FATE; moreover, the EFSM analysis phase
is absolutely identical to FATE’s one. As FATE+, it uses the
modified choose(T) function and applies the test reduction. Let
us consider the main phases in more detail.

A. Random Traversal

As in FATE, the EFSM models are processed one-by-one;
though a different arbitration principle is used. The priority of a
model depends on the coverage having been achieved: the
better the coverage is, the less the priority is. Such a strategy is
to avoid a situation when a covered EFSM of the highest
priority prevents generating inputs for poorly covered models.

The pseudo-code for the random traversal is as follows (as
before, {𝑀𝑖 = 〈𝑆𝑖 , 𝑉, 𝑇𝑖〉}𝑖=1

𝑚 are the EFSMs being tested; result
is the generated test):

result  

coverage  

ignored  0

L  (i |Ti|) / (i |Si|)

while ignored  L  coverage  i Ti do

78 of 174

 reset({Mi})

 sequence  

 usefulSequence  false

 transitions  

 buffer  

 while |buffer|  L do

 vector  

 usefulVector  false

 for i  {1, ..., m} do

 out  {t  Ti | st = si)}

 while out   do

 t  choose(out)

 out  out \ {t}

 constraint  refine(t, vector  )
 if isSAT(constraint) then

 vector  vector  solve(constraint)

 if t  coverage then

 usefulSequence  true

 coverage  coverage  {t}
 end

 if t  transitions then

 usefulVector  true

 transitions  transitions  {t}
 end
 break
 end
 end // while out
 end // for i
 apply(vector, {Mi})

 buffer  buffer  {vector}
 if usefulVector then

 sequence  sequence  buffer

 buffer  
 end
 end // while sequence
 if usefulSequence then

 result  result  {sequence}
 else

 ignored  ignored + 1
 end
end // while result

B. Directed traverse

Before describing the directed traversal phase, let us give
some definitions. A piecewise path is a sequence of paths, so-
called pieces, for which there is a path including all of the
pieces (with no overlaps) in the given order. Given a register r,
a partial definition path is a piecewise path that propagates at
least one input to r and has no transitions not taking part in the
propagation. The value of r after executing a path for the given
piecewise path depends on at least one input captured in the
beginning of the execution.

The directed traversal is performed separately for each
EFSM. Here is the pseudo-code (M is the EFSM being tested;
result is the generated test):

targets  {t  (TM \ coverage) | reach(M, st)  }

while targets   do

 t  choose(targets)

 path  shortestPath*(M, st)

 path  path  {t}
 if isFeasible(M, path) then

 sequence  solve(M, path)

 result  result  {sequence}

 coverage  coverage  {t}
 else

 if process(M, t) then
 warning “The transition t cannot be reached”
 end
 end

 targets  (targets \ {t})  {  TM | s = st)}
end // while targets

Here, shortestPath*(M, s) returns a shortest (in terms of the
number of transitions) path from the initial state of the model
M to the state s; isFeasible(M, P) constructs the weakest
precondition of the path P with respect to true and checks
whether it is satisfiable in the initial context of the model M;
solve(M, P) satisfies the constraint and converts the solution to
the test sequence (uninitialized inputs are randomized). The
process(M, t) function looks as follows:

for counter  {r  RM  Uset | isCounter(r)} do

 loops  {{{ti}}i | {ti}i  dataDepLoops(M, counter)}
 if processLoops(M, t, counter, loops) then
 return true
 end
end // for counter

for define  partialDefPaths(M, RM  Uset) do
 if processPieces(M, t, define) then
 return true
 end
end // for define
return false

In the pseudo-code above, dataDepLoops(M, c) denotes the set
of data dependency loops for the counter c of the model M
(each loop starts with the transition that defines the counter).
As you can see, loops is the set of piecewise paths relating to
the data dependency loops. partialDefPaths(M, R) returns the
set of partial definition paths for M’s registers of the set R.
Here is the description of processLoops(M, t, counter, loops):

groups  groupLoops(loops)

for group  groups do

 loopIterator  init(M, group)
 while hasNext(loopIterator) do

 loop  next(loopIterator)

 if processPieces(loop  {{t}}) then
 return true
 end
 end //while hasNext
end // for group
return false

Here, groupLoops(L) splits the set of loops (piecewise paths) L
into disjoint subsets according to the first transition (which
defines the counter). The loop iteration scheme is similar to
FATE’s one, though each result is a piecewise path. The

pseudo-code for processPieces(M, t, {𝑃𝑖}𝑖=1
𝑘) is shown below:

if reach(M, st) =  then
 return false
end

path  shortestPath*(M, start(P1))

for i  {1, ..., k-1} do

 path  path  Pi

 if isFeasible(M, path) then
 return false
 end

79 of 174

 path  path  shortestPath(M, end(Pi), start(Pi+1))

 failed  true

 if isFeasible(M, path) then

 path  path

 failed  false
 else

 for bridge  paths(M, end(Pi), start(Pi+1)) do

 path  path  bridge

 if isFeasible(M, path) then

 path  path

 failed  false
 break;
 end
 end // for bridge
 end // if isSAT
 if failed then
 return false
 end
end // for i

path  path  Pk

if isFeasible(M, path) then
 return false
end

sequence  solve(M, path)

result  result  {sequence}

coverage  coverage  {t}
return true

In the pseudo-code, start(P) and end(P) return respectively the

initial and the final state of the piecewise path P; paths(M, s, s)

returns the list of cycle-free paths between M’s states s and s
sorted by length.

C. Examples

Let us consider how the RETGA algorithm works on the
example of two models, namely EFSM-1 and EFSM-2. Both
models correspond to the cases that are difficult for FATE.

Fig. 1. EFSM-1

In EFSM-1 (see Fig. 1), the random traversal is unlikely to
cover the transition 3→4 as it requires, first, walking through

the path 0→1→2→3 and, second, assigning i0  4 (while

traversing 0→1) and i2  2 (while traversing 2→3). As for the
directed traversal of 3→4, the following partial definition paths
are found for the registers x and y used in the transition’s
guard:

1. 0→1→3 (i0 is propagated to x via z).
2. 0→1→2 (i0 is propagated to x via z).

3. 2→3 (i2 is directly assigned to y).

The first path does not initialize y and has no continuations
that could do that. For the second one, the pieces {0→1→2,
3→4} are composed and supplemented by the only “bridge”
2→3. For the third path, the “prefix” 0→1→2 explored at the
random traversal phase is put before the partial definition path.
In both cases, the path 0→1→2→3→4 is constructed. To
check whether the path is feasible, the weakest precondition is

computed: i0[1] = 4  i1[2] = 1  i2[3] = 2 (the indices in the
square brackets refer to the positions of the test vectors in the
test sequence). It is satisfiable; the solution is as follows:

1. i0 = 4; i1 and i2 are randomly valued;
2. i1 = 1; i0 and i2 are randomly valued;
3. i2 = 2; i0 and i1 are randomly valued;
4. i0, i1 and i2 are randomly valued.

Fig. 2 EFSM-2

In EFSM-2 (see Fig. 2), a transition of the interest is 1→2.
The shortest path that reaches the transition is 0→1→1→1→2

with the assignment i0  4 on the first step. There is only one
partial definition path for x3, namely 0→1→1→1. The path
can be supplemented only with the target transition, which

gives 0→1→1→1→2. The weakest precondition is i0[1] = 4 

i1[2] = 0  i1[3] = 0  i1[4] = 0  i1[5]  0. It is readily seen
that the condition is satisfiable.

VI. EXPERIMENTAL RESULTS

The RETGA algorithm has been implemented as a part of
the Retrascope [12] project. It uses the Fortress [14] library
together with the Z3 [15] solver for representing expressions
and solving constraints. To compare the algorithm with FATE
and FATE+, the ITC'99 benchmark [13] was utilized.

Table I shows the characteristics of the EFSMs extracted
from some ITC'99’s designs. As it has been already said, we
used the extended variant of the method described in [8] to
build the models, though all of the presented approaches do not
depend on the way EFSMs are produced.

TABLE I. CHARACTERISTICS OF THE EXTRACTED EFSMS

Design Number of States Number of Transitions

b01 8 24

b02 7 17

b04 3 29

b06 7 33

b07 8 21

b08 4 12

b10 11 38

1

2

3

4

 γ: i1 == 1

 δ: x = z

 γ: i1 == 0

 δ: x = z

 γ: true

 δ: y = i2
 γ: x == 4

 y == 2

 δ: empty

0

 γ: true

 δ: z = i0

0 1

3 2

 γ: i1 == 0

 δ: x3 = x2

 x2 = x1

 x1 = x0

 γ: x3 != 4

 i1 != 0

 δ: empty

 γ: x3 == 4

 i1 != 0

 δ: empty

 γ: true

 δ: x0 = i0

80 of 174

Table II and Table III show the test generation results. All
generators achieve 100% coverage for b01, b02, b04 and b06
and 95% coverage for b07 (there is an infeasible transition).
The difference in coverage reached by RETGA and FATE /
FATE+ for b08 is due to the fact that FATE and FATE+
handle data dependencies in a simpler way; in particular, they
do not try different “bridges”. The difference in coverage
reached by FATE and FATE+ for b08 and b10 demonstrates
the advantage of the symbolic execution over the simplified
approach used in FATE. The difference in size of the tests
generated by FATE and FATE+ relates to the test reduction
technique applied in FATE+. The RETGA’s tests are usually
shorter since it rejects redundant random vectors.

It is significant to note that the L and N parameters (which
are related to the random traversal phase of FATE and FATE+)
were set to ∑ |𝑆𝑖|

𝑚
𝑖=1 and ∑ |𝑇𝑖|

𝑚
𝑖=1 /∑ |𝑆𝑖|

𝑚
𝑖=1 respectively. The

loop iteration limit (which is relevant for all of the generators)
was set to 8 (this value is enough for b07 and b08, whereas
other designs have no counters).

TABLE II. NUMBER OF TEST VECTORS IN THE TESTS

 FATE FATE+ RETGA

b01 115 70 49

b02 62 48 33

b04 104 104 36

b06 198 100 76

b07 246 208 166

b08 31 31 52

b10 173 170 135

TABLE III. TRANSITION COVERAGE ACHIVED BY THE TESTS

 FATE FATE+ RETGA

b01 100% 100% 100%

b02 100% 100% 100%

b04 100% 100% 100%

b06 100% 100% 100%

b07 95% 95% 95%

b08 75% 83% 100%

b10 89% 100% 100%

The tests generated by RETGA were applied to the designs
by using the Questa simulator [16]. The source code coverage
having been achieved is presented in Table IV (each column
corresponds to some metric of the Questa coverage report). It
can be seen that the code coverage rather is high.

TABLE IV. SOURCE CODE COVERAGE REACHED BY RETGA

 Statements Branches FSM States FSM Transitions

b01 100% 100% 100% 100%

b02 100% 100% 100% 100%

b04 100% 100% 100% 100%

b06 100% 100% 100% 100%

b07 93.93% 94.73% 100% 100%

b08 100% 100% 100% 100%

b10 100% 100% 100% 100%

VII. CONCLUSION

In this paper, an EFSM-based test generation algorithm has
been proposed. The approach allows reaching better transition
coverage with less number of test vectors than the known
methods. However, the research is still in progress; there are
many issues to be solved. Let us mention some of them. First,
the approach is hardly applicable to complex hardware designs
involving a great number of tightly connected EFSMs. It uses a
simple coverage-based heuristic to decide which EFSM to
handle next, whereas advanced techniques are expected to rely
on the semantics of a system under test. Second, the method for
searching “bridges” needs to be optimized. Being irrelevant for
simple EFSMs (as ones presented in Section VI), this issue is
of high value and importance for real-life hardware. Third, in
the current implementation, each guard (each constraint, in
general) is viewed as an indivisible entity and solved as a
whole. It is not an issue as long as the goal is to cover EFSM
transitions, but it may lead to poor expression coverage as there
are many ways to satisfy a constraint. Finally, the quality of
testing strongly depends on the models being used, while the
EFSM extraction process is ambiguous (in the trivial case, a
single-state EFSM is constructed for an arbitrary design). It
seems to be useful to formalize a notion of a “good” model.

REFERENCES

[1] J. Bergeron, “Writing Testbenches: Functional Verification of HDL
Models”, Kluwer Academic Pub, 2003.

[2] J. Blyler, “Are Best Practices Resulting in a Verification Gap?”.
http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-
resulting-in-a-verification-gap/

[3] V. Jusas, T. Neverdauskas, “FSM Based Functional Test Generation
Framework for VHDL”, Proceedings of International Conference on
Information and Software Technologies (ICIST), 2012, pp. 138-148.

[4] A.Y. Duale, M.U. Uyar, “A Method Enabling Feasible Conformance
Functional Test Sequence Generation for EFSM Models”, IEEE
Transactions on Computers, 53(5), 2004, pp. 614-627.

[5] V.G. Lazarev, E.I. Pijl', “Sintez upravljajushhih avtomatov”,
Energoatomizdat, Moscow, 1989, 328 p. (in Russian)

[6] K.T. Cheng, A.S. Krishnakumar, “Automatic Generation of Functional
Vectors Using the Extended Finite State Machine Model”, ACM
Transactions on Design Automation of Electronic Systems
(TODAES), 1996, pp. 57–79.

[7] G. Di Guglielmo, L. Di Guglielmo, F. Fummi, G. Pravadelli, “Efficient
generation of stimuli for functional verification by backjumping across
extended FSMs”, Journal of Electronic Functional testing: Theory and
Application, Volume 27, Issue 2, 2011, pp. 137–162.

[8] A. Kamkin, S. Smolov, “The method of EFSM extraction from HDL:
application to functional verification”, Proceedings of the conference on
Problems of Perspective Micro- and Nanoelectronic Systems
Development, Part II, 2014, pp. 113-118.

[9] Z. Navabi, “Languages for Design and Implementation of Hardware”,
W.-K. Chen (Ed.). The VLSI Handbook. CRC Press, 2007. 2320 p.

[10] E.W. Dijkstra, “A note on two problems in connexion with graphs”,
Numerische Mathematik, 1, 1959, pp. 269–271.

[11] E.W. Dijkstra, “A Discipline of Programming”, Prentice Hall, 1976,
217 p.

[12] Retrascope toolkit. http://forge.ispras.ru/projects/retrascope

[13] ITC’99 benchmark. http://www.cad.polito.it/tools/itc99.html

[14] Fortress library. http://forge.ispras.ru/projects/solver-api

[15] Z3 solver. http://z3.codeplex.com

[16] Questa simulator. http://www.mentor.com/products/fv/questa/

81 of 174

Remote Service of System Calls in Microkernel

Hypervisor

Kurbanmagomed Mallachiev

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

mallachiev@ispras.ru

Nikolay Pakulin

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

npak@ispras.ru

Abstract—This paper presents further development of

Sevigator hypervisor-based security system. Original design of

Sevigator confines users’ applications in a separate virtual

machine that has no network interfaces. For trusted applications

Sevigator intercepts network-related system calls and routes

them to the dedicated virtual machine that services those calls.

This design allows Sevigator protect networking from malicious

applications including high-level intruders residing in the kernel.

New hypervisors built on top of microkernel opened the door

to redesign of Sevigator. Those hypervisors are small operating

systems by nature, where most of hardware operations as well as

management of virtual machines are isolated in processes with

low priority level. Compromising such a process does not result

in compromising the whole hypervisor.

In this paper we present the results of experiment with NOVA

hypervisor where system calls of trusted applications are serviced

by a dedicated process in the hypervisor rather than a separate

VM. The experiment shows about 25% performance gain due to

reduced number of context switches.

Keywords—virtualization hypervisor security microkernel

I. INTRODUCTION

The main purpose of the project is to develop a security
facility that protects data confidentiality on a computer
connected to the Internet and managed by an untrusted
operating system. We assume that malicious code can get
unlimited access to all hardware and software system
resources through vulnerability or backdoors in system
software.

Today popular modern operating systems (such as Linux or
Windows) are based on monolithic kernel, where all
components of kernel have equally high privileges. In this
case if malicious code penetrates OS kernel, then there is a
risk of losing control over any OS resources including
application in-memory data, confidential information in file
storage, etc. Integrity and confidentiality of data transmitted
over the network are also threatened, even in the case when
cryptography is used.

The question is whether it is possible to protect unmodified
applications that run under unmodified commodity OS like
Windows or Linux on a commodity workstation with x86
CPU. Protection systems located in kernel, such as antivirus,

firewall, intrusion detection, can themselves be attacked by
privileged malicious code. Possible way of protection from
those attacks is the transfer of protection to more privileged
level.

The answer is “probably yes”: a prototype called Sevigator
[2, 3, 4, 5] protects applications in Linux from malware and
comprised kernel. It uses hardware-assisted virtualization [1]
to secure operating memory of applications and control access
to communication hardware (network interface card). It allows
to launch OS under control of virtual machine monitor (VMM,
also called hypervisor). Hypervisor is much smaller than OS,
fully isolated from it, and has higher privilege than OS.
Hardware virtualization is supported by most modern
processors, which suggests the possibility of widespread use
of security systems based on hypervisors

Sevigator provides isolation of untrusted OS from
network, but keeps operability of trusted application. For
them, and only for them, an access to network resources is
granted. An important feature of this approach is that there is
no need to modify or recompile any applications or OS

Fig. 1. Sevigator architecture

Within Sevigator approach OS resides in a virtual machine,
while protection system is located in hypervisor. It provides
facilities to isolate untrusted applications from network access;
to prevent data leaks due to code intrusion or memory attacks
it controls memory integrity of the applications under
protection. The hypervisor provides simultaneous execution of
two completely isolated from each other virtual machines.
First called private is primary one, user interacts with it, and it
believes that network adapter is physically absent. The second
VM called public is service system which has unlimited access

82 of 174

to network. Network support for trusted processes in private
machine is provided by hypervisor through remote execution
of required (limited) set of system calls in the public virtual
machine. Full description of security algorithms can be found
in [2, 3, 4, 5].

We refer to this scheme as remote servicing of system calls
since the hypervisor intercepts parameters of a system call in
the private VM and transfer them to the public VM, where the
actual code is executed.

The scheme with two VMs was motivated by the following
considerations: isolation networking operations from private
machine and minimization the risk of hypervisor compromise
in the case of compromised network component. Isolation
makes network access possible only for trusted application.
Execution within public VM means that compromise of the
VM will not lead to compromise of hypervisor kernel.

Sevigator system originally was based on hypervisor KVM
(Kernel-based Virtual Machine), and using the second VM
was the only possible solution to satisfy the constraints. Later
Sevigator without changes of its architecture was ported to
NOVA microkernel hypervisor [6].

Our work shows that using hypervisor based on the
microkernel architecture allows us to replace the second
virtual machine with a process in hypervisor with same
functionality. This is possible because microkernel isolates
processes and executes them at lower privilege level than the
kernel. And this change significantly reduces overhead of
having dedicated OS only for remote execution of service
calls.

II. HYPERVISORS OVERVIEW

There is a lot of hypervisors and they use different ideas.
We chose NOVA [7] to port Sevigator because it was the only
one that satisfied own requirements for original Sevigator
design (requirements and hypervisor comparison can be found
in own work [6]). And when we ported Sevigator, NOVA
architecture gave us idea how we can redesign Sevigator to
reduce overhead but keeping security.

 With new design of Sevigator, where dedicated process is
responsible for servicing system call, we again looked if it can
be implemented in different hypervisor besides NOVA. The
following hypervisors were considered: BitVisor[8],
SecVisor[9], Xen[10], Qubes OS [11]. All of them are
distributed under open source licenses and don't require
existence of a host operating system.

BitVisor is hypervisor and virtual machine monitor
(VMM), designed to ensure security of computer systems.
BitVisor provides encryption of network connections and data
on disk. Ensuring confidentiality of network and disk data is
transparent to the operating system. BitVisor designed to
create minimal overhead on encryption and decryption of data.

Bitvisor doesn't separate VMM and kernel of the
hypervisor, so performed at the same privilege level. BitVisor
supports exactly one virtual machine - this is done in order to
minimize the overhead on the interaction of the guest OS with
the devices, primarily input and output devices. Bitvisor based

on parapass-through architecture: hypervisor intercepted
memory access and I/O access, and pass-through anything
else. Bitvisor intercept accesses to protect hypervisors from
the guest OS, and enforce security functionalities. Bitvisor
cannot execute processes at lower privilege level. So Bitvisor
didn’t satisfy us.

SecVisoris a very small hypervisor (about 10 times smaller
than NOVA) which goal is protecting OS kernel against an
attacker who controls everything but the CPU, the memory
controller, and system memory chips.

SecVisor provides a lifetime guarantee of the integrity of
the code executing with kernel privilege. In other words,
SecVisor prevents an attacker from either modifying existing
code in a kernel or from executing injected code with kernel
privilege, over the lifetime of the system. SecVisor ensures
that only code approved by the user can execute with kernel
privilege. SecVisor also execute all its parts at the same
privilege level. SecVisor was rejected.

Xen is a very popular virtualization platform, which is
widely used to build cloud services. Xen virtualization
platform includes a hypervisor, virtual machine monitor for
guest OS, dedicated virtual machine dom0 to work with
devices and specialized drivers to access the device via the
dom0. These drivers are called paravirtualized as they "know"
that the OS is running under Xen and effectively interact with
the hypervisor and dom0.

Xen hypervisor implements the minimum set of
operations: management of RAM, processor status, real time
clock, interrupt processing and control of DMA (IOMMU).
All other functions, such as the implementation of virtual
devices, creation and deletion virtual machines, moving VMs
between servers in the cloud, etc. is implemented in a
dedicated virtual machine dom0.

All functions related to ensuring network performance,
disk drives, video cards emulation and other devices placed
outside the hypervisor. Typically, the request handling devices
consist of two parts. Driver in the guest operating system
translates requests from the OS to program handler in dom0.
To increase the security of the system servers, virtualize
devices run as separate processes in OS dom0. Failure in such
a program leads to a denial of only one virtual device in one
VM and does not affect the work of other copies of the server.

Xen architecture requires using dedicated virtual machine
for servicing network-releated system calls and this is a big
overhead. Xen didn’t satisfy us

Qubes OS is a hypevisor based on Xen. Qubes implements
a security by isolation approach. In Qubes, the isolation is
provided in two dimensions: hardware (separated network
domain, storage domain, GUI) and software (domain with
different levels of trust e.g. work domain – most trusted,
shopping domain, random domain – less trusted). Domains
separated by executing at different virtual machines. So this
system also has same disadvantage as Xen, and was rejected
too.

83 of 174

III. ORIGINAL SEVIGATOR DESIGN

A. General Architecture

Among the applications running in the OS, the protection
system identifies several applications that are considered as
trusted. All others applications are considered as untrusted.
The security problem is to prevent the leakage or
compromising of confidential data of trusted applications.
Trusted applications for the normal functioning may require
access to the public network. This network connection can be
used by malicious code in the OS kernel for the leakage of
sensitive data.

The solution is based on use of hardware virtualization
technology, execution of an OS in the virtual machine (VM),
and implementation protection system in the body of a virtual
machine monitor (hypervisor) [2]. The hypervisor provides
simultaneous execution of two completely isolated from each
other virtual machines (fig. 1). Both are running the same
untrusted OS. The first VM, we will call it private, is the
primary one. It is there where critical data resides and
applications (both trusted and untrusted) are executed
processing those data. Hypervisor blocks access to the
network interface for private VM and its guest OS believes
that the network adapter is physically absent. Thus, even if
malicious code managed to gain access to critical data, it will
not be able to transfer them to the outer world.

Network access for trusted applications is supplied by the
second VM called public. It has free access to the network.
However, due to VMs isolation provided by the hypervisor the
software in the public VM (including OS kernel) cannot gain
access to data residing within the private VM.

Network support for trusted processes is implemented
through remote servicing of required set of system calls in the
public VM. The hypervisor intercepts network-related system
calls invoked by a trusted process, analyzes the data and, when
necessary, transmits them to the public VM. Note that the
remote service of the system call is made transparent for a
trusted process and an OS.

B. NOVA based architecture

NOVA is a microkernel for hypervisor. NOVA itself is only
a kernel, for running virtual machines you should use one of
the environments, built atop of it: NUL, NRE or Genode. We
use NUL because NRE still misses some NUL features, and
Genode is much larger.

Because of microkernel design, only the NOVA kernel
runs with the highest priority and every process of NUL is
executed as user space process with priority level CPL3
(lowest on Intel IA-32 architecture).

NUL is an experimental operational environment and it is
still work in progress. It contains a number of simplified
components, e.g. direct access to host PCI devices works
unstable. As a result VMM (Virtual Machine Monitor) has to
emulate hardware devices for the guest virtual machine. And if
the emulated model needs access to a host device, than you
need to have driver in NUL for that device. For networking
NUL provides a small number of drivers, most notable is the
classic NE2000 network card. For our experiment we used

NE2000-compatible network card RTL8029AS, for which
NUL has a driver.

The port of Sevigator architecture to NOVA hypervisor
uses two virtual machines [13] to service network-related
system calls of trusted users’ applications. As an example Fig.
2 shows how servicing send system call works.

Fig. 2. Path of send message in original design Sevigator

Yellow colored boxes are processes in NOVA. Interaction
with and between processes always imply calling NOVA
kernel, but for simplicity we don’t show them on the figure.

When trusted process executes send system call the
Sevigator module in OS kernel intercepts it (1), forms special
fixed size message and free size vault and execute hypercall
(2). VMM passes (3) the message and the vault to another
VMM. This VMM sends (4) the message to public VM kernel
module. Module finds vault size in message, allocates
memory, asks (5) for vault and receives (6) it. Module forms a
new message and sends it to Linux kernel, which calls (7)
network driver for network card emulated by VMM. The
driver sends (8) bytes to the network card model, which passes
(9) them to driver of the actual card. And finally the driver in
the hypervisor sends bytes to the network card.

As we can see the path that passes network messages is
really long. In the next chapter we will show how to achieve a
shorter pass.

IV. NEW SEVIGATOR DESIGN

Microkernel based hypervisor allows us to redesign
Sevigator. Those hypervisors have well isolated parts. Only a
small kernel has highest priority level. Most of hardware
operations as well as management of virtual machines are
isolated in processes with low priority level.

 The idea of the redesign is to move servicing system calls
of trusted applications to hypervisor applications. Having
dedicated processes in hypervisor we keep all pluses of using
dedicated virtual machine such as isolation of servicing
system calls in code and securing the risk of compromise the
system by reduction of priority level. It means that
compromising such a code doesn’t mean compromising the
whole hypervisor. But redesigning gives more: it reduces
trusted code base from millions of lines of code (LoC) for

84 of 174

public VM to tens of thousands LoC for dedicated applications
in hypervisor. And also we reduce overhead of context
switching: redesigned system don’t need at least context
switching between VMM and public VM; so we increase
performance of the whole system.

In our paper we present a proof of concept of the new
approach to servicing system calls of trusted applications in
dedicated environment.

We selected networking system calls for study. Fig. 3
presents the idea: networked system calls are serviced in the
dedicated process over NOVA microkernel. The application is
based on popular embedded TCP/IP stack called lwIP[12]. The
application is a wrapper around lwIP that parses the
parameters of remote system calls and invokes corresponding
lwIP operations. In the following text we will refer to this
application as “lwIP”.

Fig. 3. Path of send message in redesigned Sevigator

Fig.3 shows servicing of send message in redesigned
system. Here we will only discuss difference of redesigned
system. Steps (1) and (2) are same as in original design. VMM
sends (3) message and vault to LwIP process, which analyses
message, understands what system call was called, and forms
a packet, that will be sent (4) to driver. Driver sends bytes to
the real network card.

We can see that in new design path is much shorter, so new
design should work faster. How fast you can see in next
chapter. In order to support the concept of socket used by
trusted application we implemented a small glue layer over
lwIP. The prototype implementation support socket create and
close, socket bind and connect, send and recv for TCP and
UDP. Raw sockets (e.g. ICMP messages) are not supported
yet.

V. PERFORMANCE

We conducted an experiment to measure network
performance of the redesigned system. During experiment we
compared performance of the original design with two VMs,
and the new design with the dedicated process, As the
reference point we used native Linux running on hardware
without hypervisor and ran hypervisor with pure lwIP
application without VMM.

All measurements were performed on the same machine
with AMD Phenom II x4 980 3.7 GHz CPU, 16 GB RAM. As
network card we used once popular RTL8029AS card. It is
ne2000 compatible and is one of the few cards supported by
NOVA/NUL. The card is 10Mbit/s. We use this old card
because other cards supported by NOVA turned out to be
much harder to find.

For testing we run test application in Linux, which
executes 1000 times sendto system call, sending UDP packets
to the network. We were sending short 60 bytes message. The
destination workstation was receiving the packets, identified
lost packets and measured time between the first and the last
packets. We didn’t measure time at the guest virtual machine
because return from sendto call doesn’t mean that packet was
sent.

Fig.4 shows the test performance difference among
original and new architectures and native Linux.

Fig. 4. Time for sending 1000 UDP packets

The experiments showed that replacing the virtual machine
with a dedicated application increased performance by 26%.
The overhead compared to the native Linux execution was
reduced from almost 100% to 29%.

Comparing with pure lwIP case shows that current
overhead for transfer system call in lwIP is only 1.4 µs. For 10
Mbit/s network this is insensitive. The bottleneck of current
realization is lwIP and NE2000 driver. The NE2000 driver in
Nova is far from perfection and careful queuing of pending
packets may reduce the total overhead even more.

Servicing of system calls in an application compared to a
dedicated VM simplifies the flow control. Removing the
second VM resulted in omitting:

1. interrupt injection in the public VM (required to notify
the VM that there are packets pending);

2. VM exit to pass frames from public OS to NIC model
in the VMM;

3. IPC calls between VMM and NIC driver in the
hypervisor.

Another important gain is significant reduction of the
trusted code base required for servicing network-related
system calls. The design with two virtual machines implied

0

20

40

60

80

100

120

140
TIME, MS

Native Linux

Pure lwIP

lwIP dedicated
app

Public VM

85 of 174

that we have to trush the whole Linux kernel, e.g. millions
lines of code due to the minolitic nature of that kernel. When
the system calls are serviced by the lwIP application, the
trusted computing base shrinks to about 70 000 LoC, the size
of lwIP.

VI. FUTURE WORK

In future we want to develop NUL drivers for modern
network cards and make experiments on them. Also because
NOVA UserLand was made as a test project and isn’t fully
stable for now, we have encountered problems with memory
management, and have errors while working with big packets.
We want to find the causes the revealed problems and fix it.

And finally we will port guest modules to modern Linux
kernel and see if there are any changes in performance.

VII. CONCLUSION

Our work shows that using microkernel based hypervisors
open new perspectives and creates new approach to servicing
hardware requests from guest OS in hypervisor.

Using microkernel hypervisor allow us to redesign system
by moving system call servicing in hypervisor application.
Those hypervisors executes process with low priority, so
compromising of application doesn’t lead to compromising of
the whole hypervisor.

We were able to move servicing of system calls to such a
process. It significantly reduces overhead for servicing
network-assisted system calls and speeds up execution: new
design makes network connection 30% faster. Furthermore it
reduced trusted code base by two orders of magnitude, and
this is very important for security system, because it makes
audit or verification of system simpler.

REFERENCES

[1] Intel® 64 and IA-32 Architectures Software Developer's Manual Com-
bined Volumes 3A, 3B, and 3C: System Programming Guide [Online].
Available:

http://www.intel.com/content/dam/www/public/us/en/documents/manual
s/64-ia-32-architectures-software-developer-system-programming-
manual-325384.pdf)

[2] I. Burdonov, A. Kosachev, P. Iakovenko Virtualization-based separation
of privilege: working with sensitive data in untrusted environment. //1st
Eurosys Workshop on Virtualization Technology for Dependable
Systems, New York, NY, USA, ACM. 2009. P. 1-6.

[3] D.V. Silakov. Using Hardware-assisted Virtualization in the Information
Security Area. pp. 25-36. Proceedings of the Institute for System
Programming of RAS, volume 20, 2011. ISSN 2220-6426 (Online),
ISSN 2079-8156 (Print)

[4] P. Iakovenko. Transparent mechanism for remote system call execution.
pp. 221-242. Proceedings of the Institute for System Programming of
RAS, volume 18, 2010. ISSN 2220-6426 (Online), ISSN 2079-8156
(Print)

[5] P. Iakovenko. Ensuring confidentiality of information processed on a
computer with a network connection. Information security problems.
Computer Systems. №4. 2009. pp. 23-41. (In russian)

[6] K. Mallachiev, N. Pakulin. Protecting Applications from Highly
Privileged Malware Using Bare-metal Hypervisor. DOI:
10.15514/SYRCOSE-2014-8-10.

[7] U. Steinberg and B. Kauer. 2010. NOVA: a microhypervisor-based
secure virtualization architecture. In Proceedings of the 5th European
conference on Computer systems (EuroSys '10). ACM, New York, NY,
USA, 209-222.

[8] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T.
Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba,
Y. Shinjo, and K. Kato. 2009. BitVisor: a thin hypervisor for enforcing
i/o device security. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments (VEE '09).
ACM, New York, NY, USA, 121-130.

[9] A. Seshadri, M., Ning Qu, and A. Perrig. 2007. SecVisor: a tiny
hypervisor to provide lifetime kernel code integrity for commodity
OSes.SIGOPS Oper. Syst. Rev.41, 6 (October 2007), 335-350.
DOI=10.1145/1323293.1294294
http://doi.acm.org/10.1145/1323293.1294294

[10] C. Takemura and L. S. Crawford. The Book of Xen. No Starch Press.
October 2009, 312 pp. ISBN-13 978-1-59327-186-2,

[11] J. Rutkowska. Software compartmentalization vs. physical separation.
Invisible Things Lab, 2014
http://www.invisiblethingslab.com/resources/2014/Software_compartme
ntalization_vs_physical_separation.pdf

[12] Adam Dunkels lwIP, a small independent implementation of the TCP/IP
protocol suite. http://www.nongnu.org/lwip

86 of 174

http://doi.acm.org/10.1145/1323293.1294294
http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://www.invisiblethingslab.com/resources/2014/Software_compartmentalization_vs_physical_separation.pdf
http://www.nongnu.org/lwip

Constructing Private Service with CRYP2CHAT application

Andry Kiryantsev

Volga Region State University of Telecommunications and

Informatics Moskovskoe sh. 77, Samara, Russia

Email: @ reyzor2142@gmail.com

Iran Stefanova

Volga Region State University of Telecommunications and

Informatics Moskovskoe sh. 77, Samara, Russia

Email: aistvt@mail.ru

Annotation – The paper contains the description of a private

service with an encryption and decryption of data on client-side.

The focus is on the direct client-to-client connection. The article

provides the algorithm for work of the programs. The authors

describe the methods of protecting from some network attacks

and the experiment of prototype work. Additionally, we consider

some potential dangers of an external character that can violate

confidential communication data.

Keywords – cryptography, encryption, encoding, MITM-

attack, end2end encryption, node.js, crypyico, javascript

I. INTRODUCTION

Modern society is characterised by the exchange and

buffering information in electronic form. While processing the

information, we may need to react immediately on constantly

emerging problems with data protection and security of data

centres.

The problem is now becoming more urgent considering

declarations and current publications by Edward Snowden, the

former system administrator for the Central Intelligence

Agency. He reports on the fact that the National Security

Agency (NSA) operates global surveillance programs with the

cooperation of telecommunication companies and European

governments through the existing

communication networks and systems.

Nowadays to exchange information on-line special

programs – messengers – are used. They are particularly

useful for transmission of text messages, sound signals,

images, video and games as well as for organisation of

teleconferences by coding messages of on-line users.

Messengers usually operate in coordination with a server, and

they are defined as client-side programs with their own rules

of work and peculiarities in operating, e.g. ICQ, Skype. The

main drawback of these programs is that while using them, we

leave metadata on a hosting server as non-encrypted data flow,

which provides an opportunity to learn (if required) the

information about the common users, time of their

communication, the number of messages they send within a

session.

II. DESCRIPTION OF CRYP2CHAT PROGRAM

To eliminate the defect we develop a model to run a

program that allows coding the data on the client side with the

help of Cryp2Chat Application

Currently existing Internet messengers fail to perform the

following functions:

- to check for MITM (Men in the middle)-attacks;

- to provide a ‘clean’ (data free) server;

- to destruct messages automatically after the

session is over.

MITM-attack is the most wide-spread way to attack for

stealing the data of some users. This type of attack

presupposes that the attackers are able to read and alter

messages of a sender and a receiver as they wish.

Additionally, neither a sender nor a receiver sees any hints of

the attacker to be in the channel. It is the matter of no

importance if SSL cryptographic protocol is applied or not.

The attacker hooks into a channel between users and interferes

actively with the communication protocol. He/ she may delete,

falsify data or provide the false ones.

The term ‘clean’ server implies that the communication

between two users leaves no information on the server. In this

case the server functions as a repeater and simply translates

the encrypted message between the clients. After the session

is over, the access to the data of the on-line chart is lost

without any opportunity for return.

The described problems with messengers could be solved

if we use a new application – Cryp2Chat.

Cryp2Chat application has been developed to minimise the

drawbacks of the Internet messengers, i.e. it leaves no

metadata on the central server. The client is the only person

who can decode the incoming message. The client possesses

data de-encryption key, and the key does not go further.

The program operation procedure is the following (fig. 1).

A server receives a list of network user’s contacts. A data

encryption key is generated on the side of a sender. Further the

public key is sent to the server and, finally, to a receiver. The

private part of a key remains on the user’s (sender’s) side.

Fig. 1. An Example of Cryp2Chat Application Running

server

sender
receiver

87 of 174

http://en.wikipedia.org/wiki/System_administrator
http://en.wikipedia.org/wiki/Central_Intelligence_Agency
http://en.wikipedia.org/wiki/Central_Intelligence_Agency
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/National_Security_Agency
http://en.wikipedia.org/wiki/Global_surveillance
http://www.multitran.ru/c/m.exe?t=5988056_1_2&s1=%F1%E5%F2%E8%20%E8%20%F1%E8%F1%F2%E5%EC%FB%20%F1%E2%FF%E7%E8
http://www.multitran.ru/c/m.exe?t=5988056_1_2&s1=%F1%E5%F2%E8%20%E8%20%F1%E8%F1%F2%E5%EC%FB%20%F1%E2%FF%E7%E8
http://www.multitran.ru/c/m.exe?t=3431053_1_2&s1=%EA%F0%E8%EF%F2%EE%E3%F0%E0%F4%E8%F7%E5%F1%EA%E8%E9%20%EF%F0%EE%F2%EE%EA%EE%EB
http://www.multitran.ru/c/m.exe?t=3432975_1_2&s1=%E7%E0%F8%E8%F4%F0%EE%E2%E0%ED%ED%EE%E5%20%F1%EE%EE%E1%F9%E5%ED%E8%E5
http://www.multitran.ru/c/m.exe?t=5416562_1_2&s1=%EA%EB%FE%F7%20%F8%E8%F4%F0%EE%E2%E0%ED%E8%FF%20%E4%E0%ED%ED%FB%F5

When a user (a receiver) sends back a message, the

operation is realized within three main stages:

1. He/she receives a public key of a receiver from the

server;

2. The message is encrypted by a public key;

3. The cryptographed message is sent to the server.

RSA method is employed for encryption; the key length

includes 1024 bit. However, the possibility to use other

algorithms of encryption is also provided.

The server created as a prototype of this application is

written in Node.js programming language (advanced

JavaScript) on the basis of Socket.IO library.

Cryp2Chat application is an original service designed to

exchange rapidly-changing messages. It supports End2End

encryption.

To enable the program to use proxy servers (to protect the

client’s computer from some network attacks) and to increase

the reliability of a channel, we offer the use of network of

TOR (The Onion Router). On the computer of a client a proxy

server connected to the network of TOR starts its work [1]. It

involves a multilevel encryption. The process of message

transmission in a network is schematically presented on fig. 2.

Fig.2. Schematic Presentation of TOR Work.

Before transmitting the data packet to the server, it goes

through three random computers. Before being sent, the

package is encrypted by three keys: for each of the three

computers respectively. In addition, the TOR network can

provide anonymity for servers.

Network users start TOR multi-level (“onion”) proxy

server on their machine. It connects to the TOR servers,

periodically forming a chain through the TOR network that

uses a multi-level encryption. Every packet entering the

system passes through three different proxy servers - server

nodes that are randomly selected. Before being sent, the

package is sequentially encrypted by three keys: first, in the

third node, then in the second node, and, finally, in the first

node. When the first node receives a packet, it decrypts the

"upper" layer encryption (similar to how we clean the

onion) and gets the information where to send the packet to.

The second and the third servers do the same. At the same

time, the software multi-level ("onion") proxy server

provides a SOCKS-interface.

SOCKS (SOCKet Secure) are the programs, running on

the SOCKS-based interface. Their work could be configured

through the TOR network. The TOR network creates

multiplexed traffic and sends data through a virtual chain of

the TOR network, thus, providing anonymous web surfing.

Inside the TOR network the traffic is forwarded from

one router to another, and finally it reaches the exit point

from which the pure (unencrypted) data package comes to

the original recipient address (server). The traffic from the

receiver is sent back to the exit point of the TOR network

[3].

The server prototype of this application is written in

Node.js (advanced JavaScript) with the help of the library

for web sockets - Socket.IO.

Node.js is a programming platform founded on V8

database engine that translates JavaScript into the machine

code. In this way it transforms JavaScript from the higly-

specialised language into the common language for users.

The client part is realized on Html and JavaScript with the

help of Cryprico library.

Node.js has not been chosen by chance. This is one of

the few servers that work quickly and productively with a

single-threaded code. For instance, being the programming

language it does not need to create a new thread to transmit

a stream of query parameters and to interpret the code.

88 of 174

http://www.multitran.ru/c/m.exe?t=1805601_1_2&s1=%F8%E8%F4%F0%EE%E3%F0%E0%EC%EC%E0
https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BA%D0%B5%D1%82_(%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BD%D1%8B%D0%B9_%D0%B8%D0%BD%D1%82%D0%B5%D1%80%D1%84%D0%B5%D0%B9%D1%81)

Node.js is the aggregate of the V8 database engine used in

Google Chrome and in the abstraction to access the file

system and similar server modules.

