

SYRCoSE 2016

Editors:

Alexander S. Kamkin, Alexander K. Petrenko, and

Andrey N. Terekhov

Preliminary Proceedings of the 10th Spring/Summer Young Researchers’

Colloquium on Software Engineering

Krasnovidovo, May 30-June 1, 2016

2016

Preliminary Proceedings of the 10th Spring/Summer Young Researchers’

Colloquium on Software Engineering (SYRCoSE 2016), May 30-June 1, 2016 –

Krasnovidovo, Mozhaysky District, Moscow Oblast, Russia.

The issue contains papers accepted for presentation at the 10th Spring/Summer

Young Researchers’ Colloquium on Software Engineering (SYRCoSE 2016) held in

Krasnovidovo, Mozhaysky District, Moscow Oblast, Russia on May 30-June 1, 2016.

The paper selection was based on originality and contributions to the field. Each

paper was peer-reviewed by at least three referees.

The colloquium’s topics include programming languages, software development

tools, embedded and cyber-physical systems, software and hardware verification,

formal methods, information security, and others.

The authors of the selected papers will be invited to participate in a special issue of

‘The Proceedings of ISP RAS’ (http://www.ispras.ru/proceedings/), a peer-reviewed

journal included into the list of periodicals recommended for publishing doctoral

research results by the Higher Attestation Commission of the Ministry of Science and

Education of the Russian Federation.

The event is sponsored by Russian Foundation for Basic Research (Project №16-07-20256).

Contents

Foreword ∙∙6

Committees ∙∙7

Referees ∙∙∙8

Language Support for Generic Programming in Object-Oriented Languages: Design Challenges

J. Belyakova∙∙∙9

Refinement Types in Jolie

A. Tchitchigin, L. Safina, M. Elwakil, M. Mazzara, F. Montesi, V. Rivera∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙20

Visual Dataflow Language for Educational Robots Programming

G. Zimin, D. Mordvinov∙∙∙24

Programming Languages Segmentation via the Data Mining Software “ShaMaN”

T. Afanasieva, S. Makarova, D. Shalaev, A. Efremov∙∙32

Context-Based Model for Concern Markup of a Source Code

M. Malevannyy, S. Mikhalkovich∙∙∙39

Metric-Based Approach to Anti-Pattern Detection in Service Oriented Software Systems

A. Yugov∙∙∙45

Technology for Application Family Creation Based on Domain Analysis

A. Gudoshnikova, Yu. Litvinov∙∙∙52

Language for Describing Templates for Test Program Generation for Microprocessors

A. Tatarnikov∙∙59

Specification-Based Test Program Generation for MIPS64 Memory Management Units

A. Kamkin, A. Kotsynyak∙∙68

Approaches to Stand-alone Verification of Multicore Microprocessor Caches

M. Petrochenkov, I. Stotland, R. Mushtakov∙∙73

Checking Parameterized PROMELA Models of Cache Coherence Protocols

V. Burenkov, A. Kamkin∙∙∙77

A Model Checking-Based Method of Functional Test Generation for HDL Descriptions

M. Lebedev, S. Smolov∙∙∙84

Deriving Adaptive Checking Sequence for Nondeterministic Finite State Machines

A. Ermakov, N. Yevtushenko∙∙90

Conversion of Abstract Behavioral Scenarios into Scenarios Applicable for Testing

P. Drobintsev, V. Kotlyarov, I. Nikiforov, N. Voinov, I. Selin∙∙∙96

Automation of Failure Mode, Effects and Criticality Analysis

P. Privalov∙∙104

3 of 251

Parallel Processing and Visualization for Results of Molecular Simulations Problems

D. Puzyrkov, V. Podryga, S. Polyakov∙∙∙108

Memristor-based Hardware Neural Networks Modelling Review and Framework Concept

D. Kozhevnikov, N. Krasilich∙∙∙118

A Method of Converting an Expert Opinion to Z-number

E. Glukhoded, S. Smetanin∙∙∙124

Development and Research of Models of Self-Organization of Data Placement in Software-Defined

Infrastructures of Virtual Data Center

I. Bolodurina, D. Parfenov∙∙∙129

Automated Text Document Compliance Assessment System

M. Zhigalova, A. Sukhov∙∙135

Complete Contracts through Specification Drivers

A. Naumchev, B. Meyer∙∙141

Usability of AutoProof: a Case Study of Software Verification

M. Khazeev, V. Rivera, M. Mazzara, A. Tchitchigin∙∙149

Certified Grammar Transformation to Chomsky Normal Form in F*

M. Polubelova, S. Bozhko, S. Grigorev∙∙155

Performance Testing of Automated Theorem Provers Based on Sudoku Puzzle

M. Sabyanin, D. Senotov, G. Skvortsov, R. Yavorsky∙∙160

Translation of Nested Petri Nets into Petri Nets for Unfoldings Verification

V. Ermakova, I. Lomazova∙∙∙164

Automatic Code Generation from Nested Petri Nets to Event-based Systems on the Telegram Platform

D. Samokhvalov, L. Dworzanski∙∙173

Mining Hierarchical UML Sequence Diagrams from Event Logs of SOA Systems while Balancing between

Abstracted and Detailed Models

K. Davydova, S. Shershakov∙∙181

Applying MapReduce to Conformance Checking

I. Shugurov, A. Mitsyuk∙∙189

Modelling the People Recognition Pipeline in Access Control Systems

F. Gossen, T. Margaria, T. Göke∙∙∙198

System for Deep Web Users Deanonimization

A. Lazarenko, S. Avdoshin∙∙206

Model of Security for Object-Oriented and Object-Attributed Applications

P. Oleynik, S. Salibekyan∙∙∙211

Dynamic Key Generation According to the Starting Time

A. Kiryantsev, I. Stefanova∙∙∙217

Investigating Concurrency in the Co-Simulation Orchestration Engine for INTO-CPS

C.T. Hansen, P.G. Larsen∙∙223

4 of 251

A Static Approach to Estimation of Execution Time of Components in AADL Models

A. Troitskiy, D. Buzdalov∙∙∙229

Practical Experience of Software and System Engineering Approaches in Requirements Management for

Software Development in Aviation Industry

I. Koverninskiy, A. Kan, V. Volkov, Yu. Popov, N. Gorelits∙∙236

Design and Architecture of Real-time Operating System

K. Mallachiev, N. Pakulin, A. Khoroshilov∙∙239

Developing a Debugger for Real-Time Operating System

A. Emelenko, K. Mallachiev, N. Pakulin∙∙245

Building and Testing an Embedded Operating System

A. Ovcharov, N. Pakulin∙∙250

5 of 251

Foreword

Dear participants, it is our pleasure to meet you at the 10th Anniversary Spring/Summer Young

Researchers’ Colloquium on Software Engineering (SYRCoSE). This year’s colloquium is hosted

by Moscow State University (MSU), one of the oldest (established in 1755 by M.V Lomonosov),

biggest and most famous Russian universities. Graduates of the university greatly contributed to

theoretical computer science, system programming, and software engineering. Among them are

Professors A.P. Ershov (1931 – 1988), L.N. Korolev (1926 – 2016), V.V. Lipaev (1928 – 2015),

A.A. Lyapunov (1911 – 1973), E.Z. Lyubimskiy (1931 – 2008), V.S. Shtarkman (1931 – 2005),

M.R. Shura-Bura (1918 – 2008), V.F. Turchin (1931 – 2010), E.A. Zhogolev (1930 – 2003), and

many others. SYRCoSE 2016 is organized by Institute for System Programming of the Russian

Academy of Sciences (ISP RAS) jointly with Moscow and Saint-Petersburg Universities.

SYRCoSE 2016’s Program Committee (consisting of more than 50 members from more than 25

organizations) has selected 38 papers. Each submitted paper has been reviewed independently by

three referees. The authors and speakers represent well-known universities, research institutes and

companies including Aarhus University, Aston, Cairo University, Higher School of Economics,

Innopolis University, Institute for System Programming of the Russian Academy of Sciences,

Kazan Federal University, Keldysh Institute of Applied Mathematics of the Russian Academy of

Sciences, Lero – The Irish Software Research Centre, MCST, Moscow Institute of Physics and

Technology, Moscow State University, Orenburg State University, Politecnico di Milano, Rostov

State University of Civil Engineering, Saint-Petersburg State Polytechnic University, Saint-

Petersburg State University, Southern Federal University, State Research Institute of Aviation

Systems, sysTeam GmbH, Tomsk State University, Ulyanovsk Technical State University,

University of Passau, University of Southern Denmark, Volga Region State University of

Telecommunication and Informatics (6 countries, 16 cities, and 25 organizations).

We would like to thank all of the participants of SYRCoSE 2016 and their advisors for interesting

papers. We are also very grateful to the PC members and the external referees for their hard work

on reviewing the papers and selecting the program. Our thanks go to the invited speakers, Dirk

Beyer (University of Passau), Alexey Khoroshilov (ISP RAS), and Vartan Padaryan (ISP RAS).

We would also like to thank our sponsors and supporters: Russian Foundation for Basic Research

(grant 16-07-20256), Federal Agency of Scientific Organizations, Exactpro Systems, and EMC

Research and Development Center LLC. Finally, our special thanks go to the local organizers,

Eugene Kornykhin (MSU) and Arif Sultanov (Recreation Center ‘Krasnovidovo’, MSU), for their

invaluable help in organizing the colloquium at MSU’s Recreation Center ‘Krasnovidovo’.

Sincerely yours,

Alexander S. Kamkin

Alexander K. Petrenko

Andrey N. Terekhov

May 2016

6 of 251

Committees

Program Committee Chairs

 Alexander K. Petrenko – Russia
Institute for System Programming of RAS

 Andrey N. Terekhov – Russia
Saint-Petersburg State University

Program Committee

Jean-Michel Adam – France
Pierre Mendès France University

Manuel Mazzara – Russia
Innopolis University

Sergey M. Avdoshin – Russia
Higher School of Economics

Marek Miłosz – Poland
Institute of Computer Science, Lublin University of Technology

Eduard A. Babkin – Russia
Higher School of Economics

Alexander S. Mikhaylov – Russia
RN-Inform

Nadezhda F. Bahareva – Russia
Povolzhskiy State University of Telecommunications and Informatics

Igor A. Minakov – Russia
Institute for the Control of Complex Systems of RAS

Svetlana I. Chuprina – Russia
Perm State National Research University

Alexey M. Namestnikov – Russia
Ulyanovsk State Technical University

Pavel D. Drobintsev – Russia
Saint-Petersburg State Polytechnic University

Valery A. Nepomniaschy – Russia
Ershov Institute of Informatics Systems of SB of RAS

Liliya Yu. Emaletdinova – Russia
Kazan National Research Technical University

Mykola S. Nikitchenko – Ukraine
Kyiv National Taras Shevchenko University

Victor P. Gergel – Russia
Lobachevsky State University of Nizhny Novgorod

Sergey P. Orlov – Russia
Samara State Technical University

Efim M. Grinkrug – Russia
Higher School of Economics

Elena A. Pavlova – Russia
Microsoft

Maxim L. Gromov – Russia
Tomsk State University

Ivan I. Piletski – Belorussia
Belarusian State University of Informatics and Radioelectronics

Vladimir I. Hahanov – Ukraine
Kharkov National University of Radioelectronics

Vladimir Yu. Popov – Russia
Ural Federal University

Shihong Huang – USA
Florida Atlantic University

Yury I. Rogozov – Russia
Taganrog Institute of Technology, Southern Federal University

Iosif L. Itkin – Russia
Exactpro Systems

Rustam A. Sabitov – Russia
Kazan National Research Technical University

Alexander S. Kamkin – Russia
Institute for System Programming of RAS

Nikolay V. Shilov – Russia
A.P. Ershov Institute of Informatics Systems of RAS

Andrei V. Klimov – Russia
Keldysh Institute of Applied Mathematics of RAS

Ruslan L. Smelyansky – Russia
Moscow State University

Vsevolod P. Kotlyarov – Russia
Saint-Petersburg State Polytechnic University

Valeriy A. Sokolov – Russia
Yaroslavl Demidov State University

Alexander N. Kovartsev – Russia
Samara State Aerospace University

Petr I. Sosnin – Russia
Ulyanovsk State Technical University

Vladimir P. Kozyrev – Russia
National Research Nuclear University “MEPhI”

Veniamin N. Tarasov – Russia
Povolzhskiy State University of Telecommunications and Informatics

Daniel S. Kurushin – Russia
State National Research Polytechnic University of Perm

Andrei N. Tiugashev – Russia
Samara State Aerospace University

Peter G. Larsen – Denmark
Aarhus University

Sergey M. Ustinov – Russia
Saint-Petersburg State Polytechnic University

Roustam H. Latypov – Russia
Kazan Federal University

Vladimir V. Voevodin – Russia
Research Computing Center of Moscow State University

Alexander A. Letichevsky – Ukraine
Glushkov Institute of Cybernetics, NAS

Dmitry Yu. Volkanov – Russia
Moscow State University

Nataliya I. Limanova – Russia
Povolzhskiy State University of Telecommunications and Informatics

Mikhail V. Volkov – Russia
Ural Federal University

Alexander V. Lipanov – Ukraine
Kharkov National University of Radioelectronics

Nadezhda G. Yarushkina – Russia
Ulyanovsk State Technical University

Irina A. Lomazova – Russia
Higher School of Economics

Rostislav Yavorsky – Russia
Higher School of Economics

Lyudmila N. Lyadova – Russia
Higher School of Economics

Nina V. Yevtushenko – Russia
Tomsk State University

Vladimir A. Makarov – Russia
Yaroslav-the-Wise Novgorod State University

Vladimir A. Zakharov – Russia
Moscow State University

Victor М. Malyshko – Russia
Moscow State University

Sergey S. Zaydullin – Russia
Kazan National Research Technical University

Tiziana Margaria – Germany
Lero – The Irish Software Research Centre

Organizing Committee

 Alexander K. Petrenko – Russia
Institute for System Programming of RAS

 Alexander S. Kamkin – Russia
Institute for System Programming of RAS

 Eugene V. Kornykhin – Russia
Moscow State University

7 of 251

Referees

Ivan Andrianov Lyudmila Lyadova

Nikita Astrakhantsev Victor Malyshko

Sergey Avdoshin Vladimir Mayorov

Nadezhda Bahareva Manuel Mazzara

Oleg Borisenko Alexander Mikhaylov

Mikhail Chupilko Alexey Namestnikov

Kyrylo Chykhradze Yaroslav Nedumov

Pavel Drobintsev Mykola Nikitchenko

Misha Drobyshevskii Sergey Orlov

Mohamed Elwakil Alexander Petrenko

Victor Gergel Ivan Piletski

Andrey Gomzin Alexander Protsenko

Efim Grinkrug Delhibabu Radhakrishnan

Maxim Gromov Nikolay Shilov

Shihong Huang Kirill Skorniakov

Iosif Itkin Sergey Smolov

Leonard Johard Valeriy Sokolov

Alexander Kamkin Petr Sosnin

Mansur Khazeev Veniamin Tarasov

Andrei Klimov Andrei Tatarnikov

Anton Korshunov Alexander Tchitchigin

Artem Kotsynyak Andrei Tiugashev

Alexander Kovartsev Denis Turdakov

Ilya Kozlov Maksim Varlamov

Vladimir Kozyrev Dmitry Volkanov

Natalia Kushik Mikhail Volkov

Peter Gorm Larsen Rostislav Yavorskiy

Roustam Latypov Nina Yevtushenko

Mikhail Lebedev Vladimir Zakharov

Irina Lomazova Mark Zhitomirski

Jorge Lopez

8 of 251

Language Support for Generic Programming
in Object-Oriented Languages: Design Challenges

Julia Belyakova
Institute for Mathematics, Mechanics

and Computer Science
named after I. I. Vorovich

Southern Federal University
Rostov-on-Don, Russia
Email: julbel@sfedu.ru

Abstract—It is generally considered that object-oriented (OO)
languages provide weaker support for generic programming
(GP) as compared with such functional languages as Haskell
or SML. There were several comparative studies which showed
this. But many new object-oriented languages have appeared
in recent years. Have they improved the support for generic
programming? And if not, is there a reason why OO languages
yield to functional ones in this respect? In the earlier comparative
studies object-oriented languages were usually not treated in any
special way. However, the OO features affect language facilities
for GP and a style people write generic programs in such
languages. In this paper we compare ten modern object-oriented
languages and language extensions with respect to their support
for generic programming. It has been discovered that every of
these languages strictly follows one of the two approaches to
constraining type parameters. So the first design challenge we
consider is “which approach is better”. It turns out that most
of the explored OO languages use the less powerful one. The
second thing that has a big impact on the expressive power of
a programming language is support for multiple models. We
discuss pros and cons of this feature and its relation to other
language facilities for generic programming.

I. INTRODUCTION

Almost all modern programming languages provide lan-
guage support for generic programming (GP) [1]. Some
languages do it better than others. For example, Haskell is
generally considered to be one of the best languages for
generic programming [2, 3], whereas such mainstream object-
oriented languages as C# and Java are much less expres-
sive and have many drawbacks. There were several studies
that compared language support for generic programming
in different languages [2–5]. However, these studies do not
make any difference between object-oriented and functional
languages. We argue that OO languages are to be treated
separately, because they support the distinctive OO features
that pure functional languages do not, such as inheritance,
interfaces/traits, subtype polymorphism, etc. These features
affect the language design and a way people write generic
programs in object-oriented languages.

Several new object-oriented languages have appeared in
recent years, for instance, Rust, Swift, Kotlin. At the same
time, several independent extensions have been developed for
mainstream OO languages [6–9]. These new languages and

extensions have many differences, but all of them tend to
improve the support for generic programming. There is a lack
of a careful comparison of the approaches and mechanisms
for generic programming in modern object-oriented languages.
This study is aimed to fill the gap: it gives a survey, analysis,
and comparison of the facilities for generic programming that
the chosen OO languages provide. We identify the depen-
dencies between major language features, detect incompatible
ones, and point the properties that a language design should
satisfy to be effective for generic programming.

II. MAIN IDEAS

Ten modern object-oriented languages and language exten-
sions have been explored in this study with respect to generic
programming. We have found out that in the case of OO
languages there are exactly two approaches to the design of
language constructs for generic programming. We call the first
one “constraints-are-types”, because under this approach such
OO constructs as interfaces or traits, which are usually used as
types in object-oriented programs, are also used to constrain
type parameters in generic programs. The second approach,
“constraints-are-Not-types”, restricts OO constructs to be used
as types only, and provides separate language constructs for
constraining type parameters. Hence the first design challenge
arises: is one of this approaches better than another? Or the
same expressive power can be achieved using any of them?
We answer these questions in Sec. III. It turns out that the
approaches cannot be integrated together, and the second one
is more expressive.

The second point covered in the paper in detail (in Sec. IV)
is language support for multiple models (by “model” we mean
a way in which types satisfy constraints). There are several
questions related to multiple models:

1) Is it desirable to have multiple models of a constraint?
2) How can support for multiple models be provided with

the approaches we have discovered?
3) Why does not Haskell allow multiple models (instances

of a type class)?
4) Is there a language design that reflects the support for

multiple models better than the existing ones?
The short answers are:

9 of 251

interface IPrintable { string Print(); }

void PrintArr(IPrintable[] xs)
{ foreach (var x in xs)

Console.WriteLine("{0}\n", x.Print()); }

string InParens<T>(T x) where T : IPrintable
{ return "(" + x.Print() + ")"; }

Fig. 1. An ambiguous role of C# interfaces

1) Yes, it is desirable.
2) It can be naturally provided with the second approach

but not with the first one.
3) Because of type inference.
4) Yes, there is.
In conclusion, we present a modified version of the well-

known table [2, 4] showing the levels of language support
for the features important for generic programming. Table I
provides information on all of the object-oriented languages
considered, introduces some new features, and demonstrates
the relations between the features.

III. TWO APPROACHES TO CONSTRAINING TYPE
PARAMETERS

This section provides a survey of language constructs for
generic programming in several modern object-oriented pro-
gramming languages as well as some language extensions. All
of the languages we explored adopt one of the two approaches:

1) Interface-like constructs, which are normally used as
types in object-oriented programming, are also used to
constrain type parameters. By “interface-like constructs”
we mean, in particular, C#/Java interfaces, Scala traits,
Swift protocols, Rust traits. Fig. 1 shows a corresponding
example in C#: IPrintable interface acts as the type of
xs in PrintArr, whereas in the function InParens<T> it
is used to constrain the type parameter T.

2) For constraining type parameters a separate language
construct is provided; such construct cannot be used as
a type. We will see some examples in Sec. III-B.

Sec. III-A analyses the languages of the first category;
Sec. III-B is devoted to the second one. In Sec. III-C we
compare both approaches and answer the question “Which
one is better if any?”.

A. Languages with “Constraints-are-Types” Philosophy

C# and Java are probably the best-known programming
languages in this category. Note that an interface (or a similar
language construct) describes properties, an interface of a
single type that implements/extends it. This has inevitable
consequence: multi-type constraints (constraints on several
types) cannot be expressed naturally. Consider a generic
unification algorithm [10]: it takes a set of equations between
terms (symbolic expressions), and returns the most general
substitution which solves the equations. So the algorithm
operates on three kinds of data: terms, equations, substitutions.
A signature of the algorithm might be as follows:
Substitution Unify<Term, Equation, Substitution>

(IEnumerable<Equation>)

interface ITerm<Tm> { IEnumerable<Tm> Subterms(); ... }

interface IEquation<Tm, Eqtn, Subst>
where Tm : ITerm<Tm>
where Eqtn : IEquation<Tm, Eqtn, Subst>
where Subst : ISubstitution<Tm, Eqtn, Subst>

{ Subst Solve();
IEnumerable<Eqtn> Split(); ... }

interface ISubstitution<Tm, Eqtn, Subst>
where Tm : ITerm<Tm>
where Eqtn : IEquation<Tm, Eqtn, Subst>
where Subst : ISubstitution<Tm, Eqtn, Subst>

{ Tm SubstituteTm(Tm);
IEnumerable<Eqtn> SubstituteEq (IEnumerable<Eqtn>); ... }

Fig. 2. The C# interfaces for unification algorithm

interface IComparable<T> { int CompareTo(T other); }

class SortedSet<T> where T : IComparable<T> {...}

Fig. 3. The IComparable<T> interface in C#

But a bunch of functions has to be provided to implement the
algorithm: Subterms : Term → IEnumerable<Term>,
Solve : Equation → Substitution,
SubstituteTm : Substitution × Term → Term,
SubstituteEq : Substitution × IEnumerable<Equation>

→ IEnumarable<Equation>, and some others. All these functions
are needed for unification at once, hence it would be con-
venient to have a single constraint that relates all the type
parameters and provides the functions required.
Substitution Unify<Term, Equation, Substitution>
(IEnumerable<Equation>) where <single constraint>

But in C#/Java the only thing one can do1 is to define three
different interfaces for Term, Equation, and Substitution,
and then separately constrain every type parameter with a
respective interface. Fig. 2 shows the interface definitions. To
set up a relation between mutually dependent interfaces, three
type parameters are used: Tm for terms, Eqtn for equations,
and Subst for substitution. Moreover, the parameters are
repeatedly constrained with the appropriate interface in every
interface definition. That constraints are to be stated in a
signature of the unification algorithm as well:
Subst Unify<Tm, Eqtn, Subst> (IEnumerable<Eqtn>)

where Tm : ITerm<Tm>
where Eqtn : IEquation<Tm, Eqtn, Subst>
where Subst : ISubstitution<Tm, Eqtn, Subst>

There is one more thing to notice here — interfaces are used in
both roles in the same piece of code: the IEnumerable<Eqtn>

interface is used as a type, whereas other interfaces in the
where sections are used as constraints.

The problem of multi-type constraints is a common thing
for OO languages in the first category, but C# and Java have
various drawbacks besides that [2, 8]. In comparison with other
programming languages that support generic programming
(not only object-oriented), these are much less expressive. An
incomplete list of drawbacks is enumerated below.

1The Concept design pattern can also be used, but it has its own drawbacks.
We will discuss concept pattern later, in Sec. IV-C2.

10 of 251

∙ Lack of retroactive interface implementation. After the
type had been defined, it cannot implement any new
interface. A consequence is that a generic code with
constraints on type parameters can only be instantiated
with types originally designed to satisfy these constraints.
It is impossible to adapt the type afterwards, even if it
semantically conforms the constraints.

∙ Drawbacks of F-bounded polymorphism. F-bounded
polymorphism [11] allows “recursive” constraints (F-
constraints) on type parameters in the form T : I<T>,
where T is a type parameter, I<> is a generic in-
terface. Such kind of constraints solves the binary
method problem [12]: Fig. 3 demonstrates a correspond-
ing C# [13] example. The type parameter T in the inter-
face IComparable<T> pretends to be a type that imple-
ments this interface. This is indeed the case for the class
SortedSet<T> due to the constraint T : IComparable<T>,
so the method T.CompareTo(T) is like a binary function
for comparing elements of type T. But the semantics
of IComparable<T> itself has nothing to do with binary
methods. One could easily write some class Foo imple-
menting IComparable<Bar>, and thus the semantics of
comparing two Bars would be broken. Another short-
coming of F-bounded polymorphism is that a code with
recursive constraints is rather cumbersome and difficult to
understand. Yet, as we will see, F-bounded polymorphism
is not the only solution for the binary method problem.
More detailed discussion on pitfalls of F-bounded poly-
morphism can be found in [8] and [14].

∙ Lack of associated types [14, 15]. Types that are logically
related to some entity are often called associated types
of the entity. For instance, types of edges and vertices are
associated types of a graph. There is no specific language
support for associated types in C# and Java: such types
are expressed in generic code in the form of extra type
parameters.

∙ Lack of constraints propagation [14, 15]. Look at the
following code:

void baz<T>(SortedSet<T> s)
where T : IComparable<T> { ... }

The function baz<T> takes a value of the type
SortedSet<T>; in the definition of SortedSet<T> in Fig. 3
the type parameter T, type of elements, is constrained
with IComparable<T>. In the baz<T> definition T has to be
also constrained, otherwise the code would not compile:
a compiler does not propagate the constraints implied by
formal parameters, that is a programmer’s burden.

Some of these drawbacks were eliminated in modern object-
oriented languages. In the following subsections we briefly
examine language facilities for generic programming in the
modern OO languages with “constraint-are-types” philosophy.

1) Interfaces in Ceylon and Kotlin: In contrast to C#,
Ceylon [16] and Kotlin [17] interfaces support default method
implementation, so Java 8 [18] interfaces do. This is a
useful feature for generic programming. For instance, one

interface Equatable<T> {
fun equal (other: T) : Boolean
fun notEqual(other: T): Boolean
{ return !this.equal(other) }}

class Ident (name : String) : Equatable<Ident> {
val idname = name.toUpperCase()
override fun equal (other: Ident) : Boolean
{ return idname == other.idname }}

Fig. 4. Interfaces and constraints in Kotlin

shared interface Comparable<Other> of Other
given Other satisfies Comparable<Other> {

shared formal Integer compareTo(Other other);
shared Integer reverseCompareTo(Other other) {

return other.compareTo(this); } }

Fig. 5. The use of “self type” in Ceylon interfaces

struct Point { x: i32, y: i32, }
...
impl Point {
fn moveOn(&self, dx: i32, dy: i32) -> Point
{ Point {x: self.x + dx, y: self.y + dy } }}

...
impl Point {
fn reflect(&self) -> Point
{ Point {x: -self.x, y: -self.y} }}

...
let p1 = Point {x: 4, y: 3};
let p2 = p1.moveOn(1, 1); let p3 = p1.reflect();

Fig. 6. Point struct and its methods in Rust

can define an interface for equality that provides a default
implementation for inequality operation. Fig. 4 demonstrates
corresponding Kotlin definitions: the Ident class implements
the interface Equatable<Ident> that has two methods, equal
and notEqual; as long as notEqual has a default implemen-
tation in the interface, there is no need to implement it in the
Ident class. In addition to default method implementations,
the Ceylon language also allows to declare a type parameter
as a self type. An example is shown in Fig. 5. In the definition
of the Comparable<Other> interface the declaration of Other

explicitly requires Other to be a self type of the interface,
i. e. a type that implements this interface. Because of this
the reverseCompareTo method can be defined: the other and
this values have the type Other, with the Other implementing
Comparable<Other>, so the call other.compareTo(this) is
perfectly legal.

2) Scala Traits: Similarly to advanced interfaces in Java 8,
Ceylon, and Kotlin, Scala traits [5, 19] support default method
implementations. They can also have abstract type members,
which, in particular, can be used as associated types [20].
Just as in C#/Java/Ceylon/Kotlin, type parameters (and ab-
stract types) in Scala can be constrained with traits and
supertypes (upper bounds): the latter constraints are called
subtype constraints. But, moreover, they can be constrained
with subtypes (lower bounds), which is called supertype con-
straints respectively. None of the languages we discussed so
far support supertype constraints nor associated types. Another
important Scala feature, implicits [19], will be mentioned later
in Sec. IV-A with respect to the Concept design pattern.

11 of 251

trait Eqtbl { fn equal(&self, that: &Self) -> bool;
fn not_equal(&self, that: &Self) -> bool
{ !self.equal(that) }}

trait Printable { fn print(&self); }
...
impl Eqtbl for i32 {
fn equal (&self, that: &i32) -> bool { *self == *that }}

...
struct Pair<S, T>{ fst: S, snd: T }
...
impl <S : Eqtbl, T : Eqtbl> Eqtbl for Pair<S, T> {

fn equal (&self, that: &Pair<S, T>) -> bool
{self.fst.equal(&that.fst) && self.snd.equal(&that.snd)}}

Fig. 7. An example of using Rust traits

3) Rust Traits: Rust language [21] quite differs from other
object-oriented languages. There is no traditional class con-
struct in Rust, but instead it suggests structs that store the data,
and separate method implementations for structs. An example
is shown in Fig. 62: two impl Point blocks define method
implementations for the Point struct. If a function takes the
&self3 argument (as moveOn), it is treated as a method. There
can be any number of implementation blocks, yet they can
be defined at any point after the struct declaration (even in a
different module). This gives a huge advantage with respect to
generic programming: any struct can be retroactively adapted
to satisfy constraints.

Constraints in Rust are expressed using traits. A trait defines
which methods have to be implemented by a type similarly
to Scala traits, Java 8 interfaces, and others. Traits can have
default method implementations and associated types; besides
that, a self type of the trait is directly available and can be used
in method definitions. Fig. 74 demonstrates an example: the
Eqtbl trait defining equality and inequality operations. Note
how support for self type solves the binary method problem
(here equal is a binary method): there is no need in extra type
parameter that “pretends” to be a self type, because the self
type Self is already available.

Method implementations in Rust can be probably thought
of similarly to .NET “extension methods”. But in contrast to
.NET5, types in Rust also can retroactively implement traits
in impl blocks as shown in Fig. 7: Eqtbl is implemented by
i32 and Pair<S, T>. The latter definition also demonstrates
a so-called type-conditional implementation: pairs are equality
comparable only if their elements are equality comparable. The
constraint <S : Eqtbl... is a shorthand, it can be declared in
a where section as well.

There is no struct inheritance and subtype polymorphism in
Rust. Nevertheless, as long as traits can be used not only as
constraints but also as types, a dynamic dispatch is provided
through a feature called trait objects. Suppose i32 and f64

2Some details were omitted for simplicity. To make the code correct, one
has to add #[derive(Debug,Copy,Clone)] before the Point definition.

3The “&” symbol means that an argument is passed by reference.
4Some details were omitted for simplicity. The following declaration is to

be provided to make the code correct: #[derive(Copy, Clone)] before the
definition struct Pair<S : Copy, T : Copy>. Yet the type parameters of
the impl for pair must be constrained with Copy+Equatable.

5Similarly to .NET, Kotlin supports extending classes with methods and
properties, but interface implementation in extensions is not allowed.

protocol Equatable { func equal(that: Self) -> Bool; }
extension Equatable { func notEqual(that: Self) -> Bool

{ return !self.equal(that) }}
func contains<T : Equatable>
(values: [T], x:T) -> Bool { ... }

protocol Printable { func print(); }
extension Int : Printable { ... }

protocol Container { associatedtype ItemTy ... }
func allItemsMatch<C1: Container, C2: Container
where C1.ItemTy == C2.ItemTy, C1.ItemTy: Equatable> ...

Fig. 8. Protocols and their use in Swift

implement the Printable trait from Fig. 7. Then the following
code demonstrates creating and use of a polymorphic collec-
tion (the type of the polyVec elements is a reference type):
let pr1 = 3; let pr2 = 4.5; let pr3 = -10;
let polyVec: Vec<&Printable> = vec![&pr1, &pr2, &pr3];
for v in polyVec { v.print(); }

4) Swift Protocols: Swift is a more conventional OO lan-
guage than Rust: it has classes, inheritance, and subtype
polymorphism. Classes can be extended with new methods
using extensions that are quite similar to Rust method im-
plementations. Instead of interfaces and traits Swift provides
protocols. They cannot be generic but support associated types
and same-type constraints, default method implementations
through protocol extensions, and explicit access to the self
type; due to the mechanism of extensions, types can retroac-
tively adopt protocols. Fig. 8 illustrates some examples: the
Equatable protocol extended with a default implementation
for notEqual (pay attention to the use of the Self type); the
contains<T> generic function with a protocol constraint on the
type parameter T; an extension of the type Int that enables
its conformance to the Printable protocol; the Container

protocol with the associated type ItemTy; the allItemsMatch

generic function with the same-type constraint on types of
elements of two containers, C1 and C2.

B. Languages with “Constraints-are-Not-Types” Philosophy
Most of the languages in this category were to some extent

inspired by the design of Haskell type classes [22]. For
defining constraints these languages suggest new language
constructs, which are usually second-class citizens6. These
constructs have no self types and cannot be used as types,
they describe requirements on type parameters in external way;
therefore, retroactive constraints satisfaction (retroactive mod-
eling) is automatically provided. Besides retroactive modeling,
an integral advantage of such kind of constructs is that multi-
type constraints can be easily and naturally expressed using
them; yet there is no semantic ambiguity which arises when
the same construct, such as C# interface, is used both as a
type and constraint, as in the example below:
void Sort<T>(ICollection<T>) where T : IComparable<T>;

Here ICollection<T> and IComparable<T> are generic inter-
faces, but the former is used as a type whereas the latter is
used as constraint.

6Second-class citizens cannot be assigned to variables, passed as arguments,
returned from functions.

12 of 251

interface EQ { boolean eq(This that);
boolean notEq(This that); }

abstract implementation EQ [EQ] {
boolean notEq(This that) { return !this.eq(that); }}

boolean contains<X>(List<X> list, X x)
where X implements EQ { ... }

abstract class Expr {...} class IntLit extends Expr {...}
class PlusExpr extends Expr { Expr left; Expr right; ... }
...
implementation EQ [Expr] {
boolean eq(Expr that) { return false; }}

implementation EQ [PlusExpr]{boolean eq(PlusExpr that){...}}

interface UNIFY [Tm, Eqtn, Subst] {
receiver Tm { IEnumerable<Tm> Subterms(); ... }
receiver Eqtn { IEnumerable<Eqtn> Split(); ... }
receiver Subst { Tm SubstituteTm(Tm); ... }}

Subst Unify<Tm, Eqtn, Subst>(Enumerable<Eqtn>)
where [Tm, Eqtn, Subst] implements UNIFY {...}

Fig. 9. Generalized interfaces in JavaGI

1) JavaGI Generalized Interfaces: JavaGI [6] generalized
interfaces represent a kind of confluence of both “constraints-
are-types” and “constraints-are-not-types” philosophies. Such
interfaces as PrettyPrintable defined below are called
single-parameter interfaces. They describe an interface of a
single type and can be used both as types and constraints.
interface PrettyPrintable { String prettyPrint(); }

Such interfaces have explicit access to the self type named
This; an example is shown in Fig. 9, where the self type is
used in the interface EQ. There is no direct support for default
method implementations in JavaGI, but abstract implementa-
tion definitions can be used for this purpose7. For example,
the notEq method of EQ (Fig. 9) is implemented in such a
way. Generalized interfaces can be implemented retroactively
in implementation blocks. They do not support associated
types but can be generic; moreover, implementations can be
generic as well, and support for type-conditional interface
implementation is provided:
implementation<S, T> EQ [Pair<S, T>] where S implements EQ

where T implements EQ { ... }

Besides single-parameter interfaces, there are multi-headed
generalized interfaces that adopt several features from Haskell
type classes [23] and describe interfaces of several types.
There is no self type in a multi-headed interface; therefore,
it cannot be used as a type, it is designed to be used as
a constraint only. An example of multi-headed interface is
shown in Fig. 9: the UNIFY interface contains all the functions
required by the unification algorithm considered earlier; the
requirements on three types (term, equation, substitution) are
defined at once in a single interface. Note how succinct is this
definition as compared with the one in Fig. 2.

2) Language G and C++ concepts: Concept as an explicit
language construct for defining constraints on type parameters
was initially introduced in 2003 [24]. Several designs have

7The design of JavaGI we discuss here goes back to 2011 when default
method implementations were not supported in Java. With Java 8 this task
could probably be solved in a more elegant way.

concept InputIterator<Iter> { type value; ... }
concept Monoid<T> { fun identity_elt() -> T;

fun binary_op(T, T) -> T; };

model Monoid<int>
{ fun identity_elt() -> int@ { return 0; } ... };

fun accumulate<Iter> where { InputIterator<Iter>,
Monoid<InputIterator<Iter>.value> }

(Iter first, Iter last) -> InputIterator<Iter>.value
{ let init = identity_elt(); ... }

Fig. 10. Concepts and their use in G

been developed since that time [25–27]; in the large, the
expressive power of concepts is rather close the Haskell
type classes [3]. Concepts were to solve the problems of
unconstrained C++ templates [14, 28]; they were expected
to be included in C++0x standard, but this did not happen.
A new version of concepts, Concepts Lite (C++1z) [29], is
under way now. The language G declared as “a language for
generic programming” [7] also provides concepts that are very
similar to the C++0x concepts. G is a subset of C++ extended
with several constructs for generic programming. For “C++

concepts” we use the G syntax in this paper.
Similarly to a type class, a concept defines a set of require-

ments on one or more type parameters. It can contain function
signatures that may be accompanied with default implementa-
tions, associated types, nested concept-requirements on asso-
ciated types, and same-type constraints. A concept can refine
one or more concepts, it means that refining concept includes
all the requirements from the refined concepts. Refinement is
very similar to multiple interface inheritance in C# or protocol
inheritance in Swift. Due to the concept refinement, a so-called
concept-based overloading is supported: one can define several
versions of an algorithm/class that have different constraints,
and then at compile time the most specialized version is chosen
for the given instance. The C++ advance algorithm for iterators
is a classic example of concept-based overloading application.

It is said that a type (or a set of types) satisfies a concept
if an appropriate model of the concept is defined for this type
(types). Model definitions are independent from type defini-
tions, so the modeling relation is established retroactively;
models can be generic and type-conditional. Fig. 10 illustrates
some examples: the InputIterator<Iter> concept with the
associated type of elements value; the Monoid<T> concept
and its model for the type int; the accumulate<Iter> generic
function with two constraints, on the type of an iterator and on
the associated type of this iterator. Note how identity_elt

is called in accumulate: in contrast to the languages from the
previous section, identity_elt is available in the body of
accumulate at the top-level; this may lead to some inconve-
nience even if the autocomplete feature is supported in IDE.

3) C# with concepts: In the C#cpt project [8] (C# with
concepts) concept mechanism integrates with subtyping: type
parameters and associated types can be constrained with super-
types (as in basic C#) and also with subtypes (as in Scala). In
contrast to all of the languages we discussed earlier, C#cpt al-
lows multiple models of a concept in the same scope. Some ex-

13 of 251

concept CEquatable[T] { bool Equal(T x, T y);
bool NotEqual(T x, T y) { return !Equal(x, y); }}

interface ISet<T> where CEquatible[T] { ... }

model default StringEqCaseS for CEquatable[String] { ... }
model StringEqCaseIS for CEquatable[String] { ... }

bool Contains<T>(IEnumerable<T> values, T x)
where CEquatable[T] using CEq {... if (cEq.Equal(...) ...}

Fig. 11. Concepts and models in C#cpt

constraint Eq[T] { boolean T.equals(T other); }
constraint GraphLike[V, E] { V E.source(); ... }

interface Set[T where Eq[T]] { ... }

model CIEq for Eq[String] { ... } // case-insensitive model

model DualGraph[V,E] for GraphLike[V,E]
where GraphLike[V,E] g

{ V E.source() { return this.(g.sink)(); } ... }

Fig. 12. Constraints and models in Genus

amples are shown in Fig. 11: the CEquatable[T] concept with
the Equal signature and a default implementation of NotEqual,
the generic interface ISet<T> with concept-requirement on the
type parameter T, and two models of CEquatable[] for the
type String — for case-sensitive and case-insensitive equality
comparison. The first model is marked as a default model8: it
means that this model is used if a model is not specified at
the point of instantiation. For instance, in the following code
StringEqCaseS is used to test strings equality in s1.

ISet<String> s1 = ...;
ISet<String>[using StringEqCaseIS] s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types

Note that s1 and s2 have different types because they use
different models of CEquatible[String]. This property is
called “constraints-compatibility” in [8], but we will refer to
it as “models-consistency”. One more interesting thing about
C#cpt: concept-requirements can be named. In the Contains<T>

function (Fig. 11) the name cEq is given to the requirement on
T; this name is used later in the body of Contains<T> to access
the Equal function of the concept. It is also worth mention that
the interface IEnumerable<T> is used as a type along with the
concept CEquatable[T] being used as a constraint; thus, the
role of interfaces is not ambiguous any more, interfaces and
concepts are independently used for different purposes.

4) Constraints in Genus: Like G concepts and Haskell type
classes, constraints in Genus [9] (an extension for Java) are
used as constraints only. Fig. 12 demonstrates some examples:
the Eq[T] constraint, which is used to constrain the T in
the Set[T] interface; the model of Eq[String] for case-
insensitive equality comparison; the multi-parameter constraint
GraphLike[V, E], and the type-conditional generic model
DualGraph[V,E]. Methods in Genus classes/interfaces can
impose additional constraints:

8The default model can be generated automatically for a type if the type
conforms to a concept, i. e. it provides methods required by the concept.

interface List[E] { boolean remove(E e) where Eq[E]; ... }

Here the List[] interface can be instantiated by any type,
but the remove method can be used only if the type E of
elements satisfies the Eq[E] constraint. This feature is called
model genericity.

Just as C#cpt, Genus supports multiple models and automatic
generation of the natural model, which is the same thing as
the default model in C#cpt. Due to this, the following code
causes a static type error (we saw the same example in C#cpt):
Set[String] s1 = ...;
Set[String with CIEq] s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types

In Genus this feature is called model-dependent types. An
important note is to be made here: in contrast to true dependent
types that depend on values, model-dependent types depend
on models, which are compile-time artefacts. So the model-
dependent types are just as dependent as generic types are
type-dependent types.

As well as concept-requirements in C#cpt, constraint-
requirements in Genus can be named; the example is shown
in Fig. 12: g is a name of the GraphLike[V,E] constraint
required by the DualGraph[V,E] model. Because function
signatures inside constraints are declared with an explicit
receiver type (in a style close to JavaGI), such as the type
T in the Eq[T] constraint, syntax of calls to functions in the
case of named models is _.(g.sink)(), not g.sink(_).

C. Which Philosophy Is Better If Any?

It is time to find out which approach is better. Taking into
consideration what we explored in Sec. III-A and Sec. III-B,
we draw a conclusion that there are only two language features
that cannot be incorporated in a language together:

1) the use of a construct both as a type and constraint;
2) natural support for multi-type constraints.

Languages with “constraints-are-types” philosophy support the
first feature but not the second, languages with “constraints-
are-Not-types” philosophy vice versa9. Can we determine one
feature that is more important?

It was shown in the study [30] that in practice interfaces
that are used as constraints (such as IComparable<T> in C#
or Comparable<X> in Java) are almost never used as types:

9JavaGI seems to support both of them, but it actually provides different
constructs for different purposes: single-parameter interfaces are more like
Rust traits or Swift protocols, whereas multi-headed interfaces are similar to
concepts and type classes; the latter cannot be used as types.

14 of 251

authors had checked about 14 millions lines of Java code
and found only one such example, and, furthermore, it was
rewritten and eliminated. It is also mentioned in [30] that the
same observation holds for the code in Ceylon.

It is hard to imagine any useful “constraint-and-type” ex-
ample besides the IPrintable interface from Fig. 1. In those
rare cases when this could happen, it is possible to provide
a lightweight language mechanism for automatic generation
of one construct from another. For example, single-parameter
Genus constraints with some restrictions could be translated
to Java interfaces, with the other direction being easier.
At the same time, multi-type constraints, which can be so
naturally expressed under the “constraints-are-Not-types” ap-
proach, have rather awkward and cumbersome representation
in the “constraints-are-types” approach. All other language
facilities we discussed could be supported under any approach.
Therefore, we claim that the “constraints-are-Not-types” ap-
proach is preferable. An additional benefit is that it eliminates
the ambiguity in semantics of the interface-like constructs.

IV. SINGLE MODEL VERSUS MULTIPLE MODELS

For simplicity, in this part of the paper we call “constraint”
any language construct that is used to describe constraints,
while a way in which types satisfy the constraints we call
“model”. We have seen in the previous section that most of the
languages allow to have only one, unique model of a constraint
for the given set of types; only C#cpt [8] and Genus [9]
support multiple models10. And indeed this makes sense for
the languages with “constraints-are-types” philosophy, because
it is not clear what to do with types that could implement
interfaces (or any other similar constructs) in several ways.
But how does this affect generic programming?

It turns out that sometimes it is desirable to have multiple
models of a constraint for the same set of types. The example
of string sets with case-sensitive and case-insensitive equalities
we saw earlier is one of such examples; another one is the use
of different orderings, yet different graph implementations, and
so on. Thus, in respect of generic programming, the absence
of multiple models is rather a problem than a benefit. Without
extending the language the problem of multiple models can
be solved in two ways:

1) Using the Adapter pattern. If one wants the type
Foo to implement IComparable<Foo> in a different
way, an adapter of Foo, the Foo1 that implements
IComparable<Foo1> can be created. This adapter then
can be used instead of Foo whenever the Foo1-style
comparison is required. An obvious shortcoming of this
approach is the need to repeatedly wrap and unwrap Foo

values; in addition, a code becomes cumbersome.
2) Using the Concept pattern, which is considered

in Sec. IV-A.
Both approaches have serious drawbacks. Moreover, as we
have discovered in Sec. III-C, languages with the “constraints-
are-types” philosophy are in the large less expressive than ones

10G [7] allows multiple models only in different lexical scopes.

// F-bounded polymorphism
interface IComparable<T> { int CompareTo(T other); }
void Sort<T>(T[] values) where T : IComparable<T> { ... }
class SortedSet<T> where T : IComparable<T> { ... }

// Concept Pattern
interface IComparer<T> { int Compare(T x, T y); }
void Sort<T>(T[] values, IComparer<T> cmp) { ... }
class SortedSet<T> { private IComparer<T> cmp; ...
public SortedSet(IComparer<T> cmp) { ... } ... }

Fig. 13. The use of the Concept design pattern in C#

with the “constraints-are-Not-types” philosophy. But may such
languages as C#cpt and Genus, which are in the “constraints-
are-Not-types” category and support multiple models at the
language level, be considered as the best languages for generic
programming, or we can imagine a language with a better
design? And one more question: if language support for
multiple models is a good idea, then why does not Haskell [23]
allow multiple instances of a type class? After all, it is con-
sidered to be one of the most expressive languages for generic
programming. We answer the latter question in Sec. IV-B and
discuss the former one in Sec. IV-C.

A. Concept Pattern

The Concept design pattern is suitable for programming
languages with the “constraints-are-types” philosophy. It elim-
inates two problems:

1) Firts, it enables retroactive modeling of constraints,
which is not supported in such languages as C#, Java,
Ceylon, Kotlin, or Scala.

2) Second, it allows to define multiple models of a con-
straint for the same set of types.

The idea of the Concept pattern is as follows: instead of
constraining type parameters, generic functions and classes
take extra arguments that provide a required functionality —
“concepts”. Fig. 13 shows an example: in the case of the
Concept pattern the F-constraint T : IComparable<T> is re-
placed with an extra argument of the type IComparer<T>. The
IComparer<T> interface represents a concept of comparing: it
describes the interface of an object that can compare values
of the type T. As long as one can define several classes
implementing the same interface, different “models” of the
IComparer<T> “concept” can be passed into Sort<T> and
SortedSet<T>.

This pattern is widely used in generic libraries of such
mainstream object-oriented languages as C# and Java; it is also
used in Scala. Due to implicits [5, 19], the use of the Concept
pattern in Scala is a bit easier: in most cases an appropriate
“model” can be found by a compiler implicitly, so there is
no need to explicitly pass it at a call site11. Nevertheless, the
pattern has two substantial drawbacks. First of all, it brings
run-time overhead, because every object of a generic class
with constraints has at least one extra field for the “concept”,
while generic functions with constraints take at least one

11 Scala is often blamed for its complex rules of implicits resolution:
sometimes it is not clear which implicit object is to be used.

15 of 251

extra argument. The second drawback, which we call models-
inconsistency, is less obvious but may lead to very subtle
errors. Suppose we have s1 of the type HashSet<String>

and s2 of the same type, provided that s1 uses case-sensitive
equality comparison, s2 — the case-insensitive one. Thus, s1
and s2 use different, inconsistent models of comparison. Now
consider the following function:
static HashSet<T> GetUnion<T>(HashSet<T> a, HashSet<T> b)
{ var us = new HashSet<T>(a, a.Comparer);

us.UnionWith(b); return us; }

Unexpectedly, the result of GetUnion(s1, s2) could differ
from the result of GetUnion(s2, s1). Despite the fact that
s1 and s2 have the same type, they use different comparers,
so the result depends on which comparer was chosen to build
the union. Recall that in C#cpt and Genus models are part
of the types; therefore, the similar situation causes a static
type error. But in the case of the Concept pattern models-
consistency cannot be checked at compile time.

B. Instance Uniqueness in Haskell

Type classes in Haskell [22] provide a support for ad
hoc polymorphism (function overloading). Like concepts and
constraints, they define functions available for some types. For
instance, a type class for equality comparison is defined as
follows:
class Eq a where (==) :: a -> a -> Bool

(/=) :: a -> a -> Bool
x /= y = not (x == y)

It contains a function signature for equality operator ==, and
provides a default implementation for inequality operator /=.
Then instances (models) of this type class can be defined for
types. For example, an instance for Int, a type-conditional
instance for lists, and so on.
instance Eq Int where ... -- (==) implementation
instance Eq a => Eq [a] where ... -- (==) implementation

As long as type classes support ad hoc polymorphism, they
are “globally transparent”. If a function is a part of some type
class, every time the name of this function is used a compiler
knows that an instance of the corresponding type class must be
provided. And there is a strong reason why multiple instances
of a type class for the same set of types are not allowed in
Haskell: it is type inference. Consider the following function
definition:
foo xs ys = if xs == ys then xs else xs ++ ys

In Haskell such definition is valid and its type can be inferred.
It is Eq a => [a] -> [a] -> [a]12. Inference succeeds, be-
cause a compiler knows the following facts: as long as (++)

has the type [a] -> [a] -> [a], xs and ys are lists; there is
an instance of Eq for lists (Eq a => Eq [a]). If there were no
Eq [a] instance available, type checking would fail.

Now suppose that multiple instances of a type class are
allowed. What to do with type inference of the foo in this
case? To check whether there is at least one instance Eq [a]?
And what if we also have the following code:

12[a] is a type of generic list, it is a notation for Data.List a

class Eq a => Baz a where
bar :: a -> Int

useBar x y = if length x > length y then bar x - bar y
else bar y - bar x

If instances are uniquely defined, type checker just checks if
there is an instance Eq [a] that implies Baz [a] (x and y

are inferred to be lists because length has the type [a] ->

Int). But if there are multiple Eq [a] instances, then every
Baz [a] instance must specify which Eq [a] instance it uses.
It can even be the case that there is a Baz [a] instance for
one Eq [a], but not for another one. Therefore, at the point of
the useBar definition a compiler has no idea whether there is
an error of missed instance or not, because it knows nothing
about the instances that might be used in a call to useBar.
This information is available only at the point of a call.

Note that even with the OverlappingInstances extension for
Haskell, multiple models in a sense we discuss in the paper
are not supported. This extension indeed allows to have several
instances that match the constraints deduced for a code. But
there must be only one instance among them that compiler
can select unambiguously (according to some rules) at the
point of a code definition. Again, not at the call site — at
the point of definition. Thus, a user of the code still cannot
choose between instances, an instance is already selected
by a compiler. Thus, Haskell sacrifices language support for
multiple models for the sake of type inference. It is a strong
argument for Haskell users, but in the case of the most object-
oriented programming languages, which usually do not allow
to omit type annotations of function arguments as well as
constraints on type parameters, there is no need to prohibit
multiple models in OO languages.

C. Parameters versus Predicates

So far we have discovered that languages with “constraints-
are-Not-types” philosophy, if they also allow to define multiple
models, may potentially provide better support for generic
programming compared to other languages. We have seen only
two languages with such properties, C#cpt [8] and Genus [9],
and there is an essential shortcoming in the design of both
of them: constraints on type parameters are declared in
“predicate-style” rather than “parameter-style”. For example,
consider the following Genus definition [9]:
Map[V,W] SSSP[V,E,W](V s)
where GraphLike[V,E], Weighted[E,W],

OrdRing[W], Hashable[V] { ... }

SSSP[V,E,W] is a function for Dijkstras single-source shortest-
path algorithm, with the GraphLike[V,E], Weighted[E,W],
OrdRing[W] and Hashable[V] being constraints on type pa-
rameters. The constraints look as if they were predicates
on types, and if they were predicates, this function would
probably be well-designed. For example, in Haskell, G, C#,
Java, Rust, and many other languages, where only one model
of a constraint is allowed for the given set of types, constraints
on type parameters are indeed predicates: types either satisfy
the constraint (if they have a model that is unique) or not. But
in Genus and C#cpt constraints are not predicates, they are

16 of 251

actually parameters, as long as different models of constraints
can be used. In the worst case a call to SSSP[V,E,W] would
be as follows:
...pathFromX = SSSP[MyVert, MyEdge, Double

with MyGrLike with MyEdgeDW
with DescDOR with MyVerHash](x);

Whereas in the best case:
...pathFromX = SSSP[MyVert, MyEdge, Double](x);

Note that edge and weight types cannot be deduced, because
they are determined by models of the constraints, not by the
vertex x itself. It is easy to imagine that models of edge
weighing and its ordered ring would often vary, so a call to
SSSP[V,E,W] is likely to look like this in many cases:
...pathFromX = SSSP[MyVert, MyEdge, Double

with MyEdgeDW with DescDOR](x);

This is not very bad but is also not good enough.
If look again at the SSSP algorithm, one could notice that

it really depends on three things: a source vertex, a model of
a weighed graph which this vertex belongs to, and a model
of hashing. Furthermore, at the level of the SSSP signature the
type E of edges does not matter, we are interested in the model
of weighed graph as a whole. Taking into account this ideas,
we can rewrite the SSSP in the following way:
constraint WeighedGraph[V,E,W]
extends GraphLike[V,E], Weighted[E,W], OrdRing[W] {}

Map[V,W] SSSP[V,E,W](V s)
where WeighedGraph[V,E,W], Hashable[V] { ... }

Then a call to SSSP also becomes better:
...pathFromX = SSSP[MyVert, MyEdge, Double with MyWGr](x);

Nevertheless, we believe that in the case of multiple models
the “predicate-style” of constraints is misleading and makes it
more difficult to write and call a generic code. We suggest that
the design of constraints has to be in the “parameter-style”.
One example of such design is provided by the extension for
the OCaml language — modular implicits [31]; it is briefly
discussed in Sec. IV-C1. A sketch of the “parameter-style”
design of constraints for object-oriented languages is presented
in Sec. IV-C2.

1) Modular Implicits in OCaml: In the “modular implic-
its” extension for the OCaml language [31] module types
are used to describe constraints, modules represent models,
with generic functions explicitly taking module-parameters.
Fig. 14 demonstrates some examples. By contrast to concepts
and genus constraints, module types and modules do not
have type parameters, instead they have type members, such
as the t in the Eq module type. Eq_int and Eq_list are
models of Eq for the int and generic list. Generic functions
that need constraints, such as foo and foo’, explicitly take
implicit module parameters EL and E. Notice that just as type
parameters, EL and E are compile-time parameters, not run-
time. They are called implicit because at a call to generic
function actual models can be inferred, as in the x and y

examples in Fig. 14. Notice that in the foo function any model
of comparison of lists is expected, whereas foo’ expects a

module type Eq = sig
type t
val equal : t -> t -> bool

end

implicit module Eq_int = struct
type t = int
let equal x y = ...

end
implicit module Eq_list {E : Eq} = struct
type t = Eq.t list
let equal xs ys = ...

end

let foo {EL : Eq} xs ys = if EL.equal(xs, ys)
then xs else xs @ ys

let foo’ {E : Eq} xs ys = if (Eq_list E).equal(xs, ys)
then xs else xs @ ys

let x = foo [1;2;3] [4;5]
let y = foo’ [1;2;3] [4;5]

Fig. 14. OCaml modular implicits

concept Equality[T] { bool Equal(T x, T y);
bool NotEqual(T x, T y) { return !Equal(x, y); }}

concept Ordering[T] refines Equality[T]
{ int Compare(T x, T y); }}

interface ISet<T | Equality[T] eq> { ... }
interface ICollection<T> { ...
bool Remove<Equality[T] eq>(T x); ... }

bool Contains<T | Equality[T] eq>(IEnumerable<T> vs, T x)
{... if (eq.Equal(...) ...}

int MaxInt<|Ordering[int] ord>(IEnumerable<int> vs) {...}

Fig. 15. The use of concept-parameters in Cp#

model of comparison of elements of lists and fixes the model
Eq_list E of comparison of lists.

2) Concept Parameters for C#: Fig. 15 shows some ex-
amples of a generic code in the style of concept-parameters,
which we call Cp# — C# with concept-Parameters. Concepts
are the same as in C#cpt, whereas constraints on type param-
eters are not predicates any more, they are explicitly stated
as parameters in the angle brackets after the “|” sign. In
the ICollection<T> interface the Remove method is obviously
generic: it takes the concept-parameter eq for comparing the
values of the type T. Note that concept-parameters can even
be non-generic as in the MaxInt function.