To shift away from the standard web2.0 scheme of data

transmission we used Web-Sockets and their

implementation for node.js servers in the form of Socket.IO

library. It should be mentioned that Web-Socket is a

Protocol intended for exchanging messages between the

browser and the web server in real time.

At the same time, the Socket.IO library provides a good

level of abstraction above the sockets that are implemented

in JavaScript. With its help you can easily pass objects to

the server and from the server, without serializing them.

The structure of the server part is the following: the

server accepts the message. If it is a command, the server

performs certain actions. If it is simply a message, the server

sends it to the client.

The JavaScript language, which is used in the prototype,

is currently the most common cross-platform language. It is

commonly used as an embedded language for program

access to the application objects. The JavaScript language is

widely used in browsers as a scripting language to add

interactivity to the web-pages.

The JavaScript language may be distinguished by its

main architectural features: dynamic typing, weak typing,

automatic memory management, prototype programming,

functions as the first class objects.

The only requirement for JavaScript work (and it is

present by default in all operating systems) is the

availability of the browser. It does not need to be rewritten

when migrating from one operating system to another. We

write the script and run it in the place where there is a

browser on an electronic device.

Over the last decade JavaScript turned from the applied

language for checking how the blanks are filled, into a

language that can provide the programmer a powerful tool

to tackle any kind of problems. The JavaScript library is

constantly updated with new scripts and styles.

Now there are many add-in settings for JavaScript as its

possibilities are constantly growing, but the syntax and its

architecture is not changed. A simple example is

CoffeeScirpt language, which allows you to write more

compact code compared to JavaScript. It helps to solve

some architectural omissions such as the lack of OOP

(object oriented programming), collbecki (CallBacks) –

callback and syntactic ‘sugar’ (code lines that improve the

way the program looks like). All this makes the language

more convenient for the programmer.

III. PROTOTYPE WORK

As an example, we may consider the fragments of

scripts in Cryp2Chat prototype. Below there is a fragment of

the script that implements the simultaneous exchange of

encryption keys between clients:

socket.on('key1',function(data)

{

 keys[0] = data.key;

});

socket.on('key2',function(data){

 keys[1] = data.key;

 chat.emit('key', { key1: keys[1], key2: keys[0],

stats: "ok"});

});

When the client sends his/her first client key ‘key1’, it is

immediately saved. However, while sending the second

client key ‘key2’, the handshake happens. The handshake

process is asynchronous exchange of public keys to encrypt

data between two clients.

In Cryp2Chat prototype the transmission of the

incoming message is presented through the following scrip:

socket.on('msg', function(data)

{

 socket.broadcast.to(socket.room).emit('receive',

{msg: data.msg, user: data.user, img: data.img});

}

);

Next, when the server receives an incoming message,

the server sends it to the second client with the help of the

socket.io library.

The public RSA key is generated in the following lines

of script:

var myRSAkey = cryptico.generateRSAKey(PassPhrase,

512);

var PublicKeyString =

 cryptico.publicKeyString(myRSAkey);

The decryption of the cryptogram and its presentation

in the client side is represented by the lines of the script:

var msgs = cryptico.encrypt(textarea.val(),roomKey);

socket.emit ('msg',{msg: msgs, user: name, img:

img});

The client is the only one who can decrypt the

transmitted message, as the private key never leaves the

client side. The connection is made directly from client to

client.

socket.on('key',function(data)

{

 console.log(data);

 console.log(yourName.val());

 console.log(hisName.val());

 if(myId == 1)

{

console.log("roomKey" + roomKey);

 roomKey = data.key1;

89 of 174

}

 else

 {

 console.log("roomKey" + roomKey);

 roomKey = data.key2;

 }

}

);

The script describes the client-side function that

implements handshake. The generalized algorithm of the

Cryp2Chat application is illustrated in Fig. 3.

As shown in the flowchart, from the moment of

receiving the encrypted message and till the moment the

message is sent to the recipient, the server undertakes the

only action – certificate (i.e. license) verification. All the

other steps associated with encryption, key generation, the

transmission of the cryptogram to the recipient and

decrypting of the cryptogram by the recipient, occur at the

clients and in their browsers.

IV. EXPERIMENT PROCEDURE

Experimental study of the application was conducted on

a typical mobile phone, where Cryp2Chat program was

installed. Mobile phone is Nexus 5 with the processor speed

2260 MHz and with the operating system Android 4.4.4.

This operating system supports novelties related to the safe

operation in the browser. When a user opens an application,

it verifies the certificate on the sender’s device. In case of a

successful verification the sender chooses a receiver. In case

the connection is completed, the receiver’s public key and a

signature are taken from the browser local database, or they

are requested from the server. Next the program encrypts

the message and the sender's signature key. The message is

sent to the server, and it verifies this signature on the basis

of the contacts list. If the sender's signature exists in the

server database, the latter immediately transmits the

message to the recipient. In case of an incoming message

the signature of the recipient is verified and it is decrypted

with a secret decryption key.

The experimental results with Cryp2Chat prototype are

shown on Figures 4 - 7.

Fig. 3. Generalised Algorithm of Cryp2Chat Application

Fig. 4. Introducing the Users

90 of 174

Fig. 5 Exchange with Test Messages

Fig. 6 Console of the First Client

Fig. 7 Console of the Server

On the console of the first client and on the server

console one could see only the encrypted string. This way

the information is transmitted to the server (Fig. 7).

Additionally, the recipient - the second client - is the only

one who possesses the key to decrypt it.

Further we conducted an experiment for a group of 20

users. Specially for this purpose we launched the site in the

cloud Azure that hosts Cryp2Chat application -

http://cryp2chat.azurewebsites.net/. Based on the

experiment we have had the following results:

- high speed of response from the client’s side as well as

from the server side;

- a sufficiently high contact capacity of the program, as

all 20 users managed to establish contacts with their

subscribers simultaneously.

Fig. 8 is a table of qualitative indicators of Cryp2Chat

application along with its analogues. In the table the

following conventional symbols are employed:

v – activated functional features of the program,

x – inactivated functional features of the program,

* - business version. There exists a business version, but

it is patented under a different name and it might be a

slightly different product.

91 of 174

http://cryp2chat.azurewebsites.net/

Fig. 8. Cryp2Chat Application and its Analogues

Figure 8 illustrates the following advantages of

Cryp2Chat application:

1) The application corresponds to all the parameters;

2) It provides a cross-platform messaging and self-

destruction of messages;

3) It uses translator servers, i.e. working on peer2peer

scheme.

V. POTENTIAL DANGERS

While designing the application three possible potential

dangers were considered:

1. Brute force. Kaspersky blog has been used to assess

the possibility of selecting passwords [2]. The program has

shown that the selection of the password with a key of about

50 characters length, including special characters, will take

more than 100,000 years. Even on a powerful botnet

Conficker a password will be sorted out for ten thousand

centuries.

2. Key theft. It is impossible for two reasons:

− If it is android application, the "sandbox" - a tightly

controlled set of resources for the execution of the guest

program - will not give to another application access to the

files with a password,

− If it is web application, the call to a variable is

impossible, as a pointer to an element is deleted, and it is

only the inner code that can refer to this variable.

3. The application code cannot be changed because:

− If it is web application, then the downloaded code is

stored when you start the application for the first time and it

cannot be downloaded when you run,

− If it is the native application, changes in a code from

the server side does not lead to a change of the client

application code.

The transfer of potentially dangerous information (acts

of terrorism, drug sales) is prevented because control data

exchange is carried out with the use of an electronic

signature. While registering the user generates a signature.

This is a RSA key that is passed to the server, stored there

and never changed.

When sending a message, the server checks the signature

and if this signature is missing on the server, this message is

not sent. Also, the signature may be withdrawn from server

storage due to violation of the license agreement or similar

cases. Thus, it is possible also to control the transmission of

messages. Though we do not know what is encrypted in the

message, we may deny the user in the network

communication services.

CONCLUSION

In the future, we plan to rewrite the project from scratch

and to implement it as a complete business solution with

further access to the market. Additionally we plan to

develop graphical password and voice authentication

function. In addition, the plan is to transfer video, audio and

other files.

REFERENCES

[1] Tor – The Onion Router. Wikipedia, the free encyclopedia/ URL:
https://ru.wikipedia.org/wiki/Tor#.D0.90. [08.08.2014]

[2] Blog.kaspersky URL: blog.kaspersky.com/password-check.

[3] Tor: Overview URL: www.torproject.org/about/overview.html.en

92 of 174

http://blog.kaspersky.com/password-check
http://www.torproject.org/about/overview.html.en

Searching method of personal details

on the basis of fuzzy comparison

Nataliia Limanova (Author)

Department of Technical Systems Software and

Management

Povolzhskiy State University of Telecommunications and

Informatics

Samara, Russia

Nataliya.I.Limanova@gmail.com

Maksim Sedov (Author)

Department of Technical Systems Software and

Management

Povolzhskiy State University of Telecommunications and

Informatics

Samara, Russia

SedovMN@inbox.ru

Abstract — During the information exchange from one

department to another there is a problem of personal

identification. This problem concerns the people who have

partially or completely not coinciding personal details. In the

represented work the new algorithm for identification of such

people is elaborated. The algorithm is based on the fuzzy

comparison and the metrics of Levenshtein. It allows us to find

persons who have partial or complete not matching in surnames,

names and other requisites in databases. The algorithm is

implemented in PL-SQL in the Oracle database 11g.

Keywords — Interdepartmental exchange of information,

indistinct matching, search of personal details, function of

intellectual matching, personal identification number (PIN).

I. INTRODUCTION

 In the course of the interdepartmental information

exchange there is an approval problem of the main personal

details (full name, birth date, address, passport data, etc.) in

databases of various departments. The problem of personal

identification has the greatest relevance for physical persons

who have partially or completely not coinciding personal

details.

 For optimum control of big data files, in which the

information about physical persons is included, it is necessary

to provide centralized storage regulations of such personal

details as full name, birth date, address, passport data, etc.

Recently various departments – holders of local databases

have aimed to combine these arrays for simplification and

improvement of work quality. But there is a problem of

personal details comparison in different databases. In such

cases the elaborated intellectual algorithm of data search in

databases or, in the other words, the algorithm of identification

of physical persons comes to the aid.

 For convenience of data processing, to each set of details

the so-called personal identification number (PIN) is assigned.

In the cases of handling or transferring of physical person data

all binding is performed to this PIN. Unfortunately, in Russia,

there is no uniform database with personal details of all

residents, and therefore in each department the separate

register of physical persons is kept, and own PINs are given.

The problem arises in the case of residents’ information

exchange between the organizations. So it is necessary to

execute a binding of the entering personal data to the already

available information. For an unambiguous binding it is

necessary to execute intellectual search of physical person in

base receiver which shall consider a set of factors: the

mistakes in the case of manual input in the database, the

absent or obsolete personal details and etc. It is reasonable to

assume that similar search must be implemented in the form of

the specialized software [1].

II. PROBLEM OF THE AUTOMATED SEARCH

 Traditionally this problem is solved by the analysis of

identity of the main personal details. There are several details:

name, surname, middle name, date of birth, series, passport

number and address. Having unambiguously determined

coincidence of the existing and new details, it is possible to

execute identification of personal details in a database [1][2].

This method of search is carried out manually only in that case

when the amount of the transmitted data is small (number of

personal details is no more than 30). In case of large volumes

of transmitted data the computer comparison of identity of

details is used. Such approach allows to determine on average

(50 – 60) % of total number of identifiable personal details.

The remained (40 – 50) % represent personal data in which the

details in parts or in full don't match. It is more difficult to

handle such information manually. Accordingly, the computer

search task is divided into three subtasks depending on the

type of input data. As a result of comparison the following

three types of results can turn out.

 1. The person is found. This conclusion can be created as a

result of direct comparison of details, and equality of sets of

certain key data. In this case the personal details becomes

attached directly to the corresponding PIN.

 2. The person is ambiguously determined. This result is

displayed in the presence of mistakes, both in new data, and in

the earlier received one. For example, the operator's mistakes

in the case of manual input of the main details are possible,

data corruption during transmission, incorrect work of package

93 of 174

,
||}||||,max{||

),(
),(

21

21
21

ss

ssp
ssr 

.0
||}||||,max{||

),(

||}||||,max{||

),(

||}||||,max{||

),(

31

31

32

32

21

21 
ss

ssp

ss

ssp

ss

ssp

requests in case of information processing, etc. In this case the

list of PINs which main details are mostly approached to

identifiable data is displayed.

 3. The person isn't found. This case shows that this

personal details is absent in the database and for a binding of

this person to the PIN it is necessary to add him to the

available data set with assignment of a new PIN.

 When creating an automated complex software, which

yields above-mentioned results, the most important was to

determine borders between the first and second cases, and also

between the second and third. The software working without

similar differentiation, will put down PINs to all found

persons unambiguously, and those whose data are determined

ambiguously, are removed in the report for manual handling

by the operator. Thus all not found persons will be added to

base with assignment of a new PIN. Now lets imagine that in

case of any discrepancy of the main details, the data will be

provided to the report, or that is even worse, will be added as

new. For example, the woman name is Natalia, she got

married, respectively she has replaced her surname, she has

moved to other residence and she has changed the passport.

Besides, in the database she is registered under the name of

Natalya, and in her birth date there is a mistake, an incorrectly

specified number. When handling such data the program will

decide that it is the new person and will add them with

assignment of a new PIN. Of course, to a new PIN will set any

task in compliance. As a result it turns out that data on one

personal details are doubled and different PINs of one person

operate with different tasks. If the error is not corrected

immediately, then the number of incorrect data will grow up in

the geometric progression. On correction of consequences of

operation of such software a large number of competent

employees of organization will spend a lot of time and forces

[3][4][5].

 The wrong identification can also lead to a large number of

data in the report for manual working off, to assignment of the

PIN to incorrect person and to addition of excessive data. At

worst case the consequences of such mistakes can completely

paralyze work of organization for indefinite time, at the best

case – to take away more than 10% of working hours of

specialists for errors correction. The analysis of the existing

software showed that there is no single identifier; the universal

algorithm of identification is also absent.

III. MATHEMATICAL MODEL OF SEARCH METHOD ON THE

BASIS OF FUZZY COMPARISON

 Some types of the metrics reflecting intuitive concept of

similarity of lines are known. The most common are

Hamming’s distance, Levenshtein’s metric and distance

editing [6][7][8].

 Hamming's distance is determined for lines of identical

length and is set as number of line items in which symbols

don't match. In fact, Hamming's distance is calculated as

minimum price of transformation of one line in another when

the only one transaction of editing lines – replacement is

possible.

 In a case when it is required to make comparison of lines

of different length, Levenstein's metrics or distance editing are

used. These two metrics are very similar on creation and

actually are the same metrics, little modified for each case. For

example, Levenstein's metrics is determined as minimum price

of transformation of one line in another with the use of three

transactions: inserts, replacements and removals of a symbol,

and all three transactions have identical weight.

 The distance editing is modification of Levenstein’s

metrics in the case when only two transactions are allowed:

insert and removal.

 Due to the above, Levenstein’s general metrics which

supports all three transactions with line was chosen. For

further operation the linguistic variable "similarity of lines"

was constructed. It is decided to allocate the following terms:

"lines match", "lines almost match", "lines are similar", "lines

are similar and dissimilar at the same time", "lines aren't

similar".

 In the result of the analysis of functions of accessory of

linguistic terms there was a need to modify the method of

calculation of Levenstein’s metrics. It was required to modify

metrics so that the distance between lines depended on length

of the compared lines.

 Theorem 1:

 We will designate by means of size p(s1,s2) Levenstein's

metrics, and size ||si|| – length of line si. Then function:

 (1)

 (1)

is a metrics.

 Proof (not strict proof):

 Because p(s1,s2) is a metrics, we have:

p(s1,s2) ≥ 0,

p(s1,s2) = p(s2,s1),

p(s1,s2) + p(s2,s3) ≥ p(s1,s3)

for any lines s1,s2 and s3. Considering these ratios and equality

(1), we come to a conclusion that r(s1,s2) satisfies to the first

two axioms determining metrics. It is necessary to prove that

for any lines s1,s2 and s3 function r(s1,s2) satisfies to a triangle

inequality:

r(s1,s2) + r(s2,s3) ≥ r(s1,s3).

 Write this inequality in the form:

 The following cases are possible:

1. ||s1|| ≤ ||s2|| ≤ ||s3||

2. ||s2|| ≤ ||s3|| ≤ ||s1||

3. ||s3|| ≤ ||s1|| ≤ ||s2||

4. ||s2|| ≤ ||s1|| ≤ ||s3||

94 of 174

     

0.
1

maxmaxmax

313221

33

31

3

32

2

21

31

31

32

32

21

21





))s,p(s)s,p(s+)s,(p(s
||s||||s||

)s,p(s

||s||

)s,p(s

+
||s||

)s,p(s
=

||s||||,s||

)s,p(s

||s||||,s||

)s,p(s
+

||s||||,s||

)s,p(s

.0
||||||||||||

||||

||||

||||

||||||||||||

||||||||||||||||

131

1

13

13 







Css

C

s

s

Css

CsCs

BEGIN

END

Database choice

(Determination of variables for

dynamic requests)

Number > 1?

Request of the list of PINS

of identical people.

i = 1

Request of number of identical

people in a database

Number = 1?

Number = 0?

Assignment of the PIN to

the natural person

Inquiry of the PIN of the

identical person

i > number of people?
Record at line PIN.

i = i + 1

Conclusion of the list of

identical PINS

Block of formation of the

massif of similar people

Search of people in the

massif,

i = 1

i > number of people?

The block of comparison

of details on the basis of

alternative choice

The similar person

is found?

No

Record at line PIN.

i = i + 1

One similar PIN

is found?

Assignment of the PIN to

the natural person

Yes

Yes

Yes

No

No

No

Yes

No

No
i = i + 1

Conclusion of the list of

similar PINS

Yes Yes

No

Yes

5. ||s1|| ≤ ||s3|| ≤ ||s2||

 6. ||s3|| ≤ ||s2|| ≤ ||s1||

Consider the first case. We have:

Thus, for the first case the triangle inequality is carried out.

As the second case is similar to the first one, based on similar

calculations we draw a conclusion that for the second case the

triangle inequality is also carried out.

 We will turn to consideration of the third case. So, in the

third case we have:

 (2)

 We’ll consider a question when the minimum of the

function which is in the right part of this equality is reached. It

is clear that if expression of r (s1,s2) + r(s2,s3) reaches the

minimum, and r(s1,s3) reaches the maximum, the value of all

expression will be minimum. The two specified conditions can

be satisfied at the same time if two following statements are

carried out at the same time:

- lines s1 and s3 have no common symbols,

 - lines s1 and s3 are included as sublines in s2. Then:

r(s1,s3) = max{|| s1||,|| s3||}=|| s1||,

r(s1,s2) = || s3|| + ||C||, r(s2,s3) = || s1|| + ||C||,

thus, the minimum value of expression (2) will register in a

form:

Therefore, in the third case for function r(s1,s3) a triangle

inequality is also carried out. Other cases are similar to the

already considered. Thus, function r(s1,s2) is the metrics,

defined in the set of lines. The theorem is proved.

 Note: function r(s1,s2) belongs to the interval [0,1] for any

lines s1 and s2.

 In the offered algorithm this metrics is applied for

operation with line personal details which includes full name,

address, document, etc. Therefore the linguistic variable

constructed with use of this metrics allows to process requests

of search for the person similar to other person in details.

Having accepted such request from the user, we actually

receive two values: the value of a required detail and the

radius of search.

IV. ALGORITHM OF SEARCH METHOD ON THE BASIS OF

FUZZY COMPARISON

The Fig. 1 shows the integrated flowchart of developed

algorithm of search method on the basis of fuzzy comparison.

The offered algorithm presented in the form of process of Data

Mining includes the following stages [9]:

1. analysis of subject domain;

 2. problem definition;

 3. preparation of data;

 4. creation of models;

 5. check and assessment of models;

 6. model choice;

 7. application of model;

 9. correction and updating of model.

Consider these steps in details.

 1. The subject domain represents data sets with the main

personal details in the different organizations and departments.

2. The task of search consists in that in the conditions of

absence of single personal identification number to search of a

set of details in one database according to personal details in

other database.

Fig. 1. The integrated flowchart of developed algorithm of search method on

the basis of fuzzy comparison.

.
11

31

1

3221

2

313221

))s,r(s
||s||

))s,r(s+)s,(r(s
||s||

=)s,r(s)s,r(s+)s,r(s





95 of 174

 3. Preparation of data represents the organization of the

integrated selection including about 300-500 sets, remotely

similar to the required. The code fragment allowing to

organize programmatically such selection is given below:

CURSOR persons

 IS

 SELECT p.person_id, p.lastname, p.firstname,

 p.patronymic, p.birthdate

 FROM work.person p WHERE

(((SOUNDEX(TO_TRANSLIT(p.lastname)) =

SOUNDEX (TO_TRANSLIT(fo_Lastname)))

 AND (SOUNDEX (TO_TRANSLIT(p.firstname)) =

SOUNDEX(TO_TRANSLIT(fo_Firstname))))

 OR ((SOUNDEX(TO_TRANSLIT(p.lastname)) =

SOUNDEX(TO_TRANSLIT(fo_Lastname)))

 AND (SOUNDEX(TO_TRANSLIT(p.patronymic)) =

SOUNDEX(TO_TRANSLIT(fo_Patronymic))))

 OR ((SOUNDEX(TO_TRANSLIT(p.firstname)) =

SOUNDEX(TO_TRANSLIT(fo_Firstname)))

 AND (SOUNDEX(TO_TRANSLIT(p.patronymic)) =

SOUNDEX(TO_TRANSLIT(fo_Patronymic)))));

 4. Creation of models consists in detection of regularities

in the analysis of the data obtained in result of step 3 shown in

this data set and, perhaps suitable for future sets.

 5. Check and assessment of models represent testing of

regularities for quantity of the data sets satisfying with them.

The more sets are suitable for specific model, the more

valuable is revealed regularity.

 6. The choice of model consists in detection of the most

significant regularities for further use in case of future starts of

identification procedure.

 7. Application of model represents the use of the regularity

received and approved in case of last start of identification

procedure in the current data sets.

8. Correction and updating of model consist in the analysis

of result of regularity appendix to a new data set, and, if

necessary, correction of model for circle expansion of suitable

sets by fuzzy search of compliance of personal details.

 Programmatically it looks approximately like this (with

use of dynamic SQL):

-- Perform fast identification

 OPEN cur_Ref_fast_ident

 FOR 'SELECT t.'||v_Col_pin||'

 FROM '||v_Table||' t

 WHERE UPPER(TRIM(t.'||v_Col_lastname||')) =

UPPER(TRIM('''||fo_Lastname||'''))

 AND UPPER(TRIM(t.'||v_Col_firstname||')) =

UPPER(TRIM('''||fo_Firstname||'''))

 AND NVL(UPPER(TRIM(t.'||v_Col_patronymic||')), ''_'')

= NVL(UPPER(TRIM('''||fo_Patronymic||''')), ''_'')

 AND t.'||v_Col_birthdate||' =

'''||TO_CHAR(fo_Birthdate, 'dd.mm.yyyy')||'''';

 FETCH cur_Ref_fast_ident BULK COLLECT

 INTO c_fast_ident;

 CLOSE cur_Ref_fast_ident;

 -- Depending on the number of pins of identical persons

 IF (NVL(c_fast_ident.count, 0) = 1) THEN

 fout_Pin := c_fast_ident(1);

 ELSIF (NVL(c_fast_ident.count, 0) > 1) THEN

 FOR i IN c_fast_ident.first..c_fast_ident.last LOOP

 fout_Pin_list:=fout_Pin_list||TO_CHAR(c_fast_ident(i))||' ';

 END LOOP;

 -- If fast identification didn't yield results

 ELSIF (NVL(c_fast_ident.count, 0) = 0) THEN

 -- write down data from the cursor in collection

 OPEN cur_Ref_full_ident FOR v_Cur_ident;

 FETCH cur_Ref_full_ident BULK COLLECT

 INTO c_full_ident;

 CLOSE cur_Ref_full_ident;

 IF (NVL(c_full_ident.count, 0) > 0) THEN

 FOR i IN c_full_ident.first..c_full_ident.last LOOP

 -- Perform complete identification

 -- The block of comparison of details on the basis of

 alternative choice (see Fig. 1)

 CASE

 …

 WHEN (UPPER(TRIM(c_full_ident(i).ima)) =

UPPER(TRIM(fo_Firstname))

 AND UPPER(TRIM(c_full_ident(i).oth)) =

UPPER(TRIM(fo_Patronymic))

 AND ((analyzer_two_number(TO_NUMBER

(TO_CHAR(c_full_ident(i).dtr, 'ddmmyyyy')),

TO_NUMBER(TO_CHAR(fo_Birthdate, 'ddmmyyyy'))) = 1

 AND analyzer_two_number(c_full_ident(i).nom,

fo_Passport_number) = 1) OR

((analyzer_two_number(TO_NUMBER

(TO_CHAR(c_full_ident(i).dtr, 'ddmmyyyy')),

TO_NUMBER(TO_CHAR(fo_Birthdate, 'ddmmyyyy'))) = 1

 OR analyzer_two_number(c_full_ident(i).nom,

 fo_Passport_number) = 1)

 AND c_full_ident(i).dom = fo_House

 AND c_full_ident(i).kva = fo_Flat)))

 THEN fout_Pin_list :=

fout_Pin_list||TO_CHAR(c_full_ident(i).pin)||' ';

 …

WHEN (UPPER(TRIM(c_full_ident(i).fam)) =

UPPER(TRIM(fo_Lastname))

 AND UPPER(TRIM(c_full_ident(i).ima)) =

UPPER(TRIM(fo_Firstname))

 AND analyzer_two_string(c_full_ident(i).oth,

fo_Patronymic) = 1)

 THEN v_Pin_list_sim :=

v_Pin_list_sim||TO_CHAR(c_full_ident(i).pin)||' ';

 …

 ELSE NULL;

END CASE;

96 of 174

0

200000

400000

600000

800000

1000000

Direct comparison Fuzzy comparison

Salary fund

Ov erhead costs

Total costs

 In developed implementation of algorithm in PL-SQL

DBMS Oracle 11g [10] language, key functions are allocated

for logically selected procedures ANALYZER TWO STRING

and ANALYZER TWO NUMBER, created on the basis of the

modified method calculation of Levenstein’s metrics which

allow carrying out intellectual comparison of two similar lines

or numbers, taking into account possible inaccuracies or errors

of input. These procedures can be applied not only for

identification of details, but also everywhere where full text

search with fuzzy set input data is required.

V. TECHNICAL AND ECONOMIC INDICATORS OF PROPOSED

ALGORITHM

 For the comparative analysis of developed algorithm let’s

consider technology of identification on the basis of direct

comparison. When using this technology the emphasis goes on

speed of records handling, but not on quality of decision

making by system. As a result, after completion of procedure

on the basis of direct comparison, there are many data (about

20-30% of total quantity of the lines) not connected with

initial which need to be fulfilled manually that is extremely

difficult in the case of large volumes of the processed data.

 When comparing working indicators of two algorithms it

is revealed:

 Algorithm of direct comparison:

Data processing speed: ~ 100 000 lines per hour;

Identification accuracy (probability of exact searching

method): ~ 80%

 Algorithm of identification on the basis of fuzzy

comparison:

Data processing speed: ~ 80 000 lines per hour;

Identification accuracy (probability of exact searching

method): ~ 99,9%

 It is possible to draw a conclusion that, operator’s work in

manual operation of results is minimized in developed

algorithm i.e. though the speed of handling is slightly less, but

the algorithm allows to significantly unload operators at the

expense of intellectual system of decision making that can't

offer algorithm of direct comparison.

When comparing economic characteristics of the

developed software on the basis of described algorithm with

procedure of direct comparison for annual amount of

identification of 1 200 000 physical persons the following data

were obtained: labor costs on information processing by the

method of fuzzy comparison in comparison with method of

direct comparison are reduced by 6,7 times, absolute decrease

in labor costs constituted 1 446 hours, annual costs when using

the fuzzy comparison method decreased by 3 times in

comparison with the similar period of application of the direct

comparison method, annual economic effect exceeded 580 000

rub. For descriptive reasons some cost indicators which are

created when using the software developed and applied are

displayed on the chart provided on Fig. 2. Sizes of costs are

postponed on ordinate axis in rubles.

Fig. 2. The chart for the comparative analysis of cost indicators when using

methods of direct and fuzzy comparison.

VI. CONCLUSIONS

 The considered method of the computer search of personal

data on the basis of fuzzy comparison designed with use of the

Data Mining technology allows to quickly determining people,

using data of search carried out earlier. The built-in system of

details priority allows to identify person in such cases as

change of surname, name, moving, mistakes in case of manual

data entry, and in case of partially absent details.

 Self-training systems allow releasing human resources for

accomplishment of creative tasks. In this area the Data Mining

technology provides a full range of theoretical and practical

means for choice, development or use of intellectual computer

systems.

 The procedure of identification from this article can be

considered as part of the system of decision support. The

procedure does not require the operator intervention, gains

experience and learns in the process of operation, allowing to

completely exempt specialists from low-profile, inefficient,

manual operation directly with the sets of personal details

which are stored in databases.

The developed algorithm shows good results when fields

with different information inside (name, address, postcode,

phone etc) are compared. Indeed, any symbolical value,

whether it be full name, number of the passport or address, it

is possible to present in the form of string. In the course of two

strings comparison with the help of the offered algorithm, the

distinctions of these lines are revealed, such as the admissions

of separate symbols or incorrect single symbols which can

arise at typographical errors in a manual data set. I.e., from the

point of view of symbol-to-symbol comparison, there is no

difference between comparison of two passport numbers or

two surnames.

 In long terms, this algorithm has the possibility of

successful implementation in systems of global merger of

storages of the state or commercial organizations, for

maintaining a single database of the population of any country

of the world. The logical structure of developed algorithm

allows realizing it in any popular programming language.

Features of algorithm allows applying program procedures on

its basis both in small organizations, and in large corporations,

97 of 174

everywhere, where the register of physical persons data is

conducted and staticized. Possible examples of use: portal of

state services, medical electronic systems, personnel and

accounting systems of accounting of employees, bank systems

of data storage on clients, etc.

 The algorithm is realized in PL-SQL of Oracle 11g

database management system. The developed software

realizing a method of the computer search of personal data on

the basis of fuzzy comparison is implemented and successfully

operates since 2007 in the municipal institution «City

information center» Togliatti city of Samara region.

REFERENCES

[1] Selection of materials on the international experience of legislative
regulation of use of systems of the personality’s identification
(http://www.kongord.ru/Index/Prison/SViP.htm).

[2] The report on accomplishment of research, developmental work
"Development of mechanisms of unambiguous identification of data on
the physical persons and real estates which are stored in various

information systems of public authorities and local government
(http://www.nisse.ru/business/article/article_464.html).

[3] Regulations on personal identification number of the citizens of the
Russian Federation living or staying in the territory of St. Petersburg
(http://iac.spb.ru/shablon.asp?subpage=171&id=40&dir=0).

[4] The "Moscow Social Card" project (http://www.soccard.ru).

[5] The collection of theses of city scientific and practical conference of
students, graduate students, teachers of higher education institutions and
specialists of local government offices of Tolyatti "Informatization in the
social sphere" (http://it-exclusive.ru/idperson/docs/stat.doc).

[6] Hamming R. V. The theory of coding and the theory of information,
trans. Edited by BS Tsybakov, Radio and Communications, 1983.

[7] Levenstein V. I. Binary codes with correction of losses, inserts and
replacements of symbols, reports of Academy of Sciences of the USSR
vol.163, 1965.

[8] Boytsov L.M. Analysis of lines,
http://itman.narod.ru/articles/infoscope/string_search.1-3.html.

[9] Chubukova I.A.,"Data Mining", training course, publishing house of
Internet university of information technologies (http://www.intuit.ru/),
2006.

[10] Scott Urman, "ORACLE 9i - Programming in PL / SQL", tutorial,
Oracle Press – publishing house "Lory", 2004.

98 of 174

Seamless Development Applicability: an Experiment

Alexandr Naumchev
Software Engineering Laboratory

Innopolis University
Kazan, Russia

Email: a.naumchev@innopolis.ru

Abstract—Requirements and code, in conventional software
engineering wisdom, belong to entirely different worlds. Is it
possible to unify these two worlds? A unified framework could
help make software easier to change and reuse. To explore the
feasibility of such an approach, the case study reported here takes
a classic example from the requirements engineering literature
and describes it using a programming language framework to
express both domain and machine properties. The paper describes
the solution, discusses its benefits and limitations, and assesses
its scalability.

Keywords—software engineering, requirements specifications,
multirequirements, Eiffel

I. INTRODUCTION

Nowadays the dominating view on the software engineer-
ing discipline includes an implicit assumption that engineering
the requirements, designing the architecture and implementing
the code are all separate activities. “Separate” means that an
engineer performs only one of them at the same time and
produces different artifacts as the output. This implicit assump-
tion is cultivated by the top software engineering schools who
promote the idea explicitly enough to push it to the students’
subconscious level.

A. Problems with the Current Approach

The usual view in software engineering considers require-
ments documents and source code as different artifacts, under
the responsibility of different people. This approach, however,
introduces communication overhead, and raises the question of
how to keep the various artifacts consistent when either of them
needs to change. A change introduced to any of the mentioned
artifacts needs to be synchronized with the others. At some
point the control is inevitably lost: for example, a critical bug is
found during the software operation, and the software develop-
ers dig into the fixing process directly, because there is no time
to wait until the requirements analysts and system architects
update their documents to let the developers actually fix the
problem. The problem is partially solved with complicated
configuration management, which is expensive and difficult
to maintain, and may serve as a source of evil as well: there
are so called ”technical commits”. Only senior developers are
allowed to make them, and the basic idea is that such commits
do not have to be linked to some task, bug or user story (if
the team practices Agile). Quite often the technical commits
contain basically whole new features or big chunks of code
not linked to any document.

Why should we try to minimize gaps between requirements
and code? At the very least because successful software

evolves. The customers want more features, they want to
improve existing features, and they want to know how much
money it will cost and how much time it will take. If it is
possible to relate the ideas to the artifacts, then by comparing
complexity of some new idea with an existing one, already
implemented, it will be possible to estimate the resources
required for implementing the new idea.

The list of the problems discussed above does not pretend
to be exhaustive of course, but it should be sufficient to start
thinking about changing the overall approach.

B. Existing Solutions

Typically the problems from Section I-A are resolved by
carefully choosing appropriate notations for every development
life cycle phase. The selection criteria include possibility of
establishing traceability links between different notations. Each
phase requires the output of the previous phase on its input and
on its output produces the input for the next phase. An example
of applying this approach is given in work [2]. This work also
contains an overview of the most popular notations used in
formal software development. For instance, the software devel-
opment case described in work [2] uses natural language for
requirements document, RSML [7] for specification document,
Event-B [1] for developing software formal model, formalizing
the requirements and formally verifying the model against
the requirements. Finally EB2C tool [8] generates executable
source code taking the formal model expressed in Event-B. For
moving from the requirements document to the specification
document the Problem Frames Approach [5] is applied. The
latter method produces a problem frames model on the output.

Needles to say, such approach requires people with very
rich set of skills: for example, to produce a specification
document expressed in RSML, the responsible person also
has to understand the Problem Frames Approach. In a similar
fashion the person responsible for modeling in Event-B also
has to be proficient with RSML, and so on.

As a software engineer we should not forget why there
is a huge gap between requirements and code at all. The
fundamental reason is in limited expressive power of pro-
gramming languages compared to expressive power of any
natural language. That is why there are many ”intermediate”
notations serving for smooth transition from natural language
requirements to source code; that is why the coding phase
and the requirements engineering phase typically have tiny
overlaps in time, and there are other software development life
cycle phases between them. If it was possible to express any
executable requirement using a subset of some programming
language, than the problem would disappear.

99 of 174

C. Unified View on Software: The Hypothesis

It is possible to design such a software development process
that:

1) By specifying the requirements the analyst at the
same time will also design the solution

2) The resulting document may be linked in an intuitive
way to an algorithmic implementation

3) The resulting implementation will be formally prov-
able against the requirements specification

4) Small change in the requirements specification will
cause proportionally small change in the design and
the implementation

Parts 1, 2 and 3 promote consistency between the requirements,
design and implementation; part 4 promotes predictability of
resources estimations.

D. How to Test the Hypothesis

The following process seems to be feasible for testing
adequacy of the stated hypothesis:

1) Propose a candidate process
2) Select some real projects which are presumably prone

to the problems stated in section I-A
3) Apply the proposed process to the selected projects

and see how it goes

In [11] Meyer sketched such a process based on using object
orientation for representing the relationships between the con-
ceptual objects mentioned in the requirements document. The
basic idea was to have an object-oriented code along with the
natural language description of a requirements item. Each code
fragment in its turn may be represented graphically as a BON
diagram [15].

The main problem with [11] was the example used for
the demonstration purposes: it was self-referential. That is, it
contains ”requirements for the requirements”.

Nevertheless, the work [11] demonstrates that object orien-
tation contributes to understanding the relationships between
the objects. However, requirements (in their general form) are
beyond this: to specify requirements, as described by Jackson
and Zave in [6], is also to specify all allowed sequences of
events associated with a given problem area.

This work provides an example of how one could com-
bine approaches from [11] and [6] by adding fully-fledged
contracts, both in their classical and model-based semantics,
to the requirements specification notation. More precisely, it
contains every requirements item from the Zoo Turnstile ex-
ample discussed in [6] represented using the model-based [13]
contracts-equipped [10] object-oriented [9] notation (Eiffel).

II. THEORETICAL AND TECHNICAL BACKGROUND

A. Design By Contract

A comprehensive description of Design By Contract is
given in [10]. Design By Contract integrates Hoare-style as-
sertions [3] within object-oriented programs [9]. This concept
assumes that each class feature (member), is equipped with
its pre- and postcondition. The postcondition has to hold

whenever the precondition held and the feature finished its
computation before the next feature is invoked. The class itself
is equipped with an invariant expression which holds in all
states of the corresponding instantiated objects.

B. Model-Based Contracts

If classical contracts are for constraining the data actually
held by run-time objects, model-based contracts are ”meta”
contracts for constraining the objects as mathematical entities
(sets, sequences, bags, relations etc.), and the corresponding
mathematical representations are not actually instantiated at
run-time as parts of the objects. Model-Based Contracts are
needed when it is not possible to capture all the nuances by
means of classical contracts. Some examples of such situations
and a comprehensive description of the concept is given in the
PhD thesis [13].

C. AutoProof

Object-oriented classes constrained with contracts (both
classical and model-based) may be formally verified using an
automation called AutoProof [14]. AutoProof traverses over
the class features and proves formally that the precondition
conjuncted with the class invariant ensures the postcondition
together with the class invariant after the feature application. If
all the class features are verified, then the class is considered
verified.

III. UNIFYING THE TWO WORLDS: AN EXAMPLE

This section shows the approach at work. It takes the
example introduced by Jackson and Zave in [6] in 1995.
Originally this example was used to demonstrate the process
of deriving specifications from requirements, and the unified
approach captures all the nuances of this process.

A. Example Overview

The authors of [6] start with giving the overall context:
”...Our small example concerns the control of a turnstile at
the entry to a zoo. The turnstile consists of a rotating barrier
and a coin slot, and is fitted with an electrical interface...”
This small paragraph describes mostly relationships between
the conceptual objects and thus may be expressed in the style
of work [11]:

c l a s s ZOO
f e a t u r e

t u r n s t i l e : TURNSTILE
end

c l a s s TURNSTILE
f e a t u r e

c o i n s l o t : COINSLOT
b a r r i e r : BARRIER

i n v a r i a n t
c o i n s l o t . t u r n s t i l e = Current
b a r r i e r . t u r n s t i l e = Current

end

c l a s s COINSLOT
f e a t u r e

100 of 174

t u r n s t i l e : TURNSTILE
i n v a r i a n t

t u r n s t i l e . c o i n s l o t = Current
end

c l a s s BARRIER
f e a t u r e

t u r n s t i l e : TURNSTILE
i n v a r i a n t

t u r n s t i l e . b a r r i e r = Current
end

Translating this code back to English using the object-oriented
semantics results in almost the same initial description: ”A
ZOO has a TURNSTILE turnstile; a TURNSTILE has a
COINSLOT coinslot and a BARRIER barrier so that coinslot
has Current TURNSTILE as turnstile and barrier has Current
TURNSTILE as turnstile...” COINSLOT and BARRIER hold
references to the TURNSTILE instances in order to capture the
”electrical interface” phenomena: the word ”interface” means
something over which the parties are able to communicate with
each other; communicating means sending messages to each
other, and to send message to someone in the object-oriented
world is to take the corresponding instance and perform a
qualified call. So at the very least the parties should hold
references to each other to be able to communicate in two
directions.

B. The Designation Set

After stating the problem context the authors of [6] describe
a designation set. Each designation basically corresponds to
a separate type of events observed in the problem area. The
designations are provided in form of the predicates:

• Push(e): In event e a visitor pushes the barrier to its
intermediate position

• Enter(e): In event e a visitor pushes the barrier fully
home and so gains entry to the zoo

• Coin(e): In event e a valid coin is inserted into the
coin slot

• Lock(e): In event e the turnstile receives a locking
signal

• Unlock(e): In event e the turnstile receives an un-
locking signal

The representation of this designation set provided below
uses Eiffel features names as labels for the events types
(entities introduced earlier are not repeated afterwards). The
aforementioned natural language descriptions provide heuris-
tics on which feature should be added to which class (the
association is highlighted with bold). Not only different types
of events, but also the history of the corresponding events,
are designed using Eiffel features. For example, enters :
MML SEQUENCE[INTEGER 64] is a sequence of moments
in time expressed in milliseconds when events of type enter
took place. model annotation says that enters feature will
be used for expressing the model-based part of the con-
tract (model-based contracts were introduced in section II-B).
MML SEQUENCE is a class from the MML (Mathematical

Modeling Library) and denotes mathematical sequence. MML
was designed specially to express model-based contracts. Al-
though it is possible to instantiate some simple objects from
these classes (like a sequence containing one element), one
cannot modify the instances.

n o t e
model : e n t e r s

d e f e r r e d c l a s s ZOO
f e a t u r e

e n t e r
d e f e r r e d
ensure

e n t e r s . b u t l a s t ˜ old e n t e r s
e n t e r s . l a s t > o ld e n t e r s . l a s t

end
e n t e r s : MML SEQUENCE[INTEGER 64]

end

n o t e
model : l o c k s , u n l o c k s

d e f e r r e d c l a s s TURNSTILE
f e a t u r e

l o c k
d e f e r r e d
ensure

l o c k s . b u t l a s t ˜ o ld l o c k s
l o c k s . l a s t > o ld l o c k s . l a s t

end
un lo ck
d e f e r r e d
ensure

u n l o c k s . b u t l a s t ˜ o ld u n l o c k s
u n l o c k s . l a s t > old u n l o c k s . l a s t

end
l o c k s : MML SEQUENCE[INTEGER 64]
u n l o c k s : MML SEQUENCE[INTEGER 64]

end

n o t e
model : c o i n s

d e f e r r e d c l a s s COINSLOT
f e a t u r e

c o i n
d e f e r r e d
ensure

c o i n s . b u t l a s t ˜ o ld c o i n s
c o i n s . l a s t > o ld c o i n s . l a s t

end
c o i n s : MML SEQUENCE[INTEGER 64]

end

n o t e
model : p ush es

d e f e r r e d c l a s s BARRIER
f e a t u r e

push
d e f e r r e d
ensure

pu sh es . b u t l a s t ˜ old pu sh es
pu sh es . l a s t > o ld pu sh es . l a s t

end

101 of 174

pu sh es : MML SEQUENCE[INTEGER 64]
end

The deferred keyword is used to highlight that the events
are only specified formally, without specifying the correspond-
ing operational reactions of the software to the events. The
ensure clause is used to specify what conditions should be
satisfied after reacting on an event. These specifications are in-
tuitively plausable: the events history should be complemented
with the new event occurrence, and the time of the new event
should be strictly bigger than the time of the previous event.

C. Shared Phenomena

The authors of [6] introduce the notion of shared phenom-
ena - that is, the phenomena visible to both the world and
the machine (the notions of the world and the machine were
introduced by Jackson in [4]). In the present approach this
notion is covered by using the ”has a” relationships between
the ZOO and the TURNSTILE classes, accompanied with the
model-based contracts. Namely, since a ZOO has a turnstile as
its feature, it can see any phenomena hosted by the turnstile:
locks, unlocks, coins, pushes. And since a TURNSTILE does
not hold any references to a ZOO, it can not observe nor
control the enter events modeled by ZOO.

D. Specifying the System

All the properties of the problem derived in [6] - be
they optative or indicative descriptions - can be conceptually
divided into the two main categories.

1) Properties which hold at any moment in time: An
example of such properties is the OPT1 requirement saying
that entries should never exceed payments (the authors of [6]
use OPT∗ for labeling properties expressed in an optative
mood). Within the present approach this requirement can be
expressed in the following way:

d e f e r r e d c l a s s ZOO
f e a t u r e

e n t e r s : MML SEQUENCE[INTEGER 64]
t u r n s t i l e : TURNSTILE

i n v a r i a n t
e n t e r s . c o u n t <= t u r n s t i l e .

c o i n s l o t . c o i n s . c o u n t
end

The ”something always holds” semantics fits perfectly into the
semantics of Eiffel invariant: ”something holds in all states of
the object”.

2) Properties which hold depending on the type of the next
event to occur: The indicative property IND2 saying that it
is impossible to push the barrier if the turnstile is locked will
serve as an example. Below is the corresponding specification:

d e f e r r e d c l a s s BARRIER
f e a t u r e

push
r e q u i r e

not t u r n s t i l e . u n l o c k s . i s e m p t y
(not t u r n s t i l e . l o c k s . i s e m p t y)

i m p l i e s

t u r n s t i l e . u n l o c k s . l a s t >
t u r n s t i l e . l o c k s . l a s t

d e f e r r e d
end
pu sh es : MML SEQUENCE[INTEGER 64]

end

The initial description is divided into the two different
claims: first, the turnstile should be unlocked at least once, and
second, if the turnstile has ever been locked, the last unlock
should have occurred later than the last lock.

3) Real Time Properties: The authors of [6] derive several
timing constraints on the events. For example, the OPT7
requirement says that the amount of time between the moment
when the number of the barrier pushes becomes equal to the
number of coins inserted and the moment when the turnstile is
locked should be less than 760 milliseconds. It is possible to
make this property finer grained. First, if after the next push
event the number of pushes becomes equal to the number of
coins, then after reacting on the push event the turnstile should
be locked at some point before the next push event occurs:

c l a s s BARRIER
f e a t u r e

t u r n s t i l e : TURNSTILE
push
d e f e r r e d
ensure

((o ld t u r n s t i l e . u n l o c k s . l a s t >
o ld t u r n s t i l e . l o c k s . l a s t) and

(pu sh es . c o u n t =
t u r n s t i l e . c o i n s l o t . c o i n s . c o u n t))

i m p l i e s t u r n s t i l e . l o c k s . l a s t >
pu sh es . l a s t

end
pu sh es : MML SEQUENCE[INTEGER 64]

end

Second, if the last lock event occurred later than the last push
event, then the time distance between them is smaller than
760:

c l a s s TURNSTILE
f e a t u r e

b a r r i e r : BARRIER
l o c k s : MML SEQUENCE[INTEGER 64]
u n l o c k s : MML SEQUENCE[INTEGER 64]

i n v a r i a n t
l o c k s . l a s t > b a r r i e r . pu she s . l a s t

i m p l i e s
(l o c k s . l a s t − b a r r i e r .

pu sh es . l a s t) < 760
end

E. Specifying the “Unspecifiable”

One of the requirements mentioned in [6] was OPT2
saying that the visitors who pay are not prevented from
entering the Zoo. The authors give only informal statement
of this requirement:
∀ v,m, n • ((Enter#(v,m) ∧ Coin#(v, n) ∧ (m < n))⇒

102 of 174

′The machine will not prevent another Enter event′

The antecedent of this implication should be read like
”number of entries is less than the number of coins inserted”.
In the present specification system this requirement can be
formalized easily:

d e f e r r e d c l a s s ZOO
f e a t u r e

e n t e r
r e q u i r e

e n t e r s . c o u n t <
t u r n s t i l e . c o i n s l o t . c o i n s . c o u n t

d e f e r r e d
end
e n t e r s : MML SEQUENCE[INTEGER 64]

end

It works because semantically the require clause specified
above is the strongest precondition of the enter feature. That
is, if some class inherits from ZOO and redefines the enter
feature, it will be allowed to redefine the precondition by
using only the require else clause that weakens the pre-
condition by ”or”-ing it with the original one. And so, if
the enters.count < turnstile.coinslot.coins.count condition is
satisfied, the precondition of the enter feature will always be
satisfied, thus allowing an enter event to occur.

Not only this specification formalizes OPT2 - it also
ensures satisfaction of OPT1 (together with the ensure clause
for the enter feature introduced earlier): indeed, if the number
of enters is always strictly smaller than the number of coins
inserted before any enter event occurrence, then after the event
occurrence the number of entries will not exceed the number
of coins inserted.

In the process of research the author of the present work
identified that the aforementioned reasoning about formalizing
OPT2 requirement is farfetched and is not scalable. For
example, if Zoo management decides to install one more
appliance for controlling Zoo entrance, and the corresponding
requirements will enrich the precondition of the enter feature,
the whole reasoning will be invalidated. The author found
more scalable and intuitively plausible way to formalize this
requirement in Eiffel. The corresponding formalism will be
available in work [12].

IV. CONCLUSION

The specification method discussed in this work is suit-
able not only for formalizing statements which were also
formalized in [6], but also for formalizing things which can-
not be formalized with the classical tools used in [6]. Not
only the requirements specification items were expressed, but
also the object-oriented blueprint was built ready to equip it
with code actually doing something useful. Such implementa-
tion exists and is available here: https://github.com/anaumche/
Zoo-Turnstile-Multirequirements.

A. Pros & Cons

It is necessary to evaluate the method against the charac-
teristics of the hypothesis introduced in section I-C:

1) Simultaneity of specifying the requirements and
building the design: indeed, all the code frag-
ments corresponding to different specification items
merged together will bring a complete design
solution available at https://github.com/anaumche/
Zoo-Turnstile-Multirequirements (the classes ending
with “ abstract”).

2) Traceability between the specification and the im-
plementation: the classes ending with “ concrete”
located at the resource given in 1 contain the im-
plementation and are inherited from the specification
classes

3) Provability of the classes: this is the subject to further
investigation

4) Continuity of the solution: since Eiffel artifacts used
in the formalizations of the requirements items corre-
spond to their natural language counterparts directly,
it is visible right away how a change in one repre-
sentation will affect the second one

B. Scalability

A formal representation of a requirements item specified
with Eiffel is as big as the scope of the item and its natural
language description are, so the overall complexity of the
final document should not depend on the size of the project.
Anyway, this is something to test by applying the method to
a bigger project.

C. Future Work

The next steps include:

1) To formally prove that the specification is consistent.
In particular to ensure that the features specifications
preserve what is stated in the invariants; to ensure that
the expressions stated in the invariants are consistent
between each other: for example it should not be
possible fot P(x) and ¬P(x) to hold at the same time

2) To formally prove that the implementation actually
satisfies the features specifications

3) To extend BON notation [15] so that it would be
capable of expressing model-based contracts

4) To design machinery for translating model-based
contract-oriented requirements to their natural lan-
guage counterpart so that the result would be rec-
ognizable by a human being.

5) To apply the method to a bigger project

The AutoProof technology [14] may be utilized for automating
the aforementioned proofs. AutoProof is already capable of
proving that a feature implementation preserves its specifi-
cation (the postcondition holds after the feature invocation
assuming the precondition), and it should be empowered with
the capabilities for working solely on the specifications level
so that completing the goal 1 will be possible.

As a result of implementing the aforementioned plans a
powerful framework for expressing all possible views on the
software under construction should emerge.

103 of 174

ACKNOWLEDGMENT

The author would like to thank his colleagues at the
Innopolis University Software Engineering Laboratory for their
invaluable feedback and guidance: Dr. Bertrand Meyer, Dr.
Victor Rivera, Alexander Chichigin, Dr. Manuel Mazzara.

REFERENCES

[1] Jean-Raymond Abrial. Modeling in Event-B: system and software
engineering. Cambridge University Press, 2010.

[2] R Gmehlich, K Grau, M Jackson, C Jones, F Loesch, and M Mazzara.
Towards a formalism-based toolkit for automotive applications. 2012.

[3] Charles Antony Richard Hoare. An axiomatic basis for computer
programming. Communications of the ACM, 12(10):576–580, 1969.

[4] Michael Jackson. The world and the machine. In Software Engineering,
1995. ICSE 1995. 17th International Conference on, pages 283–283.
IEEE, 1995.

[5] Michael Jackson. Problem frames: analysing and structuring software
development problems. Addison-Wesley, 2001.

[6] Michael Jackson and Pamela Zave. Deriving specifications from
requirements: an example. In Proceedings of the 17th international
conference on Software engineering, pages 15–24. ACM, 1995.

[7] Nancy G Leveson, Mats Per Erik Heimdahl, Holly Hildreth, and
Jon Damon Reese. Requirements specification for process-control
systems. Software Engineering, IEEE Transactions on, 20(9):684–707,
1994.

[8] Dominique Méry and Neeraj Kumar Singh. Automatic code generation
from event-b models. In Proceedings of the second symposium on
information and communication technology, pages 179–188. ACM,
2011.

[9] Bertrand Meyer. Object-oriented software construction, volume 2.
Prentice hall New York, 1988.

[10] Bertrand Meyer. Touch of Class: learning to program well with objects
and contracts. Springer, 2009.

[11] Bertrand Meyer. Multirequirements. 2013.
[12] Alexandr Naumchev, Bertrand Meyer, and Victor Rivera. Unifying

requirements and code: an example. The work is not published.
[13] Nadia Polikarpova. Specified and verified reusable components. PhD

thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr.
21939, 2014, 2014.

[14] Julian Tschannen, Carlo A Furia, Martin Nordio, and Nadia Polikar-
pova. Autoproof: Auto-active functional verification of object-oriented
programs. arXiv preprint arXiv:1501.03063, 2015.

[15] Kim Waldén and Jean Marc Nerson. Seamless object-oriented software
architecture. Prentice-Hall, 1995.

104 of 174

Intelligent Design of Class Structure Model

based on Ontological Data Analysis

A.N. Kovartsev

Department of Software Systems

Samara State Aerospace University

Samara, Russia

kovr_ssau@mail.ru

V.S. Smirnov

Magistracy of the Department of Software Systems

Samara State Aerospace University

Samara, Russia

victorsmirnov92@gmail.com

S. V. Smirnov

Laboratory analysis and simulation of complex systems

Institute for the Control of Complex Systems of Russian Academy of Sciences

Samara, Russia

smirnov@iccs.ru

This paper investigates a formal approach which supports a

critically significant step in object oriented analysis and software

engineering. It is proposed to create an object class structure

model based on an Ontological Data Analysis. Pragmatically

important attributes and Ontological Data Analysis basic stages

review is given.

Object-Oriented Analysis and Design; Class Structure Model;

Formal Methods; Ontological Data Analysis

I. INTRODUCTION

Creating a Class Structure Model in object-oriented
analysis and software engineering still remains an expert’s
experience realization subject. [1-7] Object and classes are the
basis for the all next steps of analysis, however they “are there
just for picking” (i.e. naturally appear in a statement of a
problem) or are borrowed from colleagues (with or without any
modification) [5]. In other words in practice there is no any
systematic procedure or formalism supporting the critical for
the further software engineering step.

At the same time the majority of object-oriented analysis
and software engineering coryphaeus pointed out the necessity
of a certain conceptual analysis of domain for “concepts”
description. That is why a strict mathematical theory Formal
Concept Analysis (FCA) [8] enthused object-oriented analysis
and software engineering experts. Numerous researches and
developments using FCA for creating Class Structure Model
were accomplished. For example, [9, 10]. However, it emerged
that FCA usability is limited.

 Construction of arbitrary relationships between object
classes is not supported, except for the generalization
relationship “is-a”.

 Contradictions in the original data – a set of Basic Semantic
Propositions of the form “object x has an attribute y” are
prohibited. Especially the possibility of taking into account

the evidence “for” and “against” the truth of such
judgments.

 Available to the designer information about the relationship
of object attributes is ignored – the so-called attributes’
“constraints of existence”.

Although it is somewhat dampened the interest in FCA in
software engineering, the method continued to develop,
especially in the field of ontological modeling, for example
[11, 12].

The main point of this paper is to draw developers’
(especially, class structure model designers) attention to
Ontological Data Analysis (ODA), the FCA evolution which
can process vague and controversial data of modeled reality,
discover arbitrary relationships between object classes and
consider attributes’ constraints of existence [13-15].

The topic of the article comes out in Fig. 1 diagram of
ODA realization for Class Structure Model design.

Fig. 1. Ontological Data Analysis diagram for domain Class Structure

Model design

Generalized “object-attribute” crosstable

Boolean Formal Context

Non-strict Formal Context

Available domain information

Formal Concept lattice

Class Structure Model

105 of 174

II. ONTOLOGICAL DATA ANALYSYS AND

FORMAL CONCEPT ANALYSIS

ODA is a customization and a pragmatic readjustment of
FCA.

For FCA primary source of initial data is a multi-valued
context – “objects-attributes” crosstable (OAC) where
observed domain objects’ attributes of researcher’s interest are
noted.

In ODA the format of OAC is getting more complicated in
order to represent domain empiric information, such as
multiple independent object’s attribute records, discovering the
same attribute with procedure sharing, confidence
differentiation for various sources of information etc.

Besides that, as long as relations presence in ODA is
treated as objects’ inner attributes demonstration, in OAC
special associated attributes-valences pairs are used to
represent arbitrary binary relations.

Only “weak” Basic Semantic Propositions’ estimations for
domain could be extracted from such generalized OAC. These
estimations form in ODA a non-strict Formal Context (FC) for
conceptual framework extraction. Whereas for FCA usage a
Boolean FC is necessary. Therefore ODA offers an approach
for generating such FC from initial non-strict FC.

III. NON-STRICT FORMAL CONTEXT GENERATION

In OAC (general scientific form for logging empirical
information) rows correspond to domain objects, columns
correspond to set of objects’ attributes that are recorded by
measurement procedures available to the analyst. Crosstable
cells (matrix A) store the measurement results:

 set of objects G
*
 = {gi}i = 1,…, r, r = G

*
  1,

 set of attributes M = {mj}j = 1,…, s, s = M  1,

 attributes measurement results A = (aij)i=1,…, r; j=1,…, s.

Generalized OAC is represented by tuple (G
*
, M, Sе, Pr,

A), where:

 A = (aij)i=1,…, m; j=1,…, n – matrix of measurements series
results Sе of attributes M of objects from sample G

*
 ,

made using measurement procedures Pr. This matrix
elements can be constants NM, None, Failure и scales
characteristics of dynamic ranges of measurement
procedures Pr.

 
r

i iSeSe
1)(

 - the set of all series of measurements,

mSeSe
r
i i  1)(;

)(,...1)()(}{
iqkkii seSe  , q(i)  1,

i = 1,…, r – series of measurements, applied to object

gi  G
*
.

 
s

j irPrP
1)(

 - arsenal of measurement procedures,

nrPrP
s
j j  1)(;

)(,...1)()(}{
jpkkjj prrP  , p(j)  1,

j = 1,…, s, - set of measurement procedures used to

estimate the value of the attribute mj  M, where any

procedure pr(j)k has a degree of confidence in its results
t(j)k.

 None – a result that demonstrates a finding of a
measured attribute value outside of sensitivity threshold
and the dynamic range of a measuring instrument; it
shows a “semantic mismatch” of the object and the
measuring procedure etc.

 Failure – a result that records measurement failure
(denial, measurement means malfunction, abstention,
etc.).

 NM (not measured) – a result indicating that as a matter
of fact in this series of measurements corresponding
property was not measured.

Non-strict FC is a tuple (G
*
, M, I), where G

*
 - empirical

training set of domain objects, M - number of attributes of
objects recorded by measuring procedures available to the
researcher, I - matrix estimates all the Basic Semantic
Propositions, each element bij determined in accordance with

the multi-valued logic V
TF

 vector Truth, Lies [16]:

bij = b
+

ij, b


ij; b
+

ij, b


ij  [0, 1],

wherein component Truth b
+

ij formed by evidences confirming
the Basic Semantic Proposition and the component Lies b

-
ij –

by evidences denying it.

Building a non-strict incidence “objects-attributes” I begins
with the transition from the primary data, structured in the form
of a matrix A, to their semantic interpretation in the form of
non-strict incidence “series-procedures” I':

























.},{if,0.50.5,

 ;if,10,

;if,01,)(

NMFailureN

NoneF

T

ij

ij

jij

ij

a

a

rPa

b ,

where T, F and N - truth constants V
TF

 logic of “True”, “False”

and “Neutral” respectively,)(jrP - the set of symbols scales

procedures used to measure the properties of mj  M.

Then incidence I' is transformed into a non-strict incidence
“objects-attributes” I by combining the truth values of basic
semantic judgments obtained for the object gi in all series, and
property mj - all procedures (taking into account confidence in
each procedure). Alignment is performed on various
compositional rules V

TF
 logic [16].

IV. CREATING A BOOLEAN FORMAL CONTEXTS

Incidence “objects-attributes” I of non-strict FC can be
expanded in his Boolean alpha-section, for example,

]1,0[,
)(,




 


 II ,

,
case opposite in the

;if,

,)(

)(

,...,1;,...,1
)()(











 









False

True 



ijij
ij

sjriij

bb
b

bI

106 of 174

wherein the alpha-section I
()

 - normal (Boolean) level

corresponding vector  = +
,  

.

In practice, alpha-section I
()

 usually used as an

approximation of so called «-approximation» the original was
not-strict incidence I. However, this method in the problem of
forming a Boolean FC on its lack of rigor prototype is
generally incorrect because the set of measured properties of M
may exist a priori relationship “constraints of existence”.

Characteristic types of this kind of binary relations are

considered in [17]. So a couple of properties mj, mk  M, j ≠ k

for each object data domain (and hence, for gi  G
*
) can be:

 inconsistent, if, possessing property mj, object gi
obviously does not have property mk, and vice versa;

 caused, if possessing property mj, object gi indisputably
has the property mk, although the reverse may be wrong;

 interdependent, if possessing property mj, object gi
definitely has the property mk, and vice versa.

The usual method of alpha-section is insensitive to such
relations. Therefore, its application to the formation of a
Boolean FC original non-strict context may lead to a violation
of “constraints of existence”.

The idea of intelligent alpha-sectional non-strict FC is
available for the formalization of context “constraints of
existence” as a single predicate “alpha-section correctly” with

argument “Threshold  of confidence in the source data”

followed by the identification of the tolerance range ,
delivering such a predicate True.

In general, set the specified area for non-strict FC is very
difficult; it is possible and that it is empty. Therefore, to solve
the problem correctly Boolean approximation non-strict FC in
the ODA path is a reasonable compromise. Work with a

common threshold of confidence  proposed to replace the
manipulation of a set of thresholds of confidence in the data

fragments that describe each object gi  G
*
 at the level of each

separately taken “constraints of existence.”

A very important case is when the inconsistently of
attributes is the result of a fundamental cognitive procedure,
known in FCA as a conceptual scaling [8]. This case is
considered in [18], where proposed the method of rational
alpha-section non-strict FC.

V. FORMATION OF CLASS STRUCTURE MODEL

Analysis of Boolean FC allows deduce all the formal
domain concepts. Formal concepts are partially ordered by
inclusion of extensions (the extension of the concept - a set of
objects, which are described by means of this concept) and
form a complete lattice [8]. To use this result in the design of
the software necessary to transform formal concept lattice in
Class Structure Model.

Formal concepts according to the formation of their
extensions are divided into three types:

 The concepts of the first type describe objects really
exist in the analyzed domain. These concepts define a

class of objects that deserve the naming of
“fundamental”.

 The concepts of the second kind - only generalize other
notions. In software design these classes are known as
“virtual”.

 The third type of concepts is characterized by
combining these features concepts first and second
kinds.

When designing the Class Structure Model pragmatic
considerations require confine fundamental and virtual classes
of objects. In general, you can specify the following principles
of formal concept lattice transformations in Class Structure
Model:

 all the concepts of the lattice are candidates for
fundamental classes of the model;

 the fundamental class becomes the minimum (in the
terminology of lattices) concept containing the object in
its extension;

 attribute is preserved to the maximum of the concepts
contained this attribute in its intension;

 the highest concept lattice (his sign - power extension
equal to the power set of objects) is certainly excluded
from the model, if its intention is empty;

 the smallest concept lattice (his sign - the power
intention equal to the power set of attributes) are known
to be excluded from the model if its extension is empty;

 analysis of candidates in the fundamental classes begins
with the smallest concept, and conducted by levels
nearest super-concepts.

Conversion Formal Concept lattice in Class Structure Model

Step 1. The original version of the model is formed as a copy

of the formal concept lattice.

Step 2. In the model is searched the greatest concept.

If the intension of this concept is empty, it is excluded

from the model after the break of its ties with sub-

concepts.

Step 3. In the model is searched the smallest concept.

If extension of the smallest concept is empty, then, first of

all, this concept is excluded from the model after the break

of its ties with super-concept, and, secondly, of his closest

super-concepts formed a set of candidates in fundamental

classes.

If extension of the smallest concept is not empty, then it

will be one set of candidates in fundamental classes.

Step 4. Loop through a set of candidates:

 For each super-concept of the candidate under
consideration excludes objects from extension that are
within the extension of this candidate (the extension
super-concept always not less than the extension sub-
concept).

107 of 174

 In consideration of the candidate from the intension
excludes any attribute that is part of the intension of at
least one super-concept.

 If the candidate has no sub-concepts, it is recorded as

the fundamental class. Otherwise for this candidate

creates a new sub-concept, in which the extension is

transferred (and only extension) of the candidate. This

new sub-concept is fixed as the fundamental class of

objects. The intension of such fundamental class is

empty. The candidate is retained in the model as a

virtual class with an empty extension.

 Promising candidates set of updated without repetition
super-concepts of the current candidate

Step 5. If a set of promising candidates is not empty, then

repeats Step 4.

VI. CONCLUSION

Formal Concept Analysis (FCA) has shown its benefits in
many application areas – including the field of Software
Engineering. Its use is especially valuable in the early stages of
software development associated with the identification of a
domain object types (classes) and relationships between these
types.

Methodical equipment ontological analysis of the data
significantly expands and strengthens these advantages:

 can deal with incomplete and contradictory information
about the data domain, namely a situation is typical for
the beginning of the software life cycle;

 organically describes and analyzes arbitrary relations
between classes of domain;

 numerous priori known to analyst relationships between
the attributes of domain are considered (actually an
additional cognitive resource that did not use the classic
FCA).

Finally, the arsenal includes ODA pragmatically oriented
algorithm for transforming formal concept lattice model in
describing the structure of the classes. Formed model differs in
that only describes two kinds of classes with a fundamentally
different technical realization.

ACKNOWLEDGMENT

This work was conducting research on the topic “Discovery
of the intersubjective management principles based on
ontological model of the situation” within the state task
Institute for the Control of Complex Systems of Russian
Academy of Sciences for 2013-2015, as well as public support
of the Ministry of Education and Science of the Russian
Federation in the framework of implementation of the Program
of improving the competitiveness of Samara State Aerospace
University among the world’s leading research and education
centers for 2013-2020.

REFERENCES

[1] G. Booch, Object-Oriented Analysis and Design with Applications.
Benjamin/Cummings, 1994.

[2] P. Coad and E. Yourdon, Object-Oriented Analysis. Prentice Hall, 1990.

[3] J. Martin and J. Odell, Object-Oriented Analysis and Design. Prentice
Hall, 1992.

[4] S. Shlaer and S.J. Mellor, Object Lifecycles, Modeling the World in
States. Yourdon Press, 1991.

[5] B. Meyer, Object oriented software construction. 2 ed., Prentice Hall,
1997.

[6] G.N. Kalyanov, CASE strukturnyj sistemnyj analiz (avtomatizaciya i
primenenie) [CASE structural systems analysis (automation and
application)]. Lori, 1996. (In Russian).

[7] A.M. Vendrov CASE-technologii: sovremennye metody i sredstva
proektirovaniya informacionnych sistem [CASE-technology: modern
methods and tools for the design of information systems]. Finance and
Statistics, 1998. (In Russian).

[8] B. Ganter and R. Wille, Formal Concept Analysis. Mathematical
foundations. Springer-Verlag, 1999.

[9] R. Godin, H. Mili, G.W. Mineau, R. Missaoui, A. Arfi and T.-T. Chau,
“Design of Class Hierarchies based on Concept (Galois) Lattices”,
Theory and Application of Object Systems (TAPOS), 1998, 4(2),
pp. 117-134.

[10] W. Hesse and T. Tilley “Formal Concept Analysis Used for Software
Analysis and Modelling”, Formal Concept Analysis (Foundations and
Applications), LNAI 3626, 2005. Eds.: B. Ganter, G. Stumme, and
R. Wille. Springer-Verlag, pp. 288-303.

[11] H.-M. Haav “A Semi-automatic Method to Ontology Design by Using
FCA”, Proc. of the CLA 2004 International Workshop on Concept
Lattices and their Applications (Ostrava, Czech Republic, 2004,
September 23-24). Eds.: V. Snasel, R. Belohlavek. TU of Ostrava, Dept.
of Computer Science, 2004, pp. 13-24.

[12] C. De Maio, L.V. Fenza and S. Senatore “Towards Automatic Fuzzy
Ontology Generation”, In: Proc. of the 2009 IEEE International
Conference on Fuzzy Systems (Jeju Island, Korea, 2009, August 20-24),
pp. 1044–1049.

[13] S.V. Smirnov “Onologicheskij analiz predmetnych oblastej
modelirovaniya [Ontological analysis of modeled domains]”, Izvestiya
Samarskogo nauchnogo tsentra RAN, 2001, vol. 3(1), pp. 62-70.
(In Russian).

[14] S.V. Smirnov “Postroenie ontologij predmetnykh oblastej so
strukturnymi otnocheniyami na osnove analiza formal’nykh ponyatij
[Designing of ontologies by using Formal Concept Analysis in domains
with arbitrary relationships]”, Znaniya – Ontologii - Teorii: Materialy
Vserossiyskoy conferentsii (Novosibirsk, Russia, 2011, October 3-5).
Vol. 2. Institut matematiki SO RAN, 2011, pp. 103-112. (In Russian).

[15] A.N. Kovartsev, V.S. Smirnov and S.V. Smirnov “Intellektualizatsiya
formirovaniya konteksta dlya vyvoda ponyatiynoi struktury predmetnoy
oblasti [Intellectualization context generation to search conceptual
structure of domain]”, Informacionnye technologii i sistemy: Trudy 4
mezhdunrodnoy nauchnoy konferentsii (Bannoe, Russia, 2015,
February 25 – March 1). Eds.: Yu.S. Popkov, A.V. Mel’nikov.
Tchelyabinskij gosudarstvennyj universitet, 2015, pp. 82-83.
(In Russian).

[16] L.V. Archinski Vektornye logiki: osnovaniya, koncepcii, modeli [Vector
logic: foundation, concepts and models]. Irkutskij gosudarstvennyj
universitet, 2007. (In Russian).

[17] N. Lammari and E. Metais “Building and maintaining ontologies: a set
of algorithms”, Data & Knowledge Engineering, 2004, vol. 48(2),
pp. 155-176.

[18] V.P. Ofitserov, V.S. Smirnov and S.V. Smirnov “Metod al’fa-secheniya
nestrogikh formal’nykh kontekstov v analise formal’nykh ponyatij
[Method alpha-section nonstrict formal contexts in Formal Concept
Analysis]”, Problemy upravleniya i modelirovaniya v slozhnykh
sistemakh: Trudy XVI mezhdunarodnoy konferentsii (Samara, Russia,
2014, June 30 – July 03). Samarskiy nauchnyj tsentr RAN, 2014,
pp. 228-244. (In Russian).

108 of 174

Method of Symbolic Test Scenarios Automated
Concretization

Nikita Voinov, Pavel Drobintsev, Alexey Veselov,
Vsevolod Kotlyarov

Saint-Petersburg State Polytechnic University
Saint-Petersburg, Russia

voinov@ics2.ecd.spbstu.ru

Alexander Kolchin
Glushkov Institute of Cybernetics NAS Ukraine

Kiev, Ukraine

Abstract— Described in the paper is an approach to symbolic
test scenarios concretization in the scope of automated software
verification and testing technology. Tools for automated
concretization process based on user defied settings are
presented.

Keywords — concretization; symbolic behavior scenario;
software testing

I. INTRODUCTION

In the scope of software lifecycle the cost of software
defects increases dramatically in accordance with
development stage [1]. Avoiding defects on the stage of
requirements gathering and detecting them on early stages of
project lifecycle reduces the amount of corrections in the
software and overall cost of development. This makes usage
of methods and tools for model-based verification and testing
extremely valuable [2,3]. However in the toolsets which
mainly resolve problems of model-based approach
(automation of requirements formalization, creation of
behavioral models, verification of generated model-based
scenarios, requirements coverage analysis [4-7]) arises the
combinatorial explosion problem of possible behavioral
scenarios which shall be tested [8-11].

Methods of symbolic verification are very effective to
reduce the behavioral space. It is possible to specify ranges of
possible parameters values in symbolic scenario. Each
symbolic scenario represents a set of concrete scenarios with
equivalent behavior (with same sequence of events). This
means that to provide required coverage of complete model
behavior it is enough to select several specific scenarios from
each group of behavioral equivalence instead of having to
check all possible parameters values. This allows to
significantly reduce the number of scenarios covering the
functionality of application in the scope of selected coverage
criteria. However for code generation of executable tests only
scenarios with concrete values of parameters are needed.
Given that modern industrial software requires many
thousands of tests with complex dependencies of parameters
values it is impossible to manually count and insert
appropriate concrete values based on ranges in symbolic

scenario. The concretization process shall be completely
automated.

This paper describes the automated concretization process
for symbolic test scenarios in the scope of VRS/TAT
toolset [12] providing automated generation of test scenarios
based on requirements specifications formalized with basic
protocol notation [13], which is a representation of Hoare
triple [14].

II. OVERALL SCHEME OF CONCRETIZATION

VRS includes symbolic trace generator STG [15] which
observes the formal model behavioral space and creates
traces – linear sequences of events in the model. Model states
are also saved in traces. The mail tool for concretization is
called Trace Concretization Tool (Fig. 1). It consists of three
modules – Concretizer, ValueCalculator and Concretization
View which interact between each other.

Fig. 1. Scheme of concretization
For each symbolic trace Concretizer generates

concretization table with names of parameters, signals, data
types and allowed ranges of values. Then while trace
bypassing it calls for ValueCalculator to get concrete value for
the current parameter. ValueCalculator calculates concrete
value based on received commands, test plan and allowed
ranges of values and returns it to Concretizer.

The implemented tools Concretizer, ValueCalculator and
ConcretizationView are integrated into single concretization
process which is a component of industrial software
automated testing technology.

109 of 174

III. STEPS OF CONCRETIZATION ALGORITHM

Concretization process is iterative, on each step a single
parameter is concretized. The process terminates after
concretization of the last parameter in the trace.

Below some definitions are introduced. Transition in the
formal model in VRS terms is a basic protocol representing
parameterized transition from one model’s state into another.
Basic protocol B(x) is represented by the following
expression:

))()()((xxPxx  

where x is a list of protocol’s parameters;)(),(xx  – a
formula of basic logic language, which are called precondition
and postcondition respectively; P(x) – a process of basic
protocol (in current case – a sequence of parameterized signals
in MSC format). Trace parameters are parameters of its
signals. Formula of basic language may contain variables and
constants, arrays of elements of simple types, functional types.
Variables which may change their values during system
execution are represented by attributes and attribute
expressions.

Trace is a sequence of the following type:

n
xBxB SSS ...)(

1
)(

0
1100   

where S are model’s states, B – basic protocols, x – lists of
their parameters.

The following steps of concretization algorithm can be
specified:

 restore of initial symbolic trace

 obtain ranges of allowed values for basic protocol’s
parameters

 interactive concretization of trace parameters

 save concretized trace.

 All steps except interactive concretization are executed
automatically by internal means of VRS and hidden from
outside. The most interesting for the user are implemented
tools of the concretization which provide the control of
concretization process and make the technology flexible
enough for testing all modes of software functionality.

IV. VALUECALCULATOR TOOL

This tool implements automatic calculation of concrete
values for symbolic parameters within test scenarios. One or
several rules can be used for calculation: left value of the
range, middle value or right value. Examples of values
calculated based on ranges and selected rule are shown in the
table below:

Type Range Rule Calculated
Value

integer [1;9] L 1
integer [1;9] M 5

integer [1;9] R 9
enumerated val1,val2,val3,val4 L Val1
enumerated val1,val2,val3,val4 M Val2
enumerated val1,val2,val3,val4 R Val4

Possible values for each parameter on each step of
behavioral trace are calculated automatically by the means of
VRS. Selection of the rule for value calculation is provided by
corresponding set of options (Fig. 2):

Fig. 2. Options for selecting concretization rule
Based on calculated values of symbolic parameters the

STG creates traces with concrete values which can be
executed on the model. When two or three rules are selected
there will be two or three concretized traces generated for each
symbolic scenario.

An example of tool execution is shown below. Test
scenario contains a signal which turns on a radio station on the
car radio. Radio station number is the signal’s parameter
(Fig. 3):

Fig. 3. A part of symbolic test scenario
If overall number of radio stations is 9, ValueCalculator

will calculate the following values for the channel_number
parameter depending on selected concretization rule: “1” (for
the Left rule), “5” (for the Middle rule) and “9” (Right rule). If
all three options are selected (Fig. 2), there will be three
concretized traces generated with different values of
channel_select parameter. A part of concretized trace with
Right rule value selection is shown below (Fig. 4):

Fig. 4. A part of concretized trace with right value selected
The user can select default concretization rules and repeat

generation of concretized traces with corresponding values or
use ConcretizationView tool to create own test plan.

V. CONCRETIZATIONVIEW TOOL

This tool provides the ability to specify any concrete
values from the possible range for one, several or all
parameters in test scenario. The tool is implemented as a View
element in Eclipse IDE. It allows to display the contents of
concretization table and specify desired values of symbolic
parameters. This is performed by adding “C” symbol on the

110 of 174

row with required parameter in the “Rule” column and desired
value in the “Value” column.

Continue with the example of turning on a radio station of
the car radio. If the range of parameter’s possible values varies
between 1 and 9, then for example value 7 is neither left, nor
middle, nor right value of the range. The only possible way to
concretize a trace with this value is to explicitly specify it
using ConcretizationView tool (Fig. 5):

Fig. 5. ConcretizationView user interface
 As a result the concretized trace with value 7 will be

generated (Fig. 6):

Fig. 6. A part of concretized trace with user-defined value
Applying ValueCalculator and ConcretizationView tools

together the user can obtain all tests required to satisfy specific
test criteria. For example, a set of tests covering all possible
values of one parameter and only boundary values of another
parameter. The concretization process terminates when the
complete set of tests required for execution is obtained.

VI. RESULTS

Created tools were applied for preparing tests in telecom
software projects. Symbolic scenarios of possible systems
behaviors contained up to several hundred of basic protocols.
For testing process all symbolic parameters in generated
scenarios shall be concretized which is extremely time
consuming without tools of automation. For example, using
described approach to concretization in a small project with 11
basic protocols allowed to concretize all traces in 2 minutes.
For a project with 151 basic protocols the concretization took
about 20 minutes. While manual concretization of such project
takes about 3 working days. Clear that in projects with several
thousand of basic protocols it is impossible to concretize
symbolic scenarios without automation toolset. The table
below shows the comparison between manual and automated
approaches to concretization:

Number of Basic
Protocols in the

project

Manual
Concretization

(staff days)

Automated
Concretization

(minutes)
11 0,3 2

151 3 20

464 5 25

759 8 28

VII. CONCLUSION

Integration of verification and testing allows to achieve
desired level of software quality due to joining results of
model static analysis after symbolic verification with number
of experimental results after testing which is especially
important for testing systems with wide ranges of possible
values.

It is also important that symbolic scenarios can not be used
for execution on the model. They shall be concretized prior to
generating test code for target platform.

Implemented tools which are integrated into single chain
of concretization in the scope of test automation
technology [16], successfully resolve a very time-consuming
problem of symbolic scenarios concretization. Also the
technology allows to control coverage of boundary test
parameters values which increases the quality of developed
software.

References

[1] Boehm B., Software Engineering Economics, Prentice
Hall,Inc.Englewood Cliffs,New Jersey, N.Y. 1981. – 767 p.

[2] Utting, M. and Legeard, B., Practical Model_Based Testing: A Tools
Approach, Morgan_Kaufmann, 2010.

[3] Burdonov, I., Kosachev, A., Ponomarenko, V., and Shnitman, V.,
Review of Approaches to Verification of Distributed Systems, M.: ISP
RAS, 2006.

[4] TestOptimal // www.testoptimal.com
[5] Qtronic // www.conformiq.com
[6] Test Designer // www.smartesting.com
[7] Spec Explorer: Microsoft Research //

http://research.microsoft.com/specexplorer
[8] Primeneniye metoda evristik dlya sozdaniya optimalnogo nabora

testovykh stsenariyev / N. V. Voinov, V. P. Kotlyarov // Nauchno-
tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo
politekhnicheskogo universiteta. Informatika. Telekommunikatsii.
Upravleniye. – 2010. – T.4 – № 103. – S. 169–174.

[9] Grindal M. Handling Combinatorial Explosion in Software Testing.
Department of Computer and Information Science, Linköpings
universitet, 2007.

[10] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput.Surv., vol. 43, no. 2, pp. 11:1–11:29, Feb. 2011.

[11] J. McGregor, “Testing a software product line,” in Testing Techniques
in Software Engineering. Springer, 2010, vol. 6153, pp. 104–140.

[12] Baranov S.N., Drobintsev P.D., Kotlyarov V.P., Letichevsky A.A.
Implementation of an integrated verification and testing technology in
telecommunication project. Proceedings // IEEE Russia Northwest
Section. 110 Anniversary of Radio Invention conference. S.Petersburg,
2005. 11 p.

[13] Letichevsky J., Kapitonova A., Letichevsky Jr., Volkov V., Baranov S.,
Kotlyarov V., Weigert T. Basic Protocols, Message Sequence Charts,
and the Verification of Requirements Specifications // Computer
Networks. 2005. 47. P. 662–675.

[14] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall,
1985.

[15] Letichevsky Jr., A. and Kolchin, A., Test scenarios generation based on
formal model, Programming Problems, 2010, nos. 2–3, pp. 209–215.

[16] Drobintsev P. D., Kotlyarov V. P., Nikiforov I. V., Letichevsky A. A.,
Incremental approach to the technology of test design for industrial
projects, Modeling and Analysis of Information Systems, 2014, Volume
21, Number 6, 144–154.