If default models are supported, it must be possible to infer
concept-arguments just in the same way as in C# or Genus, so
that instances of generic functions and classes can be written in
a usual way, without the need to specify the models required:
var ints = new ISet<int>(...);
var has5 = Contains(ints, 5);

var maxv = MaxInt(ints);
var minv = MaxInt<|IntOrdDesc>(ints);

ISet<String> s1 = ...;
ISet<String|StringEqCaseIS> s2 = ...;
s1 = s2; // Static ERROR, s1 and s2 have different types

C#cpt and Genus can easily be redesigned to follow the
“concept-parameters style” presented here. With this style the
syntax of such languages would perfectly fit the semantics.
On the other hand, the “concept-predicates style” misleads a

17 of 251

Haskell C# Java 8 Scala Ceylon Kotlin Rust Swift JavaGI G C#cpt Genus ModImpl

Constraints can be used as types # G# # # # #
Explicit self types − # # G# - # G# − − − −
Multi-type constraints A A A # A # #

Retroactive type extension − # # # # # # # −
Retroactive modeling A A A # A
Type conditional models # # # # # #

Static methods 𝑎 # # 𝑎 𝑎 𝑎 𝑎

Default method implementation # G# # #

Associated types # # # # # #
Constraints on associated types G# − − − − − −
Same-type constraints G# − − − − − −

Subtype constraints − − # # # −
Supertype constraints − # # # # − # # # # −

Concept-based overloading # # # # # # # # G#𝑑 # # #

Multiple models # A A A A A # # # G#𝑏
Models-consistency (model-dependent types) −𝑐 # # # # # −𝑐 −𝑐 −𝑐 −𝑐
Model genericity − A A A A A # # # # −

aConstraints constructs have no self types, therefore, any function member of a constraint can be treated as static function.
bG supports lexically-scoped models but not really multiple models.
cIf multiple models are not supported, the notion of model-dependent types does not make sense.
dC++0x concepts, in contrast to G concepts, provide full support for concept-based overloading.

TABLE I
THE LEVELS OF SUPPORT FOR GENERIC PROGRAMMING IN OO LANGUAGES

programmer and masks the fact that constraints can be non-
uniquely satisfied.

V. CONCLUSION AND FUTURE WORK

Table I provides a summary on comparison of the languages:
each row corresponds to one property important for generic
programming; each column shows levels of support of the
properties in one language. Black circle indicates full
support of a property, G# — partial support, # means that
a property is not supported at language level, A means that a
property is emulated using the Concept pattern, and the “−”
sign indicates that a property is not applicable to a language.
The “ModImpl” column corresponds to the OCaml modular
implicits. All the properties that appear in rows of Table I
were discussed in Sec. III and Sec. IV. Related properties are
grouped within horizontal lines; some of them are mutually
exclusive. For example, as we saw earlier, using constraints as
types and natural language support for multi-type constraints
are mutually exclusive properties. The major features analysed
in the paper are highlighted in bold.

The purpose of this table is not to determine the best
language. The purpose is to show dependencies between
different properties and to graphically demonstrate that the
“constraints-are-Not-types” approach is more powerful than
the “constraints-are-types” one. There are some features that
can be expressed under any approach, such as static methods,
default method implementations, associated types [15], and
even type-conditional models.

It should be mentioned that the table is not exhaustive.
There is a bunch of facilities that we did not discuss at all,
although they can be considered independently of the study

we made. Thus, for example, Genus [9] provides a support
for such useful feature as multiple dynamic dispatch. Consider
the following code:
constraint Intersectable[T] { T T.intersect(T that); }
model ShapeIntersect for Intersectable[Shape]
{ Shape Shape.intersect(Shape s) {...}
// Rectangle and Circle are subclasses of Shape:
Rectangle Rectangle.intersect(Rectangle r) {...}
Shape Circle.intersect(Rectangle r) {...}
Shape Triangle.intersect(Circle c) {...} ... }

It provides a subtype polymorphism on multiple arguments. So
that in the call s1.intersect(s2) the most specific version of
intersect would be used depending on the dynamic types of
s1 and s2.

Another interesting feature is concept variance. For exam-
ple, suppose we have the following Cp# definitions:
concept Equality[T] { bool Equal(T x, T y);
bool NotEqual(T x, T y) { return !Equal(x, y); }}

concept Ordering[T] refines Equality[T]
{ int Compare(T x, T y); }}

interface ISet<T | Equality[T] eq> { ... }

If ISet<T|eq> is covariant on the eq in a sense of the re-
finement relation, then the class SortedSet<T | Ordering[T]

ord> can legally implement ISet<T|ord>. Now recall the
ICollection<T> interface definition:
interface ICollection<T> { ...
bool Remove<Equality[T] eq>(T x); ... }

SortedSet<T|ord> obviously also implements the interface
ICollection<T>. Should it be the case that the ord model of
Equality[T] required in the Remove method be used in place
of eq? Or the Remove method has to remain model-generic?

18 of 251

There are other questions similar to mentioned above that
relate constraints on type parameters to usual features of
object-oriented programming. Some of these questions require
a careful type-theoretical investigation, so this is the subject
for future work.

ACKNOWLEDGMENT

The author would like to thank Artem Pelenitsyn, Jeremy
Siek, and Ross Tate for helpful discussions on generic pro-
gramming.

REFERENCES
[1] Musser D. R. and Stepanov A. A. Generic Programming, Proceedings of the

International Symposium ISSAC’88 on Symbolic and Algebraic Computation,
ISAAC ’88, London, UK, UK: Springer-Verlag, 1989, pp. 13–25.

[2] Garcia R. et al. An Extended Comparative Study of Language Support for Generic
Programming, J. Funct. Program., Mar. 2007, vol. 17, no. 2, pp. 145–205.

[3] Bernardy J.-P. et al. A Comparison of C++ Concepts and Haskell Type Classes,
Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP
’08, Victoria, BC, Canada: ACM, 2008, pp. 37–48.

[4] Garcia R. et al. A Comparative Study of Language Support for Generic Program-
ming, SIGPLAN Not., Oct. 2003, vol. 38, no. 11, pp. 115–134.

[5] Oliveira B. c. d. s. and Gibbons J. Scala for Generic Programmers: Comparing
Haskell and Scala Support for Generic Programming, J. Funct. Program., July
2010, vol. 20, no. 3-4, pp. 303–352.

[6] Wehr S. and Thiemann P. JavaGI: The Interaction of Type Classes with Interfaces
and Inheritance, ACM Trans. Program. Lang. Syst., July 2011, vol. 33, no. 4,
12:1–12:83.

[7] Siek J. G. and Lumsdaine A. A Language for Generic Programming in the Large,
Sci. Comput. Program., May 2011, vol. 76, no. 5, pp. 423–465.

[8] Belyakova J. and Mikhalkovich S. Pitfalls of C# Generics and Their Solution
Using Concepts, Proceedings of the Institute for System Programming, June 2015,
vol. 27, no. 3, pp. 29–45.

[9] Zhang Y. et al. Lightweight, Flexible Object-oriented Generics, Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2015, Portland, OR, USA: ACM, 2015, pp. 436–445.

[10] Martelli A. and Montanari U. An Efficient Unification Algorithm, ACM Trans.
Program. Lang. Syst., Apr. 1982, vol. 4, no. 2, pp. 258–282.

[11] Canning P. et al. F-bounded Polymorphism for Object-oriented Programming,
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, FPCA ’89, Imperial College, London,
United Kingdom: ACM, 1989, pp. 273–280.

[12] Bruce K. et al. On Binary Methods, Theor. Pract. Object Syst., Dec. 1995, vol.
1, no. 3, pp. 221–242.

[13] Kennedy A. and Syme D. Design and Implementation of Generics for the .NET
Common Language Runtime, SIGPLAN Not., May 2001, vol. 36, no. 5, pp. 1–12.

[14] Belyakova J. and Mikhalkovich S. A Support for Generic Programming in
the Modern Object-Oriented Languages. Part 1. An Analysis of the Problems,
Transactions of Scientific School of I.B. Simonenko. Issue 2, 2015, no. 2, 63–77
(in Russian).

[15] Järvi J., Willcock J., and Lumsdaine A. Associated Types and Constraint
Propagation for Mainstream Object-oriented Generics, Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’05, San Diego, CA, USA: ACM, 2005,
pp. 1–19.

[16] The Ceylon Language Specification, version 1.2.2 (March 11, 2016).
[17] The Kotlin Reference, version 1.0 (February 11, 2016).
[18] Java Platform, Standard Edition (Java SE) 8.
[19] Oliveira B. C., Moors A., and Odersky M. Type Classes As Objects and

Implicits, Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’10, Reno/Tahoe,
Nevada, USA: ACM, 2010, pp. 341–360.

[20] Pelenitsyn A. Associated Types and Constraint Propagation for Generic Program-
ming in Scala, English, Programming and Computer Software, 2015, vol. 41, no.
4, pp. 224–230.

[21] The Rust Reference, version 1.7.0 (March 3, 2016).
[22] Hall C. V. et al. Type Classes in Haskell, ACM Trans. Program. Lang. Syst., Mar.

1996, vol. 18, no. 2, pp. 109–138.
[23] Wadler P. and Blott S. How to Make Ad-hoc Polymorphism Less Ad Hoc,

Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’89, Austin, Texas, USA: ACM, 1989,
pp. 60–76.

[24] Stroustrup B. Concept Checking — A More Abstract Complement to Type
Checking, Technical Report N1510=03-0093, ISO/IEC JTC1/SC22/WG21, C++
Standards Committee Papers, Oct. 2003.

[25] Stroustrup B. and Dos Reis G. Concepts — Design Choices for Template Argu-
ment Checking, Technical Report N1522=03-0105, ISO/IEC JTC1/SC22/WG21,
C++ Standards Committee Papers, Oct. 2003.

[26] Dos Reis G. and Stroustrup B. Specifying C++ Concepts, Conference Record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’06, Charleston, South Carolina, USA: ACM, 2006, pp. 295–
308.

[27] Stroustrup B. and Sutton A. A Concept Design for the STL, Technical Report
N3351=12-0041, ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers,
Jan. 2012.

[28] Stepanov A. A. and Lee M. The Standard Template Library, Technical Report
95-11(R.1), HP Laboratories, Nov. 1995.

[29] Sutton A. C++ Extensions for Concepts PDTS, Technical Specification N4377,
ISO/IEC JTC1/SC22/WG21, C++ Standards Committee Papers, Feb. 2015.

[30] Greenman B., Muehlboeck F., and Tate R. Getting F-bounded Polymorphism into
Shape, Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom:
ACM, 2014, pp. 89–99.

[31] White L., Bour F., and Yallop J. Modular Implicits, ArXiv e-prints, Dec. 2015,
arXiv: 1512.01895 [cs.PL].

19 of 251

http://arxiv.org/abs/1512.01895

Refinement Types in Jolie

Alexander Tchitchigin∗†, Larisa Safina∗, Mohamed Elwakil∗‡, Manuel Mazzara∗, Fabrizio Montesi§ and Victor Rivera∗
∗Innopolis university, Innopolis, Russia

Email: {a.chichigin, l.safina, m.elwakil, m.mazzara, v.rivera}@innopolis.ru
†Kazan Federal University, Russia. Email: a.tchichigin@it.kfu.ru
‡Cairo University, Giza, Egypt. Email: m.elwakil@fci-cu.edu.eg

§University of Southern Denmark, Denmark
Email: fmontesi@imada.sdu.dk

Abstract—Jolie is the first language for microservices and it
is currently dynamically type checked. This paper considers the
opportunity to integrate dynamic and static type checking with
the introduction of refinement types, verified via an SMT solver.
The integration of the two aspects allows a scenario where the
static verification of internal services and the dynamic verification
of (potentially malicious) external services cooperate in order to
reduce testing effort and enhance security.

Index Terms—Microservices, Jolie, Refinement Types, SMT,
SAT, Z3

I. INTRODUCTION

“Stringly typed” is a new antipattern referring to an imple-
mentation that needlessly relies on strings, when other options
are available. The problem of “string typing” appears often in
service-oriented architecture and microservices on the border
between a service and its clients (external interfaces) due
to necessity to communicate over text-based protocols (like
HTTP) and collaboration with clients written in dynamically-
typed languages (like JavaScript). The solution to this problem
can be found with refinement types [14], which are used to
statically (or dynamically) check compatibility of a given value
and refined type by means of predicates constraining the set of
possible values. Though employment of numerical refinements
is well-known in programming languages, string refinements
are still rare.

In this paper, we introduce a design for extending the
Jolie programming language [25], [3] and its type system. On
top of previous extensions with choice type [28] and regular
expressions, we introduce here string refinement type and we
motivate the reasons for such extension. Section II recalls
the basic of the Jolie language and its type system while
Section III describes the open problem this paper tackles with
clarifying examples. Section IV discusses related work in the
context of using SMT solvers for static typing of refinement
types.

II. JOLIE PROGRAMMING LANGUAGE

Jolie [25] is the first programming language based on
the paradigm of microservices [18]: all components are au-
tonomous services that can be deployed independently and
operate by running parallel processes, programmed follow-
ing the workflow approach. The language was originally
developed in the context of a major formalization effort for

workflow and services composition languages, the EU Project
SENSORIA [1], which spawned many models for reasoning
on the composition of services (e.g., [19], [20]). Jolie comes
with a formally-specified semantics [16], [15], [24], inspired
by process calculi such as CCS and the π-calculus [21]. On the
more practical side, Jolie is inspired by standards for Service-
Oriented Computing such as WS-BPEL [4]. The combination
of theoretical and practical aspects in Jolie has made it a candi-
date for the application of recent research methodologies, e.g.,
for addressing runtime adaptation [27], process-aware web
applications [23], or correctness-by-construction in concurrent
software [9].

Jolie has the microservice as basic abstraction and as first-
class citizen, and it is based on a recursive model where every
microservice can be easily reused and composed for obtaining,
in turn, other microservices [22]. This approach supports
distributed architecture and guarantees simple managing of
components, which reduces maintenance and development
costs.

Microservices work together by exchanging messages. In
Jolie, messages are structured as trees [24] (a variant of the
structures that can be found in XML or JSON). Communica-
tions are type checked at runtime, when messages are sent or
received. Type checking of incoming messages is especially
relevant, since it mitigates the effect of ill-behaved clients. The
work of Nielsen [26] presents a first attempt at formalizing a
static type checker for the core fragment of Jolie. However, for
the time being, the language is still dynamically type checked.

III. EXTENSION OF JOLIE TYPE SYSTEM

Safina et al [28] extended the basic type system of Jolie
with type choices. The work had been then continued with
the addition of regular expression types, a special case of
refinement types. In refinement types, types are decorated with
logical predicates which further constrain the set of values
described by the type and therefore represent the specification
of invariant on values. Here, we extend this with the possibility
of expressing invariants on string values in form of regular
expressions.

The integration of static and dynamic analysis allows
considering “internal” services (native Jolie services) and
calls from “external” services (potentially developed in other

20 of 251

languages) in a complementary way. The first ones can be
statically checked while the second ones, which could exhibit
malicious behavior, still need a runtime validation.

The key idea behind service-oriented computing, and mi-
croservices in particular, is the ability to connect services
developed in different programming languages and possibly
running on different servers over standard communication
protocols [18]. A common use case is the implementation
of APIs for Web and mobile applications. In such scenarios,
the de-facto standard communication protocol is HTTP(S),
combined with standardized data formats (SOAP, JSON, etc.).

HTTP is a text-based protocol, where all data get serialized
into strings1. Moreover, clients of a service (an application or
another service) may have been developed in a language that
does not support particular datatypes (e.g., JavaScript does not
have a datatype for calendar dates or time of day), therefore
relying on string representation for internal processing too.
The same issue arises with key-value storage systems (e.g.,
Memcache and Redis), which support only string keys and
string values. These factors make string handling an important
part of a service application, especially at the boundary with
external systems.

Not all strings are made equal. For example, GUIDs are
often used to identify records in a store. GUIDs are represented
as strings of hexadecimal digits with a particular structure.
Currently, developers have to manually check the conformance
of received values to the expected format. In such a scenario,
a developer has to find her way in a narrow stream between
the Scylla of forgetting to insert necessary checks and the
Charybdis of inserting too many checks for data that has been
already validated2.

Description of the shape of expected string data (like
GUID or e-mail address) is natural with regular expressions.
Adding the description of this shape to the datatype definition
allows the compiler to automatically insert the necessary
dynamic checks (for public functions) and statically validate
the conformance (for internal calls). This is the extension
of refinement type to string type. The same techniques and
tools used for static verification of conformance for numerical
refinements [17], [12] can be used for strings. For the purposes
of this paper we will use Z3 SMT solver by Microsoft
Research [6], which recently got support for theory of strings
and regular expressions in its development branch.

A. Example: the news board

The approach to static checking of string refinements using
Z3 SMT solver is illustrated here by a simple example, i.e.
a service using refined datatype for GUIDs and the SMT
constraints generated for it.

1Jolie partially mitigates this aspect with automatic conversion of string
serializations to structured data by following the interface definition of the
service [23]. However, this does not solve the general problem addressed
here.

2Scylla and Charybdis are monsters of Greek mythology living on the two
sides of a narrow channel so that sailors trying to avoid one would have fallen
into the other.

A news board is a simple service in charge of retrieving
posts composed by a particular user of the system. The service
receives user information via HTTP in a string format. Here
we use string refinement types to define the shape of user
IDs (employing regular expression that matches GUIDs) as
an alternative to the manual checking of the constraint inside
the posts retrieving operation.

1 type gu id : s t r i n g (” [A−F\\d]{8 ,8} − [A−F\\d
]{4 ,4} − [A−F\\d]{4 ,4} − [A−F\\d]{4 ,4} − [A−
F\\d]{12 ,12} ”)

Types for storing user and posts information are also nec-
essary3.

1 type u s e r : vo id {
2 . u i d : gu id
3 . name : s t r i n g
4 . age : i n t (age>18) }
5 type p o s t t y p e : vo id {
6 . p i d : gu id
7 . owner : gu id
8 . c o n t e n t : s t r i n g }
9 type p o s t s : vo id { . p o s t ∗ : p o s t t y p e }

We leave service deployment information out of this pa-
per due to its low relevance to the topic, the full code
example can be found in [2]. The behavioral fragment
of the news board demonstrates the post retrieval for a
particular user. To get the information the right user has
to be found (find user by name) and pass the GUID to
get all users posts.

There are two definitions of the operation in the following
code fragment: all posts by user and all posts by user2. In
the first one the correct data is passed to get all users posts,
i.e. user.uid; while in the second user.name is passed. Without
string refinement a problem would arise. The code is syntac-
tically correct. However, it’s semantically incorrect since no
information can be retrieved by user’s name when user’s ID
is actually expected.

1 main {
2 a l l p o s t s b y u s e r (name) {
3 f ind use r by name@Sel fOut (name) (

u s e r) ;
4 g e t a l l u s e r s p o s t s @ S e l f O u t (u s e r .

u i d) (p o s t s) } ;
5
6 a l l p o s t s b y u s e r 2 (name) {
7 f ind use r by name@Sel fOut (name) (

u s e r) ;
8 / / and h e r e we p a s s t h e wrong f i e l d !
9 g e t a l l u s e r s p o s t s @ S e l f O u t (u s e r .

name) (p o s t s) } ;

3Please note that in Jolie we structure the variable’s data as a tree, where
the nodes contain values. Using the void type for the variable on the top of
the tree, we show that it contains no data and is used as a container for its
subtypes.

221 of 251

10
11 / / f i nd us e r by na me d e f i n i t i o n
12 / / g e t a l l u s e r s p o s t s d e f i n i t i o n
13 }

Introducing string refinement allows Jolie to have both
dynamic and static checking for strings. In case of dynamic
checking, the string is verified at runtime when passed to the
receiving service. The more interesting case is static checking
by means of SMT. Here we present the most essential parts
of the encoding, complete example can be found in [2].

1 ; n o t i o n s o f t y p e s , t e r m s and t y p i n g
r e l a t i o n

2 (dec lare−s o r t Type)
3 (dec lare−s o r t Term)
4 (dec lare−fun HasType (Term Type) Bool)
5
6 ; t y p e o f s t r i n g s o f a programming

l a n g u a g e
7 (dec lare−fun s t r i n g () Type)
8 ; t r a n s l a t i o n from Z3 b u i l t −i n S t r i n g

t y p e t o our s t r i n g t y p e and back
9 (dec lare−fun B o x S t r i n g (S t r i n g) Term)

10 (dec lare−fun s t r i n g −term−v a l (Term)
S t r i n g)

11 (a s s e r t (f o r a l l ((s t r S t r i n g))
12 (= (s t r i n g −term−v a l (B o x S t r i n g s t r))

s t r)))
13 (a s s e r t (f o r a l l ((s S t r i n g))
14 (HasType (B o x S t r i n g s) s t r i n g)))
15
16 ; gu id t y p e t h a t r e f i n e s s t r i n g t y p e
17 (dec lare−fun gu id () Type)
18 (def ine−fun guid−r e () (RegEx S t r i n g)
19 ; t h e c o n s t r u c t i o n o f t h e r e g u l a r

e x p r e s s i o n i s o m i t t e d
20)
21 ; r e f i n e m e n t d e f i n i t i o n f o r gu id t y p e
22 (a s s e r t (f o r a l l ((x Term))
23 (i f f (HasType x gu id)
24 (and (HasType x s t r i n g)
25 (s t r . i n . r e (s t r i n g −term−v a l x

) guid−r e)))))
26 ; we d e f i n e t y p e ’ use r ’ t h r o u g h i t ’ s

p r o j e c t i o n s
27 (dec lare−fun u s e r () Type)
28 (dec lare−fun u s e r . u i d (Term) Term)
29 (dec lare−fun u s e r . name (Term) Term)
30 (dec lare−fun u s e r . age (Term) Term)
31 ; t y p i n g r u l e s f o r p r o j e c t i o n s
32 (a s s e r t (f o r a l l ((t Term))
33 (i m p l i e s (HasType t u s e r)
34 (and (HasType (u s e r . u i d t) gu id)
35 (HasType (u s e r . name t) s t r i n g)
36 (HasType (u s e r . age t) n a t)))))
37

38 (dec lare−fun f i nd us e r by na me (Term)
Term)

39 ; f i n d us e r by na me : s t r i n g −> u s e r
40 (a s s e r t (f o r a l l ((name Term))
41 (i m p l i e s (HasType name s t r i n g)
42 (HasType (f i nd us e r by na me name)

u s e r))))
43
44 ; t y p e c h e c k i n g f o r a l l p o s t s b y u s e r
45 (a s s e r t (not (f o r a l l ((t Term))
46 (i m p l i e s (HasType t s t r i n g)
47 (HasType (u s e r . u i d (

f i nd us e r by na me t)) gu id)))))
48 ; t y p e c h e c k i n g f o r a l l p o s t s b y u s e r 2
49 (a s s e r t (not (f o r a l l ((t Term))
50 (i m p l i e s (HasType t s t r i n g)
51 (HasType (u s e r . name (

f i nd us e r by na me t)) gu id)))))

Type checking is based on proving a theorem stating that a
function is correctly typed. Technically, the opposite proposi-
tion is actually stated and the SMT solver is put in charge of
finding a counterexample. A failure in such an attempt leads to
the conclusion that the original theorem has to be true (proof
by contradiction).

The Z3 solver successfully proves the well-typedness
theorem for the correct implementation of all posts by user,
and fails to disprove the incorrect implementation
(all posts by user2) due to many simplifications to the
presented SMT encoding for the sake of clarity and
understandability. Employment of a more sophisticated
encoding for the actual implementation of refinement
constraints may mitigate this situation and is left as future
work.

IV. RELATED WORK

Within the context of functional languages, type-checking
of refined types by employing SMT solvers is not new. In [7],
the authors present the design and implementation of the F7
enhanced type-checker for the functional language F# that ver-
ifies security properties of cryptographic protocols and access
control mechanisms using Z3 [10]. The SAGE language [17]
employs a hybrid approach [13] that performs both static and
dynamic type-checking. During compilation time, the Simplify
theorem prover [11] is used to check refinement types. If
Simplify is not able to decide a particular subtyping relation,
a proper type cast is inserted in the code and it is checked at
runtime. If the type cast fails during runtime, this particular
subtyping relation is inserted in a database of known failed
casts. In contrast to checking syntactic subtyping as in F7
and SAGE, the authors of [8], introduce semantic subtyping
checking for a subset of the M language [5] using the Z3 SMT
solver.

V. CONCLUSIONS

The Jolie language is dynamically type-checked. This paper
explores the possibility of integrated dynamic and static type

322 of 251

checking with the introduction of refinement types, verified
via an SMT solver. The integration of the two aspects allows
a scenario where the static verification of internal services and
the dynamic verification of (potentially malicious) external
services cooperates in order to reduce testing effort and
enhance security.

In this work, we motivate the usefulness and feasibility of
string refinement types using an example. Naturally we need to
integrate this extension with an actual type-checker employing
a more advanced SMT-encoding. Not only for strings but for
numerical types too which is well-known and useful tool for
correctness enhancement.

When we have a type-checker for refinement types, an
interesting empirical study would be checking of existing
programs augmented with refined types to discover whether
this technique can uncover bugs caused by a developer’s
oversight.

REFERENCES

[1] EU Project SENSORIA. Accessed April 2016. http://www.sensoria-ist.
eu/.

[2] Gist of SMT constraints for the example. Accessed April 2016. https:
//gist.github.com/gabriel-fallen/a04c33860e2157201fa8.

[3] Jolie Programming Language. Accessed April 2016. http://www.
jolie-lang.org/.

[4] WS-BPEL OASIS Web Services Business Process Execution Lan-
guage. accessed April 2016. http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-specification-draft.html.

[5] Power Query formula reference. Technical Report, August 2015.
[6] Microsoft Research. Accessed April 2016. Z3. https://github.com/

Z3Prover/z3.
[7] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.

Gordon, and Sergio Maffeis. Refinement types for secure implemen-
tations. ACM Trans. Program. Lang. Syst., 33(2):8:1–8:45, February
2011.

[8] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu, and David
Langworthy. Semantic subtyping with an SMT solver. In Proceedings
of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’10, pages 105–116, New York, NY, USA, 2010.
ACM.

[9] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design:
multiparty asynchronous global programming. In POPL, pages 263–
274, 2013.

[10] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Proc. of 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages
337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[11] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem
prover for program checking. J. ACM, 52(3):365–473, May 2005.

[12] Joshua Dunfield. A unified system of type refinements. PhD thesis, Air
Force Research Laboratory, 2007.

[13] Cormac Flanagan. Hybrid type checking. In Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’06, pages 245–256, New York, NY, USA, 2006.
ACM.

[14] Tim Freeman and Frank Pfenning. Refinement types for ML. SIGPLAN
Not., 26(6):268–277, May 1991.

[15] Claudio Guidi, Ivan Lanese, Fabrizio Montesi, and Gianluigi Zavattaro.
Dynamic error handling in service oriented applications. Fundam.
Inform., 95(1):73–102, 2009.

[16] Claudio Guidi, Roberto Lucchi, Gianluigi Zavattaro, Nadia Busi, and
Roberto Gorrieri. Sock: a calculus for service oriented computing. In
ICSOC, volume 4294 of LNCS, pages 327–338. Springer, 2006.

[17] Kenneth Knowles, Aaron Tomb, Jessica Gronski, Stephen N Freund, and
Cormac Flanagan. Sage: Unified hybrid checking for first-class types,
general refinement types, and dynamic (extended report), 2006.

[18] James Lewis and Martin Fowler. Microservices: a definition of this
new architectural term. Accessed April 2016. http://martinfowler.com/
articles/microservices.htm.

[19] Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics
for WS-BPEL. J. Log. Algebr. Program., 70(1):96–118, 2007.

[20] Manuel Mazzara, Faisal Abouzaid, Nicola Dragoni, and Anirban Bhat-
tacharyya. Toward design, modelling and analysis of dynamic workflow
reconfigurations - A process algebra perspective. In Web Services and
Formal Methods - 8th International Workshop, WS-FM, pages 64–78,
2011.

[21] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I and II. Information and Computation, 100(1):1–40,41–77,
September 1992.

[22] Fabrizio Montesi. JOLIE: a Service-oriented Programming Language.
Master’s thesis, University of Bologna, 2010.

[23] Fabrizio Montesi. Process-aware web programming with Jolie. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13, pages 761–763, New York, NY, USA, 2013. ACM.

[24] Fabrizio Montesi and Marco Carbone. Programming Services with Cor-
relation Sets. In Proc. of Service-Oriented Computing - 9th International
Conference, ICSOC, pages 125–141, 2011.

[25] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-
oriented programming with jolie. In Web Services Foundations, pages
81–107. 2014.

[26] J. M. Nielsen. A Type System for the Jolie Language. Master’s thesis,
Technical University of Denmark, 2013.

[27] Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro,
and Maurizio Gabbrielli. AIOCJ: A choreographic framework for safe
adaptive distributed applications. In Software Language Engineering -
7th International Conference, SLE 2014, Västerås, Sweden, September
15-16, 2014. Proceedings, pages 161–170, 2014.

[28] Larisa Safina, Manuel Mazzara, Fabrizio Montesi, and Victor Rivera.
Data-driven workflows for microservices (genericity in jolie). In Proc.
of The 30th IEEE International Conference on Advanced Information
Networking and Applications (AINA), 2016.

423 of 251

Visual Dataflow Language for Educational Robots Programming

Grogorii Zimin
Mathematics and Mechanics Faculty,

SPbSU
Saint-Petersburg, Russia

Email: zimin.grigory@gmail.com

Dmitrii Mordvinov
Mathematics and Mechanics Faculty,

SPbSU
Saint-Petersburg, Russia

Email: mordvinov.dmitry@gmail.com

Abstract—The paper describes a novel dataflow visual pro-
gramming environment for embedded robotic platforms. Its
purpose is to be ”bridge” between lightweight educational
robotic programming languages and complex industrial lan-
guages. We compare programming environments mostly used
by robotics community with our tool. A brief review of
behavioural robotic architectures and some thoughts on ex-
pressing them in terms of our language are given. We also
provide the examples of solving two typical robot control tasks
in our language.

1. Introduction

Programming languages for creating robotic controllers
are actual topics of research oftenly discussed at major
conferences, such as ICRA [1] or IROS [2]. Visual pro-
gramming languages (VPLs) are also actively discussed
for the last three decades, the largest conferences are held
annually, e.g. VL/HCC [3]. VPLs are oftenly applied in
robotics domain [4–8] allowing to create and visualize
robotic controllers. Robotic VPLs are commonly used for
educational purposes, making possible for students of even
junior schools to create robotic programs. For these aims
there are already exists a great number of educational robotic
programming environments based on VPLs, e.g. NXT-G [9],
TRIK Studio [10], ROBOLAB [11], also there are some aca-
demic tools implementing interesting and novel approaches
to educational robotics programming [4], [6], [8].

Robotic control programs are inherently reactive: they
transform data which is continuously coming from multiple
sensors into the impulses on actuators. For this reason
dataflow languages (DFLs) are well-suitable for robotics
programming. Many researchers denoted the conveniency
of dataflow visual programming languages (DFVPLs) [12],
finding them more useful than textual DFLs, for example
because data flows explicitly displayed on the diagram.
There are large and complex general-purpose and domain-
specific development environments such as LabVIEW [13]
and Simulink [14] that provide a large (and sometimes
even cumbersome) set of libraries for robotics programming.
More detailed discussion of robotics VPLs will be provided
in section 2.

There is a large number of robotic constructor kits
for learning the basics of robotics and cybernetics, such
as LEGO MINDSTORMS [15], TRIK, ScratchDuino [16].
Modern programming languages which are used for pro-
gramming those kits are based on the control flow model
rather than on dataflow model. Control flow-based languages
are good for solving scholar “toy” tasks, but may be in-
convenient for programming more complex “real world”
controllers that may be conveniently expresses on DFLs.
The simple DFVPL may be considered as a useful step from
educational VPLs to the programming languages which are
used in universities and industry.

This paper discusses a novel extensible tool for pro-
gramming all popular educational robotic kits on dataflow
visual programming language. It should be noted that, in
distinction from other tools, our tool is focused on embed-
ded systems (section 6). Another interesting detail of our
work is the application of DSM-aproach for implementation
of visual editor: it is entirely generated by QReal DSM-
platform [17] [18] without even a line of code written.
We also take into consideration the popularity of Brooks’
Subsumption Architecture [19] which is still mainstream
approach to design of complex robotic controllers [4], [5],
[7], [20] despite it was proposed 30 years ago. Brooks’
Subsumption Architecture and some other are conveniently
expressed in our language, they are discussed in section 3.

The remainder of a paper is organized as follows. An
overview of robotics VPLs and DFVPLs is presented in
section 2. Section 3 provides some general thoughts on
how some widely used robotic behavioural architectures are
expressed in our language. A detailed description of our
language is given in section 4. Section 5 demonstrates two
typical robotic controllers expressed in our language. The
most important details of implementation are discussed in
section 6. Finally, the last section concludes the paper and
discusses possible directions for future work.

2. Similar Tools

Robot programming environments can be divided into
three categories: educational, which allows to program small
educational robotic kits; industrial, which have a rich toolkit
for creating large and complex robotic controllers; academic,

24 of 251

which implement new interesting ideas, however they are
oftenly unavailable for downloading or unusable.

Educational visual environments are for example NXT-G
and ROBOLAB for LEGO MINDSTORMS NXT kit, EV3
Software for the Lego Mindstorms EV3 kit, TRIK Studio for
NXT, EV3 and TRIK. Those environments simplify solving
primitive robot control tasks like finding a way out of the
maze and driving along the line using light sensors, which
makes the process of learning the basics of programming
and robot control easy. But their simplicity oftenly bounds
the flexibility of the language. Visual languages of all men-
tioned systems are based on control flow model.

There is also a number of well-known visual robotic
programming environments of industrial level. For example,
general-purpose LabVIEW from National Instruments with
the DFVPL G, programming environment Simulink devel-
oped by MathWorks for modelling different dynamic models
or control systems. Those products offer a huge set of
models and libraries to create control systems, test benches,
real-time systems of any complexity, using model-driven
approach. LabVIEW provides opportunity for programming
small robots. There are lots of examples of applying Lab-
VIEW in education [21], [22], but much more oftenly
adaptations like Robolab are used in educational process.
It should be noted that those environments are distributed
under the commercial license.

Another example of an visual robotics industrial system
is the Microsoft Robotics Developer Studio (MSRDS) [23],
which is free for academic purposes and allow to create
distributed robotic systems on DFVPL. MSRDS officially
supports a large set of robotic platforms, LEGO NXT [24]
in particular (however, the autonomous mode for NXT is
not supported). MSRDS has the ability of manual integra-
tion with custom robotic platforms, but unhappily is not
maintained since 2014.

There is a lot of scientific research has done in this area,
e.g., dissertation [4] describes a visual programming mod-
ule for expressing robotic controllers in terms of extended
Moore machines, [6], [7] describe visual environment for
occam-π language and Transterpreter framework, and its
usage in education and swarm robotics. Article [8] describes
DFVPL for beginners which is pretty close to a one we
introduce here. However at the moment RuRu is under
development, it has pretty limited functionality and even
unavailable for download.

3. Robotic Behavioural Architectures

The task of creation complex and scalable robotic con-
troller is indeed a non-trivial task. Starting from middle
80’s many researchers have attempted to solve this problem
and a number of behavioural robotic architectures were pro-
posed [25]. Those approaches are quickly became popular
in robotics community and they are still actual. For example
the original work that introduced Brooks’ Subsumption Ar-
chitecture [19] is one of the most cited works in the entire
robotics domain. We believe that the description of modern

language for programming robotic controllers should con-
tain at least general thoughts on how those architectures may
be expressed in it.

A controller built on Brooks’ Subsumption Architecture
is decomposed into a hierarchy of levels of competence
where each new layer describes a new feature of robot’s
behaviour. Levels are “ordered” upside-down, the higher
levels describe more “intelligent” behaviour of robot. Higher
levels depend on lower ones but not vice versa, so failures
of higher levels do not imply the failure of lower. This is
important feature for mobile robotics, e.g. if robot’s gripper
was damaged the controller is still able to deliver robot to
its base. Levels of responsibility are expressed as a set of
“behaviours” running concurrently and interacting with each
other via channels of suppression and inhibition. Using them
higher levels can suppress the activity of lower ones thus
correcting the behaviour of the whole system.

Brooks’ in his original work offered to express be-
haviours in terms of state machines. Each layer implements
some simple logic of transformation sensor inputs into im-
pulses on actuators. Dataflow languages are obviously as
suitable as state machines for expressing such behaviours.
In our language each behaviour can be represented as “black
box” described by separate subprogram. Also our language
contains Suppressor and Inhibitor elements for layers
communication. Levels can be invoked concurrently, so we
can conclude that our language allows the convenient ex-
pression of controllers built with Subsumption Architecture.
That is demonstrated by an example in section 5.

Connell’s Colony Architecture [26] is a very similar to
Brooks’ one, but solves some scalability issues of Subsum-
tion Architecture. It also decomposes the controller into a
number of communicating concurrent levels, but they are
unordered. The other difference is an absence of inhibition
channel, data inhibition should be implicitly expressed by
predicated in layers. Our language does not force any order
between layers, predicative inhibition can be implemented
simply with Filter block. So Colony Architecture is also
well-expressed in our language.

There also exist Arkins Motor Schema [27] and
Rosenblatts Distributed Architecture for Mobile Navigation
(DAMN) [28] which are compatible with our language, but
the detailed descriptions will be omitted here. General ideas
on their implementation on occam-π language can be found
in [25], we believe that those ideas will suffice in the
context of this paper. The complete research of expressing
behavioural architectures in our language is a topic for
separate paper.

4. Language Description

Evolution of a domain-specific modeling (DSM) tools
allows to quickly create a fairly sophisticated visual pro-
gramming languages [29]. TRIK Studio programming envi-
ronment is an example of a system that was created using
DSM-based approach on QReal platform [17], [18]. Basing
on an industrial experience of TRIK Studio developers we

25 of 251

decided to create the visual editor of our language on QReal
platform.

Program on DFVPL is a set of blocks and flows that
connect blocks. DFVPL blocks process incoming tokens and
emit resulting data into the output data flows. Blocks in
our language can be divided into several groups that are
described below. Some blocks require to specify information
on textual language. The language we use is a statically
typed dialect of Lua [30].
• Control blocks that implement basic algorithmic construc-

tions (conditions, loops, etc).
– ConstValue and RandomValue blocks that are responsi-

ble for generation of a random number or a predeter-
mined value of any type.

– Loop, If, Switch. These blocks implement general con-
trol flow algorithmic constructions in dataflow style.
Loop is an entity which emits a sequence of numbers
for a given amount of times. If checks the condition
specified on a textual language and sends them to True
or False channel. Switch successively checks guard
conditions and if it is evaluated as true sends incoming
data to corresponding channel.

– Function block, which allows to process of the input
data in a textual language. Most usually this block is
used for mathematical processing of data.

– FinalBlock stops the execution of program when receiv-
ing any data.

– Subprogram for reusing the code. Double-click on sub-
program block opens new visual editor tab with an
implementation of this subprogram. Contents of that
tab can be then edited by user in exactly the same way
he edits the main diagram.

– GetSetVariable. Purely practical block for setting value
of some global variable or emitting it into output flows.

– Wait block delays data processing.
– DelayAndFilter is the extension of the previous block

adding the filtering condition and checking the amount
of emitted data validated by condition.

– Fork, EndFork blocks that provide an ability of invoking
code in platform-specific execution units. See section 6
for details.

• Drawing. Blocks for drawing on display of the robot and
on the floor in simulator mode.
– PaintSettings defines current background color, thick-

ness and color of pen and color and style of the brush
that draw graphical primitives.

– ShapePainter, SmilePainter, Text are used for drawing
some shape, text or smile on robot’s display.

– Clear block removes all graphics from robot’s display
when receiving any token.

– Pen block puts down or raises the marker for drawing
the robot’s trace on the “floor” of 2D simulator.

• Flow manipulation. These elements provide opportunity
to manipulate data which flow between blocks.
– InPort, OutPort emit tokens that come into some in-

stance of Subprogram block into a diagram imple-
menting it and similarly redirect data from subprogram

implementation into output flows of active instance of
Subprogram block.

– Supressor, Inhibitor inhibit or replace token of some
flow with tokens of another. These, Subprogram and
Fork blocks provide a compatibility with the Brooks’
Subsumption Architecture.

– Zip, Unzip provide an opportunity to gather data from
several Flows into one and vice versa.

• Actions provide an ability to query and modify state of
robot’s input and output devices.
– Sensor continuously emits data from specified sensor,

e.g. infrared, light, etc.
– Servo, Motors process received data and send impulses

to robot actuators.
– Encoders block sets the motors tacho limit when re-

ceiving data and continuously emits encoder values into
output flows.

– SendMessage, ReceiveMessage responsible for the co-
ordination of a group of robots.

– Say, PlayTone, LED responsible for managing speakers
and LED lights.

– RemoveFile, WriteToFile, ReadFile implement working
with file system.

– InitCamera, DetectByVideo, StreamingNode wrap some
algorithms of computer vision.

– PortBlock provides an ability to write low-level to some
port of the robot.

– SystemCall responsible for the command execution by
command line interpreter, e.g. token “reboot” will re-
boot robot.

– Gamepad reads data from the operator’s control device,
e.g. gamepad, and emits it.

These blocks are enough to express a pretty wide
range of the robotic controllers of varying complexity. If
several blocks emitting data from one input device are
met only one of them is active. That detail distinguishes
our tool from other implementing data flow paradigm, for
details see section 6. For example figure 1 shows dia-
gram with Motors, ConstV alue,Encoders, F lows where
Encoders block is presented twice. When interpretation
started ConstV alue emits data to Motors and Encoders
(a) emits a value of a tacho counter. When block Encoders
(b) receives some data and thus nullifies encoder value, at
that moment Encoders (a) stops emitting tokens.

One important detail about our language is that it ex-
plicitly supports control flow model, that is important for
educational goals. On figure 1 ConstV alue and Motors
have incoming and outgoing “arrows”, which are used to
connect control flow data. For example Motors block emits
data to control flow channel when handle incoming data
and ConstV alue emits its value when receives control flow
token.

Flows may be pinned to a block on left, right and
bottom side, which are highlighted when user edits block
(see Figure 2). Also block may contain text fields, e.g. on
Figure 2 user entered textual condition.

26 of 251

Figure 1: Block with many representations but only one of
them can be active. a,b — Encoders c — ConstV alue d
— Motors

Figure 2: Showing and editing of block.

5. Example

Figures 3, 4 show simple PD-regulator which keeps
robot on a certain distance from a wall using infrared
sensor. Global variable is used for storing old sensor values.
Expressions in Function block are calculated in upside-
down order, results of previous expressions are available
on lower levels. Each level emits resulting token into a
corresponding flow, in our example two flows are connected
directly to motors control block.

Figure 3: Controller for the wall following.

Let’s describe more complex robotic controller. We have
the robot equipped with two power motors and two frontal
infrared sensors positioned at an angle of 30 degrees on
either side of the longitudinal line of symmetry of the robot.
Let’s consider the robot control system that manages robot

Figure 4: Simulation process of the wall following.

wandering in space and avoiding frontal collisions. But at
the same time it allows manual control with gamepad. We
divide the problem into three levels responsibility using
Subsumption Architecture. The first will be responsible for
aimless movement of the robot. The second is responsible
for collision avoidance: if the robot is too close to a collision,
it must avoid the obstacles preventing robot wandering.
The third will be responsible for maintenance of the user
queries, the user obtains a full control, the previous levels
are suppressed.

Figure 5: Controller code with three competencies level. 1
— Human control level. 2 — Collision avoidance level. 3
— Wandering level. 4 — Supressor block for levels 2,3.
5 — Supressor block for levels 1 and 2,3. 6 — Unzip
block. 7 — Motors block.

Figure 5 shows this decomposition. Each level rep-
resented as Subprogram and emits pulses to actuators.
Execution begins with the launch of all levels concurrently.
Robot wanders aimlessly. If the robot is close to the col-
lision, the Collision avoidance level suppresses the flow
with data emitted by Wandering level. If the user starts to

27 of 251

manipulate with the gamepad, the data sent suppress levels
described above.

Each level is the simple robot controller without direct
connection to actuators. Wandering (first level) continuously
generates random number for each robot actuator, and sends
its outside as array (see Figure 6). The execution of this
level starts with InPort which emits data to activate two
RandomV alue blocks. Each RandomV alue generate ran-
dom number and emits it to Wait block which after some
predefined delay sends it to Zip block which produces an
array storing output values.

Figure 6: Walking. 1 — InPort block. 2,3 —
RandomV alue blocks. 4,5 — Wait blocks. 6 — Zip
block. 7 — OutPort block.

The second level is needed to prevent collisions (see Fig-
ure 7). It continuously gathers data by Zip from two infrared
Sensors and checks if collision threatens (continuously
after some delay by DelayAndFilter). If the collision
can occur values sent for actuators to evade obstacles are
calculated by Function. Function block emits it to Zip
block which produces an array storing output values.

Figure 7: Collision avoidance. 1,2 — Sensor blocks. 3,6 —
Zip block. 4 — DelayAndFilter block. 5 — Function
block. 7 — OutPort block.

The third level is responsible for gamepad control.
Gamepad emits tokens describing current joystick and but-

tons state. For simplicity we assume that pressing any button
on gamepad will terminate the robot control program (by
FinalBlock). The tokens are converted from the Gamepad
to the array of pulses for actuators by Function block,
which emits it through OutPort block.

Figure 8: Human control. 1 — Gamepad block. 2 —
FinalBlock. 3 — Function block. 4 — OutPort block.

6. Implementation

The system is implemented as two plugins for TRIK
Studio. The first one describes the visual language and
provides visual editor for our system. It contains the meta-
model of dataflow visual language and entirely generated
by QReal DSM-platform. Plugged into TRIK Studio this
module provides fully operational visual editor with all
advantages of TRIK Studio control flow editor like modern-
looking user interface, ability to create elements with mouse
gestures, different appearances of links and so on. The time
spent on the development of this plugin (not considering
discussing and designing the prototype of visual language
on paper) roughly equals three man-days. The benefit on
exploiting the DSM-approach is obvious, the development
of the similar editor from scratch would have been taken
vastly more time.

The second plugin contains implementation of dataflow
diagrams interpreter. Given the program drawn in editor
(provided by first plugin) Interpreter will transform given
program which is drawn in editor (provided by first plugin)
into a sequence of the commands sent to a target robot (see
fig. 9). The target robot can be one of the supported in TRIK
Studio infrastructure: Lego NXT or EV3 robot, TRIK robot,
TRIK Studio 2D simulator or V -REP 3D simulator [31].
Commands are sent via high-level TRIK Studio devices API,
a part of it presented at fig. 10.

The general architecture of interpreter plugin is pre-
sented at fig. 11. Given dataflow diagram interpreter tra-
verses, validates and prepares it for interpretation process.
For each visited dataflow block implementation object is
instantiated. Implementation objects are written in C++. In-
stantiation is performed by corresponding factory object. Im-
plementation objects are then subscribed each to other like
they are connected by flows on diagram, publish-subscribe
pattern is used here. The set of initial blocks is determined

28 of 251

Figure 9: The general architecture of the system

Figure 10: Partial architecture of devices used in dataflow
interpreter

next, those are blocks without incoming flows. After all that
done preparation phase is complete and diagram starts being
interpreted.

Interpretation process is not as straightforward as in most
asynchronous dataflow environments. Usually components
of dataflow diagram are executed concurrently, on differ-
ent threads, processes or even machines (that is actively
exploited, for example, by Microsoft Robotics Developer
Studio where dataflow diagram is deployed into a number
of web-services). That is a pretty convenient way to invoke
dataflow diagrams on a powerful hardware, but not a case
when we talk about embedded devices. In our case we deal
exactly with embedded devices (Lego NXT, EV3, TRIK,
Arduino controllers), so we propose here another way of
executing dataflow diagrams. The main idea is to intro-
duce global message queue and event loop for messages

Figure 11: The general architecture of dataflow interpreter
plugin

processing. When token is published by some block it is
enqueued into messages queue and waits for its turn to be
delivered to subscribers (fig. 12). In fact thus we flatten the
execution, convert concurrent way of dataflow interpretation
to a pseudo-concurrent one where we schedule invocation
order on our own. It must be noted that this mechanism is
similar to events propagation system of Qt framework. That
is actively exploited in our implementation, where message
processing is completely performed by QEventLoop class
and tokens delivering is done by Qt signal/slot system in
QueuedConnection mode.

Flat execution of dataflow diagram poses a number of
small problems, one of them will be discussed here. Input
device blocks (for example blocks publishing tokens from
ultrasonic sensors) are constantly emitting tokens to sub-
scribers. Subscribers transmit tokens to a next one (possibly
in modified state) and so on. Thus there appears a chain
of data processing. In our language that chain can activate
control flow ports of blocks “reviving” them, so the control
flow model is implicitly supported in our language (this is
important in educational reasons). If later in this chain same
input device block will be met then execution will come
in a counterintuitive way. Such conflicts are ruled out with
a simple heuristic that among all the blocks sharing one
physical device only one can be active and that is the last
activated one. Thus when the execution token comes into
some device block it immediately “deactivates” conflicting
ones. Other problems like messages balancing (in case when
some block “flooding” the whole messages queue) will not
be discussed here.

The last thing we should remark here is the presence
of Fork block in our language that usually is not provided
by dataflow languages. Flattened model seems to work well
on embedded devices, but sometimes users still need to use
concurrent execution (for example for executing layers in
Subsumption architecture). For that reason Fork block is
introduced, it forks the execution into a number of platform-
specific execution units (for example pthreads on UNIX or
tasks on NXT OSEK). This block can be regarded as low-
level control of execution process. It should be also marked

29 of 251

that this block almost has no sense in interpretation mode
(because execution itself is performed on desktop machine
with only sending primitive commands to robot), but will
be very useful in future works when autonomous mode will
be introduced.

Figure 12: Proposed mechanism of pseudo-concurrent
dataflow interpretation

7. Conclusion and Discussion

In this work we presented the prototype of dataflow
language for programming different robotic kits (LEGO
MINDSTORMS NXT, LEGO MINDSTORMS EV3,
TRIK). The system provides ability to interpret diagrams
on 2D- an 3D-simulators and real robotic devices. Here,
we also propose an approach for executing dataflow
diagrams on embedded devices. The language implicitly
supports control flow model for educational purposes. It is
also convenient for expressing typical robotic controllers
architectures which is demonstrated on example.

The implemented system can be regarded as a platform
for future investigations. First of all autonomous mode of
work will be implemented. That will be done through code
generation into a number of textual languages already sup-
ported by TRIK Studio (NXT OSEK C for Lego, bytecode
for EV3, JavaScript, F# [32] and Kotlin for TRIK). We are
also interested in academical research. First of all a formal
semantics of our language should be expressed for applying
various formal methods of program analysis. Another branch
of research will be directed into a DSM-branch, here we
want to consider an ability of dynamic language meta-
model generation from specifications of available modules
of robotics middleware (like ROS [33] or Player [34]).

References

[1] “IEEE International Conference on Robotics and Automation,” 2016.
[Online]. Available: http://www.icra2016.org/

[2] “International Conference on Intelligent Robots and Systems,” 2016.
[Online]. Available: http://www.iros2016.org/

[3] “IEEE Symposium on Visual Languages and Human-Centric Com-
puting,” 2016. [Online]. Available: https://sites.google.com/site/vl-
hcc2016/

[4] O. Banyasad, “A visual programming environment for autonomous
robots,” Master’s thesis, DalTech, Dalhousie University, Halifax,
Nova Scotia, 2000.

[5] J. Simpson, C. L. Jacobsen, and M. C. Jadud, “Mobile robot control,”
Communicating Process Architectures, p. 225, 2006.

[6] J. Simpson and C. L. Jacobsen, “Visual process-oriented program-
ming for robotics.” in CPA, 2008, pp. 365–380.

[7] J. C. Posso, A. T. Sampson, J. Simpson, and J. Timmis, “Process-
oriented subsumption architectures in swarm robotic systems.” in
CPA, 2011, pp. 303–316.

[8] J. P. Diprose, B. A. MacDonald, and J. G. Hosking, “Ruru: A
spatial and interactive visual programming language for novice robot
programming,” in Visual Languages and Human-Centric Computing
(VL/HCC), 2011 IEEE Symposium on. IEEE, 2011, pp. 25–32.

[9] “NXT-G quick programming guide,” 2013. [Online]. Available:
http://www.legoengineering.com/nxt-g-quick-guide/

[10] “All about TRIK: TRIK Studio,” 2016. [Online]. Available:
http://blog.trikset.com/p/trik-studio.html

[11] “ROBOLAB quick guide,” 2013. [Online]. Available: http://www.le-
goengineering.com/robolab-quick-guide/

[12] W. M. Johnston, J. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Computing Surveys (CSUR), vol. 36,
no. 1, pp. 1–34, 2004.

[13] “LabVIEW System Design Software - National Instruments,” 2016.
[Online]. Available: http://www.ni.com/labview/

[14] “Simulink - Simulation and Model-Based Design,” 2016. [Online].
Available: http://www.mathworks.com/products/simulink/

[15] “MINDSTORMS EV3 - Products,” 2016. [Online]. Available:
http://www.lego.com/en-us/mindstorms/products/

[16] “ScratchDuino — Magnetic Robot Construction Kit,” 2016. [Online].
Available: http://www.scratchduino.com/

[17] A. Kuzenkova, A. Deripaska, K. Taran, A. Podkopaev, Y. Litvi-
nov, and T. Bryksin, “Sredstva bustroi razrabotki predmetno-
orientirovannych resheniy v metaCASE-sredstve QReal,” St. Peters-
burg State Polytechnical University Journal, p. 142, 2011 (in Rus-
sian).

[18] A. Kuzenkova, A. Deripaska, T. Bryksin, Y. Litvinov, and
V. Polyakov, “QReal DSM platform — An Environment for Creation
of Specific Visual IDEs,” in ENASE 2013 — Proceedings of the
8th International Conference on Evaluation of Novel Approaches
to Software Engineering. Setubal, Portugal: SciTePress, 2013, pp.
205–211.

[19] R. A. Brooks, “A robust layered control system for a mobile robot,”
Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[20] M. Proetzsch, T. Luksch, and K. Berns, “The behaviour-based control
architecture ib2c for complex robotic systems,” in KI 2007: Advances
in Artificial Intelligence. Springer, 2007, pp. 494–497.

[21] B. Erwin, M. Cyr, and C. Rogers, “Lego engineer and robolab:
Teaching engineering with labview from kindergarten to graduate
school,” International Journal of Engineering Education, vol. 16,
no. 3, pp. 181–192, 2000.

30 of 251

[22] J. M. Gomez-de Gabriel, A. Mandow, J. Fernandez-Lozano, and
A. J. Garcia-Cerezo, “Using lego nxt mobile robots with labview for
undergraduate courses on mechatronics,” IEEE Trans. Educ., vol. 54,
no. 1, pp. 41–47, 2011.

[23] J. Jackson, “Microsoft robotics studio: A technical introduction,”
Robotics & Automation Magazine, IEEE, vol. 14, no. 4, pp. 82–87,
2007.

[24] S. H. Kim and J. W. Jeon, “Programming lego mindstorms nxt with
visual programming,” in Control, Automation and Systems, 2007. IC-
CAS’07. International Conference on. IEEE, 2007, pp. 2468–2472.

[25] J. Simpson and C. G. Ritson, “Toward process architectures for
behavioural robotics.” in CPA, 2009, pp. 375–386.

[26] J. H. Connell, “A colony architecture for an artificial creature,” DTIC
Document, Tech. Rep., 1989.

[27] R. C. Arkin, “Motor schema based navigation for a mobile robot: An
approach to programming by behavior,” in Robotics and Automation.
Proceedings. 1987 IEEE International Conference on, vol. 4. IEEE,
1987, pp. 264–271.

[28] J. K. Rosenblatt, “Damn: A distributed architecture for mobile navi-
gation,” Journal of Experimental & Theoretical Artificial Intelligence,
vol. 9, no. 2-3, pp. 339–360, 1997.

[29] D. V. Koznov, Osnovy vizual’nogo modelirovanija. [Fundamentals
of Visual Modeling] Binom. Laboratorija znanij, Internet-universitet
informacionnyh tehnologij, 2008 (in Russian).

[30] “The Programming Language Lua,” 2016. [Online]. Available:
https://www.lua.org/

[31] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scal-
able robot simulation framework,” in Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013,
pp. 1321–1326.

[32] A. Kirsanov, I. Kirilenko, and K. Melentyev, “Robotics reactive
programming with F#/Mono,” in Proceedings of the 10th Central
and Eastern European Software Engineering Conference in Russia.
ACM, 2014, p. 16.

[33] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[34] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th international conference on advanced robotics, vol. 1,
2003, pp. 317–323.

31 of 251

Programming languages segmentation

via the data mining software “ShaMaN”

Tatiana Afanasieva

Dept. of Information systems

Ulyanovsk state technical University

Ulyanovsk, Russia

tv.afanasjeva@mail.com

Anton Efremov

Dept. of Information systems

Ulyanovsk state technical University

Ulyanovsk, Russia

t-rain@mail.ru

Sveta Makarova

Dept. of Information systems

Ulyanovsk state technical University

Ulyanovsk, Russia

makarovasvetlana2025@gmail.com

Denis Shalaev

Dept. of Information systems

Ulyanovsk state technical University

Ulyanovsk, Russia

melges73@gmail.com

Abstract— The article is devoted to the problem of

programming language choosing. We conducted a research

which purpose is to identify the most promising and comfortable

programming language for work and study. The research object

is software product, namely 9 of the most popular programming

languages. This problem is urgent for all subjects of software

engineering in solving problems of planning, optimization and

analysis of the market.

There is currently a high popularity of IT-technologies that

means high-speed trends changing. To be a successful participant

of the IT-community it is necessary to constantly analyze this

industry. We offer software for data mining named "ShaMaN".

Its peculiarity is analyzing data from any domain, including

programming languages.

Keywords— programming language, segmentation, clustering,

fcm-clustering, research

I. INTRODUCTION

It is impossible to imagine the modern world without the
Internet, total automation, networked gadgets and virtual
reality. More and more spheres of life become dependent on
IT-technologies. For example, nowadays you can pay for
services directly through the mobile app without getting up
from the bed, you will need just a couple of seconds for it.
You have an opportunity to monitor your home and manage
its energy supply remotely. The popular concept "Smart
house" is also bound to the possibility of the development of
Internet technologies.

The information technology demand is increasing every
year at a rapid pace. According to the research "Review and
assessment of the prospects of development of the world and
Russian market of information technologies", conducted by
the independent research firm IDC commissioned by the
Moscow Stock Exchange and Russian Venture Company, it is
the most dynamic segment of the software. This explains the
popularity of the profession programmer in the labor market.

 The figures speak for themselves. Programmer occupies
6th place in Russia with the size of salaries. The demand is
always higher than the offer in IT-industry. The average
salary is 70,000 rubles. But there are special requirements to
programmers: they must always keep track of tendencies. IT-
industry is dynamic, rapidly changing area, which requires
from its members the flexibility and ability to quickly learn
other programming languages. Therefore, both beginners and
experienced professionals are constantly faced with the
question: “Which programming language to choose?”.

II. RESEARCH SUBJECT

The problem of finding an answer to the question "What
programming language to learn?" is the goal of this research
"Segmentation of programming languages". We are interested
in finding the most comfortable and perspective at the same
time language to start our professional activities. Language is
comfortable if the efforts of its studying and job searching are
comparable to salary.