111 of 174

Unified Model for Testing Object-Oriented
Application Development Tools

Pavel P. Oleynik, PhD, System Architect Software, Aston OJSC,
Associate Professor, Shakhty Institute (branch) of Platov South Russian
State Polytechnic University (NPI), Russia, Rostov-on-Don, xsl@list.ru

Abstract— The paper presents a unified model for testing
tools for object-oriented application development. Based the
available papers were identified shortcomings of existing work
and identified the following optimal criteria, which shall comply
the resulting model:

1. To deep inheritance hierarchies
2. To presents of multiple inheritance hierarchies
3. To presents of abstract classes in the hierarchy
4. To presents of multiple (n-ary) associations
5. To presents of associations with attributes
6. To presents of a composition between classes
7. To presents of recursive associations
8. To presents of associations between classes belonging to the

same inheritance hierarchy
9. To presents of association classes
10. To presents between the association class and other classes
11 To presents enumerations in model
With a unified graphical language UML class diagram

unified model testing. The paper we verified compliance with the
resulting implementation of the selected criteria was presented.

Currentlythe implementation of applications using object-
oriented programming languages and relational databases. To
overcome the object-relational mismatch it is necessary to
implement object-related mapping patterns presents. The paper
presents three methods used to represent the class hierarchy
highlighted the advantages and disadvantages of each method.

For test the feasibility a unified model chosen development
environment SharpArchitect RAD Studio which is designed
object applications in C# and are implementing a relational
database. The paper presents the developed object model in the
form a class diagram showing the interfaces and inheritance
relations diagram containing all the tables and columns the
resulting database.

In the conclusion recommendations on the areas for further
development work and identified the need of implement a unified
model with other approaches proposed by the authors was used.

Keywords — UML; Object modeling; Design of Information
Systems; Databases; Object-oriented design; Object-Relational
Mapping Patterns; Impedance Mismatch

I. INTRODUCTION

At the moment there are many tools provide object
approach to application development. Despite the existence of
their own advantages and disadvantages the main goal is
provide the advantages of the developer of object-oriented
paradigm. The paper are describes in detail the unified model
test tools development of object-oriented applications for

demonstration, graphical Unified Modeling Language which
used. The practical implementation of the model is
demonstrated by the use of classical methods (patterns) object-
relational mapping (ORM) in the tool, developed the author.
The object model is put into a relational database
environment. This approach is most justified from the point of
view the author, because the RDBMS is the most popular type
of database management systems now.

II. DESIGN UNIFIED MODEL TESTING

When designing a unified testing model used the same
approach as in the description of the design patterns in [1].
This approach is involves the description of reusable solutions
widespread problems in software development without
reference to particular domain. The main task of this section –
is a description of the model and the structural elements
(classes and associations), and not the correctness of the
model and the accuracy of its fitness for a particular domain
area.

Standard graphical language modeling various aspects of
object systems is the language UML. This language is namely
structural class diagrams will be discussed in this paper. As a
result under the unified model test tools development of
object-oriented applications we mean a class diagram,
consisting of classes and attributes and containing common
practice relationship classes.

The idea of the article is not new and there are works of
similar subjects. In [2] has attempted to construct a unified
model testing. However, there were no multiple (n-ary)
associations and association with attributes that are an integral
part of any complex information system.

In [3] presented test model to study the design of object-
oriented databases. But the model is relatively simple, which
is justified by its purpose. This article used dignity previously
existing works and corrected drawbacks of them.

Before designing a unified model testing were nominated
optimality criteria (OC) is representing the requirement of a
certain structural elements in the class diagram, and which
must comply with the finished implementation. Have been put
forward the following requirements for the unified model test
tools development of object-oriented applications:

1. Must have deep inheritance hierarchies. In realworld
applications, very often there are deep hierarchy, is the

112 of 174

relational of inheritance and combining transitive least
three classes.

2. To presents of multiple inheritance hierarchies. This
will show a variety of options and modes available in
the development tool.

3. To presents of abstract classes in the hierarchy.
Abstract classes cannot have instances in the system
and described as a container for attributes and
methods used in the inherited (instantiated) classes.

4. To presents of multiple (n-ary) associations. In
applications that automate realworld domains, often
an association involving three or more classes. Such a
relationship is called multiple or n-ary associations.

5. To presents of associations with attributes. Many
domains contain attributes that do not belong to
certain entities (classes), and their values appear only
in the organization of associations between instances
of classes. The designing unified model should have
associations with attributes.

6. To presents of a composition between classes.
Composition - an association between the classes
which are Part and Whole. The peculiarity is that the
class represents a Part can belong to only one instance
of the class that represents the Whole. In this class
represents the Whole manages the life cycle is a class
represents a Part. When removing the Whole all Parts
also deleted. This peculiarity of behavior is very
important for many application domains.

7. To presents of recursive associations. Recursive call
the association, the ends of which bind the same class.

These relationships allow you to implement a
hierarchy of subordination.

8. To presents of associations between classes belonging
to the same inheritance hierarchy. In terms of
implementation is necessary to provide the
implementation of the association, the edges of which
are associated classes belonging to the same
inheritance hierarchy, are represents the base class and
the child together.

9. To presents of association classes. Association class -
an association which at the same time a class.
Especially the use of that class association represents a
unique association, i.e. combination of instances of
classes in this association is unique.

10. To associationed between the association class and
other classes. From a theoretical point of view, the
association class is a class, so it can participate in
other associations. From the point of view of the
implementation of the class association presents a
class that contains the attributes (fields or properties of
the programming language) that refer to other classes.
In turn, for the organization of the association with the
class association necessary depending class to create
an attribute whose type supports class association.

11. To presents enumerations in model. From a theoretical
point of view, enumeration is a set of predefined
constants, and the user can not extend this set by
adding new values.

In accordance with the selected criteria was implemented
hierarchy shown in Fig. 1.

Fig. 1 - Unified model for testing object-oriented applications development tools

Consider the appointment of the main classes of diagrams
are presented. As mentioned earlier this class diagram is a
fictional and is not intended to describe a particular domain
therefore contains some illogical (fictional) classes and
associations.

For representation of employees and organizations
assigned to the base abstract class Contragent. Inherited
Company class is present organizations and the class Worker
is the base for the employee of organization. Inherited

Employee class is an employee and an attribute EID,
representing the employee unique number. Class Manager is
the staff who are heads of other workers.

Post an abstract class is a position that can be occupied by
staff. Inherited class ExperiencePost is a position that requires
a minimum amount of experience of the applicant, expressed
as number of months (attribute MinExperMonth). The second
class is implemented ScientificRank describes the position of

113 of 174

the applicant, which requires the presence of a scientific
degree, whose name is value in the attribute AcademicRank.

For presentation departments of organizations and entering
into an n-ary association a class of Department was
introduced. Salary class is paid wages, accrued to employees
occupying positions represented by a complex association
which called Position.

Class Telephone allows saving the number of phone of
company. Phone type (like Home, Personal, Work)
represented by enumeration TelephoneKind. For presentation
address used by the base abstract class Address. Two derived
class CompanyAddress and EmployeeAddress used to
represent the address of the organization and address of the
employee, respectively.

Check the conformity of the model presented previously
selected criteria of optimality. The need for a deep class
hierarchy, represented by at least three transitive inherited
classes, described OC1 and implement a class Contragent,
Worker, Employee, Manager. In addition to this, there are two
hierarchies: 1) Post, ExperiencePost (ScientificPost); 2)
Address, CompanyAddress (EmployeeAddress). I.e. the model
contains multiple inheritance hierarchies, therefore, the
condition OC2. The presence of abstract classes in the
hierarchy due OC3 and holds classes Post, Contragent and
Address.

OC4 requirements are also performed as there are n-ary
association Position, combining classes Post, Department,
Worker, Company. Described association has an attribute
Rate, which implemented class association and binary
association between Employee and EmployeeAddress classes
also contains an attribute (IsRegistered) it can be argued that
the requirement OC5 fulfilled.

Each contractor represented derived from Contragent
classes, a list of telephone numbers represented instances of
Telephone, and both classes related with composition, OC6
requirement is satisfied. Unified model allows you to store
information about a group of companies, organize the tree
structure using a recursive association connects Company
class with a same. The presence of recursive association
dictated OC7.

In OC8 written requirement for associations between
classes belonging to the same inheritance hierarchy. Figure 1
between classes Employee and Manager provides this
association satisfying OC8. As previously noted, the models
have a association class Position, which corresponds OC9.
Described association class is linked with addition association
with Salary class. This is a consequence of the implementation
OC10. The presence of the models listed due to the
implementation of OC11. Of the present disclosure can be seen
that the unified model is fully consistent with all previously
selected criteria of optimality. Therefore we can move on to
the implementation of the unified model.

III. THE CLASSICAL OBJECT-RELATIONAL MAPPING PATTERNS

To implement of this model development environment
software systems based on the organization of the metamodel

object system presented in [4-5] was used. This development
environment is called SharpArchitect RAD Studio and as
storage of information uses a relational DBMS. Because
information system is designed in terms of object-oriented
paradigm, and implemented in a relational database
environment, there is a so-called "object-relational impedance
mismatch" to overcome the consequences of which object-
relational mapping patterns are used. The most commonly
used patterns for represent the class hierarchy.

In SharpArchitect RAD Studio implemented three classic
patterns for implementing object-oriented inheritance
relationships of classes in a relational structure (relational
tables), presented in Fig. 2 [2, 4].

Consider the basic patterns is presented in more detail.
Single Table Inheritance pattern physically represents an
inheritance hierarchy of classes in a single relational database
table whose columns correspond to the attributes of all classes
within the hierarchy and allows you to display the structure of
inheritance and to minimize the number of joins that must be
performed to extract information. In this pattern each instance
of the class represented by one row of the table. When you
create the object values are entered only in the columns of the
table that match the attributes of the class, and all the rest are
empty (have a null-value).

The pattern has advantages:

 In the structure of the database contains only one table
are representing all classes of whole hierarchy.

 To selection of instances of classes hierarchy do not
need to make the joins of tables.

 Move fields from a base class to a derived (as well
from the derivative in the base) does not require
changes to the structure of the tables.

The pattern has disadvantages:

 In the study of the structure of the database tables can
cause problems, because not all the columns in the
table are intended to describe each domain class. This
complicates the process of refining the system in the
future.

 If you have a deep inheritance hierarchy with a large
number of attributes, many columns can have empty
values (null-values). This leads to inefficient use of
the available space in the database. However, modern
DBMS can compress strings containing a large
number of null-values.

 Table may be too large and contain a huge number of
columns. The main way to optimize the query (to
reduce the execution time) is created a covering index.
However, the index set and a large number of queries
to a single table can lead to frequent blockages that
will have a negative impact on the performance of
software applications.

114 of 174

Single Table Inheritance pattern Class Table Inheritance

Concrete Table Inheritance
Fig. 2 - Classical object-relational mapping patterns which used to represent the class inheritance in the form of a relational structure (relational tables)

An alternative pattern is called Class Table Inheritance,
representing a hierarchy of classes for one table for each class
(as an abstract and concrete). Class attributes are mapped
directly on the columns of the corresponding table. With this
method, the key is the task of joins the respective rows of
several database tables that represent a single object of
domain.

The pattern has the following advantages:

 Each table contains a field, the corresponding attribute
of a certain class. The therefore tables are easy to
understand and take up little space on your hard drive.

 The relationship between the object model and
relational database schema is simple and clear.

However, there are disadvantages:

 When you are create an instance of a particular class
you want to upload data from several tables, which
requires either their natural joins or a plurality of
database calls followed by join results in memory.

 Move the fields in the derived class or base class
requires changes in the structure of several relational
tables.

 Base class table can become weaknesses in
performance, since access to such tables will be
carried out too often, leading to a variety of locks.

 High degree of normalization can be an obstacle to the
implementation of unplanned advance queries.

The Concrete Table Inheritance pattern present is an
inheritance hierarchy of classes using one table for each
concrete (non-abstract) class of the hierarchy. From a practical
perspective, this pattern assumes that each instance of the
class (object), which is in memory, will be shown on a
separate row in the table. In addition, each table in our case
contains columns corresponding to attributes as a particular
class, so all of his ancestors.

The advantages are that:

 Each table not contains extra fields, so that it is
convenient to use in other applications that do not use
object-relational mapping tools.

 When creating objects of a certain class in the
application memory and retrieve data from a relational
database sample is made of a single table, i.e. is not
required to perform relational joins.

 Access to the table is carried out only in the case of
access to a particular class, thus reducing the number
of locks imposed on the table and spread the load on
the system.

There are disadvantages:

 Primary keys can be inconvenient by handling.

115 of 174

 There is no ability to model relationships (association)
between abstract classes.

 If the class attributes are moved between base classes
and derived classes needed to change the structure of
several tables. These changes are not as often as in the
case of Class Table Inheritance pattern, but they
cannot be ignored (as opposed Single Table
Inheritance pattern in which these changes are absent).

 If in base class to change the definition of at least one
attribute (for example, change the data type), it will
require to change the structure of each table
representing a derived class because a superclass
fields are duplicated in all tables of its derived classes.

 In implementing the method of searching for data in
the abstract class is required to view all the tables
represents an instance of the derived classes. This
requires a large number of database calls.

Selection of an required ORM-pattern depends on the
initial logical model, i.e. from the class hierarchy of the
domain. At the same time can be used two or more ORM-
patterns, which is associated with the need to optimize the
structure of a relational database and reduce the number of
tables used, which will increase the speed of data retrieval
queries.

After describing SharpArchitect RAD Studio object-
relational mapping patterns which are available to the
developer we can start implementing the unified model for
testing tools.

IV. IMPLEMENTATION OF THE UNIFIED TESTING MODEL

In order to simplify the implementation of the three
existing class hierarchies in Figure 1 will separate in available
ORM-patterns. The result is shown in Fig. 3.

Fig. 3 - The use of the classical ORM-patterns for the implementation of the unified model for testing object-oriented applications development tools

The Single Table Inheritance for the class hierarchy Post,
ExperiencePost (ScientificPost) was used. As a result, it is
assumed that in the RDB will create one single table
(relational table), which will be retained instances of all listed
non-abstract classes. For the class hierarchy with classes
Contragent, Worker (Company), Employee, Manager uses the
Class Table Inheritance pattern. I.e. for all classes regardless
of whether he or abstract concrete will create a separate table
in RDB. Address class is abstract and has no association with
other classes in model, so it will not create a separate table in
the RDB. And for child classes will be created two tables (one
for each heir). I.e. in hierarchy Address, CompanyAddress
(EmployeeAddress) was used Concrete Table Inheritance. For
other classes outside the hierarchy described, will be created
on a separate relation table.

One of the main features of SharpArchitect RAD Studio
support multiple inheritance is implemented by means of
interfaces C# language construction, as described in detail in
[4]. Used C# language does not support this syntax as an
association. To represent the binary associations, regardless of

the multiplicity was used properties (property construction),
containing a single value or collection of values.

Multiple n-ary association are represents a separate class,
the attributes of these associations (as well as the attributes of
binary associations) are converted into property of classes. To
simplify information searching and extraction of all the
associations are bidirectional both ends of the relevant classes
there are properties whose type corresponds to the opposite
end of the class association. All of the above arguments are
presented graphically in Fig. 4.

In implementing the interfaces used language C#, so it is
impossible italics abstract classes. Bidirectional associations
are shown corresponding arrows connecting classes. In
implementing the association used the following approach.
From the "one" was declared property, which is a type of list
(C# type IList<>), containing the elements, which is a type of
class, located on the side "to-many". From the "to-many" is
declared in the class property whose type is a class, located on
the side "one". Association of the "many-to-many" (without
attributes) can be represented by two lists is declared in class

116 of 174

antagonisms. In a SharpArchitect RAD Studio development
environment has a number of base classes that implement the
most common functionality. For example, the class
IBaseRunTimeDomainClass is the root of all domain classes.
To implement the tree structure will enough inherited from
IBaseRunTimeTreeNodeDomainClass. At the time code
generation will automatically generate additional attributes

Nodes and Owner, allow you to save a reference to the parent
and subnodes, respectively. It is implemented in such a way
recursive association. For submission to the transfers and sets
used syntax construction "enum".

Applying the classical ORM-patterns was obtained
relational database schema of the unified model now. Fig. 5 is
depicts the result.

Fig. 4 - Unified model for testing object-oriented application development tools, implemented in SharpArchitect RAD Studio in C#

Fig. 5 - A relational database schema of the implementation of the unified model testing in SharpArchitect RAD Studio

Figure requires is explanation. For all posts submitted by
three classes of Post, ExperiencePost and ScientificPost,
created one single table Post, which has all the attributes of
classes. Additionally, there is a column in the table OID,
representing an object identifier (primary key in a relational
model). ObjectType column contains the identifier of the class
whose objects are stored in the form of table rows. This value

by the application to create a class of object-oriented
programming language and to load the attribute values is used.

In implementing Class Table Inheritance pattern have been
created for the table Contragent for abstract class and table
Worker, Company, Employee, Manager for the concrete
classes. Instances of classes are physically stored in multiple
database tables. A copy of the Manager class is stored in all
tables.

117 of 174

In implementing the Concrete Table Inheritance pattern is
applicable for classes Address, CompanyAddress and
EmployeeAddress, was created two tables: CompanyAddress
and EmployeeAddress, because CompanyAddress class is
abstract. All abstract class attributes stored in tables physically
specific classes.

For an n-ary association Position create a separate table as
well as for the binary association linking the Employee class
and EmployeeAddress, for that created the table
EmployeeEmployeeAddress, containing foreign keys.

Note that for the enumeration Telephone-Kind separate
table is not created. An approach representations enumeration
values as a bit mask and store it in the form of an integer
value, where appropriate attributes are used. So the table has a
column Telephone TelephoneKind, SQL-type is Integer.

After analyzing of the above it can be argued that shown in
Fig. 5 implementation, created in a development environment
SharpArchitect RAD Studio, fully consistent with the unified
model for testing object-oriented application development
tools, presented in Fig. 1.

V. CONCLUSION

Further development of the unified model is to test the
feasibility of a variety of application development
environments. In this alternative implementation is planned

and using the approach presented by other authors dealing
with similar scientific problems.

REFERENCES

[1] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, USA, 1994, 395 pp.

[2] Oleynik P.P. A unified model for testing object-relational mapping tools
// Object Systems – 2011: Proceedings of the Third International
Theoretical and Practical Conference. Rostov-on-Don, Russia, 10-12
May, 2011. Edited by Pavel P. Oleynik. - 65-69 pp. (In Russian),
http://objectsystems.ru/files/Object_Systems_2011_Proceedings.pdf

[3] Oleynik P.P. Test model for training in design of object-oriented
databases // Object Systems – 2014: Proceedings of the Eighth
International Theoretical and Practical Conference (Rostov-on-Don, 10-
12 May, 2014) / Edited by Pavel P. Oleynik. – Russia, Rostov-on-Don:
SI (b) SRSPU (NPI), 2014. – pp 86-89. (In Russian),
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.p
df

[4] Oleynik P.P. The Elements of Development Environment for
Information Systems Based on Metamodel of Object System // Business
Informatics. 2013. №4(26). – pp. 69-76. (In Russian),
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202
013.pdf

[5] Oleynik P.P., Computer program "The Unified Environment of Rapid
Development of Corporate Information Systems SharpArchitect RAD
Studio", the certificate on the state registration № 2013618212/ 04
september 2013 (In Russian).

118 of 174

http://objectsystems.ru/files/Object_Systems_2011_Proceedings.pdf
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.p
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%20

The Application of Coloured Petri Nets to
Verification of Distributed Systems Specified by

Message Sequence Charts*

S.A. Chernenok
A.P. Ershov Institute of Informatics Systems SB RAS

Novosibirsk, Russia
chernenoksergey@gmail.com

V.A. Nepomniaschy
A.P. Ershov Institute of Informatics Systems SB RAS

Novosibirsk, Russia
vnep@iis.nsk.su

Abstract—The language of message sequence charts is a
popular scenario-based specification language used to describe
the interaction of components in distributed systems and
communication protocols. However, the methods for validation of
MSC diagrams are underdeveloped. This paper describes a
method for translation of MSC diagrams into coloured Petri nets.
The method is applied to the property verification of these
diagrams. The considered set of elements is extended by the
elements of UML sequence diagrams and compositional MSC
diagrams. The properties of the resulting CPN are analyzed and
verified using the known system CPN Tools and the CPN verifier
based on the SPIN tool. The application of this method is
illustrated with an example.

Keywords—specification; translation; verification; distributed
systems; communication protocols; MSC; UML Sequence
Diagrams; Compositional MSC; Coloured Petri Nets

I. INTRODUCTION

One of the major issues that arise in the process of
software development is a validation problem. Over the last
few years, a large number of methods and tools have been
developed for the analysis and validation of systems at the
stages of their design and development. However, these
methods are not so powerful as compared to the formal
methods of software analysis and verification. Therefore, an
important goal of software validation is to improve the
existing validation methods used in practice by means of
integration of well-studied analysis and verification
formalisms.

The scenario-based languages are a popular way to
describe program specifications at the design stage of software
development. They have an expressive graphical
representation and are easy to use. One of the most popular
scenario-based languages is the language of Message
Sequence Charts (MSC) standardized by the ITU-T [14]. MSC
diagrams are widely used for specification of communication
protocols. The sequence diagrams of the UML standard (UML
SD) [18], inspired by the MSC, made the interaction diagrams
popular in the wide fields of software development. The
application area of MSCs includes documentation,
requirements specification, simulation, test case generation,
etc.

Triggered by the increasing popularity of MSC diagrams
several new dialects and extensions of the MSC language
emerged. One of the important extensions increasing the
expressive power of the MSC is Compositional MSC
diagrams (CMSC) [9, 10]. The use of CMSC diagrams allows
us to cope with the restrictions of the MSC language in order
to describe a certain type of interactions, such as sliding
window protocols.

It is known that at the early stages of software
development the cost of errors is the highest. Therefore, the
program models specified by MSCs should be valid and error-
free. In practice there are tools for analysis and validation of
MSC specifications. Among them are the following.

The UBET system [19, 22] can check the race conditions
and timing violations for a created MSC diagram. The system
also provides an automatic test case generation feature and a
conversion of MSCs into the Promela language code. UBET
only supports the elements of the basic MSC diagrams.

The software tools Cinderella MSC [2] and IBM Rational /
Telelogic Tau [13] are visual modeling tools for analysis,
specification and testing of systems described by the
interaction diagrams. The system [2] supports the generation
of MSC diagrams from a user application, the generation of
test cases from MSCs, and the conversion of diagrams into
other analysis systems. The toolkit [13] allows one to create
program models based on the UML sequence diagrams,
perform the automated error checking of the UML SD syntax
and semantics, and to convert UML SD diagrams into the SDL
modeling language for further analysis. These tools are limited
by a small set of available verified properties and do not
support many of the diagram elements.

The PragmaDev analyzer [8] allows one to analyze the
specific properties of MSC diagrams (analysis and comparison
of MSC specifications and analysis of time properties) and
also some temporal logic properties defined in Property
Sequence Charts. The project is under development and
currently only part of MSC elements is supported.

The problem of analysis and verification of interaction
diagrams is investigated by several authors.

* This work is partially supported by RFBR grant 14-07-00401

119 of 174

mailto:vnep@iis.nsk.su

Papers [6, 7, 23] describe the modeling of UML SD
diagrams using high-level Petri nets. The paper [7] deals with
the translation of UML SD diagrams into CPN. This paper
describes the translation rules for a limited set of diagram
elements and element compositions. Also, structural
restrictions are imposed on the message elements (i.e. only the
synchronous messages are considered, strict sequential
composition by default) and the interpretation of conditions.
The paper [23] provides an extension of SD diagrams for the
purpose of simulation and analysis of embedded systems. The
authors describe formal translation rules for most standard
elements. But the composition constructs (references) are not
considered. The paper [6] provides the semantics of SD
diagrams in terms of extended Petri nets. This work deals with
most of the UML SD standard elements except the elements
for scenario composition. Note that the translation of the
elements strict, break and critical in these papers is
not considered.

Papers [16, 20] present the translation of UML SD
diagrams into the input languages of the verifiers SPIN [12]
and NuSMV. The authors consider most of the diagram
elements, including the combined fragments of UML SD.
References and High-level MSC diagrams are not considered.

Note that most of the related work have restrictions on the
diagram elements that do not allow one to specify and analyze
successfully the distributed systems with independent
components. In addition, these papers do not consider
messages and local actions with dynamic data. The translation
of CMSC diagram elements into Petri nets in the papers is not
considered.

Thus, analysis and verification of MSC and UML SD
diagrams is an urgent problem. Our paper is aimed at
investigation of this problem.

This paper describes a method for analysis and verification
of MSC diagrams of distributed systems based on the
translation of diagrams into coloured Petri nets (CPN) [15].
The resulting CPN are analyzed and verified using the well-
known formal methods. The choice of coloured Petri nets as a
formal semantic model of interaction diagrams based on the
fact that the behavioral model of CPN naturally fits the
behavioral model of MSC, allowing us to simulate different
types of the event composition and expressions in the MSC
data language. Also, CPN are well studied and there are
methods and tools for analysis and verification of net models.

The paper is organized as follows. Section 2 contains a
brief description of interaction diagrams. In Section 3, a
translation method from MSCs into CPN is given. Section 4
describes the translation of UML SD elements. The translation
of MSC elements with data is given in Section 5. In Section 6,
a translation algorithm of CMSC elements is described.
Section 7 contains the size estimation of the resulting CPN
generated by the translation method. The case study is
described in Section 8. Section 9 contains our conclusions.

II. OVERVIEW OF THE MSC LANGUAGE

In 1992, the MSC standard [14] was developed by the
ITU-T in order to obtain a simple and expressive scenario-
based specification language to describe interactions in
distributed systems. The significant update of the standard
MSC-2000 brought new diagram elements, and the concepts
of data and time. As a result, the current MSC standard can be
used for description of system models at a higher level of
formalization.

UML 2.0 Sequence Diagrams developed by the OMG [17,
18] are strongly inspired by the MSC. Therefore, the basic
ideas, visual representation, and the set of elements in the
UML SD language are very similar to MSC. The main
difference is that the SD diagrams are an integral part of the
UML standard. This means that all objects used in SD
diagrams (processes, variables, messages, etc.) are described
in various UML diagrams to detail the specific aspects of the
objects behavior. On the other hand, the stand-alone MSC
standard has its own syntax and can be used independently of
other modeling languages in the ITU-T family. Another
difference of SD diagrams is that they usually represent the
control flow of an object-oriented program, whereas MSCs
traditionally describe the behavior of distributed systems.

Interaction diagrams depict communication between
system components (instances, processes, objects, etc.) by
means of messages. Each diagram represents a particular
scenario of the system, or a set of scenarios.

All instance events are ordered along the vertical instance
axis independently of other instances. The interaction between
instances is performed via messages which determine the
relationships between events of these instances. In the MSC
standard all messages are asynchronous. This means that a
message output and a message input are two different
asynchronous events. The UML SD standard also has a
synchronous type of messages. MSCs impose a partial
ordering on the set of events.

Besides the message input and output events, there are
other basic MSC elements including local actions, conditions,
instance creation and termination events, message gates and
others [4, 5]. Also, the MSC standard provides structural
elements that allow us to determine different kinds of event
composition for several instances. So, MSC inline expressions
(combined fragments in UML SD) provide the parallel,
alternative or loop composition of events. Reference
expressions and High-level MSC diagrams (Interaction
Overview Diagrams in UML SD) allow us to perform the
synthesis and composition of several diagrams. Note that the
MSC standard defines that the connections of all structural
elements within diagrams are made by means of a weak
sequential composition.

Consider the example of a UML SD diagram in Fig. 1.
This diagram describes the scenario of interaction between the
User and Server instances. All messages except
sendData (depicted with a message arrow of different type)
are asynchronous. The operations of the user login and
interaction with the server are placed in separate operands of
the strict sequential composition operator strict, which are

120 of 174

separated by a dotted line. This means that further interactions
with the server are impossible until all events corresponding to
the user login operation are executed. After logging in, the
user sends the synchronous message sendData and executes
some local action localWork. After receiving message from
the user, the server checks a session state. This is made in the
break operator. If the user session has expired, the logout
message is sent to the user and then further execution of all
events within strict operator is terminated. Otherwise, the
data transmitted to the server are stored and the user is notified
about it.

Fig. 1. An example of a UML Sequence diagram which contains the
synchronous message sendData and two combined fragments strict and break.

III. A METHOD FOR TRANSLATION OF MSC DIAGRAMS INTO COLOURED
PETRI NETS

Let us introduce the following definitions which are used
in the translation algorithms of this paper.

A structural fragment of MSC is a subset of MSC events,
which is defined by the following rules:

- a regular MSC diagram and a reference MSC diagram is
a structural fragment;

- each inline expression of MSC (a combined fragment of
UML SD) is a structural fragment.

Thus, an MSC diagram can be represented as a set of
structural fragments connected by means of a weak sequential
composition.

We define the start events of a structural fragment as MSC
events which can be executed first among all events of this
structural fragment. By analogy with start events, we also
define the final events of a structural fragment. These are the

events that can be executed last among all events within this
structural fragment.

Then, a set of MSC traces is a set of event execution
sequences in the diagram, where each event execution
sequence begins with a start event. The end of each event
execution sequence can be either a final event, or an event
after execution of which the MSC will not contain
dynamically legal execution traces of events.

Below we present a general method to transform the MSC
diagrams into CPN. The input of the translation method is an
MSC, HMSC, or MSC document given in the text notation
according to the MSC standard. For UML SD and CMSC
elements the additional syntax is incorporated to the existing
grammar of the MSC language. The output of the algorithm is
a coloured Petri net in a format compatible with the CPN
Tools system. In this paper we use the CPN definition given in
[15]. Note that the algorithm output is a hierarchical CPN if
the original specification was defined by HMSC, or if the
input MSC contains MSC reference expressions.

It can be considered that the translation method has three
main stages.

At the first stage an input MSC is processed to build its
internal representation called a partial order graph. The graph
is generated as follows. For each event in the MSC, a node in
the partial order graph is created. This node stores some
information about the event. Nodes in the generated graph are
connected with each other via directed arcs. The connection
between nodes is equal to the connection between the
corresponding events in the input diagram.

At the second stage, processing of the partial order graph
(creating auxiliary graph nodes, unfolding MSC references,
etc.) is performed.

At the third stage, the partial order graph is translated into
CPN. The resulting net can be described as follows. Each node
of the partial order graph corresponds to a transition of CPN.
Each arc connecting two nodes of the partial order graph
corresponds to a place and two oriented arcs connecting two
transitions of CPN. The orientation of the generated arcs in the
resulting Petri net coincides with the arcs orientation in the
partial order graph. The places used to transfer control
between MSC events are marked by a UNIT colour type. The
execution of an MSC event corresponds to firing of a
transition in the resulting CPN. The start events of MSC
correspond to the transitions with start input places which
have an initial marking 1`(). The final events of MSC
correspond to transitions with the end output places and
without outgoing arcs.

The translation method described above builds a CPN
which simulates all possible event traces of the input MSC. In
other words, the set of all possible MSC traces will coincide
with the set of all possible event sequences (firing of
transitions) of the resulting CPN. An initial transition of each
firing sequence in the resulting CPN is a transition that
corresponds to a start event of the input diagram.

121 of 174

Note that in this paper we do not consider the time concept
of the MSC and UML SD standards. We also do not consider
the following UML SD elements: neg, assert, ignore
and consider. These elements do not change the set of
diagram traces and hence do not affect the CPN generated by
the translation method.

IV. TRANSLATION OF UML SD ELEMENTS

 Since the standard of UML sequence diagrams is based on
the MSC standard, most elements were adopted from MSC. In
[11], the comparison of UML SD and MSC elements is made.

Several UML SD elements have different names in regard
to the MSC standard terminology. For example, the instances
in MSC diagrams correspond to lifelines in UML SD
diagrams; local actions correspond to execution occurrences;
MSC references correspond to interaction occurrences. In the
translation algorithms described below, we will use the
terminology of the MSC standard.

Note that some UML SD elements which are not in the
MSC standard can be modeled by the MSC elements already
discussed in [4, 5]. These elements are continuation (can be
modeled by setting and guarding conditions of the MSC),
interaction constraint (can be modeled by predicate conditions
of the MSC), state invariant (can be modeled by the condition
MSC element described in [4]), conditional message (can be
modeled by a regular message within an optional operator
opt), operation calls / replies (can be modeled by
synchronous and asynchronous messages).

Below we consider the translation algorithms for the UML
SD elements which are not modeled by the MSC elements
earlier discussed.

Synchronous messages. These are the messages for which
the output and input events are synchronized. This means that
the sender of a synchronous message has to wait for the
response from the receiver. This response will indicate what
the input message processing is finished by the receiver, and
the sender can continue the event execution.

The translation algorithm for the synchronous message
msg can be described as follows. First, two transitions
Out_msg and In_msg are created in the output CPN. These
transitions correspond to the output and input events of msg.
The transition Out_msg is connected to the transition
In_msg via a place and directed arcs similarly to the
translation rules for a regular message. Next, the transition
Reply_msg is created which means that suspension by the
process that sends the message msg is finished. The
transitions Out_msg and In_msg are connected with the
transition Reply_msg through the place and two directed
arcs as usual.

Figure 2 shows the CPN which is the result of translation
of the UML sequence diagram (see Fig. 1) with the
synchronous message sendData.

The strict operator. This operator represents a strict
sequencing between several sets of diagram events.

We define a synchronizing event Es of an MSC diagram
for the instances P1, P2, …, Pn (n > 1) as an event which can
be executed only when all events from P1, P2, …, Pn located
before Es have been already executed.

The translation of the strict operator is performed as
follows.

1. All events within the strict operator are translated
to a CPN using the common algorithm for MSCs
from Section 3.

2. For every strict operator with n (n > 1) operands,
(n-1) auxiliary transitions are created in the CPN.
Each created transition simulates a synchronizing
event between instances involved in the strict
operator.

3. The synchronizing transitions Ti (0 < i < n) created
in the previous step are placed at the joint of strict
operands according to the following rules. All
transitions corresponding to final events of the
operand i are connected via places to the
synchronizing transition Ti. The synchronizing
transition Ti is in turn connected to all transitions
corresponding to start events of the operand (i+1).
Thus, in the resulting CPN, firing of transitions
corresponding to events from the operand (i+1) of
the strict operator is possible only after firing of
all transitions corresponding to events from the
operand i.

A more detailed description of the translation of
synchronizing events is given in [4]. Figure 2 shows the CPN
which is the result of translation of the UML SD diagram (see
Fig. 1) containing the strict operator.

Fig. 2. CPN which is the result of translation of UML SD shown in Fig. 1.

122 of 174

The break operator. Semantics of this operator is
similar to that of the break statement in many programming
languages. If the break operator is performed in a sequence
diagram, then execution of all events remaining in the
enclosing (parent) structural fragment is skipped. In the UML
SD standard structural fragments are called interaction
fragments. It should be noted that the break operator is
slightly different from the exceptional case operator exc of
the MSC language [4]. In the MSC standard, the exc operator
finishes execution of a current diagram.

The break operator belongs to combined fragments of
UML SD. This fragment has one operand and should cover all
instances of the parent interaction fragment. If the operand has
a guard condition and the condition is true, then all events of
this operand can be executed, and all remaining events of the
parent fragment are ignored. If the guarding condition is false,
the break operand is ignored and the rest of the enclosing
interaction fragment is chosen.

The break operator can be represented as the alternative
choice expression alt of the MSC language, where the first
operand is equivalent to a single break operand, and the
second operand is a part of the diagram that follows the parent
fragment of the break operator.

Note that in the MSC and UML SD languages the use of
the alt operator and its special cases (opt, exc, break)
attached to several instances can lead to the problem of non-
local choice in diagrams [1, 14, 17]. The problem is that the
standards do not define which instance checks the guards, and
who decides which branch should be chosen if multiple guards
are true.

In our work this problem is resolved by creating the
synchronizing events for each execution branch of an alt
operator containing non-local choice. A more detailed
description of the translation of an alternative expression with
a non-local choice is given in [4]. The same approach is used
when translating the break operator.

The translation algorithm of the break operator consists
of the following steps.

1. Input and output auxiliary nodes are created for all
structural fragments of a current diagram during the
generation of a partial order graph.

2. Identifiers of current and parent fragments are
assigned to all nodes in the partial order graph.

3. Each break fragment is translated to the output CPN
according to the translation rules for alt operators
as follows. The alt operator has two fixed
operands. For each operand the synchronizing nodes
are created to simulate a local choice. Final events of
the first operand are connected to output auxiliary
nodes of the parent fragment in the partial order
graph (this simulates an exit from the parent
fragment). Start nodes of the second operand of the
alt operator will be output auxiliary nodes of the

break fragment (this simulates the skipping of the
break operator).

Figure 2 shows the CPN which is the result of translation
of the UML SD (see Fig. 1) containing the break operator.

Critical Region. The critical operator is an atomic
block of events. The block atomicity is defined by two
conditions. Firstly, all events within the critical region cannot
be interrupted by other events of the SD diagram which are
located on the same instances as this critical region. Secondly,
the atomicity of events inside the critical region cannot be
broken even if it is contained within the parallel execution
operator par.

An example of the UML SD diagram containing the
critical operator is shown in Fig. 3. In this diagram, when the
processes User1 and Server enter the critical region by the
first branch of a parallel execution, the interaction with these
processes in other parallel branches will not be allowed until
the execution of the critical region for these processes has
been finished.

To satisfy the first condition, it is necessary to create the
synchronizing input and output events for each critical
operator which are attached to instances involved in the
critical region. The second condition is satisfied by
introduction of additional places of the output CPN with flags
for all events within a parent fragment par. Thus, an event of
an instance can be executed if the flag for this instance is true.
The flags for all instances involved in the critical region will
be set to false when an entrance to the critical region occurs.
The flags will be set to true when an exit from the critical
region occurs. Note that the critical operator increases the
size of the generated CPN in the case when this operator is
placed to a par-expression with a large number of events.

Fig. 3. An example of the UML Sequence Diagram which contains a critical
region inside a par combined fragment.

The detailed translation algorithm of the critical region can
be described as follows.

1. Synchronizing transitions are created at the beginning
and end of each critical region.

123 of 174

2. If the critical region is not contained within a par
operator, then the algorithm is finished.

3. If the critical region is contained within a par
operator (if there are several nested par operators
then we consider the highest level of nesting), then
the next step is performed.

4. The fusion place Critical with a special colour type
CRITICALSTATE is created. The place is defined as a
CPN ML record «record P1: BOOL * … * Pn:
BOOL», where P1, ..., Pn are the names of diagram
instances. This place will store the information about
flags for each instance, signalizing about
entering/finishing the critical region. The place
Critical has an initial marking «1` {P1=true, ...,
Pn=true}». If a flag is true for a particular instance,
this means that the instance is in a normal mode of
execution. Otherwise, it is assumed that the instance
has entered a critical region.

5. For each transition corresponding to an event within
a higher-level par operator with a critical region and
belonging only to instances that are involved in this
critical region, the next actions are made. A
bidirectional arc marked by criticalState (the variable
criticalState has the colour type CRITICALSTATE) is
created. This arc connects the place Critical with the
current transition. The transition is marked by the
CPN ML guard function «[(#P1 criticalState)
andalso ... andalso (#Pk criticalState)]», where
P1, ..., Pk are the instance names to which the current
event is attached. If the transition already has a guard
function, then the above guard expression with the
prefix «andalso» is added at the end of this function.

6. The synchronizing transition which simulates
entering the critical section for the instances P1, ...,
Pk, (k <= n) is connected to the Critical place as
follows. An incoming arc is marked by criticalState.
An outgoing arc is marked by the expression
{P1=false, ..., Pk=false, ..., Pn=(#Pn criticalState)}.
This expression means that the flags of the instances
involved in the critical region are reset to false,
thereby preventing other events of these instances to
run outside the region. This synchronizing transition
is also marked by the guard function from step 5.

7. The synchronizing transition which simulates the
finishing of the critical section for the instances
P1, ..., Pk, (k <= n) is connected to the Critical place
as follows. An incoming arc is marked by
criticalState. An outgoing arc is marked by the
expression {P1=true, …, Pk=true, …, Pn=(#Pn
criticalState)}. This expression means that the flags
of the instances involved in the critical region are
reset to true.

Figure 4 shows the CPN fragment which is the result of
translation of the critical operator from the UML SD
diagram shown in Fig. 3.

V. TRANSLATION OF DIAGRAM ELEMENTS WITH DATA

An important feature of MSC and UML SD diagrams to
consider them as precise and formal specifications of software
systems is the data concept.

Both standards do not impose restrictions on the data
notation, so any data language can be incorporated into MSCs
and UML sequence diagrams. In the MSC standard data
declarations are placed in the MSC document. In the UML
standard data declarations are placed in the Class Diagrams
and Communication Diagrams.

In this paper we only consider the case of data declarations
in the MSC document [5]. We also assume that the MSC data
language allows simple types – Boolean, Integer and
String – and the composite type Enumeration. An
expression in the data language consists of variables, literals,
parentheses, arithmetic and assignment operators, and
comparisons.

Fig. 4. The fragment of CPN which is the result of translation of critical
region from the UML SD shown in Fig. 3.

The MSC document in addition to data type and variable
declarations also describes the signatures of all messages with
data used in the diagrams. The message signature N(T1,
T2, ..., Tn) is a set of a message name N and the ordered set of
parameter types Ti which defines the data tuples transmitted
by this message. For example, the message signature
frame(Integer, Boolean) means that a diagram contains a
message with the name frame. This message transmits a data
tuple with a content of Integer and Boolean types.

The data in diagrams are used in messages, local actions
and conditions. Data expressions in messages and local actions
can contain only variable assignment operations. A data
expression in conditions cannot contain an assignment
operator and can be a statement with a Boolean return value.
An example of an MSC diagram containing messages with
data is shown in Fig. 5.

The translation algorithm of events with data consists of
two stages.

124 of 174

At the first stage, the colour type and variable declarations
in the CPN ML language are generated from the input MSC
document. These declarations will be used in the CPN
obtained by translation of MSC with data events.

Generation of the colour types and variables for MSC
elements with data is as follows:

 1 Data types declared in the data block of the MSC
document are converted into the corresponding
colour types of CPN ML.

 2 Local variables declared for each instance in the
inst block of the MSC document are converted to
variables of CPN ML with the same name and with
the colour type resulting from the transformation at
step 1.

 3 Message signatures declared in the msg block of the
MSC document are used to simulate message buffers
in the resulting CPN. The signature N(T1, T2, ..., Tn)
is translated to a product colour type of the CPN
ML language: colset pT1T2...Tn = product T1 * T2 *
... * Tn. To simulate the buffer which contains
messages with the same signature N(T1, T2, ..., Tk),
the list colour type is used: pT1T2...TkList = list
pT1T2...Tk.

 4 For colour types generated at step 3, auxiliary
variables pT1T2...Tn_var and pT1T2...TnList_var of
types pT1T2...Tn and pT1T2...TnList are created.

At the second stage, the translation of an MSC diagram
which uses data declared in the MSC document is performed.

The translation of local actions and conditions with data is
described in [5]. Below we describe the translation of
messages with data. The MSC and UML SD standards imply
that communicating instances send messages through the
buffer which is local regarding to messages. This means that
there is one FIFO buffer for every message in a diagram.
Buffers which contain MSC messages with data are modeled
by places of the list colour type in the resulting CPN. The
list is a queue of records (CPN product types), where each
record contains the set of transmitted data values. Thus, the
translation algorithm for messages with data is as follows:

1. For each message msg_i(T1, T2, ..., Tn) in the
diagram, a place in the resulting CPN is created to
simulate the message buffer as follows. The name
msg_i and the colour type pT1T2...TnList are
assigned to the place. The initial marking for this
place is set up to the value 1`[], which indicates that
the buffer is empty.

2. The input and output events of the message msg_i are
translated into the corresponding transitions of the
CPN.

3. Each transition corresponding to the input/output
events of the message msg_i is connected to fusion
places modeling the variable states. The details of
variable state simulation in the resulting CPN are
given in [5].

4. For a transition corresponding to an output event of
the message msg_i, an input arc from the place msg_i
is created with the inscription pT1T2...TnList_var.
Also the output arc is created with the inscription
pT1T2...TnList_var ^^ [(VarT1, VarT2, ..., VarTn)],
where VarTi are the variable names with data
transmitted from the sender instance. This expression
describes the addition of a tuple with a message
content into the buffer.

5. For a transition corresponding to an input event of the
message msg_i, an input arc from the place msg_i is
created with the inscription «pT1T2...Tn_var ::
pT1T2...TnList_var». This expression means that a
head element and a tail part of the buffer are got and
saved to the specified variables. Also, the output arc
is created for this transition with the inscription
pT1T2...TnList_var, which is used to simulate the
removal of the upper buffer element.

6. The process of obtaining and saving the transmitted
data by the receiver instance is modeled in the
resulting CPN as follows. The fusion places are
created for each variable listed in the actual
parameters of the message signature msg_i. These
places are used to store the transmitted data of the
message msg_i into the local variables of the receiver
process (see the translation of local actions with the
data for full details [5]). The transition corresponding
to the input event of the message msg_i is connected
to the created fusion places. The outgoing arcs from
each fusion place are marked by the corresponding
variable names. The arcs coming into the fusion
places are marked by the inscription «Tj_var = #j
pT1T2...Tn_var», where Tj_var is the j-th variable
name of the receiver in the signature msg_i, and the
expression «#j pT1T2 ... Tn_var» means that the j-th
element from the tuple variable pT1T2 ... Tn_var is
got.

Figure 6 shows the CPN which is the result of translation
of the MSC from Fig. 5 containing non-regular messages with
data introduced in the next section.

VI. TRANSLATION OF COMPOSITIONAL MSC ELEMENTS

The non-standard extension of MSC diagrams called
Compositional Message Sequence Charts (CMSCs) [9, 10] has
been developed to increase the expressive power of the MSC
language and to describe scenarios with complex parallel
communication of processes.

In [9, 10], the authors show that the expressiveness of
MSC diagrams is not sufficient for the specification of a
certain type of interactions, such as sliding window protocols.
In the CMSC language it is possible to describe this kind of
protocols using partial-defined messages. The use of this type
of messages, on the one hand, allows messages to be
decomposed into several diagrams. On the other hand, such
messages use a different buffer type which is similar to the
buffer model in the communicating finite-state machines or
SDL language.

125 of 174

Fig. 5. The HMSC diagram with two MSCs which contain the unmatched
message msg.

The CMSC language is defined as the MSC language,
except for the definition of messages. In Compositional MSC
diagrams, the input and output message events are partially
defined. This means that for the partial-defined message there
are multiple input events for a single output event and vice
versa. Such messages in a CMSC are called unmatched
messages.

Unmatched send message events and unmatched receive
message events use a new buffer model. This buffer is local
relative to the two instances involved in the message exchange
(this is a so-called pair buffer).

An example of the CMSC diagram is shown in Fig. 5.
Unmatched messages are shown as arrows with a dotted part.
The CMSC shows the decomposition of the unmatched
message msg which is contained in two different reference
MSC diagrams.

Below we describe the translation algorithm for unmatched
messages.

 1 Each input and output event of the unmatched
message umsg_i(T1, T2, ..., Tn) is converted to the
corresponding transition of the CPN.

 2 If the message does not contain any data then the
following steps are made.

 2.1 The fusion place simulating a buffer is created
with the UNIT colour type and the name «CMSC
P1-to-P2», where P1 is the name of the instance
that sends the message umsg_i and P2 is the
name of the instance that receives this message.
Note that the name of the created place is unique
for the couple of instances P1 and P2 which
communicate in the direction from the first to the
second instance.

 2.2 For each transition corresponding to the output
unmatched message event from P1 to P2, an
output arc is created. This arc is connected to the
place «CMSC P1-to-P2».

 2.3 For each transition corresponding to the input
unmatched message event from P1 to P2, an
input arc is created. This arc connects the place
«CMSC P1-to-P2» with the current transition.

 3 If the message contains data then the following steps
are made.

 3.1 The fusion place simulating a buffer is created as
follows. The place type is set to pT1T2...TnList.
The place name is set to «CMSC P1-to-P2-
umsg_i», where P1 is the name of the instance
that sent the message with data, P2 is the name
of the instance that receives this message, and
umsg_i is the message name. The place is
marked by 1`[]. Note that the name of the created
place is unique for the couple of instances P1
and P2 with a given type of the message
signature. Thus, the unmatched messages with
the same signature will be sent by P1 through a
common buffer. The same is true for the
receiving of unmatched messages.

 3.2 The processing of transitions corresponding to
the output events of unmatched messages with
data is carried out by the translation rules of step
4 of the previous section.

 3.3 The processing of transitions corresponding to
the input events of unmatched messages with
data is carried out by the translation rules of
steps 5 and 6 of the previous section.

Figure 6 shows the CPN which is the result of translation
of the CMSC (see Fig. 5) with the unmatched message msg.

Fig. 6. The CPN which is the result of translation of the HMSC shown in
Fig. 5.

126 of 174

VII. SIZE ESTIMATE OF THE RESULTING CPN
Below we consider the estimate of the number of

transitions, places, and arcs in the CPN, given as the result of
translation algorithms described in our paper.

Let us consider the MSC diagram with N events, M
messages and the number P of instances containing events.

Introduce the following notation: S is the number of start
and final MSC events; AC is the number of local actions and
conditions; IP is the number of parallel operators par; IL is
the number of loop operators; NIP is the maximum number of
events among par operators of the diagram; BR is the number
of break operators; ST is the number of strict operators;
OPST is the maximum number of operands among strict
operators of the diagram; CR is the number of critical
operators within par operators; VAR is the number of
variables defined in the MSC.

Then the upper bound T of the number of transitions in the
resulting CPN will be:

T ≤ N + 2P·(IP + IL) + ST·(OPST - 1) +
P·BR + 2CR.

The upper bound P of the number of places in the resulting
CPN has the following form:

P ≤ N + M + S + VAR + 2P·(IP + IL) +
ST·(OPST - 1)·P + P·BR + 2CR.

The approximal upper bound A of the number of arc in the
resulting CPN has the following form:

A ≤ 2N + 4M + 2·VAR·(AC + 2M) + 4P·(IP
+ IL) + 2ST·(OPST - 1)·P + 2P·BR + 2CR·NIP.

As we can see, a significant contribution to the size
estimate of the resulting CPN is made by the operators par,
loop, break and critical.

VIII. CASE STUDY: ALTERNATING BIT PROTOCOL

Let us consider an example of the property verification for
the MSC specification of a protocol known as the Alternating
Bit Protocol (ABP).

This protocol is bidirectional. This means that the data
between the two communicating machines are transmitted in
both directions. The protocol operates as follows. The sender
sends a sequence of data frames to the receiver. Each data
frame consists of two parts: a one-bit frame number and a
portion of data. When a data frame arrives to the receiver, it
sends to the sender an acknowledgment frame that contains
the number of the received frame. Both processes use a timer
to wait for the next frame. Thus, the sender is sending a
current data frame continuously until it receives an
acknowledgment from the receiver with the current frame
number. On the other hand, after getting a data frame, the
receiver is sending an acknowledgment frame to the sender
continuously until it receives a new data frame from the
sender.

The MSC specification of the ABP protocol is presented in
[3]. In the specification, the par operator and CMSC
elements are used to describe the distributed interaction
between two machines. The timer execution events of
communicating processes are modeled in the resulting CPN by
firing of transitions corresponding to these timer events. The
transmitted data in the protocol are a sequence of integers
from 1 to 4.

To reduce the state space of the resulting CPN and apply
the CPN verifier based on SPIN [21], the initial MSC
specification should be rewritten into a quasi-regular form in
which diagrams do not contain unlimited loops [5]. To do this,
we introduced additional restrictions on the protocol model
without loss of generality: the frame number that can be lost
during transmission is limited by a constant.

For analysis and verification of the ABP model, the
following properties of a proper behavior are formulated:

1. The sequence of the received data is equal to the
sequence of the sent data.

2. The receiver does not accept the same message twice.

3. The sender does not send a new message before a
previous one was acknowledged.

4. The sequence of the received frames is a prefix of the
sequence of the sent frames.

The property 1 is a postcondition. For the protocol model,
it means that if the event execution of the MSC specification
ends at its endpoint, then this property is satisfied. For the
CPN model of the protocol, it means that the resulting net
should not have dead markings except the markings
corresponding to the endpoint of the MSC specification.
Properties 2, 3 and 4 are specified by linear temporal logic
(LTL) formulas [3].

The analysis of the model properties was made in the CPN
Tools (property 1) and in the automated verification system
developed in IIS SB RAS on the basis of SPIN (properties 2, 3
and 4). Verification of the properties described above showed
that they are satisfied for the ABP protocol model.

The property validation was also made for the ABP
protocol model containing errors. In the first case, we
considered a protocol model in which one of the processes can
send a new message non-deterministically, without waiting for
reception of the previous one. In the second case, we
considered a protocol model in which the sender can send
non-deterministically a frame with incorrect data. During
verification of these ABP models, the following property
violations were detected. In the first case, property 3 was
violated (and property 4, consequently). In the second case,
property 4 was violated.

For the violated properties, the counterexamples were
generated which contain traces in the MSC specification
leading to a broken state. The file with a counterexample is a
sequence of CPN transitions and net markings.

Using the counterexamples, the errors were localized in the
original MSC specification. Since each transition corresponds

127 of 174

to a concrete event in an MSC, and the MSC variables state is
calculated by the values of places with the same name as
original variables, the localization of errors in a diagram by a
counterexample is straightforward.

IX. CONCLUSION

The scenario-based specification languages are a
convenient and expressive way to describe a system behavior
during the design and development stages. The most popular
in practice among them are the MSC and UML SD languages.
Despite a wide application of these notations, the methods of
analysis and verification are still underdeveloped.

In this paper we describe the method for translation of
MSC diagrams into coloured Petri nets. To the best of our
knowledge, our method is the first to cover a large set of the
MSC and UML SD diagram elements with minimal
restrictions on the considered elements. Unlike the related
papers, the translation method fully supports the diagram
elements with dynamic data and elements of compositional
MSC diagrams. The consideration of all elements listed above,
on the one hand, allows us to apply the translation method for
most interaction diagrams used in practice. On the other hand,
this allows us to use the method for verification of distributed
systems with complex object interactions.

A CPN given as a result of the translation method can be
analyzed and verified by the known verification methods and
program tools. In particular, one can analyze some properties
of MSC diagrams using the CPNTools [15], and verify
properties specified by LTL formulas using the method [21].

The software tool was implemented on the basis of the
translation algorithms. The translator has been tested on
various examples of communication protocols. In particular,
the alternating bit protocol specified by MSCs has been
considered. For the protocol, the CPN model was generated.
Some properties of the resulting CPN was analyzed by the
CPN Tools and verified by the CPN verifier [21].

In our further work we plan to develop the approach for
formal justification of correctness of the translation
algorithms. We will study other MSC extensions intended for
specification of distributed systems. Also, we plan to use the
translator for verification of other examples of distributed
systems and communication protocols.

REFERENCES

[1] Abdallah R., Gotlieb A., Helouet L., Jard C. Scenario Realizability with
Constraint Optimization // FASE 2013, LNCS 7793. — 2013. — P. 194-
209.

[2] Cinderella MSC tool // http://www.cinderella.dk/msc.htm
[3] Chernenok S. A. Analysis and Verification of Message Sequence Charts

of Distributed Systems Using Coloured Petri Nets. Appendix.
http://bitbucket.org/chernenok/msc-verification

[4] Chernenok S.A., Nepomniaschy V.A. Analysis of Message Sequence
Charts of Distributed Systems Using Coloured Petri Nets // Preprint 171.
— Institute of Informatics Systems SB RAS. — Novosibirsk. — 2013
[in Russian]. http://www.iis.nsk.su/files/preprints/171.pdf

[5] Chernenok S.A., Nepomniaschy V.A. Analysis and Verification of
Message Sequence Charts of Distributed Systems with the Help of

Coloured Petri Nets // Modeling and Analysis of Information Systems.
— 2014. — V. 21. — N. 6. — P. 94-106 [in Russian].

[6] Eichner C., Fleischhack H., Meyer R., Schrimpf U., Stehno S.
Compositional Semantics for UML 2.0 Sequence Diagrams Using Petri
Nets // SDL-Forum 2005, LNCS 3530. — 2005. — P. 133-148.

[7] Fernandes J.M., Tjell S., Jorgensen J.B., Ribeiro O. Designing Tool
Support for Translating Use Cases and UML 2.0 Sequence Diagrams
into a Coloured Petri Net // SCESM '07: Proceedings of the Sixth
International Workshop on Scenarios and State Machines. —
Washington, DC, USA, 2007. — P. 2.

[8] Gaudin E., Brunel E. Property Verification with MSC // SDL 2013,
LNCS 7916. — 2013. — P. 19-35.

[9] Genest B. Compositional Message Sequence Charts (CMSCs) Are
Better to Implement Than MSCs // TACAS 2005, LNCS 3440. — 2005.
— P. 429-444.

[10] Genest B., Muscholl A., Peled D. Message Sequence Charts // Lectures
on Concurrency and Petri Nets, LNCS 3098. — 2003. — P. 537-558.

[11] Haugen O. Comparing UML 2.0 Interactions and MSC-2000 // System
Analysis and Modeling, LNCS 3319. — 2005. — P. 65-79.

[12] Holzmann G. The Spin model checker: primer and reference manual. —
Addison Wesley, 2003.

[13] IBM Rational Tau // www.ibm.com/software/products/en/ratitau
[14] ITU-T Recommendation Z.120 (02/2011): Message Sequence Charts

(MSC). — 2011.
[15] Jensen K., Kristensen L.M. Coloured Petri Nets: Modeling and

Validation of Concurrent Systems. — Springer, 2009.
[16] Lima V., Talhi C., Mouheb D., Debbabi M., Wang L., Pourzandi M.

Formal verification and validation of UML 2.0 Sequence Diagrams
using source and destination of messages // Electron. Notes Theor.
Comput. Sci., 2009. — V. 254. — P. 143–160.

[17] Micskei Z., Waeselynck H. The many meanings of UML 2 Sequence
Diagrams: a survey Software and Systems Modeling. — Springer, 2011.
— V. 10. — N. 4. — P. 489-514.

[18] OMG UML 2.5, 2013 // http://www.omg.org/spec/UML/2.5/Beta2/
[19] Rajeev Alur, Holzmann G.J., Peled D.: An Analyzer for Message

Sequence Charts // TACAS 96, LNCS 1055. — 1996. — P. 35-48.
[20] Shen H., Robinson M., Niu J. Model Checking Combined Fragments of

Sequence Diagrams // Software and Data Technologies. — Springer,
2013. — V. 411. — P. 96-111.

[21] Stenenko A.A., Nepomniaschy V.A. Model Checking Approach to
Verification of Coloured Petri Nets // Preprint 178. — Institute of
Informatics Systems SB RAS. — Novosibirsk. — 2015 [in Russian].
http://www.iis.nsk.su/files/preprints/178.pdf

[22] UBET (MSC/POGA) computer toolset // http://cm.bell-
labs.com/cm/cs/what/ubet/index.html

[23] Yang N., Yu H., Sun H., Qian Z. Modeling UML sequence diagrams
using extended Petri nets // Telecommunication Systems. — Springer,
2012. — V. 51. — N. 2-3. — P. 147-158.

128 of 174

http://cm.bell-labs.com/cm/cs/what/ubet/index.html
http://cm.bell-labs.com/cm/cs/what/ubet/index.html
http://www.iis.nsk.su/files/preprints/171.pdf
http://www.omg.org/spec/UML/2.5/Beta2/
http://www.ibm.com/software/products/en/ratitau
http://link.springer.com/book/10.1007/b105884
http://link.springer.com/book/10.1007/b105884
http://www.iis.nsk.su/files/preprints/171.pdf
http://bitbucket.org/chernenok/msc-verification
http://www.cinderella.dk/msc.htm

Carassius: A Simple Process Model Editor
Natalia M. Nikitina, Alexey A. Mitsyuk

Laboratory of Process-Aware Information Systems
National Research University Higher School of Economics

3 Kochnovsky Proezd, Moscow, Russia
Email: nmnikitina@edu.hse.ru, amitsyuk@hse.ru

Abstract—Process models and graphs are commonly used
for modeling and visualization of process models. They may
represent sets of objects or events linked with each other in some
way. Wide use of models in such languages engenders necessity
of tools for creating and editing them.

This paper describes the model editor which allows for
dealing with classical graphs, Petri nets, and finite-state machines.
Additionally, the tool has a list of features like simulation of Petri
nets, import and export of models in different storage formats.

In the paper one can find a detailed description of a couple
of layout algorithms which can be used to visualize graphs.

Index Terms—graph, Petri net, finite-state machine, process
model, process model visualization, process model editor

I. INTRODUCTION

The modern world is full of information systems working in
different business domains. One of the most developed concept
is process-aware information systems [1]. A wide variety of
different notations has been developed to model processes.

In this paper we present a new tool for editing and simulat-
ing process models in different notations. Our goal is not to
build yet another complicated model simulator.

Our ambition was to develop a model editor which may be
used for educational purposes. Thus, the decision was made to
implement a simple and extensible model editor for different
modelling notations. In particular, a modular architecture of
Carassius allowed us to implement simulation modules in
addition to different editors.

The remainder of this work is organized as follows. Section
II gives a description of the tool, implemented approaches and
algorithms. Furthermore, the description of the tool’s features
is provided.

In section III we consider other tools with similar func-
tionality. The advantages and disadvantages of these tools are
provided. Section IV concludes the paper.

II. TOOL OVERVIEW

A. Functionality

Here one can see the brief description of all features
implemented in Carassius.

In this paper we present a tool which intended to help
researchers and other people easily make and edit models
of different types. Carassius works with graphs of 3 types:
classical graphs, Petri nets and finite-state machines. First
of all, it permites to edit process models by hand. Besides,
the tool supports several markup languages (PNML [2], [3],
GraphML [4], [5] and FSAML) and can read and save models

from and into these formats. FSAML is a new XML format
we developed for storing a finite state machines system.

The working area has a grid helping users position the
nodes. The tool can automatically arrange model elements
according to the grid. Users may set or change all the possible
properties of the whole model or its parts (for example:
node names, arc weights, etc). The tool can arrange models
using different layout algorithms: for graphs and finite-state
machines it uses the force-directed algorithm, whereas for Petri
nets it uses the layering algorithm developed for Carassius.
Both of them are described in details in subsection Visualiza-
tion refinement.

In addition, Carassius has features for a Petri net simula-
tion. The tool supports step-by-step token-game of a process
model [6]. Moreover, there is a special colouring mode that
shows the real way of tokens during the simulation. Because of
these features, the tool can be used successfully in educational
purposes.

B. Supported Notations

This part describes the modelling notations supported by
Carassius.

Fig. 1. A Petri net editing

Petri nets: The main supported formalism is Petri nets.
Petri nets are widely used in process modelling [7], [6]. A
Petri net is a directed bipartite graph with two types of nodes:
transitions (denoted by rectangles) and places (denoted by
circles). There are directed arcs between places and transitions
(denoted by arrows). Places can contain so-called tokens
inside, which determine the current state of a net and its

129 of 174

marking. Petri nets offer a graphical notation for step-by-
step processes that include choice, iteration, and concurrent
execution. Execution of a process is depicted by tokens flow.

Fig. 2. A directed graph editing

Graphs: Carassius is also works with classical graphs.
Both directed and undirected edges are supported. It is possible
to assign weights of edges. Process of graph editing is quite
simple. However, a possibility to deal with directed graphs and
store them using GraphML format is very useful.

Finite-State Machines: A finite-state machine (FSM,
finite-state automaton [8]) is an abstract machine that can be
in an only one of a finite number of states at a point of time.
FSM recognizes or accepts certain word of some language
with finite alphabet. It can move from one state to another by
triggering a transition with the same label as a next letter of an
input word. If a FSM stops in a state from the set of so-called
acceptance states, then it accepts a word. This is not always
the case. Therefore, any FSM forms a language consisting of
the words accepted by this FSM.

A particular FSM is defined by a list of its states and
transitions. States are usually depicted by circles, and tran-
sitions are depicted by labelled directed arcs. There are two
special types of states: a single starting state and a set of final
(accepting) states. A starting state is depicted by a circle with
an arrow from anywhere going into the circle (see figure 3).
Each accepting states is depicted by a double circle.

Fig. 3. A finite-state machine editing

Systems of Finite-State Machines: Systems of commu-
nicating FSMs are also supported by Carassius. A system of
Finite-State Machines may be useful for modelling processes
which appear at the same time and have causal dependencies.
A Finite-State Machine System deals with some number of
FSMs and relations between them. These relations may be
of two types: (1) synchronous (two transitions from the FSMs
may fire only at the same time) and (2) asynchronous (there is
a special state in-between the FMSs called the channel state).
Synchronous relations are denoted by simple lines between
two models, which hold the information about transitions
which are fired simultaneously. Asyncronous - by sequence
of arrow, place and another arrow, meaning that some action
performed in one fsm may have consequences in another.

Fig. 4. A system of finite-state machines editing

Import and Export Formats

Carassius provides different import and export formats to
facilitate work with models. It deals with several convenient
markup language formats for import: PNML for Petri nets,
GraphML for graphs, and FSAML for finite-state machines
and their systems. All of them are XML-based interchange
formats. In addition, one can easily export a model to png-
picture or tikz-picture to import model to a TEX file.

1) Markup language formats: PNML and GraphML for-
mats are well-known in the world of modelling and have
been in use for a long time. Both of them have a clear
specification and will be described further. On the contrary,
FSAML (Finite-State Automaton Markup Language) has been
developed recently by the authors of this paper and has not
been formally described yet.

A detailed explanation of a PNML format can be found
in [9]. A typical PNML file contains information about a
net, a number of pages, lists of places, transitions and arcs.
A lot of additional information is available such as names
of nodes, dimensions etc. PNML is an extensible format.
So, it is possible to make different extensions for particular
modelling aspects. It is impossible to cover all extensions.
That is why Carassius deals with PNML files according to the
recent version of the core standard (ISO/IEC 15909-2:2011).

130 of 174

GraphML is a comprehensive and easy-to-use file format
for graphs. It consists of a language core for describing the
structural properties of a graph. A detailed description can
be found in [10]. Carassius, in turn, supports only simple
graphs (directed, undirected and mixed) without any additional
features.

FSAML is a format allowing exchange of finite-state ma-
chines and their systems. The development of this format
is still in progress. However, there is a working alpha-
implementation of it in Carassius.

The structure of the file according to the format is following:
the main node (fsasystem) consists of its name (name), a
number of finite-state machines (fsa), synchronous (syncs)
and asynchronous (channels) relations between them. In
turn, a fsa node contains a number of states (state) and
transitions (transition). Each of them has an attribute id
holding unique id. Each state has its type: general, initial or
final, therefore there is an inner node statetype containing
this infromation. The second inner node is graphics rep-
resenting the data about position and dimension of a node.
Transitions have their source states (source) and target
states (target) represented as attributes. The channels
node consist of several channels (channel), which, in turn,
have two nodes: from and to containing infromation about
fsa and a corresponding state. The syncs node has the
same structure except the fact that relation is between two
transitions, not states.

An example of the file in the FSAML format is shown in
listing 1.� �

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <f s a m l>
3 <f s a s y s t e m i d =” f s a s y s t e m 1 ”>
4 <name>
5 < t e x t>ExampleFsaSystem< / t e x t>
6 < / name>
7 <f s a i d =” fsm1 ”>
8 < s t a t e i d =” s t a t e 1 ”>
9 <s t a t e t y p e>

10 < t e x t> i n i t i a l< / t e x t>
11 < / s t a t e t y p e>
12 <g r a p h i c s>
13 <p o s i t i o n x=” 37 ” y=” 68 ” />
14 <d imens ion x=” 30 ” y=” 30 ” />
15 < / g r a p h i c s>
16 < / s t a t e>
17 < s t a t e i d =” s t a t e 2 ”>
18 <s t a t e t y p e>
19 < t e x t>g e n e r a l< / t e x t>
20 < / s t a t e t y p e>
21 <g r a p h i c s>
22 <p o s i t i o n x=” 107 ” y=” 62 ” />
23 <d imens ion x=” 30 ” y=” 30 ” />
24 < / g r a p h i c s>
25 < / s t a t e>
26 < t r a n s i t i o n i d =” t r a n s i t i o n 1 ”
27 s o u r c e =” s t a t e 1 ” t a r g e t =” s t a t e 2 ” />
28 < / f s a>
29 <f s a i d =” fsm2 ”>
30 < s t a t e i d =” s t a t e 3 ”>
31 <s t a t e t y p e>
32 < t e x t>g e n e r a l< / t e x t>
33 < / s t a t e t y p e>
34 <g r a p h i c s>
35 <p o s i t i o n x=” 49 ” y=” 17 ” />

36 <d imens ion x=” 30 ” y=” 30 ” />
37 < / g r a p h i c s>
38 < / s t a t e>
39 < s t a t e i d =” s t a t e 4 ”>
40 <s t a t e t y p e>
41 < t e x t>g e n e r a l< / t e x t>
42 < / s t a t e t y p e>
43 <g r a p h i c s>
44 <p o s i t i o n x=” 97 ” y=” 24 ” />
45 <d imens ion x=” 30 ” y=” 30 ” />
46 < / g r a p h i c s>
47 < / s t a t e>
48 < t r a n s i t i o n i d =” t r a n s i t i o n 2 ”
49 s o u r c e =” s t a t e 3 ” t a r g e t =” s t a t e 4 ” />
50 < / f s a>
51 <c h a n n e l s>
52 <c h a n n e l i d =” c h a n n e l 1 ”>
53 <from>
54 <f s a i d =” fsm1 ”>
55 < s t a t e i d =” s t a t e 1 ” />
56 < / f s a>
57 < / from>
58 <t o>
59 <f s a i d =” fsm2 ”>
60 < s t a t e i d =” s t a t e 3 ” />
61 < / f s a>
62 < / t o>
63 < / c h a n n e l>
64 < / c h a n n e l s>
65 <s y n c s>
66 <sync i d =” sync1 ”>
67 <from>
68 <f s a i d =” fsm1 ”>
69 < t r a n s i t i o n i d =” t r a n s i t i o n 1 ” />
70 < / f s a>
71 < / from>
72 <t o>
73 <f s a i d =” fsm2 ”>
74 < t r a n s i t i o n i d =” t r a n s i t i o n 2 ” />
75 < / f s a>
76 < / t o>
77 < / sync>
78 < / s y n c s>
79 < / f s a s y s t e m>
80 < / f s a m l>
� �

Listing 1. FSAML format

2) TEX and PNG export: The tool has features for TEX and
PNG export. Carassius may generate a code to import picture
using tikz-package into your TEX file. Figure 5 shows a simple
Petri net edited with Carassius and exported directly into TEX.
This feature has been implemented with help of N. Chuykin
(student at HSE).

A

B

C

Fig. 5. Picture compiled with tikz

In addition, it is possible to export the model as a PNG
picture.

131 of 174

C. Visualization refinement
The presented tool has several features to make model

visualization better. There are two special algorithms for the
directed graphs and for Petri nets, which can arrange nodes
to make model easier to understand. Graphs and Petri nets
can be processed in different ways. The tool also provides
a grid for working area which helps placing nodes more
accurately. Finally, Carassius provides possibility to hide/show
grid as well as node labels. This section describes the layout
algorithms in detail.

Algorithm 1: Petri net layout algorithm
Data: List of all nodes as nodes
Result: All nodes are arranged

1 int modelNumber = 1;
2 while each node doesn’t belong to any model do
3 Node firstNode = findNodeWithoutModelNumber();
4 depthFirstSearch(firstNode, modelNumber);
5 modelNumber++;
6 end
7 foreach model do
8 List<Node> modelNodes =

getAllModelNodes(modelNumber);
9 List<Node> initialNodes =

searchForInitialNodes(modelNodes);
10 setColumnForStartingNodes(startingNodes);
11 setColumnForEachNode(modelNodes);
12 setYcoordinateForEachNode(modelNodes);
13 setSpaceBetweenColumns();
14 end
15 visualize();
16 return coordY

Petri net layout: Firstly, the layout refinement algorithm
for Petri nets is described. It is a layered-based algorithm
which was developed especially for Petri nets. Layered-based
algorithms is a group of layout algorithms which work with
directed graphs and take their hierarchical structure into ac-
count [11]. We chose this approach as the most suitable for
Petri nets as they are directed, and bipartite. The structure of
the Petri nets notation is quite suitable for a layered repre-
sentation. The main scheme of the layered-based approach is
described in [12]. These algorithms are aimed to cover the list
of aesthetic points:

(1) single edges direction,
(2) occupied area minimization,
(3) uniform nodes allocation,
(4) long edges avoidance,
(5) edges-crossing minimization.
Although some of these points may conflict with each other,

the approach is viable. It works using three steps:
(1) allocation of nodes on layers in a way which ensures

that edges have single direction;
(2) choice of the nodes order on layers with the aim of

edges-crossing minimization;
(3) determination of node coordinates on layers with the

aim of edges-length minimization.
In the presented algorithm these three ideas are used, but

some features are added and changed as well.

Algorithm 2: Determination of all the nodes in model
Data: Initial node as node, number of model as modelNum
Result: All nodes of the model are marked

1 foreach Arc arc in node.thisArcs do
2 Node next;
3 if arc.To == node then
4 next = arc.To;
5 else
6 next = arc.From;
7 end
8 next.modelNumber = modelNum;
9 next.isChecked = true;

10 foreach Arc arc1 in next.thisArcs do
11 Node next1;
12 if arc1.To == node then
13 next1 = arc1.To;
14 else
15 next1 = arc1.From;
16 end
17 if next1.isChecked == false then
18 next1.isChecked = true;
19 next1.modelNumber = modelNum;
20 depthFirstSearch(next1, modelNum);
21 end
22 end
23 end

The algorithm in Carassius takes into account: (1) a bipar-
ticity of Petri nets, (2) the fact that they have directed arcs,
and (3) a presence of initial places.

Generally, it determines connected components of a model
(a number of individual graphs in one model), applies layered-
based approach for each component and then gathers compo-
nents together to visualize an overall model. We use so-called
’columns’ to represent layers. Due to the Petri nets biparticity
the content of columns alternates from places to transitions.
We start from the first column with places. When several steps
of the algorithm are made, each node has its column (using
breadth-first search), and we can arrange nodes in each column
separately (set them y-coordinate). The overall algorithm 1
shows all the steps.

In order to arrange nodes the tool makes the following steps:
(a) Determines connected components of the models. A

Petri net model may consist of several individual connected
components, so we have to detect them. Also, for each set
of nodes we have to assign the number used for component
identification.

Next steps are done for each connected component of the
model:

(b) Finds all initial nodes (both transitions and places). A
node considers as initial if it doesn’t have any ingoing arcs.

(c) Sets columns for the initial nodes. This step is needed
because these nodes will become starting points to move
through the graph.

(d) Sets a column for each node. This algorithm is layered-
based, thus, we need to distribute nodes among columns.

(e) Sets a y-coordinate for each node. At this step we want
to place each node in some place at a column. To make the

132 of 174

model layout more compact we locate nodes symmetrically
from the centre of a column (mean value between minimal
and maximal y-coordinate of nodes in a column).

(f) Sets marging between columns. There may be very few
or, on the contrary, too many arcs between the nodes in two
adjacent columns. So, these distances should depend on a
number of arcs between neighbour columns.

(g) Visualizes the whole model. The whole model is visu-
alized using all information derived at the previous steps.

The listing 2 shows the algorithm which divides a model
into several connected components. To obtain the list of initial
nodes the algorithm 3 is used.

Algorithm 3: Search for the initial nodes
Data: List of all nodes as nodes
Result: List of initial nodes as initialNodes

1 List<Node> initialNodes = new List<Node>(); foreach Node
node in nodes do

2 if node.thisArcs.Count == 0 then
3 initialNodes.Add(node);
4 else
5 bool hasIngoingArcs = false;
6 foreach Arc arc in node.thisArcs do
7 if arc.To == node then
8 hasIngoingArcs = true;
9 break;

10 end
11 end
12 if hasIngoingArcs == false then
13 initialNode.Add(node);
14 end
15 end
16 end
17 return initialNodes

The distribution of all nodes in columns is shown in the
algorithm 4.

Algorithm 5 arranges each node for its place (y-coordinate)
in a column.

Graph layout: In this subsection the layout algorithm for
graphs is described. Carassius contains implementation of the
existing algorithm from [13] with little changes. It is a force-
directed algorithm aspired to achieve several goals:

(1) nodes should not be too close to each other,
(2) edges should have more or less equal length and do not

cross each other too often.
This algorithm does a number of iterations to achieve the

best arrangement of a graph. It is done by assigning so-called
forces and velocities among the set of edges and the set of
nodes, based on their relative positions.

An algorithm for graph layout in Carassius consist of two
main steps:

(a) The force-directed algorithm (see algorithm 6) itself. It is
applied for each connected component. Constants used in the
algorithm were selected experimentally based on application
UI configuration.

(b) A movement of all nodes on fixed distances. Nodes can
have negative coordinates after applying the algorithm, so we

Algorithm 4: Find a column for each node
Data: List of all nodes as nodes
Result: Each node has its column

1 int currentColumn = 1;
2 while each node hasn’t its column do
3 List<Node> currentColumnNodes = new List<Node>();
4 foreach Node node in nodes do
5 if node.column == currentColumn then
6 currentColumnNodes.Add(node);
7 end
8 end
9 foreach Arc arc in node.thisArcs do

10 Node temp;
11 if arc.To == node then
12 temp = arc.From;
13 else
14 temp = arc.To;
15 end
16 if node.column == 0 then
17 node.column = currentColumn + 1;
18 end
19 end
20 currentColumn++;
21 end

Algorithm 5: Set a position to each nodes in a column
Data: Current column as column, maximum number of

elements in column for all model as
maxNumberOfElements, list of all nodes in one model as
modelNodes

Result: Each node in column has its own y-coordinate
1 int numberOfElementsInColumn = 0;
2 foreach Node node in modelNodes do
3 if node.column == column then
4 numberOfElements++;
5 end
6 end
7 double coordY = cellHeight / 2 * (maxNumberOfElements -

numberOfElements);
8 foreach Node node in column do
9 node.Y = coordY;

10 coordY += cellHeight;
11 end

need to move them because working area shows only those
which have positive coordinates. We also need to do some
movements to place models in such a way in order to save a
distance between them.

D. Simulation

Petri nets are not only simple bipartite graphs but also
a powerful tool able to represent a process flow. There are
’tokens’ (markers inside places), reflecting current state of a
net. They can change their places by the transitions firing. A
transition may be fired if all places which have outgoing arcs
to this transition have enough tokens inside (equal or more
than weight of a corresponding arc). At each step only one
transition is fired (may be chosen by hand or randomly). When
a transition is fired it consumes the required number of tokens

133 of 174

Algorithm 6: Force-based algorithm for a graph model
layout

Data: List of all nodes in one model as nodes, list of all arcs in
one model as arcs

Result: All nodes in one model are arranged
1 double oldX, oldY, newX, newY;
2 foreach Node node in nodes do
3 // nextDouble returns a real number from 0 to 1 node.X =

200 + nextDouble() * 300;
4 node.Y = 100 + nextDouble() * 200;
5 end
6 do
7 for i← 0 to nodes.Count do
8 nodes[i].netForceX = nodes[i].netForce.Y = 0;
9 for j ← 0 to nodes.Count do

10 if i == j then
11 continue;
12 end
13 double squaredDistance =

(node[i].X − node[j].X)2 +
(node[i].Y − node[j].Y)2;

14 nodes[i].netForceX += 200 * (nodes[i].X -
nodes[j].X) / squaredDistance;

15 nodes[i].netForceY += 200 * (nodes[i].Y -
nodes[j].Y) / squaredDistance;

16 end
17 foreach Arc arc in arcs do
18 Node tempNode;
19 if arc.From == nodes[i] then
20 tempNode = arc.To;
21 else
22 tempNode = arc.From;
23 end
24 nodes[i].netForceX += 0.06 * (tempNode.X -

nodes[i].X);
25 nodes[i].netForceY += 0.06 * (tempNode.Y -

nodes[i].Y);
26 end
27 nodes[i].velocityX = (nodes[i].velocityX +

nodes[i].netForceX) * 0.85;
28 nodes[i].velocityY = (nodes[i].velocityY +

nodes[i].netForceY) * 0.85;
29 end
30 oldX = nodes[0].X;
31 oldY = nodes[0].Y;
32 foreach Node node in nodes do
33 node.X += node.velocityX;
34 node.Y += node.velocityY;
35 end
36 newX = nodes[0].X;
37 newY = nodes[0].Y;
38 while oldX != newX ‖ oldY != newY;

and passes a token to each outgoing place. The simulation
ends when there is no transition able to be fired.

Simulation of an example Petri net made in Carassius is
shown in figure 6.

Wave Colouring: Simulation of a net in our tool may
also be done in a waving mode. During simulation nodes are
coloured in a specific way. A movement of a token from
one place to another will be considered as a single step.
Nodes engaged in the last step has deep blue colour, whereas

Fig. 6. Simulation of a Petri net

Fig. 7. Wave colouring of a simulation

nodes used in previous steps are coloured in light blue. In
other words, the later a step is made, the darker a node is
coloured, the earlier – the lighter. This colouring allows for
easily understanding of a process direction, determining which
nodes were visited and which were not.

134 of 174

Figures 7 show how wave colouring of a simulation works
in Carassius. The top part of the picture shows simulation at
the intermediate step. The bottom part shows a window when
the simulation has been ended.

E. Architecture

The tool is built as a standalone windows application using
C#. We used the Windows Presentation Foundation (WPF)
platform to build our application because of its functionality,
extensibility and convenience. The WPF provides user controls
as a mechanism for reusing blocks of the UI elements. The
main window of Carassius consists only of one user control,
which may be easily moved to another application as a
component.

III. RELATED WORK

A variety of model editors are available now. Nevertheless,
all of them did not fully meet our two main requirements
(simplicity and extensibility). This section describes the closest
existing tools which support model editing in a desirable way.

a) CPN Tools (see [14]): CPN Tools is a tool for
working with Colored Petri nets. It allows users to edit,
simulate, and analyse them. CPN Tools has an interesting,
original interface which uses a lot of small inner windows for
each type of editing. However, at first a user can get stuck
because the GUI is not very intuitive and the user needs to
read the help to understand what he should do in order to start
working. In addition, the tool works only with coloured Petri
nets and you cannot work with simple ones.

b) Yasper (see [15]): Yasper, as authors say, is the yet
another smart process editor. It is a quite simple, but useful
tool which supports editing and simulation of Petri nets. It
has rather user-friendly and easy to use interface, but it is still
unevident how to do some actions. Fortunately, its help paper
is very useful and provides a lot of information about usage of
the tool. However, Yasper has a significant drawback - it does
not support the current version of the PNML format, so the
user just cannot download new PNML files and cannot work
with exported files from the tool anywhere else.

c) Tina (see [16]): Tina is a tool for working with
classical P/T and Time Petri nets. It has features for editing
and analysis of Petri nets. Tina’s interface is very simple, but at
the same time easy to understand. Editing functionality is not
very wide, but the tool provides several analysis techniques,
which work well. Tina’s disadvantage is that it cannot simulate
Petri nets in a visual way and has a small number of functions.

We can see that several tools for working with Petri nets are
already exist, but all of them have certain drawbacks. In our
tool we endeavoured to take into account all disadvantages
we found in other tools, and at the same time to add new
functionality. We tried to do interface easy to use and learn-
able, intuitive to work; to provide support of different export
and import formats; to implement all main tasks which can
be done with Petri nets; and, finally, to incorporate some new
features (e.g. several visualisation refinement algorithms).

IV. CONCLUSION

A lot of features and several modes are already implemented
in Carassius. One can use it to deal with graphs, Petri nets,
Finite-State Machines. Due to modularity of the tool we
want to extend it with other modelling formalisms. The most
difficult thing is to preserve the simplicity of the software
while adding new features.

Our tool has been used in different other projects at PAIS
Lab [17], [18]. We hope, it will also be useful for other
researchers (see [19]).