Thus the purpose of this research is to identify the most
comfortable and, at the same time, perspective programming
language for running. To achieve this goal it is necessary to
segment programming languages according to the stated
quality. This research could be divided into 6 tasks:.

 Research object analysis and the identification of its
characteristics.

 Selecting attributes of segmentation according the
purpose to the research.

 Building a set-theoretic model.

 Data sources searching.

 Determination of a data model and filling the database.

 Data segmentation via the program “ShaMaN”.

32 of 251

 Searching answers to the question via segmentation
results.

Tasks determining allows to clearly delineate
responsibilities among the participants of the research as it
increases the probability of getting the expected result.

III. PROGRAMMING LANGUAGES AS THE RESEARCH OBJECT

49 programming languages are allocated on web-service
for IT-projects hosting «GITHUB». Each of them can be
characterized by the popularity among programmers, field of
use, the average wage, age, popularity in the labor market,
level, category, etc. But only 3 attributes are interesting from
the standpoint of research: the average wage, the popularity on
the labor market and the popularity among programmers. The
set of high levels of these three attributes is the definition of
programming language.

Programmer wage is a determining factor in the
profitability of its study. The data source for its evaluation is
the results of the survey of 26,086 programmers from 157
countries. The survey was conducted by «Stack Overflow»
among users of their web-site in order to assess trends in the
IT-community. On the company's website presents data for the
United States of America, Eastern and Western Europe are
presented. The programmer average wage will be measured in

dollars per year and denoted as xi, where i [1..n], n N, n –
the programming language quantity.

Another attribute for programming languages analyzing is
their a popularity among programmers. At first glance it is not
clear for the review, but it is important. The higher its value,
the more opportunities for programmers to find supporting
information in the Internet. Formally, popularity is the
percentage of respondents of the «Stack Overflow» survey
engaged in development using a particular programming
language. It is signed for yi, a unit of measurement -%.

Selecting popularity on the labor market as an attribute for
the segmentation of programming languages is evident. The
demand on the labor market is a direct reflection of the
economic situation and proves the prospects of the profession.
Collection of data to research the programming languages on
this attribute was made via web-services occupation searching:
HeadHunter.ru for Eastern Europe and recruit.net for the US
and Western Europe. Formally, popularity on the labor market
is the number of vacancies we found searching a job for
programmer of different languages. It is measured in units and
is indicated as zi.

 The set-theoretic model of research will be:

 L = {X, Y, Z} (1)

where L = (l1, l2, …, ln), L – programming languages;

L {Java Script, SQL, JAVA, C#, php, Pethon, C++, C,
Node.js, AngularJS, Ruby, Objective-C};

X =(x1, x2, …, xn), X – the average wage [$ / year];

Y = (y1, y2, …, yn), Y – popularity among programmers [%];

Z = (z1, z2, …, zn), Z – popularity on the labor market [units].

IV. TASKS FORMALIZATION

To answer the main question of the research it was decided
to segment programming languages on the main attributes, on
the average income in the context of individual regions
(geographical segmentation) and in the context of time periods
(temporal segmentation). Below are the formal records of the
planned phases of the segmentation.

The geographical segmentation by IT-specialist average
income:

 S = segmentation(L{X}, countyi) (2)

where S = (S1, S2, …, Sm), S – segments of programming
languages, which was received as a result of its segmentation
for countryi by average wage X;

countryi – is country for segmentation, countryi {США,
West Europe, East Europe};

i [1, k], k N, k – the number of countries;

m N, m – the number of segments.

Tine segmentation on languages popularity among
programmer has a model:

S = segmentation(L{Y}, timei) (3)

where S = (S1, S2, …, Sm), S – segments of programming
languages, which was received in results of its segmentation in
the moment of timei;

timei – time segmentation interval, timei {2013 г., 2014 г.,
2015 г.}.

Segmentation on main attributes:

 S = segmentation(L{X, Y, Z}) (4)

где S = (S1, S2, …, Sm), S – segments of programming
languages, which was received in results of its segmentation
on main attributes.

5. PROGRAM “SHAMAN” AS THE MAIN RESEARCH TOOL

Program “ShaMaN” was developed in 2014 for making
researches. The main appointment is processing of statistical
information automation, as well as an intellectual analysis of
this information. There is the certificate of state registration of
the computer №2014661216 for the program “ShaMaN”,
which was used in this research. Also this program was
declared as the winner of the contest of scientific and technical
creativity of the youth of the Volga Federal District in 2015

A. Program features
Program “ShaMaN” allows to group the data sampling

objects using a number of clustering methods (fcm-clustering
and clustering based on the spanning tree). Production data
can be automatically loaded into the system from SQLite
databases, MS Access, MS SQL Server, as well as MS Excel
spreadsheets, MS Word and web-sites. The main feature of the
system is type independence of the type of input data and
structure. When you boot into the system, they are normalized
by using methods of calculation distances between objects.
The results of clustering data displayed on the screen, a graph

33 of 251

is constructed for clarity. These results can be saved as Excel
1997-2003 (.xls) file.

B. Architecture
The system consists of four parts: a data loading, data

processing, reporting and user interface. Special interfaces are
used in this program to ensure the interaction of each part.
Each new module is a separate part which should inherit the
appropriate interface. Thus, the system can be easily expanded
with new functionalities. There is the class diagram on the
figure 1.

Fig. 1. “ShaMaN” class diagram

C. Mathematical provision
Mathematical provision includes algorithms for calculating

distances between objects and attributes, fcm-clustering and
clustering based on the spanning tree.

1) Accounting distances between objects

Measurements of the distance between objects show how
far objects are located from each other in space. They have the
following properties:

 the properties of distance measurements for different
types of scales;

 continuity δ(x,y) – continuity function;

 symmetrical δ(x,y)=δ(y,x);

 normalization 0 ≤ δ(x,y) ≤ 1, then x=y, то δ(x,y)=0;

 invariance δ(x,y) = δ(φ(x),φ(y));

 properties triangle δ(x,z) ≤ δ(x,y)+δ(y,z).

To determine the distance between the objects you need to
find the distance between them in all their attributes, and then
the resulting Euclidean distance:

δ δ
 δ

 δ

 (5)

2) Accounting distances between atrributes

The method of counting the distance between features is
defined according to what they measured in any scales. For
example, if both signs are presented in strong, the distance is
determined by the formula [1]:

 (6)

where r – linear correlation coefficient module:

 (7)

where M – expected value;

δ_x , δ_y - standard deviation.

If the scale is weak (order or names), the distance is
defined as the Kendall-Kemeny measure:

 (8)

where δ_* (x,y) – the distance between the objects measured
in the order scale or in the names scale;

m –number of objects;

n –number of comparable attributes – 2;

 – determine by the formula:

 (9)

Consider the second case, when the attributes are of
different types: a strong scale compared with weak [2]. In this
case it is necessary to resort to the methods of strengthening
the weak scale and weakening the strong. The final distance is
determined by the formula:

 (10)

where – strengthening «digitizing»;

 – weakening «association».

3) FCM-clustering

FCM-clustering algorithm purpose is automatic clustering
set of objects that are specified feature vectors in feature
space. In other words, this algorithm determines the clusters
and allocates the objects between them. Clusters are
represented by fuzzy sets, moreover, the boundaries between
the clusters are also unclear. [2]

This algorithm is based on the determination of the centers
of clusters, followed by calculation of degree of membership
of each object to the cluster. These steps are repeated until the
difference between the matrices of degrees and supplies the
current phase will lasts not less than a certain parameter ɛ.

Membership degree is calculated by the formula [3]:

 (11)

Cluster centers are defined by the formula:

 (12)

where N –number of objects;

C –number of clusters;

m – any number more than 1 (usually 1,5);

cj – value of j-attribute of cluster center;

xi – value of i-го attribute object x.

34 of 251

4) Clustering algorithm based on spanning tree of
minimum length

This clustering algorithm is based on determining the
minimum spanning tree length and subsequent removal of n-1
edges with a maximum length, where n is- the number of
clusters (figure 2).

Fig. 2. Clustering algorithm illustration

Figure 2 shows the minimum spanning tree. By removing
the link between nodes 1 and 5 with a length of 5 (maximum
edge length), we obtain two clusters {1, 2, 3, 4} and {5, 6, 7,
8}.

Thus, the realization of searching the spanning tree is the
main part of algorithm. The "greedy" algorithm Dijkstra Prima
has been chosen for it [4]. “Greedy algorithms” operate using
at each moment only a part of input data and taking the best
solution based on this part. At each step you need to consider
the set of edges that allow connection to the already
constructed part of the spanning tree and choose from them
the edge with the lowest weight. We could obtain a spanning
tree repeating this procedure. The algorithm is presented in
block diagram form in Figure 3.

Fig. 3. Block diagram of the algorithm Dijkstra-Prim

Described clustering algorithm has been modified since it
had a drawback: when a situation of "fan", which is shown in
figure 4, in one of the clusters got only one object. In this case,
the object number is 2.

Fir. 4. The “Fan” in the graph

This problem was solved by adding additional processing.
When a "fan", as shown in Figure 3, was found the algorithm
redirected items 2, 3, 4 with the same distance to any object
from the "fan". Thus the assembly of clusters
(DeterminateCluster method) Clusters 1 and 2 are well defined
(fig. 5).

Fig. 5. Solving the “fun” problem

D. Information provision
"ShaMaN" system allows to process information

regardless of the structure and data types. The system loads
data from database files with one of the following extensions:
mdf, mdb, db, db3, accdb. Just as input table located on web-
pages, Word or Excel files may act. The output of the system
are the Excel 1997-2003 files with the extension xls.

V. TIME SEGMENTATION

The temporal segmentation was held to analyze the
dynamics of changing programming language popularity
among programmers. It’s allowed to identify trends in using
git repositories by programmers. As the source of data was
used the web-site githut.info. GitHut - is a relatively new
resource that examines the 2.2 million active repositories on
GitHub. The resource analyzes public repository, which may
cause deviation of the results in the direction of open source
technologies.

Graphic in figure 6 is the result of time segmentation of
programming languages. It was based on trends of using
repository on GitHub. The graphic shows the dynamics of
changes in the number of active repositories for 2012, 2013
and 2014.

Fig. 6. The time segmentation result

Interpretation of the time segmentation results allowed to
draw the following conclusions:

 The number of active repositories is increasing for all
programming languages. This is due to the overall

35 of 251

dynamics of growth IT-industry growth in general and
software in particular segments.

 The most popular programming languages are Java and
Javascript. They have the highest pace of growth.

VI. GEOGRAPHIC FEATURES SEGMENTATION

Programming languages were considered in three
geographic levels: the United States, Western Europe on the
example of the UK, Eastern Europe on the example of Russia
and CIS countries. In this aspect it was decided to explore the
demand among employers. It is evident that the demand on the
labor market is a direct reflection of the economic situation. It
can talk about the prospects of the profession. Data for
programming languages analyzing on this attribute was taken
from web services for searching work: HeadHunter.ru Eastern
Europe, namely Russia and the CIS countries, and recruit.net
for the US and Western Europe by the example of Great
Britain. Formally, the popularity among employers is the
number of vacancies for programmers in this language. In
order to analyze the relevance of different programming
languages among employers in different countries have been
extracted data for each programming language and are
segmented on a geographic basis.

The chart was constructed as a result of the segmentation.
The diagram (figure 7) shows the relevance of demand in
programming languages in the US, UK, Russia and CIS
countries.

Fig. 7. Geographical segmentation

Interpretation of the results allowed to make the following
conclusions:

 The United States is the leader in the number of
vacancies in 7 cases out of 9. Only in the case of C #
and php Western Europe is ahead. This is due to the
fact that the US is the world leader in the IT-sector.

 The most demanded language in the United States -
Java; in Western Europe and the CIS - Javascript.

Data were also analyzed on the average labor payment on
programming languages and performed segmentation by
geography. The results were presented separately for each
country in the form of graphs, presented in the figures.

Segmentation on the average wage (US):

Fig. 8. Average labor payment (US)

Segmentation on the average wage (Western Europe):

Fig. 9. Average labor payment (Western Europe)

Segmentation on the average wage (Eastern Europe):

Fig. 10. Average labor payment (Eastern Europe)

Interpretation of the results allowed the following
conclusions:

 The average wage in the US in all programming
languages is higher than in Western and Eastern
Europe. US occupy leading positions in the IT-sector
and therefore have higher average salaries in this
sector.

 Most paid programming language in US is Objective-
C.

 Most paid programming languages in Western Europe
are Ruby and C#.

 Most paid programming languages in Eastern Europe
are C# and Python.

0

10000

20000

30000

40000

50000

USA Western Europe(UK) Eastern Europe(CIS-Russia)

70000

75000

80000

85000

90000

95000

100000

105000

45000

47000

49000

51000

53000

55000

57000

59000

61000

22000
22500
23000
23500
24000
24500
25000
25500
26000
26500

36 of 251

 The level of wages in Eastern Europe is the lowest of
the ones under consideration. This region does not
occupy high positions in the sector of IT-industry.

 The least paid programming language in all the above
areas is php.

VII. THREE ATRIBUTTE SEGMENTATION

The final stage of the research is the segmentation of
programming languages on three grounds, which will
highlight the classes according to the degree of comfort and
the prospects for study and work. Segmentation was carried
out using the above program "ShaMaN". Clustering method
based on spanning tree of minimum length was used.

Fig. 11. The “ShaMaN” clustering window

As a result of the programming languages clustering in the
United States on three attribute (popularity among
programmers, the average wage in the US and demand among
employers) has been allocated 2 cluster. In the second cluster
were languages with the highest performance values: Java and
Javascript. For clarity, the results are summarized in Table 1
and Table 2, the characteristics values which are higher than
the average, are highlighted. This leads to the conclusion that
Java and Javascript are the most promising programming
languages in the United States. The most comfortable
programming languages are C#, C++ and C (2 of 3
characteristics have a value higher than the average).

TABLE I. FIRST CLUSTER

Programming

language
Popularity Payment Demand

C# 31,6 94 280 19 588

PHP 29,7 77 322 10 734

Python 23,8 88 966 28 273

C++ 20,6 91 739 26 358

C 16,4 91 264 25 045

Ruby 8 90 536 12 528

Objective-C 7,8 98 828 16 583

TABLE II. SECOND CLUSTER

Programming

language
Popularity Payment Demand

Javascript 54,4 9 0 259 32 579

Java 237,4 89 054 52 799

Eastern and Western Europe were analyzed. In both cases
the second cluster consists of objects – extrema, which
attributes values are maximal or minimal. The results allowed
to make the following conclusions:

 Javascript is the most promising programming
language in Eastern Europe, comfortable - Java, C#,
php are the most comfortable.

 C#, Java, Javascript are the most promising
programming languages in Western Europe, php,
Python, C ++, C are the most comfortable

The results of clustering programming languages within
the geographical entities are summarized in Table 3. For each
research object the number of points that corresponds to the
number of times was estimated when the value of the
characteristics of a particular programming language was
above an average. Taking into account the final amount of
points it is possible to allocate a group of programming
languages. It will allow to answer the main research question:
which language is the most comfortable and the most
promising for studying and working?

TABLE III. CLUSTERING RESULTS

Cluster
Programming

language
Popularity Payment Demand Sum

№1 Java 3 3 3 9

№2
Javascript 2 3 3 8

C# 3 2 3 8

№3 PHP 0 1 3 4

№4
Python 2 1 0 3

C++ 2 1 0 3

№5 C 1 3 0 4

№6
Ruby 3 0 0 3

Objective-C 3 0 0 3

6 groups of programming languages were determined:

 Java is a programming language - the star. It is popular,
highly paid and in demand worldwide. However, to
stay in the trend, to deal with competition the
programmer has to constantly work on improving his
skills.

 Javascript and C # are forward-looking and
comfortable programming languages that are worth
exploring, regardless of the country.

37 of 251

 Python and C ++ are comfortable programming
languages in most countries: there is a low competition
at high pay.

 C is a comfortable programming language in demand
around the world and it is well paid.

 Ruby and Objective - C are not in demand, are not
popular, but they are well-paid. These languages go out
of your comfort zone, because it requires effort to find
a job. But if a programmer is successful he is rewarded
with higher wages.

 php is unpromising programming language, which
involved all, but no one needs it. Most likely due to the
popularity it he enjoyed before, now on the market
there is more staff number of frames with php
knowledge. And some of them retrained to a different
language programmers, and some remained with php.

VIII. CONCLUSION

This article considers the process of finding the answer to
the question "What programming language should I learn?". A
research was conducted to identify the most comfortable and,
at the same time, promising programming language. This
research has provided an experimental data for testing of the
program “ShaMaN”.

After analyzing the object of research and identifying its
characteristics the following attributes for segmentation were

selected: popularity and demand of the programming
language, as well as the average wages of a specialist. After
building the set-theoretic model and obtaining data necessary
for segmentation and clustering studies have been conducted.
The research allowed to allocate 6 groups of programming
languages, as well as to identify the programming language
that best suits the objective of the study.

Java has been recognized as the most preferred
programming language according to the objective of the study.
This programming language is popular, highly paid and in
demand worldwide. However, Javascript, and C # is not far
behind the leader. This forward-looking and comfortable
programming languages is worth exploring, regardless of the
country.

REFERENCES

[1] A. Yurkin Zadachnik po programmirovaniyu [Book of problems in
programming]. – SPb.: Piter, 2002. 192 p. (rus).

[2] N.G. Zagoruiko Prikladnyye metody analiza dannykh i znaniy [Applied
methods of data analysis and knowledge]. – Novosibirsk: Izdatel'stvo
instituta matematiki, 1999. 270 p. (rus).

[3] N.G. Yarushkina Osnovy teorii nechetkikh I gibridnykh sistem [The
fundamentals of fuzzy and hybrid systems theory]: tutorial / N.G.
Yarushkina. – Мoscow: Finansyistatistika, 2004. 320 p. (rus).

[4] V. King. A simpler minimum spanning tree verification algorithm.
Algorithmica 18, 263–270. 1997.

38 of 251

Context-Based Model
for Concern Markup of a Source Code

Mikhail Malevannyy
Rostov State University

of Civil Engineering
Rostov-on-Don, Russia

Email: mmxforever@mail.ru

Stanislav Mikhalkovich
Institute for Mathematics, Mechanics,

and Computer Science in the name of I.I. Vorovich
Southern Federal University

Rostov-on-Don, Russia
Email: miks@sfedu.ru

Abstract—In this paper we describe our approach to represent-
ing concerns in an interface of an IDE to make navigation across
crosscutting concerns faster and easier. Concerns are represented
as a tree of an arbitrary structure, each node of the tree can
be bound to a fragment of code. We describe a model which
specifies data structures and algorithms. Main goal is to keep
concern tree consistent with evolving source code. The model is
implemented in a tool, which supports different programming
languages and integrates into different editors and integrated
development environments.

I. INTRODUCTION

During software development and maintenance developers
usually work with several code fragments related to their
current task or concern. Most concerns are crosscutting[1],
which means that code related to it tends to be scattered
across a number of files, or different places within one file.
Repeated navigation between these code fragments requires
a considerable time and effort[2]. These fragments form a
”working set”. Switching to another task requires investigating
the source code and locating all fragments relevant to the task.
Returning to the task after working on another one may take
significant time.

A number of techniques address to this problem,
such as Aspect-Oriented Programming[3], Feature-Oriented
Programming[4] [5] [6], Delta-Oriented Programming[7],
Subject-Oriented Programming[8]. Most of them are intended
to explicitly separate concerns into a number of modules
and provide different mechanisms of composition of these
modules. It often requires significant changes in the source
code to use one of these techniques.

Other methods provide support of concerns by adding new
tools to an IDE, such as virtual files[9] [10] [11] colour
markup[12] without changing the source code. These tools
are often designed for only one IDE and depend on its
infrastructure and thus are limited to only few languages,
supported by the IDE. Another common limitation is low
tolerance of changes in the source code. When the code is
modified some code fragments may be lost.

Many of these tools are limited to only one programming
language, while large software projects are often developed
in several languages, including DSL-languages and markup
languages, and code fragments related to a concern may be
scattered across files in different languages.

We are currently developing an approach [13] intended
to mitigate the problems of navigation across the code and
switching between different tasks. The approach doesn’t re-
quire any changes to the source code. It defines a notion of a
concern as a tree-like structure, consisting of sub-concerns and
code fragments. Similarly to ConcernMapper[14] it displays a
concern tree in an IDE as a toolbox and allows one to quickly
locate fragments in the source code. Unlike most other tools
it and may be used in different IDEs and allows one to work
with code in different languages. Another goal is robustness,
which allows working with the code being actively developed
keeping concern tree consistent with the code.

II. MODEL

We present a model our approach is based on. It uses
lightweight parsers to analyze source text and to create parse
tree which will be used later. The model defines the data being
stored in the concern tree. And finally, it defines algorithms
to search the code fragments in a modified source code.

A. Lightweight parsing

The model is common for different languages. To minimize
dependency on IDE infrastructure we use lightweight parsing
to analyze the source code and build parse tree, which contains
information about significant entities in the code. Lightweight
parsers can recover from errors and produce parse tree for code
with errors or incomplete code, which is important while the
code is being modified.

Adding support of another programming language re-
quires development of a lightweight parser for this language.
Lightweight parsers are simple and easy to develop using
our DSL language LightParse. For most languages it takes
only about 10-30 lines of text to express important language
features and produce a lightweight parser. The parser is able to
analyze source code and build a simple parse tree with only
nodes, corresponding to these language features. Any other
parts of source code (e.g. method bodies) are skipped. Saving
information about an entity in the source code is available
for all entities returned by the parser. The more detailed parse
tree the parser produces – the more entities can be saved in the
concern tree, however development of the parser may require
more time.

39 of 251

Lightweight parsers produce a lightweight parse tree. Nodes
of the tree have type, name and location in the source code.
Node name consists of several tokens; one of them may be
marked as important. For example method name consist not
only of one identifier – name, which is marked as important,
but also includes parameter names and types, access modifiers,
return value type and so on.

An example of a lightweight parser is given in subsection
II-C. Lightweight parsing is described in our paper [15] in
more detail. The paper provides examples of lightweight parser
grammar. More examples may be found in GitHub repository
of the tool1 (files with extension ”.lp”).

B. Data

The approach is not limited to any specific programming
language and therefore the information in the concern tree
should be sufficient to support different languages. Also, we
assume that the source code may change and the concern tree
should possibly store some redundant data to find the code
fragment after the code has changed.

Each code fragment in the concern tree stores next 5 items:
• Type.
• Header context. It may include entity name and any

number of additional tokens.
• Outer context. It includes names and types of all parent

nodes from the immediate parent to the root of the parse
tree.

• Horizontal context. It consists of two subsets of names
and types of preceding and subsequent sibling nodes.

• Inner context. It includes a subset of subnodes of current
code fragment.

These items form Context of the node. Except for type, any
other item may be empty.

Type is used to filter non-relevant nodes when searching
for the code fragments. If a concern tree item is bound to a
method, only methods should be considered, other nodes, e.g.
classes, fields may be ignored.

Header context represents entity name and several addi-
tional tokens. In the following C# code example

public void visit(TreeNode t)
public void visit(Expression e)

both methods are named visit, but have different parameter
types and names. Header context makes possible distinguish-
ing overloaded methods and other entities with same names.
Header context is represented as a list of tokens, where one
token may be marked as important and it is considered as the
name of the entity. Header context as well as name may be
empty.

Outer context stores enclosing entities for the code frag-
ment, such as classes and namespaces. In many languages
there may be variables and methods with exactly same names,
but defined in different classes or namespaces. An example is
the implementation of one interface by different classes. In this

1https://github.com/MikhailoMMX/AspectMarkup/tree/master/Parsers

case it’s necessary to save not only the name of the entity, but
also the name of enclosing entities. In the following example

namespace N
{

class C1 : IVisitor
{

public void visit(IVisitor v) { }
}
class C2 : IVisitor
{

public void visit(IVisitor v) { }
}

}

both methods have same names and header contexts, but are
defined in different classes. For example, outer context for
the first method will include name and type of class C1 and
namespace N. Outer context for an entity is a list of Header
contexts and Types for each enclosing entity starting from the
immediate parent to the topmost entity in the source file.

Header context and outer context are sufficient for most
programming languages, where all names are unique, at
least in a certain scope. However, there is another class of
languages, such as Yacc (grammar definition language), or
markup languages, such as XML. In these languages there
may be two entities with same name in same scope. Without
additional information binding concern tree nodes to such
entities is ambiguous. To handle these cases two different
kinds of context were added to the model.

Horizontal context keeps nearest neighbors before and
after the node. It consists of two sets of pairs (Header context
+ Type), one for preceding entities and one for subsequent
entities. Following example is an excerpt from ANSI C
grammar[16]:

selection_statement
: IF ’(’ expression ’)’

statement ELSE statement
...
;

There are two occurrences of statement in a subrule of a
rule selection_statement. Their horizontal contexts are
different: token ELSE and another non-terminal statement
are located after the first occurrence of statement and
before the second one. This information makes it possible
to distinguish similar entities by their location among their
neighbor entities.

It could have been achieved by saving an index of the entity.
For example, first statement gets index 1 and second one
gets index 2, but saving indexes is less tolerant to changes in
the source text. Adding or removing entities in the beginning
of a subrule invalidates indexes of all subsequent entities, but
has almost no effect on horizontal context.

Inner context is intended to store subnodes of an entity.
In some cases an entity can have empty name and may
be distinguished from another one only by its content. For

40 of 251

example, variable declaration sections in such language as
PascalABC.NET [17] are unnamed, but they have different
variables:

var
X, Y : Double;

var
Name, Address : string;
Age : integer;

In this example there are two sections. It may be necessary
to bind a concern tree node to a whole section. Horizontal
context cannot be reliable in this case because it keeps only
type and name, which is empty – changing their order will
lead to incorrect result of the search. Inner context is a set of
Header contexts and Types for some subnodes. In the example
above saving only one subnode (i.e. variable name) is enough
to distinguish these sections. Amount of subnodes to be saved
as the inner context may vary.

Inner context for leaves of a parse tree may contain lines of
source code. This may apply if the entity spans multiple lines
in the source code (e.g. methods).

Inner and horizontal contexts may be empty if the entity
has no neighbor nodes or subnodes. Otherwise it may be
not necessary to store all neighbors or subnodes. Usually, a
small amount of unique nodes is enough to distinguish similar
entities. In many languages horizontal and inner contexts are
a redundant information. However, using horizontal and inner
contexts increases reliability of the search even with a code on
a programming languages that normally don’t need these two
kinds of context. When the code has changed this information
may be useful.

Let T is a parse tree node. Context(T) =
(NameT , TypeT , NT , OT , HT , IT) is a tuple of node
Name, Type and its Header, Outer, Horizontal and Inner
contexts described above. When a binding to the node T is
added to the concern tree, Context(T) is saved.

Name and Type are strings. Header context NT =
(Si, S2, ...Sn) is a list of strings. Outer context OT =
((N1, T1), (N2, T2), ...(Nn, Tn)) is a list of pairs, where Ni is
a Header Context and Ti is a type of an enclosing entity. Inner
Context IT = {(Ni, Ti)} is a set of pairs: header contexts and
type of an entity. And Horizontal context HT = (HL, HR) =
({(Ni, Ti)}, {(Nj , Tj)}) is a pair of sets of header contexts
and types of entities.

C. Additional markup

Our approach is focused on finding code fragments without
using any modifications of source code. Additional markup,
such as comments with special keywords clutters the code if
used frequently. However, in some cases it might be feasible
to mark some places in the code with comments. First scenario
is binding to code fragments in a file, which contains a lot of
very similar entities. Some XML files may have such structure.
In this example:

A

B

C

B

C
There are two nodes C, with equal contexts. Despite being

subnodes of different parent nodes, their outer contexts are
equal, because both parent nodes have same name. To handle
this case it might require to save horizontal context for each
parent node, which is not implemented in the model.

Another scenario is binding to code fragments in fre-
quently modified code, where entities may undergo significant
changes.

This kind of markup requires a lightweight parser which
builds parse tree based on comments. Comments may define
points and spans in the source code.

// ConcernBegin Serialization
...
// Concern SomePoint
...
// ConcernEnd Serialization

The code above shows an example of a markup with com-
ments. Concern Serialization is a span and SomePoint is a
single line marked with a comment.

Lightweight parser for this markup is simple and may work
with source code in many languages. The only modification
it may require to adapt the parser to a different language is
changing comment start symbols. Here is a grammar of the
lightweight parser written in LightParse:

%Extension "*"
Token Tk [[:IsLetterOrDigit:]_]*|

[[:IsPunctuation:][:IsSymbol:]]
Token NewLine \r|\n|\r\n
Rule Program : [#Comment|Other]*
Rule Comment : "//" @CTk? @Tk+
Rule CTk: @"ConcernBegin"

| @"ConcernEnd"
| @"Concern"

Rule Other : Tk
| NewLine
| #error

III. ALGORITHMS

There are two aspects of working with the concern tree:
adding a node to the tree and searching the code fragment,
related to the node. Both actions require a parse tree, which is
provided by a lightweight parser. In the following part of the
section we take into consideration only a subset of parse tree
nodes whose type is equal to the type of an entity being saved
or the one being searched. Given the T is a parse tree node
to be saved in the concern tree, we consider a set Tree =
{Ti |TypeTi

= TypeT }.
Next step is calculating a distance between T and every item

Ti ∈ Tree.

41 of 251

A. Calculating distances
Distance two tree nodes is a vector of distances between

each component of a context for a given pair of nodes.
Distance(T, Ti) = Di =

= (DName,DType,DN,DO,DH,DI), where:

DType =

{
1, if TypeT 6= TypeTi

;

0, if TypeT = TypeTi ;

Distance for other part of context is calculated with func-
tions LDistance and SDistance, described further below:

• DName = LDistance(NameT , NameTi)
• DN = LDistance(NT , NTi)
• DO = LDistance(OT , OTi

)
• DH = SDistance(HT , HTi

)
• DI = SDistance(IT , ITi

)

Zero in each component of a vector D means equality of
corresponding parts of contexts of T and Ti. The higher these
values – the less similar two parts of contexts are.

Calculating the distance for Name, Header context and outer
context is based on a Levenshtein metric [18]. Levenshtein
distance for two strings reflects the number of edits (insertions,
deletions and substitutions) required to change one string
into the other. Entity Names are just strings, however Header
contexts are lists of strings. Levenshtein distance in this case
is calculated similarly, but each edit is a deletion, insertion or
substitution of a token. Weight of a substitution in this case
depends on similarity of tokens and ranges between 0 (tokens
are equal) to 2 (weight of insertion + weight of deletion) if two
tokens have maximum possible edit distance between them.
Distance between two outer contexts is calculated similarly.
Each item of an outer context is a pair (Type, Header Context)
and the weight of substitution depends on distance between to
header contexts.

Calculation of edit distance is performed by overloaded
functions LDistance.

Horizontal and inner contexts contain a subset of nodes and
the distance is calculated as a number of subnodes present in
T and absent in Ti.

Calculation of distance between sets is performed by func-
tion SDistance

SDistance(I, Ii) = |I \ Ii|.
SDistance(H,Hi) = |HL \HIL |+ |HR \HIR |.

B. Saving information
Name, Type, Header and Outer contexts are required parts of

a context and are saved always. Inner and Horizontal contexts
are optional in some cases. To determine should they be saved
or not and how much nodes they should contain we are looking
for other nodes in the parse tree with similar Header Contexts.

Given the T is the parse tree node to be saved, we define
two sets of parse tree nodes:

TreeL = {Ti |OTi = OT }
TreeG = {Ti |OTi 6= OT }
In other words, one subset consists of all neighbour nodes

for T (Local scope) and other one - of all other nodes (Global
scope).

After that we calculate two values: NearL and NearG.
NearL = LDistance(NT , NTi) : Ti ∈ TreeL;∀Tj ∈

TreeL,LDistance(NT , NTj
) ≥ LDistance(NT , NTi

).
In other words, we find a distance between header contexts

of T and the most similar node within the scope of a node T .
NearG = LDistance(NT , NTi) : Ti ∈ TreeG;∀Tj ∈

TreeG,LDistance(NT , NTj) ≥ LDistance(NT , NTi) -
similar to NearL, but outside of the scope of T .

When NearG > 0, NearL > 0 there are no other nodes
with same header.In this case Inner and Horizontal contexts
are optional and may be omitted. If NearG = 0, NearL > 0
there are similar nodes with different outer context. Again,
saving Inner and Horizontal contexts is optional, but may
improve search results if the source file is modified. In case of
NearL = 0 saving inner and horizontal context is required.

The values NearL and NearG are saved within the con-
cern tree and will be used for the search.

C. Searching

A node in the concern tree keeps Context of some node T .
Context(T) = (NameT , T ypeT , NT , OT , HT , IT).
After some modifications were applied to the source file,

target node may change as well. In some cases target node
may be absent in the parse tree, if the code fragment related
to the concern was removed. We do not address this case in
our research and the tool is designed to always try to find
target node or suggest a list of most similar entities.

The search begins with parsing a file and calculating edit
distance Di = Distance(T, Ti) ∀Ti ∈ Tree.

Next step - checking if there is only one node in the tree,
which is similar to the target node and therefore considered
as the result of the search. It depends on values NearG and
NearL.

If NearL > 0, then there was only one entity in the source
file with Header context HT . In this case if there is only one
node Ti with similar Header context in the tree - it is returned
as the result:

Result = Ti ∈ Tree :

LDistance(NT , NTi
<

Min(NearG,NearL)

2
;

∀Tj 6= Ti LDistance(NT , NTj
>

Min(NearG,NearL)

2

If NearL = 0, then there were other entities in the source
tree, but only in the same scope as T . In addition to the
condition above we can return Ti if it has minimal distance for
Header, Inner and Horizontal contexts among all other nodes:

Result = Ti ∈ Tree : ∀Tj 6= Ti :

LDistance(NT , NTi
) ≤ LDistance(NT , NTj

)

LDistance(IT , ITi
) << LDistance(IT , ITj

)

LDistance(HT , HTi
) << LDistance(HT , HTj

)

These conditions are correct if NearG > 0. Otherwise there
were other entities in the source file with same Header Context
outside of the scope of T . In this case we add requirements

42 of 251

LDistance(OT , OTi
) = 0 and LDistance(OT , OTj

) = 0 to
both conditions.

If there are no exactly one node Ti which satisfies the
requirements above we consider the search result as ambiguous
and cannot return only one node as the result. It may occur
when the source code was modified significantly, the target
entity was changed or removed and there are 0 or 2 or more
nodes in the parse tree, similar to the target node. In this case
the set of all nodes is sorted according to the product of Di·W ,
where vector W defines weights of parts of contexts.

D. Complexity

Wagner-Fischer algorithm [19] is used to calculate edit
distances. It has a time complexity of O(NM) where N and M
are lengths of two strings. Calculating edit distance of Header
Contexts requires calculating edit distance between two strings
at each step. For simplicity, we assume that all tokens and all
header contexts have similar length. It gives a time complexity
of O(N2M2), where N is the length of Header contexts (in
tokens) and M is length of tokens.

Calculating edit distance between two Outer Contexts has
a time complexity of O(N2M2K2), where K is a length of
Outer Context (depth of the parse tree).

In most cases values N, M and K are relatively small. Length
of separate tokens usually ranges between 1 and 10-15, longer
identifiers are rare. Header Context contains usually not more
than 10-15 tokens. Outer context in case of most programming
languages contains 1-3 items (e.g. a namespace and a class).

Calculating edit distance is performed for each item in set
Tree.

Other operations have a time complexity between O(N)
(calculating NearG and NearL, finding exact match) and
O(N logN) (sorting), where N is a number of items in set
Tree.

IV. TOOL

The tool2 based on the model was designed to be easily
integrated into different integrated developer environments and
text editors, such as Microsoft Visual Studio and Notepad++.

A. Architecture

The tool is separated into 3 main parts:
• A collection of lightweight parsers and a parser gener-

ator. A parser analyzes source files written in a specific
language and provides a parse tree which is then used
by the core. To make development of new parsers easier
a DSL-language LightParse was implemented along with
an utility which generates lex/yacc and C# code of the
parser from an input LightParse file.

• Core. It implements the model with algorithms. It loads
and runs parsers to get a parse tree when it’s necessary
for saving or searching for a code fragment. A visual
component with user interface ready to be integrated into
different IDEs is also implemented.

2Available at https://github.com/MikhailoMMX/AspectMarkup

• A collection of plug-ins for integrated development en-
vironments or text editors. Since the tool relies on
lightweight parsers rather than on a specific IDE, and the
visual part of the tool along with algorithms is provided
by the core, the tool can be very easily integrated into
different IDEs. A plug-in for an IDE should only display
the UI component and implement simple interface, which
defines 10 methods, such as getting and setting cursor
position, accessing the text of currently open files and
event handlers for opening and closing the IDE.

At this moment implemented lightweight parsers include: C#,
Lex and Yacc, Java, XML, PascalABC.NET and a parser for
our own language LightParse. Plug-ins for Microsoft Visual
Studio, Notepad++ and PascalABC.NET [20] are developed
and the tool is also integrated into a grammar editor Yacc
MC.

B. Functionality

The tool adds a concern tree to the interface of a IDE.
Concern tree may have arbitrary structure and is created by
a developer. Each tree node has title and optional description
and subnodes. Description length is not limited. It’s displayed
as a tooltip and may be edited in a separate window.

Each node may be bound to a fragment of code. In this
case the node is marked with an arrow. Double click performs
navigation to the code fragment if the code fragment may be
identified unambiguously. Otherwise, the tool suggests several
most similar code fragments. Each code fragment may be
navigated to in one click and if the code fragment is found,
double click updates the information in the concern tree, so
next navigation will not require any additional actions.

A reverse search is also possible. The tool can find a node
in the concern tree by cursor position in a current file. Along
with the descriptions for tree nodes it may be used to extract
some long comments from the code into the concern tree and
still be able to easily find and read them.

There are several scenarios of using the concern tree. First, it
may be used to maintain a ”working set” of fragments, related
to a current task. Concern tree is relatively small and finding
the node in the tree may be much faster than finding the code
fragment in one of currently open files manually.

Concern tree significantly simplifies re-creating working set
when returning to a task. Instead of recalling class and method
names, performing cross-reference search its only necessary to
expand a subnode in the concern tree related to the task.

Concern tree is very helpful when a new developer starts
working with unfamiliar project. Concern tree resembles a
table of contents, it’s easy to find concerns in it and each con-
cern contains all code fragments related to it with descriptions.
Reading description and navigating across the code helps to
understand how the code is organized and how it works.

The functionality, concern tree examples and the tool usage
scenarios were presented at CEE-SEC(R) 2015 Conference3

3http://2015.secr.ru/lang/ru/program/submitted-presentations/aspect-
markup-of-a-source-code-for-quick-navigating-a-project

43 of 251

V. CONCLUSION

We propose an approach to working with crosscutting
concerns. Concerns are organized in a tree-like structure and
tree nodes are bound to code fragments scattered across the
project. Concern tree is added to the interface of IDE as a
toolbox. Concern tree simplifies navigating across scattered
fragments and is helpful for investigating and re-investigating
a concern. We describe a model our approach is based on.
A metrics of distance between entities in a code is defined.
A description of data, stored in a concern tree is given.
Algorithms of identifying a minimal amount of data to store
and searching an entity in a modified source code are provided.

The model is implemented in a tool, which supports dif-
ferent programming languages and integrates into different
editors end integrated development environments. It performs
either navigation to a saved code fragment if it can be
determined precisely, or shows most similar code fragments
otherwise. The concern markup tool is used in development
of PascalABC.NET and the tool itself.

At this moment some features of the model are not imple-
mented yet, such as horizontal context.

We are currently collecting statistical data and enhancing
algorithms to better handle most frequent changes in the source
code. Some parameters, such as weights of operations need
adjustments.

REFERENCES

[1] M. Eaddy, A. Aho, and G. C. Murphy, “Identifying, assigning,
and quantifying crosscutting concerns,” in Proceedings of the
First International Workshop on Assessment of Contemporary
Modularization Techniques, ser. ACoM ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 2–. [Online]. Available:
http://dx.doi.org/10.1109/ACOM.2007.4

[2] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and collect relevant
information during software maintenance tasks,” IEEE Trans. Softw.
Eng., vol. 32, no. 12, pp. 971–987, Dec. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2006.116

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold, “An overview of aspectj,” in Proceedings of the 15th
European Conference on Object-Oriented Programming, ser. ECOOP
’01. London, UK, UK: Springer-Verlag, 2001, pp. 327–353. [Online].
Available: http://dl.acm.org/citation.cfm?id=646158.680006

[4] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and
M. Sirkin, “The genvoca model of software-system generators,” IEEE
Softw., vol. 11, no. 5, pp. 89–94, Sep. 1994. [Online]. Available:
http://dx.doi.org/10.1109/52.311067

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” in Proceedings of the 25th International Conference
on Software Engineering, ser. ICSE ’03. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 187–197. [Online]. Available:
http://dl.acm.org/citation.cfm?id=776816.776839

[6] S. Apel, C. Kastner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 221–231.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070523

[7] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella, “Delta-oriented
programming of software product lines,” in Proceedings of the 14th
International Conference on Software Product Lines: Going Beyond,
ser. SPLC’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 77–91.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1885639.1885647

[8] W. Harrison and H. Ossher, “Subject-oriented programming: A critique
of pure objects,” in Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’93. New York, NY, USA: ACM, 1993, pp. 411–428.
[Online]. Available: http://doi.acm.org/10.1145/165854.165932

[9] M. C. Chu-Carroll, J. Wright, and A. T. T. Ying, “Visual
separation of concerns through multidimensional program storage,”
in Proceedings of the 2Nd International Conference on Aspect-
oriented Software Development, ser. AOSD ’03. New York,
NY, USA: ACM, 2003, pp. 188–197. [Online]. Available:
http://doi.acm.org/10.1145/643603.643623

[10] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code
bubbles: A working set-based interface for code understanding
and maintenance,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’10. New
York, NY, USA: ACM, 2010, pp. 2503–2512. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753706

[11] S. Chiba, M. Horie, K. Kanazawa, F. Takeyama, and Y. Teramoto,
“Do we really need to extend syntax for advanced modularity?”
in Proceedings of the 11th Annual International Conference on
Aspect-oriented Software Development, ser. AOSD ’12. New
York, NY, USA: ACM, 2012, pp. 95–106. [Online]. Available:
http://doi.acm.org/10.1145/2162049.2162061

[12] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in
software product lines,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE ’08. New
York, NY, USA: ACM, 2008, pp. 311–320. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368131

[13] M. Malevannyy and S. Mikhalkovich, “Realizatsiya podderzhki
aspektov programmnogo koda v integrirovannykh sredakh
razrabotki[implementation of support of aspects in integrated
development environments],” in Sovremennye informatsionnye
tekhnologii: tendentsii i perspektivy razvitiya: materialy
konferentsii[Modern information technologies: tendencies ans
perspectives of evolution], 2015, pp. 351–353, (in Russian).

[14] M. P. Robillard and F. Weigand-Warr, “Concernmapper: Simple view-
based separation of scattered concerns,” in Proceedings of the 2005
OOPSLA Workshop on Eclipse Technology eXchange, ser. eclipse ’05.
New York, NY, USA: ACM, 2005, pp. 65–69. [Online]. Available:
http://doi.acm.org/10.1145/1117696.1117710

[15] M. Malevannyy, “Legkovesnyi parsing i ego ispol’zovanie dlya funktsii
sredy razrabotki[lightweight parsing and its application in development
environment],” Informatizatsiya i svyaz’[Informatization and communi-
cation], vol. 3, pp. 89–94, 2015, (in Russian).

[16] ANSI C grammar. [Online]. Available: http://www.quut.com/c/ANSI-
C-grammar-y.html

[17] PascalABC.NET. (in Russian). [Online]. Available: http://pascalabc.net/
[18] V. Levenshtein, “Binary codes capable of correcting deletions, insertions

and reversals,” Soviet Physics – Doklady, vol. 10, no. 8, pp. 707–710,
1965, (in Russian).

[19] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” J. ACM, vol. 21, no. 1, pp. 168–173, Jan. 1974. [Online].
Available: http://doi.acm.org/10.1145/321796.321811

[20] I. V. Bondarev, Y. V. Belyakova, and S. S. Mikhalkovich, “Sistema
programmirovaniya pascalabc.net 10 let razvitiya [programming system
pascalabc.net 10 years of evolution],” in ”XX Nauchnaya konferentsiya
Sovremennye informatsionnye tekhnologii: tendentsii i perspektivy razvi-
tiya. Materialy konferentsii [XX Scientific conference M̈odern informa-
tion technologies: tendencies ans perspectives of evolution]̈, 2013, pp.
69–71, (in Russian).

44 of 251

Metric-based Approach to Anti-pattern detection in
Service-oriented Software Systems

Alexander Yugov
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russian Federation

yugovas@live.ru

Abstract — Service-based systems, as well as any other

software systems, evolve over time. No matter what changes were

pushing the evolution: new requirements, changing operational

environment, etc., this evolution may hinder the maintenance of

these systems, and thus increase the cost of their development.

Permanent changes can introduce into the system some "bad"

decisions – anti-patterns, which, in turn, reduce the quality of

software system and require more attention of developers with

support and further development. This article discusses examples

of anti-patterns and methods for their automated detection.

These methods will be focused on metric-based approach to

analysis of service-based software systems.

Keywords — service-based systems, anti-patterns, specification

and detection, software quality, quality of service (QoS)

I. INTRODUCTION
Service-based style of software systems is very widely

spread at the industrial development because it allows
implementing flexible and scalable distributed systems at a
competitive price. The result of development are autonomous,
reusable, and independent units of a platform – services – that
can be consumed via any network including the Internet [9].

Traditional approaches to software delivery are based on
life cycle phases of the system, when in the development
process became involved various teams inside a company or
even by different companies [10]. Moreover, in classical
approach, the focus is on one vendor supplying the entire
system or subsystem. The emergence of service-oriented
architecture approach introduces a model divided into levels. It
enables the existence of different design approaches, whereby
different parties deliver service layers as separate elements.
Experience in development of joint projects, divided into
separate services, shows that errors may appear in potentially
dangerous areas. As part of this work, we will call these areas
as anti-patterns.

Anti-patterns in software systems based on services are
“bad” solutions recurring design problems. In contrast to
design patterns, anti patterns are well-proven solutions that
engineers should avoid. Anti-patterns can also be introduced as
a consequence of various changes, such as new user
requirements or operating environment changes.

This paper presents an introduction to the anti-pattern
detection domain and describes proposed approach for the
automated detection of anti-patterns.

II. EXAMPLES OF ANTI-PATTERNS IN SERVICE-BASED SYSTEMS
Design (architecture) quality is vitally important for

building a well thought-out, easy to maintain and evolving
systems. The presence of patterns as antipattern in the system
design was recognized as one of the most effective ways to
express architectural problems and their solutions, and hence
higher quality criterion among different systems [23].

A number of efforts have been taken to formalize the
properties of the concept of "bad" practices, i.e., decisions that
adversely affect the quality of the system. Despite the emerging
interest to service-based systems, the literature is not really
consistent with respect to pattern and anti-pattern definition
and specification in this area. Indeed, the available catalogs use
different classification, either based on their nature, scope or
objectives.

 Some completely new approaches were introduced to
identify and detect code vulnerabilities and anti-patterns [22],
[14]. The methods used in these campaigns were very diverse:
completely manual, based on the research guidelines; metrics
based on heuristic methods using rules and thresholds for
various metrics; or Bayesian networks. Some approaches [1]
are applicable to the application level and can be applied to
initial stages of the software life cycle.

Quite a large number of methodologies and tools exist for
the detection of anti-patterns, in particular, in object-oriented
(OO) systems [13], [16]. However, the detection of anti-
patterns in service-based systems, in contrast to the OO
systems is still in its infancy. One of the last works by detecting
of antipattern in service-oriented architectures (SOA) has been
proposed in Moha et al. In 2012 [22].

The authors proposed an approach to the determination and
detection of an extensive set of SOA anti-patterns operating
such concepts as granularity, cohesion and duplication. Their
instrument is able to detect the most popular SOA anti-patterns,
defined in literature. In addition to these antipatterns, authors
identified three antipatterns, namely: bottleneck service,
service chain and data services. Bottleneck is a service that is
used by many other components of the system, and as a result,
is characterized by high incoming and outgoing connections
affecting the response time of service. Chains of services occur
when a business object is achieved by a long chain of
successive calls. Data service is a service that performs

45 of 251

a simple operations of information search or data access, which
may affect the connectivity of the component.

In 2012, Rotem-Gal-Oz [26] identified the “knot”
antipattern, a small set of connected services, which, however,
is closely dependent on each other. Anti-pattern, thus, may
reduce the ease of use and response time.

Another example of anti-pattern is “sand pile” defined by
Kr'al et al [15]. It appears when many small services use shared
data, which can be accessed through the service, which
represent the “data service” anti-pattern.

In the paper of Scherbakov et al. proposed “duplicate
service” antipattern [5] that affects sharing services that contain
similar functions, causing problems in the support process.

In 2003 Dudney et al. [8] have identified a set of anti-
patterns for the J2EE applications. “Multi service” anti-pattern
stands out, among others, a “tiny service” and “chatty service”.
Multi service is a service that provides a variety of business
operations, which have no practical similarity (for example,
belong to different subsystems) that can affect service
availability and response time. Tiny service is a small service
with few methods, which are always used together. This can
lead to the inability of reuse. Finally, an anti-pattern “chatty
service” represents such services that constantly call each
other, passing small amount of information.

III. METRIC-BASED APPROACH TO THE DETECTION OF
ANTI-PATTERNS

As DeMarco noted [7], in order to control the quality of
development, correct quantitative methods are needed. Already
in 1990 Card emphasized that metrics should be used to assess
the development of software in terms of quality [3]. But what
should be measured? In the above context of design rules,
principles and heuristics, this question should be rephrased as
follows: is it possible to express the principles of “good
design” in a measurable way?

The main goal of this approach is to provide a mechanism
for engineers, which will allow them to work with metrics on a
more abstract level, which is conceptually much closer to real
conditions of applying numerical characteristics. Mechanism
defined for this purpose is called a discovery strategy:

Detection strategy is a quantitative expression of the rules
by which specific pieces of software (architectural elements),
corresponding to this rule, can be found in the source code.

By this reason, the detection strategy is a common approach
to analysis of the source code model using metrics. It should be
noted that in the context of the above definition, "quantitative
expression of the rule" means that the rule should be properly
expressible using metrics. The use of metrics in detection
strategies grounded filtering mechanisms and composition. In
the following subsections, these two mechanisms will be
considered more detailed.

The key problem in data filtering is reducing the initial
collection of information, so that there remain only those
values that are of particular value. This is commonly referred to
as data reduction [12]. The aim is to detect those elements of

the system, which have special properties. Limits (boundaries)
of the subset are determined on the basis of the type of filter. In
the context of the measurement process with respect to the
software, we usually try to find the extreme (abnormal) values
or those values that lay within a certain range. Therefore,
distinguish types of filters [19]:

 Marginal filter is a data filter, in which one limit
(border) in the result set is clearly identified with a
corresponding restriction of the original data set.

 Interval filter is a data filter, in which the lower and
upper limits of the resulting subset are explicitly
specified in the definition of the data set.

Marginal filters consist of two depending on how we
specify the borders, resulting dataset limiting filters may be
semantical or statistical.

 Semantical. For these filters two parameters must be
specified: a threshold value that indicates a limit value
(to be explicitly indicated); and the direction that
determines whether the threshold upper or lower limit
of the filtered data set. This category of filters is called
semantical as the choice of options is based on the
semantics of specific metrics in the framework of the
model chosen for the interpretation of this metric.

 Statistical. Unlike semantical filters, statistical ones do
not require explicit specifications for the threshold, as it
is defined directly from the original data set using
statistical methods (e.g., scatter plot). However, the
direction is still to be specified. Statistical filters are
based on the assumption that all the measured entities of
the system are designed using the same style, and
therefore, the measurement results are comparable.

In this paper, a set of specific data filters of the two
previous categories were used. Basing on practical use and
interpretation of the selected models, these filters may be
grouped as follows:

 Absolute semantic filters: HigherThan and LowerThan.
These filtering mechanisms are parameterized by a
numerical value representing the border. We will only
use data filters are to express "clear" design rules or
heuristics, such as "class should not be associated with
more than 6 other classes." It should be noted that the
threshold is specified as a parameter of the filter, while
the two possible directions are defining by two
particular filters.

 Relative semantic filters: TopValues and BottomValues.
These filters differentiate the filtered data set according
to the parameter that determines the number of objects
to be recovered, and do not indicate the value of the
maximum (or minimum) values are permitted in the
result set. Thus, the values in the result set will be
considered with respect to the original data set. The
parameters used may be absolute (for example, "select
20 objects with the highest values") or percentile (for
example, "to remove 10% of the measured objects with
the lowest values"). This type of filter is useful in
situations where it is necessary to consider the highest

46 of 251

(or lowest) values of a given data set, rather than
indicating the exact thresholds.

 Statistics: scatter plots. Scatter diagram is a statistical
method that can be used to detect outliers in the data set
[11]. Data filters based on these statistical techniques,
which, of course, not limited to only the scatter
diagrams, are useful in the quantification of rules.
Again, we need to specify the direction of the deviation
of adjacent values based on design rules of semantics.

 Interval Filters. Obviously, for the data interval it is
necessary to define two thresholds. However, in the
context of the detection strategies, where, in addition to
the mechanism of filtering, the composition mechanism
exists, filter interval is defined by two composition of
two semantic absolute filters of opposite directions.

Unlike simple metrics and interpretation models of it,
detection strategy should be able to draw conclusions on the
basis of a number of rules. Consequently, in addition to the
filtering mechanism, which supports the interpretation of the
particular metric results, we need a second mechanism for
comparing the results of calculations of a number of metrics – a
mechanism of composition. Composition mechanism is a rule
combining the results of calculating several metric values. In
the literature three composition operators were observed:
“and”, “or” and “butnot” [19].

These operators can be discussed from two different
perspectives:

 From a logical point of view. These three operators are
a reflection of rules to combine multiple detection
strategies, where operands are descriptions of the design
characteristics (symptoms). They facilitate reading and
understanding of the detection strategy, because
operators of composition are generally expressed in the
form of quantitative characteristics, so it is similar to the
original wording of the informal thoughts. From this
point of view, for example, the operator «and»
presupposes that the investigated object has both
symptoms that are combined by the operator.

 From the point of sets. This view helps to understand
how to build the ultimate result of the detection
strategy. The initial set of calculation results on each of
the metrics is carried out through the filtering
mechanism. Then remains limited set of system
elements (and calculated metrics for these elements),
which are interesting for further investigation. The
resultant plurality of filtered sets should be merged with
the operators using the formulation. Thus, in terms of
operations on sets, the operator "and" will correspond to
the operation of intersection (∩), the operator "or" to
reunion operation, and the operator “butnot” to minus
operation.

IV. DEFINITION OF DETECTION STRATEGY
This section will be written in the formation of a strategy

on the example of the detection of a particular anti-pattern
"God Object" [25]. The starting point is the presence of one (or

more) of the informal rules that describes the problem
situation. In this example, we will proceed from the three
heuristics found in the book of Riel [25]:

 The top-level services should share equally the
responsibility.

 Services should not contain large amounts of
semantically separate functions.

 Services should not have access to fields or properties
of other services.

A. Step-by-step Strategy

The initial step to create a detection strategy is to translate
the set of informal rules into symptoms that can be evaluated
by a particular metric. In the case of God Object anti-pattern,
the first rule refers to an equal sharing of responsibilities
among services, and therefore it refers to service complexity.
The second rule tells us about the intensity of communications
among this service and all other services; thus, it refers to the
low cohesion of services. The third heuristic describes a special
coupling i.e., the direct access to data items manipulated by
other services. In this case, the symptom is access to “foreign”
data.

The second step is to find appropriate metrics, which
evaluate more precisely every of the discovered properties. For
the God Service anti-pattern, these properties are complexity of
the service, cohesion of the service and access to data from
other services. Therefore, we found the following set of
metrics:

 Weighted Method Count (WMC) is the sum of the
statical complexity of all methods in a class [6]. We
considered the McCabe’s approach as a complexity
measure [20].

 Tight Class Cohesion (TCC) is the relative number of
directly connected methods [2].

 Access to Foreign Data (ATFD) represents the number
of external classes from which a given class accesses
attributes, directly or via accessor-methods [18].

The next step is to select an appropriate filtering scheme
that should be applied to all metrics. This step is mainly done
basing on the rules described earlier. Therefore, as the first
symptom is a “high service complexity” the TopValues relative
semantical filter was chosen for the WMC metric. For the “low
cohesion” symptom it was also chosen a relative semantical
filter, but now the BottomValues one. For the third symptom,
an absolute filter was selected as we need to catch any try to
access a “foreign” data; thus, we the HigherThan filter will be
used.

One of vital issues in creating a detection strategy is to
choose proper parameters (i.e., threshold values) for all data
filters. Several approaches exist to do this, but now we just take
a 25% value for both the TopValues filter for to the WMC
metric and to the BottomValues filter for the TCC metric. As
for filter boundary for the ATFD metric, the decision is pretty
simple: no direct access to the data of other services should be
allowed, therefore, the threshold value is 1.

47 of 251

The final step is to join all the symptoms, with applying of
the special operators described before. From the unstructured
heuristics as presented in [25], it was inferred that all three
symptoms should be combined if a service is supposed to be a
behavioral God Object.

The intention of this work is to use detection strategies in
rule definitions in order to facilitate detection of anti-patterns in
service-based software systems i.e., to select such areas of the
system (subsystem) that are participated in a particular
anti-pattern. From this point of view it should be emphasized
that the detection strategy approach and the whole method is
not limited by finding problems, but it also can facilitate
completely different objectives too. For instance, different
investigation purposes could be in reverse engineering [4],
design pattern detection [18], identification of components in
legacy systems [27], etc.

V. IMPLEMENTING A TOOL FOR DETECTION OF ANTI-PATTERNS
IN SERVICE-BASED SYSTEMS

A. Description of Metrics

Calculations intended to detect antipatterns is conducted
basing on several basic metrics:

 incoming call rate;

 outcoming call rate;

 response time;

 number of service connections;

 cohesion with other services;

 etc.

Each metric has its specific model and its specific
algorithm to calculate. Values of this metric have decisive
influence on detection of services participating in antipatterns.

In calculation of metrics, objective measures of occurrence
pattern interestingness of data mining like confidence and
support are used. These are based on the structure of
discovered patterns and the statistics underlying them.

A measure for association rules of the form X→Y is called
support, representing the percentage of transactions from a log
database that the given rule satisfies. This is intended to be the
probability P(X ⋃ Y), where X ⋃ Y indicates that a transaction
contains both X and Y, that is, the union of item sets X and Y.