Of course, there is still a lot of work to do. Our main goal
is to improve the FSM aspect of the tool. This functionality is
involved in other projects of our group. Complete definition
of the FSAML format is the key point of the future work.
Moreover, we intend to add a simulation functionality for the
finite-state machines.

Another aim is to carry out a number of user tests in order
to find and eliminate bugs in the tool. In addition, we are going
to do usability testing to make Carassius more intuitive to use
and work with. There are several possible improvements of
GUI we want to implement.

ACKNOWLEDGMENT

We would like to thank members of the PAIS Lab for their
support. Research assistants I. Shugurov and A. Begicheva
tested the tool and reported lots of bugs. Dr. A. A. Kalenkova
and prof. I. A. Lomazova gave us a valuable advice on the
GUI design and the required features.

Also we would like to thank Nikolay Chuikin, who imple-
mented the TEX-export used in the tool.

This work is output of a research project implemented as
part of the Basic Research Program at the National Research
University Higher School of Economics (HSE).

REFERENCES

[1] M. Dumas, W. M. van der Aalst, and A. H. ter Hofstede, Process-aware
Information Systems: Bridging People and Software Through Process
Technology. New York, NY, USA: John Wiley & Sons, Inc., 2005.

[2] M. Weber and E. Kindler, “The petri net markup language,” in Petri Net
Technology for Communication-Based Systems - Advances in Petri Nets,
2003, pp. 124–144.

[3] J. Billington, S. Christensen, K. M. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber, “The petri net markup
language: Concepts, technology, and tools,” in Applications and Theory
of Petri Nets 2003, 24th International Conference, ICATPN 2003,
Eindhoven, The Netherlands, June 23-27, 2003, Proceedings, 2003, pp.
483–505.

[4] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall,
“Graphml progress report structural layer proposal,” in Graph Drawing,
ser. Lecture Notes in Computer Science, P. Mutzel, M. Jnger, and
S. Leipert, Eds. Springer Berlin Heidelberg, 2002, vol. 2265, pp. 501–
512.

[5] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall,
“Graphml progress report,” in Graph Drawing, 2001, pp. 501–512.

[6] W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[7] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[8] J. A. Anderson, Automata theory with modern applications. Cambridge
University Press, 2006.

[9] L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves, “A primer on
the petri net markup language and iso/iec 15909-2,” Petri Net Newsletter,
vol. 76, pp. 9–28, 2009.

135 of 174

[10] U. Brandes, M. Eiglsperger, and J. Lerner, “Graphml primer,” Online:
http://graphml. graphdrawing. org/primer/graphml-primer. html [29.05.
2007], 2004.

[11] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

[12] V. Kasianov and V. Evstigneev, Grafi v programmirovanii. BHV -
Peterburg, 2003.

[13] S. G. Kobourov, “Spring embedders and force directed graph drawing
algorithms,” arXiv preprint arXiv:1201.3011, 2012.

[14] M. Westergaard and L. M. Kristensen, “The access/cpn framework: A
tool for interacting with the cpn tools simulator,” in Applications and
Theory of Petri Nets. Springer, 2009, pp. 313–322.

[15] K. van Hee, O. Oanea, R. Post, L. Somers, and J. M. van der Werf,
“Yasper: a tool for workflow modeling and analysis,” in Application of
Concurrency to System Design, 2006. ACSD 2006. Sixth International
Conference on. IEEE, 2006, pp. 279–282.

[16] B. Berthomieu*, P.-O. Ribet, and F. Vernadat, “The tool tina–
construction of abstract state spaces for petri nets and time petri nets,”
International Journal of Production Research, vol. 42, no. 14, pp. 2741–
2756, 2004.

[17] A. K. Begicheva and I. A. Lomazova, “Checking conformance of high-
level business process models to event logs,” in Proceedings of the
Spring/Summer Young Researchers Colloquium on Software Engineer-
ing, vol. 8, 2014.

[18] A. A. Mitsyuk and I. S. Shugurov, “On process model synthesis based
on event logs with noise,” Modeling and analysis of information systems,
vol. 4(21), pp. 181–198, 2014.

[19] N. Nikitina, “Carassius: A Simple Petri Net Editor,” accessed: 2015-
04-01. [Online]. Available: www.pais.hse.ru/research/projects/carassius

136 of 174

Iskra: A Tool for Process Model Repair
Ivan S. Shugurov, Alexey A. Mitsyuk

Laboratory of Process-Aware Information Systems
National Research University Higher School of Economics

3 Kochnovsky Proezd, Moscow, Russia
Email: shugurov94@gmail.com, amitsyuk@hse.ru

Abstract—This paper is dedicated to a tool which is aimed to
facilitate process mining experiments and evaluation of the repair
algorithms. Process mining is a set of approaches which provides
solutions and algorithms for discovery and analysis of business
process models based on event logs. Process mining has three
main areas of interest: model discovery, conformance checking
and enhancement. The paper focuses on the latter. The goal of
enhancement process is to refine an existing process model in
order to make it adhere event logs. The particular approach of
enhancement considered in the paper is called decomposed model
repair. Although the paper is devoted to the implementation part
of the approach, theoretical preliminaries essential for domain
understanding are provided. Moreover, a typical use case of the
tool is shown as well as guides to extending the tool and enriching
it with extra algorithms and functionality. Finally, other solutions
which can be used for implementation of repair schemes are
considered, pros and cons of using them are mentioned.

Index Terms—Process model, Petri net, Model repair, Process
mining.

I. INTRODUCTION

In this paper, a tool for modular process model repair
is presented. Architectural features and usage examples are
provided.

Process mining [1] is a research area which deals with anal-
ysis of information systems or business processes by studying
corresponding event logs and building process models. The
basic idea is that there can be significant improvements of
existing systems, business operations if event logs and their
content are studied more thoroughly. Three main aims of
process mining are process discovery, conformance checking
and enhancement [2].

The goal of Process discovery is to create a process model,
based on an event log. That constructed model has to ade-
quately describe the behavior observed in the event logs. The
process of construction is typically called mining. As a model
it is possible to use, for example, Petri nets. The challenge
of process discovery is the hard truth that event logs reflect
only a fraction of the overall process. It means that there may
be activities, events, conditions, decision forks which exist
in the initial process model, but they are not seen in event
logs. For example, rare events in processes such as activities
undertaken in emergency situations at nuclear power stations.
Such activities exist, they are strictly regulated by rules and
legislation, they influence the overall process a lot, but they are
extremely uncommon so if an event log of a nuclear station is
considered they are likely not to be present. Another serious
issue concerning event logs is errors in them. Some events may

be not put down in logs, log records might contain incorrect
information about actually occurred events (i.e. wrong time
stamp, event name), they might be deliberately distorted.

Conformance checking is aimed to check whether a model
fits a given event log. Because of the reasons presented in the
description of process discovery, perfect fitness is almost not
feasible in practice. Therefore, when discrepancy between a
model and corresponding event logs occurs, it is desired to
assess the significance of the deviation and highlight model
parts where deviations take place [3], [4]. Some types of
conformance checking algorithms support assigning weights
to skipping and adding of events, that somehow indicates the
significance of these deviations.

The reason for applying Enhancement is to improve already
existing models by using information stored in event logs. So,
the task here is to alter model, not to create an absolutely new
one. Typical input parameters for the enhancement algorithms
are a model and a corresponding event log. According to
the presented definition, the approach the tool implements is
categorized as an enhancement approach.

The remainder of this work is organized as follows. In
section II basic ideas behind model repair are described.
III sections explains what modular repair is and how tools
implementing this approach should be organized in order
to achieve the goals. In section IV a summary of the tool
functionality is reported. Section V contains information on
the framework used during the development process, domain
analysis and the architecture of the tool. Section VI shows
step-by-step usage of the tool. In section VII other tools are
considered. Section VIII concludes the paper.

II. PROCESS MODEL REPAIR

In the field of process modeling not all the processes are
of best quality. Usually process models are made by experts
or obtained as a result of using automated model construction
algorithms. In the field of process mining a lot of methods
have been developed to discover models from process logs[1].
Real-life processes in information systems are complex and
permanently changing. Thus, it is a very hard problem for
experts and engineers to keep process models up to date.

The goal of model repair is to improve the quality of a
model. In this paper, fitness is understood as a metric of model
quality. Fitness is measured using technique described in [3].
Model repair has been introduced in [5]. As input for model
repair a process model M and an event log L are used. If

137 of 174

model M conforms to L, then there is no need to change M .
If M partially does not conform to L, repair method has to
repair non-conforming parts of M . Conforming parts of the
model are kept as is. The result is the repaired model M ′.

III. MODULAR REPAIR APPROACH

The implementation of the modular repair approach is the
foundational goal of this work. The key idea is to make a
general model repair scheme which will consist of several
cells connected with strong links. A cell is understood as
a placeholder where a user can put one of the appropriate
algorithms. Cells are of the following types: (1) conformance
checking cell, (2) decomposition cell, (3) selection cell, (4)
repair cell, (5) composition cell, (6) final evaluation cell. Each
cell type corresponds to the step in the modular repair. The
schema of cells is provided in figure ??.

Conformance checking cell is used to evaluate current
progress of the repair process and indicate whether a current
model quality is sufficient. An algorithm in a decomposition
cell, as it is clear from its name, is responsible for dividing an
entire model into smaller parts, which are easier to understand,
analyze and repair. Decomposition for process mining is
described in [6]. A selection cell includes an algorithm whose
aim is to choose run conformance checking for each model
part and decide which of them are sufficiently fit. A repair
cell can be either a process discovery algorithm or some
enhancement algorithm, although for generalization reasons
they are called repairers in the paper. Once the decomposed
parts are repaired they ought to be merged in order to form
a single model. It is done by an algorithm located in a
composition cell. An algorithm located in a final evaluation
cell is executed after completion of the entire repair task.
At this step several metrics are measured in order to assess
the quality of the model and the repair. Moreover, similarity
of the initial and the final models is checked. In the future,
visualization of model differences will be incorporated.

At the first step the tool checks whether a model and a log
conform to each other. The second step is one of the model
decomposition methods, which allows for splitting the model
into parts [7]. At the third step the tool selects conforming and
non-conforming parts by application of conformance checking
method to each part, obtained at the second step with the
projection of the event log onto set of activities corresponding
to this part. The fourth step is the repair step. At this step tool
applies the repair algorithm. It can be, for example, simple
re-discovery algorithm. By applying it the tool obtains a new
model from the log part corresponding to a non-conforming
part of the initial model. At the fifth step the tool composes all
parts of the model into the final model using an appropriate
method. The sixth step is the final evaluation of the repaired
model. Usually, each algorithm has to be wrapped in additional
code in order to be embedded in a particular cell of the tool.

This work will not consider the aspects of the methods
which can be placed into cells. There is a theory behind each
step of the repair process. Methods offer a lot of settings and
options. So, it will be impossible to put all the details in one

text. The main goal of this work is to propose a software
architecture that allows for exploring different algorithms and
their features in the context of model repair.

IV. TOOL OVERVIEW

The main functionality provided by the tool implies the
following aspects:

• The tool allows users to select a decomposition method
which, in their opinion, is the most suitable for a given
model.

• The tool makes it possible to choose a repair algorithm.
The choice of the algorithm is typically based on the
properties of the algorithm and a model it produces. The
task of choosing the best repair algorithm is basically
an attempt to find appropriate alternative between time
needed for the algorithm to do its work, presence or
absence of so-called silent transitions (i.e. transitions that
do not correspond to any events observed in an event
log, but considered to be present because they somehow
explain the model behavior) and conformance between a
given model and an event log.

• One may specify importance of each metric for a par-
ticular repair task. This step is essential for automatic
evaluation of how well the tool helps researchers achieve
the desired repair result.

• Numeric results of the final model evaluation can be
stored in CSV file either manually or automatically.
CSV files are chosen because a lot of tools support this
format, therefore, it significantly simplifies the further
analysis or visualization. The evaluation process assesses
the following metrics: fitness (two approaches for fitness
measurement are employed), conformance, complexity
and a similarity coefficient.

• The tool is responsible for visualization of each step the
tool performs and a final model. In the future, the tool
will also be fitted with a convenient visualization of the
difference between an initial and a final model.

• The tool makes it possible to significantly modify logic
the cells use, thus extending the tool or adjusting it to a
particular circumstance.

It goes without saying that despite the existence of some
theoretical guidelines, choosing the right decomposition and
repairing algorithms as well as their settings can be extremely
complicated and mean, in the worst-case scenario, brute-force
seeking the right methods. Because of that, one of the tool’s
aim is to facilitate this very tedious process. Moreover, if one
is developing or evaluating a repair algorithm, it will imply a
lot of repetitive executions of it. Hence, the tool facilitates this
process a lot and is likely to significantly reduce time spent
on such tasks.

V. TOOL ARCHITECTURE

A. ProM

The tool is being developed using Java 6 Standard Edition
and ProM 6.4 Framework [8]. ProM 6.4 is an open-source

138 of 174

framework specially designated for implementing process min-
ing algorithms in a standardized way. ProM 6.4 consists of the
core part and disjoints parts called plugins. The core part of the
framework is responsible only for uploading available plugins,
handling plugins life cycle, interaction between plugins and
basic functions for dealing with graphical user interface.
Hence, programmers focus exclusively on implementation of
algorithms, work with file system and visualization of results.
The framework is distributed under GNU Public License,
although some plugins are distributed under different licenses.

Once a plugin is properly configured, ProM automatically
discovers, finds and uploads it, then this plugin is added to
the list of all available plugins. In addition, the list of plugins
demonstrates parameters required by each plugin. By doing
this, the framework simplifies providing parameters needed
for plugins. Nowadays, almost all data types for working
with Petri nets have been implemented and supplied with
visualizers, so researchers and developers are eliminated of
necessity to implement them from scratch.

Each plugin has so-called context. Context acts as a bridge
between plugin and the framework because it is the only
way plugins can interact and collaborate with ProM. For
every context child contexts may be created, each of which is
designated for a specific task. Thus, it is possible to construct
a hierarchy of plugin calls from a parent plugin.

Plugins may run either with or without graphical user
interface. The former provides a rich possibility to interact
with user or visualize data, whereas the later enables to call
other plugins in the background simultaneously with user
interaction in the main plugin. ProM encourages developers to
write an extendable and loose coupled software, providing a
rich set of tools. One of such tools, extensively used in the tool,
is a mechanism for finding all classes annotated in a special
way. Arguably the most common way to use annotations is
to mark Java classes that contain algorithms. One creates an
interface for a set of related algorithms, then annotate each
of them. After that, they can be easily found and used via
annotations.

Interaction between plugins is accomplished by using a
plugin manager. The plugin manager provides API for in-
voking plugins, makes sure that correct context is configured
for a called plugin. The plugin manager enables not only
to invoke known plugins but also to look for plugins with
specific signature, to invoke them and to obtain results of their
executions. Despite its promising flexibility and convenience,
in practice it is generally easier to use conventional method
invocations, because the API exposed by the plugin manager
is a bit unintuitive. Furthermore, direct methods calls ensure
more readable code. Because of these reasons, the direct
methods call are preferred in the tool and used wherever
possible.

The core part of a typical ProM processing plugin is a
class which contains at least one public method. This method
must have a special annotation which registers it in the ProM
framework as a plugin. The name, input and output parameter
lists are listed inside the annotation. Particular plugin context

of a current ProM session have to be among the other
parameters of the method.

The tool, which implements the approach presented in this
work, is built as a plugin for the ProM Framework; therefore
architecture of the tool has to fulfill all the aforementioned
requirements for ProM plugins. We decided to use such an
approach because the framework already has plugins which
take care of discovery of Petri nets, event logs import and ex-
port, conformance checking as well as decomposition plugins,
and provides further opportunities to work with the resulting
data.

B. Preliminary domain analysis

This section is completely devoted to the analysis of the
existing plugins for decomposition and model repair, because
their usage involved extensive and from time to time tricky
interaction with ProM and ProM plugin manager. In addition,
the way how decomposition and repair model plugins are used
is of high importance because it influences whether the tool
is easy to extend. Detailed explanation of how conformance
checking, final evaluation and the overall infrastructure are
made is left to the following subsection.

The core implementation task of this project was to in-
corporate a dozen of available plugins for model repairing,
decomposition and conformance checking, that have differ-
ent authors, coding styles and settings. One of the main
requirements for the resulting architecture was to make it as
straightforward and comprehensive as possible, though ensure
that it is flexible. In addition, we wanted to reuse as much
of the existing code as possible. It meant that before the
development of the tool could be started there was a need
to scrutinize source code files of existing projects which we
intended to use. This analysis was focused on 3 most important
questions: (1) Does the architecture of each plugin follow
MVC pattern [9]? (2) How heavily does each plugin use ProM-
specific classes, tools? For example, can it be easily retrieved
from ProM and used as a some sort of standalone application?
Do any of plugin show graphical user interface? (3) What set
of parameters is required for each plugin?

The conducted analysis of repair algorithms revealed that
the source code had been written in inconsistent way, the
majority of plugins do not follow the MVC principles, that
increased efforts needed for using them. As a result, plugins
we intended to use were separated into 3 groups according to
their coupling with ProM and the simplicity of their reuse:

• Plugins whose execution needs requesting via the plugin
manager of ProM. Hence, in order to call them we
supply plugin name, a list of required parameters and
types of expected output. Then the plugin manager seeks
the requested plugin and executes it. Examples of such
plugins are Alpha miner [10] and ILP Miner [11].

• Plugins whose execution can be initiated via usual Java
method calls without need to delegate this task to the
ProM plugin manager. Genetic miner [12] and Heuristics
miner [13] are placed in this group of plugins.

139 of 174

AbstractIskraPlugin

IskraRepairer

repair(PluginContext, Log):Petrinet
getSettingsComponent() : JComponent
saveSettings():void

InductiveRepairer ILPRepairer

Fig. 1. Repairers hierarchy

• Plugins whose architecture follows the MVC pattern.
They are characterized by clear separation of actual
algorithm and ProM-specific parts. Such plugins are more
desirable because their usage and extension requires less
time and effort. Unfortunately, Inductive miner [14] is the
only plugin which falls into this category.

The subsequent step was to determine the ways which
would allow users of the tool to specify parameters for repair
algorithms if users wish to do it, otherwise default parameters
would have to be set. The study of the plugins showed that
only Alpha miner does not show GUI, whereas others do but
have only one screen with settings, which allows for significant
simplification of the resulting design decisions.

The situation with decomposition algorithms is a bit more
easier despite some nuances. First of all, they are highly-
sensitive to the input data. Event logs may include a lot of
information in order to simplify further log analysis and error
detection. ProM plugins responsible for projection a net on a
log are aware of this information and try to make full use of it
while projecting a net. By projection in this paper the process
of extracting events which correspond to a particular model
part from the entire event log is understood. Despite its high
purpose, it is prone to produce rather unexpected outcome. It
seems they work better and give correct result if event logs
contain information only about event names. Concerning this
issue it is absolutely essential to apply some kind of model and
event log preprocessing techniques before trying to decompose
and project a model. Furthermore, model decomposition is
typically not a one-step process - it requires a number of
consequent plugin calls, but for the sake of simplicity, covering
up this circumstance from the main logic of our tool was on
the list of the goals.

On the other hand, all decomposer plugins may be executed
without showing GUI. In fact, only SESE decomposer [15]
has one. Nevertheless, the possibility of existence of GUI
was considered thoroughly due to extendability and flexibility
matters.

C. Usage of decomposition and repair algorithms
Judging by the results of the analysis of repair plugins we

came up with a detailed plan on how to abstract from specific
implementation details and provide a common interface for
using these plugins. Of course, each of 3 plugin types (model
repairing, model decomposition and conformance checking)
has its own interface, unique for its specific nature. So, the
final decision was to write ”wrapper” interfaces and classes
for required plugins. Wrapper is understood as a class which
defines a common interface and hides the details how actual
plugin is invoked. In fact, the concept of the adapter pattern
[16] was exploited. The tool works only with such wrappers
without knowledge how inter-plugin communication is carried
out. Furthermore, wrappers apply an idea of using annotations,
which allows for complete deliverance from dependencies
of the tool on wrappers and, hence, on external plugins.
This approach also facilitates extension of the tool: those
who are willing to incorporate new algorithms do not need
gaining access to the source code of the tool. The only
thing that has to be done is to create a Java class that
extends either IskraDecomposer or IskraRepairer and marked
by the corresponding annotation (either @IskraDecomposer or
@IskraRepairer). Then ProM will detect this class and our tool
will add it to the list of available algorithms. One important
constraint is that wrappers must have an empty constructor. If
a wrapper does not have it, the wrapper will not be available.

AbstractIskraPlugin

IskraDecomposer

decompose(PluginContext, Model):DecomposedModel
getSettingsComponent() : JComponent
saveSettings():void

SESEDecomposer PassageDecomposer

Fig. 2. Decomposers hierarchy

Figure 1 and figure 2 depict the design of repairers and
decomposers. Class AbstractIskraPlugin is a common super-
class for all implemented wrappers. It encapsulates plugin’s
name and indicates that it is a plugin after all. Then, there
are two abstract classes IskraRepairer and IskraDecomposer
which provide a common interfaces respectively for repairers
and decomposers. The tool uses only links to these classes,
not to their subclasses. The architecture has been implemented
and proved to be viable. InductiveRepairer, ILPRepairer,
SESEDecomposer, PassageDecomposer [17] are examples of
actual (not abstract) classes. In order to save space and make
a picture more comprehensible only these classes are shown,
however half a dozen of others adhere to the architecture and
available in the tool.

140 of 174

The typical scenario of using wrappers is:
1) method getSettingsComponent is invoked.
2) if the value returned after the invocation getSettingsCom-

ponent is not null, then received GUI is displayed to a
user

3) GUI demonstration means having to save setting by
invoking saveSettings method

4) at this point a plugin is properly configured and is ready
to be used. Only one thing left to get result - to invoke
either (repair) or decompose.

It must be mentioned that steps 1-3 are arbitrary. If a user is
either satisfied with default setting or does not want to show
GUI then according to the contract, a wrapper supplies defaults
settings to a corresponding plugin. If a plugin does not have
any graphical elements for settings, then getSettingsCompo-
nent returns null and steps 2-3 are skipped. In case of repair
algorithms an object of type DecomposedModel, which holds
parts of the initial model and an event log for each of the
parts, is returned.

D. Tool infrastructure

A number of algorithms for conformance checking is really
limited in ProM. There are only 2 prominent algorithms:
conformance by replay and conformance using alignments,
others are mainly variations of mentioned. Thus, there is no
urgent need to provide really flexible solution. Both of these
algorithms are used in the tool. The algorithm described in
[3] is used as a main conformance algorithm in the tool, it
is placed in Conformance checking cell. In order to allow
convenient and user-friendly usage of this algorithm, the cor-
responding plugin has been changed slightly. The plugin was
partly separated from ProM in order to ensure its robustness.
Moreover, parameters of the plugin include information on a
model which is about to be used and the original parameter
creation mechanism does not permit to create it silently,
without showing GUI. Because of that reason, parameter
classes were supplemented with ”copy constructors” which
take a new model and copy an existing parameter adhering
it to the new model. Another algorithm is provided as an
optional add-on and used in a final evaluation cell. The usage
of this plugin required to slightly change classes related to
user interface.

All discussed cells are parts of the abstraction called re-
pair chain. A repair chain represent the very nature of the
decomposed repair approach. Each chain implies algorithms
which correspond to the cell types, then it makes plugin calls
in the specified order ensuring the work of the tool. The
goal of designing repair chains was to make a good level
of abstractions from which algorithms (cells) are used, how
they are used, in which order; and to execute every chain with
different models without need to reconstruct the chain. In order
to achieve these objectives, the idea of dependency injections
is heavily exploited. Decomposition and repair plugins are
supplied via constructor injection, whereas a model, an con-
formance checking algorithm and its parameters are provided
as a method parameters. This discrepancy has rather ordinary

explanation. Decomposition and repair algorithms represent
something stable which can be reused over and over again
with different models in a handy manner. In contrast, a model,
a conformance checking algorithm and conformance checking
parameters are volatile and tightly coupled.

Introducing a new data type which encapsulates cells tend
to make the tool more flexible and easier to modify, maintain
and extend because of the following reasons.

Using abstract data types and dependency injection during
the development ensured that each particular chain may be
implemented in a way which differs a lot from others. For
instance, repair chains may use different triggers to decide
when a repaired model is good enough, although the main
reason for having separate repair chains is a fact that there
are a few of possible strategies of how to choose a model
part to be repaired. Some strategies are straightforward - just
take a part with the worst fitness, whereas others may use
sophisticated techniques, preprocessing and more intelligent
choice. However, details, ins and outs of these strategies are
out of scope of the paper due to their theoretical nature, the
main point here is to establish that different repair chains
are possible and that the tool has to provide capability of
introducing new repair chains.

It allows users to create several chains which differ in
algorithms used in cells and then run all of them at a time.
The feature makes testing of several algorithms and their
parameters against the same model a lot faster. In order
to achieve it 2 plugins are available. One of them, Iskra
chain generator is responsible for creating repair chains - one
selects desired repair chains, algorithms and their parameters.
In contrast with a main plugin which creates a chain and
then immediately executes it, chain generator returns a list
of configured chains to the ProM resource pool rather than
execute them. At the moment when all desired chains are
built, one may supply them to Iskra chain runner plugin. This
plugin takes an arbitrary number of repair chains, a model
and a corresponding event log, after that the plugin configures
settings of conformance checking and sequentially executes
each chain. This functionality has already been implemented,
although it needs some refinement and improvements.

In order not to have hard-coded chains and plugins around
chains a mechanism of annotations and reflective calls was
introduced, as used for decomposition and repair wrappers.
It enriches the tool with the ability to load repair chains
dynamically. Moreover, it lets other developers and researcher
to develop new chains, incorporate them in the tool. A Java
class which implements repair chain logic has to extend
RepairChain interface and be annotated with @Chain.

VI. USE CASE

As an example of a usage a simplified version of an iteration
of a typical agile development process is considered. All
activities of the developers are recorded in event log, thus
allowing for keeping track of what the team does and analysis
of the development process. Initial business process involves
writing and running tests after writing code is completed.

141 of 174

Fig. 3. Illustration of repair

Then, a developers team informally decides to try test-driven
development [18], thus creating tests before writing code.
These changes are reflected in event logs. After a while a
conformance checking algorithm is applied and it reveals
that the actual process does not conform to what a company
considers as an actual process. Hence, it is necessary to apply
repair algorithm in order to learn what has changed and build
a proper model of the process.

Fig. 4. Plugin settings

In order to repair a model one needs to select appropriate
plugin and supply an existing model and an event log. Plugin’s
graphical interface used for specifying settings is shown in
figure 4. Then one selects a desired algorithms of decomposi-
tion and repair. Moreover, one sets minimal fitness a repaired
model should have. In the example, desired fitness is 0.98. The

next step is to select an appropriate repair chain from the list
of chains. Afterwards, one is asked to specify setting of each
selected algorithm, and after that repair process is executed.
Once it is finished, a screen with results is shown, it looks
like in figure 3. This screen-shot demonstrates the result of
repair and final evaluation of the considered example of agile
iteration and clarifies where the change took place and what
exactly has changed. As a modeling language Petri nets are
applied. It is clear from the screen-shot that fitness increased
from 0.7689 to 1, which means that the repair model perfectly
fits the given event log and the goal of achieving fitness
not smaller than 0.98 has been successfully accomplished.
Furthermore, values of others metrics are shown on this screen.

VII. RELATED WORK

The idea of providing a way to chain executions of several
plugins or algorithms in a handy way, which is explored in
this paper, is also similar to scientific workflow systems. Two
of such systems capable of dealing with process mining are
considered here.

First tool is RapidProM [19] which is a ProM extension
for RapidMiner [20]. It allows users to build plugin chains in
a visual way. Quite a number of ProM Plugins are available
in this extension, however not all of them. It can easily be
installed via RapidMiner Marketplace. The only question is
its ability to be extended. RapidProM does not support native
ProM plugins and ProM mechanism for loading plugins, there-
fore plugins come only from the authors of RapidProM, which
makes the objective of creation and execution of schemes, such

142 of 174

as those discussed in the paper and possible in the presented
tool, much harder.

Then comes DPMine Workflow Language [21] and DP-
Mine/P framework which provide a new modeling language
which natively supports notion of execution. Implementation
of the ideas defined in the language are written in C++ with
usage of Qt library. Process models can be constructed using
convenient graphical user interface. Furthermore, the solution
is intended to be easily extended by adding plugins. The ad-
vantage of using C++ is possibility to utilize resources in more
effective and flexible way and provide better performance,
which is of high importance in the era of Big Data, but the
downside is that it cannot be integrated with ProM, so it is
deprived of algorithms the ProM system offers.

VIII. CONCLUSION

In this paper, a tool for decomposed model repair is de-
scribed. Decomposed model repair is used as a way of model
enhancement. The tool is implemented as several plugins for
the ProM Framework, which guarantees that the tool can be
easily distributed and used by both researchers and developers
within ProM community. The way the tool is written allows
for fast improvement and enhancement of it.

While developing the tool advantages and disadvantages
of existing tools were examined. The tool does not have
some drawbacks typical for its counterparts. However, there
is still room for improvements. In the future the tool will
be fitted with more sophisticated mechanism of repair chains.
Furthermore, a handy visualization of differences between ini-
tial and repaired models, some kind of recommender systems
which suggests better repair options according to properties
of a model and an event log will possibly be developed and
incorporated.

ACKNOWLEDGMENT

This work is output of a research project implemented as a
part of the Basic Research Program at the National Research
University Higher School of Economics (HSE). Authors would
like to thank all the colleagues from the PAIS Lab whose
advice was very helpful in the preparation of this work.

REFERENCES

[1] Wil M. P. van der Aalst, Process mining: discovery, conformance and
enhancement of business processes. Springer, 2011.

[2] IEEE Task Force on Process Mining, “Process mining manifesto,”
in Business Process Management Workshops, ser. Lecture Notes in
Business Information Processing, F. Daniel, K. Barkaoui, and S. Dustdar,
Eds., vol. 99. Springer-Verlag, Berlin, 2012, pp. 169–194.

[3] W. M. P. van der Aalst, A. Adriansyah, and B. F. van Dongen,
“Replaying history on process models for conformance checking and
performance analysis,” Wiley Interdisc. Rew.: Data Mining and Knowl-
edge Discovery, vol. 2, no. 2, pp. 182–192, 2012.

[4] A. Rozinat and W. M. van der Aalst, “Conformance checking of
processes based on monitoring real behavior,” Information Systems,
vol. 33, no. 1, pp. 64–95, 2008.

[5] D. Fahland and W. van der Aalst, “Repairing process models to
reflect reality,” in Business Process Management, ser. Lecture Notes in
Computer Science, A. Barros, A. Gal, and E. Kindler, Eds. Springer
Berlin Heidelberg, 2012, vol. 7481, pp. 229–245.

[6] W. M. P. van der Aalst, “Decomposing petri nets for process mining: A
generic approach,” Distributed and Parallel Databases, vol. 31, no. 4,
pp. 471–507, 2013.

[7] W. M. Van Der Aalst, “A general divide and conquer approach for pro-
cess mining,” in Computer Science and Information Systems (FedCSIS),
2013 Federated Conference on. IEEE, 2013, pp. 1–10.

[8] Prom framework. [Online]. Available:
http://www.promtools.org/doku.php

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented Software Architecture: A System of Patterns. New
York, NY, USA: John Wiley & Sons, Inc., 1996.

[10] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[11] J. van der Werf, B. van Dongen, C. Hurkens, and A. Serebrenik, “Process
discovery using integer linear programming,” in Applications and Theory
of Petri Nets, ser. Lecture Notes in Computer Science, K. van Hee and
R. Valk, Eds. Springer Berlin Heidelberg, 2008, vol. 5062, pp. 368–387.

[12] W. van der Aalst, A. de Medeiros, and A. Weijters, “Genetic process
mining,” in Applications and Theory of Petri Nets 2005, ser. Lecture
Notes in Computer Science, G. Ciardo and P. Darondeau, Eds. Springer
Berlin Heidelberg, 2005, vol. 3536, pp. 48–69.

[13] A. Weijters, W. M. van Der Aalst, and A. A. De Medeiros, “Process
mining with the heuristics miner-algorithm,” Technische Universiteit
Eindhoven, Tech. Rep. WP, vol. 166, pp. 1–34, 2006.

[14] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-
structured process models from incomplete event logs,” in Application
and Theory of Petri Nets and Concurrency, ser. Lecture Notes in Com-
puter Science, G. Ciardo and E. Kindler, Eds. Springer International
Publishing, 2014, vol. 8489, pp. 91–110.

[15] J. Munoz-Gama, J. Carmona, and W. M. van der Aalst, “Single-entry
single-exit decomposed conformance checking,” Information Systems,
vol. 46, pp. 102 – 122, 2014.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[17] W. van der Aalst, “Decomposing process mining problems using pas-
sages,” in Application and Theory of Petri Nets, ser. Lecture Notes in
Computer Science, S. Haddad and L. Pomello, Eds. Springer Berlin
Heidelberg, 2012, vol. 7347, pp. 72–91.

[18] Beck, Test Driven Development: By Example. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[19] Rapidprom. [Online]. Available: http://www.rapidprom.org/
[20] Rapidminer. [Online]. Available: https://rapidminer.com/
[21] S. Sergey, “Dpmine/c: C++ library and graphical frontend for dp-

mine workflow language,” Proceedings of the Spring/Summer Young
Researchers Colloquium on Software Engineering, vol. 8, 2014.

143 of 174

1

Comparing process models in the BPMN 2.0 XML

format

Sergey Y. Ivanov

School of Software Engineering

NRU – Higher School of Economics

Moscow, Russian Federation

syuivanov@gmail.com

Anna A. Kalenkova

School of Software Engineering

NRU – Higher School of Economics

Moscow, Russian Federation

akalenkova@hse.ru

Abstract - Comparing business process models is one of the most

significant challenges for business and systems analysts. The

complexity of the problem is explained by the fact there is a lack of

tools that can be used for comparing business process models. Also

there is no universally accepted standard for modeling them. EPC,

YAWL, BPEL, XPDL and BPMN are only a small fraction of

available notations that have found acceptance among developers.

Every process modeling standard has its advantages and

disadvantages, but almost all of them comprise an XML schema,

which defines process serialization rules. Due to the fact that XML

naturally represents hierarchical and reference structure of

business process models, these models can be compared using their

XML representations. In this paper we propose a generic

comparison approach, which is applicable to XML representations

of business process models. Using this approach we have developed

a tool, which currently supports BPMN 2.0 [1] (one of the most

popular business process modeling notations), but can be extended

to support other business process modeling standards.

This paper is an ongoing research conducted in the frame of a

bachelor diploma in the software engineering field.

Keywords: business process modeling, business process

comparision, BPMN 2.0 (Business Process Model and Notation),

XML (eXtensible Markup Language), process mining.

I. INTRODUCTION

The availability of methods and tools capable to compare

process models is crucial for business process analysts. Thus,

for example, there can be a need to use comparing methods in

order to find duplicates in repositories of process models.

Finding duplicates is an essential task for those process analysts

who wish to add a new process model to a process repository or

even merge two repositories. The other obvious example is a

comparison of a real and a reference process models. A

challenge here is to obtain a real process model. This problem

can be solved in several ways, but the most effective known

approach is a process model discovery. A new scientific

discipline, process mining, can be applied for this purpose. The

first type of process mining techniques, discovery, is used to

construct models from event logs created by information

systems [2].

Since the process model is discovered, we have a reference

and a real process models. After that, we can move to the

comparison of these two process models (Fig. 1).

Figure 1. Conformance checking between two process models

The following approaches for comparing business process

models are currently known: lexical matching, structural

matching, and behavioral matching.

Lexical matching is based on the comparison of element

labels. Labels comparison may include syntactic and semantic

metrics for determining the accuracy between labels. Moreover,

techniques for computing the string edit distance, such as the

Hamming distance [3], the Levenshtein distance [4, 5], or the

Damerau-Levenshtein distance [6] can be used. Each of these

metrics is defined as a minimal number of operations needed to

transform one string into the other using deletion, insertion,

substitution of a single character, or transposition of two

adjacent characters.

Also, a business process model can be transformed to a graph

or a net. Therefore, process models can be compared as graphs

by applying the graph-edit distance metric [7] (structural

matching).

The behavioral matching is an approach, based on comparing

the behavioral components of models. An algorithm based on

causal footprints was suggested in [8]. A causal footprint

provides a definition of a set of conditions on the order of

activities that hold for the model.

Our approach is based on the fact that process models, which

need to be compared, should be represented in XML format.

Although this approach is described and implemented for

process models represented in BPMN XML 2.0, it can be

extended to compare process models defined using other XML

formats due to the hierarchical nature of XML.

Note that we didn’t find any special tool for comparison of

two XML files in accordance with their XML schema.

II. STRUCTURE OF XML SCHEMA

The structure of XML schema is a key factor for

understanding the comparison algorithm proposed. In this

section we will discuss the structure of XML schema by an

example of the BPMN 2.0 XML schema format [9].

144 of 174

mailto:syuivanov@gmail.com
mailto:akalenkova@hse.ru

2

XML schema defines elements contained by an XML

document and their types. Fig. 2 shows that BPMN 2.0 XML

schema is represented by a list of elements descriptions and

their complex (compound) and simple types.

Figure 2. BPMN 2.0 XML schema

Let us consider a description of the element «subProcess»

(Fig. 3).

Figure 3. «subProcess» BPMN 2.0 XML element

Subprocesses in terms of BPMN represent multiple tasks that

work together to achieve certain goals. The composite nature of

subprocesses is reflected in a corresponding complex XML type

(Fig. 4).

Figure4. «tSubProcess» BPMN 2.0 XML type

The type «tSubProcess» extends an abstract type «tActivity»

with sets of lanes (containers used to logically organize

activities within a subprocess), flow elements, which represent

all the elements contained, and artifacts, which stand for the

comments to subprocess elements. Attributes «minOccurs» and

«maxOccurs», indicating the minimum and maximum number

of occurrences of an element, show that each inner element can

be presented zero or more times within a subprocess. Thus, to

compare subprocesses we need recursively compare all the

contained elements.

The other element to be considered is a sequence flow (Fig.

5). Sequence flows are usually depicted as directed arcs and

used to show the order, in which activities will be performed

within a process. For each sequence flow identifiers of the

source and the target nodes are specified using attributes of a

special IDREF type. This should be taken into account during

the comparison. Sequence flows and other connecting elements

should be compared according to their source and target nodes,

but not according to the identifiers of these nodes. In other

words, two sequence flows coincide if their source and target

nodes coincide, while nodes identifiers usually differ. This fact

distinguishes our algorithm from other XML comparison

algorithms, which don’t consider element references.

Figure 5. «sequenceFlow» element and «tSequenceFlow» type

Another important fact that should be taken into account is

that XML schema contains abstract elements. Abstract elements

are unavailable for end users, but used for inheritance. Their

main purpose is to make language more extensible and allow

adding new elements inheriting some parameters from their

parents.

III. COMPARISON ALGORITHM

Now let us turn to the description of the comparison

algorithm. First we have to define the notion of equivalent

elements. Two XML elements are equivalent if and only if:

• they have the same names;

• for each attribute of the first XML element there exists

one and only attribute of the second XML element,

which has the same name and the same value and vice

versa; Note that for IDREF attributes corresponding

linked XML elements must be equivalent;

145 of 174

3

• for each nested element of the first XML element there

exists one and only one equivalent nested element of

the second XML element and vice versa.

First let us impose restrictions on the structure of XML

documents. Assume that elements with IDREF attributes don’t

have nested elements; assume also that there are no IDREF

links to these elements from other XML elements. Note that

these restrictions are justified for XML documents, containing

information on hierarchical process structure (e.g. subprocesses)

and sequence flows connecting arbitrary process nodes. The

algorithm consists of three steps:

A. The first step

The first step includes generation of a set of elements that are

directly nested in the root element «definitions» for each model

(Fig. 6).

Figure 6. XML element «definitions»

B. The second step

Now we have two sets of BPMN elements for two models at

the first level. For each element from the first set we perform

the following steps:

• select all elements with same name from the second

set;

• if no elements were selected add an «error» message to

the result of comparison;

• set the correspondence between the element from the

first set and each selected element if:

o they don’t have nested elements and IDREF

attributes, but they have the same sets of

attributes with coinciding names and values;

o there are correspondences between their

nested elements and attributes, which can be

obtained recursively using Step B.

If there are remaining elements from the second set with no

corresponding elements add an «error» message to the

result of comparison

C. The third step

Consider all the elements with IDREF attributes for both

models.

• set the correspondence relation between them if and

only if linked XML elements are in correspondence

relations and not-IDREF attributes coincide as well;

• remove redundant correspondences, which are not

supported by IDREF attributes.

This algorithm assists in determining equivalent elements,

but generally speaking there is no guarantee that equivalence

relations will be constructed if multiple corresponding elements

can be obtained for some element.

The algorithm was extended with an ability to specify

relevant and non-relevant attributes.

The result of the comparison can consist of three types of

messages, which describe main information about comparison:

• «error» - an error message;

• «warning» - an alert message;

• «info» - an information message.

A message takes an «error» status if the algorithm cannot

find an equal element in another model. If for some reasons the

algorithm cannot compare the non-relevant attributes of

elements, a message should be added to a «warnings» list. A

message should be added to an information list, if an element

from the first model has more than one equal element from the

other model.

IV. IMPLEMENTATION

After the structure of the XML schema is analyzed, the

BPMN XML schema can be disassembled and transformed into

an object-oriented model, which is implemented using some

programming language.

We have developed our algorithms on the basis of ProM

framework [10]. The ProM framework is a free open source

product developed by the Eindhoven University of Technology.

The algorithm for comparison two business process models in

the BPMN 2.0 XML format was successfully implemented in

ProM and can be used by business process analysts. Further, the

main steps for applying a ProM plugin for comparing process

models are shown.

Importing resources

 First, the following resources should be imported to ProM:

• Model1.bpmn - the first business process Model

• Model2.bpmn - the second business process Model

• Schema.xsd – BPMN XML schema

After importing, these resources are displayed in the

«Workspace» tab (Fig. 7).

Figure 7. List of imported resources

Selecting and applying plugin

After importing resources the user selects a necessary plugin

from the plugin list in the «Actions» tab. «XML BPMN 2.0

Comparator» plugin should be selected in our case (Fig. 8).

146 of 174

4

Figure 8. Selection of the «XML BPMN 2.0 Comparator» plugin

Analysis ot the results

The results of the plugin’s work are represented in an

information window with the results which are divided into

three groups: «error», «warning», «info» on the «Views» tab

(Fig. 9).

Figure 9. The result of the comparison of two models in the XML BPMN 2.0
format

The final report with results can be exported from the ProM

in .txt and .html formats.

V. EXAMPLE

Suppose we have a shopping process model (Fig. 10). This

model includes start, end events and the following tasks:

checking order information, saving an order to database,

receiving of payment, delivering the goods. The delivery

service is responsible for delivering an order. Delivering an

order is a subprocess, which includes the following steps:

collect order, test order, pack order, and deliver order. After a

model is discovered from an event log, there is a need to

compare the real process model of e-shop (Fig. 10) with a

reference process model (Fig. 11). These models should be

imported to ProM framework and compared with «XML BPMN

2.0 Comparator» plugin.

As a result plugin reported that an element with type «Task»

and name «Testing» in the subprocess «Delivery service» was

not found in a reference model. Also, a complete list of

attributes, which were not found the document starting from the

root element, was produced. According to the comparison

results, analysts can find errors, modify and improve process of

organization.

VI. CONCLUSION

Nowadays, system and business analysts face a problem of

process models comparison due to the changes in processes

occurring under influence of various factors. Therefore, there is

a real demand for tools capable to compare process models.

This paper introduces a novel approach for process models

comparison, which uses their XML representations.

We have proposed an algorithm that can be used to compare

process models in XML format. This algorithm was described

by the example of BPMN 2.0 XML format. The BPMN format

was chosen as the most popular format for modeling business

processes.

The results of the research were successfully implemented in

the ProM framework and can be further used by business

process analysts.

ACKNOLEDGMENT

This study was carried out within the National Research

University Higher School of Economics’ Academic Fund and is

supported by Russian Fund for Basic Research (project 15-37-

21103).

REFERENCES

[1] Stephen A. White. Introduction to BPMN [Online].

Available:

http://www.omg.org/bpmn/Documents/Introduction_to_BP

MN.pdf

[2] W. M. P. van der Aalst, Process Mining: Discovery,

Conformance and Enhancement of Business Processes,

Springer-Verlag, Berlin, Germany, 2011.

[3] D.Sanko and J. Kruskal, Time Warps, String Edits, and

Macromolecules: The Theory and Practice of Sequence

Comparison, Addison-Wesley, 1983.

[4] V. Levenshtein, Binary codes capable of correcting

spurious insertions and deletions of ones. Problems of

Information Transmission, 1965, pp. 1-17.

[5] V. Levenshtein, Binary codes capable of correcting

deletions, insertions and reversals. Soviet Physics Doklady,

pp. 10-707, 1966. Original in Russian in Doklady

Akademii Nauk SSSR,1965, pp. 163-848.

[6] F. Damerau. A technique for computer detection and
correction of spelling errors. Comm. of the ACM, 1964, pp.
7-176.

[7] Xinbo Gao, Bing Xiao, Dacheng Tao, Xuelong Li, "A

survey of graph edit distance" in Pattern Analysis and

Applications, vol. 13, 2010, pp. 113-129.

[8] B.F. van Dongen, J. Mendling, and W.M.P. van der Aalst,

"Structural Patterns for Soundness of Business Process

Models" in EDOC 2006 – International Enterprise

Distributed Object Computing Conference, Hong Kong,

2006, pp. 116-128.

[9] Object Management Group, "BPMN 2.0," [Online].

Available: http://www.omg.org/spec/BPMN/2.0/

[10] Process Mining Group, Eindhoven Technical University,

"ProM 6," [Online]. Available: http://www.promtools.org/

147 of 174

http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf
http://www.omg.org/bpmn/Documents/Introduction_to_BPMN.pdf
http://www.omg.org/spec/BPMN/2.0/
http://www.promtools.org/

5

APPENDIX A. FIGURES

Figure 10. A real shopping process model

Figure 11. A reference shopping process model

148 of 174

Developing of a complex of software tools for

organization and support of distance learning game

system «3Ducation»

L.S. Zelenko

Software Systems Department

Samara State Aerospace University

Samara, Russia

Zelenko.larisa.s@gmail.com

D.A. Konopelkin

Software Systems Department

Samara State Aerospace University

Samara, Russia

dekanszn@gmail.com

V.S. Ivanov

Software Systems Department

Samara State Aerospace University

Samara, Russia

arietis27@gmail.com

A.O. Grigoriev

Software Systems Department

Samara State Aerospace University

Samara, Russia

edspawn@gmail.com

A.E. Semenov

Software Systems Department

Samara State Aerospace University

Samara, Russia

alexandr.semenov.smr@gmail.com

M.A. Savachaev

Software Systems Department

Samara State Aerospace University

Samara, Russia

msavachaev@gmail.com

E.E. Poberezkin

Software Systems Department

Samara State Aerospace University

Samara, Russia

efim@poberezkin.ru

The article describes the structure of distance learning

system «3Ducation», the functions and capabilities of all its

constituent software (components) as well as technologies

and development tools of the system.

E-learning, gaming approach, technology of virtual reality,

three-dimensional space, a web application, game engine

Unity3D, database

I. INTRODUCTION

Currently distance education (e-learning) is becoming
increasingly popular, almost all educational institutions
present their courses electronically and provide access to
them online. Virtual educational systems present a
relatively new kind of learning systems, which combines
the features of traditional systems of training, e-learning
environments and achievments in information technology.
The e-learning environment is generally understood as
"system-organized set of means of communication,
information resources, communication protocols, hardware
and software and organizational methods, designed to meet
the educational needs of users" [1]. Virtual learning
environments provide comprehensive methodological and
technological support for distance educational process,
including training, management of the educational process
and its quality.

Currently there are a lot of virtual and distance
learning environments, but nevertheless there’s a relevant
task of creating virtual environments which use modern
information technology, such as virtual reality
technologies that make the educational space more
interesting and learning process more fun. Social studies
indicate that the boundary between the virtual and real
worlds is being erased. The advantages of the three-
dimensional virtual space are derived from human
perception of information. Up to 80% of the information
about the world a person receives through sight which
works more effective when the world it sees is more
imaginative. Teachers know that a simple and obvious
example is often more effective than strict theoretical
calculations. The most popular educational resources on
the Internet (eg, Khan Academy [2]) increasingly rely on
video instead of text.

Distance learning system «3Ducation» is built on two
principles:

1) game approach, which aims to increase the interest
of students by introducing interactive and continuous
feedback, encouragement for achievements, teamwork
capabilities and the presence of a competitive element to
the system.

2) virtual reality involves the transfer of the learning
process into three-dimensional environment that allows

149 of 174

mailto:dekanszn@gmail.com
mailto:edspawn@gmail.com
mailto:efim@poberezkin.ru

you to remove the problems of the supply of educational
material. This allows you to maintain and even increase
the interest in self-learning, and thus enhances the
effectiveness of training.

Combining the possibilities of advanced information
technologies with teaching potential, it is possible to build
an individual educational path for each student, taking into
account his needs and features of information perception
and processing.

II. SYSTEM ARCHITECTURE

Distance gaming learning system «3Ducation»,
developed at the Department of Software Systems of
SSAU, is based on client-server technology and is built on
the three tiered architecture (Fig. 1).

Fig. 1. System architecture

Server component of the system includes the server
application and the database. The server application allows
you to use the same logic in both desktop and mobile
client.

The client part of the system is simply a web browser,
which is used to view pages on the server (user only needs
to install a small plugin Unity Web Player). 3D-scenes of
the virtual world are integrated into the HTML-page, so
the student can move through the virtual space as through
the pages of the usual websites.

The server part of the system implements the MVC
(Model-View-Controller) architecture, which defines three
levels:

1) level of presentation of portal’s web pages;

2) level of business logic and data access;

3) data level.

The mobile client application provides all the basic
functions of the basic version of the system.

The network protocol TCP/IP is used as a network
communication protocol. Controllers of behavior logic
group serve the pages of the presentation group. The main
component of the model (data level) is a database context;
there is given a listing of all the essential classes included
in the model, and all the controllers work with the database
through it.

III. SOFTWARE FOR THE ORGANIZATION AND SUPPORT OF

THE SYSTEM

System «3Ducation» has a complex structure (Fig. 2),
it consists of a number of subsystems, each of which
solves the problem of providing support for the system and
its interaction with other systems. Let’s take a closer look
at the server side of the system.

Fig. 2. Structure of system

A. Subsystem of development of virtual learning space

Virtual learning space consists of two parts: a
permanent part and a dynamic one. Permanent part is
presented in the form of the hall and includes a place of
choice of the course from the list of available courses, as
well as background information about the developers, the
department and the university. The dynamic part is a set of
connected rooms/corridors and is generated automatically
based on the structure of the selected course and rooms
templates, which are filled with specific content.

Subsystem of development of virtual learning space
includes:

1) subsystem of selection and configuration of
characters, which is designed to allow the user to
select and customize the appearance of the avatar,
which he will control in the virtual world;

2) subsystem of animating characters, which is
designed to provide a realistic behavior of the
selected characters;

3) visualization subsystem, which is responsible for
the visualization of all the three-dimensional
models of virtual learning space.

B. Subsystem of educational content creation

This subsystem includes:

1) editor of the training courses, which provides the
teacher interface to edit, add or remove any element
of learning content (lectures, test). Editor interface
is shown in Fig. 3;

2) graphical editor of educational courses - software
tool for building individual trajectory of a student.
The editor allows to connect same level learning
materials, such as topics or lectures and courses
(Fig. 4);

3) subsystem of test tasks generation. Teacher,
working with the module through the
administrative part of the website, can add new test
tasks or change the settings of the existing

150 of 174

templates of tests, which will then be available for
students in the virtual three-dimensional space;

4) subsystem of synchronization of educational content
with LMS Moodle, which is used to convert tests
and lectures from the database of distance learning
system LCMS Moodle to the database of learning
system «3Ducation»

5) file subsystem.

Fig. 3. Interface of educational content editor

Fig. 4. Graphical editor of the course

C. Subsystem of administration

Distance gaming learning system «3Ducation» is a part
of the information space of the school of computer science
at SSAU. The other system is responsible for user
registration and storage of their personal data. Therefore,
the administration subsystem includes a subsystem that
allows authentication using OpenID technology, which
allows to use one account for multiple systems. In
addition, the administration subsystem includes means to
ensure the relevance of systems that allow the
administrator to edit the information posted on the website
of the system, using the user-friendly web interface instead
of working with the source code of the system or its
database. These software tools make it easier to maintain
the system, improve the reliability of its work, ensure the
confidentiality of stored data, and allow to maintain
students’ interest in learning.

D. Software providing network communication for mobile

client on Android and Windows Phone

Currently the system «3Ducation» is implemented as a
multi-user educational environment where students could
work together to perform learning tasks, cooperating and
communicating with each other, including using a mobile
version of the system.

Development of multi-user mode required changing
and/or adding the following operating modes of the
system:

 support for joint passing of chosen course of study,

 joint passing of test tasks in cooperative,
competitive and team modes,

 calculation of statistics of the learning process,

 possibility of communication between the
participants.

During the development of the network part of the
system the following main problems, inherent in mobile
devices, have arisen and the following ways have been
found to solve them:

1) device may have an unstable Internet connection:
connection quality depends on many factors: signal
strength, connection speed, the type of connection (Wi-Fi,
4G, 3G, Edge or GPRS). Solution: to use RUDP protocol
for transmission of most data.

2) device can forcibly limit Internet connection:
mobile devices are powered by batteries and have a small
battery life. To increase this time, the OS developers and
device manufacturers try to limit the consumption of one
of the most "voracious" components – radio module.
Solution: add mechanisms to suspend learning when
connection is lost.

3) the device can easily change the IP-address: if
device uses the Internet via a cellular network, IP-address
of the device depends on the base station of operator,
which leads to the fact that when the reception conditions
are poor or when the user moves it changes very often. A
similar situation occurs when connecting/disconnecting the
Wi-Fi network. Solution: to not take into account the IP-
address of the user, for identification only use cookies and
xsrf-token.

IV. TECHNOLOGICAL SUPPORT

OF EDUCATIONAL PROCESS

Distance learning system «3Ducation» extensively use
capabilities of virtual reality technology (Virtual Reality)
or virtual worlds. The criterion for selecting the underlying
technology was the possibility to integrate virtual worlds
into the browser that would ensure the integrity of the
system. After careful analysis the free version of the game
"engine" Unity3D was chosen. Its creators (the company
Unity Technologies [4]) describe it as "the most powerful
free game engine". Level of graphical effects of Unity3D
is superior to both O3D and X3D graphics, but much more
valuable fact is its simplicity, convenience and stability.
Graphic editor allows to quickly model the geometry of the
scene, without having to write code. To import any
resource it is enough to just move the appropriate file in
the project folder. The big advantage of Unity3D is an
impressive collection of ready resources - household items
and character models with a ready and highly customizable
code responsible for controls and movement of the camera.
By using Unity3D engine system can be developed quickly
and in full, avoiding non-obvious problems that can slow
down or stop the work.

151 of 174

E. Software development tools

Software selected to develop the system includes the
following technologies [5]:

 development environment Microsoft Visual Studio
2010 and programming language C #;

 technology of web application development
ASP.NET 4.0;

 framework ASP.NET MVC Frame-work 3.0;

 data access technology Entity Framework 4.0;

 database management system Microsoft SQL
Server 2008;

 server software IIS 7.5;

 JavaScript-library ExtJS 4.0;

 development environment Unity Editor 3.4;

 three-dimensional graphics editor Blender 2.6.

F. Data storage and manipulation techonlogies

One of the main functions of the system is processing
and storage of data, as well as correct display of it when
generating the virtual world. For these purposes the data
access technology Entity Framework is used. It allows to
automatically generate a database and all tables on the
basis of essential classes created by developer and
populate them with the original data, if it was determined.
This technology monitors all changes, made during the
development of system, on the code level and, if
necessary, modifies the structure of the database. The
choice of Entity Framework determined selection of
DBMS: Microsoft SQL Server 2008 is also a part of
family of technologies from Microsoft and ensures the
correct work of the above functions better than other
options. The data necessary for the operation of the system
«3Ducation» is stored in the database. In addition, part of
the data is stored on the server in the form of files.

V. TEAM DEVELOPMENT OF THE SYSTEM USING

GIT-REPOSITORY

The system «3Ducation» is being developed by a large
team of developers, which obliges to use a version control
system. After a comparative analysis of systems of this
class version control system GIT has been selected,
because it has the following advantages:

 decentralization (the presence of a local repository
containing full information on all changes, allows
to maintain full local version control and "fill" in
the master repository only fully authenticated
changes);

 good support of non-linear development;

 efficient operation of large projects;

 high performance and speed;

 reliable system of audit comparisons and data
validation based on the hashing algorithm SHA1
(Secure Hash Algorithm 1);

 extensibility and configurability (there is a large
number of graphical shells, which allow to quickly
and accurately work with Git) [6, 7].

One of the extensions used in the repository is a
simplified git-flow diagram (a general version of the
diagram is shown in Fig. 5), which consists of master,
develop and features branches. According to it the system
«3Ducation» is being developed in several branches:

 branch, which always contains only release
versions,

 branch, which stores the code between new
releases,

 a set of branches, each of which is reserved for only
one development feature.

Fig. 5. General git-flow diagram

Thus, the use of the version control system Git allowed
to clearly organize the work of the development team to
synchronize the development process and increase the
reliability of the system.

VI. CONCLUSION

Distance learning system «3Ducation» is designed for
middle and high school students learning basic course
"Computer Science". The system provides a unified
interactive way to access information resources for both a
teacher and a student, it can help to increase the
effectiveness of the acquisition of knowledge and skills
(both individual and social).

REFERENCES

[1] The concept of creation and development of a unified system
of distance education in Russia [Electronic resource] – URL:
http://www.e-joe.ru/sod/97/2_97/st064.html.

[2] The official website of Khan Academy [Electronic resource]
– URL: http://www.khanacademy.org.

[3] Zelenko, L.S. Virtual reality and game approach as a basis for
constructing a three-dimensional learning space [Text] / L.S. Zelenko//
Materials of the VIII International scientific and practical conference
"Innovation in the development of informational communication

152 of 174

technologies (INFO-2012)"/ under. ed. of V.G. Domrachev, S.U.
Uvaysov. - M.: MIEM, 2012. - P. 56-59.

[4] The official website of Unity3D [Electronic resource] –URL:
http://unity3d.com/company/.

[5] Zelenko, L.S. Principles of the development of virtual
learning system «3Ducation» [Text] / L.S. Zelenko, D.A. Zagumennov //
Collection of selected works of the VII International scientific and
practical conference "Modern information technologies and IT
education". Under ed. of prof. V.A. Sukhomlina. - M.: INTUIT.RU,
2012. - P. 326-333.

[6] About - Git [Electronic resource]. - http://git-scm.com/about.

[7] Review of version control systems [Electronic resource]. -
http://all-ht.ru/inf/prog/p_0_1.html.

153 of 174

Combined Classifier for

Website Messages Filtration

Veniamin Tarasov

Povolzhskiy State University

of Telecommunications

and Informatics

Samara, Russia

Email: tarasov-vn@psuti.ru

Ekaterina Mezenceva

Povolzhskiy State University

of Telecommunications

and Informatics

Samara, Russia

Email: katya-mem@mail.ru

Danila Karbaev

Povolzhskiy State University

of Telecommunications

and Informatics

Samara, Russia

Email: danila@karbaev.com

Abstract—The paper describes a new approach to website

messages filtration using combined classifier. Information

security standards for the internet resources require user data

protection however the increasing volume of spam messages in

interactive sections of websites poses a special problem. Unlike

many email filtering solutions the proposed approach is based on

the effective combination of Bayes and Fisher methods, which

allows us to build accurate and stable spam filter. In this paper

we consider the organization of combined classifier according to

determined optimization criteria based on statistical methods,

probability calculations and decision rules.

Keywords—combined classifier; spam filter; optimization

criterion

I. INTRODUCTION

The constantly growing volumes of data, number of uses as
well as groups devoted to various subjects significantly
decrease the effectiveness and the authenticity of
communicated information. In this regard the task of increasing
the efficiency of statistical data filtration and authentication
algorithms becomes undoubtedly topical. The history of this
subject in computer science accounts for more than 20-30 years
and the trend is becoming more urgent. We can say that right
now the antispam features of interactive sections of websites
rest in the very initial stage of development.

The subject of message filtration in emails is widely
developing, manual antispam methods are being used, and the
issue of automated antispam protection of corporate websites
becomes a priority on the agenda (including comments, forums
and other interactive sections). In practice there are no
universal software solutions to protect all types of interactive
website sections from spam. There are only small number of
specialized tools which prevent automatic messages posting.
Some of them are designed for a particular content
management system, such as WordPress in form of plugins:
Akismet, Quiz, Spam Karma etc. These modules have some
disadvantages: the distribution model “as is” do not include the
statistical base, most of online services do not provide
multilingual filtration and are limited only by the support of the
English language. The other blog comment hosting services
such as IntenseDebate, Disqus, Livefyre do not provide self-
hosted option, except Discourse.

Thereby the spam filtering software solution should have
the following properties: the use of multiple filtering methods,
both formal and linguistic, united by a common intellectual
decision making core; high speed and precision of the method;
easy installation and use.

This work describes a new approach to spam filtration
involving the combined use of Bayes and Fischer methods,
allowing to significantly reduce the number of false triggering
and increase spam detection.

II. CALCULATION OF COMBINED PROBABILITIES OF CONDITIONS

The main idea of message classification is based on
selection of all conditions, calculation of probabilities of select
conditions, and further combination of all calculated
probabilities into one value for the studied message. Messages
with a large number of spam attributes and little non-spam
attributes will have a value close to 1, and the messages with a
large number of non-spam attributes and little number of spam
attributes will gain a value close to 0.

We will build a classifier of messages received by the
website to grade the incoming messages into three categories
(spam, non-spam, unidentified). In this respect, we need to
identify all conditions (words and word combinations) in the
message to be analyzed, calculate statistical probabilities for
some select conditions and combine all probabilities into one
value for the whole message. In most cases the probability of
assigning a message to a certain category is a lot higher than to
others, which results in further grading of such message.

Before calculating the combined probabilities of conditions,
we need to calculate the probability of assigning a certain
condition to a specific category. For this we can divide the
identified number of messages with condition i in this category
by the total number of messages in the same category, but we
would rather use another method described below.

Let’s assume:

aiF is the number of messages with condition i in the

spam group;

154 of 174

mailto:tarasov-vn@psuti.ru
mailto:tarasov-vn@psuti.ru

biF is the number of messages with condition i in non-

spam group.

Then the statistical probability of appearance of i in a
spam message can be calculated as follows:

biai

ai
ai

FF

F
p


 , (1)

and the probability of appearance of i condition in a non-spam
message, as follows:

biai

bi
bi

FF

F
p


 . (2)

Thus, the number of messages with condition i in one
category will be divided by the total number of messages

featuring this condition i .

The use of (1) and (2) takes into account the fact that with
time the number of messages in both categories may be equal,
i.e. these formulas do not depend on the number of messages in
a specific category.

Note that formulas above give accurate result only to those
conditions, which filter is used in both categories. As the result
the spam filter becomes too sensitive on early stages of
learning applying to rare words. To solve this problem we need
to calculate new probability with expected a priori probability
(Pex) and applied weight (w), then according to (1) and (2) add
calculated probabilities.

If the probability Pex = 0.5 and the weight of expected
probability equals to one word (w = 1), we estimate weighted
probabilities using (1) and (2):

biai

biaiai
ai

FFw

FFpPw
p






)(*)*(ex

,

biai

biaibi
bi

FFw

FFpPw
p






)(*)*(ex

.

This approach allows to avoid division by zero in the
following formulas and to take into account rare words.

To obtain combined probabilities of the whole document
(message) we will use the dictionary, which is built on the step
of filter learning. We introduce the following events: A –
document is spam, B – document is non-spam. We assume that
the probabilities are independent, thus the multiplication is
allowed:

 aMaa pppAP  ...)(21 , (3)

- for the probability of words co-occurrence in spam;

 bMbb pppBP  ...)(21 (4)

- for the probability of words co-occurrence in non-
spam [1].

III. DECISION RULES BASED ON BAYES THEOREM

To estimate the probability that word belongs to one of
three categories (spam, non-spam, unidentified messages) we
consider the two methods of classification. In this case we
apply Bayes formulas using a priori knowledge [1].

We introduce two hypotheses for any given message:

AH if the message is a spam,

BH if the message is a non-spam.

Further, we introduce the following notation:

aF is the total quantity of spam messages;

bF is the total quantity of non-spam messages;

ba

a
a

FF

F
p


 is a priori probability that a message is a

spam;

ba

b
b

FF

F
p


 is a priori probability that a message is not

a spam;

a

a
a

P

P
O




1
is a priori expectations that a message will

be a spam;

b

b
b

P

P
O




1
is a priori expectations that a message will be

a non-spam.

Then basing on Bayes theorem using a priori knowledge
we obtain:

ba

a
A

OBPOAP

OAP
HP






)()(

)(
)(- a posteriori

probability that a message is a spam;

ba

b
B

OBPOAP

OBP
HP






)()(

)(
)(- a posteriori

probability that a message is non-spam.

The probabilities)(AP and)(BP are estimated

according to (3) and (4).

Given algorithm is implemented in spam detection and
filtering system for websites. [2].

IV. DECISION RULES BASED ON FISHER’S METHOD

According to Fisher method all probabilities are multiplied
together in a similar manner to Bayes method, then the natural
logarithm is taken of the product and the result is multiplied by
-2. To do this we introduce variable hisqv, which is estimated
by the following expressions:

155 of 174

))(ln(*2 APhisqv 
 or

))(ln(*2 BPhisqv 
,

where probabilities)(AP and)(BP are calculated

according to (3) and (4).

Fisher proved that if the set of independent and random

probabilities (3) and (4) is given, the value))(ln(*2 AP

follows the distribution of
2χ with 2n degrees of freedom (n –

the number of words in the document):

  


x

n

tn

dt
n

et
xF

0

2/1

)(2
)(, (5)

where Г(n) is the gamma function.

In view of foregoing using a representation of the gamma
function of even argument (5) can be written as:

 dxex
n

xF x

x

n

n

2/

0

1

)!1(2

1
)(


 │x = hisqv . (6)

The calculation of the factorial and the integrand in (6)
could cause the overflow error due to floating point numbers
range in PHP programming language. Thus the recurrence
formula is used in the calculation algorithm. Calculation the
probability of (6) is implemented by Gaussian quadrature
formula with 15 nodes:

 





b

a

n

i

ii tfA
ab

dttf
1

),(
2

)(

where 2/)(2/)(ii xababt  , and ix are the

nodes of Gaussian quadrature formula;

iA are the Gaussian coefficients, (15,...,2,1i) [3]. In

our case 0a , hisqvb  .

The value returned by the function)(hisqvF is low if a

text contains many spam conditions. We need the opposite
result to rate the message correctly. For this purpose we
subtract the value from 1. The use of this subtraction for a large
number of non-spam conditions allows us to get the probability
that message is not spam.

However the Fisher method is not symmetrical. We need to
combine the probabilities of spam and non-spam into a single
value in the range between 0 and 1. For this we use the Fisher
index:

2

)()(1 BA HPHP
I


 , where:

))(ln(2(1)(APFHP A  is the probability that a

document belongs to spam;

))(ln(2(1)(BPFHP B  is the probability that a

document belongs to non-spam [4].

V. OPTIMIZATION CRITERIA FOR GRADING MESSAGES BASED ON

STATISTICAL METHODS

Let’s assume that all set of conditions is divided into

classes A and B, where A – class of spam messages, and B –

class of non-spam messages. The task of assigning a message

to any of these classes is not directly connected to the
statistical verification of the following hypotheses: simple

hypothesis HA: XA against the alternative HB: XB, where

X is the message qualifying condition. As we know from the

math statistics, if a message appertains to class A and it was

qualified as class B, it will result in 1st type error with the

conditional probability of α - level of importance. It will be

an error of the alternative hypothesis selection HB instead of

the correct HA. If HB hypothesis is fair but, nevertheless, HA

was selected, the 2nd type error will occur with the conditional

probability of  .

The 1st type error or false-negative error occurs if the spam

filter erroneously leaks an undesired message through

identifying it as non-spam (spam leakage or insufficient

method completeness). Whilst the spam filter is capable of

identifying a large share of undesired messages, the task of

minimizing the number of faulty filtering of desired (non-

spam) messages may become a higher priority, i.e. the task of

2nd type of error minimization.
The 2nd type error or false-negative error occurs if the

spam filter erroneously classifies a legitimate message as

spam (faulty triggering or method accuracy). The spam filter

will be efficient with a lower number of such errors, i.e. with

minimal 2nd type error level. However currently all antispam

systems demonstrate correlation between 1st and 2nd type

errors.

The classifiers normally admit the compromise between

the acceptable level of 1st and 2nd type errors, and use the

threshold values for decision-making, which may vary. This

results in the “strictness” or “softness” of the classifier. The
level of significance set during the statistical hypothesis

verification is taken as the threshold value. Whereas, the

increase of the filter sensitivity leads to the increased

occurrence of 1st type errors (spam leaks), and decrease of

sensitivity – to increased occurrence of 2st type of error (false

triggering).

VI. BAYES OPTIMIZATION CRITERION

We need to consider the losses related to 1st and 2nd type

errors for evaluating the classification quality. For this we

need to split the space of condition X into two semispaces XA

and XB with point x0. Let’s define c1 as the conditional price of

1st type error and c2 – conditional price of 2nd type error, P(A)
– a priori probability of A class, P(B) – a priori probability of

class B, P(A) + P(B) = 1. The values c1 and c2 depend on the

price matrix coefficients C2x2={c ij} and on the 1st and 2nd type

errors:

156 of 174

 c1 = c12 α+ c11 (1 - α), (7)

 c2 = c21 β+ c22 (1 - β). (8)

These values are also called conditional risks with proven
fairness of hypotheses HA and HB , respectively.

According to the decision making theory, we introduce the

decision rule of classification, which minimizes the function

of losses (risk) [3]:

)((A) 21 BPcPcR  . (9)

where c1 and c2 are determined by (7) and (8).
Function (9) represents the average risk, which depends on

the threshold value x0, because the values c1 and c2 depend on

the x0 value through type I and type II errors, therefore these

errors are correlated.

Minimum value Rmin of risk function (9) at the point x0 is

called Bayes risk.

 
 )(

)(

1112

2221

2

1

AP

BP

cc

cc

Xf

Xf





 , (10)

where    XfXf and
2

1
 are the probability density

distributions of X condition on A and B classes respectively.

The right part in (10)

)(

)(

1112

2221

AP

BP

cc

cc





 is called likelihood ratio, which is

constant for the selection of сij. Thus, if the inequality

 
 )(

)(

1112

2221

2

1

AP

BP

cc

cc

Xf

Xf





 is true, the observable vector Х

is related to A class; if the inequality

 
 )(

)(

1112

2221

2

1

AP

BP

cc

cc

Xf

Xf





 is true, then observable

vector Х is related to B class. If the equality

 
 )(

)(

1112

2221

2

1

AP

BP

cc

cc

Xf

Xf





 is true, the observed vector Х

is related to one of the classes A or B. The latter expression is

the equation for the boundaries of A and B classes. This

decision rule is related to Bayes rules [5].
The technique can be applied to many practical problems

formulated in terms of statistical decision making theory with

assumption that probability densities  Xf
1

 and  Xf
2

are

known. In most practical cases functions  Xf
1

 and  Xf
2

are not known, and we need to determine estimations

   XfXf
~

 ,
~

21
 on training sets using approximation

method [5], which can cause the classifier to slow down.
Considering this fact we use the following approach: on the

stage of filter learning the estimations    XfXf
~

 ,
~

21
 are

determined on small training sets of 100-200 elements, and the

optimality criterion to get such estimations can be excluded

excluded from the program flow.

Results of numerous tests on training selections allowed

identifying optimal threshold values for decision-making:

95,0H x for higher threshold and 4,0L x for lower

threshold.

Thereby we set strict limits for spam and regular for non-

spam messages. Such threshold values provide minimum

leakage of desired messaged into spam, i.e. minimum false

triggering. However, it’s notable that any system administrator
will be able to easily set more convenient threshold values to

suit his needs.

VII. COMBINED FILTER

In order to receive more valid results of spam detection we

need to analyze multitudes of results of various filters and a

subset of their overlaps.

We suggest exactly this kind of approach to classifier

organization, which presumes the combined use of Bayes and

Fischer methods for improved the filtration quality based on

the analysis of subsets and set overlaps identified by both

methods (spam, non-spam, false triggering and spam leaks).

Let’s assume S={si} (i=1÷M) – multitude of documents
(messages), including both desired and spam messages; SB  S

and SF  S – multitude of documents, identified by Bayes and

Fischer classifiers, respectively. Then the subset resulting from

the overlap SB ∩ SF against all indicated categories may be

used for evaluating the quality of the combined filter operation

(see Fig. 1).

Fig. 1. Illustration of overlap degree of two subsets SB and SF.

The completeness of such overlap SB ∩ SF will also grade
the subsets SB\SF and SF\SB. As a measure of overlap degree of
two sets SB and SF we suggest to use the absolute measure
N(SB ∩ SF) – number of shared documents in these subsets.
Thus, the maximum value of measure of l category (spam, non-
spam, false triggering and spam leaks) will be used as the
optimality criterion for spam filter self-teaching evaluation:

.max)( l

F

l

BlN SS

Once the best values of sets SB and SF overlap are reached
across all categories, the administrator will be able to choose a
filter for further application (see Fig. 2).

As a benefit of the combined filter implementation the
evaluation of all components of the overall picture became
possible:

- spam messages caught by both filters;

- spam filters caught only by Bayes or only Fischer filters;

- simultaneous false triggering of both filters;

- false triggering of each individual filter;

157 of 174

- simultaneous spam leaks by both filters;

- spam leaks of each individual filter.

Fig. 2. The algorithm of combined filter accuracy evaluation

Before testing filter was trained on 1100 messages (400
spam and 500 non-spam). The tests were run on the flow of
1223 messages. The Bayes method showed 2.9 percent of the
false triggering, 9.8 percent of spam omission. The Fisher
method showed 1.5 and 4.5 percent accordingly. The combined
filter showed the best result with 1.0 and 4.5 percent.

The experimental results confirmed the feasibility of using
the selected filtering algorithms. Only having a whole picture,

we will be able to make a reasonable comparison of the
combined filter self-teaching quality.

[1] E. Mezenceva, V. Tarasov, “Securing computer networks. The method

of multi-module spam filtering on websites,” Information Technologies,

vol. 6, pp. 18-22, 2012 (in Russian).

[2] E. Mezenceva, “The software system of recognition and spam filtering
on the sites,” Certificate of state registration of the computer program

№2011619160, [Registered in the Computer Program Registry,
Moscow, on November 25

th
, 2011] (in Russian).

[3] S. Nikolskiy, Quadrature Formulas. “Nauka”, Moscow, 1974 (in

Russian).

[4] E. Mezenceva, V. Tarasov, “Computer networks security. Web
programming of the multi-module spam filter,” Software Engineering,

vol. 4, pp. 27-32, 2012 (in Russian).

[5] E. Mezenceva, V. Tarasov. “An optimal filter construction based on
combining statistical classifiers,” Information and communications

technologies, book 1, vol. 4, pp. 53-57, 2013 (in Russian).

.

158 of 174

Statistical data handling program of Wireshark analyzer and incoming

traffic research

Veniamin Tarasov

Volga Region State University of

Telecommunications and Informatics

Moskovskoe sh. 77, Samara, Russia

Email: tarasov-vn@psuti.ru

Gleb Gorelov

Volga Region State University of

Telecommunications and Informatics

Moskovskoe sh. 77, Samara, Russia

Email: gleb_fox@bk.ru

Sergey Malakhov

Volga Region State University of

Telecommunications and Informatics

Moskovskoe sh. 77, Samara, Russia

Email: malakhov-sv@psuti.ru

Abstract— The paper presents a plugin to the Wireshark

traffic analyzer to calculate the moments of the random variable –

the interval between packets of incoming traffic. The article also

presents the analytical solution for the average waiting time for a

QS type H2/M/1. Here H2 is the 2nd order hyperexponential

distribution law of the input flow time intervals. The final result is

obtained as a solution of Lindley’s integral equation using the

method of spectral decomposition. It is shown that in this case the

distribution laws of intervals between input flow requirements can

be approximated at the level of their three first moments. The joint

use of these results allows to fully analyze the incoming traffic by

queuing methods.

Keywords— traffic analyzer, wireshark program, numerical

characteristics of random variables, Lindleys equation, method of spectral

decomposition

I. INTRODUCTION

The identification of the distribution laws of intervals is
particularly sophisticated problem, at the same time the traffic
as a random process tends to be constantly changing. It is
known, the queuing theory is based on the laws of distribution
of intervals between income and service requirements.
Therefore it is important to know the numerical characteristics
of these intervals or their moments. In this paper we propose to
use the Wireshark analyzer to determine such characteristics
[1].

II. DESCRIPTION OF THE PROGRAM WIRESHARK

Wireshark (previously, Ethereal) is a traffic analyzer for
Ethernet computer networking technology and some others. In
June 2006 the project was renamed Wireshark due to
trademark issues [1].

The functionality provided by Wireshark is very similar to
the capabilities of the tcpdump program, but Wireshark has a
graphical user interface and additional features for sorting and
filtering information. The program allows the user to view all
the traffic through the network in real time, shifting the
network card to promiscuous mode. (Eng. Promiscuous mode)
(Fig. 1).

Wireshark is an application that can display the structure of
a wide variety of network protocols, and therefore allows
parsing network packets, showing the value of each field
protocol at any level. The use of Pcap packet capture library
allows capturing data only from those networks that are
supported by this library. However, Wireshark can work with

multiple formats of input data an open data files captured by
other programs that enhances the capture.

The features include:

 deep analysis of hundreds of protocols, with the

regular addition of new ones;

 capturing network traffic in real time, followed by

analysis at any time;

 standard three-pane packet browser (standard package

has three regions);

 cross-platform: there are versions for most types of

UNIX, including Linux, Solaris, FreeBSD, NetBSD,

OpenBSD, Mac OS X, as well as for Windows;

 The captured from network information can be viewed

by using the graphical user interface or by using the

TTY-mode utility TShark;

 the most powerful sorting and filtering in the industry;

 a great opportunity to VoIP analysis;

 read / Write a large number of file formats capture:

tcpdump (libpcap), Pcap NG, Catapult DCT2000,

Cisco Secure IDS iplog, Microsoft Network Monitor,

Network General Sniffer® (compressed and

uncompressed), Sniffer® Pro, and NetXray®, Network

Instruments Observer, NetScreen snoop, Novell

LANalyzer, RAD-COM WAN / LAN Analyzer,

Shomiti / Finisar Surveyor, Tektronix K12xx, Visual

Net-works Visual UpTime, WildPackets EtherPeek /

TokenPeek / AiroPeek, and many other;

 capture files that compressed with gzip can be

unpacked immediately;

 capturing real-time data can be effected via Ethernet,

IEEE 802.11, PPP / HDLC, ATM, Bluetooth, USB,

Token Ring, Frame Relay, FDDI, and the other

(depending on the platform);

 decoding support for many protocols, including IPsec,

ISAKMP, Kerberos, SNMPv3, SSL / TLS, WEP, and

WPA / WPA2;

Highlighting rules can be applied to the package list for

quick, in-intuitively analysis;

 output data can be exported to XML, PostScript®,

CSV, or plain text.

159 of 174

Fig. 1. The example of a network traffic capture by Wireshark

CSV is one of the formats of data export, convenient for

viewing (Fig. 2). This file can be opened in any text editor or
spreadsheet editor for analysis and calculation of performance.

However, it is difficult to process the data in case of intense
traffic even in the spreadsheet editor. Furthermore the traffic
data can be stored in more than one file. This article describes a
software solution for the calculation of the numerical
characteristics of packet arrival intervals. The main advantage
of this analyzer is his work on a small scale of time
(microseconds), in contrast to the same program NetFlow
Analyzer, which captures packets-per-minute rate.

III. DETERMINATION OF THE MOMENTS OF THE

INTERARRIVAL TIME OF INCOMING TRAFFIC

The program developed by the authors of the present paper
allows, in addition to the analyzer, to retrieve the packet arrival
times, isolated the incoming traffic from the entire data set
received by Wireshark. Next, using the well-known formulas
of mathematical statistics, it can be defined the moment
characteristics of the timing. We use the statistics to the third
order statistical properties, which provides representations of
the distribution of the intervals.

For example, the coefficient of variation shows the
difference from a Poisson traffic flow and with asymmetry

gives an indication of the degree of weight in the distribution
tails.

The average value of the interval between adjacent packets

 


 
N

k
kk tt

N 0
1

1
τ ,

where kt – packet arrival times, N – the number of intervals

analyzed.

Custom dispersion
22  tD ,

where  


 
N

k
kk tt

N
t

0

2

1
2 1

 – the second initial moment.

The coefficient of variation  /c , where D .

Asymmetry
3323 σ/)23( ttAs ,

where  


 
N

k
kk tt

N
t

0

3
1

3 1
.

160 of 174

Fig. 2. The example of the data exported to the CSV format

If a large amount of data is divided into several blocks, then
these formulas are determined by the average group, and then
their mean values.

IV. TIME DATA ANALYSIS SOFTWARE AND RESULTS

To calculate the moments of the interval between adjacent
packets, we developed a program, which selects only the data
related to the inbound packet from the input file, containing the
capture of a network traffic data, and calculates intervals and
moments.

The features include:

 sample timing of the data packets arrived at said
host;

 calculation of the time intervals between the
incoming packets;

 calculation of the torque characteristics for
intervals of received packets;

 saving time of the data packets arrived in binary
and text format;

 saving data packet arrival intervals in binary and
text formats;

 output and saving torque characteristics in a text
format;

The program handles text files containing the data as
shown in Fig. 2 or similar.

For the program the two classes (in terms of object-oriented
programming) are developed:

 TrafficLogParams – stores the packet arrival time,
their intervals and calculates the torque
characteristics. Also provides the methods to store
and download the data from files;

 LogParser – static class that produces an analysis
of the input file and adds data to the
TrafficLogParams class.