Another objective measure for association rules from data
mining is confidence, which addresses the degree of certainty
of the detected association. In classical data mining this is
taken to be the conditional probability P(X ∩ Y), that is, the
probability that a transaction containing X also contains Y.
More formally, confidence and support are defined as

In general, each measure of interestingness is associated

with a threshold, which may be controlled. For calculation of

metrics each final value of metric is confidence (which is
calculated not as in classical data mining but more complexly)
divided by support measure (which is calculated in the same
manner as in classical data mining).

Further, each metric is described in more details.

Incoming and Outcoming Call Rates. The model for
calculation of IncomingCallRate metric is call matrix. This
matrix represents calls services make to each other. For
building this matrix and some other models, we need to
identify the order of calls. This information does not stored in
logs, therefore, the first task is to mine service calls from log.
Procedure of mining calls consists of several main steps. The
first is ordering log events by traces. This is necessary because
occurrence of events in particular order in boundaries of one
trace gives us evidence of one particular service call. To mine
all the service calls properly it is needed to sort events in the
log chronologically within every trace. Once ordering on both
levels (trace and timestamp) is finished, we can go through the
log and reconstruct service calls. Received values in mined
matrix will represent generalized number of calls among
services for as IncomingCallRate as OutcomingCallRate.

Response Time. Response time metric represent general
bandwidth of a particular service. This parameter is crucial for
systems having high load. Calculation of this metric uses
assumptions made for both metrics IncomingCallRate and
OutcomingCallRate but with some modifications. As we are
aimed here at measure of time characteristic, the object to
explore will be time stamp parameter of the log. Given defined
algorithm for incoming and outcoming call rates, we modify it
with calculation of time prospect. Instead of just number of
calls, we calculate general length of service response. In such a
way the summarized time while service was busy is calculated.
As a result of precious calculations, the matrix of general time
every service spent on work was obtained. Following step is to
normalize real values, i.e. to measure not in absolute number
but in relative number. This relative number will show
percentage of time where the service was working on
processing calls. This metric can be used for detection of both
highly loaded services and rarely used services.

Cohesion with Other Services. For calculation of this
metric classical data mining rules are implemented. For this the
conditional probability P(X ∩ Y) is taken. That is, the
probability that a transaction containing X also contains Y.
Additionally, the special rule for ordering is added. This means
that X→Y and Y→X is different relations. I.e. we observe not
only occurrence at one trace but also the order of occurrences.
High rate of confidence of this metric is evaluated as high
cohesion of several services and, therefore, high behavioral
dependency.

Number of Service Connections. All the previous metrics
were dynamic characteristics of a system under consideration
while number of service connections is a static property of the
system. For mining this property the incidence matrix of
service calls is enough. If one service called once another
service, we do not consider the same connections in future.
Obtained incidence matrix allows us to calculate all existing
connections in the system.

Support(X → Y) = P(X ⋃ Y),
Confidence(X → Y) = P(X ∩ Y).

48 of 251

The basic model to calculate each of metrics is Graph
model (fig. 1) which is extended in each particular metric
calculation algorithm with specific attributes. As part of this
work, it is assumed that each object, once appeared in the
system, initiates a sequence of operations to be performed on
the object. This sequence of operations is called workflow. It is
worth noting that not every service-oriented system is based on
this principle, but we will consider only such systems.

Srv1

funcA

funcB

Srv2

funcC

funcD

Srv3

funcE

funcF

4(5)

4(7)

Fig. 1. Base graph model for calculation of metrics.

In this model, services of a software system are presented
by graph nodes. Arcs of the graph represent the call ratio, i.e.,
oriented arc from Srv1 to Srv2 shows that Srv1 in the process
of operation calls one of Srv2 functions. Depending on what
metric should be calculated, edges of the graph are marked by
specific values. For example, on fig. 1 arcs are labeled by
amount of calls in a particular direction and, in parentheses,
some weighted value of the transmitted data.

B. Extracing Data from Event Logs

The main weakness of previously observed works was the
necessity to modify source code of a particular system in order
to evaluate concrete metrics. In this work we use event logs to
create a process model of the system and calculate metrics
basing on this model. To apply these, it is assumed that the
information system records data of events. These logs also
contain unstructured and irrelevant data, e.g. information on
hardware components, errors and recovery information, and
system internal temporary variables. Therefore, extraction of
data from log files is a non-trivial task and a necessary pre-
processing step for analysis. Business processes and their
executions related data are extracted from these log files. Such
data are called process trace data. For example typical process
trace data would include process instance id, activity name,
activity originator, time stamps, and data about involved
elements. Extracted data are converted into the required format.

To be able to analyze log content, the log should have
specified structure. In our case the minimal requirements for
log is as follows:

 TraceID: shows the identity for a particular trace;

 ServiceID: shows the identity for a particular service;

 FunctionID: shows the identity attribute for a particular
function in the service;

 Timestamp: shows the time of occurrence of the event.

The log sample is presented in table 1.

TABLE I. SOURCE LOG SAMPLE

TraceId Service Function TimeStamp

1 Srv2 C 2015-06-15 00:25:20

1 Srv1 A 2015-06-15 00:33:24

2 Srv4 F 2015-06-15 00:32:25

3 Srv3 E 2015-06-15 00:24:13

1 Srv2 C 2015-06-15 00:31:52

3 Srv1 B 2015-06-15 00:34:05

4 Srv4 G 2015-06-15 00:25:12

3 Srv3 E 2015-06-15 00:26:28

4 Srv1 A 2015-06-15 00:28:21

4 Srv2 C 2015-06-15 00:30:32

2 Srv1 A 2015-06-15 00:29:48

2 Srv2 C 2015-06-15 00:29:51

Each field included in log has its own purpose in future
usage. TraceID is needed for distinguishing events among
execution sequences, i.e. for majority of metrics it is necessary
to connect events in boundaries of one trace. Moreover, inside
traces events appears in chronological order. That is why
timestamp is included in log format.

ServiceID and FunctionID describe source of each event. In
addition, dimensions of functions and services are main
structural units in analysis and creation of models.

C. Specification of Rule Cards

The rule cards is storing in XML format. The structure of
XML represents scheme of rule card structure. The scheme of
XML is presented in fig. 2 in graphical mode. In fig. 3 for more
detailed view in XSD standard. The XML should have
specialized namespace: “RuleCardNS”. The root element is
“RuleCard”. It has name element called “AntipatternName”.
This also plays the role of identification attribute.

Each Rule is defined through type attribute, metric value
and its own name. The type attribute describes what metric
(from a set of available metrics) should be calculated. Metric
value refers to specific value of calculated metric, which shows
whether the service under analysis has a particular symptom or
not. Finally, rule name is an identification property for rule.

Fig. 2. Structure of antipattern XML

49 of 251

Fig. 3. Detailed structure of antipattern XML.

D. Description of Research Prototype of Analytic System

To automate process of anti-pattern detection the research
prototype of information system, which implements the
described approach, has been developed. The scheme of the
proposed approach is shown in fig. 4. The workflow of the
software system consists of several steps. At the point of entry,
the program takes log, which is reading from the relational
database implemented in SQL Server, and rule card describing
rules to detect particular antipattern.

General workflow structure is presented in fig. 5. It starts
with reading input data, which are:

 log from some software system implemented according
to SOA principles;

 rule card describing all the rules and metrics needed for
detection of each particular antipattern.

Once the XML with antipattern description is read the
system starts calculation of metrics. Each metric is calculated
against its specific algorithm. So for each rule the process of
metric calculation has been launching. First, the special model
used for analysis of a particular metric is build. All the models
were defined previously. Then with use of received model
metrics are calculated. As a result of this process, services
suspected in participation in the antipattern are selected.

Next step is to integrate results received in threads of
calculation of metrics. The integration is conducted as
intersection of result sets from previous threads. Finally, we
obtain set of suspicious services, which are parts of antipattern.
Commonly there are several services, but is always can be that

just one service represents antipatterns or no such services at
all were discovered.

Results of analysis is depicting in general graph
representation (fig. 4). Nodes in this graph are services and
edges in this graph are direct references among services.

Each node represents one service observed in the system
whose log has been observed. As for example on fig. 5, nodes
such as for services Srv2, Srv3, and Srv4 represent proper
developed services, i.e. they are not participated in antipatterns.
Suspicious services are marked with “!” sign, that means that
this particular service is a part (or is whole) of antipattern. In
our example this is service number 1 (Srv1).

Fig. 4. Graphical representation of results.

Edges represent calls made of one service to another one.
Concerning example from fig. 2.6, Srv4 calls Srv1 therefore
one edge directed from Srv4 to Srv1 is depicted. Srv1 and Srv2
calls functions of each other therefore the edge is bidirectional.

VI. CONCLUSION
This work addresses the issue of necessity of monitoring

circumstance of software systems implemented through
service-based approach in conditions of continuous
development and enhancement when number and complexity
of systems is expanding faster than a human being can handle.

During the exploration of process mining and data mining
domains the general service-based specific antipattern
detection rules were invented. All rules consist of several
metrics and its specific values, describing symptoms of
antipatterns. At the time, five metrics are available for usage in
detection rules: incoming call rate, outcoming call rate,
response time, cohesion, and number of service connections.
With applying these metrics several antipatterns was specified
and algorithms for it detection were introduced.

Algorithms of antipattern detection based on metric
calculation were implemented as a software tool (research
prototype), which allows by specifying rule cards in XML
format and log in SQL Server database to detect antipatterns.
The software tool is developed with usage of Windows
Presentation Foundation framework.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="RuleCardNS">
 <xsd:element name="RuleCard">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="AntipatternName" type="xsd:string" />
 <xsd:element name="Rules">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1"
name="Rule">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="RuleName" type="xsd:string" />
 <xsd:element name="MetricValue" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xs:schema>

50 of 251

Fig. 5. Base graph model for calculation of metrics.

It is planned that in future the information system will be
refined according to analysis of real life logs from and number
of available metrics and possible to detect antipatterns will be
significantly greater. The following step will be introducing
dynamic analysis of system behavior in addition to
implemented analysis of static footprints. Furthermore, some
fuzziness can be introduced for the evaluation of the threshold
values thus to make antipattern detection rules more flexible.

REFERENCES

[1] D. Arcelli, V. Cortellessa, C. Trubiani. Experimenting the Influence of
Numerical Thresholds on Model-based Detection and Refactoring of
Performance Antipatterns. ECEASST 59 (2013).

[2] J.M. Bieman and B.K. Kang. Cohesion and Reuse in an Object-Oriented
System. Proc. ACM Symposium on Software Reusability, apr 1995.

[3] D. Card and R. Glass. Measure Software Design Quality. Prentice-Hall,
NJ, 1990.

[4] E. Casais. State-of-the-art in Re-engineering Methods. achievement
report SOAMET-A1.3.1, FAMOOS, October 1996.

[5] L. Cherbakov, M. Ibrahim, and J. Ang, “Soa antipatterns: the obstacles
to the adoption and successful re-alization of service-oriented
architecture”.

[6] S. R. Chidamber and C. F. Kemerer. A Metric Suite for Object-Oriented
Design. IEEE Transactions on Software Engineering, 20(6):476–493,
June 1994.

[7] T. DeMarco. Controlling Software Projects: Management, Measurement
and Estimation. Yourdan Press, New Jersey, 1982.

[8] B. Dudney, J. Krozak, K. Wittkopf, S. Asbury, and D. Osborne, J2EE
Antipatterns, 1st ed. New York, NY, USA: John Wiley & Sons, Inc.,
2002

[9] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, August 2005.

[10] G. Farrow. SOA antipatterns: When the SOA paradigm breaks // IBM
Developer Works [Online]. Available:
http://www.ibm.com/developerworks/library/wa-soa_antipattern/

[11] N. Fenton and S.L. Pfleeger. Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, London, UK, second
edition, 1997.

[12] P.G. Hoel. Introduction to Mathematical Statistics. Wiley, 1954.

[13] M. Kessentini, S. Vaucher, and H. Sahraoui. “Deviance From Perfection
is a Better Criterion Than Closeness To Evil When Identifying Risky
Code” in Proceedings of the IEEE/ACM ASE. ACM, 2010, pp. 113–
122.

[14] F. Khomh, M. D. Penta, Y.-G. Gúeh́eneuc, G. Antoniol. An exploratory
study of the impact of antipatterns on class change- and fault-proneness.
Empirical Software Engineering 17(3):243–275, 2012.

[15] J. Kr´al and M. Zemlicka, “The most important service-oriented
antipatterns,” in ICSEA, 2007, p. 29.

[16] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[17] M. Lorenz and J. Kidd. Object-Oriented Software Metrics. Prentice-Hall
Object-Oriented Series, Englewood Cliffs, NY, 1994.

[18] R. Marinescu. Detecting Design Flaws via Metrics in Object-Oriented
Systems. In Proceedings of TOOLS USA 2001, pages 103–116. IEEE
Computer Society, 2001.

[19] R. Marinescu. Detection strategies: Metrics-based rules for detecting
design flaws. In Proceedings of the 20th IEEE International Conference
on Software Maintenance (ICSM’04). Los Alamitos CA: IEEE
Computer Society Press, 2004, pp. 350–359.

[20] T.J. McCabe. A Complexity Measure. IEEE Transactions on Software
Engineering, 2(4):308–320, dec 1976.

[21] P. Mihancea. Optimization of Automatic Detection of Design Flaws in
Object-Oriented Systems. Diploma Thesis, ”Politehnica” University
Timisoara, 2003.

[22] N. Moha, F. Palma, M. Nayrolles, B. J. Conseil, Y.-G. Gúeh́eneuc, B.
Baudry, J.-M. J́eźequel. Specification and Detection of SOA
Antipatterns. In International Conference on Service-Oriented
Computing (ICSOC). Pp. 1–16. 2012

[23] M. Nayrolles; N. Moha; P. Valtchev. Improving SOA Antipatterns
Detection in Service Based Systems by Mining Execution Traces in
Proceedings of the 20th Working Conference on Reverse Engineering
(WCRE'13), pp. 321–330, IEEE, 2013.

[24] D. Ratiu, S. Ducasse, T. Girba, and R. Marinescu. Using History
Information to Improve Design Flaws Detection. In Proceedings of the
Conference on Software Maintenance and Reengineering (CSMR 2004).
IEEE Computer Society, 2004.

[25] A.J. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[26] A. Rotem-Gal-Oz, SOA Patterns, 1st ed. Manning Pubblications, 2012.
[27] A. Trifu. Using Cluster Analysis in the Architecture Recovery of OO

Legacy Systems. Diploma Thesis, Karlsruhe and the ”Politehnica”
University Timis¸oara, 2001

51 of 251

Technology for application family creation based
on domain analysis

Gudoshnikova Anna
Chair of informatics

St.-Petersburg State University
St.Petersburg, Russia

Email: gudoshnikova.anna@gmail.com

Yurii Litvinov
Software Engineering chair

St.-Petersburg State University
St.Petersburg, Russia

Email: y.litvinov@spbu.ru

Abstract—The theme of code reuse in software de-
velopment is still important. Sometimes it is hard to
find out what exactly we need to reuse in isolation of
context. However, there is an opportunity to narrow
the context problem, if applications in one given do-
main are considered. Hence, the problem of domain
analysis arises. On the other hand, there is metaCASE-
techonology that allows to generate code of an applica-
tion using diagrams. The main objective of this article
is to present the technology for application family cre-
ation which connects the metaCASE-techonology and
domain analysis. We propose to use feature diagrams
to describe variability in a domain and then create
domain-specific visual language that allows to connect
and configure existing feature implementations thus
producing an application. This technology supposed to
be especially useful for software product lines.

Index Terms—domain analysis; metaCASE-
technology; domain-specific language; application
family

I. Introduction

The term “reuse” in software engineering is closely
associated with context. Reuse objects can be programs,
parts of programs, specifications, requirements, architec-
tures, test plans, etc. Reuse of one object leads to reuse
of another object. This means, there is a need to reuse
something more than just code, i.e. there is a call for
increasing the abstraction level. It is commonly supposed
that reuse, as some kind of activity, can be divided into
groups according to what should be reused: components,
process for gaining the product, technology or knowledge.
At all accounts any reuse object cannot be discussed with-
out environment, where the given object exists. Hence, the
context problem still remains.

However, if we reuse objects in one domain, the context
issue may be narrowed. The product line implies that
there is a common part, it can be: (1) architecture, (2)
components, (3) algorithms, (4) methods, etc. — and this
part exists in the same context. This fact facilitates the
reuse problem. Consequently, the common part must be
reused.

Gathering information about the domain is the cru-
cial step in the whole process of software development.
Nowadays applications in one domain are often designed

independently; this approach leads to increase of devel-
opment time and cost. Usually such applications have
similar functionality, so the reuse problem moves to the
forefront in an attempt to speed up the development
and to decrease the cost for systems in one domain. The
reuse process in one domain supposes the necessity of the
domain analysis activity. At present domain analysis in
software life cycle is performed in informal way. There
are some domain analysis tools, but such tools are not
integrated with development tools. As the result of the
domain analysis activity some diagrams just are put up
on the board, and do not take part in following process
of software design. The risk of incorrect understanding of
domain-dependent knowledge increases. Therefore, many
peculiarities of the domain may be missed in development
process because of the factor of human error. This fact
may lead to development of the product which does not
satisfy requirements at all. Hence, there emerged a need
for a tool in which domain analysis activity would play a
vital role in software development process, i.e. based on
this activity would be possible to generate some design
model, so developers and other process actors could rely
on this model. At the present day there is no tool that
could allow to solve this problem.
One possible solution for this problem is the use of

domain analysis tool in model-driven development, or,
more precisely, domain-specific modelling. Domain-specific
approach uses visual languages to specify system under
development, but, contrary to general model-driven ap-
proach which uses general-purpose visual languages like
UML, domain-specific languages are tailored specifically
for given domain or a set of problems. Existing studies [1],
[2], [3], [4] show that due to closeness to a problem domain
and the ability to generate complete application by visual
models domain-specific languages boost development pro-
ductivity by 3 to 10 times compared to general-purpose
languages. It is clear that developing a tool for domain-
specific language “from scratch” for each domain will
be prohibitively costly, so special systems are used that
allow to declaratively specify syntax of a language and to
automatically generate such tools as visual editor, source
code generators, constraints checkers and so on. Such

52 of 251

systems are called DSM platforms, most known of these
is MetaEdit+ [5], [6], [7], Eclipse GMP [8], [9], Microsoft
Modeling SDK [10].

Main idea of domain-specific modeling is to use a num-
ber of visual languages in one tool to develop a complete
system. Every language can provide a different point of
view on a system. We propose to exploit this idea to
automatically produce useful artefacts from the results
of domain analysis thus seamlessly integrating this phase
into development process (such as [11]). For that, we will
use specific visual language to perform domain analysis
and to build domain model, language simple enough to
be useful to analysts and domain experts who do not
necessarily possess programming skills. Then, using this
domain model, we will generate actual domain-specific
language that will allow to configure various existing
pre-built components and integrate them to generate a
working application. As we will see, this language will also
typically be very simple so that non-programmers can use
it. The only real coding in the proposed approach occurs
when creating components from which applications will be
built, but for product lines these components will already
exist anyway, as they will in a case when a team develops
many applications in one domain for some time. Not all
steps in proposed approach are fully automatic, as a visual
language needs tailoring after generation from domain
model — we still need to manually specify shapes of its
elements (to be familiar for domain experts) and configure
properties which depend on existing components and can
not be derived from domain model. It is also possible
that generated application will need tailoring by hand,
but generation can significantly lower the effort needed
to create application.

Main contribution of this research-in-progress paper is
a novel approach to product line development and assets
reuse. Also an implementation of technology which uses
this approach is presented. Our technology is based on
QReal DSM platform [12], an open source tool developed
by Software Engineering chair of St. Petersburg State
University1. An evaluation of proposed approach is also
presented, but on a rather simple problem, so a much
wider evaluation is needed for this study to be considered
complete, such as the applicability of this approach to
complex real-life situations and determining actual pro-
ductivity boost on real-life problems.

The rest of this paper is structured as follows: in sec-
tion II most important terminology for domain analysis is
given, also related works are considered. In section III we
present our method and its implementation as develop-
ment platform, in section IV an example of application
of our approach is given, we will consider a family of
Android gamepads for remote control of various robot
models. Section V concludes the paper.

1GitHub repository and home page of QReal project, URL:
https://github.com/qreal/qreal (03.04.2016)

II. Domain analysis approaches

There is no any clear and long-standing definition of the
term “domain analysis”. Almost all papers, in which this
term is considered, go back to 80s-90s of the twentieth
century. It was then that scientists, taking into account
rapidly growing technologies, were thinking about global
reuse. Always projects are developing for concrete user
needs, so then the term “domain” took the definition.
Domain is the field of expertise, problems in which the
software intends to solve. According to Rugaber [13], the
domain is described in terms of glossary, some assump-
tions, architecture approach and literature.
Then the question arise, how we need to analyze the do-

main for acquiring the necessary information. At present,
the information gathering into knowledge bases is un-
derstood under the term “domain analysis”. Although,
Prieto-Diaz [14] confirms that domain analysis is an ac-
tivity, which is held before system analysis and its output
is used for system analysis to the same degree as system
analysis’s output is used for system design. There are
other definitions of the term “domain analysis”. Ferre [15]
has presented definitions, such as: (1) the process of
identification, organization and presenting the relevant
information of a given domain, (2) the process, in which
the customer’s knowledge are identified, concretized and
systemized. The relevant information of the domain should
be presented in objective, readily available way, such way
is called “domain model”. Mernik [16] specifies that the
domain model includes not only glossary, but also must
describe commonalities and variabilities of terms. Such
model should precisely set bounds of the domain, i.e. clear
and exact characterize a range of questions, which are
considered in the domain. Term variabilities allow to define
exactly, what information must be specified in concrete
system implementation. Term commonalities are used for
defining a set of shared operations between different ap-
plications. Implementing commonalities and adding the
gained model with information, which can be specified in
instance of the concrete system, a set of different systems
can be obtained based on one common model. In such
manner, based on one domain model, the set of different
systems in given domain can be implemented. Taking into
account definitions above mentioned, we can conclude that
domain analysis is the activity of forward system analysis,
which goal is to provide the domain model.
As stated above, at present in many software companies

the term “domain analysis” is understood as information
gathering into some knowledge bases, but it is obvious
that there are disadvantages of this approach. It may
lead to incomplete glossary, absence of agreements about
understanding some terms in the domain, so any misun-
derstanding of domain can result in an improper product.
Therefore, several dozens of years ago were introduced
some formal approaches for domain analysis. Here will
be mentioned some of them. The main objective of any

53 of 251

domain analysis approach is to produce the domain model.
Despite different understanding of the term “domain

analysis”, Arango [17] showed that all formal domain
analysis methods follow the general process for obtaining
the domain model. This process includes next stages: (1)
domain characterization, (2) data collection, (3) data anal-
ysis, (4) classification and finally (5) evaluation of domain
model. There are following domain analysis approaches: 1)
DARE (Domain Analysis and Reuse Environment) [18].
The crucial idea of this method is to create the domain
book, that will include the universal architecture and
library of reusable components. 2) DSSA (Domain-Specific
Software Architectures) [19]. Given approach allows to
create a domain glossary with the aid of use case anal-
ysis. 3) ODE (Ontology-based Domain Engineering) [20].
This approach connects the ontology idea with object-
oriented approach. Ontology includes terms and their con-
nections, definitions, properties and constraints. Library of
objects is built based on mapping ontology with object-
oriented entities. 4) FODA (Feature-Oriented Domain
Analysis) [21]. This method has get popularity among
scientists in the research area because of its simplicity
for non-programmers. The main idea of this approach is
creating feature model. This model describes functionality,
which the future product should possess. Such model
must note what features are compulsory for implement
in any instance of application in a given domain, what
features must be implemented but there is some alterna-
tive between them, and present features, which may be
implemented but not compulsory. This model can be easily
built by expert in the domain.

Concerning product line creating with the aid of using
domain model, Estublier [22] presented approach which is
based on some aspects and requirements. These entities
were proposed by authors. Such approach based on MDE
methodology. Domain model is considered as metamodel,
which is described on MOF or UML. There is an in-
terpreter, which translates each term in metamodel into
Java class, and concrete models — into instances of these
classes. Domain model is accompanied with feature model,
which include some external behavior of the system. Au-
thors use aspect-oriented techniques for feature imple-
menting and following their mapping with terms in domain
model. Consequently, there is a close interaction between
domain modeling and feature modeling. It seems that such
approach is a bit complicated for non-programmers. In
addition, there is no any industrial use of this method,
but it is worth noting that authors describe appliance in
this article [23].

III. Proposed approach

In our approach we will use some ideas of Feature-
Oriented Domain Analysis (FODA) method to perform
domain analysis and to create feature models. For this we
will use visual editor that implements feature diagrams
and is easy enough for domain experts. Then, when feature

models are ready, each feature is implemented as reusable
and configurable component on selected implementation
language (C#, C++, Java and so on) and feature library
is formed as a collection of such components. This process
requires qualified programmers and requires more effort
than to simply create one application, but it allows to
reuse features from feature library to create as many
applications as needed. Also, this process is scalable, so
we may add new features into feature library later, thus
allowing to create more complex applications. At this
stage of development domain experts shall work with
programmers, and they shall use feature diagrams as an
input for creation of feature library to simplify matching
between features and components in feature library.
Next step is to create domain-specific language that al-

lows to combine and configure features from feature library
to implement applications in given domain. This is where
our approach differs from common reuse strategies. Naive
approach would be to generate an application directly
from feature diagram, somehow marking features that
shall be included into application, and it actually works
fine when domain variability is low [24]. But more common
is the situation when features themselves have properties
that allow to configure them, those properties can have
different types. Also, components may be related to each
other in different ways, be used in configuration of one
another, or some of their properties may be meaningless
in absence or presence of other feature. Those rules may
be implemented implicitly in application generator and
require that programmers will always observe them, but
we propose that these rules will be captured explicitly by
dedicated domain-specific language. Such language may
make models that do not observe those rules syntactically
incorrect, and it will greatly reduce the possibility of
human error and reduce knowledge required to efficiently
use programming system.
By using DSM platforms one can relatively quickly

create domain-specific language that will capture domain
knowledge, but we already have feature diagram, so we
actually can generate the language using it. Generator
takes feature diagram as input and produces metamodel
of a language. Metamodel is a visual model of a language
syntax, that can be opened and edited in yet another
visual editor that is part of DSM platform, this editor is
called metaeditor. Features from feature diagram become
entities in metamodel, this metamodel is then edited to
provide shape and a list of properties for each entity.
Any vector image can play the role of shape, so the best
practise is to select shape that is similar to a feature it
depicts. For example, if an application can have buttons,
“button” becomes entity in domain-specific language and
looks like a button on a diagram. The same happens with
properties — for each feature they are added in metaeditor
to corresponding language entity with respect to feature
library that actually implements this feature and uses the
property to configure it. Properties have name, type and

54 of 251

Figure 1: Relations between artefacts and roles in proposed approach to domain components reuse.

default value. On this step it is also possible to define some
constraints on a metamodel that will be checked when
model will be edited. If some constraints are violated, user
will immediately receive warning, which makes errors in a
target application even less likely to occur.

On a next step we use editor generator of the DSM
platform to create visual editor for our newly created
language. This step if fully automated, and when an editor
is generated and loaded into DSM platform, we can use it
to create diagrams that specify target applications.

The next thing we need is to generate actual code on
target textual language that will call feature library and
glue features together. For this we shall return to meta-
model level and define generation rules for metamodel.
This step is performed only once for a given domain after
the feature library and metamodel are finished, and then
the same generator is used for each application created
by using of the technology. Recommendations for develop-
ment of domain-specific generator are well-known in DSM
literature (for example, [7]): it is the best to write first
application by hand, then draw a model that is supposed
to be generated into this application, then find the places
in handwritten application that shall be parameterised by
information from model and let the generator replace such
handwritten parts with data from model. This process is
continued until handwritten application becomes a tem-
plate that is filled by generator with information taken
from model. Handwritten application and, consequently, a

generator shall extensively use feature library to minimize
the amount of code that is generated directly, in ideal
case generator shall produce merely a glue code that binds
components from feature library together.
After all steps above are finished we have feature library,

visual editor for simple domain-specific language that al-
lows to describe how features are combined and configured
in a concrete application, and a generator that automati-
cally produces complete application by a model in domain-
specific language using feature library as domain-specific
runtime [7]. Now we may create as many applications as we
wish by just drawing models and automatically generate
complete executable code. Theoretically. Of course, in
practise there will always be a need to modify feature dia-
gram, to extend feature library and, consequently, domain-
specific language metamodel, modify generator and even
to make some changes in generated code, there is no
silver bullet. But we believe that our approach can provide
better separation of concerns, provides better utilization of
domain experts knowledge and expertise among a team.
Summary of a process described above and relation be-
tween various tools and roles of developers is provided on
Fig. 1.
This approach was implemented in a technology based

on QReal DSM platform. QReal became an enabler tech-
nology because it provides easy and effective way to create
visual editor for domain-specific languages that allows to
create fully functional editor in less than an hour. It has

55 of 251

visual metaeditor, visual constraints definition tool, visual
shape editor and a C++ library that allows to quickly
specify generation rules. Feature diagram editor and gen-
erator that creates metamodel by feature diagrams were
both implemented as plugins to QReal core. Note that
feature diagram language is itself domain-specific language
for the domain of domain analysis, so it was implemented
using QReal metaeditor. The same metaeditor (including
shape editor and constraints editor) is then used to tailor
the generated metamodel of domain-specific language.
Then metaeditor generator is used to generate yet another
plugin to QReal that provides visual editor for created
language. Then the generator is implemented by hand on
C++ with Qt library2 using generator creation library
included in QReal. Then it is possible to create special
distribution of QReal (using Qt Installer framework3) that
includes only QReal core, editors for feature diagrams
(at this point they are needed only as reference) and
domain-specific language, generator and feature library,
thus forming a complete technology that can be used to
generate target applications.

IV. Evaluation

For demonstration of the efficiency of proposed above
approach there was implemented a model application for
remote control of various robot models — “Joystick”. The
main substantiation for implementing such application is
that controlling different robot models requires different
control elements. For example, one model can be con-
trolled with only two pads, but another — with one pad
and two buttons. Such application was implemented in C#
for Windows Phone platform. Screenshots of this simple
application are presented on Fig. 2.
As mentioned above, it was used QReal as DSM tool.

A visual language was implemented there for describing
feature models. Appropriate feature model for “Joystick”
application family is proposed on Fig. 3. This feature
model consists of explicit features, which are labeled green,
and some feature groups, which are labeled blue. Type of
arrow shows which feature is compulsory (shown as solid
line with arrow on the end), which is compulsory but there
is some alternative between them (shown as dash line with
an arrow on the end), and optional features, which may
be implemented but not compulsory (shown as dash line
with a circle on the end).

2Qt library home page, URL: http://www.qt.io/ (03.04.2016)
3Qt Installer Framework home page, URL: https://wiki.qt.io/Qt-

Installer-Framework (03.04.2016)

Figure 3: Feature model for “Joystick” application family.

Based on this feature model a metamodel for future
visual language was generated, which is required for build-
ing different models for different configurations. Generated
metamodel is presented on Fig. 4. As it can be seen,
metamodel is very simple. At this stage we can propose
that entities, such as “buttons” and “pads”, may have a
property “Quantity”. In addition, we can specify images
for these entities, which will be shown in visual language.

Figure 4: Metamodel of visual language for “Joystick”
application family.

Then with the aid of QReal tool a visual language
was generated. Example of generated visual language is
demonstrated on Fig. 5. It can be seen that in visual lan-
guage editor we can specify “Quantity” property, explicitly
noting the concrete number of pads.

56 of 251

Figure 2: Screenshots of “Joystick” application.

Figure 5: Visual language for “Joystick” application fam-
ily.

As can be seen, example is quite simple for demon-
strating extensive possibilities of the approach proposed
above. At present there is no rigorous evaluation of the
proposed process. Also, cohesive and consistent technology
for creating application family based on domain analysis
is not implemented yet, here we have described a concept-
proof prototype. Therefore, this work requires more de-
tailed explorations.

V. Conclusion

The problem of not using domain analysis result for fur-
ther generation of some entities for software development
process was stated. There were considered some formal
domain analysis approaches and we concluded that cre-
ation of feature diagrams is the most elegant decision for
domain analysis that can be conducted by domain expert,
i.e. non-programmer, maybe in collaboration with system
analysts. Moreover, there was discussed one of the possible
solutions, which is presented by Estublier, we specify some
problems of such method. We suggested our own approach
for creation of application family in one domain based
on domain analysis. Thus, some target applications can
be implemented even by non-programmers using domain-
specific language with configurating features from library.
Also, there was some evaluation of this approach, where

we pointed out that this example remains many questions
because of its simplicity.

References

[1] Tolvanen J.-p., Kelly S. Model-Driven Development Challenges
and Solutions // Modelsward 2016. 2016. P. 711–719.

[2] Baker P., Loh S., Weil F. Model-driven engineering in a large
industrial context — Motorola case study // MoDELS’05: Pro-
ceedings of the 8th international conference on Model Driven
Engineering Languages and Systems. Berlin: Springer, 2005.
P. 476–491.

[3] A software engineering experiment in software component gen-
eration / R. Kieburtz, L. McKinney, J. Bell et al. // Proceedings
of the 18th international conference on Software engineering.
Washington, DC, USA: IEEE Computer Society, 1996. P. 542–
552.

[4] Kelly S., Tolvanen J.-P. Visual domain-specific modeling:
Benefits and experiences of using metaCASE tools //
International Workshop on Model Engineering, at ECOOP.
2000. URL: http://dsmforum.org/papers/Visual domain-
specific modelling.pdf.

[5] Tolvanen J.-P., Pohjonen R., Kelly S. Advanced
tooling for domain-specific modeling: MetaEdit+ //
Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM’07). 2007. URL:
http://www.dsmforum.org/events/DSM07/papers/tolvanen.pdf.

[6] Tolvanen J.-P.and Kelly S. MetaEdit+: defining and using
integrated domain-specific modeling languages // Proceedings
of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications /
ACM. New York, NY, USA: ACM, 2009. P. 819–820.

[7] Kelly S., Tolvanen J.-P. Domain-specific modeling: enabling
full code generation. Hoboken, New Jersey, USA: Wiley-IEEE
Computer Society Press, 2008. P. 444.

[8] Gronback R. Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. Stoughton, Massachusetts, USA: Addison-
Wesley, 2009. P. 736.

[9] Viyovic V., Maksimovic M., Perisic B. Sirius: A rapid devel-
opment of DSM graphical editor // IEEE 18th International
Conference on Intelligent Engineering Systems INES 2014. Los
Alamitos, CA, USA: IEEE Computer Society, 2014. P. 233–238.

[10] Domain-specific development with Visual Studio DSL Tools /
S. Cook, G. Jones, S. Kent et al. Crawfordsville, Indiana, USA:
Addison-Wesley, 2007. P. 576.

[11] Koznov D. Process Model of DSM Solution Development and
Evolution for Small and Medium-Sized Software Companies //
Enterprise Distributed Object Computing Conference Work-
shops (EDOCW), 2011 15th IEEE International / IEEE. 2011.
P. 85–92.

[12] QReal DSM platform-An Environment for Creation of Specific
Visual IDEs / A. Kuzenkova, A. Deripaska, T. Bryksin et al. //
ENASE 2013— Proceedings of the 8th International Conference
on Evaluation of Novel Approaches to Software Engineering.
Setubal, Portugal: SciTePress, 2013. P. 205–211.

[13] Rugaber S. Domain analysis and reverse engineering // White
Paper, January. 1994.

57 of 251

[14] Prieto-Diaz R. Domain analysis for reusability // Software
reuse: emerging technology / IEEE Computer Society Press.
1988. P. 347–353.

[15] Ferré X., Vegas S. An evaluation of domain analysis methods //
4th CASE/IFIP8 International Workshop in Evaluation of Mod-
eling in System Analysis and Design / Citeseer. 1999. P. 2–6.

[16] Mernik M., Heering J., Sloane A. M. When and how to develop
domain-specific languages // ACM computing surveys (CSUR).
2005. Vol. 37, no. 4. P. 316–344.

[17] Arango G. Domain analysis methods // Software Reusability.
1994. P. 17–49.

[18] DARE: Domain analysis and reuse environment / W. Frakes,
R. Prieto, C. Fox et al. // Annals of Software Engineering. 1998.
Vol. 5, no. 1. P. 125–141.

[19] Taylor R. N., Tracz W., Coglianese L. Software development
using domain-specific software architectures // ACM SIGSOFT
Software Engineering Notes. 1995. Vol. 20, no. 5. P. 27–38.

[20] Falbo R. d. A., Guizzardi G., Duarte K. C. An ontological
approach to domain engineering // Proceedings of the 14th
international conference on Software engineering and knowledge
engineering / ACM. 2002. P. 351–358.

[21] Feature-oriented domain analysis (FODA): Tech. Rep.: /
K. C. Kang, S. G. Cohen, J. A. Hess et al.: DTIC Document,
1990.

[22] Estublier J., Vega G. Reuse and variability in large software
applications // ACM SIGSOFT Software Engineering Notes.
2005. Vol. 30, no. 5. P. 316–325.

[23] An approach and framework for extensible process support
system / J. Estublier, J. Villalobos, L. Anh-Tuyet et al. //
Software Process Technology. Springer, 2003. P. 46–61.

[24] The Variability Model of The Linux Kernel / S. She, R. Lotufo,
T. Berger et al. // VaMoS. 2010. Vol. 10. P. 45–51.

58 of 251

Language for Describing Templates for Test
Program Generation for Microprocessors

Andrei Tatarnikov
Institute for System Programming of the Russian Academy of Sciences (ISP RAS)

25 Alexander Solzhenitsyn st., Moscow, 109004, Russian Federation
Email: andrewt@ispras.ru

Abstract—Test program generation and simulation is the
most widely used approach to functional verification of micro-
processors. High complexity of modern hardware designs creates
a demand for automated tools that are able to generate test
programs covering non-trivial situations in microprocessor func-
tioning. The majority of such tools use test program templates
that describe scenarios to be covered in an abstract way. This
provides verification engineers with a flexible way to describe
a wide range of verification tasks with minimum effort. Test
program templates are developed in special domain-specific lan-
guages. These languages must fulfill the following requirements:
(1) be simple enough to be used by verification engineers with
no sufficient programming skills; (2) be applicable to various
microprocessor architectures and (3) be easy to extend with
facilities for describing new types of verification tasks. The
present work discusses the test program template description
language used in the reconfigurable and extensible test program
generation framework MicroTESK being developed at ISP RAS.
It is a flexible Ruby-based language that allows describing a wide
range of test generation tasks in terms of hardware abstractions.
The tool and the language have been applied in industrial projects
dedicated to verification of MIPS and ARM microprocessors.

I. INTRODUCTION

Functional verification is acknowledged to be the bottle-
neck in microprocessor design cycle. According to various
estimates, it accounts for more than 70% of overall project
time and resources. In the current industrial practice, function
verification mainly relies on test program generation (TPG)
which is done by special automation tools [1]. Generated
test programs (TP) are instruction sequences aimed to trigger
certain events in the microprocessor design under verification.
TPG tools are aimed to provide a high level of test coverage
by applying a rich set of generation methods. As modern
microprocessors are getting more and more complex, new
more advanced methods emerge. A common problem for TPG
tool developers is how to overcome the complexity and make
it easy to apply the growing set of methods to a wide range
of microprocessor designs.

One of possible ways to increase the flexibility of a TPG
tool is to separate generation logic from descriptions of test
cases. This method is known as template-based generation.
The key idea of the method is that test programs are generated
on the basis of abstract descriptions called test program
templates or test templates (TTs). The method helps generate
high-quality tests directed towards specific situations or classes
of situations. TTs specify methods to be used for constructing

instruction sequences and constraints on instruction operand
values which must be satisfied to make certain events to fire.
Test data are generated by finding random solutions to the
given constraint systems. Such approach is usually referred to
as constraint-based random generation [2]).

The template-based approach is implemented in a num-
ber of TPG tools including MicroTESK [3], a reconfig-
urable [4] and extensible [5] TPG framework being developed
at ISP RAS. The framework uses formal specifications to
construct TPG tools for specific microprocessor designs. A
constructed TPG tool is separated into two main components:
(1) an architecture-independent test generation core and (2)
an architecture specification, or a model. The approach called
model-based [1] helps significantly reduce the efforts to sup-
port a new microprocessor archictecture by reusing the core.
The core is designed as a set of generation engines which
can be easily extended with plugins implementing new TPG
methods. Test programs are generated by processing TTs that
describe verification tasks in terms of the model and the
generation methods implemented by the core.

This paper describes the test template description language
(TTDL) used in MicroTESK. This is a domain-specific lan-
guage implemented as a set of Ruby [6] libraries, which is easy
adaptable to changing configurations. Facilites for describing
instruction calls for a specific ISA are dynamically added and
are based on information provided by the model. Also, the
MicroTESK TTDL provides a rich set of facilies for describing
verification tasks which are common for all microprocessor
configurations. When MicroTESK is extended with new TPG
methods, support for these features is added in the TTDL by
providing new Ruby libraries.

The rest of the paper is divided into five sections. Section II
contains a brief survey of the existing TPG tools that follow
the template-based approach. Section III formulates the re-
quirements for a TTDL imposed by MicroTESK that led to
creating the described TTDL. Section IV provides a detailed
description of the architecture and facilities of the MicroTESK
TTDL. Section V contains a case study of applying the TTDL
for describing test cases in industrial projects. Section VI
discusses the results and outlines directions of future research
and development.

59 of 251

II. RELATED WORK

Functional verification has always been a major issue for
the research community. Over the last decades, a lot of TPG
methods and tools have emerged. The template-based approach
described in this paper has been applied in a number of tools
developed by different teams. This section gives an overview
of the most significant of existing TPG tools and disscusses
strong and weak points of their TTDLs.

IBM Research has been one of the major contributors in
the field of TPG for microprocessors during the last decades.
Genesys-Pro [1], one of their most recent tools, uses TTs
to describe TPG tasks as constraint satisfaction problems
(CSP) [2] and generates test data by solving these CSPs.
Constraints can be used to specify such aspects of functionality
as boundary conditions, exceptions, cache hits/misses, etc.
The TTDL used by Genesys-Pro is a completely idenden-
dent domain-specific language which provides a rich set of
features. The language features it offers can be divided into
four groups: (1) basic instruction statements, (2) sequencing-
control statements, (3) standard programming constructs, and
(4) constraint statements. By combining these constructs, users
can compose complex TTs with a degree of randomness varied
from completely random to completely directed. The main
advantage of the language is that it is designed for describing
test scenarious and it does not confuse verification engineers
with any unnecessary programming constructs. At the same
time, being not based on existing languages, it does not take
advantage of well-tried constructs that can help organize TTs
into reusable libraries. This can be important as industrial
testbenches usually contain thousands lines of code. Also, it
is unclear how easy the language can be extended with new
constructs for describing new types of TPG tasks.

Another company that has made a significant contribution in
development of TPG tools is Obsidian Software (now acquired
by ARM) [7]. Their tool RAVEN (Random Architecture
Verification Engine) [8] generates random and directed tests
based on TTs. Test templates are focused on coverage grids
and use constraints to formulate specific coverage goals. There
is no detailed information available on this technology. It is
known that TTs can be either generated by the tool’s GUI or
created as text. The language must suit well for the TPG tasks
that can be accomplished with RAVEN. However, the question
whether it is suitable for more general tasks stays open.

Also, Samsung Electronics created a TPG framework called
RDG (Random Diagnostics Generator) [9] for testing recon-
figurable processors. It uses TTs created in the C++ language
to specify instructions that will be used in a TP and constraints
on their input values that should be satisfied in order to
meet testing goals. This approach takes advantage of power
and performance of C++, but requires solid programing skills
which are not common for verification engineers.

Finally, MicroTESK [3] version 1.0 used TTs written using
Java libraries [10]. This is not convenient as verification
engineers are forced to deal with Java abstractions such as
classes and interfaces, which are not related to verification

tasks. Moreover, details of language implementation must be
hidden from users in order to be able to change it without
breaking existing TTs. This motivated to create a new domain-
specific language for the new version of MicroTESK.

III. REQUIREMENTS FOR TTDL

Requirements for a TTDL can be divided in two groups:
(1) general requirements for a TTDL; (2) requirements related
to integration into the MicroTESK framework. Let us first
consider the general requirements that are common for all
TTDLs. A TTDL used to describe scenarios for random and
directed tests must provide facilities:

1) to describe instructions calls and data definitions using
syntax similar to the one used in assembly code;

2) to manage memory allocations in the same way as in
the assembly language;

3) to fill memory with data generated according to specific
rules;

4) to compose instruction sequences using a wide range
of methods (random, combinatorial, etc.) and to merge
these sequences;

5) to specify random values and the degree of their ran-
domness described by distributions;

6) to select instructions at random with the specified degree
of randomness;

7) to specify constraints on instruction arguments;
8) to describe initialization code that places generated test

data to proper registers or memory addresses;
9) to specify code of self-checks that check validity of the

resulting state of the microprocessor;
10) to describe exception handlers;
11) to specify conditions for generating different code de-

pending on the context;
12) to insert comments and custom text into generated TPs;
13) to reuse existing TTs and their parts;
14) to split generated TPs into multiple files.
This list is not complete, but it is enough to conclude that

the TTDL must be a domain-specific language that provides
constructs for the listed facilities.

Another important consideration is that it must be inte-
grated into MicroTESK. First of all, MicroTESK is written
in Java and its generation engines operate with Java objects.
Therefore, the result of TT processing must be a hierarchy of
Java objects that then will be passed to TPG engines. The
front-end of a TTDL processor can be implemented using
two approaches: (1) creating a Java-based parser for the new
language or (2) reusing an existing Java-based parser for one
of the popular programming languages. A crucial requirement
for the second approach is that the language must be easy to
extend with new domain-specific constructs.

Now let us consider the requirements imposed by reconfi-
gurability and extensibility of MicroTESK:

1) Reconfigurability means that it can be applied to micro-
processors with different ISAs. Concequently, facilities
used to describe instruction calls must be changeable.

60 of 251

Ideally, they must be added dynamically depending on
the information provided in the model that describes the
configuration of the design under verification.

2) Extensibility means that the set of supported TPG me-
thods can be extended by adding plugins implementing
new methods. Often it will require adding new constructs
in the TTDL. Thus, it must be possible to dynamically
add language constructs depending on the installed plug-
ins.

In other words, a crucial requirement for the MicroTESK
TTDL is the ability to dynamically change the set of sup-
ported language constructs. Obviously, changes in the tool
configuration must not envolve modification of the TTDL
processor. Creating a flexible language processor from scratch
is a challenging task. A simpler solution would be to reuse a
parser of an existing language.

Having cosidered several possible alternatives, it was de-
cided to use JRuby [11], a Java-based implementation of the
Ruby language, as a front-end of the TTDL processor. Ruby
was selected because of its support for metaprogramming [12],
which allows adding new language features at runtime. Thus,
the created TTDL combines basic programming constructs
provided by the Ruby core with constructs for describing TTs
provided by MicroTESK. The TTDL front-end is implemented
as a set of Ruby libraries that define language facilities
for the above mentioned requirements. Facilites that depend
on the current configuration are dynamically added using
metaprogramming.

It is also worth mentioning that scripting languages like
Ruby are quite popular among verification engineers, who
often use them to create inhouse test generators. So, another
advandate of using Ruby is that it can make the TTDL easier
to learn.

IV. TTDL DESCRIPTION

A. Language Processor Architecture

The job of the TTDL processor is to build a hierarchy of
Java objects describing a TT and to pass it to the MicroTESK
generation engines for further processing. The TTDL proces-
sor is divided into a Ruby-based front-end and Java-based
back-end. The back-end is implemented as set of factories
for creating Java objects that correspond to specific entities
of a TT. The front-end is represented by Ruby libraries that
provide language constructs for describing these entities and
perform interaction with the back-end to build corresponding
Java objects. In other words, a language feature is defined by
a Ruby module that specifies its syntax and a Java module
that describes corresponding entities and provides means of
constructing them. New language features can be supported
by providing corresponding modules.

The TTDL contains features that are configuration depen-
dent. This includes facilities for describing instruction calls,
which are determined by the model built by MicroTESK from
ISA specifications. These language features are managed by
a special Ruby module that uses metaprogramming to define

corresponding constructs at runtime based on the information
provided by the model.

B. Test Template Structure

A TT is a program in Ruby which is executed by Mi-
croTESK with the help of JRuby to build Java objects that
formulate tasks for the TPG engines implemented by the tool
core. More technically, it is a subclass of the Template base
class provided by the MicroTESK library. All domain-specific
language constructs are impemented as methods of this class.
The Template class is not monolithic, it unites a set of Ruby
modules responsible for various features into a single class.
Language extensions are also implemented as modules to be
included in the base class. Configuration-specific methods are
dynamically defined when the class is loaded.

The listing below shows the structure of a TT class:

require ENV[’TEMPLATE’]

class MyTemplate < Template
def initialize
super
Initialize settings here

end

def pre
Place your initialization code here

end

def post
Place your finalization code here

end

def run
Place your testing task description here

end
end

The first line imports the Template base class from the lo-
cation specified by the TEMPLATE environment variable. The
exact location depends on the configuration and is determined
automatically.

Classes describing TTs define four methods:
• initialize - configures TT settings if there is a need

to override the default;
• pre - defines ISA-specific constructs and specifies ini-

tialization code to be inserted in the beginning of TPs;
• post - specifies finalization code to be inserted in the

end of TPs;
• run - contains descriptions of test cases to be generated.
The methods will be filled with constructs described further.

C. Managing Memory Allocation

It may be required to place code and data sections of
generated TPs at specific memory locations. The assembly
language provides special directives to accomplish this task.
The TTDL offers similar constructs. An important note is that
MicroTESK simulates TPs in the process of their generation.
Concequently, these constructs not only specify directives to
be placed into TPs, but also manage memory allocation in the
simulator.

The TTDL provides the following methods for managing
addresses, which are applicable to both code and data sections:

61 of 251

• align - aligns the allocation address by the amount n
passed as an argument, which by default means 2n bytes.

• org - sets the allocation origin, which is required to
increase the allocation address. It is possible to set an
absolute or relative origin. The former can be speci-
fied as org n and means an offset by n bytes from
the base virtual address. The latter can be specified as
org :delta=>n and means an offset by n bytes from
the most recent allocation addresss.

• label - associates the specified label with the current
address.

The listed methods rely on the following TT settings:

• align_format - specifies textual format for the
align directive;

• org_format - specifies textual format for the org
directive;

• base_virtual_address - specifies the base virtual
address for memory allocation;

• base_physical_address - specifies the base phys-
ical address for memory allocation;

• alignment_in_bytes - specifies how the alignment
amount should be interpreted.

The first four settings are initialized with default values in
the initialize method of the Template base class as
shown below and can be changed in the current TT class:

@org_format = ".org 0x%x"
@align_format = ".align %d"
@base_virtual_address = 0x0
@base_physical_address = 0x0

The last setting is implemented as method that can be
overridden to change its behavior:

def alignment_in_bytes(n)
2 ** n

end

D. Defining Random Distributions

Many TPG tasks involve selection based on random distri-
bution. The TTDL prodives the following methods to define
random distributions:

• range - creates an object describing a range of values
and its weight, which are specified by the value and
bias attributes. Values can be one of the following types:

– single value;
– range of values;
– array of values;
– distribution of values.

The bias attribute can be skipped which means default
weight. Default weights are used to specify an even
distribution based on ranges with equal weights.

• dist - creates an object describing a random distribution
from a collection of ranges.

The code below illustrates how to create weighted distribu-
tions for integer numbers:

simple_dist = dist(
range(:value => 0, :bias => 25), # Value
range(:value => 1..2, :bias => 25), # Range
range(:value => [3, 5, 7], :bias => 50) # Array
)

composite_dist = dist(
range(:value=> simple_dist, :bias => 80), # Distribution
range(:value=> [4, 6, 8], :bias => 20) # Array
)

E. Describing Data Definitions

Data definitions are based on assembler-specific directives,
which are not described by the microprocessor model and,
therefore, must be configured in TTs. The configuration infor-
mation includes textual format of the directives and mappings
between data types used by the assembler and the micro-
processor model. Data directives are configured using the
data_config construct, which must be placed in the pre
method. Here is an example:

data_config(:text=>".data", :target=>"MEM") {
define_type :id=>:byte, :text=>".byte", :type=>card(8)
define_type :id=>:half, :text=>".half", :type=>card(16)
define_type :id=>:word, :text=>".word", :type=>card(32)

define_space :id=>:space, :text=>".space", :fillWith=>0
define_ascii :id=>:ascii, :text=>".ascii", :zero=>false
define_ascii :id=>:asciiz, :text=>".asciiz", :zero=>true

}

The data_config method has the following parameters:
• text - specifies the textual format of a directive that

marks the beginning of a data section;
• target - specifies the memory array defined in the

model to which data will be placed during simulation;
• base_virtual_address (optional, 0 by default) -

specifies the base virtual address for data sections.
Distinct data directives are configured using special me-

thods that must be called inside the data_config block.
All of these methods share two common parameters: id and
text. The first specifies the keyword to be used in a TT to
address the directive and the second specifies how it will be
printed into the TP. Here is the list of methods:

• define_type - defines a directive to allocate memory
for a data element of the data type specified by the type
parameter;

• define_space - defines a directive to allocate memory
filled with a default value specified by the fillWith
parameter;

• define_ascii_string - defines a directive to al-
locate memory for an ASCII string terminated or not
terminated with zero depending on the zero parameter.

The above example defines directives byte, half, word,
ascii (non-zero terminated string) and asciiz (zero termi-
nated string) that place data in the memory array MEM defined
in the microprocessor model.

Once data directives have been configured, data sections can
be defined using the data construct. Data definitions can be
of two kinds depending on the context:

62 of 251

1) Global data that are available to all test cases generated
from the given TT. They are defined in the root of the
pre or run methods. Global data are placed into the
simulator’s memory during inital processing of a TT.

2) Test case level data that are defined and used by specific
test cases. Such data are placed into the simulator’s
memory when the test case is being generated.

The data method has two optional parameters:
• global - a flag that states that the data definition should

be treated as global regardless of the context.
• separate_file - a flag that specifies whether the

generated data definitions should be placed into a separate
source code file.

Here is an example of a data definition:

data(:global => true, :separate_file => false) {
org 0x00001000

label :byte_values
byte 1, 2, 3, 4

label :word_values
word 0xDEADBEEF, 0xBAADF00D

}

The above code defines global data: four byte values and
two word values. Memory is allocated at offset 0x00001000.
Data values are aligned by their size (1 and 4 bytes). Labels
byte_values and word_values point at the beginning
of the byte and the word arrays correspondingly.

F. Describing Instruction Calls

To describe instruction calls, the TTDL provides runtime
methods that are defined using the metaprogramming facilities
of Ruby on the basis of information provided by the model.
Methods have the same names and parameters as operations
describing corresponding instructions, which are defined in
ISA specifications. Operations use parameters of three kinds:

1) Immediate values that represent constants.
2) Addressing modes that encapsulate logic of reading and

writing data to memory resources. Usually they provide
access to registers or memory.

3) Operations that specify operations to be performed as a
part of execution of the current operation. They are used
to describe complex instructions composed of several
operations (e.g. VLIW instructions).

For example, a call to the add instruction from the MIPS
ISA [13], which adds two general-purpose registers t0 ($8),
t1 ($9) and t2 ($10) described by the reg addressing mode,
can be specified in the following way:

add reg(8), reg(9), reg(10)

The TTDL supports creating aliases for addressing modes
and operations invoked with certain arguments. Aliases help
make TTs more human-readable. They are created by defining
Ruby functions with corresponding names. The code below
shows how to create aliases for the registers from the previous
example:

def t0 reg(8) end
def t1 reg(9) end
def t2 reg(10) end

Now the arguments of the add instruction can be specified
using alises:

add t0, t1, t2

Also, the TTDL provides the pseudo function that can be
used to specify calls to pseudo instructions that do not have
corresponding operations in ISA specifications. They print
user-specified text, but are not simulated by the generator. Here
is an example:

pseudo ’syscall’

G. Defining Groups

Addressing modes and operations can be organized into
groups. Groups are used when it is required to randomly
select an addressing mode or operation from the specified
set. Groups can be defined in ISA specifications or in
TTs. To do this in TTs, the define_mode_group and
define_op_group functions are used. Both functions take
the name and distribution arguments that specify the
group name and the distribution used to select its items.

For example, the code below defines an instruction group
called alu that contains instructions add, sub, and, or,
nor, and xor selected randomly according to the specified
distribution:

alu_dist = dist(
range(:value => ’add’, :bias => 40),
range(:value => ’sub’, :bias => 30),
range(:value => [’and’, ’or’, ’nor’, ’xor’], :bias => 30)
)

define_op_group(’alu’, alu_dist)

The following code specifies three calls that use instructions
randomly selected from the alu group:

alu t0, t1, t2
alu t3, t4, t5
alu t6, t7, t8

H. Describing Instruction Call Sequences

Instruction call sequences are described using block-like
structures. Each block specifies a sequence or a collection
of sequences. Blocks can be nested to construct complex
sequences. The algorithm used for sequence construction
depends on the type and the attributes of a block.

An individual instruction call is considered a primitive
block describing a single sequence that consists of a single
instruction call. A single sequence that consists of multiple
calls can be described using the sequence or the atomic
construct. The difference between the two is that an atomic
sequence is never mixed with other instruction calls when
sequences are merged. The code below demonstrates how to
specify a sequence of three instruction calls:

63 of 251

sequence {
add t0, t1, t2
sub t3, t4, t5
or t6, t7, t8

}

A collection of sequences that are processed one by one
can be specified using the iterate construct. For example,
the code below describes three sequences consisting of one
instruction call:

iterate {
add t0, t1, t2
sub t3, t4, t5
or t6, t7, t8

}

Sequences can be combined using the block construct. The
resulting sequences are constructed by sequentially applying
the following engines to sequences returned by nested blocks:

• combinator - builds combinations of sequences re-
turned by nested blocks. Each combination is a tuple of
length equal to the number of nested blocks.

• permutator - modifies combinations returned by com-
binator by rearranging some sequences.

• compositor - merges (multiplexes) sequences in a
combination into a single sequence preserving the initial
order of instructions calls in each sequence.

• rearranger - rearranges sequences constructed by
compositor.

• obfuscator - modifies sequences returned by rear-
ranger by permuting some instruction calls.

Each engine has several implementations based on different
methods. It is possible to extend the list of supported methods
with new implementations. Specific methods are selected by
specifying corresponding block attributes. When they are not
specified, default methods are applied. The format of a block
structure for combining sequences looks as follows:

block(
:combinator => ’combinator-name’,
:permutator => ’permutator-name’,
:compositor => ’compositor-name’,
:rearranger => ’rearranger-name’,
:obfuscator => ’obfuscator-name’) {

Block A. 3 sequences of length 1: {A11}, {A21}, {A31}
iterate { A11; A21; A31 }

Block B. 2 sequences of length 2: {B11, B12}, {B21, B22}
iterate { sequence { B11, B12 }; sequence { B21, B22 } }

Block C. 1 sequence of length 3: {C11, C12, C13}
iterate { sequence { C11; C12; C13 } }

}

The default method names are: diagonal for combinator,
catenation for compositor, and trivial for permutator,
rearranger and obfuscator. Such a combination of engines
describes a collection of sequences constructed as a concate-
nation of sequences returned by nested blocks. For example,
sequences constructed for the block in the above example will
be as follows: {A11, B11, B12, C11, C12, C13}, {A21,
B21, B22, C11, C12, C13} and {A31, B11, B12, C11, C12,
C13}.

I. Specifying Test Situations

Test situations are associated with specific instruction calls
and specify methods used to generate their input data. There
is a wide range of data generation methods implemented by
various data generation engines. Test situations are specified
using the situation construct. It takes the situation name
and a map of optional attributes that specify situation-specific
parameters. For example, the following line of code causes
input registers of the add instruction to be filled with zeros:

add t1, t2, t3 do situation(’zero’) end

When no situation is specified, a default situation is
used. This situation places random values into input re-
gisters. It is possible to assign a custom default situation
for individual instructions and instruction groups with the
set_default_situation function. For example:

set_default_situation ’add’ do situation(’zero’) end

Situations can be selected at random. The selection is
based on a distribution. This can be done by using the
random_situation construct. For example:

sit_dist = dist(
range(:value => situation(’add.overflow’)),
range(:value => situation(’add.normal’)),
range(:value => situation(’zero’)),
range(:value => situation(’random’, :dist => int_dist))
)

add t1, t2, t3 do random_situation(sit_dist) end

Unknown immediate arguments that should have their va-
lues generated are specified using the ”_” symbol. For exam-
ple, the code below states that a random value should be added
to a value stored in a random register and the result should be
placed to another random register:

addi reg(_), reg(_), _ do situation(’random’) end

J. Selecting Registers

Unknown immediate arguments of addressing modes are
a special case and their values are generated in a slightly
different way. Typically, they specify register indexes and are
bounded by the lenght of register arrays. Often such indexes
must be selected from a specific range taking into account
previous selections. For example, registers are allocated at
random and they must not overlap. To be able to solve such
tasks, all values passed to addressing modes are tracked. The
allowed value range and the method of value selection are
specified in configuration files. Values are selected using the
specified method before the instruction call is processed by the
engine that generates data for the test situation. The selection
method can be customized by using the mode_allocator
function. It takes the allocation method name and a map of
method-specific parameters. For example, the following code
states that the output register of the add instruction must be
a random register which is not used in the current test case:

add reg(_ mode_allocator(’free’)), t0, t1

64 of 251

Also, the TTDL allows customizing the allowed range for
selected values. It is possible to exclude some elements from
the range by using the exclude attribute or to provide a new
range by using the include attribute. For example:

add reg(_ :exclude=>[1, 5, 7]), t0, t1
add reg(_ :include=>8..15), t0, t1

Addressing modes with specific argument values can
be marked as free using the free_allocated_mode
function. To free all allocated addressing modes, the
free_all_allocated_modes function can be used.

K. Describing Preparators

Preparators describe instruction sequences that place data
into registers or memory accessed via the specified addressing
mode. They are inserted into TPs to set up the initial state of
the microprocessor required by test situations. It is possible to
overload preparators for specific cases (value masks, register
numbers, etc). Preparators are defined in the pre method
using the preparator construct, which uses the following
parameters describing conditions under which it is applied:

• target - the name of the target addressing mode;
• mask (optional) - the mask that should be matched by

the value in order for the preparator to be selected;
• arguments (optional) - values of the target addressing

mode arguments that should be matched in order for the
preparator to be selected;

• name (optional) - the name that identifies the current
preparator to resolve ambiguity when there are several
different preparators that have the same target, mask and
arguments.

It is possible to define several variants of a preparator which
are selected at random according to the specified distribution.
They are described using the variant construct. It has two
optional parameters:

• name (optional) - identifies the variant to make it possible
to explicitly select a specific variant;

• bias - specifies the weight of the variant, can be skipped
to set up an even distribution.

Here is an example of a preparator what places a value into
a 32-bit register described by the REG addressing mode and
two its special cases for values equal to 0x00000000 and
0xFFFFFFFF:

preparator(:target => ’REG’) {
variant(:bias => 25) {
data {

label :preparator_data
word value

}

la at, :preparator_data
lw target, 0, at

}

variant(:bias => 75) {
lui target, value(16, 31)
ori target, target, value(0, 15)

}
}

preparator(:target => ’REG’, :mask => ’00000000’) {

xor target, zero, zero
}

preparator(:target => ’REG’, :mask => ’FFFFFFFF’) {
nor target, zero, zero

}

Code inside the preparator block uses the target and
value functions to access the target addressing mode and the
value passed to the preparator.

The TTDL provides the prepare function to explicitly
insert preparators into TPs. It can be used to create composite
preparators. The function has the following arguments:

• target - specifies the target addressing mode;
• value - specifies the value to be written;
• attrs (optional) - specifies the preparator name and the

variant name to select a specific preparator.
For example, the following line of code places value

0xDEADBEEF into the t0 register:

prepare t0, 0xDEADBEEF

L. Describing Self-Checks

TPs can include self-checks that check validity of the
microprocessor state after a test case has been executed. These
checks are instruction sequences inserted in the end of test
cases which compare values stored in registers with expected
values. If the values do not match control is transferred to a
handler that reports an error. Expected values are produced
by the MicroTESK simulator. Self-check are described using
the comparator construct which has the same features as
the preparator construct, but serves a different purpose.
Here is an example of a comparator for 32-bit registers and
its special case for value equal to 0x00000000:

comparator(:target => ’REG’) {
prepare target, value
bne at, target, :check_failed
nop

}

comparator(:target => ’REG’, :mask => "00000000") {
bne zero, target, :check_failed
nop

}

M. Describing Test Cases

A TP can be described by the following formula:
Π = Πstart · {〈πstart, xi, πstop〉}i=1,n · Πstop [10],
where:

• Πstart is a TP prologue that consists of instructions aimed
for microprocessor initialization;

• 〈πstart, xi, πstop〉 is a test case that specifies an indi-
vidual stimulus and consists of:

– πstart is a test case prologue that performs all
necessary preparations for the test case;

– xi is a test case action that contains the main code
of the test case;

– πstop is a test case epilogue that performs finalization
actions for the test case such as self-checks.

65 of 251

• Πstop is a TP epilogue that consists of instructions aimed
for microprocessor finalization;

• n is the number of test cases in a TP.

The TTDL provides means of describing each part of a TP.
Πstart and Πstop are described in the pre and post methods
of a TT class correspondingly. Test cases are described in the
run method.

Test cases are described by block constructs specifying one
or more sequences of instruction calls. Each sequence is a
separate test case. It is possible to proccess a block mulitple
times. This makes sence when sequences use randomization.
In this case, it results different test cases based on the same
description. For example, the code below describes five test
cases based on the same sequence of three calls. Input data
for the calls are generated at random and will be different for
all test cases.

def run
sequence {
add t0, t1, t2
sub t3, t4, t5
or t6, t7, t8

}.run 5
end

πstart that contains preparators for input registers and πstop
that contains self-checks will be generated by the tool auto-
matically. Also, it is possible to specify additional prologue
and epilogue for test cases. They will be inserted between
automatically generated prologue and epilogue and main code
of the test cases. They are specified using the prologue and
epilogue blocks nested into the sequence block. The syntax
looks like this:

sequence {
prologue { ... }
...
epilogue { ... }

}.run n

When instruction sequences are merged by nesting blocks,
prologue and epilogue of nested blocks wrap sequences re-
turned by these blocks.

Test cases can be processed by different TPG engines. A
a specific engine can be selected by passing the engine
parameter to the block construct that describes the test cases.

N. Describing Exception Handlers

TPs must contain handlers of exceptions that may occur
during their execution. Exception handlers are descibed using
the exception_handler construct. This description is
also used by the MicroTESK simulator to handle excep-
tions. Separate exception handlers are described using the
section construct nested into the exception_handler
block. The section function has two arguments: org that
specifies the handler’s location in memory and exception
that specifies names of associated exceptions. For example, the
code below describes a handler for the IntegerOverflow,
SystemCall and Breakpoint exceptions which resumes
execution from the next instruction:

exception_handler {
section(:org => 0x380, :exception => [’IntegerOverflow’,

’SystemCall’,
’Breakpoint’]) {

mfc0 ra, cop0(14)
addi ra, ra, 4
jr ra
nop

}
}

O. Printing Text

TPs are printed in textual form to source code files. The
printed text includes various supplementary messages such as
comments and separators. They are generated by MicroTESK
engines or specified by users in TTs. The format of printed
text is set up using the following settings:

• sl_comment_starts_with - starting characters for
single-line comments. Default value is ”//”.

• ml_comment_starts_with - starting characters for
multi-line comments. Default value is ”/*”.

• ml_comment_ends_with - terminating characters for
multi-line comments. Default value is ”*/”.

• indent_token - indentation token. Default value is
”\t”.

• separator_token - token used in separator lines.
Default value is ”=”.

The settings are initialized with default values in the
initialize method of the Template class can be re-
defined in the initialize method of a TT.

The TTDL provides functions for printing custom text
messages. Text messages are printed either into the generated
source code or into the simulator log. Here is the list of
supported functions:

• newline - adds the new line character into the TP;
• text - adds text into the TP;
• trace - prints text into the simulator execution log;
• comment - adds a comment into the TP;
• start_comment - starts a multi-line comment;
• end_comment - ends a multi-line comment.
The text, trace and comment functions print formatted

text. They take a format string and an array of objects to
be printed, which can be constants or memory locations.
To specify locations to be printed (registers, memory), the
location function should be used. It takes the name of
the memory array and the index of the selected element. For
example, the code below prints a constant value and a value
stored in a register in the hexadecimal format:
text ’Constant: 0x%X’, 0xDEADBEEF
text ’Register: 0x%X’, location(’GPR’, 8)

V. CASE STUDY

MicroTESK and its TTDL have been applied in industrial
projects to generate TPs for MIPS64 [13] and ARMv8 [14] mi-
croprocessors. Table I provides characteristics of the MIPS64
and ARMv8 specifications used to configure MicroTESK for
generating TPs for these designs.

66 of 251

TABLE I
INDUSTRIAL APPLICATION OF THE PROPOSED TTDL AND SUPPORTING

TOOL.

Project MIPS64 ARMv8

Number of instructions 218 394
ISA specification size
(lines of code)

4300 9000

MMU specification size
(lines of code)

500 2000

Efforts (person-months) 4 9

Created tests include:
• tests for arithmetical instructions;
• tests for floating-point instructions;
• tests for branch instructions;
• tests for memory access instructions.
To describe tests for branch and memory instruction, the

TTDL was extended with additional constructs based on
existing ones. The language was evolving in the process of
working on the projects. Some features were changed and
some were added. A number of language features came as
requirements from customers. The approach based on using
dynamic languages such as Ruby to create TTDLs has proved
its flexibility. The TTDL allowed describing test cases in
a format which is maximally close to assembly language
for corresponding microprocessors. This allows verification
engineers to concentrate on verification problems instead of
issues related to the use of a specific programming language.

VI. CONCLUSION

A concept of a TTDL for a reconfigurable and extensible
TPG framework has been considered. The proposed solution
was implemented in the MicroTESK [3] framework. The de-
veloped TTDL is based on the Ruby [6] language and uses its
metaprogramming facilities to dynamically add configuration-
dependent language constructs. The language is integrated into
MicroTESK, which is a Java-based tool, with the help of
JRuby [11]. Facilities of the TTDL can be extended by adding
new Ruby libraries.

Directions for further research and development are to apply
the described principles to create TTDLs based on other
programming languages. First of all, it is Python and its
Java-based implementation called Jython. It provides facilities
similar to those of Ruby and is also popular among verification
engineers. For this reason, it would be advantageous to provide
a Python-based version of the TTDL for those who are more
comfortable with this language.

Another task is development of a TTDL based on C++. It
will be a part of a large research project dedicated to on-line
generation. An on-line TPG tool is represented by a binary
image with basic functions of an operating system, which is
loaded directly to a microprocessor chip where it generates and
executes test stimuli. The tool will be created by MicroTESK

from C++ libraries based on formal specifications. For further
unification of TPG tools, it is important that TTs for on-line
generation are developed using the same principles.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv.
Genesys-Pro: Innovations in Test Program Generation for Functional
Processor Verification. Design & Test of Computers, 2004. pp. 84–93.

[2] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus and
G. Shurek. Constraint-Based Random Stimuli Generation for Hardware
Verification. AI Magazine, Volume 28, Number 3, 2007, pp. 13–30.

[3] MicroTESK page – http://forge.ispras.ru/projects/microtesk
[4] A. Kamkin, E. Kornykhin, D. Vorobyev. Reconfigurable Model-Based

Test Program Generator for Microprocessors. International Conference on
Software Testing, Verification and Validation Workshops, 2011. pp. 47–
54.

[5] A.S. Kamkin, T.I. Sergeeva, S.A. Smolov, A.D. Tatarnikov,
M.M. Chupilko. Extensible Environment for Test Program Generation
for Microprocessors. Programming and Computer Software, 40(1), 2014.
pp. 1-9.

[6] Ruby site – http://www.ruby-lang.org
[7] E.A. Poe. Introduction to Random Test Generation for Processor Veri-

fication. Obsidian Software, 7 pp, 2002.
[8] RAVEN test program generator –

http://www.slideshare.net/DVClub/introducing-obsidian-software-and-
ravengcs-for-powerpc

[9] Seonghun Jeong, Youngchul Cho, Daeyong Shin, Changyeon Jo, Yenjo
Han, Soojung Ryu, Jeongwook Kim, and Bernhard Egger. Random Test
Program Generation for Reconfigurable Architectures. 13th International
Workshop on Microprocessor Test and Verification (MTV), 2012, 6 p.

[10] A. Kamkin. Generatsiya testovykh programm dlya mikroprotsessorov
[Test Program Generation for Microprocessors]. Trudy ISP RAN [Pro-
ceedings of ISP RAS], Volume 14, Part 2, 2008, pp. 2363 (in Russian).

[11] JRuby site – http://www.jruby.org
[12] Flanagan D., Matsumoto Y. The Ruby Programming Language. OReilly

Media, Sebastopol, 2008.
[13] MIPS64TM Architecture For Programmers. Volume II: The

MIPS64TM Instruction Set, Document Number: MD00087, Revision
2.00, June 9, 2003.

[14] ARM Architecture Reference Manual. ARM DDI 0487A.f, ARM Cor-
poration, 2015. 5886 p.

67 of 251

Specification-Based Test Program Generation for
MIPS64 Memory Management Units

Alexander Kamkin, Artem Kotsynyak
Institute for System Programming of the Russian Academy of Sciences (ISP RAS)

25 Alexander Solzhenitsyn st., Moscow, 109004, Russian Federation
Email: {kamkin, kotsynyak}@ispras.ru

Abstract—In this paper, a tool for automatically generating test
programs for MIPS64 memory management units is described.
The solution is based on the MicroTESK framework being devel-
oped at ISP RAS. The tool consists of two parts: an architecture-
independent test program generation core and MIPS64 MMU
specifications. Such separation is not a new principle in the
area – it is applied in a number of industrial test program
generators, including IBM’s Genesys-Pro. The main distinction
is in how specifications are represented, what sort of information
is extracted from them, and how that information is exploited. In
the suggested approach, specifications comprise descriptions of
the memory access instructions, loads and stores, and definition
of the memory management mechanisms such as translation
lookaside buffers, page tables, and cache units. The tool analyzes
the specifications and extracts the execution paths and inter-path
dependencies. The extracted information is used to systematically
enumerate test programs for a given user-defined template. Test
data for a particular program are generated by using symbolic
execution and constraint solving techniques.

I. INTRODUCTION

A computer memory is known to be a complex hierarchy
of data storage devices varying in volume, latency and price.
In addition to registers and main memory, microprocessors
include a multi-level cache memory and address translation
buffers. The set of devices responsible for handling memory
accesses is referred to as a memory subsystem or a memory
management unit (MMU). Being one of the key microproces-
sor components, the memory subsystem is strongly required to
be correct and reliable. Due to the complicated structure of the
memory, the number of situations that can occur in processing
load and store instructions is huge; this makes it improbable
to verify the subsystem “manually”.

It is widely accepted that test program generation (TPG)
is an essential approach to microprocessor verification [1].
The problem is how to overcome the complexity and at the
same time provide acceptable test coverage. It is a fallacy that
(naı̈ve) random TPG is a good way to optimize testing [2]. A
better solution, we think, is a specification-based approach [1].
A TPG tool consists of two components: (1) an architecture-
independent test generation core and (2) an architecture spe-
cification, or model. The approach reduces the efforts to create
a generator by reusing the core – the only thing one needs to
develop is a specification.

There exist a number of tools implementing the paradigm
mentioned above [1], [3], [4]. However, only few of them are
distributed under open licenses. ISP RAS’s MicroTESK [5]

is one of those few. The tool uses a dialect of the nML
language [6] for specifying instruction set architectures (ISA)
and an extensible set of dedicated languages for specifying
particular microarchitectural features, including, first of all, a
memory management. In this work, we would like to share our
experience in creating a MicroTESK-based TPG for verifying
MIPS64 MMUs [8].

The remainder of this paper is divided into four sections.
Section 2 contains a brief survey of the existing approaches
to TPG for MMUs. Section 3 presents the MicroTESK frame-
work and its facilities aimed at MMU specification and testing.
Section 4 studies application of the TPG approach for MIPS64
MMU. Section 5 discusses the results of the work and outlines
directions of future research and development.

II. RELATED WORK

There are several TPG tools based on formal specifications
of memory subsystems. IBM’s DeepTrans [9] uses a dedicated
specification language. Address translation is depicted as a
directed acyclic graph (DAG) whose vertices correspond to
the process stages and whose edges relate to the transitions
between the stages. A path from the source of the DAG
to the sink defines a particular situation in the address
translation. Such situations can be referred from high-level
descriptions of test programs (TPs), so-called test templates
(TTs). The latter are processed by Genesys-Pro [1], which
formulates constraints on instruction operands, solves them
and transforms the solutions into the instruction sequences.
The major advantage of the approach is the use of the highly
developed languages for modeling MMUs and describing TTs.
A possible disadvantage is that the tool seems not to be able
to automatically extract MMU-related dependencies between
instructions.

In [10], the Java language coupled with a special library
is used to model MMUs. As in DeepTrans, the situations
correspond to the paths in the DAG describing the MMU. For
example, {TLB(va).hit, TLB(va).entry.V , ¬L1(pa).hit}:
there is a hit in the translation lookaside buffer (TLB); the
matched entry is valid; there occurs a miss in the first-level
cache (L1). In addition, the approach provides facilities for
specifying MMU-related dependencies between instructions.
For example, {TLB 7→ ¬tagEqual, L1 7→ indexEqual}:
instructions access different TLB entries; data are mapped
onto the same set of L1. TTs are constructed automatically

68 of 251

by combining situations and dependencies for short sequences
of instructions. Building TTs and creating TPs is done by
MicroTESK (version 1) [5]. The strength of the approach
is systematic TT enumeration that takes into consideration
instruction execution paths as well as dependencies between
instructions. The principal weakness is underdeveloped spe-
cification facilities.

III. MICROTESK FRAMEWORK

MicroTESK (version 2.3 or higher) [11] combines the
advantages of the approaches presented in [9] and [10].
The tool inputs are ISA specifications in nML [6], MMU
specifications in MMUSL (MMU Specification Language) and
TTs in Ruby [12]. The basic principles of MicroTESK are
close to ones implemented in Genesys-Pro [1]. The specifi-
cations are analyzed to extract testing knowledge (situations
and dependencies), which is used to generate TPs from the
given TTs as well as to systematically enumerate TTs. More
information on the tool can be found in [13] and [14]. Here
we provide a brief introduction to MicroTESK by the example
of an MIPS64 MMU [8].

A. ISA Specifications

ISA specifications include definitions of data types, con-
stants, registers, access modes, memories and instructions.
Here comes an example (a fragment of the MIPS64 specifica-
tion), where there are listed three data types, BYTE, SHORT
and DWORD.

type BYTE = card(8) // 8-bit Bit Vectors (unsigned)
type SHORT = int(16) // 16-bit Bit Vectors (signed)
type DWORD = card(64) // 64-bit Bit Vectors (unsigned)

Registers of the same type are grouped into arrays. Register
access logic is encapsulated in so-called modes, which, besides
other things, define assembly format (syntax) and binary
encoding (image) of the registers. The following example
declares an array GPR, consisting of thirty two 64-bit registers,
designates a stack pointer alias SP = GPR[29], and defines
a mode REG aimed at accessing those registers.

reg GPR[32, DWORD] // Array of 32 DWORD Registers
reg SP[DWORD] alias = GPR[29] // Stack Pointer Alias

mode REG(i: card(5)) = GPR[i] // One-to-One Correspondence
syntax = format("r%d", i) // Assembly Format (e.g., r13)
image = format("%5s", i) // Binary Encoding
number = i // Register Number (custom)

Like a group of registers, a memory unit is represented as a
plain array. In the example below, an array MEM is interpreted
as a physical memory comprised of 236 bytes. Virtual memory
issues such as address translation, caching, and the like are
specified separately with the use of a dedicated language
MMUSL (see the next section).

mem MEM[2 ** 36, BYTE] // Physical Memory Array

The attributes of instructions include syntax, image and
action. Actions of load and store instructions are described
in an intuitive manner by reading or writing data from or to the
array representing the physical memory. Here is a specification

of the Load Byte instruction (LB), which derives an address
from a base register (base) with given offset (offset), loads
a byte from the memory, and writes it to a register (rt).
op LB(rt: REG, offset: SHORT, base: REG)
syntax = format("lb %s, %d(%s)",

rt.syntax, offset, base.syntax)
image = format("100000%5s%5s%16s",

base.image, rt.image, offset)
action = {
rt = MEM[base + offset];

}

Notwithstanding MEM is interpreted as the physical memory,
it is accessed through virtual addresses – an access triggers the
address translation mechanisms and other MMU logic.

B. MMU Specifications

Being rather simple, nML does not have adequate facilities
to describe MMUs. For this purpose, a special MMUSL
language is used. MMU specifications include address types,
memory segments, buffers, and control logic for handling loads
and stores. In the following example, address type, VA, is
declared. It is a structure with single field – address itself.
address VA(vaddress : 64) // Virtual Address

A memory segment is considered as a mapping from a set
of addresses of some type to a set of addresses of another type.
An example given below defines a segment XKPHYS that maps
a VA of the given set (range) to the physical address (PA).
The segment performs flat translation with no use of TLBs
and tables (read).
segment XKPHYS(va: VA) = (pa: PA)
range = (0x8000000000000000, 0xbfffffffffffffff)
read = {
pa.paddress = va.vaddress<35..0>;
pa.cca = va.vaddress<61..59>;

}

Buffers (TLBs, cache units, page tables, etc.) are specified
with the following parameters: the associativity (ways), the
number of sets (sets), the entry format (entry), the index
calculation function (index), the tag calculation function
(tag) and the data eviction policy (policy). Their meaning
passes current among microprocessors designers. Here comes
a sample description of TLB. It is accessed by VAs. The
keyword register means that the buffer is mapped to the
registers and can be accessed from the ISA specifications.
register buffer TLB(va: VA)
sets = 1 // Fully Associative Buffer
ways = 64
entry = (R: 2, VPN2: 27, ASID: 8, PageMask: 16, G: 1, ...)
tag = va<39..13>
policy = NONE // Non-replaceable Buffer

Processing of memory access instructions is specified by
requesting the segments and buffers. The syntax is similar
to nML though allows using such constructs as B(A).hit
(the buffer B contains an entry for the address A), E = B(A)
(the entry for the address A is read from the buffer B and
assigned to E), B(A) = E (the entry E for the address A is
written to the buffer B), and the like. Here is a fragment of
the MIPS64 MMU specification. It contains two attributes,

69 of 251

read and write, which, respectively, define logic of loads
and stores.
mmu MMU (va: VA) = (data: DATA_SIZE)
var pa: PA;
var isCached: 1;
var line: DATA_SIZE;
var l1Entry: L1.entry;
read = {
pa = TranslateAddress(va);
isCached = IsCached(pa.cca);
if isCached == 1 then

if L1(pa).hit then // L1 Cache Access
l1Entry = L1(pa);
line = l1Entry.DATA;

else
...
line = MEM(pa);
l1Entry.TAG = pa.value<...>; // L1 Cache Update
l1Entry.DATA = line;
L1(pa) = l1Entry;

endif;
else

line = MEM(pa);
endif;
data = line;

}
write = { ... }

C. TPG Approach

The MicroTESK TPG approach is based on TTs written in
Ruby [12]. In general terms, the process is as follows [14]. A
TT describing a microprocessor verification scenario is given
to MicroTESK. The tool processes the TT and builds a series
of symbolic TPs, where abstract situations and dependencies
(often in the form of constraints) are used instead of specific
values. Each symbolic TP is instantiated with appropriate test
data (TD). The resultant TP is supplemented with preparation
code that initializes the registers, the buffers, and the memory.

TTs are allowed to use modes and instructions defined in
the specifications as well as special TPG constructs (blocks,
situations, etc.) [14]. More technically, a TT is a subclass
of the Template base class provided by the MicroTESK
library. In the example below, MmuTemplate is a subclass
of Mips64BaseTemplate, which, in turn, is a subclass of
Template. The entry point is run. This method declares a
block of two instructions, LD and SD, to be processed with the
dedicated memory engine. The situation access guides TPG
by specifying constraints and biases for the MMU variables
and buffers. The denotation reg(_) means any instance of
the mode REG, i.e. any GPR register.
class MmuTemplate < Mips64BaseTemplate
def run # Test Template Entry Point
block(:engine => "memory", ...) {

ld reg(_), 0x0, reg(_) # Load Double Word Instruction
do situation("access", hit("L1"), ...) end

sd reg(_), 0x0, reg(_) # Store Double Word Instruction
}

end
end

Let us consider how TPG for MMUs is organized. Parsing
specifications results in two entities: an interpreter, which is
a part of the instruction set simulator (ISS), and a symbolic
representation in the form of a labeled DAG. The DAG
is traversed, and all possible execution paths are extracted.
An execution path describes processing of a single memory

request and finishes either with a memory access or with an
exception (alignment fault, TLB refill event, etc.). Paths are
composed of transitions. Each transition is supplied with a
guard, i.e. a condition that enables the transition, and an action
to be performed; it can also be labeled with a buffer being used
in the guarded action. Here is a fragment of the execution path
in MMU (see above) represented in a hypothetical language.
path PATH(va: VA) = (data: 64)
transition {
guard = TRUE
action = {} // Go to TranslateAddress(va)

} ...
transition {
guard = L1(pa).hit
action = { l1Entry = L1(pa); line = l1Entry.DATA; }
buffer = L1

} ...

Given two execution paths, the tool can extract possible
dependencies between them. A dependency is a map from the
set of buffers common for the given paths to the set of conflict
types. More formally, let p1 and p2 be execution paths, C be a
non-empty set of conflict types, and B(p) be the set of buffers
used in a path p. A dependency between p1 and p2 is a map
d : B(p1)∩B(p2)→ C. The set C is supposed to include the
following elements and their negations:
• indexEqual – access to the same set of the buffer:

– tagEqual – access to the same entry of the buffer;
– tagEvicted – access to the recently evicted entry.

Given a TT, symbolic TPs are systematically enumerated.
The main, but not the only, approach supported by MicroTESK
is combinatorial generation. Symbolic TPs are constructed by
selecting all relevant execution paths for the TT’s instructions
and producing all satisfiable dependencies for each combina-
tion of the paths. To avoid combinatorial explosion, special
heuristics are used, including factorization of the paths and
limitation of the depth of the dependencies. Among them, a
buffer-event factorization is frequently used. Let p be a path,
and eventp : B(p)→ {hit,miss} be the induced map of the
buffers to the events. Two paths, p1 and p2, are equivalent,
if B(p1) = B(p2) and for each b ∈ B(p1), eventp1(b) =
eventp2(b) holds. During TPG, the equivalence classes are
enumerated, while their representatives are randomized.

Symbolic TP is a pair 〈{pi}ni=1, {dij}ni,j=1(i<j)〉, where pi
is an execution path, and dij is a dependency between pi and
pj . To produce a TP from a symbolic TP, appropriate TD
are required, including addresses of the instructions, entries of
the buffers being accessed (except replaceable ones, such as
caches) and sequences of addresses to be used to load or evict
data to or from the replaceable buffers. Formally, TD are a
tuple 〈{addri}ni=1, {entryi}ni=1, load, evict〉, where addri(a)
is an address of the type a used in the path pi, entryi(b) is
an entry of the buffer b accessed by the path pi, load(b, s) is
a sequence of addresses to load data to the set s of the buffer
b and, finally, evict(b, s) is a sequence of addresses to evict
data from the set s of the buffer b.

Here is an approximation of the TD generation algorithm
implemented in MicroTESK’s memory engine. The following
denotations are used: dj(b, c) is the minimal i, such that

70 of 251

1 ≤ i < j and dij(b) = c, or a special value ε /∈ N
if there are no such i; addrj(b) is equivalent to addrj(ab),
where ab is the address type of the buffer b; tagb(addr)
and indexb(addr) are, respectively, the tag and the index ex-
tracted from addr by using the corresponding functions of the
buffer b; newAddrb(tag, index, ...) is an address constructed
from tag, index, and, probably, some other information;
newEntryb(id, index) is an empty entry of the buffer b with
specified id and index; given a buffer b, its state s, and index,
victimb(s, index) is a tag to be evicted.

Algorithm 1 Generator
Input: Symbolic TP: 〈{pi}ni=1, {dij}

n
i,j=1(i<j)〉

Output: Generated TD: 〈{addri}ni=1, {entryi}
n
i=1, load, evict〉

for all j ∈ {1, ..., n} do
addrj ← Solver.constructAddresses(pj) . Construct Addresses
for all b ∈ B(pj) do . Process Tag/Index Equalities

if dj(b, tagEqual) 6= ε then
i← dj(b, tagEqual)
addrj(b)← newAddrb(tagb(addri(b)), indexb(addrj(b)), ...)

else if dj(b, indexEqual) 6= ε then
i← dj(b, indexEqual)
tagnew ← Allocator.allocTag(b, indexb(addri(b)))
addrj(b)← newAddrb(tagnew, indexb(addri(b)), ...)

end if
end for
for all b ∈ B(pj) do . Process Hits and Misses

if b.policy 6= none then . Replaceable Buffer
if eventpj (b) = hit then
load(b, index)← load(b, index) · {addrj(b)}

else
for all k ∈ {1, ..., b.ways} do
tagnew ← Allocator.allocTag(b, indexb(addrj(b)))
addrevict ← newAddrb(tagnew, indexb(addrj(b)), ...)
evict(b, index)← evict(b, index) · {addrevict}

end for
end if

else . Non-Replaceable Buffer
if eventpj (b) = hit then

if dj(b, tagEqual) 6= ε then
i ← dj(b, tagEqual)
entryj(b)← entryi(b)

else
idnew ← Allocator.allocEntryId(b, indexb(addrj(b)))
entryj(b)← newEntryb(idnew, indexb(addrj(b)))

end if
end if

end if
end for

end for
state← Interpreter.observeState() . Process Data Evictions
loads← Loader.prepareLoads(load, evict)
state← Interpreter.execMmu(loads, state)
for all j ∈ {1, ..., n} do

for all b ∈ B(pj , a) do
if dj(b, tagReplace) 6= ε then
i ← dj(b, tagReplace)
addrj(b)← newAddrb(Tagevict(b, pi), indexb(addrj(b)), ...)

end if
if eventpj (b) = miss then
Tagevict(b, pj)← victimb(state, indexb(addrj(b)))

end if
state← Interpreter.execBuffer(b, {addrj(b)}, state)

end for
end for
for all j ∈ {1, ..., n} do . Construct Entries
entryj ← Solver.constructEntries(pj)

end for

Generator exploits several auxiliary components: Solver,
Allocator, Interpreter and Loader. Solver performs sym-
bolic execution of a given path and constructs required entities
(addresses, entries, etc.) by calling constraint solvers. Interface
with solvers is provided by Fortress library [15]. It supports

SMT solvers, such as Z3 [16] and CVC4 [17], as well as
in-house solvers aimed at particular tasks. Allocator chooses
buffer indices, tags and other address fields taking into account
user-defined constraints (e.g., forbidden memory regions). The
default strategy is to allocate a new index or a new tag for a
given index on every request. This allows avoiding undesirable
dependencies between instructions. Interpreter simulates ac-
cesses to buffers and predicts data evictions. The results of the
predictions are used to satisfy tagEvicted conflicts. Loader
prepares a sequence of accesses so as to fulfil hit and miss
requirements. The default strategy is as follows. Buffers are
handled in reverse order; for every buffer b and every set s,
evict(b, s) and load(b, s) are added to the sequence.

Finally, TD are transformed to the ISA-specific preparation
code. For this job, the tool needs to know what instructions
have to be used to set up addresses and entries. Such informa-
tion is provided in TTs in the form of so-called preparators.
Technically, a preparator is a piece of code that defines a
sequence of instructions to reach a certain goal. Given a reg-
ister type (to be more precise, an access mode), there usually
exists a family of preparators differing in patterns of loaded
values. For example, Mips64BaseTemplate contains the
following preparator for loading a 32-bit value into an GPR
register via the mode REG.

preparator(:target => "REG", :mask => "00000000XXXXXXXX") {
ori target, target, value(16, 31)
dsll target, target, 16
ori target, r0, value(0, 15)

}

For each buffer, there should be a preparator to write an
entry into it. A preparator for MIPS64 DTLB is given below.

buffer_preparator(:target => ’DTLB’) {
ori t0, r0, address(48, 63)
dsll t0, t0, 16
ori t0, t0, address(32, 47)
dsll t0, t0, 16
ori t0, t0, address(16, 31)
dsll t0, t0, 16
ori t0, t0, address(0, 15)
lb t0, 0, t0

}

IV. MIPS64 MMU CASE STUDY

The most challenging part of creating a specification-based
TPG tool for a microprocessor is MMU specification. Speak-
ing of MIPS64, the following is defined [8]: fixed set of
address spaces, TLB entry format and address translation
procedure. Moreover, the system under test uses two-level
write-through cache.

MicroTESK’s MMUSL allowed to specify MIPS64 in quite
a compact way (approximately 220 lines of code). The speci-
fications involve the TLB (JTLB and DTLB), two-level cache
memory buffers (L1 and L2) and fixed memory segments
(kseg0, kseg1, xkphys, useg). On the base of the
ISA [18] and MMU [8] specifications, 18 memory access
instructions are defined with additional instructions to read
from and write to TLB. Description of a single instruction
makes up approximately 10 lines of nML code on average.

71 of 251

TABLE I
COMPLEXITY OF MIPS64 MMU SPECIFICATIONS

CHARACTERISTIC MINIMUM MAXIMUM AVERAGE

Number of Transitions
in an Execution Path

7 52 38

Number of Variables
in a Path Formula

3 76 49

Number of Execution Paths
of an Instruction

76

Table I contains numeric data on MIPS64 MMU execution
path complexity. While the complexity is relatively low (aver-
age path consists of less than 40 transitions and comprises un-
der 50 variables) it makes exhaustive enumeration of symbolic
TPs reasonable only for very short TTs. In more complicated
cases heuristics become of crucial importance. E.g., the buffer-
event factorization gives only 9 path equivalence classes, en-
abling systematic enumeration of longer sequences of memory
accesses. Generation of even more complicated TPs is done
with the help of the constrained random generation. This
requires verification engineers to explicate their knowledge in
the form of constraints and biases.

This is an ongoing project, and some useful information,
such as test coverage, is not available at the moment. Though
it is worth considering the lessons learned. We found it conve-
nient to use domain-specific languages (DSLs) for specifying
ISAs and MMUs. The use of DSLs, first, eases extraction of
testing knowledge and, second, simplifies learning of the TPG
tool. On the other hand, it seems that dynamic programming
languages, such as Ruby and Python, suit well for describ-
ing TTs. Such languages can be easily extended with TPG
constructs. Our negative experience is mostly connected with
low performance of the tool. Constraint solving needs to be
optimized. As the authors of [19], we believe that specialized
solvers would help.

V. CONCLUSION

TPG is a widely-accepted approach to microprocessor veri-
fication, including, in particular, MMU verification. State-
of-the-art MMUs are extremely complex devices comprising
multi-level address translation and caching. Naı̈ve approaches
to automated TPG for MMUs – meaning, first of all, random
generation techniques – are highly improbable to reach high
level of test coverage in reasonable time. Specification-based
TPG, in our opinion, is one of the most promising directions
in the area. Since 1990s, it has been successfully applied to
microprocessor testing and verification, e.g., in IBM [1], and
it continues to evolve.

The MicroTESK team [5] contributes its mite to the evolu-
tion of the specification-based approach. Our goal is to create
an open-source, extensible and reconfigurable TPG frame-
work [13], [14]. Different versions of MicroTESK, including
the one described in [10], have been applied to several in-
dustrial microprocessors and allowed to reveal a large number

of critical bugs, which had not been detected by randomly
generated TPs.

The proposed solution is based on ISA specifications in
nML [6] and MMU specifications in MMUSL. ISA specifi-
cations formally describe microprocessor instructions, while
MMU specifications define memory segments and buffers.
MicroTESK is able to automatically extract testing knowledge
from the specifications and to exploit it for TPG. TTs are
created with the help of Ruby [12]. To generate TD, symbolic
execution and constraint solving techniques are intensively
used.

The work is still in progress, and a number of things need
to be done. The most priority task is a performance optimiza-
tion of the constraint solving. Another task is to extend the
approach to multicore designs and multiprocessor systems.
The main challenge here is to create a unified technology
that would include formal verification of cache coherence
protocols, unit-level verification of MMUs, and system-level
TPG.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv.
Genesys-Pro: Innovations in Test Program Generation for Functional
Processor Verification. Design & Test of Computers, 2004. pp. 84–93.

[2] R.L. Glass. Facts and Fallacies of Software Engineering. Addison-Wesley
Professional, 2002. 224 p.

[3] T. Li, D. Zhu, Y. Guo, G. Liu, S. Li. MA2TG: A Functional Test Program
Generator for Microprocessor Verification. Euromicro Conference on
Digital System Design, 2005. pp. 176–183.

[4] A. Kamkin, A. Tatarnikov. MicroTESK: An ADL-Based Reconfigurable
Test Program Generator for Microprocessors. Spring/Summer Young
Researchers Colloquium on Software Engineering, 2012, pp. 64–69.

[5] MicroTESK page – http://forge.ispras.ru/projects/microtesk
[6] M. Freericks. The nML Machine Description Formalism. Technical Report

TR SM-IMP/DIST/08, TU Berlin CS Department, 1993.
[7] MIPS64 Arcitecture For Programmers. Volume 3: MIPS64/microMIPS64

Privileged Resource Architecture. Revision 6.03. MIPS Technologies Inc.
– 2015. – 368 p.

[8] A. Adir, L. Fournier, Y. Katz, A. Koyfman. DeepTrans – Extending the
Model-based Approach to Functional Verification of Address Translation
Mechanisms. High-Level Design Validation and Test Workshop, 2006.
pp. 102–110.

[9] D. Vorobyev, A. Kamkin. Generatsiya testovykh programm dlya podsis-
temy upravleniya pamyat’yu mikroprotsessora [Test Program Generation
for Memory Management Units of Microprocessors]. Trudy ISP RAN,
17, 2009, pp. 119–132 (in Russian).

[10] A. Kamkin, A. Protsenko, A. Tatarnikov. An Approach to Test Program
Generation Based on Formal Specifications of Caching and Address
Translation Mechanisms. Trudy ISP RAN, 27(3), 2015. pp. 125–138.

[11] Ruby site – http://www.ruby-lang.org
[12] A. Kamkin, E. Kornykhin, D. Vorobyev. Reconfigurable Model-Based

Test Program Generator for Microprocessors. International Conference on
Software Testing, Verification and Validation Workshops, 2011. pp. 47–
54.

[13] A.S. Kamkin, T.I. Sergeeva, S.A. Smolov, A.D. Tatarnikov,
M.M. Chupilko. Extensible Environment for Test Program Generation
for Microprocessors. Programming and Computer Software, 40(1), 2014.
pp. 1-9.

[14] Fortress page – http://forge.ispras.ru/projects/solver-api
[15] Z3 page – http://github.com/Z3Prover/z3
[16] CVC4 site – http://cvc4.cs.nyu.edu
[17] MIPS64 Arcitecture For Programmers. Volume 2: The MIPS64 Instruc-

tion Set Reference Manual. Revision 6.04. MIPS Technologies Inc. –
2015. – 551 p.

[18] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, G. Shurek.
Constraint-Based Random Stimuli Generation for Hardware Verification.
AI Magazine, 28(3), 2007. pp. 13-30.

72 of 251

Approaches to Stand-alone Verification of Multicore
Microprocessor Caches

Mikhail Petrochenkov1, Irina Stotland2, Ruslan Mushtakov3

Department of Verification and Modeling
MCST

Moscow, Russia
petroch_m@mcst.ru1, stotl_i@mcst.ru2, mushtakov_r@mcst.ru3

Abstract—The paper presents an overview of approaches used
in verifying correctness of caches of multicore microprocessors.
Approaches for designing a test system, generating valid stimuli
and checking correctness of the device behaviour are introduced.
Some novel methods to verify functionally nondeterministic
devices are described. Additionally, we describe how the test
systems for devices, that support out of order execution, could be
designed. In conclusion we provide a case study of using these
methods to verify caches of microprocessors with “Elbrus”
architecture and “Sparc v” architecture.

Keywords—multicore microprocessor, cache memory, out-of-
order execution, test system, indeterministic behaviour, model-
based verification, stand-alone verification.

I. INTRODUCTION

The key feature of modern microprocessor architecture is
multicoreness - combining several computational cores on a
single system on chip (SOC). To reduce time needed to access
RAM, device can incorporate several levels of cache hierarchy.
Access to smaller caches can be executed faster than access to
larger caches of the next level of hierarchy. Caches can keep
data for a single computational core or serve as a data storage
for several of them at the same time. Memory subsystem of a
multicore microprocessor must maintain coherence of the
memory. Task of maintaining correct state of memory is
usually solved by implementing cache coherence protocol that
defines a set of data states and actions on transitions between
states in cache[1]. To optimize design and implementation of
coherency protocol, caches can include local directory – device
that keeps information on states of data in different
components of memory subsystem. Sufficient complexity of
protocols and their implementations in multilevel memory
subsystems can lead to hard to find errors. To ensure
robustness of a microprocessor, one must thoroughly verify its
memory subsystem.

Several works present approaches used in formal
verification of cache coherence protocols. To check device
implementation functional verification is used. One of the
approaches to microprocessor verification is system
verification - execution of test programs on microprocessor
model and on reference implementation of its instruction set,
and comparison between them. It should be noted that caches
are often invisible from the point of view of a programmer.
That is why design of programs capable of sufficient
verification of a microprocessor caches is a complex task. To

ensure adequate level of verification stand-alone verification is
used. This paper addresses the problem of stand-alone
verification of microprocessor caches of different levels.

The rest of the paper is organized as follows. Section 2
reviews the existing techniques for designing test oracles.
Section 3 suggests an approach to the problem. Section 4
describes a case study on using the suggested approach in an
industrial setting. Section 5 concludes the paper

II. COMMON VIEW ON STAND-ALONE VERIFICATION OF
MICROPROCESSOR CACHES

The object of stand-alone verification is model of verifying
device implemented in hardware description language (usually,
Verilog or VHDL). It defines the behavior of the device on a
register transfer level (RTL). The device specification defines a
set of stimuli and reactions based on the state of the device. To
check correctness of the device it is included in a test system -
a program that generates test stimuli, checks validity of
reactions and determines verification quality. Based on its
functions test system can be divided into separate modules -
stimulus generator and correctness checking module (test
oracle). Methods of estimation of verification quality are
similar to that of other devices. Information on code coverage
is used to identify unimplemented test scenarios and refine
stimulus generator. This approach is called coverage driven
constrained random verification. In addition the method
described above, different approaches were presented: using
formal approaches to ensure full coverage of cache coherence
protocol implementation in the device[3].

Cache behaviour exhibits a set of properties that should be
considered while designing a test system for verification of the
device.

• Transactions in the system can be separated into three
groups: primary requests, secondary requests and
reactions.

• A device implements a part of cache coherence
protocol.

• A device works independently with different cache
lines - areas of memory of fixed size.

• Requests that work with the same cache line are
serialized.

73 of 251

mailto:petroch_m@mcst.ru1
mailto:stotl_i@mcst.ru2

• Device implements data eviction mechanism and
protocol to determine victim line (usually some variant
of LRU).

Using these properties of the device under testing while
designing a test system could lead to simplified structure of the
system and improved performance.

III. TEST STIMULI GENERATION

A. The general approach

Test stimuli are usually generated on a more abstract level
then register transfers and interface signals. Based on the
logical and functional similarity, groups of device ports are
combined into interfaces. Interfaces are used to transfer
transaction level packets[7]. To transform packets between
different representations on signal and transaction level,
serializer and deserializer modules are implemented[2].

Test system should generate stimuli similar to that in a real
system. Should be noted that primary requests in real
microprocessor are consequences of some memory access
operation (loading, storing data, eviction, prefetch, atomic
swap, etc). Secondary requests are answers for reaction packets
from the device. It is usually convenient to use only a sequence
of primary requests as a test sequence, and generate secondary
requests automatically in corresponding modules. Properties of
secondary requests could be changed based on secondary
request generation modules configuration.

In the test system interfaces are combined into groups that
represent working with some devices. Test system should
simulate the state of the devices to generate correct responses
from it.

B. Generation of primary requests for caches with out-of-
order execution

Properties of the devices that support out-of-order
execution should be considered while designing stimulus
generator:

• Order of primary request can be different from the
order of memory accesses in initial program.

• Primary request could be separated into several
messages accepted at separate times. Messages for one
primary request are identified by common value of tag
field.

• Request canceling mechanism is present.

To support out-of-order execution of memory access
requests in a cache common approach was augmented. The
module responsible for transfer of primary requests was
replaced with high-level module that includes components
working with interfaces of primary request parts. Order of
request for that module is identical to that of a test program,
and reordering of request parts is executed based on module
settings.

IV. CORRECTNESS CHECKING

One of the ways to check correctness of the device
behavior is a comparison with a reference model, implemented

either in general purpose programming language (C, C++) or in
specialized hardware verification language (SystemVerilog,
“e”, Vera). If test stimuli are the same, difference in model and
device reactions means an error somewhere in the system[2].
Reference models could be cycle-accurate or functional
(behavioral). To implement the former, behavior of the device
must be specified on a register transfer level. Behavior of
caches usually defined on a higher level of abstraction, because
cache is not an essential part of computational pipeline of a
microprocessor. A cache is not a subject of strict temporal
requirements. To verify caches functional models working on
transaction level are implemented.

A. Checking of indeterministic caches

If one wants to develop functional model of cache, its
specification must have property of transaction level
indeterminism. That is, identical transaction level traces of
stimuli (a set of register transfer level traces is mapped into this
single transaction level trace) must cause identical transactional
reaction trace. It should be noted that caches often include a set
of components (eviction arbiter, primary request arbiter serving
different requesters), that do not hold that property. That is,
different register transfer level traces that are mapped into
single transaction level trace could lead to different reaction
traces. There are several methods to check behaviour of
indeterministic devices.

1) “Gray box” method: one of the ways to solve
aforementioned problem is to replace usual “black box”
method of device verification. That is, we should not consider
only external interfaces of the device while analysing its
behaviour. To determine which variant of behaviour has
happened in the cache one could use “hints” from the
implementation. To use this approach, a set of internal
interfaces and signals is defined and its behaviour is specified.
This interfaces must be chosen in a way that information on
their state could be used to eliminate indeterminism. In
general, in caches such signals are results of primary request
arbitration and interfaces of finite automata of cache eviction
mechanism. Additionally, that information can be used in
request generator and for the estimation of verification quality.
This method is usually easy to implement. Drawbacks of this
methods are additional requirements for specification and
reliance on interfaces that could also exhibit erroneous
behaviour.

2) Dynamic refinement of behavioural model: Another
approach is to create additional instances of model for each
variant of behaviour in case of nondeterministic choice in the
device[4]. Each reaction is checked against every spawned
device model. If reaction is impossible for one variation of
behaviour, then it is removed from set. If set of possible states
after some reaction becomes empty, the system must return
error. In general, this approach may cause exponential growth
of number of states with each consecutive choice. But for
caches this approach could be implemented efficiently,
because of several properties of caches: serialization of
requests and cache line independence. Information on which
indeterministic choice was made in the device (for use in

74 of 251

request generator or for verification quality estimation) could
also be extracted from reactions. Strong points of that
approach compared to “gray box” method is elimination of
reliance on implementation details of the device. Drawback is
additional complexity of implementation.

3) Assertions: Test stimulus generators simulate the
behaviour of the device under test. It also should be noted that
interaction between the device and its environment must
adhere to some protocol. Based on that protocol, one can
include functional requirements of protocols as an assertions
in the generator. Then, violation of an assertion represents
signals an error. Usage of assertions is an effective method of
detection of a broad class of errors. In addition to assertions
that are common for all memory subsystem devices, several
cache-specific assertions could be included. They represent
invariants of cache coherence protocol. To check this
invariants, coherence of states of a single cache line is
analyzed in all parts of test system after each change.

B. Checking caches with out-of-order execution

For caches supported out of order request execution, it
exhibits properties of limited indeterminism. That is memory
access request are received in the device in multiple parts from
several interfaces, with different unspecified timing
characteristics. On the other side there is “reference” order of
memory access operations, present in original test program. If
out of order execution introduces error to the canonical order,
device must be cleaned and erroneous transactions must be
restarted. Results of operations that completed successfully are
deterministic. Based on these properties of the device, two
modes of operation we implemented:

• “Ignore the cancelled transactions” mode.

• Strict checking mode

In the first mode result checking is delayed until the
moment of its full completion. If completion was unsuccessful,
checks are not made. In the strict mode, approaches similar to
dynamic refinement of model could be used. Set of possible
device states is maintained, and it is augmented with each
stimulus and reaction. Number of possible states is limited by
the number of simultaneously executed out of order requests.
Shortcomings of the first mode are delay between erroneous

transaction and the execution of actual checking and reduction
of the set of errors that could be detected (for example
unnecessary cancel of request will not be detected). On the
other hand, implementing that mode is much simpler task, so
verification could be started sooner.

V. CASE STUDY

Methods described above were used in the process of
verifying the L2-cache[6] and the L3-cache[4] of the
microprocessor with “Elbrus” architecture and level one data
cache of a microprocessor with “SPARC-V9” architecture.
Caches of “Elbrus” microprocessor are part of a system on chip
(SOC) with 8 computational cores. Each core has level one and
level two (2MB) cache. Level three cache (16 MB) is shared
between all cores. Size of level one cache (L1DC) of SPARC
microprocessor is 32KiB, device support out of order execution
of memory access operations. The test system structure for
L1DC is presented in figure 1.

Test stimulus generator was developed to verify the L3-
cache of the “Elbrus” microprocessor[5]. It is based on
simplified model of microprocessor core with the L2-cache and
the model of system commutator that simulates work in
multiprocessor environment. If multiple cores request access to
a single cache line, then order of their execution is unspecified
and defined by device microarchitecture. Internal structure of a
cache is also a subject of change, due to changes to
requirements of physical design. To verify the device approach
based on dynamic refinement of behavioral model was chosen.
To supplement that approach, a set of assertions were
implemented in stimulus generator to check validity of system
state. Using that approach allowed to use the same test system
with minimal alteration for the next iteration of the “Elbrus”
microprocessor

 .

Fig. 1.Principal sturcture of test sytem for level one data cache of SPARC
microprocessor.

SPARC microprocessor (8 cores, frequency - 2GHz) is the
first MCST microprocessor that supports out-of-order
execution of requests. L1DC serves as a data storage for a
single core and support receiving of requests in order that is not
the same as in the source program. Simplified model of
computational core with reorder buffer (ROB) serves as a part
of a stimulus generator in test system. The generator also
contains the model of level two data cache (data cache for four
cores) and models of other three level one caches to simulate
interactions between cores and analyze the state of the system
(pic.1).

VI. CONCLUSION

Approaches, described in this article were used while
verifying caches of microprocessors developed by MCST.
Stand alone verification allowed finding several errors in
different caches. The intermediate results of application
introduced approaches in multicore microprocessor caches
verification if presented in table 1.

75 of 251

TABLE I. APPLICATION RESULTS

Verified caches
L2-cache
“Elbrus”

L3-cache
“Elbrus”

L1 data cache
“SPARC-V9”

Number of bugs 3 4 8

Using of aforementioned methods while developing test
systems allowed increasing quality of verification: allowed to
achieve higher code coverage and reduced the amount of false-
positive results. Approaches could be used to verify other
caches of different multicore microprocessors regardless of its
architectures.

Our future research is connected with improving the error
diagnostics and localization of found bugs.

REFERENCES

[1] Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency
and Cache Coherence. Morgan and Claypool, 2011. 195 p.

[2] Stotland I., Lagutin A. Primenenye etalonnykh sobytijnykh modeley
dlya avtonomnoy verifikatsii modulei microprocessorov [Using stand

alone behavioural models to verify microprocessor components].
Voprosy radioelektroniki, seriya EVT, 2014, 3, p. 17-27.

[3] Kamkin A., Petrochenkov M. Sistema podderzhki verifikatsii
kogerentnosti s ispol'zovaniem formal'nykh metodov [A system to
support formal methods-based verification of coherence protocol
implementations]. Voprosy radioelektroniki, seriya EVT, 2014, 3. p. 27-
38.

[4] Kamkin A., Petrochenkov M. A Model-Based Approach to Design Test
Oracles for Memory Subsystems of Multicore Multiprocessors. Trudy
ISP RAN, vol. 27, 3, p 149-157.

[5] Kozhin A., Kozhin E., Kostenko V., Lavrov A. Kesh kogerentnosti
mikroprotsessora «El'brus-4S+» [L3 cache and cache coherence support
in «Elbrus-4C+» microprocessor]. Voprosy radioelektroniki, seriya
EVT, 2013, 3. p. 26-38.

[6] Stotland I., Kutsevol V., Meshkov A. Problemy functsionalnoy
verifikatsii kesh pamyati vtorogo urovnya mirkoprocessorov arkhitekturi
“Elbrus” [Challenges of functional verification of level two cache of
“Elbrus” microprocessor]. Voprosy radioelektroniki, seriya EVT, 2015,
1, p. 76-84.

[7] TLM-2.0.1. TLM Transaction-Level Modeling Library. URL:
http://www.accellera.org/downloads/standards/systemc (20.12.2015).

[8] The SPARC architecture manual:version 9 / SPARC International, Inc. ;
David L. Weaver, Tom Germond, editors.: PTR Prentice Hall, c1994.
xxi, 357p. ISBN 0-13-099227-5

76 of 251

http://www.accellera.org/downloads/standards/systemc

Checking Parameterized PROMELA Models of

Cache Coherence Protocols

V.S. Burenkov1, A.S. Kamkin2

1JSC MCST, burenkov_v@mcst.ru

2ISP RAS, kamkin@ispras.ru

Abstract—This paper introduces a method for scalable functional

verification of cache coherence protocols described in the PROMELA

language. Scalability means that verification efforts do not depend on

the model size (i.e. the number of processors in the system under ver-

ification). The method is comprised of three main steps. First, a

PROMELA specification written for a certain configuration of the sys-

tem under verification is generalized to the specification being param-

eterized with the number of processors (to do it, some assumptions on

the protocol are used as well as simple induction rules). Second, the

parameterized specification is abstracted from the number of proces-

sors (it is done by syntax transformation of the specification). Finally,

the abstract specification is verified with the SPIN model checker in a

usual way. The method has been successfully applied to verification

of the MOSI protocol implemented in the Elbrus computer systems.

Keywords—multicore microprocessors, shared memory multiproces-

sors, cache coherence protocols, model checking, SPIN, PROMELA.

I. INTRODUCTION

Shared memory multiprocessors (SMP) constitute one of the

most common classes of high-performance computer systems.

In particular, multicore microprocessors, which combine sev-

eral processors (cores) on a chip, are widely used [1]. Nowa-

days, 8- and 16-core microprocessors are in mass production;

hardware vendors have announced development of 48-, 80-, and

even 100-core microprocessors. Multicore microprocessors and

microprocessor systems are also designed by Russian compa-

nies such as MCST and INEUM, e.g., Elbrus-4C (4 cores, 2014)

and Elbrus-8C (8 cores, 2015) [2].

The main problem arising in the development of SMP sys-

tems is ensuring memory coherency. As each processor contains

a local cache, multiple copies of the same data may exist in the

system: one copy in the main memory and several copies in the

processors’ caches. Modification of a copy should cause either

the removal of the other copies or their coordinated modifica-

tion. This is supported by the so-called cache controllers, i.e.

memory devices connected into a network and cooperating in

accordance with a special protocol, so-called cache coherence
protocol [3].

Development of cache coherence mechanisms consists of

two stages: design of a cache coherence protocol and its imple-

mentation in hardware. Considering high complexity of such

mechanisms, the both stages are error-prone. To detect errors,

methods for protocol verification and hardware verification are

used [4]. Being especially critical, protocol bugs should be re-

vealed before implementing the hardware. The widely recog-

nized method for protocol verification is model checking [5]. It

is fully automated, but suffers from a principal drawback – it is

not scalable due to the state space explosion problem. Verifica-

tion of a cache coherence protocol for four and more processors

is impossible (at least, highly problematic) with the traditional

methods [6].

To overcome the problem and develop scalable verification

technologies, researchers focus mostly on parameterized model
checking [7]. The idea is to construct abstract models that are

independent of the number of processors and may be verified

with the existing tools. Correctness of the abstract model guar-

antees correctness of the original one (checking, however, may

produce wrong error messages, so-called false positives). The

proposed approach is also of that type. As a distinction, it sup-

ports the PROMELA language used in the SPIN model checker [8]

and the message passing primitives. The method was success-

fully used for verifying the cache coherence protocols imple-

mented in the Elbrus computer systems [2].

The paper is structured as follows. In Section 2, we analyze

existing approaches to cache coherence protocol verification. In

Section 3, we propose a method for constructing an abstract

model of the protocol out of an original PROMELA model. In

Section 4, we describe theoretical foundations of the suggested

method. In Section 5, we provide a case study on using the

method for verifying a MOSI protocol. In Section 6, we sum-

marize our work and define further research directions.

II. RELATED WORK

Classical model checking is inapplicable to cache coherence

protocols with an arbitrary number of processors. There is an

alternative approach, called deductive verification; however, it

is hardly automated due to the need of so-called inductive in-
variants [9] and does not provide any diagnostic information if

there are errors. Parameterized model checking seems to be a

more promising approach. Two directions may be emphasized.