The input of LogParser main method is the file name and
IP-address of the host. Each line of the source file is processed

and from the selected data on the time and two IP-address - the
address of the sender and the recipient's address. If the
recipient field matches the host IP-address, then the packet
arrival time is added to the array such times in
TrafficLogParams class.

public static TrafficLogParams
TextFileParser(string fileName, string ip, bool
isIncoming)
{
TrafficLogParams log = new TrafficLogParams();
StreamReader file = new StreamReader (fileName);
string[] currentLine;
int lineNumber = 0;
int ipIndex;
if (isIncoming)

ipIndex = 2;
else

ipIndex = 1;
while (!file.EndOfStream)
{

currentLine = GetDataArray
(file.ReadLine().Trim());
lineNumber++;
try
{
if (MinimizeIp (currentLine[ipIndex]) ==

MinimizeIp (ip))
{
log.AddTime(ParseDouble(currentLine
[0]));
}
}
catch (FormatException ex)
{
MessageBox.Show(string.Format("{0}\nСтрок

а = {1}", ex.Message, lineNumber));
}

}
file.Close();
return log;
}

161 of 174

The second most important method of LogParser splits the
input string into elements, checking every element belonging to
the format of time or IP-address, and returns them as an array.

private static string[] GetDataArray(string
input)
{
string[] data = new string[3];
string currentValue = "";
int symbolIndex = 0;
int valueIndex = 0;
while (symbolIndex < input.Length && valueIndex
< 3)
{

while (symbolIndex < input.Length &&
(char.IsDigit(input[symbolIndex]) ||
IsSeparator(input[symbolIndex])))

{
currentValue += input[symbolIndex];
symbolIndex++;
}
if (currentValue != "")
{

if ((IsDouble(currentValue) ||
IsIp(currentValue)))

{
data[valueIndex] = currentValue;
valueIndex++;
}
currentValue = "";
if (valueIndex >= 3)
{
symbolIndex = input.Length;
}
}
while (symbolIndex < input.Length &&

!char.IsDigit(input[symbolIndex]) &&
!IsSeparator(input[symbolIndex]))
{
symbolIndex++;
}

}
return data;

}

The method checks if the input symbol is a separator "." or
",". Such testing is important only for the time data, as in some
countries, the fractional part is separated by a comma (for
example, in Russia), rather than a point. It is for the reason,
when a string representation of a number is converted to its
equivalent real number denoting the time, the standard method
is not used programming language, and its modification
depends on the regional settings.

private static double ParseDouble(string value)
{
if (CultureInfo.CurrentCulture
.NumberFormat.NumberDecimalSeparator == ".")
{

value = value.Replace(',', '.');
}
else
{
value = value.Replace('.', ',');
}

return double.Parse(value);
}

When comparing the IP-address of the host with the IP-
address on the current line of the log file to minimize the usual
pro-IP-address to the general form. In other words, IP-address
will be equal 010,014,000,011 10.14.0.11.

The program was used to analyze the data file of the traffic

coming to the proxy server of the university with almost an

hour-long data set. The input file contains more than 2150000

rows, which could not be processed manually. Were obtained

the following results (Fig. 3):

Fig. 3. The result of the analysis program log files

V. RESEARCH OF QUEUING SYSTEM H2/M/1

The data indicate that the analyzed traffic differs from a

Poisson (coefficient of variation c = 3,43 instead of 1), the

asymmetry value As = 10,25 indicates that the distribution of

intervals between the packets of traffic relates to a heavy-

tailed distributions. For example, for Poisson flow of As = 2.

The calculation of the characteristics of such traffic requires

appropriate mathematical apparatus. For the analysis of such

traffic the authors of [2] proposed the new results for the

system H2/M/1. We will describe the basic results from the

article.

It is known, as example from [3], to study queuing systems

(QS) G/G/1 the integral equation of Lindley is used:

     











 



0,0

0,

y

yudCuyW
yW

y

, (1)

where  yW is the probability distribution function (PDF), the

waiting time in line requirements  uC is the PDF limiting

random variable, 1lim 


 nnn
n

txUU , and nx is the time

of the n-th service requirement nC , and is the time interval

between the 1nt arrival of the requirements nC and 1nС .

To solve (1), a spectral method is used that reduces to

using the expression     1**  sBsA and finding a

representation as a product of two factors, which would give a

rational function of s [3]. Thus, to find the latency distribution,

the following spectral decomposition is used:

162 of 174

   
 
 s
s

sBsA







 1** (2)

where  sψ and  s are rational functions of s, which can

be factored. The functions  sψ and  s must satisfy

certain conditions [3]:

1. For   0Re s , the function  sψ is analytic without

zeros in the half-plane;

2. For   Ds Re , the function  s is analytic without

zeros in the half-plane, (3)

where D is a positive constant determined from the following

condition:

 


 Dtt e

ta
lim .

Moreover, the functions  s and  s must have the

following properties:

 
 

 
 

.1limRefor

;1lim0Refor



















s

s
Ds

s

s
s

S

S
 (4)

We know that all the main characteristics of QSs are

derived from the average waiting time, and therefore all

subsequent calculations will be performed with respect to the

average waiting time in the queue requirements.

Consider QS H2/M/1, where H2 designates the

hyperexponential distribution 2nd order arrival time

requirements in a density function

    tt
epepta 21

21 1


 , (5)

and M – notation exponential law services with a density

function

  tetb  . (6)

The Laplace transform of (5) has the form

   
2

2

1

1

λ

λ
1

λ

λ
*







s
p

s
psA , (7)

and function (6):

 





s
sB* . (8)

Now we define (2) for the distributions (5) and (6)

from (7) and (8):

 
 

 

          
   

     
   

,

1

11

21

2110

21

211221

2

2

1

1

sss

ssssaa

sss

sssspsp

ss
p

s
p

s

s











































 (9)

where the coefficients 210 a ,   211 1  ppa .

The numerator of the right side of (9) is a third degree

polynomial  12

2 cscss  , and it remains to determine the

coefficients for the decomposition of the factors.

The coefficients of the polynomial are:

   21211 1  ppc ,  212c . Then the

expression (9) can be factored:

 
 

 
   

  
   sss

sssss

sss

cscss

s

s



















21

21

21

12

2

,

where)2/4/(21

2

21 cccs  is the negative root of the

quadratic equation in the numerator, and is the

2/21

2

22 cccs  positive root.

Further, omitting some calculations, we obtain the Laplace

transform of the density function of the waiting time:

 
 
 1

1*
ss

ss
sW




 . Hence

     
 21

2

111*

ss

sssss

ds

sdW




 .

Using the properties of the Laplace transform, we find that the

average waiting time is

 










11*

1
2

1

2

1

22

1

0 ss

ss

ds

sdW
W

S

. Finally, the

average waiting time is




11

1s
W , (10)

where 2/4/ 21

2

21 cccs  ,    21211 1  ppc ,

 212c .

VI. PRACTICAL USE OF THE RESULTS.

Consider the result (10) for example, the input distribution,

with a heavy tail (fig. 3). Using the Laplace transform (7) we

can determine the initial moments of the distribution (5):

 

 

 

.

166

122

1

3

2

3

1

3

2

2

2

1

2

21













































pp

pp

pp

Next, substituting the results obtained in step 1 from the

initial moments of the distribution of intervals between bursts

to determine the unknown parameters of the input distribution

(5): 1 , 2 and p, we obtain the following system of

equations:

 

 

 






































005-e5050.5
166

004-e3258.3
122

003-e0978.5
1

3

2

3

1

2

2

2

1

21

pp

pp

pp

 (11)

The solution of (11) in the package Mathcad yields the

following results: p≈ 0.950, 1 ≈ 417.985, 2 ≈ 17.556.

In case of load of the channel equals to 0.4, intermediate

parameters: 1c ≈ 10999,4; 2c ≈ -54.655, 1s ≈135.707 and the

average waiting time
310329.5 W s.

163 of 174

For comparison, let us look to the average waiting time for

an M/M/1 system. In this case, the intensity of service equals

to 196.490 , and the channel loading 4.0 .

Then the average waiting time of packets

31036.1
4.01

196.490/4.0

1

/ 






W s.

Thus the queuing model taking into account the

distribution and its weight in the tail of the input, gives a delay

about four times larger than the classical model.

CONCLUSION

This paper has presented how optimistic are the results

given by classical M/M/1 system in comparison to the system

in the case of high H2/M/1 weightiness tail of the distribution

of the input stream. Therefore, the approach can be

successfully applied in the modern teletraffic theory where

packet delays in the incoming traffic are significant.

Note that the distribution, which contains three unknown

parameters 1 , 2 and p, allows to use the moment equations

to approximate the unknown input distribution in the first

three moments.

REFERENCES

[1] Wireshark official web-site URL: http://www.wireshark.org/
[02.02.2014]

[2] Tarasov V.N., Bakhareva N.F., Gorelov G.A. Mathematizheskaya model

trafica s tyazhelohvostnym raspredeleniem na osnove sistemy massovogo
obsluzhivaniya Н2/М/1. [Mathematical model of traffic from heavy-tailed

distributions with based queuing system H2/M/1]. Infocommunicationye

tehnologii, 2014, no. 3, pp.36-41.
[3] Kleinrock L. Queueing Theory. Tran. from English. edited by V.I.
Neumann. M. Mechanical Engineer-ing, 1979.

164 of 174

http://www.wireshark.org/

Automatic Virtual Link Configuration for Simple
AFDX Networks

Arthur Yalaletdinov, Alexey Khoroshilov
Institute for System Programming

Moscow, Alexander Solzhenitsyn st.,25.
Email: {yalaletdinov, khoroshilov}@ispras.ru

Abstract—The paper discusses a problem of configuring
AFDX networks, which requires to find answers on several
questions: how to distribute communication data streams by
virtual links, how to route these virtual links via network switches
and how to choose transmission parameters of virtual links,
AFDX switches and end-systems. A simple solution is proposed
that allows to automatically solve the problem for small-to-
medium sized networks.

I. INTRODUCTION

Until recently, avionic systems have been built according to
a federated architecture. Federated architectures have hundreds
of wires and device-specific interfaces. It means that with the
ever increasing number of embedded avionic functions, main-
tenance and analysis becomes critical. The Integrated Modular
Avionics (IMA) is modern concept which replaces federated
architecture of airborne platforms [1]. In a federated archi-
tecture, each system has private avionic resources, whereas
in an IMA architecture avionic resources can be shared by
several systems. Communication level of an IMA system
based on Avionics Full Duplex Ethernet (AFDX) architecture.
Processing units (called Core Processing Modules or CPM) of
IMA system communicate using an AFDX network. AFDX
is developed based on IEEE 802.3 standard (Ethernet) and it
aims at providing reliable data communication for avionics
applications [2].

The core idea of AFDX is a Virtual Link (VL). If make
an analogy with federated architecture it replaces point-to-
point wired data link but virtual link is point-to-multipoint
unidirectional multiplexed connection. Only one End System
within the Avionics network should be the source of any one
VL. Each VL characterised by two parameters:

• Bandwidth Allocation Gap (BAG) is minimum time
frame between two consecutive frames. The allowed
BAG values calculate by formula BAG = 2k, k =
0, .., 7.

• Maximum Frame Size (MFS) defines the maximum
size of the transmitted AFDX frames

BAG and MFS give a regulation-mechanism for network
bandwidth used by the given VL.

So, in section II we formulate problem statement. Then,
section III presents an overview of related works in the
problem sphere. In section IV we talk about simple VL routing
method based on Breadth-first search algorithm. And finally,
we make some conclusions about methods and approaches.

II. PROBLEM STATEMENT

So, we have a physically preconfigured AFDX net-
work. In other words we have a set of CPMs CPMS =
{cpm1, .., cpmn}, a set of switches SW = {sw1, .., swl} and
a set of wired connections between CPMs and switches ports
W . Moreover CPM and switch can be connected through only
one link (one CPM port to one switch port), but for connecting
two switches it is possible to use several ports of each of them.

Each CPM cpmi defined by three parameters:

• tick - tick time (ms)

• opT ime - atomic operation time (ticks)

• maxUtil maximum processor utilization

There is a set of partitions PRTS = {p1, .., pm}. For each
one of them we know

• period - period of partition (ms)

• duration - duration of partition (ms)

• mms - maximum message size transmitted to desti-
nation partition without fragmentation, 17 6 mms 6
1471 (bytes).

• dests(pj) = {p1j , .., plj} - set of destination partitions

Further more it is important to keep in mind network latency
requirements. So, delay between the transmission message by
the source partition pi and the reception by the destination pj
is upper bounded with d(pi, pj). Let D = {d(pi, pj)} the set
of these delays.

Aggregation and segregation play role of additional con-
straints. In case of aggregation it means that two or more
partitions must be placed on one CPM. Segregation is opposite.
Let’s denote AC ⊆ P × P - set of aggregation constraints. If
(pi, pj) ∈ AC - partitions pi and pj must be placed on some
CPM, else - partitions pi and pj don’t have that constraint.
And similarly SC ⊆ P ×P - set of segregation constraints. If
(pi, pj) ∈ SC - partitions pi and pj must be placed on different
CPMs, else - partitions pi and pj don’t have that constraint.

The problem is to distribute partitions on CPMs, generate
set of virtual links V LS with their transmission parameters
and route them satisfying all constraints such as aggregation,
segregation, network latency requirements.

165 of 174

III. RELATED WORKS

The work [3] dedicated VLs defining and routing. Authors
first show how to set the BAG and MFS parameters of a VL so
as to minimize the reserved bandwidth while transmitting the
data within their maximum delivery time. Next they consider
the case where a source partition has to send multiple messages
to the same set of receivers. And finally, proposed an exact
mixed-integer-linear programming (MILP) formulation of the
routing problem as to maximize the minimal residual capacity
of the links.

Authors of work [5] claim that the weakness of previous
approach is that the optimized parameters found in a single
virtual link cannot be feasible when they are used in finding
feasible configurations of multiple virtual links in an AFDX
network switch and focus on finding feasible BAG and MTU
parameters of VLs in an AFDX switch for a given VL of
messages. In that paper proposed solution of this problem in
a one AFDX switch.

Next, some authors in work [4] propose two heuristic
algorithms to configure the number of VL in ADFX networks.
By the proposed algorithms, two or more flows are grouped in
one VL only if the required bandwidth for VL being merged
flows is less than sum of bandwidth of merging flows.

In all these papers assumed that AFDX network physically
preconfigured and partition distribution is defined.

The most of works are devoted to AFDX network analysis.
Different methods and approaches has been proposed, such
as Trajectory approach, Network Calculus, Response Time
Analysis (RTA) [6], [7]. These methods allow to estimate
transmission delay at the level of ES.

The paper [8] presents approach to optimizing setting of
priorities of the AFDX traffic flows, with the objective to
obtain tighter latency and queue-size deterministic bounds.
Those bounds are calculated by Network Calculus method.
Optimization method based on genetic algorithm.

Often for solving optimization problems are used genetic
algorithms (GA) . We have an experience with applying this
approach to AFDX network configuration problem. For an GA
it is necessary to set a metric function called “Selection oper-
ator” that can estimate “quality” of generated population. So
Network Calculus and Trajectory methods are a good choose
to create that function. In our case the role of population was
played by configuration of AFDX network (defined physical
connections and VLs routes) [9].

So, really there are three approaches here:

• (mixed) integer linear programming

• greedy algorithm approaches

• heuristic approaches (such as genetic algorithms)

The first way‘s success depends on quality and fullness of
formulation the problem as a MILP problem. Greedy algorithm
usually easy to design but needs a proof of correctness.
Heuristic approaches such as genetic algorithms are hard to
implement and require serious analysis and selection of options
of implemented algorithm.

In all considered papers solution constructed by splitting
the problem on the two independent parts. The first is defining
partition distribution and the second is configuring and routing
VLs. Partition distribution algorithms don’t take into consid-
eration how partitions communicate. But it is necessary to use
information about transmitted packet sizes and their periods
simultaneously in both problems.

IV. ROUTING ALGORITHMS

Proposed algorithm shown in pseudo code 1.

First of all, we create partition distribution and try to
build schedule for all CPMS. For this purpose we use the
corresponding functionality of our MASIW tool set [10]. In
the code below it is denoted as functions DistributePartitions()
and BuildShedules() (see details in[11]).

On the next step we distribute communication data streams
by virtual links and defines its transmission parameters in
ConfigureVLs() function. It is implemented following the ideas
described in [3].

Algorithm 1 Configure and routing
counter = 0, V LS = {}
while counter < N do

PD = null
repeat

PD = DistributePartitions(CPMS,PRTS,AC, SC,D)
if BuildShedules(PD) = true then
break

end if
until PD 6= {}
if PD = {} then

break
end if
V LS = ConfigureV Ls(PD,D)
//(here VLs transmission parameters are defined, but
//VLs are not routed)
for V L in V LS do
RouteAndChoose(V L)
//(here VL is updated with routing information)

end for
if NetworkAnalyse(CPMS,SW,W, V LS) = true
then

break
end if
counter = counter + 1

end while
return V LS

Then for each virtual link RouteAndChoose() function
builds a route via AFDX network switches. It considers the
network as a graph where vertexes are switch ports and edges
are any connections between ports (even inside switch). The
routing starts breadth-first search of shortest paths in the graph.
It chooses a random shortest path for the first time, but if
there is another virtual link that starts and ends in the same
AFDX switch, it chooses another shortest path by Round-
Robin. The final step is to check correctness of the network
against network latency requirements, queue size limits, etc.
That is implemented using existing functionality of static
network analyzers of MASIW tool set.

166 of 174

V. CONCLUSION

The paper presents a work in progress that is aimed to au-
tomatically configure small-to-medium sized AFDX networks.
We proposed a simple approach that was implemented within
MASIW tool set, but its systematic evaluation is still an open
problem.

Another direction for future research is to investigate more
sophisticated routing algorithms that take into account load
level of particular AFDX switches or ports. It should allow to
avoid building invalid configurations, where some of AFDX
switches are overloaded.

REFERENCES

[1] Richard L.Alena, John P. Ossenfort IV, Kenneth I. Laws, Andre Goforth,
Fernando Figueroa. Communications for Integrated Modular Avionics,
Aerospace Conference, 2007 IEEE, ISSN :1095-323X

[2] AIRCRAFT DATA NETWORK PART 7. AVIONICS FULL DUPLEX
SWITCHED ETHERNET (AFDX) NETWORK, June 27, 2005

[3] Ahmad Al Sheikh, Olivier Brun, Maxime Cheramy, Pierre-Emmanuel
Hladik. Optimal Design of Virtual Links in AFDX Networks. 2012

[4] YoungJun Cha and Ki-Il Kim. Heuristic Algorithm for Virtual Link
Configuration in AFDX Networks. Department of Informatics, Engi-
neering Research Institute, Gyeongsang National University, Jinju, 660-
701, Korea

[5] Dongha An, Hyun Wook Jeon, Kyong Hoon Kim, and Ki-Il Kim.
A Feasible Configuration of AFDX Networks for Real-Time Flows
in Avionics Systems. Department of Informatics Gyeongsang National
University, Jinju, 660-701, South Korea

[6] Tawk, M., Liu, X., Jian, L., Zhu, G. et al.. Optimal Scheduling and
Delay Analysis for AFDX End-Systems. SAE Technical Paper 2011-
01-2751, 2011, doi:10.4271/2011-01-2751.

[7] Henri Bauer, Jean-Luc Scharbarg, Christian Fraboul. Applying Tra-
jectory approach to AFDX avionics network. Universite de Toulouse
IRIT/ENSEEIHT/INPT - 2, rue Camichel 31000 Toulouse, France

[8] F. Frances, C. Fraboul, J. Grieu. Using Network Calculus to optimize
the AFDX network

[9] S.Shubin. Synthesis of architectural models of real-time control systems
based on genetic algorithms, Technical report ISP RAS, 2013

[10] Buzdalov D.V., Zelenov S.V., Kornykhin E.V., Petrenko A.K., Strakh
A.V., Ugnenko A.A., Khoroshilov A.V.. Tools for System Design of
Integrated Modular Avionics, Proceedings of the Institute for Sys-
tem Programming of RAS, volume 26, 2014. Issue 1. pp. 201-230.
DOI:10.15514/ISPRAS-2014-26(1)-6

[11] Gruzdev A., Zelenov S. Sufficient condition for the impossibility of
building schedule for real-time systems of strict periodicity, Technical
report ISP RAS, 2015

167 of 174

Effective Use of Cloud Computing Resources in
the Distributed Information Systems for Providing

Quality Multimedia Services

Irina Bolodurina
Department of Applied Mathematics

Orenburg State University
Orenburg, Russia

prmat@mail.osu.ru

Denis Parfenov
Faculty of Distance Learning Technologies

Orenburg State University
Orenburg, Russia

fdot_it@mail.osu.ru

Abstract—Existing approaches to the use of cloud computing
resources is not efficient. Modern multimedia services require
significant computing power, which are not always available. In
this paper, we introduce an approach that allows more efficient
use of limited resources by dynamically scheduling the
distribution of data flows at several levels: between the physical
computing nodes, virtual machines, and multimedia applications.

Keywords—cloud computing, cloud system, computing node,
computing resource, highload information systems, load balancing,
quality of multimedia services, virtual machine, virtual resource
component;

I. INTRODUCTION
The information flows between computing nodes in local

and global networks has been steadily increasing each year. It
is true not only for large data processing centers, but also for
locally datacenters (DC) specializing in industry, economy,
health and so on. An important area to use local DCs is
education. Universities are increasingly using their own DCs
to support integrated automated information systems (IAIS),
providing end users with network multimedia services.

The need for more resources is one of the problems of
high-loaded IAIS. The consumption of resources unlike the
available volumes grows exponentially. [5]. The analysis of
request flows to IAIS services shows their structure
heterogeneity [1]. Modern IAIS services are based on the
concept of cloud computing. However, the problem of limited
resources used for cloud systems remains relevant [4].

The use of virtualization and cloud computing allows to
consolidate several online services located on virtual machines
(VM). It reduces the number of physical servers. But to
effectively deploy applications on VM it is necessary to solve
the problem of resource planning based on variable loads and
service level agreement (SLA) [3]. The most flexible
architecture of cloud computing is the infrastructure as a
service (IaaS). This architecture allows the user to control a

pool of computing resources. This approach can imply the
start of operating systems and applications, and the creation of
virtual machines and networks. Thus, cloud computing leads
to significant cost savings due to the increased load
density [2].

However, the above is not enough to consolidate
computing power, to reduce the infrastructure overheads and
to reach optimal performance of cloud systems. To use the
cloud infrastructure effectively new methods and algorithms
should be developed to control components of cloud systems.
It demands determining the formal structure of a cloud
system [6].

II. MODEL OF RESOURCE VIRTUALIZATION OF CLOUD SYSTEMS
In our research, we have developed a model of computing

resources of cloud systems. The conception of virtualization of
computing resources is based on abstractions representing the
tuples of relations between the interconnected elements of
subsets.

The cloud system can be represented as a set of
interconnected objects. They are computing nodes (Snode),
system storages (Sstg), network attached storages (Snas) and
scheduling servers (Srasp). The number of objects and the
content of each set may vary depending on the cloud’s size
and its use.

Each compute node can run multiple instances of virtual
machines represented as a set:

Snodei={VMi,1, VMi,2, …, VMi,k}, (1)
where k is the number of virtual machines on a compute

node i, i = 1...l (l – number of nodes).

Each virtual machine belonging to the set (1) can support
several applications and services represented as a set:

VMj={Appj,1, Appj,2, …, Appj,n}, (2)

168 of 174

where n is the total number of applications and services,
j=1... m (m - number of VMs).

The network attached storage includes a set of predefined
VM images.

Snasy={VMimgy,1, VMimgy,2, … VMimgy,p}, (2)
where y = 1 ... z (z - number of network attached storages).

Each VM image contains an operating system with
preinstalled software and predetermined hardware parameters.

VMimgy,z={OS1, OS2, … OSr}, (4)
The work of entire cloud system is performed using the

planning system for certain operations defined by the
scheduling servers.

Srasp={Rtask1, Rtask 2, … Rtaskf}, (5)
The distributed storage system usually consists of failover

RAID arrays Sstgf={RDsik1, RDsik2, …, RDsikd} containing
the information for multimedia services

RDsikd={Data1, Data2, …, Datas}, (6)
In addition, the cloud system also contains virtual and

physical switches for interconnection between all the
components in a network.

Each component of a cloud system Shcn={Snode, Snas,
Srasp, Sstg, VM …} has the following characteristics:

Shcn=(State, Mem, Disk, Diskn, Core, Lan), (7)
where State {“on”,“off”} is the state of the component;

Mem N is the size of RAM;

Disk N is the disk capacity for storage;

Diskn N is the number of storage devices;

Core N is the number of processor cores;

Lan N is maximum bandwidth of the network adapter;

The set of virtual machines can be divided into subsets
VMnode={Snode, Snas, Sstg, … } to isolate computing
resources for different services from each other.

The cloud system is a dynamic object changing at time t.
Its state can be formalized in an oriented graph form:

Shcn(t) = (Node (t), Connect(t), App(t)) , (8)
where Node(t)={Node1,Node2,…,Node} are active

elements included in one of the sets Snodei, Sstgj, Snask,
Sraspm;

Connect(t)={ Connect1, Connect2,…, Connect} are active
connections by users to the virtualized applications;

App(t)={App1, App2,… Appn} are active instances of
applications running on virtual resources.

So we determine the structure of a cloud system and
mechanisms of its component interaction. In such a system
simultaneous servicing heterogeneous user requests is not
trivial task.

To optimize the mechanism of access to information
system resources it is necessary to analyze the main data
flows transferred within the cloud system.

III. MODEL OF DATA FLOWS IN HIGHLOAD INFORMATION
SYSTEMS BASED ON CLOUD COMPUTING

For flows analysis in our study, we used information
systems of educational institutions. For analysis the most
popular multimedia services have been determined. The
research considered distance education systems (DES)
consisting of different interactive applications.

In our research has built a level classification of
applications:

 Level 1: The subsystem for monitoring the
students' knowledge in real time;

 Level 2: The subsystem of the electronic library;
 Level 3: The subsystem of webcasts and webinars.

In our study, we have determined the general features of
the use of the local DC’s equipment.

 the load on the key resources is periodic and
irregular;

 requests to multiple types of resources come at the
same time;

 load distribution is not optimal, which results in
loss of service at peak loads;

 up to 90% of the load is predetermined, as pre-
registration is used for access to resources;

 up to 70% of the load arises due to multimedia
educational resources.

Information flows at each level have their own
characteristics. The intensity of servicing requested flows in
the information system depends on the target application level.
In a study we use the statistical analysis of the load on the
most popular applications used in information systems of the
university. Evaluation time for requests to various applications
allow to forecast flows and ensure efficient allocation of
resources. We using the goodness of fit chi-square Pearson to
obtain data to test the hypothesis of distribution laws requests
for incoming flow. In general, the intensity of incoming and
service of a request flow for each class of applications is
determined by the distribution function, which is described by
the following distribution laws:

 for level 1 - Chi-squared distribution;
 for level 2 - Weibull distribution;
 for level 3 - Pareto distribution.

Flows of data transmitted in the IAIS are usually processed
in several phases. At the same time in each phase several
similar elements can be used providing balancing and load
sharing between the components of the information system.
The number of components in each phase depends on the
functionality of the information system and the number of
applications included in its composition. Suppose an
information system has the form:

},,{ 1 rSSIS  (9)
where iS - a component that performs data processing on

the basis of the incoming flow of user requests, i = 1..r (r – the
total number of components of the information system). The

Authors thank for support the Russian Foundation for Basic Research
(project 13-07-00198 A).

169 of 174

number of phases f in the flow path of user requests in an
information system depends on its architecture.

The purpose of each phase according to its location in the
processing sequence is:

 The first phase is the distribution of data flows
between the IAIS resources in the cloud;

 The second phase is the dynamic scaling of the
computing resources in the cloud;

 The third phase is data processing by user
applications using storage systems and databases.

The components of the third phase include nodes of
storage systems and database management systems for
providing access to multimedia services in the cloud.

In detail the set of components of an information system is
represented in form:

IS={S1
1,…,S1

n, S2
1,…,S2

m,S3
1,…,S3

k }, (10)
where Sj

i is the i component of the j phase;

mN, nN, kN are the numbers of components included
in the system for the respective phases f.

We also introduce the input components S0
i which transmit

data flows into an information system, and output components
S4

i receiving data flows from the cloud infrastructure.
Consequently, the set describing the information system is
transformed to:

IS={S0
1,…,S0

l,S1
1,…,S1

n, S2
1,…,S2

m,S3
1,…,S3

k S4
1,…,S4

p}, (11)
where pN, lN are the numbers of components in the

input and output of cloud information system.

Each component j
iS of the information system at any time

can service multiple requests from different users. In the
process of the user request data flows are generated upstream
and downstream of the component. Their individual
characteristics vary in time.

We designate all the incoming flows of component j
iS as

j
iX , and the outcoming as j

iY , where i is the number of the
components at the j service phase. Each request flow can be
described as a set of characteristics. Suppose, there are j

il

incoming flows and j
ip outcoming flows for a

component j
iS .

Then for the incoming flow =1.. j
il , we introduce a set of

characteristics:

 Tj
ik

j
i

j
i txtxtX)(,),()(),(

,
),(

,1
),(  (12)

where
),(

,1
j

ix is the intensity of receiving requests in each

incoming flow  of the component j
iS ;

),(
,2
j

ix is the service time of the request flow v of the

component j
iS ;

),(
,3
j

ix is the intensity of servicing requests of the request

flow v of the component j
iS ;

),(
,4

nj
ix is the service discipline of the flow  of j

iS , which
determines the order of service in accordance with the
prioritization algorithm in the information system;

),(
,5
j

ix is the service class of the flow  of j
iS ;

),(
,6
j

ix is the number of requests received from the flow 

of j
iS ..

For outcoming flow =1.. j
ip of the component j

iS the
feature set includes:

 Tj
ik

j
i

j
i tytytY)(,),()(),(

,
),(

,1
),(  (13)

The service path for each flow can be dynamically
changed. The number of unique flows depends on the number
of components in each phase.

A set of incoming flows at each phase j can be represented
as:


jn

i

j
i

j XX
0

 (14)

where j is the number of the service phases, nj is the
number of flows at phase j.

Consequently, all the incoming flows of the information
system can be represented as:


f

j

jXX
0

 (15)

where f is the number of service phases.

For output flows the similar conditions are used :


f

j

j
n

i

j
i

j YYYY
j

00 
 (16)

To effectively serve user requests forming data flows in
the information system, there must be an single-valued
mapping of the form YXR : .

In addition, for service of any request at each moment of
time the matrix H of transitions between the phases of service
is constructed depending on the class of the request and the
current load of the system.

The graph of transitions between phases can be built using
the function:

YYXRY j
e

j
i

j
e   1,1),( (17)

170 of 174

where e is the component of phase j-1 directing data flow
 to component j

iS of phase j, =1.. j
il .

Then for any component j
iS the set of all the input flows

received from component 1j
iS located in the previous phase

is represented in the form:

 )(111, j
i

j
ij

jj
i XRYRX   (18)

where j is the phases of service.

Then effluents element j
iS directed to the element 1j

iS
represented in the form:

)(11,   j
i

j
i

jj
i XRYY  (19)

So 
n

i

j
i

j XX
0

*


 and 

m

i

j
i

j YY
0

*


 can describe the

incoming and outcoming flows of phase j respectively.

In real systems, outcoming flows can overlap and get
serviced on the same computing node that results in the
formation of internal queues at each service phase.

To describe this process it is necessary to determine the
connections between output flows of component j

iS at phase j
and all the components at phase j +1. Considering the above
the set *jY becomes:

  
j

i
j

iS S

jj
i

j
i

j YYY




























1

1,0,* (20)

For a description of intersecting incoming flows within
one phase two functions are introduced:

)(*1, jj
x

jj YQX  (21)

)(*1, jj
y

jj YQY  (22)

where)(*jj
x YQ characterizes input intersecting flows and

)(*jj
y YQ characterizes output intersecting flows for phase

j +1.

Similarly, a set of input flows entering the phase of service
can be defined. The flows of user requests can also intersect.

Consequently, an input data flow arriving on the
component j

iS at phase j from all the components at phase j-1
can be represented as:

  
j

i
j

iS S

jj
i

j
i

j XXX



























1

1,0,* (23)

To describe the intersecting flows from the phase we
introduce two functions:

)(*1, jj
x

jj XPX  (24)

)(*1, jj
y

jj XPY  (25)

where)(*jj
x XP characterizes intersecting input flows,

and)(*jj
y XP characterizes intersecting output flows from

phase j -1.

Thus, the functions (21) and (25) describe the data flows
between phases of service in an information system within a
cloud.

To describe the whole multiphase information system we
formalize the description of flows in each phase in the form

jjj YXR : .

Thus data flows in an information system within a cloud
can be represented as:











































































  

  

j
i

j
i

j
i

j
i

S S

jj
i

j
i

jjj
X

S S

jj
i

j
i

jjj
Y

jj
i

j
i

j
i

jj
i

YYYYQ

XXXXP

XXXR

XRY

1

1

1,0,**

1,0,**

),(

),(

),(

)(

(26)

Data flows and their characteristics may change over time
and our representation thereof should also include time t.

The description of an information system should include
both internal and external factors so the parameter of external
influence F should be introduced.

Then data flows in a cloud system can be described in the
form:

),,(FtXRY j
i

jj
i  (27)

IV. CLOUD SYSTEM VIRTUAL RESOURCES CONTROL ALGORITHM
The above models allow to determine the most appropriate

computing nodes of the information system and the virtual
machines that contain the required instances of multimedia
applications. The control system should provide uninterrupted
user service and effective virtual resource control in case of
limited physical resources.

The main task of the control system is scheduling of
computing resources at each moment of time. For highload
information systems effective scheduling is important because
the load on the services may vary greatly within short time
intervals. In a cloud system there is a need to plan resource
consumption optimally to prevent resource exhaustion for the
application already running.

As distinct from other information systems the flow of user
requests in the educational environment is predictable due to
the subscriptions for multimedia services. The control
algorithm for user access to virtual information resources
consists of two interconnected processes.

One of these processes is scheduling. The scheduling
algorithm collects data on the incoming requests and classifies
them by the levels determined with the priorities of
applications for business processes. The input data for the

171 of 174

algorithm are the applications described according to the
template that includes a virtual machine image with the given
configuration of hardware and software and user session
characteristics.

Based on this template and data analysis of connections the
algorithm calculates the configuration to deploy the required
service. In the case of identical sets of VM software the
already stored images are used. To optimize the use of
computing resources the algorithm generates three variants of
virtual machine configurations.

The first variant provides reserve performance in the case
of unexpected increase in the number of users. The scaling
factor in this case is calculated dynamically.

The second variant provides a predetermined low
performance of virtual machines for the given number of
users. This approach is most effective for small special
purpose user groups. It allows to reduce the overhead in case
few working users, the number of subscribers being large.

The third variant uses user-predetermined characteristics,
including a fixed number of running instances of virtual
machines regardless of the number of users. In this case the
algorithm is only used to limit the computing resources. It
calculates the maximum number of virtual machines that are
available in the configuration selected by the user.

The second process within the algorithm is direct service
of user requests and resource scaling during the work of
applications. The algorithm considers the total number of
requests from each source which allows to predict the load on
the running applications within the cloud. Then the algorithm
migrates virtual machines between computing nodes based on
the collected data in accordance with a predetermined plan,
thereby scaling the work of applications.

For efficient use of resources within the above processes,
additional instances of virtual machines are created in the
online storage of images for support the applications providing
an access for the minimum amount of users.

In the case of predicted load increase on a certain service,
the algorithm deploys a full image of the media resource and
analyzes the incoming user requests. If the load does not
exceed the number of queries in an ordinary flow, the
algorithm switches the load to the appropriate image and turns
off the virtual machine.

The scheme of an integrated approach to optimization
using cloud computing, is presented in figure 2.

Fig. 1. Scheme of optimizing access to information system based on cloud computing

Our approach allows to consider the physical limitations of
computing resources and organize the work of a cloud
information system adjusting the number of instances of
running applications based on the incoming flow of user
requests.

V. EXPERIMENTAL PART
We have studied the work of the cloud information system

with different parameters to evaluate the effectiveness of our
virtual resource control algorithm. We have used the standard
algorithms from the cloud system OpenStack [5] as reference
for comparison in the experiment.

172 of 174

TABLE 1. Service efficiency of user requests

Systems testing system electronic library video portal testing system electronic library video portal
Experiment 1 3

Number of requests 8000 1000 1000 1000 1000 8000
Volume of information 32650 9330 10340 4750 8210 92300

Number of serviced requests
 (without load balancing)

5443
(4352)

622
(418)

517
(356)

592
(465)

643
(512)

4320
(3985)

The intensity of service 90,71
(72,53)

10,36
(6,96)

8,61
(5,93)

9,8
(7,75)

10,71
(8,5)

72
(66,4)

Experiment 2 4 5 6
Number of requests 1000 8000 1000 10000 10000 10000

Volume of information 4250 67200 10670 41700 87600 108000
Number of serviced requests

(without load balancing)
632

(525)
5384

(4625)
560

(376)
6753

(5642)
6351

(5215)
5860

(4129)
The intensity of service 10,5

(4,2)
89,73

(77,08)
9,3

(6,26)
112,5

(94,03)
105,85
(89,91)

97,6
(68,81)

In the experiment, we used the flow of requests similar to
the real flow within the information system of distance
learning. The number of concurrent requests received by the
system was about 10,000, which is equal to the maximum
number of potential users of the system.

All the user requests are classified into six user groups
corresponding to the types of user behavior. The requests from
the first three user groups directed to the allocated application
using other applications at the same time. The groups from 4
to 6 simulate the work of the application in the case of

computing resource shortage because of an excess number of
concurrent requests.

The intensity of using the system components (video
portal, testing system, and electronic library) and the amount
of the requested data were assigned for each user group.
Experiment lasted for one hour which corresponds to the
longest period of peak load in the real system. Experimental
results are presented in the Table 1.

Fig. 2. Load balancing between nodes in the cloud system

The results of the experiments show a decrease of 12-15%
of the number of service denials in accessing to multimedia
services with limited resources. Within the experiment in the
OpenStack cloud system we compared the consumption of
virtual resources by the number of virtual servers for each of
the subsystems.

Our control algorithm provides collaborative work of all
running instances of applications in accordance with user
requirements due to the optimal allocation of resources on
each computing node. So the optimization algorithms may
release 20 to 30% of the allocated resources (virtual servers)
(Fig. 1).

173 of 174

VI. СONCLUSION
Thus, the effectiveness evaluation of the algorithm for

control of virtual resources of the cloud system shows a
performance boost from 12 to 15% compared to the standard.
Our algorithm is very effective for high-intensity requests.

Besides the reduction of the number of allocated virtual
resources allows to scale a cloud system more efficiently and
provides a reserve for the case of increase in the intensity of
using applications.

VII. REFERENCES
[1] Qingjia Huang, Kai Shuang, Peng Xu, Jian Li, Xu Liu, Sen Su

Prediction-based Dynamic Resource Scheduling for Virtualized Cloud
Systems Journal of Networks, Vol 9, No 2 (2014), 375-383, Feb 2014.
http://doi:10.4304/jnw.9.2.375-383

[2] S. J. E. C. I. C. Clark, K. Fraser and A. Warfield, "Live migration of
virtual machines, " In Proc. NSDI, 2005.

[3] N. Bobroff, A. Kochut, and K. Beaty, "Dynamic placement of virtual
machines for managing SLA violations," in Integrated Network
Management, 2007. IM'07. 10th IFIP/IEEE International Symposium
on. IEEE, 2007, pp. 119–128.

[4] Q. Huang, S. Su, S. Xu, J. Li, P. Xu, and K. Shuang, "Migration-based
elastic consolidation scheduling in cloud data center," in Proceedings of
IEEE ICDCSW 2013.

[5] A scalable infrastructure for CMS data analysis based on OpenStack
Cloud and Gluster file system S Toor et al 2014 J. Phys.: Conf. Ser. 513
062047

[6] A. Corradi, M. Fanelli, and L. Foschini. VM Consolidation: a Real Case
Based on OpenStack Cloud. Future Generation Computer Systems, In
Press.

174 of 174

	01_title.pdf
	02_annotation.pdf
	03_content.pdf
	04_foreword.pdf
	05_committee.pdf
	all_submissions.pdf
	01_syrcose2015.pdf
	I. Introduction
	II. Making model of a language service
	A. Analysis of requirements and the necessary features
	B. Analysis of data sources
	C. Analysis of main operating characteristics of a language service

	III. General model of a language service
	A. IDE integration block
	B. Analysis block
	C. The recognized elements storage block
	D. The elements serialization/deserialization block
	E. The elements view model block

	IV. Proof of concept
	V. Conclusion
	References

	02_syrcose2015.pdf
	Introduction
	Pitfalls of C# Generics
	Lack of Retroactive Interface Implementation
	Drawbacks of Recursive Constraints
	Ambiguous Semantics of Generic Types
	The Problem of Multi-Type Constraints
	Constraints Duplication and Verbose Type Parameters

	Related Work
	C# with Associated Types and Constraint Propagation
	JavaGI: Java with Generalized Interfaces
	``Concept Pattern'' and Context Bounds in Scala

	Design of Concepts for C# Language
	Interfaces and Concepts
	C# with Concepts: Design and Translation

	Conclusion and Future Work
	References

	03_syrcose2015.pdf
	04_syrcose2015.pdf
	05_syrcose2015.pdf
	06_syrcose2015.pdf
	07_syrcose2015.pdf
	08_syrcose2015.pdf
	09_syrcose2015.pdf
	I. Introduction
	II. Primary Verification Methods
	III. Verification Methods for Scalable Systems
	IV. Abstraction and Compositional Model Checking
	V. A Method of Compositional Model Checking
	A. General Idea
	B. A Mathematical Model of Cache Coherence Protocols
	C. The Abstract Model
	D. Justification of the Abstraction Rules
	E. The Method

	VI. Design of a Cache Coherence Protocols Verification System
	VII. Verification of the German Cache Coherence Protocol
	VIII. Conclusion and Directions for Future Work
	References

	10_syrcose2015.pdf
	11_syrcose2015.pdf
	12_syrcose2015.pdf
	13_syrcose2015.pdf
	14_syrcose2015.pdf
	15_syrcose2015.pdf
	16_syrcose2015.pdf
	17_syrcose2015.pdf
	18_syrcose2015.pdf
	19_syrcose2015.pdf
	20_syrcose2015.pdf
	21_syrcose2015.pdf
	I. Introduction
	II. Overview of the MSC language
	III. A method for translation of MSC diagrams into Coloured Petri Nets
	IV. Translation of UML SD elements
	V. Translation of diagram elements with data
	VI. Translation of compositional MSC elements
	VII. Size estimate of the resulting CPN
	VIII. Case study: Alternating Bit Protocol
	IX. Conclusion

	22_syrcose2015.pdf
	23_syrcose2015.pdf
	24_syrcose2015.pdf
	25_syrcose2015.pdf
	26_syrcose2015.pdf
	27_syrcose2015.pdf
	28_syrcose2015.pdf
	29_syrcose2015.pdf