First, verification of a parameterized model (in essence, a

family of models) can be reduced to the verification of a single

model of the family. Corresponding methods are aimed at find-

ing such number 𝑁 that verification of the model for 𝑁 compo-

nents (processors, cache controllers, etc.) is sufficient for prov-

ing correctness in the general case. In [7], such kind of method

is presented, and it is reported that 𝑁 = 7 is enough for the pro-

tocols having been examined. However, that value is too big to

make the method applicable to cache coherence protocols of in-

dustrial SMP systems [6].

77 of 251

Second, a model (parameterized model) can be abstracted

so as to reduce the state space size (make it independent of the

number of components). Paper [10] introduces a method for ab-

stracting a model from the exact number of replicated identical
components (e.g., caches in which the cache line is in a given

state). The technique significantly reduces the state space size;

however, the use of a modified version of the Mur tool com-

plicates its real-life application. A similar idea, called (0,1, ∞)-

counter abstraction, is employed in [11], [12], and [13]. Though

the technique seems to be powerful, it often leads to overly de-

tailed abstract models, which makes the approach inapplicable

to complex protocols.

In [14], a general method for compositional verification is

proposed. The idea is to replace a subset of identical compo-

nents with an abstract one, so-called environment. Such replace-

ment usually leads to false positives, and large amount of hand-

work is required to eliminate them. In [15]-[18], the approach

has been modified for cache coherence protocol verification.

The suggested method is based on syntactical transformations

of Mur models and counterexample-guided abstraction re-
finement. However, these works exhibit some drawbacks:

1) Mur does not support the message passing primitives,
which complicates description of cache coherence protocols;

2) the class of protocols that can be verified with the method

and the restrictions on Mur models are not clearly defined;

3) the tools are not in open access.

III. THE SUGGESTED METHOD

The problem is as follows. Given a PROMELA model of a

cache coherence protocol for some configuration of an SMP

system (i.e. a model with a fixed number 𝑛 > 2 of processors),

it is required to check the protocol correctness for an arbitrary

configuration of the system (i.e. for any 𝑁 ≥ 𝑛).

Models considered in this paper satisfy the following con-

ditions (obtained from the verification practice and shown to be

sufficient for specifying cache coherence protocols). The al-

lowed statements are 𝐢𝐟 , 𝐝𝐨 , 𝐠𝐨𝐭𝐨 , = (assignment), ! (send),

and ? (receive). Each guarded action is placed in an 𝐚𝐭𝐨𝐦𝐢𝐜

block and therefore is executed atomically; else alternatives are

absent. Assignments’ right-hand sides contain only primary ex-

pressions, i.e. variables and constants; left-hand are variables

and array elements (an array index is a primary expression).

Atomic logic formulaе are of the form 𝑥 == 𝑐 or 𝐵(𝑐ℎ), where

𝑥 is a variable (or array element), 𝑐 is a constant, 𝑐ℎ is a chan-

nel, and 𝐵 is a predicate: 𝐞𝐦𝐩𝐭𝐲, 𝐟𝐮𝐥𝐥, etc.

A. Generalization of the Original Model
From the conceptual point of view, a model consists of an

unbounded number of replicated identical processes, so-called

basic processes, and a fixed number of auxiliary processes.

Without loss of generality we will assume that there is only one

auxiliary process. All processes are enumerated from 0 to 𝑁,

where 𝑁 is the parameter: 0 is the identifier of the auxiliary pro-

cess, while 1, … , 𝑁 are the identifiers of the basic processes. All

arrays used in the model (arrays of variables and arrays of chan-

nels) are of length 𝑁 and indexed with the identifiers of the

basic processes.

To generalize the original model to a parameterized one, the

following rules are used:

1) each condition containing an array is either a conjunction or
a disjunction of similar conditions on all elements of the array:

𝜑{𝑖/1} ∧ … ∧ 𝜑{𝑖/𝑛} is interpreted as ∀𝑖 ∈ {1, … , 𝑁}: 𝜑;

𝜑{𝑖/1} ∨ … ∨ 𝜑{𝑖/𝑛} is interpreted as ∃𝑖 ∈ {1, … , 𝑁}: 𝜑;

2) each sequence of statements 𝛼{𝑖/1}; … ; 𝛼{𝑖/𝑛} is inter-
preted as a loop 𝐟𝐨𝐫 (𝑖: 1 . . 𝑁) {𝛼}.

Here, 𝜑 (α) is a formula (statement) containing an index 𝑖 as a

free variable, and 𝜑{𝑖/𝑡} (𝛼{𝑖/𝑡}) denotes the result of substi-

tution of 𝑡 for all occurrences of 𝑖 in 𝜑 (α).

B. Clarification of Protocol Model
Let us considers a cache coherence protocol where request

processing is coordinated by a system commutator of the home
processor (the processor that owns the requested data). Accord-

ingly, the PROMELA model contains two process types: 𝑝𝑟𝑜𝑐 is

a cache controller (a basic process) and ℎ𝑜𝑚𝑒 is a home proces-

sor’s commutator (an auxiliary process). Conventionally, the

model deals with one cache line.

Broadly speaking, the cache coherence protocol is as fol-

lows. Each 𝑝𝑟𝑜𝑐 instance may initiate an operation on the cache

line by sending a primary request to the ℎ𝑜𝑚𝑒 process. Upon

its reception and analysis, ℎ𝑜𝑚𝑒 sends snoop requests to all

processes except for the sender. After snoop reception, a 𝑝𝑟𝑜𝑐

sends a response to the sender (data or an acknowledgement that

it has completed an action on the cache line). Having collected

all of the answers, the sender informs ℎ𝑜𝑚𝑒 on the completion

of the operation. As soon as the completion message is received,

ℎ𝑜𝑚𝑒 can accept the next primary request.

It is worth emphasizing that at most one primary request is

being processed at each moment of time. We will assume that

values of global variables (e.g., a current sender identifier) are

set by ℎ𝑜𝑚𝑒 upon reception of a primary request and do not

change during its processing.

Each channel can be read by a single process; however, mul-

tiple processes are allowed to write into it. A channel is called

simple if there is only one sender; otherwise, it is called multi-
plexed. Let 𝐶𝑆→𝑟 be the set of channels with the reader 𝑟 and

senders from the set 𝑆. Channels are divided into three groups

(singletons are written without brackets):

1) 𝐶∗ = ⋃ 𝐶{1,…,𝑁}→𝑗
𝑁
𝑗=0 is the set of multiplexed channels of

capacity 𝑁 used by ℎ𝑜𝑚𝑒 and 𝑝𝑟𝑜𝑐 to receive messages from
the basic processes (e.g., a channel over which ℎ𝑜𝑚𝑒 receives
primary requests, and channels over which processes receive re-
sponses);

2) 𝐶ℎ→𝑝 = ⋃ 𝐶0→𝑗
𝑁
𝑗=1 is the set of simple channels of positive

capacity (that is defined by the protocol, but independent of 𝑁)

78 of 251

used by the basic processes to receive messages from ℎ𝑜𝑚𝑒
(e.g., channels over which ℎ𝑜𝑚𝑒 transmits snoop requests);

3) 𝐶𝑝→ℎ = ⋃ 𝐶𝑖→0
𝑁
𝑖=1 is the set of simple channels of capacity

1 used by ℎ𝑜𝑚𝑒 to receive messages from the basic processes
(e.g., channels over which senders inform ℎ𝑜𝑚𝑒 on operation
completion).

Messages transmitted via channels are ordered pairs of the

form (𝑜𝑝𝑐, 𝑖), where 𝑜𝑝𝑐 is an operation code, and 𝑖 is an iden-

tifier of the message sender.

A verified cache coherence property looks as follows:

𝐆{∀𝑘, 𝑙 ∈ {1, … 𝑁}: (𝑘 ≠ 𝑙) → 𝜑{𝑖/𝑘, 𝑗/𝑙}},

where 𝐆 is an operator that requires its argument to be true in

all reachable states of the model [5]; 𝜑 is a formula with two

free indices, 𝑖 and 𝑗, that characterizes cache coherency in the

corresponding caches. For MOSI protocols [3], 𝜑 is as follows:

{
¬(𝑐𝑎𝑐ℎ𝑒[𝑖] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[𝑗] ≠ 𝐼);

¬(𝑐𝑎𝑐ℎ𝑒[𝑖] = 𝑂 ∧ 𝑐𝑎𝑐ℎ𝑒[𝑗] = 𝑂);

where 𝑐𝑎𝑐ℎ𝑒 is an array that stores the cache line states.

C. Informal Description of the Method
The core of the proposed method is syntactical transfor-

mation of PROMELA code. The transformations change the pro-

cess types; moreover, instead of 𝑁 + 1 processes, four pro-

cesses remain: a modified ℎ𝑜𝑚𝑒 process (ℎ𝑜𝑚𝑒𝑎𝑏𝑠), two mod-

ified 𝑝𝑟𝑜𝑐 processes (𝑝𝑟𝑜𝑐𝑎𝑏𝑠), and an environment process

(𝑝𝑟𝑜𝑐𝑒𝑛𝑣) that represents the remaining processes. Accordingly,

the abstract model’s initialization process is as follows (𝐴𝐵𝑆 is

a constant distinct from 0, 1, and 2):

init {

 atomic {

 run homeabs(0);

 run procabs(1);

 run procabs(2);

 run procenv(ABS);

 }

}

The length of all arrays is changed from 𝑁 to 2 (recall that

arrays are indexed with the identifiers of the 𝑝𝑟𝑜𝑐 processes).

Each array access is supplied with the guard 𝑖 ≤ 2, where 𝑖 is

the index of the element being accessed.

1) On read (in a condition), the atomic formula containing the

array access, is replaced with 𝑢𝑛𝑑𝑒𝑓 (undefined value) if the

index is rejected by the guard:

𝐵(𝑥[𝑖], …) ⟹ (𝑖 ≤ 2 → 𝐵(𝑥[𝑖], …) ∶ 𝑢𝑛𝑑𝑒𝑓).

In PROMELA, the formula (𝐵 → 𝑡1 ∶ 𝑡2) corresponds to the con-

ditional construct 𝐢𝐟 𝐵 𝐭𝐡𝐞𝐧 𝑡1 𝐞𝐥𝐬𝐞 𝑡2 𝐟𝐢.

2) On write (in an assignment), the assignment to the array is

placed inside the selection statement:

𝑥[𝑖] = 𝑡 ⟹ 𝐢𝐟 ∷ 𝐚𝐭𝐨𝐦𝐢𝐜 {𝑖 ≤ 2 𝑥[𝑖] = 𝑡} ∷ 𝐞𝐥𝐬𝐞 𝐟𝐢

Assignments to global variables as well as conditions on

global variables remain unchanged.

Channels of the set 𝐶ℎ→𝑝 are represented as an array (let us

denote it as 𝑐ℎ). Similarly to other arrays, it is truncated to

length two. Each atomic formula over 𝑐ℎ[𝑖], where 𝑖 > 2, is re-

placed with 𝑢𝑛𝑑𝑒𝑓, while each assignment to such a channel is

removed. Channels of the sets 𝐶∗ and 𝐶𝑝→ℎ are represented by

individual channels instead of arrays.

Send statements are either unchanged or removed. A state-

ment 𝑐ℎ! 𝑚 in a process type 𝑃 is removed only in the follow-

ing cases:

1) 𝑐ℎ ∈ 𝐶ℎ→𝑒 and 𝑃 = ℎ𝑜𝑚𝑒𝑎𝑏𝑠, where 𝐶ℎ→𝑒 = ⋃ 𝐶0→𝑗
𝑁
𝑗=3 ;

e.g., ℎ𝑜𝑚𝑒𝑎𝑏𝑠 does not send snoop requests to 𝑝𝑟𝑜𝑐𝑒𝑛𝑣;

2) 𝑐ℎ ∈ 𝐶∗ и 𝑃 = 𝑝𝑟𝑜𝑐𝑒𝑛𝑣;
e.g., 𝑝𝑟𝑜𝑐𝑒𝑛𝑣 does not send primary requests / snoop responses.

Receive statements may be left unchanged, modified, or re-

moved. A statement 𝑐ℎ? 𝑚 in a process type 𝑃 is removed only

in the following case:

𝑐ℎ ∈ 𝐶ℎ→𝑒 and 𝑃 = 𝑝𝑟𝑜𝑐𝑒𝑛𝑣;

e.g., 𝑝𝑟𝑜𝑐𝑒𝑛𝑣 does not receive snoop requests.

Modification of 𝑐ℎ? 𝑚 takes place solely in the following case:

𝑐ℎ ∈ 𝐶∗ and 𝑃 ∈ {ℎ𝑜𝑚𝑒𝑎𝑏𝑠, 𝑝𝑟𝑜𝑐𝑎𝑏𝑠}.

The corresponding transformation replaces the guarded action

𝐚𝐭𝐨𝐦𝐢𝐜 {𝐵 → 𝑐ℎ? 𝑚} with the following selection statement:

if

:: atomic {B ch?m};

:: atomic {m.opc = opc1; m.i = ABS}

...

:: atomic {m.opc = opck; m.i = ABS}

fi

Here, 𝐵′ is the result of 𝐵 transformation, and 𝑜𝑝𝑐1, … , 𝑜𝑝𝑐𝑘

are all possible operation codes that may be sent along 𝑐ℎ.

Having performed the above transformations, logical for-

mulae with 𝑢𝑛𝑑𝑒𝑓 (in essence, formulae of Kleene’s strong

three-valued logic) are transformed into classic logic formulae

such that 𝑢𝑛𝑑𝑒𝑓 in the outer scope is interpreted as 𝑡𝑟𝑢𝑒. This

is achieved by the obvious transformation 𝐹:

1) 𝐹(𝜑) = 𝐹′(𝜑, 𝑡𝑟𝑢𝑒);

2) 𝐹′(𝑢𝑛𝑑𝑒𝑓, 𝑇) = 𝑇;

3) 𝐹′(𝐵, 𝑇) = 𝐵, where 𝐵 is an atom distinct from 𝑢𝑛𝑑𝑒𝑓;

4) 𝐹′(¬𝜑, 𝑇) = ¬𝐹′(𝜑, ¬𝑇);

5) 𝐹′(𝜑 ∘ 𝜓, 𝑇) = 𝐹′(𝜑, 𝑇) ∘ 𝐹′(𝜓, 𝑇), where ∘ ∈ {∧,∨}.

When transforming the PROMELA model the following op-

timizations are applied:

1) constant propagation and folding;

2) dead code elimination.

Here are simple examples of the optimizations:

79 of 251

1) (𝑖 ≤ 2) ⟹ 𝑡𝑟𝑢𝑒 in ℎ𝑜𝑚𝑒𝑎𝑏𝑠 and 𝑝𝑟𝑜𝑐𝑎𝑏𝑠;

2) (𝑡𝑟𝑢𝑒 ∧ 𝐵) ⟹ 𝐵 and (𝑓𝑎𝑙𝑠𝑒 ∧ 𝐵) ⟹ 𝑓𝑎𝑙𝑠𝑒;

3) 𝐚𝐭𝐨𝐦𝐢𝐜 {𝑡𝑟𝑢𝑒 → 𝛼} ⟹ 𝛼 if 𝛼 cannot be blocked.

IV. THEORETICAL FOUNDATIONS

A. Basic Definitions
Let 𝑉𝑎𝑟 be a set of variables and 𝐶ℎ𝑎𝑛 be a set of channels.

𝐷𝑎𝑡𝑎 = 𝑉𝑎𝑟 ∪ 𝐶ℎ𝑎𝑛 is referred to as the set of data. For each
𝑐 ∈ 𝐶ℎ𝑎𝑛, a value |𝑐| > 0, called capacity, is defined. A data
state, or state for short, is a valuation of data, i.e. a mapping 𝑠
that maps each variable 𝑣 to the value 𝑠(𝑣) ∈ ℕ and each chan-
nel 𝑐 to the sequence of messages 𝑠(𝑐) ∈ 𝕄∗ such that |𝑠(𝑐)| ≤
|𝑐|. The set of all states is denoted by 𝑆. A designated state 𝑠0 ∈
𝑆 is called initial.

Let us assume that a language over data is formally defined.
It includes logic formulae and statements, such as 𝑥 = 𝑡 (assign-
ment), 𝑐 ! 𝑚 (send), and 𝑐 ? 𝑚 (read).

A guard is a formula; an action is a sequence of statements;
a guarded action is a pair 𝛾 → 𝛼, where 𝛾 is a guard, and 𝛼 is an
action. The guarded action 𝑡𝑟𝑢𝑒 → 𝜖, where 𝜖 is the empty se-
quence of statements, is called empty and designated as 𝜀. The
set of all guarded actions is denoted by 𝐴𝑐𝑡. A guarded action
𝛾 → 𝛼 is called executable in 𝑠 ∈ 𝑆 iff 𝑠 ⊨ 𝛾.

A process graph, or process for short, is a triple 〈𝑉, 𝑣0, 𝐸〉,
where 𝑉 is a set of vertices, 𝑣0 ∈ 𝑉 is an initial vertex, and 𝐸 ⊆
𝑉 × 𝐴𝑐𝑡 × 𝑉 is a set of edges.

Process structure is defined by the control statements: 𝐢𝐟 (se-
lection), 𝐝𝐨 (repetition), and 𝐠𝐨𝐭𝐨 (jump). Correspondence be-
tween code and process graphs is straightforward.

A system is a set of processes, i.e. {〈𝑉𝑖 , 𝑣0𝑖
, 𝐸𝑖〉}

𝑖=0

𝑁
. Herein-

after, 𝑃𝑖 is a shortcut for 〈𝑉𝑖 , 𝑣0𝑖
, 𝐸𝑖〉. A configuration of {𝑃𝑖}𝑖=0

𝑁

is a pair 〈𝑙, 𝑠〉, where 𝑙: {0, … , 𝑁} → ⋃ 𝑉𝑖
𝑁
𝑖=0 such that 𝑙(𝑖) ∈ 𝑉𝑖

for all 𝑖 ∈ {0, … , 𝑁} (so-called control state), and 𝑠 ∈ 𝑆 . The

configuration 〈𝑙0, 𝑠0〉, where 𝑙0(𝑖) = 𝑣0𝑖
 for all 𝑖 ∈ {0, … , 𝑁}, is

called initial.

The state space of {𝑃𝑖}𝑖=0
𝑁 is a triple 〈𝐶, 𝑐0, 𝑇〉, where 𝐶 is the

set of all configurations of the system, 𝑐0 is the initial configura-

tion, and 𝑇 ⊆ 𝐶 × ({0, … , 𝑁} × (⋃ 𝐸𝑖
𝑁
𝑖=0)) × 𝐶 is a transition

relation such that (〈𝑙, 𝑠〉, (𝑖, (𝑣, 𝛾 → 𝛼, 𝑣′)), 〈𝑙′, 𝑠′〉) ∈ 𝑇 iff:

1) 𝑙(𝑖) = 𝑣;

2) (𝑣, 𝛾 → 𝛼, 𝑣′) ∈ 𝐸𝑖;

3) 𝑠 ⊨ 𝛾;

4) 𝑙′ = (𝑙 ∖ {𝑖 ↦ 𝑣}) ∪ {𝑖 ↦ 𝑣′};

5) 𝑠′ = ⟦𝛼⟧(𝑠), where ⟦𝛼⟧: 𝑆 → 𝑆 is the semantics of 𝛼.

It is worth mentioning that the restrictions on the transition
relation conform to the notion of asynchronous parallelism.

A configuration 𝑐 is called reachable in 〈𝐶, 𝑇, 𝑐0〉 iff there is
a path in 𝑇 from 𝑐0 to 𝑐. A state 𝑠 is called reachable iff a con-
figuration 〈𝑙, 𝑠〉 is reachable for some 𝑙.

B. Abstraction of Processes and Systems
A process transformation, or transformation for short, is a

function that maps one process to another.

Let 𝐷𝑎𝑡𝑎𝑆 = (𝑉𝑎𝑟𝑆 ∪ 𝐶ℎ𝑎𝑛𝑆) ⊆ 𝐷𝑎𝑡𝑎 be a set of signifi-
cant data (variables and channels). States 𝑠 and 𝑠′ are called

equivalent (𝑠 ~ 𝑠′) iff 𝑠|𝐷𝑎𝑡𝑎𝑆
= 𝑠′|𝐷𝑎𝑡𝑎𝑆

.

A guarded action 𝛾′ → 𝛼′ is referred to as an abstraction of
𝛾 → 𝛼 in 𝑠 ∈ 𝑆 iff:

1) the truth of 𝛾′ is determined only by the significant data:
for all 𝑠′ ∈ 𝑆 such that 𝑠′ ~ 𝑠, 𝑠′ ⊨ 𝛾′ iff 𝑠 ⊨ 𝛾′;

2) the effect of 𝛼′ is determined only by the significant data:
for all 𝑠′ ∈ 𝑆 such that 𝑠′ ~ 𝑠, there holds ⟦𝛼′⟧(𝑠′) ~ ⟦𝛼′⟧(𝑠);

3) the guard 𝛾′ is weaker than 𝛾: 𝑠 ⊨ 𝛾 → 𝛾′;

4) the action 𝛼′ acts similar to 𝛼: ⟦𝛼′⟧(𝑠) ~ ⟦𝛼⟧(𝑠).

A set of guarded actions {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 is referred to as an ab-

straction of 𝛾 → 𝛼 in 𝑠 ∈ 𝑆 iff there exists 𝑖 ∈ {1, … , 𝑚} such

that 𝛾𝑖
′ → 𝛼𝑖

′ is an abstraction of 𝛾 → 𝛼 in 𝑠.

A guarded action 𝛾′ → 𝛼′ (a set {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚) is referred to

as an abstraction of 𝛾 → 𝛼 iff 𝛾′ → 𝛼′ ({𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚) is an ab-

straction of 𝛾 → 𝛼 in all states.

An abstraction function is a mapping 𝑓: 𝐴𝑐𝑡 → 2𝐴𝑐𝑡 such
that for all 𝛾 → 𝛼 ∈ 𝐴𝑐𝑡, 𝑓(𝛾 → 𝛼) is an abstraction of 𝛾 → 𝛼.
The abstraction function 𝐼(𝛾 → 𝛼) ≡ {𝛾 → 𝛼} is called trivial.

It should be emphasized that abstraction takes into account
context of a guarded action (the process edge, the process, and
the model). It is assumed that each guarded action contains the
context information.

Let 𝑃 = 〈𝑉, 𝑣0, 𝐸〉 be a process, 𝑓 be an abstraction func-
tion, 𝑉′ be some set, and 𝑅: 𝑉 → 𝑉′ be a mapping. An abstrac-
tion of 𝑃 induced by 𝑓 and 𝑅 is 𝑓(𝑃, 𝑅) = 〈𝑉′, 𝑅(𝑣0), 𝐸′〉 ,
where 𝐸′ is defined as follows:

1) if (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸 and 𝑓(𝛾 → 𝛼) = {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 , then

{(𝑅(𝑣), 𝛾𝑖
′ → 𝛼𝑖

′, 𝑅(𝑢))}𝑖=1
𝑚 ⊆ 𝐸′;

2) no other edges belong to 𝐸′.

An abstraction 𝑓(𝑃, 𝑅), where 𝑅 is a bijection is referred to as a
bijective abstraction.

Besides transforming individual processes, transformations
that merges several processes are of interest. Let us consider a
particular kind of such transformations, where processes to be
merged are identical.

Given a system {𝑃𝑖}𝑖=0
𝑁 , the following denotations can be in-

troduced (𝑖 ∈ {0, … , 𝑁}):

1) 𝑈𝑠𝑒𝑖 is the set of variables read by 𝑃𝑖;

2) 𝑈𝑠𝑒𝐿𝑖
 is the set of variables read solely by 𝑃𝑖;

3) 𝐷𝑒𝑓𝑖 is the set of variables assigned by 𝑃𝑖;

4) 𝐷𝑒𝑓𝐿𝑖
 is the set of variables assigned solely by 𝑃𝑖;

5) 𝑉𝑎𝑟𝑖 = 𝑈𝑠𝑒𝑖 ∪ 𝐷𝑒𝑓𝑖 is the set of variables of 𝑃𝑖;

6) 𝑉𝑎𝑟𝐿𝑖
= 𝑈𝑠𝑒𝐿𝑖

∪ 𝐷𝑒𝑓𝐿𝑖
 is the set of local variables of 𝑃𝑖;

7) 𝑉𝑎𝑟𝐺 = 𝑉𝑎𝑟 ∖ (⋃ 𝑉𝑎𝑟𝐿𝑖

𝑁
𝑖=0) is the set of global variables.

80 of 251

Similarly, the following sets of channels (including the sets of
local channels and the set of global channels) can be defined:
𝐼𝑛𝑖, 𝐼𝑛𝐿𝑖

, 𝑂𝑢𝑡𝑖, 𝑂𝑢𝑡𝐿𝑖
, 𝐶ℎ𝑎𝑛𝑖, and 𝐶ℎ𝑎𝑛𝐿𝑖

. In addition,

1) 𝐷𝑎𝑡𝑎𝑖 = 𝑉𝑎𝑟𝑖 ∪ 𝐶ℎ𝑎𝑛𝑖 is the set of data of 𝑃𝑖;

2) 𝐷𝑎𝑡𝑎𝐿𝑖
= 𝑉𝑎𝑟𝐿𝑖

∪ 𝐶ℎ𝑎𝑛𝐿𝑖
 is the set of local data of 𝑃𝑖;

3) 𝐷𝑎𝑡𝑎𝐺 = 𝑉𝑎𝑟𝐺 ∪ 𝐶ℎ𝑎𝑛𝐺 is the set of global data;

Processes are called identical if they can be transformed one
another by renaming their local data.

Let {𝑃𝑖}
𝑖=𝑘1

𝑘2 be a system of identical processes, 𝑔 be an ab-

straction function, 𝑉′ be some set, and 𝑅: 𝑉𝑘1
→ 𝑉′ be a map-

ping. The process 𝑔(𝑃𝑘1
, … , 𝑃𝑘2

; 𝑅) = 𝑔(𝑃𝑘1
, 𝑅) is called a uni-

fying abstraction of {𝑃𝑖}𝑖=1
𝑘 induced by 𝑔 and 𝑅.

Provided that the processes {𝑃𝑖}
𝑖=𝑘1

𝑘2 operate simultaneously,

some control states cannot be adequately represented by a single

vertex of the abstraction 𝑔(𝑃𝑘1
, … , 𝑃𝑘2

; 𝑅). On the other hand,

the serializability requirement (where at most one process is al-
lowed to operate at each moment of time) is too strict. Let us
assume that each process can be either active or passive. It is
prohibited than two or more processes are active simultaneously.
The passive mode is organized as follows: a request is received,
the local data are updated, a response is sent, and the control is
returned to the initial vertex.

Let 𝑉(𝐸′) be the set of all vertices of the edges from 𝐸′.

A process 𝑃 = 〈𝑉, 𝑣0, 𝐸𝐴 ∪ 𝐸𝑃〉 is referred to as a bimodal
process with the set of active edges 𝐸𝐴 and the set of passive
edges 𝐸𝑃 iff 𝐸𝐴 ∩ 𝐸𝑃 = ∅ and the graph 〈𝑉(𝐸𝑃), 𝐸𝑃〉 is strongly
connected.

Given a bimodal process 𝑃 = 〈𝑉, 𝑣0, 𝐸𝐴 ∪ 𝐸𝑃〉, the follow-
ing denotation can be introduced: 𝑉𝐴 = 𝑉(𝐸𝐴) and 𝑉𝑃 = 𝑉(𝐸𝑃)
(generally speaking, 𝑉𝐴 ∩ 𝑉𝑃 ≠ ∅).

The process 𝑔(𝑃, 𝑅) = 〈𝑉′, 𝑣0
′ , 𝐸′〉, where 𝑔 is an abstrac-

tion function, and 𝑅: 𝑉 → 𝑉′ is a mapping, is called a serializing
abstraction of 𝑃 iff 𝑅 satisfies the following properties:

1) 𝑅(𝑣) = 𝑣0
′ for all 𝑣 ∈ 𝑉𝑃 ∖ 𝑉𝐴;

2) 𝑅: 𝑉𝐴 → 𝑉′ is a bijection;

and 𝐸′ is defined as follows:

1) if (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸𝐴 and 𝑔(𝛾 → 𝛼) = {𝛾𝑖
′ → 𝛼𝑖

′}𝑖=1
𝑚 , then

{(𝑅(𝑣), 𝛾𝑖
′ → 𝛼𝑖

′, 𝑅(𝑢))}𝑖=1
𝑚 ⊆ 𝐸′;

2) (𝑣0
′ , 𝜀, 𝑣0

′) ∈ 𝐸′ (so-called 𝜀-self loop);

3) no other edges belong to 𝐸′;

and for every (𝑣, 𝛾 → 𝛼, 𝑢) ∈ 𝐸𝑃 , the empty guarded action 𝜀 is
an abstraction of 𝛾 → 𝛼 (i.e. 𝛼 depends on and affects solely in-
significant data).

The nature of the serializing abstraction is removing all pas-
sive edges and replacing them with the 𝜀-self loop (𝑣0

′ , 𝜀, 𝑣0
′).

Being applied to identical bimodal processes, such abstraction
makes them unimodal and serializable (at most one process is
operating at each moment of time) and allows constructing an
adequate unifying abstraction.

Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁 be a system where all processes, except

maybe 𝑃0 , are identical and bimodal; 𝑘 ∈ {0, … , 𝑁} be some

number; 𝐷𝑎𝑡𝑎𝑆 be significant data; 𝑉𝑖
′ , where 𝑖 ∈ {0, … , +1},

be some sets; 𝑅𝑖: 𝑉𝑖 → 𝑉𝑖
′ be some mappings. Let 𝑓𝑖, where 𝑖 ∈

{0, … , 𝑘}, and 𝑔 be abstraction functions; at that, 𝑓𝑖(𝑃𝑖 , 𝑅𝑖) are
bijective abstractions, while 𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is a serializ-
ing abstraction. Then, the system

𝑀′ = {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘 ∪ {𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1)}

is called an abstraction of 𝑀. Each process 𝑓𝑖(𝑃𝑖 ; 𝑅𝑖), where 𝑖 ∈
{0, … , 𝑘}, is referred to as an abstraction of the process 𝑃𝑖 , while
the process 𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is referred to as an abstraction
of the environment.

Statement. Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁 and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respec-

tively, a system and its abstraction. Given an arbitrary state 𝑠, if
𝑠 is reachable in the state space of 𝑀, then there is a state 𝑠′
reachable in the state space of 𝑀′ and such that 𝑠′ ~ 𝑠.

Corollary. Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁 and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respec-

tively, a system and its abstraction. Given an arbitrary formula
𝜑 over significant data, if 𝜑 is true (false) in all states reachable
in the state space of 𝑀′, then 𝜑 is true (false) in all states reach-
able in the state space of 𝑀.

C. Protocol Model Abstraction
This section defines abstraction functions used for protocol

model transformation. The description is not quite formal: rigor-
ous definition requires, first, formalization of PROMELA seman-
tics and, seconds, involvement of formalisms for describing code
transformations.

Let 𝑀 = {𝑃𝑖}𝑖=0
𝑁 and 𝑀′ = {𝑃𝑖

′}𝑖=0
𝑘+1 be, respectively, a sys-

tem (referred to as an original protocol model) and its abstrac-
tion (referred to as an abstract protocol model).

Let us recall that each message circulated in the model in-
cludes the sender’s identifier. A state of a channel being written
by a process 𝑃𝑖 , where 𝑖 ∈ {𝑘 + 1, … , 𝑁}, as well as messages
being read from the channel may contain identifiers from the set
{𝑘 + 1, … , 𝑁}. In the abstract model, there are no such identifi-
ers: all elements {𝑘 + 1, … , 𝑁} are mapped to 𝐴𝐵𝑆 (usually,
𝐴𝐵𝑆 = 𝑘 + 1). Thus, the definition of the guarded action ab-
straction should be modified: states differing only as it is de-
scribed above are considered to be equivalent.

Another issue is as follows. A state of a channel’s buffer is
not of importance until a message is read. The idea is to consider

some channels (in particular, channels written by {𝑃𝑖}𝑖=𝑘+1
𝑁) as

insignificant. In this case, a send statement can be replaced with
𝜀 . To preserve the abstraction properties, each read from the
channel should be supplied (as alternative behavior) with the as-
signments of all possible values that could be sent by via the
channel by the removed statement(s) to the message variable.

The suggested approach to protocol model abstraction im-
plies the following restrictions on the input model:

1) 𝐷𝑎𝑡𝑎𝑆 = 𝐷𝑎𝑡𝑎 ∖ ((⋃ 𝐷𝑎𝑡𝑎𝐿𝑖

𝑁
𝑖=𝑘+1) ∪ (⋃ 𝑂𝑢𝑡𝑖

𝑁
𝑖=𝑘+1));

2) for each 𝑖 ∈ {𝑘 + 1, … , 𝑁}, there holds 𝐶ℎ𝑎𝑛𝑖 = 𝐶ℎ𝑎𝑛𝐴𝑖
∪

𝐶ℎ𝑎𝑛𝑃𝑖
, where 𝐶ℎ𝑎𝑛𝐴𝑖

 and 𝐶ℎ𝑎𝑛𝑃𝑖
 are the sets of channels

used, respectively, in the active and passive modes, and:

81 of 251

a. 𝐶ℎ𝑎𝑛𝐴𝑖
∩ 𝐶ℎ𝑎𝑛𝑃𝑖

= ∅;

b. 𝐶ℎ𝑎𝑛𝐴𝑖
⊆ 𝐶ℎ𝑎𝑛𝐺;

c. 𝐶ℎ𝑎𝑛𝑃𝑖
⊆ 𝐶ℎ𝑎𝑛𝐿𝑖

;

3) only two channel predicates are in use: 𝐞𝐦𝐩𝐭𝐲 and 𝐟𝐮𝐥𝐥;

4) there are no control and data dependencies via variables be-

tween the processes {𝑃𝑖}𝑖=1
𝑁 ;

5) each guarded action is closed under data dependencies via
variables;

6) there are no data dependencies from the local data.

𝑀′ = {𝑃𝑖
′}𝑖=0

𝑘+1 = {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘 ∪ {𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1)} ,

the abstract model, is constructed as follows (the description be-
low can be viewed as a definition of the mappings 𝑅𝑖 and the

abstraction functions 𝑓𝑖 and 𝑔). Initially, each process 𝑃𝑖
′, where

𝑖 ∈ {0, … , 𝑘 + 1}, is isomorphic to 𝑃𝑖: 𝑃𝑖
′ = 𝐼(𝑃𝑖 , 𝑅0𝑖

), where 𝐼

is the trivial abstraction function, and 𝑅0𝑖
: 𝑉𝑖 → 𝑉𝑖

′ is a bijection.

Then, the following transformations are applied to 𝑃𝐴𝐵𝑆
′ = 𝑃𝑘+1

′
and the rest processes:

1) all passive edges of 𝑃𝐴𝐵𝑆
′ are removed and replaced with the

𝜀-self loop;

2) when removing a passive edge whose action contains a read
from some channel 𝑐 (a write to some channel 𝑐):

a. in {𝑃𝑖
′}𝑖=0

𝑘 , for all 𝑗 ∈ {𝑘 + 1, … , 𝑁}, all writes to 𝑐𝑗 (all

reads from 𝑐𝑗), where 𝑐𝑗 is a channel of 𝑃𝑗 correspond-

ing to 𝑐 (the processes are identical), are removed;

b. when removing a read to a message 𝑚:

i. in the guards dependent on 𝑚, the minimal subfor-
mulae dependent on 𝑚 are replaced with 𝑢𝑛𝑑𝑒𝑓;

3) the active edges of 𝑃𝐴𝐵𝑆
′ are processed as follows:

a. all assignments to the local variables are removed;

b. when removing an assignment to a local variable 𝑥:

i. in the guards dependent on 𝑥, the minimal subfor-
mulae dependent on 𝑥 are replaced with 𝑢𝑛𝑑𝑒𝑓;

c. each read from a global channel 𝑐 is not modified:

i. in {𝑃𝑖
′}𝑖=0

𝑘 , writes to 𝑐 are not modified;

d. each write to a global channel 𝑐 is removed:

i. in {𝑃𝑖
′}𝑖=0

𝑘 , each read 𝑐 ? 𝑚 is supplemented with

the alternatives {𝑚 = 𝑣𝑗}
𝑗=1

𝑡
, where {𝑣𝑗}

𝑗=1

𝑡
 con-

tains all possible values that 𝑃𝐴𝐵𝑆
′ can send via 𝑐.

Statement. The processes {𝑓𝑖(𝑃𝑖 , 𝑅𝑖)}𝑖=0
𝑘 (constructed as it

is described above) are bijective abstractions, while the process
𝑔(𝑃𝑘+1, … , 𝑃𝑁; 𝑅𝑘+1) is a serializing abstraction.

V. CASE STUDY

The proposed method was used to verify the MOSI family

cache coherence protocols implemented in the Elbrus computer

systems. The developed PROMELA model supports memory ac-

cesses the types Write Back, Write Through, and Write Com-

bined. The experiments were performed on an Intel Core i7-

4771 machine with a clock rate of 3.5 GHz. The verified prop-

erties are as follows:

1) 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[2] = 𝑀)};

2) 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑂 ∧ 𝑐𝑎𝑐ℎ𝑒[2] = 𝑂)};

3) 𝐆{¬(𝑐𝑎𝑐ℎ𝑒[1] = 𝑀 ∧ 𝑐𝑎𝑐ℎ𝑒[2] ∈ {𝑂, 𝑆})}.

Table 1 and Table 2 show resources consumed for checking

the property (1), respectively, on the original and the abstract

model for 𝑛 = 3. Note that in this case the proposed abstraction

preserves the number of processes: ℎ𝑜𝑚𝑒(0) , 𝑝𝑟𝑜𝑐(1) , and

𝑝𝑟𝑜𝑐(2) are replaced with their abstract counterparts, while

proc(3) is replaced with 𝑝𝑟𝑜𝑐𝑒𝑛𝑣(𝐴𝐵𝑆).

Table 1. Required resources — original model

SPIN

optimization

State space

size

Memory

consumption

Verification

time

𝐴𝑏𝑠𝑒𝑛𝑡 5.1 106 682 Mb 9 s

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 5.1 106 328 Mb 15 s

Table 2. Required resources — abstract model

SPIN

optimization

State space

size

Memory

consumption

Verification

time

𝐴𝑏𝑠𝑒𝑛𝑡 2.2 106 256 Mb 3.7 s

𝐶𝑂𝐿𝐿𝐴𝑃𝑆𝐸 2.2 106 108 Mb 6.2 s

The tables show that even for 𝑛 = 3 there is a gain in state

space size and memory consumption. Meanwhile, verification

of the constructed abstract model means verification of the pro-

tocol for any 𝑛 ≥ 3. The task has been reduced to checking of

~106 states, which consumes ~100 Mb of memory.

VI. CONCLUSION

Many high-performance computers and most multicore mi-

croprocessors use shared memory and utilize complicated cach-

ing mechanisms. To ensure that multiple copies of data are kept

up-to-date, cache coherence protocols are employed. Errors in

the protocols and their implementations may cause serious con-

sequences such as data corruption and system hanging. This ex-

plains the urgency of the corresponding verification methods.

The main problem when verifying cache coherence proto-

cols is state explosion. The article proposes an approach to over-

come the problem and make verification scalable. A protocol

model is described in PROMELA, a widely spread language in

the verification community. The method is aimed at transform-

ing the model so as the result is independent of the number of

processors and can be verified by the SPIN model checker.

The approach was successfully applied to the verification of

the MOSI family cache coherence protocols implemented in the

Elbrus computer systems.

Directions of future work include extension of the method

with counterexample-guided abstraction refinement (CEGAR),

development of an open-source tool for syntactical transfor-

mations of PROMELA models (an experimental prototype is al-

ready available), and creation of a model-based technology for

verifying cache coherence protocols and memory management

units of industrial computer systems.

82 of 251

REFERENCES

[1] Patterson D.A., Hennessy J.L. Computer Organization and
Design: The Hardware/Software Interface. Morgan Kaufmann,
2013. 800 p.

[2] Kim A.K., Perekatov V.I., Ermakov S.G. Mikroprocessory i
vychislitel'nye kompleksy semejstva «El'brus» (Microprocessors
and computer systems of the Elbrus familty). SPb.: Piter, 2013.
272 p.

[3] Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory
Consistency and Cache Coherence. Morgan and Claypool, 2011.
195 p.

[4] Kamkin A.S., Petrochenkov M.V. Sistema podderzhki verifikacii
realizacij protokolov kogerentnosti s ispol'zovaniem formal'nyh
metodov (A system to support formal methods-based verification
of coherence protocol implementations) // Voprosy
radioehlektroniki. Ser. EVT. 2014. Vyp. 3. P. 27-38.

[5] Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT
Press, 1999. 314 p.

[6] Burenkov V.S. Analiz primenimosti instrumenta SPIN k
verifikacii protokolov kogerentnosti pamyati (An analysis of the
SPIN model checker applicability to cache coherence protocols
verification) // Voprosy radioehlektroniki. Ser. EVT. 2014.
Vyp. 3. P. 126-134.

[7] Emerson E.A., Kahlon V. Exact and Efficient Verification of
Parameterized Cache Coherence Protocols // Correct Hardware
Design and Verification Methods, IFIP WG 10.5 Advanced
Research Working Conference, 2003. P. 247-262.

[8] Holzmann, G.J. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional. 2003. 608 p.

[9] Park S., Dill D.L. Verification of FLASH Cache Coherence
Protocol by Aggregation of Distributed Transactions // Annual
ACM Symposium on Parallel Algorithms and Architectures,
1996. P. 288-296.

[10] Ip C.N., Dill D.L. Verifying Systems with Replicated
Components in Murphi // International Conference on Computer
Aided Verification, 1996. P. 147-158.

[11] Pnueli A., Xu J., Zuck L. Liveness with (0, 1,)-Counter
Abstraction // International Conference on Computer Aided
Verification, 2002. P. 107-122.

[12] Clarke E., Talupur M., Veith H. Environment Abstraction for
Parameterized Verification // Verification, Model Checking, and
Abstract Interpretation, 2006. LNCS, Vol. 3855. P. 126-141.

[13] Clarke E., Talupur M., Veith H. Proving Ptolemy Right: The
Environment Abstraction Framework for Model Checking
Concurrent Systems // International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2008.
P. 33-47.

[14] McMillan K. Parameterized Verification of the FLASH Cache
Coherence Protocol by Compositional Model Checking //
Conference on Correct Hardware Design and Verification
Methods, 2001. P. 179-195.

[15] Chou C.-T., Mannava P.K., Park S. A Simple Method for
Parameterized Verification of Cache Coherence Protocols //
Formal Methods in Computer-Aided Design, 2004. LNCS,
Vol. 3312, P. 382-398.

[16] Krstic S. Parameterized System Verification with Guard
Strengthening and Parameter Abstraction // International
Workshop on Automated Verification of Infinite-State Systems,
2005.

[17] Talupur M., Tuttle M.R. Going with the Flow: Parameterized
Verification Using Message Flows // Formal Methods in
Computer-Aided Design, 2008. P. 1-8.

[18] O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using
Flows: An Industrial Experience // Formal Methods in Computer-
Aided Design, 2009. P. 172-179.

83 of 251

A Model Checking-Based Method of Functional Test

Generation for HDL Descriptions

Mikhail Lebedev, Sergey Smolov

Institute for System Programming of the Russian Academy of Sciences (ISP RAS)

Moscow, Russian Federation

Email: {lebedev, smolov}@ispras.ru

Abstract—Automated test generation is a promising direction

in hardware verification research area. Functional test

generation methods based on models are widespread at the

moment. In this paper, a new functional test generation method is

proposed and compared to existing solutions. It is based on

automated extraction of high-level decision diagram models from

hardware design’s source code. Extracted models are then

automatically translated into an input format of the nuXmv

model checking tool and checked by it. The aim of model

checking is to produce tests that cover all the transitions of an

extended finite state machine model that is also automatically

extracted from the source code. Functional tests are extracted

from the model checker execution results. Experiments show

advantages of the proposed method.

Keywords—hardware design; functional verification; static

analysis; test generation; guarded action; high-level decision

diagram; extended finite state machine; model checking.

I. INTRODUCTION

Functional verification is an expensive and time-
consuming stage of hardware design process [1]. Due to
hardware designs increasing complexity, automated test
generation seems to be important and challenging. To avoid
design complexity, automated verification methods often
utilize mathematical abstractions of system properties and
behavior, so-called models. Models can be created manually
or automatically extracted from the system’s source code.
Automated verification methods based on model extraction
from the HDL (Hardware Description Language – a collective
name for several languages described below) source code are
considered in this paper. Models can be based on the
following formal descriptions: finite-state machines, decision
diagrams, Petri nets [2], etc.

Model checking [3] is an approach to set up the
correspondence between the model of the system and formal
conditions (specifications). For every specification a model
checker tries to produce a counterexample – an input stimuli
sequence that leads the system into a specification-
contradicting state. Counterexample construction is often used
for functional test generation purposes.

Proof of equivalence of a model and the corresponding
system is an important issue when model checking is used for
hardware verification. There is no need in such proof when the

model is automatically extracted from the system’s source
code and translated into the model checker’s format.

A method of functional test generation for hardware is
proposed in this paper. It is based on automatic extraction of
High-Level Decision Diagrams (HLDD) [4] from the system’s
source code. Synthesizable sets of VHDL [5] and Verilog [6]
HDLs are supported. Extracted models are then automatically
translated into SMV (Symbolic Model Verifier) language
supported by the nuXmv [7] model checker. Extended Finite
State Machine (EFSM) transition constraints are used as
specifications for model checking. EFSM model is also
extracted from the system’s source code. Counterexamples
built by the nuXmv model checker are then translated into an
HDL testbench which can be simulated by an HDL simulator.

The rest of the paper is organized as follows. Section II
contains a review of functional test generation methods based
on model extraction from the HDL source code. In Section III
basic definitions are given. Section IV contains HLDD
construction and test generation methods. Section V is
dedicated to the experimental results. Section VI concludes the
paper.

II. RELATED WORKS

The idea of model extraction from the HDL source code
and following test generation is not new. A prototype of CV
tool for VHDL description model checking is presented in [8].
The tool’s execution process consists of five stages. On the
first stage a VHDL description is parsed and an internal
representation is constructed. A Binary Decision Diagram
(BDD) based model is built on the second stage. On the third
stage a CTL-based specification is parsed. The specification
language syntax is described in the paper. On the fourth stage
the specification parsing result and the BDD-based model are
passed to the CBMC [9] model checker. On the final stage the
model checker output is translated into tests which can be
executed by the HDL simulator. It is stated that BDD-based
model size plays the key role in the model checking process.
Model size reduction heuristics usage is suggested to avoid
state space explosion but no heuristics are offered in the paper.

In [10], extraction of the EFSM model and generation of
tests that cover all the model transitions are described (so-
called FATE method). This method assumes that the user
provides additional information for the tool about signal

84 of 251

semantics (for example, which of the signals encodes state).
The EFSM extraction process contains several stages of
transition structure simplification (embedded conditions
elimination, compatible transitions union, dataflow
dependency analysis). The test generation method is based on
the state graph traversal through random walk and
backjumping techniques.

In [11] an improved modification of method [10] is
proposed. Optimizations described concern path reachability
(weakest precondition [12] is used instead of the approximate
approach) and test filtering tasks. A new functional test
generation method called RETGA is also proposed in [11].
This method is based on the algorithm [13] for automated
EFSM model extraction from HDL descriptions. The
algorithm does not require additional information about
signals\variables semantics; for state and clock-like variable
detection it uses heuristics based on dataflow dependencies.
Experiments have shown that RETGA method produces
shorter tests with higher HDL code coverage than FATE and
even improved FATE do.

It should be noted, that state graph traversal techniques
(that FATE and RETGA methods use) do not guarantee
coverage of all the EFSM model transitions. One of the
problems concerns counter [11] variables that are defined in
transition loops and used in transition guards, so an EFSM
simulation engine needs to recognize at which value of the
counter it is going to finish the loop execution.

III. BASIC DEFINITIONS

Suppose that all models described below run in discrete
time that implies clock presence. Clock C is a set of events
{c1,…,ck} where an event c = {signal, edge} is a pair,
consisting of a one-bit signal (so-called clock pulse) and a
type of registration called edge (i.e. positive edge when signal
changes its value from 0 to 1 and negative edge otherwise).

Let V be a set of variables. A valuation is a function that

associates a variable v V with a value [v] from the
corresponding domain. Let DomV be a set of all valuations of
V. A guard is a Boolean function defined on valuations
(DomV → {true, false}). An action is a transform of valuations
(DomV → DomV). A pair γ → δ, where γ is a guard and δ is an
action, is called a guarded action (GA). It is implied that there
is a description of every function in some HDL-like language
(thus, we can reason about not only semantics, but syntax).

Let guarded actions be synchronized [14], if each GA is

associated with a clock. A system {C(i)
,

(i)

 (i)
}i=1,l of

synchronized guarded actions can be represented by an
oriented acyclic graph G = (N, E, C) called Guarded Actions
Decision Diagram (GADD). Here N is a set of graph nodes, E
is a set of graph edges, and C is a clock. N contains two non-
intersecting subsets: a set Ns of non-terminal nodes ns that are
marked by expressions γ(ns); a set Nt of terminal nodes nt that
are marked by actions δ(nt). Graph edges can start from non-
terminal nodes only and finish either in terminal or in non-

terminal nodes. Edges e E are marked by sets Val(e, n) of
accepted values γ(n) (here edge e is an outgoing edge for the

node n, e Out(n)). The node n Ns can have no more than

one ed Out(n) that is marked by default keyword – it means
that for this path in G an expression γ(n) equals to a value that
does not belong to any marking sets of the other edges
outgoing from the node n. Supposing that the GADD contains
exactly one root node nroot (the node without incoming edges,
In(nroot) =), a set of paths from the root node to all the
terminal nodes produces a system of synchronized guarded
actions. For example, the ith

 path, including n1
(i)

,…nm
(i)

 nodes

and e1
(i)

,…, em-1
(i)

 edges (n1
(i)

 nroot, nm
(i)

 Nt,
ek

(i) Out(nu
(i)) In(nu+1

(i)), u = 1,…,m-1), defines a guarded
action with p1

(i)
…pm-1

(i)
 (pr

(i)
 = AND(γ(nr) == q), r = 1,…,m-1,

q Val(er, nr)) conjunction as a guard and δ(nm
(i)

) as an
action. The guarded action clock is a subset of the GADD
clock.

In [4] a definition of a high-level decision diagram
(HLDD) is given and is shown that every variable of an HDL
description can be represented by a function
v = f(v1,…,vn) = f(V) in terms of HLDD Hv. Let Z(v) be a finite

set of all possible values of a variable v V. A High-Level
Decision Diagram for v is an oriented acyclic graph

Hv = (M, , V) where M is a set of nodes, and is a mapping

M → 2M
. Let (m) be a set of subsequent nodes of the node

m M and -1(m) be a set of preceding nodes of the node m.
A node m0 of the graph Hv is said to be initial if the set of its
preceding nodes is empty: Γ -1(m0) = . M consists of two
non-intersecting subsets: Mn for non-terminal nodes and Mt for

terminal nodes. All the non-terminal nodes mc Mn are

marked by variables v(mc) V and meet the following
condition: 2 ≤ |Γ(mc)| ≤ |Z(v(mc))|. This means that mc has at
least two subsequent nodes but not more than the number of

possible values of v(mc). All the terminal nodes mk Mt are

marked by functions v(mk) = fk(Vk), fk(Vk) F (Vk V).
Usually some of these functions are trivial and equal either to

variables vk V or to constants. All the edges are marked by
sets of accepted values of variables in the same manner as in
the GADD definition; the semantics of the default edges is
also similar.

On every tick of the clock, the HLDD Hv assigns a value to
the target variable v through an activation procedure. Starting
from the initial node m0 it calculates values of the variables
which mark non-terminal nodes. For a value e of the variable

v(mc), e Z(v(mc)), the corresponding edge from the node

mc M to the subsequent node me
 Γ(mc) is activated. A

vector Vt
 of variable values activates the path l(m0, mk) from

m0 to the terminal node mk marked by the function fk(Vk) that
determines the value of the target variable v.

IV. HLDD MODEL CONSTRUCTION AND TEST GENERATION

METHOD

The proposed test generation method consists of the
following steps:

1. HDL (VHDL/Verilog) description parsing and GADD
model construction.

2. HLDD model construction using the GADD model.

85 of 251

3. HLDD model and specification translation into the
nuXmv model checker input language (SMV model)
[16].

4. SMV model checking by the nuXmv model checker
and translation of counterexamples into HDL tests.

The first step has been implemented in [13] so we will start
from the second step. Note that all the actions which mark the
terminal nodes of the GADD model are represented in the
static single assignment (SSA) [15] form.

A. HLDD model construction
GADD and HLDD models preserve the module structure

of the original HDL description. Every HDL description
process is represented by a single GADD. The GADD
G = (N, E, C) is used as a basis for HLDD construction for
every non-input variable of the process. HLDD construction
algorithm pseudo code is listed below:

proto = new;

for node N do

 hldd_node = transform_node(node);

 proto.add(hldd_node);

end

copy_edges(E, proto);

for (v : non_input_variables(G)) do

 hldd = proto.keep_assigns(v);

 hldd.add_missing_terminals();

 hldd.transform_identical_assigns();

end
At the first step the HLDD prototype proto is created.

GADD nodes are transformed into HLDD nodes with the help
of the transform_node method and added to the prototype.

Terminal GADD nodes nt Nt are transformed into terminal

HLDD nodes mk Mt. Every terminal node nt marked by
multiple assignment action δ(nt) is transformed into a
sequence of nodes. Every node in this sequence is marked by a
corresponding single assignment ak. Every terminal HLDD
node is marked by a target variable vk (which is the left-hand
side of ak) and a function fk(Vk) (which is the right-hand side of
ak).

Non-terminal GADD nodes ns Ns are transformed into

non-terminal HLDD nodes mc Mn. Guard γ which marks the
node ns is replaced by a new variable guard(mc) which marks
the node mc. The new HLDD that contains a single terminal
node marked by γ is created for this variable
(create_variable_from_switch method). GADD edges are
transformed into HLDD edges by the copy_edges method. The
corresponding values are not changed.

Then for every non-input variable v the HLDD hldd is
created which is actually a modified copy of proto. The
keep_assigns method removes from Mt the terminal nodes
which are not marked by v. After that the
add_missing_terminals method adds new terminal nodes
marked by f(v) = v to the edges which lack the subsequent
terminal nodes. This means that the value of v does not change
if any path to such node is activated. The
transform_identical_assigns method searches for such non-
terminal nodes mc whose reachable terminal nodes are marked

by the same function fk(vk), and replaces mc and its reachable
subgraph with the only terminal node marked by fk(vk).

Consider an example of the HLDD model construction for
a simple VHDL description. This description contains a single
module and a single process. The module interface consists of
input variables clk, rst, x, y and an output variable res (all of 1-
bit size). The process contains two internal variables: a 1-bit
size vector cnt and an integer state (that can be assigned either
0 or 1). The source code of the process is listed below:

process (clk, rst, x, y)

 variable cnt: std_logic;

 variable state: integer range 0 to 1;

begin

if (rst = ‘1’) then

 cnt := ‘0’;

 state := 0;

elsif (clk = ‘1’) then

 if (state = 1) then

 cnt := x or y;

 state := 0;

 elsif (state = 0) then

 cnt := x and y;

 state := 1;

 end if;

 res <= cnt;

end if;
end process;

Fig. 1 shows the GADD model of the process. Non-
terminal nodes of the GADD are shown as diamonds and
correspond to branch expressions. Terminal nodes are shown
as rectangles and correspond to basic blocks. Outgoing edges
from the non-terminal nodes are marked by possible values of
the branch expressions. Note that the default edge on Fig. 1 is
unreachable because the state variable can only take the value
of 0 or 1. The clock of the GADD is formed by events of clk,
rst, x and y signals.

 rst == 1

 cnt<=0

state<=0
 clk == 1

state

 cnt<=(x | y)

state <= 0

res<=(x | y)

 cnt<=(x & y)

state <= 1

res<=(x & y)

 res<=cnt empty

 true false

 true

 1

 0

 default

false

Fig. 1. GADD model.

Fig. 2 shows the HLDD prototype. Expressions which
mark the non-terminal nodes are replaced by guard0, guard1,
guard2 variables.

86 of 251

guard2

guard0

 cnt<=0
guard1

 cnt<=(x | y) cnt<=(x & y) res<=cnt

state<=0

res<=(x | y)

state<=1

res<=(x & y)

state<=0 empty

 true false

 true

 1
 0

 default

false

Fig. 2. HLDD prototype.

Consider the HLDD construction for the cnt variable.
Terminal nodes marked by cnt are highlighted in grey on Fig.
2. Terminal nodes which are not marked by this variable are
removed. New terminal nodes marked by cnt are added to the
free non-terminal node edges (this means that the value of cnt
does not change on these paths). The final HLDD is
represented on Fig. 3. Similar diagrams are constructed for the
other non-input variables of the HDL description (in our
example those are: state and res).

cnt

guard0

 0 guard1

guard2

 (x | y) (x & y) cnt

cnt

 true false

 true

 1

 0 default

false

Fig. 3. HLDD of a cnt variable.

B. SMV model construction and checking
The constructed HLDD model is translated into an SMV

language description. Hardware design module structure is
preserved. Any variable constraints (like the range of possible
values that is specified for the state variable) and their initial

values described in the HDL description are added to the SMV
model.

Specification construction is based on the EFSM model
extracted from the same HDL description. Formal definition
of the EFSM model and its extraction algorithm from an HDL
description are presented in [13]. Here we provide only the
informal definition. Extended finite-state machine is a special
case of an ordinary finite-state machine (FSM). It contains sets
of inputs, outputs and internal variables. EFSM transitions are
marked by guard expressions which depend on input and
internal variable values and by actions which can change
internal and output variable values. A transition can be
enabled only if its guard becomes true. When a transition is
enabled, its action is executed. Specifications used by the
proposed method are represented as negations of the EFSM
transition guards. Negation is used to make the model checker
build a counterexample – a sequence of data states and input
stimuli which contradicts the specification (and thus satisfies
the corresponding guard).

The SMV model along with the specifications is checked
by the nuXmv model checker. Output counterexamples are
translated into a test set aimed at covering reachable EFSM
transitions.

Below you can see the HLDD-to-SMV translation result
for the cnt and guard0 variables. NuXmv-compatible SMV
language format is used. The description consists of the
variable declaration section (VAR) and the assignment section
(ASSIGN). The init construct defines the initial value of a
variable. The next construct defines the value of a variable in
the next model state. The assignment (“:=”) defines the value
of a variable in the current model state. Numeric values in the
example are of bit vector type and are represented by
“0<type><size>_<value>” construct.

VAR

 cnt : word[1];

 guard0 : boolean;

…

ASSIGN

 init(cnt) := 0d1_0;

…

ASSIGN

 next(cnt) :=

 case

 (guard0 = TRUE) : 0d1_0;

 (guard0 = FALSE) :

 case

 (guard1 = TRUE) :

 case

 (guard2 = 0sd32_1) : (x | y);

 (guard2 = 0sd32_0) : (x & y);

 TRUE : cnt;

 esac;

 (guard1 = FALSE) : cnt;

 esac;

 esac;

…

guard0 := (rst = 0d1_1);

guard1 := (clk = 0d1_1);

guard2 := state

87 of 251

The example of an SMV specification is listed next:

LTLSPEC ! F ((state = 0sd32_0) & (clk = 0d1_1)
& !(rst = 0d1_1));

EFSM transition reachability condition consists of the state
variable constraint (which determines the source state of the
transition) and the guard condition depending on the clk and
rst variables.

The nuXmv model checker generates the following
counterexample for this specification:

Trace Type: Counterexample
 -> State: 1.1 <-

 SAMPLE.process.state = 0sd32_0

 SAMPLE.process.cnt = 0ud1_0

 SAMPLE.process.guard2 = 0sd32_0

 SAMPLE.process.guard1 = FALSE

 SAMPLE.process.guard0 = FALSE

 SAMPLE.process.res = 0ud1_0

 clk = 0ud1_0

 y = 0ud1_0

 x = 0ud1_0

 rst = 0ud1_0

 -> State: 1.2 <-

 SAMPLE.process.guard1 = TRUE

 clk = 0ud1_1

The first state shows the initial values assigned to the
variables. The second state shows only the values that have
changed. We can see that the second state contradicts the
given SMV specification: clk is equal to 1, while the rst and
state variables are equal to 0.

V. EXPERIMENTAL RESULTS

The proposed test generation method was implemented as
a part of the HDL Retrascope 0.2.1 software tool [17]. Java
language was used for development along with the Fortress
formulae manipulation library [18]. Some HDL descriptions
from the ITC’99 benchmark [19] were used for testing of the
proposed approach.

The nuXmv model checker supports both symbolic model
checking and bounded model checking [21] methods. In some
cases symbolic model checking needed too much time and
computer resources because of the state explosion (for
example, B04, B10 and B11 designs). Bounded model
checking could manage this problem by exploring the model
state space only up to some bound. However, bound value
affects the model checking results (not all the
counterexamples may be obtained at the specified bound). So
in some cases the bound size was iteratively increased in order
to get all possible counterexamples.

Generated tests were simulated by the QuestaSim HDL
simulator [20]. Test properties (length and source code
coverage) were compared to existing test generation methods
like FATE [10], RETGA [11] (these methods are based on
EFSM model extraction from the HDL descriptions and are
targeted at covering the EFSM model transitions) and random
test generation.

TABLE I. contains information about the ITC’99 designs
that were used for test generation: their source code size and
the corresponding SMV model size (without specifications).
Size is given in lines of code.

TABLE I. HDL DESCRIPTION AND SMV MODEL SIZE

Design HDL SMV

B01 102 207

B02 70 143

B03 134 637

B04 101 809

B06 127 442

B07 92 370

B08 88 315

B09 100 263

B10 167 755

B11 118 368

TABLE II. contains the test length information. Test
length is given in clock cycles. The length of tests generated
by the random generation method corresponds to the point
when the test coverage growth stops (maximum length was
chosen as 1000000 clock cycles). The sign “-” means that the
corresponding method failed to generate tests for the
corresponding HDL design.

TABLE II. TEST LENGTH

Design FATE RETGA SMV Random

B01 115 49 69 300

B02 62 33 47 80

B03 - - 504 2000

B04 104 36 67 200

B06 198 76 88 700

B07 246 166 249 1000

B08 31 52 31 1000000

B09 19 231 84 1000000

B10 173 135 134 650000

B11 101 721 194 1000000

In 5 of 10 cases tests generated by the proposed method
are shorter than tests generated by the FATE method and
longer that RETGA tests. The rest tests are either of
comparable length with the leader (RETGA), or tests
generated by the FATE method provide lower coverage.
Definitive conclusion about the advantages or disadvantages
of the proposed method in comparison with the RETGA
method cannot be made using the selected HDL description
set.

Notice that unlike the FATE and RETGA methods the
proposed method isn’t based on EFSM traversal. So it was
able to generate the test for B03 design in contrast to those
methods (EFSM extracted from this design is too complex for
traversal).

TABLE III. shows the HDL source code statement
coverage in comparison to the FATE, RETGA and random
generation methods.

88 of 251

TABLE III. SOURCE CODE STATEMENT COVERAGE

Design FATE RETGA SMV Random

B01 97,14% 100% 100% 100%

B02 100% 100% 100% 100%

B03 - - 100% 100%

B04 100% 100% 100% 100%

B06 100% 100% 100% 100%

B07 93,93% 93,93% 93,93% 84,85%

B08 81,81% 100% 100% 90,91%

B09 35,29% 100% 100% 61,77%

B10 95,94% 100% 100% 97,29%

B11 69,23% 94,87% 94,87% 87,18%

TABLE IV. shows the HDL source code branch coverage
in comparison to the FATE, RETGA and random generation
methods.

TABLE IV. SOURCE CODE BRANCH COVERAGE

Design FATE RETGA SMV Random

B01 96,15% 100% 100% 100%

B02 100% 100% 100% 100%

B03 - - 100% 100%

B04 100% 100% 100% 100%

B06 100% 100% 100% 100%

B07 94,73% 94,73% 94,73% 73,69%

B08 76,92% 100% 100% 84,62%

B09 35,71% 100% 100% 57,15%

B10 90,47% 100% 100% 97,61%

B11 71,87% 96,87% 96,87% 90,63%

The proposed method achieved the same code coverage as
the RETGA method at the specified set of HDL descriptions.
B07 and B11 HDL description coverage is less than 100%
because of the unreachable code in these designs.

VI. CONCLUSION AND FUTURE WORK

The functional test generation method based on automated
HLDD model extraction and checking with nuXmv is
presented in this paper. The main advantage of this method is
its flexibility in choosing a test target (through using different
kinds of specifications). EFSM transition coverage is
presented for comparison to the other test generation methods
(FATE, RETGA). Any other specifications can be formulated
and checked in order to get a test aimed at covering the
corresponding property of a model.

The presented implementation of the proposed approach
does not produce shorter tests than existing approaches on the
chosen hardware design set. Simple optimizations (like test
filtering) can be helpful and are going to be implemented in
the nearest future.

Future work is focused on applying the method to more
complex hardware designs (including Verilog-based). In this
case complexity is defined by the number of execution paths
in processes and the number of processes and modules in an
HDL description. Process decomposition using dataflow
analysis methods and predicate abstraction [22] test generation
methods are under research now.

ACKNOWLEDGMENT

Authors would like to thank Russian Foundation for Basic
Research (RFBR). The reported study was supported by
RFBR, the research project number is 15-07-03834.

REFERENCES

[1] J. Bergeron, Writing Testbenches: Functional Verification of HDL
Models, Springer, 2003, 478 p.

[2] V.G.Lazarev and E.I. Piil', Sintez upravlyayushchikh avtomatov
(Control automata synthesis), Moscow, Energoatomizdat, 1989, 328 p.
(in Russian).

[3] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking,
Cambridge, MIT Press, 2000, 314 p.

[4] R.J. Ubar, J. Raik, A. Jutman, and M. Jenihhin, “Diagnostic modeling of
digital systems with multi-level decision diagrams”, Design and Test
Technology for Dependable Systems-on-Chip, 2011, pp. 92-118.

[5] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-
2008 (Revision of IEEE Std 1076-2002), 2009, pp.c1-626.

[6] IEEE Standard for Verilog Hardware Description Language, IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), 2006, pp.0_1-560.

[7] D. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A.
Micheli, S. Mover, M. Roveri, and S. Tonetta, “The nuXmv symbolic
model checker”, Proceedings of the 16th International Conference on
Computer Aided Verification (CAV), 2014, № 8559, pp. 334-342.

[8] D. Deharbe, S. Shankar, and E.M. Clarke, “Model checking VHDL with
CV”, Proceedings of the Second International Conference on Formal
Methods in Computer-Aided Design (FMCAD), 1998, pp. 508-514.

[9] CBMC model checker. http://www.cprover.org/cbmc/

[10] G. Guglielmo, L. Guglielmo, F. Fummi, and G. Pravadelli, “Efficient
generation of stimuli for functional verification by backjumping across
extended FSMs”, Journal of Electronic Functional Testing: Theory and
Application, 2011, № 27(2), pp. 137-162.

[11] I. Melnichenko, A. Kamkin, and S. Smolov, “An extended finite state
machine-based approach to code coverage-directed test generation for
hardware designs”, Proceedings of the Institute for System
Programming, 2015, № 27(3), pp. 161-182.

[12] E. Dijkstra, A Discipline of Programming, Prentice Hall, 1976, 217 p.

[13] S. Smolov and A. Kamkin, “A method of extended finite state machines
construction from HDL descriptions based on static analysis of source
code”, St. Petersburg State Polytechnical University Journal. Computer
Science. Telecommunications, № 1(212), 2015, pp. 60-73.

[14] J. Brandt, M. Gemünde, K. Schneider, S. Shukla, and J.-P. Talpin,
“Integrating system descriptions by clocked guarded actions, Forum on
Design Languages, 2011, pp. 1-8.

[15] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
“Efficiently computing static single assignment form and the control
dependence graph”, ACM Transactions on Programming Languages and
Systems, № 13(4), 1991, pp. 451-490.

[16] M. Bozzano, R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A.
Mariotti, A. Micheli, S. Mover, M. Roveri, S. Tonetta, NuXmv 1.0 User
Manual. 2014, pp. 7-44. https://es-
static.fbk.eu/tools/nuxmv/index.php?n=Documentation.Home

[17] HDL Retrascope toolkit. http://forge.ispras.ru/projects/retrascope/

[18] Fortress library. http://forge.ispras.ru/projects/solver-

[19] ITC’99 benchmark. http://www.cad.polito.it/tools/itc99.html

[20] QuestaSim simulator. https://www.mentor.com/products/fv/questa/

[21] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving”, Formal Methods in System Design, 2001,
Vol. 19 Iss. 1, pp. 7-34.

[22] E. Clarke, M. Talupur, H. Veith, and D. Wang, “SAT based predicate
abstraction for hardware verification”, Lecture Notes in Computer
Science, 2004, Vol. 2919, pp. 78-92.

89 of 251

Deriving adaptive checking sequence for

nondeterministic Finite State Machines

Anton Ermakov
Department of Radiophysics

National Research Tomsk State University

Tomsk, Russia

antonermak@inbox.ru

Nina Yevtushenko
Department of Radiophysics

National Research Tomsk State University

Tomsk, Russia

yevtushenko@sibmail.com

Abstract — The derivation of checking sequences for Finite

State Machines (FSMs) has a long history. There are many papers

devoted to deriving a checking sequence that can distinguish a

complete deterministic specification FSM from any non-equivalent

FSM with the same number of states. To the best of our knowledge,

for nondeterministic FSMs, the topic appeared only recently; the

authors started with preset checking sequences for FSMs where the

initial state is still known but the reset is very expensive. In this

paper, a technique is proposed for deriving an adaptive checking

sequence for a complete nondeterministic finite state machine with

respect to the reduction relation.

Keywords —nondeterministic Finite State Machines (FSM),

reduction relation, fault model, test derivation, adaptive checking

sequences.

I. INTRODUCTION

Finite State Machine (FSM) based testing is widely used
when deriving conformance tests for interactive discrete event
systems [1]; a good example is the FSM based test derivation
for telecommunication protocols [2]. In most publications, the
specification FSM is assumed to be initialized and a test suite
is a set of input sequences which are connected by a reliable
reset input [3]. If such reset is rather expensive then so-called
checking sequences are used instead of a test suite [4, 5]. For
deterministic FSMs such sequences are derived when the
specification FSM has a synchronizing (or homing) sequence
that takes the FSM from any state to the known state, and a
distinguishing sequence that distinguishes every two different
states [4]. For nondeterministic FSMs, there are not so many
publications on deriving checking sequences, while
nondeterministic specifications appear in many applications
[5]. One of the reasons for considering nondeterministic
specifications is the optionality that is presented in many
protocol RFCs [6].

In [5], the authors propose a method for deriving a
checking sequence for a complete nondeterministic FSM with
respect to the equivalence relation under appropriate
limitations on the specification FSM and fault domain. In [7],
the authors extend the results for deriving a checking sequence
with respect to the reduction relation. A checking sequence is
adaptive if the next input depends on the outputs produced to
previously applied inputs. Another method for deriving an

adaptive checking sequence with respect to the reduction
relation is proposed in [8].

In this paper, we are weakening some limitations of the
paper [8] and discuss how to use adaptive synchronizing and
distinguishing sequences when deriving an adaptive checking
sequence. When deriving preset checking sequences,
distinguishing sequences are used while when deriving
adaptive tests, it is worth to talk about (adaptive) test cases
rather than about distinguishing sequences. The length of an
adaptive distinguishing test case can be less than that of a
preset distinguishing sequence [9, 10].

In the first part of this paper, we assume that a complete
possibly nondeterministic specification FSM has a separating
(distinguishing) sequence of reasonable length, each state is
deterministically reachable from any other state and an
implementation FSM, further called an Implementation Under
Test (IUT), is complete and deterministic. Moreover, the
behavior of the IUT is not known; we only know the upper
bound on the number of states of the IUT. Under the above
conditions for the specification FSM, an IUT is a reduction of
the specification machine if and only if the IUT is isomorphic
to a submachine of the specification FSM [8] and thus, instead
of checking IUT traces it is enough to establish the one-to-one
correspondence between states and transitions of the
specification FSM and the IUT [4]. In other words, each
transition of the IUT has to be traversed and a separating
sequence has to be applied for verifying the final state of the
transition. This approach allows to derive checking sequences
of reasonable length when separating and transfer sequence
have polynomial length with respect to the number of states of
the specification FSM. We briefly sketch how this can be done
for an adaptive checking sequence.

In the second part of the paper, we discuss how a
separating sequence can be replaced by a distinguishing test
case [11, 12] and a simple example illustrates how such
replacement can shorten the length of an adaptive checking
sequence. Moreover, we note that a distinguishing test case
can exist for the specification FSM that has no separating
sequence. The rest of the paper is structured as follows.
Section II contains the preliminaries. Section III describes an
adaptive strategy when using a separating sequence, while
Section IV describes the strategy modifications when a
distinguishing test case is used instead of a separating

90 of 251

sequence. The conclusions and future work directions are
presented in Section V.

II. PRELIMINARIES

A finite state machine (FSM), or simply a machine, is a 4-

tuple S = S, I, O, hS, where S is a finite nonempty set of

states, I and O are finite input and output alphabets, and hS S
 I O S is a (behavior) transition relation. FSM S is

nondeterministic if for some pair (s, i) S I there can exist

several pairs (o, s) O S such that (s, i, o, s) hS. FSM S

is complete if for each pair (s, i) S I there exists (o, s)
O S such that (s, i, o, s) hS. FSM S is observable if for

each two transitions (s, i, o, s1), (s, i, o, s2) hS it holds that s1
= s2. FSM S is initialized if it has the designated initial state

s1, written S/s1. Thus, an initialized FSM is a 5-tuple S, I, O,

h, s1. In the following, we consider observable and complete
FSMs if the contrary is not explicitly stated. Given FSMs

S = S, I, O, h, s1 and T =T,I ,O,g, t 1 , FSM T is a

submachine S of if T S, t1 = s1 and g h .

FSM S is single-input if at each state there is at most one
defined input at the state, i.e., for each two transitions (s, i1, o1,

s1), (s, i2, o2, s2) hS it holds that i1 = i2 , and S is output-
complete if for each pair (s , i) S I such that the input i is
defined at state s, there exists a transition from s with i for
every output in O. An initialized FSM S is acyclic if the FSM
transition diagram has no cycles. An initialized FSM S is
(initially) connected if each state is reachable from the initial
state.

As an example, consider the machine in Fig. 1. The
machine is defined over the set of inputs I = {i1, i2}, set of
outputs O = {0, 1, 2}, and set of states S = {1, 2, 3}. The
machine is non-deterministic as for example, from state 2
under the input i2 there are three outgoing transitions leading
to states 2 and 3, respectively.

Fig.1. FSM S

Given FSM S = S, I, O, h, state s and an input i, a
sequence of input/output pairs of sequential transitions starting
from state s is a trace of S at state s; the set of all traces of S at
state s including the empty trace is denoted Tr(S/s). For state s

and a sequence (IO)* of input-output pairs, the -
successor of state s is the set of all states that are reached from

s by . If is not a trace at state s then the -successor of state

s is the empty set. For an observable FSM S, the -successor of

s has at most one item. Given an input i and state s, state s is a

successor of state s under the input i or simply an i-successor

of state s if there exists o O such that the 4-tuple

(s , i ,o ,s) h . Given a subset of states M S and an input i,
the set of states M that is the union of i-successors over states
of the set M, is a successor of the set M under the input i or
simply an i-successor of M. As an example, in Fig. 1, the i2-
successor of state 2 is the set {2, 3} and the i2-successor of
state 1 is {2}. Thus, the i2-successor of the set of states {1, 2}
is the set {2, 3}.

In a usual way, the behavior relation is extended to input

and output sequences. Given states s and s, the defined input

sequence can take (or simply takes) the FSM S from state s

to state s if there exists an output sequence such that

(s, , , s) h . The notation successor(s,) is used for
denoting the set of all states reachable from state s after

applying the defined input sequence , i.e., successor(s,) =

{s : O*
 [(s , , , s) h]}. The set out(s,)

denotes the set of all output sequences (responses) that the
FSM S can produce at state s in response to a defined input

sequence , i.e., out(s,) = { : s S [(s , , , s)
h]}. For example, using the machine in Fig. 1, successor(2, i2
i1) = {1, 3} and out(2, i2 i1) = {02, 20, 10}. Given states s and

s, input sequence and output sequence of the same length,

the trace / can take (or simply takes) the FSM S from state s

to state s if (s, , , s) h . An FSM S is deterministically

connected (d-connected) if for each pair s, s S there exists

an input sequence such that successor(s,) = {s }; in this

case, we say that s is d-reachable from state s . The input

sequence such that successor(s,) = {s } is denoted ss. An

initialized machine S is connected if for each s S there
exists an input sequence that takes the FSM S from the initial

state to state s. Given initialized FSMs S = S, I, O, h, s1 and

P = P, I , O, g , p 1 , the intersection S P is the largest

connected submachine of FSM S P , I, O, f, s1p 1 where

(sp , i , o , s p) f (s , i , o , s) h (p , i , o , p)

 g . Given a complete FSM S = S, I, O, h , states s1 and s2

of S are non-separable if for each input sequence I* it

holds that out(s1,) out(s2,) , i.e., the sets of output
responses at states s1 and s2 to each input sequence intersect;
otherwise, states s1 and s2 are separable. For separable states s1

and s2, there exists an input sequence I* such that

out(s1,) out(s2,) = , i.e., the sets of output responses at

states s1 and s2 to the input sequence are disjoint. In this

case, is a separating sequence of states s1 and s2, or simply

separates s1 and s2, written s α p. As an example, consider
states 1 and 2 of the machine in Fig. 1. The sets of output
sequences produced by S at states 1 and 2 to the input
sequence i2 i1 are {22} and {02, 20, 10} which are disjoint;
thus, the sequence i2 i1 is a separating sequence for these two

states. If a sequence separates every pair of states of FSM S
then is a separating sequence for FSM S. By direct inspection,
one can assure that i2 i1 separates each pair of different states
of the FSM S as the set of output sequences produced by S to
i2 i1 at state 3 is {12}. Methods for checking the existence of a
separating sequence together with its derivation (when such a
sequence exists) can be found in [13]. Unfortunately, it is
known that the length of a separating sequence can be
exponential with respect to the number of states of FSM S

i1/0

i2/1

i1/2

i2/2

i2/0

i2/2,1

i1/0

i1/1

2 3

1

91 of 251

despite the fact that performed experiments show that
generally, if a separating sequence exists then it is rather short
[14]. Given complete FSMs S and P, state p of the FSM P is

a reduction of state s of the FSM S, written p s, if the set of
traces of P at state p is a subset of that of S at state s;
otherwise, p is not a reduction of state s, written p ≰ s. The
initialized FSM P/p 1 is a reduction of initialized FSM S/s 1 if
p 1 s 1 , i.e., if the set of traces of P/p 1 is a subset of that of
S/s1 . If the sets of traces of the FSMs S/s1 and P/p 1 coincide
then these machines are equivalent [11].

Fault model. When using FSM based derivation, it is
assumed that the specification FSM describes the reference
behavior while the fault domain contains each possible FSM
implementation of the specification FSM. In our case, all the
machines are initialized complete and observable; moreover,
an implementation FSM is assumed to be deterministic. As a
conformance relation we consider the reduction relation. In
other words, we implicitly assume that the nondeterminism of
the specification is implied by the optionality where a designer
selects a better option according to some criteria. There still is
a reliable reset but it is rather expensive and can be used only
once.

Correspondingly, we consider a fault model FM = <S/s 1 ,

 , > where S/s 1 is a complete possibly nondeterministic

observable initialized FSM with n states, n > 1, is the set of
all complete deterministic FSMs over the same input alphabet
as S with at most n states.

An adaptive strategy for testing a given FSM is a
procedure that derives the next input based on the output of
the IUT to the previous inputs. An adaptive strategy is
complete with respect to the fault model FM if for each P/p 1

 , the output to the applied input sequence is contained in
the set of specification output responses if and only if FSM
P/p 1 is a reduction of S/s1 . The following two propositions
can be useful when proving that a proposed adaptive strategy
is complete with respect to the given FM.

Proposition 1 [11]. Given complete observable FSMs S
and P, the initialized FSM P/p 1 is a reduction of initialized

FSM S/s1 if and only if the intersection P/p 1 S/s 1 is a
complete FSM.

Proposition 2 [15]. Given complete observable FSMs
P/p 1 and S/s1 , let S have a separating sequence and be d-
connected. FSM P/p 1 is a reduction of S/s1 if and only if P/p 1
is isomorphic to some submachine of S/s 1 .

Proposition 2 shows a way how a complete adaptive
strategy can be elaborated. Each transition of an IUT has to be
traversed and the final state should be checked by the use of a
separating sequence. For this reason, the procedure is divided
into two steps. At the first step, we check that an IUT has
exactly n states and fix the output response to a separating
sequence at each state. At the second step, a transition at each
state of the IUT under each input is traversed and the final
state of the transition is checked by the use of a separating
sequence.

Example 1. Consider the specification FSM in Fig. 1.The
FSM S has a separating sequence i2 i1. Table I has output
responses to this sequence at each state.

TABLE I. OUTPUT RESPONSES TO I2I1

State Outputs for separate sequences: i2i1

1 22

2 02, 20, 10

3 12

Moreover, the FSM in Fig. 1 is d-connected, i.e., for each

pair j and k of different states there exists a d-transfer

sequence jk: 12 = i2, 23 = i1, и 31 = i1.

III. ADAPTIVE STRATEGY FOR DERIVING A CHECKING

SEQUENCE

Here we briefly follow the adaptive strategy proposed in
[8].

Input. FSM S = (S, I, O, hS, s1) with n states, a separating

sequence for FSM S, d-transfer sequences ss for each pair

of different states s and s, a complete deterministic
implementation P/p1 with at most n states.

Output. The messages ‘P/p1 is a reduction of S/s1’ or ‘P/p1

is not a reduction of S/s1’ and an input sequence that r-
distinguishes P/p1 from S/s1 in the latter case.

A procedure is divided in two steps. At the first step, each

state is d-reached in S/s1, and checked by the use of whether
a state reached in P/p1 corresponds to this state. The output
responses and corresponding successors are saved in the set
Separable.

The set Separate has triples (s, , s) where s is a current

state of S, = outP(s,) is the output response of P to the

separating sequence at state that corresponds to state s and s
is the /-successor of state s. The procedure is simple
enough: we apply a separating sequence until new states of the

FSM S appear as /-successors. Once a /-successor is one
of already checked states, the d-transfer sequence to a non-

traversed state s is applied and the procedure of applying is
repeated. Once an unexpected output response is obtained the
procedure is terminated and there appears the message that P
is not a reduction of S.

Example 1. Suppose that the FSM S in Fig. 1 is the
specification FSM while the FSM P in Fig. 2 is an
implementation FSM at hand, i.e., P is an IUT.

A separating sequence = i2 i1. At the initial state we

obtain 22 as the output response to , and thus, the initial state
a of the IUT corresponds to the initial state s1 of the

specification FSM S. After applying one more time the
output response 12 is obtained, i.e., the state 3 of the FSM S

reached after /12 corresponds to state c of the IUT. We apply

 one more time and obtain 12 again, i.e., we reach a state that

corresponds to state 3. After applying 32 = i2, state 2 is

reached in the specification FSM S and after applying = i2 i1

twice we realize that there is a transition from a new state b

92 of 251

under to state a. Since P has at most three states, all of them

are identified by as is a separating sequence for the IUT.
Thus, Separate = {(1, 22, 3), (2, 10, 1), (3, 12, 3)} where for
each triple, the first item is a current state, the next item is the
IUT response at the corresponding state while the last item
indicates the next IUT state under the separating sequence. In
other words, we have established one-to-one correspondence
between states of S and P: 1 and a, 2 and b, 3 and c.

Fig. 2. An implementation FSM P of the specification machine in Fig. 1

At the next step, the set Transition is constructed. This set

contains 4-tuples (s, i, o, s) and the derivation is terminated

once there exists a 4-tuple for each pair (s, i) S I. For this
purpose, for each state, each input followed by the separating
sequence has to be applied; after this, a corresponding 4-tuple
is added to the set Transition. Once at the current state all the

pairs (s, i) S I are already checked, the sequence of
transitions of the set Transition is used in order to reach a state
with an unchecked transition. Such a sequence exists, since
according to the specification FSM features, a reduction of S is
isomorphic to a submachine of S with n states (Proposition 2),
i.e., is strongly connected according to the FSM S features.
The first part of an applied sequence confirms that an
implementation under test has exactly n states and there is
one-to-one correspondence between states of the specification
and implementation FSMs. The second part confirms the one-
to-one correspondence between transitions of these machines.
Thus, if no unexpected output is produced then and only then
an implementation under test is a reduction of the specification
FSM.

Example 1. Table II represents the results obtained after
applying the first part of checking sequence.

TABLE II. THE SET SEPARATE FOR THE FSM P

s s
a(1) 22 c(3)

b(2) 10 a(1)

c(3) 12 c(3)

Moreover, we already have a current checking sequence

 = i2i1 i2i1i2i1 i2 i2i1i2i1 that terminates at state c that
corresponds to state 3 of the FSM S.

The set Transition is empty and there is an unchecked
transition at state 3 under input i1. After applying i1 to the IUT

P, P produces the expected output 1, while after applying we
obtain 12 which corresponds to Line 3 of Table II, i.e., we

conclude that the IUT reaches a state c that corresponds to
state 3. At this state there is an unchecked input i2. After
applying this input, the IUT P produces the expected output 1

while after applying we obtain 22 which corresponds to Line
3 of Table II, i.e., we conclude that the IUT reaches a state a
that corresponds to state 1. Other transitions of P are checked

in the same way. As a result, we have a checking sequence =
i2i1i2i1i2i1i2i2i1i2i1 + i1 i2i1 i2i2i1i1i2i1i1i2i2i1i2i1i2i1i2i2i2i1, for which
the output response is contained in the set of output responses
of S to this sequence and thus, we conclude that the IUT in
Fig. 2 is a reduction of the FSM S in Fig. 1.

IV. USING (ADAPTIVE) DISTINGUISHING TEST CASES

INSTAED OF SEPARATING SEQUENCE

Consider an adaptive strategy presented in Section III.
There are hard limitations imposed for the specification FSM:
there has to exist a separating sequence as well as d-transfer
sequences. However, not each FSM possesses these features
and moreover, generally, the length of these sequences can be
exponential w.r.t the number of states [11].

For this reason, we weaken our restrictions for the
specification FSM using not a separating sequence but a
distinguishing test case which model an adaptive
distinguishing experiment with an IUT at hand [13]. First, it is
known that a distinguishing test case can exist for FSMs
which do not possess a separating sequence. Second, the
height of the test case (the length of an adaptive distinguishing
sequence) generally is shorter than that of a separating
sequence [9]. We then briefly define the notion of a (adaptive)
distinguishing test case.

Given an input alphabet I and an output alphabet O, a test
case TC(I, O) is an initially connected single-input output-
complete observable initialized FSM with the acyclic
transition graph. By definition, if |I| > 1 then a test case is a
partial FSM. A test case TC(I, O) over alphabets I and O
defines an adaptive experiment with any FSM over alphabets I
and O.

In general, given a test case TC, length of the test case TC
is defined as the length of the longest trace from the initial
state to a deadlock state of TC and it specifies the length of the
longest input sequence that can be applied to an FSM S during
the adaptive experiment that is described by the test case; this
length is often called the height of the adaptive experiment. As
usual, for testing, one is interested in deriving a test case
(experiment) with minimal length (height). It is known that if
the specification FSM is complete and merging-free, i.e., for
each input i and output o, the non-empty io-successors of two
different states do not coincide, then the length of an adaptive
distinguishing test case (if it exists) is polynomial w.r.t. the
number of states of the FSM. In fact, if S has n states then the
length of an adaptive distinguishing test case (if it exists) is of
the order O(n3

) [16]. The class of merging-free FSMs is big
enough; at least it contains many deterministic FSMs which
are used in practical applications [17].

Given a complete observable FSM S over input and output
alphabets I and O, let TC be a test case over alphabets I and O.
A test case TC is a distinguishing test case for FSM S if for

i2/1

i1/2

i2/2

i2/1

i1/0

i1/1

b

c

a

93 of 251

each deadlock state of TC, it holds that a trace labeling the
path from the root to this state is a trace at most at a single
state of the FSM S.

Example 2. As an example, consider an FSM from [12].
By direct inspection, one can assure that there is no separating
sequence; however, states are pairwise d-reachable and there
exists a distinguishing test case shown in Fig. 4. The deadlock
states are labeled with a corresponding initial state of the FSM
S. Thus, when deriving a checking sequence, this
distinguishing test case can be used instead of separating
sequence. The only difference is that when constructing the set
Separate (Table II) we will get not the output responses at all
states to a single separating sequence but will ensure that all
the states of the IUT have corresponding state identifiers.

1 2

3 4

f/0

e/1

g/0
e/0

e/0

f/1
f/1

g/1

e/1, g/1, g/2

e/0

f/0

g/1

e/0

Fig. 3. Specification FSM S

Moreover, the FSM in Fig. 3 is d-connected; for each pair j
and k of different states there exists a d-transfer sequence jk:

12 = ge, 13 = gg, 14 = g, 21 = g, 23 = fg, 24 = f, 31 =

gfg, 32 = gf, 34 = g, 41 = eg, 42 = e, 43 = g.

{1,2,3,4}

{1,3} {2,4}

{2,4}{2,3} {1}

4

{3}

2

{3}

3

{1}

1

{4}

3

{3}

1

f/0 f/1

e/0 e/1 g/0 g/1

f/0 f/1 g/0 g/1

Fig. 4. A distinguishing test case T for the FSM S in Fig. 3

Given a distinguishing test case TC for FSM S, a trace
from the initial state to a deadlock state is a complete trace and
Complete(TC) is the set of all complete traces of TC.

Given FSM S and an input sequence , is a state
identifier of state s of FSM S if is a separating sequence for

each pair (s, s) where s s. At states 1 and 3 of FSM S in
Fig. 3, sequences fef and feg are state identifiers while at states
2 and 4, a sequence fg is a state identifier. Given the
specification FSM S that has a distinguishing test case TC, let
P be a deterministic complete FSM with the same number of
states. The FSM P is TC-compatible with S if there exists one-

to-one correspondence F: S P such that for each state s S

it holds that the intersection of Tr(S/s) Tr(P/p)
Complete(TC) is not empty if and only if p = F(s).

Theorem 3. Given the specification FSM S that has a
distinguishing test case TC, let a deterministic complete FSM
P be TC-compatible with S. For each state p of P, the

distinguishing test case TC has a complete trace / that is a

trace at state p; moreover, is a state identifier of state p in P.

In fact, if there exists one-to-one correspondence between
states of S and P according to the distinguishing test case TC,

then for each two states s and s, s s, there exists a prefix of
an input sequence of some complete trace of TC such that

output responses at corresponding states p = F(s) and p =

F(s) are different. As TC is a distinguishing test case of S and
P is complete and deterministic, the latter means that a

corresponding input projection of trace / is a state identifier
of state p. According to Theorem 3, an adaptive distinguishing
sequence can be derived in the same way as when using a
separating sequence. The only difference is that at the first
step, for each state, the set Separate contains a corresponding
state identifier and the next state.

Example 2. Let an IUT be an FSM P in Fig. 5. By direct
inspection, one can assure that P is isomorphic to a
submachine of S, i.e., is a reduction of FSM S in Fig. 3. Below
we illustrate an adaptive strategy that allows drawing this
conclusion and the length of a corresponding checking
sequence.

A B

C D

f/0

e/1

g/0
e/0

e/0

f/1
f/1

g/1

g/1
f/0

g/1

e/0

 Fig. 5. An implementation FSM P

We apply an adaptive strategy in order to check whether P
(Fig. 5) is a reduction of S (Fig. 3). Starting at the initial state
A, we apply feg that is a state identifier of the initial state 1 of
FSM S according to the distinguishing test case (Fig. 4). The
IUT produces the response 010 and we conclude that state A
of P corresponds to state 1 of S. Moreover, in order to find out

94 of 251

where the input sequence feg takes the IUT we apply feg
again, obtain 010 and conclude that feg takes the IUT to state
A that corresponds to state 1 of the specification FSM S.

As we already know that state A corresponds to state 1, we

apply a d-transfer sequence 12 = ge, the IUT produces the
response 10 and moves to a new state B of P that corresponds
to state 2 of S. In order to verify this, we apply a state
identifier fg of state 2 and obtain the output response 11, i.e.,
state B of P corresponds to state 2 of S. The IUT moves to
state C that should correspond to state 3 of S. We apply the
sequence fef, obtain the response 001 and the IUT reaches a
new state D that should correspond to state 4 of S. To verify
this, we apply a state identifier fg, obtain the response 10 and
the IUT moves to the initial state A.

The application of feg that is a state identifier of A
terminates the procedure and Table III is obtained. Since the
IUT has at most four states this table contains a state identifier
for each state, the corresponding output response and the next
state of the IUT.

TABLE III. THE SET SEPARATE FOR THE FSM IN FIG. 3 ACCORDING

TO THE TEST CASE IN FIG. 4

Current state State identifier Output response Next state

A (1) feg 010 A (1)

B (2) fg 11 C (3)

C (3) fef 001 D (4)

D (4) fg 10 A (1)

The set Transition is derived similar to that when using a

separating sequence, i.e., after applying each input at each
state the next state is verified according to the known state
identifier (Table III). If at a current state there are no
unchecked transitions then using the already constructed part
of the set Transition we reach a state where are unchecked
inputs. In our running example for the specification in Fig. 3
and an IUT in Fig. 5, we have obtained a checking sequence
of length 68 and since only expected output responses have
been obtained from the IUT, we have concluded that the IUT
is a reduction of the specification FSM S.

V. CONCLUSIONS

In this paper, we have proposed an adaptive strategy for
testing a deterministic implementation FSM with respect to
the nondeterministic specification FSM and reduction relation
when the upper bound on the number of the implementation
FSM states is known. Similar to deterministic FSMs, the
strategy can be applied under appropriate restrictions upon the
specification FSM and fault domain. However, we show that
the requirement of the existence of a distinguishing
(separating) sequence can be replaced by the requirement of
the existence of a distinguishing test case. The latter can exist
when there is no separating sequence and usually length of a
distinguishing test case is less than that of a separating
sequence (if both exist). Moreover, using adaptive transfer
sequences [18] we can weaken the requirement for the
existence of d-transfer sequences. We also can use adaptive

synchronizing sequences instead of the reset and in this case,
an adaptive strategy can be applied for non-initialized FSMs
and as a future work, we are going to develop such a strategy.

Acknowledgement. This work is partly supported by
RFBR grant No. 15-58-46013 CT_a.

REFERENCES

[1] Z. Kohavi. Switching and Finite Automata Theory, McGraw-Hill, New
York, 1978.

[2] T.S Chow. “Testing software Design Modelled by Finite State
Machines”, In IEEE Trans. Software Eng. Vol. 4 (3), 1978, pp. 178-187.

[3] R. Dorofeeva, K. El-Fakih, S. Maag, A. Cavalli, N. Yevtushenko.
“FSM-based conformance testing methods: A survey annotated with
experimental evaluation”, In Information & Software Technology, Vol.
52 (12), 2010, pp. 1286-1297.

[4] F.C. Hennie. “Fault-Detecting Experiments for Sequential Circuits”, In
Proc. Fifth Ann. Symp. Switching Circuit Theory and Logical Design,
1964, pp. 95-110.

[5] A. Petrenko, A. Simão, N. Yevtushenko. “Generating Checking
Sequences for Nondeterministic Finite State Machines”, In Proceedings
of the ICST, 2012, pp. 310-319.

[6] M. Zhigulin, A, Kolomeez, N. Kushik, A. Shabaldin... “EFSM based
testing a software implementation of IRC protocol”,In Izvestia
Tomskogo polytechnicheskogo instituta, 318 (5), 2011, pp. 81-84 (in
Russian).

[7] A. Petrenko, A. Simão. “Generalizing the DS-Methods for Testing Non-
Deterministic FSMs”, In Comput. J. 58(7), 2015, pp. 1656-1672.

[8] A. Ermakov. “Deriving checking sequences for nondeterministic FSMs”,
In Proceedings of the Institute for System Programming of RAS, Vol.
26, 2014, pp. 111-124 (in Russian).

[9] R. Alur, C. Courcoubetis, M. Yannakakis. “Distinguishing tests for
nondeterministic and probabilistic machines”, In Proceedings of the
twenty-seventh annual ACM symposium on Theory of computing, 1995,
pp. 363-372.

[10] N. Kushik, K. El-Fakih, N. Yevtushenko. ”Adaptive Homing and
Distinguishing Experiments for Nondeterministic Finite State
Machines”, In Lecture Notes in Computer Science, Vol. 8254, 2013, pp.
33-48.

[11] A. Petrenko, N. Yevtushenko. “Conformance Tests as Checking
Experiments for Partial Nondeterministic FSM”, In Lecture Notes in
Computer Science, Vol. 3997, 2005, pp. 118-133.

[12] A. Petrenko, N. Yevtushenko. “Adaptive Testing of Deterministic
Implementations Specified by Nondeterministic FSMs”, In Lecture
Notes in Computer Science, Vol. 7019, 2011, pp. 162-178.

[13] N. Kushik. Methods for deriving homing and distinguishing experiments
for nondeterministic FSMs. PhD thesis, Tomsk State University, 2013
(in Russian).

[14] N. Shabaldina, K. El-Fakih, N. Yevtushenko. “Testing Nondeterministic
Finite State Machines with Respect to the Separability Relation”, In
Proceedings of Intern. Conf. on Testing Systems and Software
(ICTSS/FATYES), 2007, pp. 305-318.

[15] M. Vetrova. FSM based methods for compensator design and testing.
PhD thesis, Tomsk State University, 2004 (in Russian).

[16] N. Yevtushenko, N. Kushik. Decreasing the length of Adaptive
Distinguishing Experiments for Nondeterministic Merging-free Finite
State Machines / // Proceedings of IEEE East-West Design & Test
Symposium, pp.338 – 341.

[17] C. Güniçen, K. Inan, U.C. Türker, H. Yenigün. “The relation between
preset distinguishing sequences and synchronizing sequences”,In Formal
Aspects of Computing, Vol. 26 (6), 2014, pp. 1153–1167.

[18] N. Kushik, N. Yevtushenko, H. Yenigun. “Reducing the complexity of
checking the existence and derivation of adaptive synchronizing
experiments for nondeterministic FSMs”, In Proceedings of International
Workshop on Domain Specific Model-based Approaches to Verification
and Validation (AMARETTO’2016), 2016, pp. 83-90.

95 of 251

http://dblp.uni-trier.de/db/journals/cj/cj58.html#PetrenkoS15

Conversion of abstract behavioral scenarios into

scenarios applicable for testing

Pavel Drobintsev, Vsevolod Kotlyarov, Igor Nikiforov, Nikita Voinov, Ivan Selin

Institute of Computer Science and Control

Peter the Great Saint Petersburg Polytechnic University

Saint Petersburg, Russia

drob@ics2.ecd.spbstu.ru

Abstract—In this article an approach of detailing verified test

scenarios without losing the model's semantics is proposed.

Process of translating abstract data structures into detailed data

structures used in system implementation is presented with

examples.

Keywords—model approach; model verification; test mapping;

I. INTRODUCTION

One of the most perspective approaches to modern
software product creation is usage of model oriented
technologies both for software development and testing. Such
technologies are called MDA (Model Driven Architecture)
[1,2], MDD (Model Driven Development) [2] and MDSD
(Model Driven Software Development) [3]. All of them are
mainly aimed to design and generation of application target
code based on a formal model.

The article is devoted to specifics of model oriented
approaches usage in design and generation of large industrial
software applications. These applications are characterized by
multilevel representation related to detailing application
functionality to the level where correct code is directly
generated.

The idea of model oriented approach is in creating of
multilevel model of application during design process. This
model is iteratively specified and detailed to the level when
executable code can be generated. On the design stage formal
model specification allows using verification together with
other methods of static analysis with goal to guaranty
correctness of the model on early stages of application
development.

More than 80% [4] of model-oriented approaches are using
graphical notations, which allows simplifying of work with
formal notations for developers. Requirements for knowledge
of testers and customer representatives is reduced by this way
and process of models developing are also simplified.

II. LEVELS OF BEHAVIORAL MODELS DEVELOPMENT

One of high level languages for system formal model
specification is Use Case Maps (UCM) [5, 6]. It provides
visible and easy understandable graphical notation. Further
abstract models will be specified in UCM language to
demonstrate proposed approach in details. Also considered is
VRS/TAT technology chain [7], which uses formal UCM
models for behavioral scenarios generation.

Traditional steps of formal abstract model development in
UCM language are the following:

1. Specifying main interacting agents (components)
and their properties, attributes set by agent and
global variables.

2. Introducing main system behaviors to the model
and developing diagrams of agent’s interaction
control flow.

3. Developing internal behaviors for each agent and
specifying data flow in the system.

Undoubted benefit of UCM language is possibility to
create detailed structured behavioral diagrams. Structuring is
specified both by Stub structural elements and reused
diagrams (Maps), which are modeling function calls or macro
substitution. Unfortunately, standard UCM language deals
with primitive and abstract data structures, which are not
enough to check implementation of a real system. This
drawback is compensated by using metadata mechanism [6].
But metadata does not allow detailing data flow to more
detailed levels. That’s why for creating detailed behaviors it is
proposed to use vertical levels of abstractions during
behavioral models development which are: structured system
model in UCM language, behavioral scenarios with symbolic
values and variables, concrete behavioral scenarios are
behavioral scenarios with detailed data structures.

Another benefit of UCM usage is possibility to execute
model verification process. UCM diagrams are used as input
for VRS/TAT toolset which provides checks for specifications
correctness. These checks can detect issues with unreachable
states in the model, uninitialized variables in metadata,
counterexamples for definite path in UCM, etc. After all
checks are completed the user gets a verdict with a list of all
findings and a set of counterexamples which show those paths
in UCM model which lead to issue situations. If a finding is
considered to be an error, the model is corrected and
verification process is launched again. As a result after all
fixes a correct formal model is obtained which can be used for
further generation of test scenarios.

After formal model of a system has been specified in UCM
language, behavioral scenarios generation is performed. Note
that behavioral generator is based not on concrete values
assigned to global variables and agents attributes, but on
symbolic ones which reduces significantly the number of
behavioral scenarios covering the model. However symbolic

96 of 251

test scenarios cannot be used for applications testing as
executing behavioral scenarios on the real system requires
concrete values for variables. So the problem of different level
of abstraction between model and real system still exists. In
VRS/TAT technology concretization step [8] is used to
convert symbolic test scenarios. On this step ranges of
possible values for variables and attributes are calculated
based on symbolic formula and symbolic values are
substituted with concrete ones. But concretization of abstract
model’s behavioral scenarios is not enough for their execution,
because on this stage scenarios still use abstract data structures
which differ from data structures in real system. As a result
conversion of concretized behavioral scenarios of abstract
UCM level into scenarios of real system level was integrated
into technology chain for behavioral scenarios generation

III. CONCRETIZATION

In behavioral scenarios data structures are mainly used in
signals parameters. There are two types of signals in UCM
model: incoming to an agent and outgoing from an agent.
Incoming signals are specified with the keyword "in" and can
be sent either by an agent or from outside the system
specifying with the keyword "found". Outgoing signals are
specified with the keyword "out" and can be sent either to an
agent or to outside the system specifying with the keyword
"lost".

An example of outgoing signal can be seen on Fig. 1. The
element "send_Fwd_Rel_Req_V2_papu" contains metadata
with the signal "Forward_Relocation_Request_V2" and UCM-
level parameter "no_dns". Outgoing signals can only be used
inside of "do" section as a reaction of the system on some
event.

Another example is the element "rev_Rel_RSP_papu",
which contains metadata with the incoming signal
"Forward_Relocation_Response_V2" and UCM-level
parameters "seq_nbr", "cause_dec", "cs" "reccod" (Fig. 2).

If the signal Forward_Relocation_Response_V2 is
received, then new values taken from signal parameters are
assigned to variables.

Consider an example of converting signal structure of
UCM level into detailed structures of real system for the
signal "gtp_forward_relocation_req_s". Based on high level
UCM model symbolic behavioral scenarios are generated
containing data structures described in metadata of UCM
elements. Fig.3 contains symbolic test scenario where the
agent "GTP#gtp" receives the signal
"gtp_forward_relocation_req_s" from agent "GMG#gmg". In
symbolic scenarios actual names of UCM model agents
specified in metadata are used.

Symbolic behavioral scenario is input data for
concretization module, which substitutes symbolic parameters
with concrete values. In current example the parameters
"sqe_nbr", "ip1", "ip2", "tid" and "isIntra" are substituted with
values "invalid", "valid", "exist", "valid" and "0". Fig.4
contains concrete behavioral scenario.

Fig. 4. Concrete test scenario with the signal

"gtp_forward_relocation_req_s "

Fig. 2. Description of the " Forward_Relocation_Response_V2" signal in
metadata of the "rev_Rel_RSP_papu" UCM element

Fig. 1. Description of “Forward_Relocation_Request_V2” signal in

metadata corresponding UCM element

Fig. 3. Symbolic test scenario with the signal

"gtp_forward_relocation_req_s"

97 of 251

IV. DATA SCTRUCTURES CONVERSION

After concretization, scenarios still have to be processed
because their structure does not match with one's of system
under test (SUT). The most straightforward approach is to
manually review all generated scenarios and edit all used
signals so that their structure will reflect SUT interfaces.
Obviously, it will require too much time and may be a
bottleneck of the whole process. Therefore, there is a need for
automation.

The common way is making a wrapper that transforms
signals to desired form using one of popular programming
languages (C++, Java, etc.). However, it could lead to making
new mistakes and loss of correctness of test scenarios. The
main reason for this is ability to implement incorrect structures
on scenarios level. In addition, other language-specific errors
are possible. Cutting down the ability to produce incorrect
code will reduce the number of mistakes while still
maintaining good level of automation.

A. Approach
To be able to satisfy these needs a two-step approach

called "Lowering" was suggested. The name comes from
descending on lower levels of abstraction. In general, lowering
can be described as creating processing rules for each signal
called "lowering rules" and application of these rules to the
concrete scenarios.

As said above, there are some restrictions on possible
operations to save the correctness of test scenarios, such as:

 It is prohibited to separate constants into several
independent parts (e.g. separating value 1536 in
15 and 36 is not possible)

 It is prohibited to separate fields of variables
values

 Only structures similar to SUT interfaces can be
created

 Only constant template values and values that
were obtained during concretization step are
allowed

Limitation was made by creating a special language that is
used to define lowering rules. Despite having all these
limitations, user can define complex signal and protocol
structure dependent on UCM signal parameters in accordance
with language grammar. On Fig. 5, you can see the grammar
in Backus–Naur Form.

B. User perspective
Custom editor called Lowering Editor was implemented to

restrict user from making incorrect structures. Core features of
the editor:

 Signal structure is taken from description of SUT
interfaces

 Automated correctness check. It is impossible to
save the rule with incorrect signal structure

 User-friendly way of displaying signals. Nested
structures are tab-spaced

 Content assist for signal parameters and variables

 Basic text editing operations like copy, paste,
undo and redo

Speaking of work process with the tool, at first all the
signals in UCM are gathered in one place. After that user can
select needed signal and edit its lowering rules in the editor
(Fig. 5).

For selected UCM-level signal user can define lowering
rules. As you can see on Fig. 6, rule consists of trigger
condition and content. Content can be either one detailed
signal, several signals or actions performed on the variables.

After specifying the condition and choosing the type of
content, user can edit it in the right part of the editor. This part
dynamically changes depending on what is selected in the
middle of the editor.

For example, some signal was selected. Signals editor will
appear in the right part of Lowering Editor(Fig. 7).

LoweringSpec ::= UCMSignal "->" LoweringRule |

LoweringSpec UCMSignal "->" LoweringRule

LoweringRule ::= LoweringCondition | LoweringRule

LoweringCondition

LoweringCondition ::= <condition STRING>

ConditionContent

ConditionContent ::= LoweredElement | LoweredElement

ConditionContent

LowredElement ::= LoweredDo | LoweredSignal |

LoweredAction

LoweredDo ::= <code STRING>

LoweringSignal ::= <signal name STRING>

SignalContent

SignalContent ::= ValueNotation Instance Via

ValueNotation ::= <empty> | <value STRING> | "(."

ValueNotation ".)" | ValueNotation "," ValueNotation

Instance ::= <empty> | "TAT" | "SUT"

Via := <empty> | <port STRING>

UCMSignal ::= Name UCMParam

Name ::= <name STRING>

UCMParam ::= <empty> | <param name STRING> |

UCMParam "," UCMParam
Fig. 5. Lowering rules language grammar

Fig. 6. Lowering editor with signal "Forward_Relocation_Request_V2"
being selected

98 of 251

User selects the needed SUT interface in the drop-down
list named "Select TDL Type or Template". Then user names
the signal and puts concrete values in the fields of detailed
signal.

Often similar conversion rules are required for different
signals. Templates can be used to simplify this approach. A
developer can define a template of detailed signal, specify
either formula or concrete values as a parameter of detailed
signal and then apply this template for all required signals. For
each case of template usage a developer can specify missed
values in the template, change the template itself or modify its
structure without violating specified limitations. Templates
mechanism simplifies significantly the process of conversion
rules creation.

Consider the process of templates usage. Templates are
created in separate editor (Templates Editor). In Fig.8 the
template "template_0" is shown which contains detailed data
structures inside and the dummy values which shall be
changed to concrete values when template is used.

Note that template can be created only from SUT
interfaces description or another template.

When a template of data structure is ready, it can be used
for creation of conversion rules. Fig.9 represents usage of the
template "template_0" with substituted concrete values of
signal parameters instead of the dummy value "value_temp",
which then will appear in behavioral MSC scenario.

Fig. 7. Signals editor

Fig. 8. Templates editor

Fig. 9. Template used in signals editor

99 of 251

In both signal and template editors user can use variables –
some values that are too big to remember of retype every time.
On the Fig. 7 all the values are taken from variables. Variables
can be selected in the middle of the lowering editor. There are
different types of variables with different editors and checks.
For example, the contents of variable "$gud_header" used in
"soc_datato_req_s" detailed signal are shown on Fig. 10.

Variables can contain very complex structures and
therefore greatly reduce expenses on creating detailed signals.

Overall process of selecting UCM-level signal, creating
lowering rules and editing the resulting signal repeats for all
UCM-level signals in the project

C. Scenarios processing
Implemented module of behavioral scenarios conversion

takes as an input the concrete behavioral scenarios and
specified rules of conversion and the output is behavioral
scenarios of the real system level, which can be used for
testing. Overall scheme of conversion is shown in Fig.11.

Detailing stage is based on the grammar of data structures
conversion rules described in Fig. 5 and conversion algorithm.
The specific feature of test automatic scenarios detailing to the
level of real system is allow to storing of proved properties of
the system obtained in process of abstract model verification.

Based on the specified conversion rule each abstract signal
in concrete behavioral scenario is processed. Signal
parameters are matched to rule conditions and if the signal
satisfies them, then it is converted into detailed form. Fig.12
shows concrete scenario, which will be processed.

In this scenario you can see 3 agents: "GTP#gtp",
"GMG#gmg" and "GUD#gud". For example, we want to test
an agent "GTP#gtp". On following trace it will be described as
SUT.

Other agents (or whichever we choose in the settings of the
trace preprocessing) are marked as TAT and joined together.

After data structures conversion, concrete signals are
replaced with detailed signals specified in lowering rules.
Once simple signal structure unfolds in very complex nested
data while still maintaining its correctness. You can see the
results on Fig. 13.

V. CONCLUSION

Proposed approach to behavioral scenarios generation
based on formal models differs from existing approaches in
using the process of automatic conversion of behavioral
scenarios with abstract data structures into behavioral
scenarios with detailed data structures used in real
applications. Proposed language and overall scheme of this
process allow automating of creation a set of covering
behavioral scenarios.

Fig. 11. Test scenarios conversion scheme

Fig. 10. Contents of the variable "$gud_header"

100 of 251

Fig. 12. Concrete scenario to be lowered

101 of 251

In the scope of this work, the analyzer/editor for
conversion rules of signals from abstract UCM model level
into signals of real system level was developed and called
Lowering Editor. It supports the following functionality:
automatic binding between conversion rule and signal of
UCM level, conversion rules correctness checking, templates
usage, highlighting the syntax of conversion rules applying
conditions specification, variables usage, libraries and external
scripts (includes) usage, splitting UCM signal or action into
several signals of real system in according to communication
protocol, copy/paste/remove operations, import and export
from/to storage file. Availability of described in the article
features is able to make process of automatic conversion
powerful and flexible for a different types of
telecommunication applications.

Adding Lowering Editor into technology process of
telecommunication software applications test automation
allowed to exclude effort-consuming manual work in the cycle

of test suite automated generation for industrial
telecommunication applications, increase productivity of test
generation in 25% and spread the properties proved on
abstract models into generated code of executable test sets.
Excluding of manual work allow to reduce human factor in
testing process and guaranty quality of generated test suite
based on verification results.

References

[1] Model Driven Architecture- MDA (2007), http://www.omg.org/mda

[2] Oscar Pastor, Sergio España, José Ignacio Panach, Nathalie Aquino.:
Model-Driven Development. Informatik Spektrum, Volume 31, Number
5, pp. 394-407 (2008)

[3] Sami Beydeda , Matthias Book, Volker Gruhn.: Model Driven Software
Development.: Springer-Verlag Berlin Heidelberg, 464 p. (2005)

[4] Robert V. Binder, Anne Kramer, Bruno Legeard, 2014 Model-based
Testing User Survey: Results, 2014 http://model-based-

Figure 13. Lowered trace with detailed signals

102 of 251

http://model-based-testing.info/wordpress/wp-content/uploads/2014_MBT_User_Survey_Results.pdf
http://model-based-testing.info/wordpress/wp-content/uploads/2014_MBT_User_Survey_Results.pdf

testing.info/wordpress/wp-
content/uploads/2014_MBT_User_Survey_Results.pdf

[5] Buhr R. J. A., Casselman R. S.: Use Case Maps for Object-Oriented
Systems, Prentice Hall. 302 p. (1995)

[6] A.A. Letichevsky, J.V. Kapitonova , V.P. Kotlyarov, A.A. Letichevsky
Jr., N.S.Nikitchenko, V.A. Volkov, and T.Weigert.: Insertion modeling
in distributed system design // Problems of programming, pp. 13–39.
(2008), ISSN 1727-4907.

[7] I.Anureev, S.Baranov, D.Beloglazov, E.Bodin, P.Drobintsev, A.Kolchin,
V. Kotlyarov, A. Letichevsky, A. Letichevsky Jr., V.Nepomniaschy,
I.Nikiforov, S. Potienko, L.Pryima, B.Tyutin.: Tools for supporting
integrated technology of analysis and verification of specifications for
telecommunication applications SPIIRAN works №1-28p. (2013)

[8] A. Kolchin, A. Letichevsky, V. Peschanenko, P. Drobintsev, V.
Kotlyarov.: Approach to creating concretized test scenarios within test
automation technology for industrial software projects. Automatic
Control and Computer Sciences, Allerton Press, Inc., vol. 47, #7, pp.
433–442. (2013)

103 of 251

Automation of Failure Mode, Effects and Criticality
analysis

Peter Privalov
ISP RAS

25 Alexander Solzhenitsyn str.
Moscow, 109004, Russian Federation

Abstract—Failure mode, effects and criticality analysis
(FMECA) is one of the most powerful techniques to eliminate
potential failures of products and assembling processes. This
analysis can be performed at any stage of product design, thus
lowering costs of errors. For a number of products this analysis is
required by industrial standards, for others it can help to gain
high quality. The purpose of this paper is to observe current
implementations of automated FMECA and to make a summary
of requirements to new implementations.

Keywords—FMECA; early validation of models; failure
analysis;

I. INTRODUCTION

To achieve success on market, product quality is of the
great importance. Obviously, the production of the product full
of defects or having a low service life will not bring success in
the market. So manufacturers have to eliminate all potential
failures from their products and assembling processes. There
are many methods to troubleshoot, ranging from manual
analysis. For industrial projects this approach is not applicable
because of their scale. However, there are a number of formal
analysis techniques that can reduce the probability of failures,
optimize assembly processes and maintenance of a product.
One of such methods is Failure Modes, Effects and Criticality
Analysis (FMECA) [1], [2], [3], [4] that also often referred as
FMEA. To avoid confusion, FMEA is a part of FMECA, but
without quantitative assessment.

FMECA covered entire project's life cycle and potential
failures which appear at each stage. This analysis examines
components of the project under test to determine the
possibility of failures in each component and their effort on the
project. FMECA conducted repeatedly from the early stages of
project development help to perform improvements in project
at convenient state and decrease crisis caused by late changes.
FMECA can reduce the chance or eliminate the necessity of
corrective actions in the late stages of project development, that
can lead to even greater problems than initial defects. Since the
analysis is recommended to start at the earliest stages of a
project design, it is applied to the model of the tested object.

The model is a description of the designed object, as a
composition of components. At the beginning of the
development process model is abstract and contains only the
conceptual components of the future product, which clarifies
during the design process. There are few ways to create the
model. In that paper, we will describe models created with
Architecture Analyze and Design Language(AADL)[5] and
created graphically.

 In FMECA process system's components are examined if
there are any potential failures. For all that failures then studied

their severity rating, probability of occurrence and chance to
detect and then calculates the risk priority number(RPN) that is
usually multiplication of three previous ratings.

FMECA also examines how potential failure in the
component may affect the system. So in the initial state all
components are in working states and they may turn into a
failed state because of inner failure or failure in the connected
component. In FMECA one has to trace the propagation of
failed states to understand the effect of failure.

In a number of industries, FMECA required by production
standards. For example, ARP4761 standard for aviation or
MIL-STD-882D for Department of Defense projects. These
standards describe system safety and reliability and
assessment methods. FMECA itself is a set of activities
designed to identify and assist in eliminating of potential
failures. In Russia conducting of FMECA regulated by GOST
27.310-95 described in [6]. Its summary is presented below.

At present, FMECA is commonly manual process that
conducted in the final stages of industrial projects and required
a team of highly qualified specialists. In this way, FMECA is
an expensive and not very effective, as well as a singular
analysis in the early stages of project development. But
repeated analysis at each stage of the project, using data
obtained in the previous stages can greatly improve the design.
However, manual analysis is too expensive, and storage and
use of obtained data in the preliminary stages are a non-trivial
task in the development of an industrial project. Manual
analysis of industrial objects required work of a team of several
specialists. For some projects, there is a possibility to employ
specialists for manual analysis, but there are a number of cases
where such an analysis is required, but there is no possibility
for manual analysis. This necessitates FMECA automation.

There are a number of software tools, partially automate the
analysis. All them can be divided into two groups by the way
they use to build the model. OSATE is one of tools that uses
AADL and its annexes. The other group contains not AADL
-based tools. From that group, the most interesting is RAM
Commander. It was applied in many industries, that required
FMECA by world-renowned companies. The purpose of this
work is to analyze the comparison of these tools and to identify
requirements to new implementations.

The rest of the paper is organized as follows. The second
section describes FMECA standards and process. The third
section contains a description of two automated tools and their
comparison. The fourth section compares FMECA processes
conducted by these tools. The fifth section concludes the paper.

104 of 251

II. GOST 27.310-95 SUMMARY

Before work on the project begins, a plan of the analysis of
each stage of work, containing recommended techniques,
deadlines and control procedure must be drawn up. The
analysis should begins from the earliest possible stages of the
project's design and systematically repeated in later stages
when appears new raw data for analysis (for example, adding
information about the possibility of overheating of the
component in the neighbourhood to the heat source). In each
stage FMECA required checks for verification of the
completeness of the implementation and effectiveness of the
corrective actions recommended on previous stages. At any
stage analysis begins with FMEA of the object. By the results
of which a decision on the need for an in-depth quantitative
analysis and evaluation of the criticality of certain types of
failures is taken.

At each stage FMECA resulted in a report containing:

• formalized description of the object (model),
indicating its level of specification to which (or from
which) analysis was carried out;

• description of the analysis algorithm;

• completed worksheets that were used in the analysis;

• summary of the analysis, including: listing of possible
failures classified by causes and conditions of
occurrence, effects and criticality; lists of critical
components and manufacturing processes;

• verdict about the possibility of the transition to the
next stage of development of the object with required
corrective actions, or suggestions for complete
redesign of the project if the identified deficiencies
cannot be remedied in the subsequent stages.

The level of specification of the object from which FMECA
carried out at a certain stage of its development is set based on
the required accuracy of result, technological and operational
documentation; availability of the necessary raw data; degree
of novelty of the object's design and its components and
technologies of their manufacturing.

There are few FMECA types [7] that conducted for
different purposes and in different design stages. For any
analysis type the first phase of project development is a making
up a list of critical components or processes. This list then
systematically adjusted in each subsequent stage by eliminating
elements for which the efficiency of improvements have been
proved by analysis, calculations, experimental data, and
including newly identified critical elements in the list. Then the
list of critical elements approved by the customer.

Lists of the critical elements are to make up for each
project. But there are some types of elements that commonly
included in the list.

The list of critical elements includes:

• elements, which failures possible severity exceed the
allowable level of the object;

• elements, which failure would inevitably cause a total
failure of the object;

• elements with a limited lifetime that do not provide
the desired durability of the object;

• elements, for which there are no reliable data on their
quality and reliability at the time of analysis.

The list of critical processes includes processes, which
affect on the quality and reliability of the object and its
elements at the time of the analysis is unknown or poorly
understood

III. TOOLS OVERVIEW

Here will be described software tools in general and their
features that absent in other tool.

A. OSATE

OSATE described in [8] is an open-source tool platform to
support AADL v2. In January 2012 correction to a number of
errata to AADL v2 have been approved. These revisions,
referred to as AADL v2.1, are supported by OSATE 2 and are
summarized in [9]. This tool intends both end users and tool
developers. For the former it provides a complete textual editor
for AADL and a set of simple analysis tools. For the latter it
provides a full support for the AADL meta-model on an
Eclipse platform.

OSATE is a tool based on AADL that supports language
annexes. Thus, AADL used to describe the system and its
internal connections and its annexes are used, each for its own
purpose. One of annexes – Error Model Annex (EMV) - just
used for failure analysis like FMECA. In particular, it separates
functional dependency from error propagation dependency.
OSATE traces routes from all operating states to failed states
and stops when system failure or recovery condition is
detected. Checks conducted to prevent returns to the already
considered state that prevents the appearance of endless loop,
which is especially important for the recoverable system

One of the features of the AADL language is a separate
definition of component type, its implementation and
component instance. Also, there are a possibility of inheritance
for component type and implementation. So properties declared
for the type inherited by implementation and by child type if
any, and the implementation itself can clarify properties. This
mechanism is similar to the mechanism of inheritance of
object-oriented programming languages. In the case of
modeling language, it allows to develop model rapidly, and to
avoid unnecessary duplication of code. For example, this
allows one to describe the component once and to use it in
many places. One can add local properties for FMECA to any
implementation or even instance of that component and to
change them during the model development.

B. RAM Commander

RAM Commander as described by [10] is a comprehensive
software tool for Reliability and Maintainability Analysis and
Prediction, Spare Parts Optimization, FMEA/FMECA,
Testability, Fault Tree Analysis, Event Tree Analysis and Safety
Assessment. Its reliability and safety modules cover all widely
known reliability standards and failure analysis approaches.

RAM Commander isn't an open source tool. It is a tool with
a well-developed structure around it. There are a large number

105 of 251

of libraries of common components. This tool also allows to
design a project in team through the network and import data
from other engineering editors, such as CAD. RAM
Commander is able to generate reports on FMEA \ FMECA, in
a number of common standards.

Graphical editor of RAM Commander consists of two parts.
The top part contains diagram of the developed product with
product units or development stages and dependencies between
them. In the lower part there is a table with information about
potential failure modes (name, severity, frequency detection,
recommendations) for the selected component. These
properties are associated with the currently selected component
instance. The editor also implements the classic for a graphics
editor features such as drag-and-drop. If one uses it properties
will be copied with the element.

An interesting feature of Ram Commander is the ability to
analyze subsystems, declared in nested blocks. It helps to
disassemble the system into functional or construction blocks,
analyze them separately and then used the results of these
analyzes to analyze entire system.

RAM Commander allows multiple users to edit the same
project. First user has an exclusive access to the diagram
(picture elements, their position, dependencies, etc.), and other
users have access to FMECA data (analysis table at the bottom
of the screen).

IV. COMPARISON

Both of the tools matches common FMECA standards, but
not always in a usable way. So we will compare actions that
one has to do at each step of FMECA and abilities provided by
these tools.

1) Determination of the object. In OSATE model described
by AADL language is the system under test. If the system is
large then its description can be broken down into constituent
parts. But to analyze any part separately it should not contain
external dependencies. Similarly, in RAM Commander, all
described model is tested object. For large scale models it can
be more suitable because of the ability to perform FMECA for
nested parts of the model, even if there are external
dependencies. RAM Commander also can import libraries and
lists of various characteristics of materials.

2) Types of analysis. In both cases, it is a bottom-up
analysis. OSATE using the AADL model and RAM
Commander using the project's parse tree.

Types of analysis:

• Design: in both systems, an analysis conducted in
terms of described components.

• Process: both systems allow to describe manufacture
processes and dependencies between them and
between hardware, so process FMECA also can be
conducted.

3) Determination of operating conditions. RAM
Commander has the tool to define them. In OSATE that tool is
absent, and the interaction of the system and environment
described by the system designer within the terms that he
considers suitable. For example, in terms of the events or
failures.

4) Report building. RAM Commander supports many
common methods of report generation, OSATE also supports
some of them. Both systems allow user to customize the report.

5) Determination of the elements that contains potential
failures. In OSATE an element properties are specified when
the model developing. An interesting point is that the element
can be marked as source of failures in the description of the
type, in implementation or in instance of this element. In RAM
Commander properties are specified for each element
individually.

6) Identification of possible consequences: Error Model
Annex of AADL language allows to describe the propagation
of failures and show their effect on the overall system. This
feature accurate the list of failures' effects. In RAM
Commander it is possible to specify how the sub-component's
failure will affect component as well as the dependence of the
component from the other components on the same level. The
difference in these approaches is that RAM Commander
system model and model of failure effects propagation
coincide, while OSATE allows the user to indicate the
dependence between components in failure effects propagation
independently from the system model.

7) Determination of the causes of failure and the probability
of its occurrence. In automation FMECA this point, partly
duplicates the previous action if the failure of a component
caused by the propagation of failure from another component,
or an event described in the system, otherwise the user must
manually add information to the model. In that way this step
realized in both systems.

8) Determination of methods of control and prevention
failures. Usually, this process requires the inclusion of
additional items in the model or instructions to staff. Both
considered tools can't perform it automatically.

9) Calculation of the risk priority number (RPN), then user
defines the required corrective actions, and then recalculates
RPN with new obtained severity ratings, and the likelihood of
occurrence of detection. In both systems one can determine
how to calculate RPN and notations of ratings.

V. CONCLUSION

Considered software tools provide extensive functionality
for the automation of FMECA, and many other types of
analysis, such as fault tree analysis, the functional hazard
assessment, dependency diagram. They offer two different
approaches, each having its own pros and cons.

RAM Commander main advantage is the visibility of the
developed model as well as the availability of infrastructure
around the instrument. In OSATE - “object-oriented” approach
to the description of the system, the ability to add new features
to the tool, the cheapness of model refinement.

The main goal of automation is to enable carrying FMECA
as often as possible in the development and production of the
tested object without significantly increasing of the production
cost. So the future implementations of automotive FMECA will
meet the following requirements:

• The possibility of applying from the earliest stages,
when there is only a general concept of the system

106 of 251

under examination to the stage of production of the
final version of the product

• Development of a model should not be time
consuming

• At each stage the model should be clear and vivid

• Ability to interact with a common engineering
program

• Ability to generate reports in popular formats and in
custom format

• Log history of the model changes

• Ability of joint work of the development team

• Formalized description of external factors and
operating parameters

REFERENCES

[1] Ravindra Khare, Failure Mode & Effects Analysis:
A Technique to Effectively Mitigate Risks.

[2] Carl S. Carlson, Good FMEAs, Bad FMEAs - What's the Difference?,
Reliability HotWire, July 2012, Issue 137

[3] Kenneth Crow, Failure Modes and Effects Analysis, DRM Associates,
2002

[4] Carl S. Carlson, FMEA success factors: An effective FMEA process

[5] http://www.aadl.info/aadl/currentsite/

[6] http://www.snip-info.ru/Gost__27_310-95.htm

[7] https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis#Basic
_terms

[8] https://wiki.sei.cmu.edu/aadl/index.php/Osate_2

[9] https://wiki.sei.cmu.edu/aadl/index.php/Standardization#SAE_AADL_A
S5506B

[10] http://aldservice.com/reliability-products/rams-software.html

107 of 251

https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis#Basic_terms
https://en.wikipedia.org/wiki/Failure_mode_and_effects_analysis#Basic_terms
http://aldservice.com/reliability-products/rams-software.html
https://wiki.sei.cmu.edu/aadl/index.php/Standardization#SAE_AADL_AS5506B
https://wiki.sei.cmu.edu/aadl/index.php/Standardization#SAE_AADL_AS5506B

Parallel processing and visualization for results of
molecular simulations problems

Dmitry Puzyrkov∗, Podryga Victoria†, Polyakov Sergei‡
Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)

Miusskaya sq., 4
Moscow, 125047, Russia

Email: ∗dpuzyrkov@gmail.com, †pvictoria@list.ru, ‡polyakov@imamod.ru

Abstract—This paper presents ”mmdlab” library for the
interpreted programming language Python. This library allows
to carry out reading, processing and visualization of the results
of numerical calculations in the tasks of molecular simulation.
Considering the large volume of data obtained from such simu-
lations, there is a need in parallel realization of algorithms for
processing those volumes. During the development process we
have study the effectiveness of the Python language for such tasks,
and we have examined the tools for it’s acceleration and cluster
computations. Also we have investigated the problems of receiving
and processing the data, located on multiple computational nodes.
As a tool for scientific visualization was chosen an open-source
”Mayavi2” package. The developed ”mmdlab” library was used
in the analysis of the results of MD simulation of the gas and metal
plate interaction. As a result we managed to observe the effect
of adsorption in details, which is important for many practical
applications.

Keywords—parallel processing; visualization; molecular dynam-
ics; Python; Mayavi2

I. INTRODUCTION

Advances in computer technology and the rapid growth of
computational capabilities significantly increased the possibili-
ties of computational experiment (CE). In particular, nowadays
it is already possible to study the properties and processes in
complex systems on molecular and atomic levels, for exam-
ple, using molecular dynamics (MD) approach. Mathematical
models, which describe such processes, may consider huge
amounts of particles: up to billions of them, and even more.
In addition, each particle can be described by dozens of
parameters and the volume of output data in such CE can
be estimated in terabytes. Processing of such volumes of data
in serial mode can potentially take years, and optimization of
computing code does not bring a significant acceleration of the
computations.

Therefore, currently the most widely used approach to
accelerate the large-scale computing is it’s paralleling, which
means that a great number of compute nodes would process a
large amount of data each handling apart of it. As a result of
paralleling, each node receives only a small part of the data set
which is easy to manipulate with. This technique significantly
reduces the time required to complete data processing, but
leads to several problems concerning the data storage. Most
often, after performing calculations compute nodes exchange
the results of computations, and master process assembles
them in RAM or in a storage device as one large array or
a file. However, in the large-scale computations the size of the

result array (file) can significantly exceed the resources of the
master node. In this case, each compute node stores the results
in isolation. The last described method of storage has several
advantages. The first one is the lack of need to sequentially
read all the results for further processing (for example, for
visualization purpose) because each computational node only
reads it’s part of the data. The second advantage is that each
individual data file is typically not very large (compared to
the full data set), and thus it takes less processing time. Such
data can be reached in various ways, for example using a
distributed file system, on-the-node-process reading, or using
the applications allowing to send data over the network, such
as the SFTP.

The scientific programs that store data in the form de-
scribed above, are considered in this article. The results of the
simulation based on the algorithm, described in the article [1]
were used as a data set for studying parallelization capabilities
of the developed ”mmdlab” library.

One of the ways of CE data representation is a two-
and three-dimensional visualization. In order to assemble a
complete state of the simulation results, it is required to read
and process the data from each compute node, which in itself
is a resource-intensive task. In most cases, the calculated data
formats and storage methods differ depending on the calcu-
lation program. Therefore, such programs usually have their
own visualizer, and calculate all the necessary visualization
data in the process of computation, collecting them on the
master node. In this case the visualization is provided by the
means of such programs (LAMMPS, and others). Another
way is to save data in the well-known standardized containers
(HDF5, VTK, and other), which are supported by the majority
of software for scientific visualization. The problems of such
methods of storage and rendering are the limited possibilities
of the used visualization software in regards to visualization
and post-processing, and in the case of well-known standards
of data storage there occurs the problem of loading large files.

This paper presents an attempt to create a flexible tool
that allows importing, processing and visualization of data
from different sources, regardless of it’s structure: whether
the data is in known formats or distributed calculation results
in a custom format. The results obtained using the computer
program described in the article [1] were considered as a
test case. In view of the parallel algorithms and storage
features, this data can be a one big file that describes the
general state of the simulated system, as well as a distributed
data, processed by every computational process separately.

108 of 251

The results obtained from the simulation are the information
about the interactions of the gas molecules with the metal
atoms near the surface. This process is characteristic for many
technological microsystems used in nanotechnology.

II. PROBLEM STATEMENT

The problem of collecting and processing the distributed
data obtained as a result of some calculation program has
several key features. Firstly, it is the specifics of the problem
domain. As a result of searching among the various simulation
packages there has not been found suitable means for parallel
loading of distributed data relating to the considered task.
This problem drove us to do this research. Secondly, the
scale of the input data can differ greatly. It can be a small
one-dimensional array or a large number of files distributed
across the various computational nodes and file systems. Such
problems are usually solved by means of a software system
that generated this data, or by development of a specialized
”loader” tool, which understands input-output formats used by
the calculation program. Thirdly, there is a need to process
such results for convenient representation on charts or in 3D
visualization. Due to the features described above, in this work
we made an attempt to create a framework for the software
complex with the following features:

• Parallel reading of data from different sources

• User-defined data formats support

• Custom data filters and processors support

• Data visualization solution

It is important to emphasize that in the case of development
of such library its expandability has a significant role. It
should be relatively easy to use the developed framework for
processing the data stored in any format, and to integrate
it with the other known solutions for visualization and data
processing. As the initial stage of development we chose the
problem of post-processing and visualization of the results
obtained in work described in the article [1].

This task involves the consideration of all the listed features
of the selected application, because of the distributed structure
of the data in different computer systems with remote access
to it via SSH.

III. DEVELOPMENT TOOLS

There are many known solutions for task-based parallel-
ing and data visualization. Feature of these solutions is the
difficulty of their use, setup and installation.

Among the known solutions for clustering can be noted
Apache Hadoop. This is a large and complex solution, which
implements MapReduce model for task-based parallel pro-
cessing. However, for the considered problem, it has many
unnecessary features, such as a distributed file system (HDFS)
and requirement of installation on computational nodes.

For general scientific visualization there are a variety of
software packages, for example, Paraview, VMD, Tecplot.
Each of these software packages has its own format of data
storage, and is also able to read the standardized formats.
However, in the case of a custom data format or a complex

data distribution all of these solutions require implementation
of a special data loader.

Taking all the above into account, we decided to add into
the developed library the support of the integration into such
packages, and its own visualization and clustering tools. Fur-
thermore, ”mmdlab” library has a minimum set of dependency
and does not require installation on the compute nodes. In view
of the need for the above-mentioned integration into well-
known solutions, as well as the requirements posed by the
expandability of developed framework, we decided to use an
interpreted programming language Python, due to the fact that
almost all of that packages use Python in their plug-in systems.

A. Python

Python [2] is a widely used in scientific community
general-purpose high-level programming language. Its design
philosophy emphasizes code readability, and its syntax allows
programmers to express concepts in fewer lines of code than
it would be possible in languages such as C++ or Java. The
syntax of kernel of Python is very simple and short, at the
same time a standard library gives the large volume of useful
functions and convenient data structures. It is also a cross-
platform, so you can use it (with some restrictions), both under
the MS Windows and Linux operating systems.

Python supports multiple programming paradigms, includ-
ing object-oriented, imperative and functional programming
or procedural styles. It features a dynamic type system and
automatic memory management, full introspection, exceptions
and multiprocessing. The developers community created a lot
of computer science libraries, that makes Python one of the
most commonly used languages for big data analysis and
scientific calculations.

Though Python already has version 3, in this study we
used Python version 2.7, in view of the fact that some used
libraries (for example, Mayavi2) were written in Python 2.7,
and Python 3 and Python 2.7 in some cases do not have
backward compatibility.

B. IPython

IPython [3] is an interactive shell for Python language,
which adds an expanded introspection, additional command
syntax, code highlighting and autocomplition. The main fea-
ture of this project is that it provides the core for Jupyter
web-application, which allows to write scripts in Python, R,
and BASH directly in the browser, as well as interact with
the objects of visualization. In this work IPython notebook
application has been selected as the web-control system.

IV. ACCELERATORS OF COMPUTATIONS

Despite all the advantages of the main realization of the
interpreter CPython, it is necessary to remember that the
Python is a high-level interpreted programming language. It
cannot provide high performance itself, due to the memory
management system and dynamic typification. It is very easy
to use, but if performance is critical it is necessary to imple-
ment CPU-critical code in C or C++, to avoid the overhead
of interpreter calls. However, there are several technologies
allowing to evade the low-level programming.

109 of 251

Listing 1. Numba and Numpy array multiplication
from numba import jit
@jit(nogil=True, nopython=True)
def numpy_numba_func(vx, vy, vz, multiplier=100, divider=3.0):

return multiplier*((vx*vx) + (vy*vy) + (vz*vz)) / divider

def numpy_func(vx, vy, vz, multiplier=100, divider=3.0):
return multiplier*((vx*vx) + (vy*vy) + (vz*vz)) / divider

Another big disadvantage of the CPython interpreter is
associated with the speed and performance in multithreading.
The last is caused by use of the GIL (Global Interpreter
Lock) mechanism representing mutex (the elementary binary
semaphore) which is not allowing different threads to process
the same bytecode at the same time. Unfortunately, this lock is
necessary, since the memory management system in CPython
is not thread-safe.

The following methods were considered to avoid this
limitations.

A. Numpy

Numpy [4] is an open source library for Python. It im-
plements fast multi-dimensional arrays and plenty of parallel
(vectorized) algorithms for linear algebra, Fourier transform
and other applications. Since Numpy is written in C, the
executable code of the library is compiled into native code,
and there is no need for its interpretation, gaining significant
speedups of the array-processing methods. The threads that
run inside Numpy do not depend on the GIL, present in the
CPython, and therefore its use accelerates the execution of
algorithms by parallelization. Besides Numpy has detailed doc-
umentation that facilitates the development and maintenance
of the software. All these features make Numpy reasonable
choice for array processing in Python.

B. Numba

Numba [5] is optimizing Just-In-Time (JIT) compiler,
which allows to accelerate the time-critical code by compiling
it into native code. Unlike Cython, Numba does not require
explicit type annotations (but supports it) and does not trans-
lates the code in C language, which simplifies the use of
this technology. In order to show Numba which methods are
needed to be optimized, the user must use the simplest means
of Python language, called a decorator. Marked by the special
decorator methods Numba optimizes and compiles to machine
code using LLVM (Low Level Virtual Machine) infrastructure.
With the ability to turn off the GIL, as well as the compilation
to native code without using the Python C API (for the
methods that operates elementary types), Numba compiler can
generate more efficient and optimized bytecode. Numba also
automatically vectorizes all that it can handle, utilizing the
capabilities of multiprocessor systems to the maximum.

Table I compares the speed of execution of the same Python
code (multiplication arrays with multiplying and dividing by
a constant, see Listing 1), in one case without Numba, in the
other using this technology. Testing was performed on a system
with the Intel Core I7-3630QM CPU.

It should be noted that the algorithm shown in Listing 1
is not parallel in the means of code, and the vectorization is

TABLE I. NUMBA AND NUMPY PERFORMANCE COMPARISON

N Numpy Numba Speedup

106 0.19 ms 0.07 ms 2.77
107 1.62 ms 0.74 ms 2.19
108 16.06 ms 7.4 ms 2.17

performed by Numpy. The Table I shows that Numba allows
to speed up the execution nearly twice due to JIT compilation,
without any special optimization, such as, most likely, would
be needed while using any other tools, such as Cython.

V. PARALLELIZATION TOOLS

Considering a GIL mechanism, presenting in CPython, the
use of standard Python threads is not an effective solution
for parallel processing. GIL does not allow multiple threads
run simultaneously on different cores (within one interpreter
process) even on a multiprocessor system. However, running
multiple processes of interpreters, which can exchange data,
completely solves this problem. The only distinctive in this
case is that the launch of the process is a much more prolonged
operation than starting threads, and usage of multi-process
application on small data is not rational. There are several
tools for easy management of such tasks.

A. Multiprocessing

Multiprocessing [2] is a standard library module that pro-
vides an interface to create and manage multiple interpreters
processes. Its API is similar to the threading module of the
standard library. It also adds some new features, such as the
Pool class, representing the abstraction and control mechanism
for a set of parallel interpreter processes. Multiprocessing also
implements interprocess primitives, such as queue and mutex.
It is also worth noting that each process of the interpreter
works in separate memory space, therefore there is no need to
worry about race conditions when writing or reading variables,
unless they are declared as an object in shared memory.
Communication between the processes of the interpreter within
a given library is through interprocess communication channel,
based on pipes, using the pickle module, allowing to ”serial-
ize” and ”deserialize” the Python objects (serialization - the
process of transferring any data structure into a bit sequence;
deserialization - the restoration of the initial state of the data
structure from a bit sequence). All the tasks of synchronization
and object transferring are carried out by the Multiprocessing
module. Therefore, the user does not need to solve the problem
of confirming that all data used in the calculation has been
updated.

110 of 251

Listing 2. Parallel Python and multiprocessing usage for multiple arrays summation
import pp
import numpy as np
ppservers = ("10.0.0.1","10.0.0.2","10.0.0.3","10.0.0.4")
serv = pp.Server(ncpus = 2, ppservers=ppservers)
def mpsum(array):

pool = multiprocessing.Pool(2)
half = len(array)/2
s = sum(pool.map(sum, [array[:half], array[half:]]))
return s

arrays = [np.ones(5000) for i in xrange(10)]
imports = ("multiprocessing",)
depfuncs = tuple()
jobs = [serv.submit(mpsum,(a,), depfuncs, imports) for a in arrays]
s = sum([job() for job in jobs])
print s

B. ParallelPython

ParallelPython (PP) [6] is a library used to solve the
problem of clustering applications. Its implementation has a
client-server structure and it requires installation of the server
part on the compute nodes. However, the server program of
the PP is a simple one-file script, that can be transferred
into the node in any possible way. Because of the simplicity
of PP interface, it allows to run a computational task on a
parallel cluster in few lines of code. This library has its own
load balancer, and it also monitors the status of nodes and
redistributes tasks in case of non availability of one of them.
With Multiprocessing module, ParallelPython allows simply
and conveniently use all of the capabilities of the cluster
computing. Listing 2 shows an example of summing up the
plurality of arrays in parallel mode, using ParallelPython and
Multiprocessing. At every computational node two processes
start by ParallelPython and each of them starts other two
process by means of Multiprocessing. It is worth noting that
this library, as well as Multiprocessing, uses the ”pickle”
module to serialize data and tcp / ip network messaging.

VI. VISUALIZATION TOOLS

As it was already mentioned, there are many third-party
tools for data visualization. The ”mmdlab” library presented
in this work can be used as a tool for preparation of data for
the visualization in such packages, however it was also decided
to add its own visualization capabilities. During the research
it has appeared that the listed below libraries almost do not
concede in options to the well-known packages for scientific
visualization.

A. Mayavi2

Mayavi2 [7] is a Python framework, which allows to
build a general-purpose scientific visualization. It gives user
a possibility to load and render the data in a separate GUI
application and also has a convenient Python API for scene
construction and rendering. This library is built over the well-
known in scientific community VTK library. Mayavi2 gives
ample opportunities for the visualization of data, beginning
from hydrodynamic calculations and finishing with atomistic
data. In the case of the interactive GUI mode, tools for
changing the rendering parameters, such as the size of objects,
color schemes, filter settings are also available. Mayavi2 also
has a possibility of the offscreen-rendering (without displaying

image), that is extremely important for the server, distributed
and batch operation of a large number of data. Listing 3
and the Fig. 1 show an example of the density distribution
calculation of points and its three-dimensional visualization
using Mayavi2 and library for scientific computing SciPy.

B. Matplotlib

Matplotlib [8] is a Python library for building high-quality
two-dimensional graphs. It is widely used in the scientific
community. Usage of Matplotlib is very similar to the usage of
the plot methods in MATLAB, however, they are independent
projects. It is particularly convenient that the plots, which are
drawn with the help of this library can be easily integrated
into applications written with different libraries for GUI con-
struction. Matplotlib can be integrated into applications written
using the wxPython, PyQt and PyGTK libraries. Matplotlib
module is not included in the standard library, but it is the de
facto standard for the visualization of numerical information.

VII. DISTRIBUTED DATA ACCESS

The data obtained from the algorithm, described in the
article [1] has distributed structure, and is stored on the
compute nodes, used for simulation. Fig. 2 shows an example
of such data arrangement.

Fig. 2. Data distribution structure.

The composition of all the files is a complete form of
the system simulated by means of molecular dynamics. It
happens that the computational nodes use the shared disk
space, for example, by means of the NFS (Network File
System). However, access to the data from the client-side
which needs to read and process the data is open only via
SSH. Paramiko library can be used to solve this problem.

111 of 251

Listing 3. Kernel Density Estimation calculation and visualization script using SciPy and Mayavi
import numpy as np
from scipy import stats
from mayavi import mlab
mu, sigma = 0, 0.5
x,y,z = [10*np.random.normal(mu, sigma, 100) for i in [1,2,3]]
kde = stats.gaussian_kde(np.vstack([x,y,z]))
xmin, ymin, zmin = x.min(), y.min(), z.min()
xmax, ymax, zmax = x.max(), y.max(), z.max()
xi, yi, zi = np.mgrid[xmin:xmax:30j, ymin:ymax:30j, zmin:zmax:30j]
coords = np.vstack([item.ravel() for item in [xi, yi, zi]])
density = kde(coords).reshape(xi.shape)
figure = mlab.figure(’DensityPlot’)
grid = mlab.pipeline.scalar_field(xi, yi, zi, density)
min, max = density.min(), density.max()
mlab.pipeline.volume(grid, vmin=min, vmax=min + .5*(max-min))
mlab.points3d(x, y, z, scale_factor=1)
mlab.axes()
mlab.show()

Fig. 1. Listing 3 execution result: Kernel Density Estimation as volume visualization

A. Paramiko

Paramiko [9] is a library for the Python language, which
provides implementation and interface for interacting with re-
mote systems via SSHv2 protocol. This library has both client
and server implementations. In addition, Paramiko provides
a convenient API, which implements objects of ”file” type,
which are representing files on the remote filesystem. This
functionality was used as a basis for the implementation of
SSH collector in the represented work.

VIII. IMPLEMENTATION DETAILS

Using the tools above, there was initiated the development
of the software complex, allowing to achieve the objectives,
namely the parallel data reading and processing, as well as
their visualization. As an initial stage, ”mmdlab” package was
written which implements a general purpose API for such
tasks. Below are described the implementation problems we
have to handle, application and solutions with the means of
the developed library. There is also drawn further attention to
the implementation peculiarities in some parts of the package.

A. Parallel data access

A module for reading and partial processing of the input
data was named ”datareader”. In this module have been imple-
mented the necessary objects for reading and representation of
the data, such as Container, Parser and means of access to the
files on the local file system and via SSH. In the terminology
of ”mmdlab” package, Container is a structure that stores the
read data in a user-defined format. Parser is a special object that
reads binary data structure and parses them, thereby obtaining
a container. The Parser class receives the raw data from the
Transport object that provides an interface for the access to the
local or remote file system. Inheriting and combining objects
from these classes, the user can easily make the loader, that
parse a custom data format, and accesses it using any protocol,
such as SSH or HTTP. On the Fig. 3 are shown the ”mmdlab”
components interactions.

Let’s consider the reading procedure of the MD system’s
particular state described the article [1]. Given the distributed
structure of input data, a single state of the system is a set of
files of the atomistic data. For each of them it is necessary to
read, parse and compile binary structure into a single container
that contains the representation of the simulated system.

For the performance needs it is necessary to use a parallel

112 of 251

Listing 4. A part of DistributedDataReader class
class DistributedDataReader:

...
def read(self):

...
files = self.transport.list(self.file_mask)
container = self.container()
pool = Pool(processes=self.np, maxtasksperchild=self.mtpc)
results = [pool.apply_async(rd,

args=(f,self.transport.filer(),self.parser))
for f in files]

for ct in results:
container.append_data(ct.get())

return container.finalize()

Fig. 3. MMDLAB components scheme.

algorithm for the reading and processing of the data. Master
process launches N slave-processes that are able to load and
parse the data. Then it begins to give every data file address
to a every free process. When the slave process has finished
the reading and parsing procedure, and assembled its part of
the container, the master process combines the loaded data
with its master container, and then assigns a new file to the
slave process. After all the slave processes are completed, and
there are no more files for reading, master process provides the
necessary post-processing for the container, where all of the
available data is stored, and sends it to the next data processor
in line. It should be noted that in some cases it is not necessary
to send all the data to the master host. For those cases, the
”mmdlab” supports a possibility to use the post-processing
pipeline in the slave processes, so they can make necessary
calculations and send back only the result, but not all the
processed data set. In order to enhance the ability of ”mmdlab”
package for reading the custom-format data, it is required to
describe the new entity for storage and loading of such data. As
an example, consider the implementation of such entities for
reading a CSV (Comma-Separated Values) format with three
columns. Listing 5 shows an example of such an extension to
CSV reading from remote file systems via SSH.

In practice the user will need to describe the new class
inherited from the class DummyContainer and to redefine the
append data method in it. Also it will be required to describe
the class for raw data parsing.

B. Pipeline

In this work, to run reading and processing tasks, it is
proposed pipeline-type interface (see Listing 6, the mmdlab.run
part). This method makes it possible to run an execution of a

Listing 5. CSV Container and Parser implementation using ”mmdlab”
package
class CsvCtr(dr.containers.DummyContainer):

def __init__(self):
self.cols = [[],[],[]]

def append_data(self,data):
for i,d in enumerate(data[:]):
self.cols[i].extend(d)

class CsvParser(dr.parsers.DummyParser):
def data(self):

cols = [[],[],[]]
for line in self.transport.readlines():

c = line.split(",")
for i in range(0,3):

cols[i].append(c[i])
return cols

nodes = \
({"ip":"10.0.0.1","pwd":"123","login":"test"},
{"ip":"10.0.0.2","pwd":"123","login":"test"})
remotedirs = [(sys.argv[1], node) for node in nodes]
transport = dr.transport.RemoteDirs(remotedirs)
parser = CsvParser()
rdr = dr.DistributedDataReader(file_mask="1*.csv",

transport=transport,
parser = parser,
container = CsvCtr)

container = mmdlab.run([rdr,])

chain of actions in one line, each of which is carried out over
the result of the previous task. Also parallel operations over
the same result of the previous method are supported.

For example, the call of mmdlab.run([generate, [f1, f2, f3],
sum]) first performs the ”generate” method, then in parallel
mode it runs three processes: ”f1”, ”f2”, ”f3” each operating
on the result of the ”generate”, and in the end it will summarize
the obtained values. Restrictions on objects in the pipeline are
simple: the object has to be callable, it should take the data
for processing as an argument and it should return an object.

At the current stage of development, when you run a
multithreaded processing over the previous action the result
will be copied to each of the child process. In the future
we plan to add some additional entities, allowing to manage
the execution workflow, such as a special object that allows
to perform an action in the master process, and to send the
result’s parts to the slave-processes. This may be necessary,
for example, for the separation of the array into a multiple
parts, and process each in a separate slave-process without
sending the entire array to it.

Due to the fact that the pipeline is implemented by means

113 of 251

of the interface module Multiprocessing, consider some of the
problems encountered.

C. RAM leak in parallel processing

Let’s consider the reading procedure of the Distributed-
DataReader class (see Listing 4).

During the testing it was found that a resources leak
appears in the multiprocessing mode. After starting the pool
of processes, and performing a variety of tasks in it, memory
consumption increases dramatically. It became apparent that
by default the started by Multiprocessing library interpreter
processes handle all the scheduled tasks without restarting.
Each task which is carried out in such processes leaves the
context, which becomes bigger in the volumes of consumed
memory as the more data the task returns. As a result, after
long-term execution of multiple tasks at the computational
node the RAM came to an end. The proposed solution of this
problem is as follows. The object of a processes pool has a
special parameter of the constructor named ”maxtaskperchild”,
allowing to set the number of tasks that a single interpreter
process can handle. When the counter of finished jobs becomes
more then this value, the master-process algorithm will restart
the interpreter.

Changing this parameter allows to vary the maximum
amount of memory consumed. However, it should be noted
that the smaller the value, the more often the master process
will restart child processes’ interpreters. It can take noticeable
amount of time. Within the considered task of processing large
amounts of data, the time is not critical, and installation of
rather small value is quite justified because of memory limits.

Fig. 4 shows the dependence of the loading time on the
”maxtaskperchild” parameter. The loader uses multiprocessing
module, with the pool consisting of one process, and loads 256
data files in serial mode.

Fig. 4. Loading time of 256 files depending on a ”maxtaskperchild”
parameter, logarithmic scale

Taking into the account the Fig. 4, the optimal behavior
of the processes pool is to restart the slave-workers every 16
tasks. It makes possible limiting the consumption of RAM and
at the same time keeps the overhead of the interpreter restart
time influence almost negligeable.

D. Multiprocessing and Pool of Pools

Another problem encountered in the development process
is the fact that the default multiprocessing library does not al-
low to create ”nested” pools for processes. In particular, if there
appears a necessity to run in parallel the processes of reading

a plurality of states of the studied system (this will start new
slave-processes that should start a lot of reading processes),
for example, for the particles’ trajectories construction, so the
Multiprocessing module will not allow to do it.

The introspection which is supported by the Python lan-
guage fully helps with the solution of this problem. The
”mmdlab” package developed in this work has a construction
shown in Listing. 7 included in it.

Listing 7. MultiPool class, allowing to run pool of processes inside child
process, created by multiprocessing module
import multiprocessing
import multiprocessing.pool
class NoDaemonProcess(multiprocessing.Process):

def _get_daemon(self):
return False

def _set_daemon(self, value):
pass

daemon = property(_get_daemon, _set_daemon)
class MultiPool(multiprocessing.pool.Pool):

Process = NoDaemonProcess

It redefines the get daemon and set daemon methods at
the ”multiprocessing.Process” class and provides a new object,
inherited from the Pool class. It should be used instead of the
standard Pool class from Multiprocessing module.

E. Data processing

For processing and filtering data in developed ”mmdlab”
library the same mechanisms as for the data reading are used.
The so-called ”pipeline” architecture is used which implicates
the container object passing through a chain of a great number
of data processors, that can change, supplement a container or
create a new one. The ”run” method in the ”mmdlab” package
passes the container obtained from the previous task to the
input of the next processing method. The implementation of
these processing methods can be both serial and parallel.

In the application to the analysis specific objective of
molecular dynamics simulations’ results from the article [1],
the objects for data post-processing have been added to the
developed library. For example, a filtration of particles by
various criteria, in particular for getting the particles only from
specified area, for filtration by indexes and division of particles
according to physical materials. All computationally intensive
procedures were optimized by using Numpy and Numba.

As a simple example, let’s consider the task of visualizing
of the particles’ position and temperature that are divided
by criteria of physical material in the predetermined area.
Such problem can be solved using ”mmdlab” library in the
following way (see Listing 6). First, the user creates an object
of the data loader, setting their location in the filesystem and
a time mark. Then they need to specify the description of
particles, which the division filter will work with, and create
the corresponding objects of filters (the location filter and the
division filter). Lastly they need to pass these objects to the
pipeline. Calculation of temperature is performed during the
container’s post-processing stage. Listing 6 and Fig. 5 show
the listing of such task and the execution results.

114 of 251

Listing 6. Reading, processing and visualization of the atomistic data using ”mmdlab” package
from mmdlab.datareader.shortcuts import read_distr_gimm_data
import mmdlab
import sys
reader = read_distr_gimm_data(sys.argv[1],sys.argv[2])
filter_reg = mmdlab.dataprocessor.filters.RegionFilter([0,10,0,10,0,10])
parts_descr = \
{ "Nickel" : { "id" : 0, "atom_mass" : 97.474, "atom_d" : 0.248}, \
"Nitrogen" : { "id" : 1, "atom_mass" : 46.517,"atom_d" : 0.296} }
filter_split = mmdlab.dataprocessor.filters.SplitFilter(parts_descr)
container = mmdlab.run([reader, filter_reg, filter_split])
met,gas = container["Nickel"], container["Nitrogen"]
mp = mmdlab.vis.Points3d(met, scalar=met.t, size=met.d,

colormap="black-white")
gp = mmdlab.vis.Points3d(gas, scalar=gas.t, size=gas.d, colormap="cool")
mmdlab.vis.colorbar(gp, "Gas T")
mmdlab.vis.show(distance=20)

Fig. 5. The result image produced by execution of Listing 6.

F. Cluster processing

For testing of the cluster mode was used the combination
of the master node with the Intel Xeon E5-2650 (32 cores) and
6 compute nodes (Intel Xeon 5150 2.66 GHz, 24 cores) with
shared file system over NFS. It gives certain freeness in respect
of access to the data: it is not required to associate the input
and the node on which processing is started, as any datafile is
available from any of nodes. However, such configuration has
a bottleneck: the storage input-output performance. As a result,
it was decided to use the following strategy: a master node,
which is a physical data storage, in the multiprocess mode
loads data into memory and sends it to the cluster nodes in the
form of internal representation, without the data processing.

In contrast to the strategy of ”reading on each node” the
described way allows to use the computational capabilities
of the subordinated nodes on maximum, with the minimum
input-output waiting, maximizing disk input-output utilization.
In case of difficult visualization for which processing and
rendering takes more time than reading one system state, such
approach allows to reduce the average time of full processing
almost to the data reading time, which is the potential mini-
mum time of processing.

As an example of clustered task, consider the problem of
constructing three-dimensional field of the gas density in the
computational domain using Kernel Density Estimation (KDE)
algorithm, implemented in SciPy library (see Listing 8). The
graphs of execution time (see Fig. 6) and the acceleration
(see Fig. 7) of such calculations, depending on the number
of processors for a variable number of subtasks are shown
below.

Listing 8. KDE Clustering example using mmdlab package
import sys
import mmdlab
from scipy.stats import *
from mmdlab import parallel
from mmdlab.datareader.shortcuts import *
from mmdlab.dataprocessor.filters import *
rdr = read_distr_gimm_data(sys.argv[1],0)

def calc_kde(kde, data):
return kde(data.T)

parts_descr = { "Nickel" : { "id" : 0},
"Nitrogen" : { "id" : 1}}

filter_split = SplitFilter(parts_descr)
filter_reg = RegionFilter([0, 100, 0, 100, 0, 100])
cont = mmdlab.run([rdr, filter_reg, filter_split])
gas = cont["Nitrogen"]
kde = gaussian_kde(np.vstack([gas.x,gas.y,gas.z]))
xi, yi, zi = np.mgrid[0:gas.x.max():30j,

0:gas.y.max():30j,
0:gas.z.max():30]

c = np.vstack([item.ravel() for item in [xi,yi,zi]])
cores = sys.argv[2]
nodes = ("192.168.6.15","192.168.6.20")
cluster = parallel.Cluster(nodes)
args = [(kde,a) for a in np.array_split(c.T, cores)]
cluster.map(calc_kde, args)
density = np.concatenate(results).reshape(xi.shape)

Fig. 6. Processing time for parallel KDE algorithm with various number of
subtasks, depending on the number of used processors

It should be noted that if the number of tasks is less than
the number of master node processes (which is up to 32), then
the increasing of the process’s count in this calculation is not

115 of 251

Fig. 8. Adsorbtion of Nitrogen on nickel plate and particle trajectory visualized using the ”mmdlab” package.

Fig. 7. Speedups for parallel KDE algorithm with various number of subtasks,
depending on the number of used processors

effective. Also, the acceleration increases with the number of
nodes involved in the computation, rather than with the number
of actual processes. This is due to the following two features:

• PP considers that the overhead of process start-up and
data transfer is significantly less on the master-node,
than on the slave-nodes. Thus, it loads the master node
to the maximum, before it starts to send jobs to the
slave-nodes.

• Numpy already vectorizes array operations over all
available cores, and the addition of a new processor
will not make a significant acceleration.

Also we need to note that the PP, which is used as a
library for clustering, automatically distributes the load across
nodes, depending on the tasks execution time. So it makes
sense to divide the original problem into a number of subtasks
more than the number of available processes, if there are some
”weak” nodes in the cluster. In this case PP forms a queue and
gives tasks to the nodes taking into account efficiency of each
node, thereby providing a load balancing.

G. Visualization

For the visualization in this work Mayavi2 and Matplotlib
library were used. For convenient usage of the common render-
ing methods, the ”mmdlab.vis” module was included, which
is a wrapper over the methods of these libraries, combining
their capabilities to achieve the desired result. Due to the
single-threaded architecture of Mayavi and Matplotlib, data
visualization process is currently supported only in the single-
threaded mode within a single process. However ”mmdlab”
allows to run a hybrid task of reading and rendering on a set
of nodes and in the multiprocess mode, which significantly

accelerates the rendering of frame-by-frame video animations.
For example, consider the task of rendering an animation
which consists of frames representing the state of the studied
system in consecutive timepoints. Basic data can be distributed
across the multiple nodes, thus the visualization can be run on
each of the nodes, and then the result can be collected on
the master-node. The following algorithm is proposed for the
solution of such a problem:

• On each of the specified nodes run a sequence of
reading and visualization

• Collect all the frames that were drawn on the master
node

• Assemble an animation from collected frames

To build an animated GIF format file ”mmdlab” library uses
the program ”convert” from the ImageMagick [10] utils.

IX. CONCLUSION

This paper presents the experimental version of a high-
level library ”mmdlab” for the Python language. Usage of such
library makes it possible to perform a simple clustering and
paralleling for the various types of processing tasks, such as
reading, post-processing and visualization. It can operate over
the large-scale data, distributed over the computational nodes
in parallel mode. The main tasks of the development of this
library are the analysis and visualization of the data obtained
as the result of MD simulation of gas-metal microsystem
described in the article [1]. To achieve this goals it was
necessary to process about 1.3 TB of data obtained from
one simulation, and there were three simulations with dif-
ferent materials temperatures. Usage of the ”mmdlab” library
allowed to closely observe the effect of nitrogen adsorption
on a nickel plate (see Fig. 8) including an analysis of the
individual particles’ trajectories. Special attention was paid to
a possibility of extension of the created library. It is possible
thanks to flexibility of the used tools. As a result, usage of the
developed library can be extended to reading and visualization
of potentially any structures of data.

ACKNOWLEDGMENT

Work is performed with assistance of the Russian Foun-
dation for Basic Research (grants No. 15-07-06082-a, No. 15-
29-07090-ofi m).

116 of 251

REFERENCES

[1] V.O. Podryga, S.V. Polyakov, D.V. Puzyrkov, Supercomputer Molecular
Modeling of Thermodynamic Equilibrium in GasMetal Microsystems (in
Russian), in Vychislitel’nye Metody i Programmirovanie, vol. 16, no. 1,
pp. 123-138, 2015.

[2] Python official documentation [Online]. Available:
https://www.python.org/

[3] P. Fernando, E.G. Brian, IPython: A System for Interactive Scientific
Computing (in English), in Computing in Science and Engineering,
vol. 9, no. 3, pp. 2129, 2007. (2015, Feb. 4), [Online]. Available:
http://ipython.org

[4] Numpy official documentation [Online]. Available:
http://www.numpy.org/

[5] Numba official documentation [Online]. Available:
http://www.numba.pydata.org/

[6] ParallelPython official documentation [Online]. Available:
http://www.parallelpython.com/

[7] Mayavi2 official documentation [Online]. Available:
http://docs.enthought.com/mayavi/mayavi/mlab.html

[8] Matplotlib official documentation [Online]. Available:
http://matplotlib.org/

[9] Paramiko official documentation [Online]. Available:
http://www.paramiko.org/

[10] ImageMagick official documentation [Online]. Available:
http://www.imagemagick.org/

117 of 251

Memristor-based Hardware Neural Networks
Modelling Review and Framework Concept

Dmitrii D. Kozhevnikov
Faculty of Computer Sciences

National Research University Higher School of Economics
Moscow, Russia

ddkozhevnikov@edu.hse.ru

Nadezhda V. Krasilich
Faculty of Business Informatics

National Research University Higher School of Economics
Perm, Russia

nadezhda.krasilich@mail.ru

This paper is a report of study in progress that considers

development of a framework for modelling hardware memristor-

based neural networks. An extensive review of the domain has been

performed and partly reported in this work. Based on this review, a

number of development requirements is derived and formally

specified, ontological and functional models are proposed to foster

understanding of the corresponding field.

Keywords—memristor; memristor model; hardware neural

network model; memristor-based neural networks.

I. INTRODUCTION
Until 1970-s the world has been aware of only three passive

elements of electrical circuitry: resistors, capacitors and
inductors. The three stated elements coupled with natural
relationships provide five connections for four basic notions of
electrical circuit theory (voltage, charge, current and flux).
Mathematics, however, claims that four things can be mutually
interconnected in six different ways. Indeed, the relation
between charge and flux was not present. It wasn’t until 1971
that the discordance has been formulated and solved. A new
element – memristor - has been proposed by Leon Chua in his
paper in IEEE Transactions on Circuit Theory completing the
mathematical symmetry of circuit theory. It took nearly 40 years
for memristor to transform from a purely theoretic concept into
feasible implementation. In 2008 a group of scientists from
Hewlett-Packard Labs lead by Stan Williams has finally built
working memristors [1].

One of the most promising domains of memristor
application, seem to be artificial neural networks [2]. These
often come in either software or hardware implementations,
sometimes in a combination of both. While digital neural
networks simulate the data processing mechanism of biological
neural networks, hardware ones strive to emulate it. It is worth
mentioning that since most of computer architectures conform
to the von Neumann architecture, neural network simulation
becomes a challenging task because of the paradigm mismatch..
Instead of simulating the ways of nature, hardware neural
networks try to directly replicate them, creating non-von-
Neumann architectures. In comparison with digitally simulated
networks, hardware ones can achieve better speed, less power
consumption and chip space.

On the other hand, hardware networks often prove to be far
less accurate that their software counterparts, due to the
nonuniformity of analog components [3]. Another disadvantage

of modern hardware neural networks, which they actually share
with the software ones, is the volatile storage of synaptic
weights. There are ways to achieve the nonvolatile weight
storage within hardware networks, but usually such weights are
either static (cannot be changed once manufactured), quickly
digress (require frequent updating) or are rather hard to program
[4]. The emergence of memristor, however, seems to have
opened new possibilities in addressing the stated problems.
Memristors seem to be a perfect match for synapses, making
hardware implementations of neural networks more reliable and
greatly increasing productivity of neural computations [5].

Nevertheless, memristors are still scarcely availably and lack
industrial-grade production. Being such a new technology, they
are often hard and expensive to acquire for experimentation, but
a large variety of memristor models has already been produced,
making it possible to model memristor-based devices.

Thus, considering the domain of artificial intelligence, a
need in profound and correct model of artificial memristor-based
feedforward neural network arises. Such model would be of
great help in assessing the qualities of modeled system:
computation performance, time and energy expenses, material
costs, etc. Consequently, the goal of the research is to develop a
framework for modelling artificial memristor-based neural
networks.

II. THEORETICAL MEMRISTOR
The concept of memristor has been recognized since 1971,

when Leon Chua has proposed for the first time in a well-
organized and mathematically described way [6].

The 1971 Chua’s paper in IEEE Transactions on Circuit
Theory is considered to be the pioneer work in the corresponding
field of research. Although, the concept of memristor-like
devices has been suggested earlier in 1960 by Bernard Widrow,
Leon Chua was the first one not only to provide a feasible
foundation for memristor’s existence, but also to estimate and
mathematically describe its’ supposed behavior and properties.

Memristor fulfills the mathematical symmetry of
relationships between major circuit notions. The relationship
created by a memristor, according to Chua, is expressed as
follows:

where M(q(t)) is the memristance defined as

118 of 251

The definition of memristance may be represented in a more
convenient form by substituting flux and charge with their
integral definitions:

𝑀(𝑞(𝑡)) =
𝑑𝜑/𝑑𝑡

𝑑𝑞/𝑑𝑡
=

𝑑[∫ 𝜐(𝜏)𝑑𝜏
𝑡

−∞
]/𝑑𝑡

𝑑[∫ 𝑖(𝜏)𝑑𝜏
𝑡

−∞
]/𝑑𝑡

=
𝑣(𝑡)

𝑖(𝑡)

The similarity of memristor to the remainder of classical
circuit elements can be better reflected by expressing their
definitions via differential equations as it is done in Table I.

The first important property of memristors, which
commonly is referred to as memristance and stands for the
ability to change its resistance gradually via a controlled
mechanism (e.g. memory of device’s history of charge).

The second significant attribute of memristors, figured out
by Chua, is the non-volatility property, which stands for the
absence of internal power supply. In other words, Chua
proposed that memristor is able to store the value of own
resistance without the need to be connected to a power source.

In 1976, Leon Chua and his fellow colleague Sung Kang
proceeded exploring the mathematical and physical properties of
the memristor [7].

They had come to an understanding, that since memristor is
a dynamic device, one equation is not enough to describe it,
henceforth memristor’s behavior is represented by following
equations for current-controlled memristor

𝑥 = 𝑓(𝑥, 𝑖, 𝑡)

𝑣 = 𝑅(𝑥, 𝑖, 𝑡)𝑖

and for voltage-controlled one

𝑥 = 𝑓(𝑥, 𝑣, 𝑡)

𝑣 = 𝑅(𝑥, 𝑣, 𝑡)𝑖

Where v and i denote the input voltage and current
respectively and x stands for the internal state of the device. In
their paper, Chua and Kang also provided a more generalized
concept of memristive systems with no specific reference to
particular physical variables.

One noteworthy peculiarity derived from these equations is
that regardless of the state x (which implements the memory
effect), the output voltage is equal to zero whenever input
voltage or current are equal to zero as well. This zero-crossing
property, Chua and Kang write, manifests itself vividly in the
form of a Lissajous figure, which always passes through the
origin. Thus, they extended the definition of memristor that is
now to encompass any system able to demonstrate a Lissajous
figure (later called pinched hysteresis loop by Chua) in the i-v
curve, which is presented on Figure 1.

III. MEMRISTOR MODELS
However, the true interest has been sparked by the notable

work of Richard Stanley Williams’ group of researchers at
Hewlett-Packard laboratories. Despite this fact, the idea of

memristors not being a purely theoretical concept has captivated
minds of many researchers around the world, resulting in more
than 120 publications about memristors and memristive systems
by 2011. [8].

After the concept of memristor was brought back to the
public’s sight, several implementations of memristors and
memristive systems have been proposed. Different
implementations of memristor rely on various physical and
chemical reactions that give rise to both memristance and
nonvolatility, properties essentially constituting the definition of
memristor. There have been reported polymeric [9,10],
spintronic [11], ferroelectric [12] and layered [13]
implementations of memristor, but titanium dioxide memristors
remain the most well studied group. During this research four
models were closely considered, namely linear ion drift
model[1], nonlinear ion drift model[14], Simmons tunnel barrier
mode[15], and threshold adaptive memristor model
(TEAM)[16]. Unfortunately, due to the paper size
considerations only the last one of them will be reported. This
model, however, was decided to be further utilized throughout
the work.

TABLE I. DIFFERENTIAL EQUATIONS OF BASIC CIRCUIT ELEMENTS

Device Electronic Symbol Unit
Differential

equation

Resistor

R, ohm R = 𝑑𝑣

𝑑𝑖

Capacitor

C, farad C = 𝑑𝑞

𝑑𝑣

Inductor
L, 𝑊𝑏

𝐴
 or

henry
L = 𝑑𝜑

𝑑𝑖

Memristor

M, 𝑊𝑏

𝐶
 or

ohm
M = 𝑑𝜑

𝑑𝑞

Fig. 1. Pinched hysteresis loop in the i-v curve

119 of 251

TEAM model, proposed by Kvatinsky et al., incorporates
advantages of ion drift models’ explicitness and Simmons tunnel
barrier accuracy, yet manages to preserve relatively high
computational performance and generalizability. TEAM model
is based on the same physical behavior as Simmons tunnel
barrier model. But it manages to convey it with simpler
mathematical functions. The model introduces several
assumptions for the sake of analytical simplicity: state variable
does not change below a certain threshold and exponential
dependence is replaced with a polynomial one. Detailed
mathematical foundation of the model may be found in the
corresponding paper.

A major advantage of such a relation is the explicitness of
current and voltage relationship as opposed to the Simmons
tunnel barrier model. Nevertheless, Kvatinsky et al. were able to
perform a fitting procedure forcing TEAM model to match the
latter with reasonable and sufficient accuracy. In their paper,
authors of TEAM model also report the results of comparison
between the fitted TEAM and Simmons tunnel barrier model.
The feasible preciseness of TEAM model was proved by the
average discrepancy between models’ state variable difference
of only 0.2%. The maximum difference of this value constituted
12.77%, however the run time of the model was nearly halfed
(47.5%) Kvatinsky et al. had been also able to fit the model with
different types of physical memristor models, namely STT-
MRAM and Spintronic memristors.

IV. MEMRISTOR BRIDGE NEURAL NETWORK
This paper considers the neural network architecture

proposed by Adhikari et al. in 2012 [4]. The architecture is based
on the memristor-bridge synapse [17] and aims to solve the issue
of nonvolatile synaptic weight storage and implement a newly
proposed hardware learning method.

A. Memristor Bridge Synapse

Memristor bridge synapse architecture was first proposed in
[17], it is a Wheatstone-bridge-like circuit that consists of four
identical memristors of opposite polarities. When positive or
negative strong pulse 𝑣𝑖𝑛(𝑡) is applied at the input, the
memristance of each memristor is increased or decreased
depending upon its polarity.

Kim et al. write, that if input pulse voltage is equal to vin,
voltages at memristors can be calculated according to “voltage-
divider formula”. Then given memristances M1, M2, M3, and M4
stand for the corresponding memristors at time t, the output
voltage is reported to be equal to the voltage difference between
terminals A and B:

𝑣𝑜𝑢𝑡 = 𝑣𝐴 − 𝑣𝐵 = (
𝑀2

𝑀1 + 𝑀2

−
𝑀4

𝑀3 + 𝑀4

) 𝑣𝑖𝑛 .

B. Memristor Bridge Neuron

In artificial neural networks neurons are required to sum a
set of input postsynaptic signal and, according to the activation
function, propagate (or not propagate) the signal further on to
the next layer of the network. The neuron is then required to sum
the input postsynaptic signals. Kim et al. point out, that the
signal summing operation is easier to be performed in current

mode: postsynaptic signals should be connected to a single node,
so that the following neuron would receive the sum of currents
via Kirchhoff’s current law. In order to achieve current
summation, the memristor bridge synapse has to be modified
because it provides voltage output. Kim et al. suggest combining
the memristor bridge with differential amplifier. The latter
converts post-bridge negative and positive voltage into
corresponding currents. Hence, for a set of synapses there exist
two nodes: one for positive postsynaptic current and one for
negative postsynaptic current. These nodes sum the output
currents of each individual synapse in the set. Neuron itself is
then comprised of the summation nodes, but also of the active
load circuit that implements the activation function as in Figure
2. The sum of all postsynaptic currents is converted back to
voltage (presynaptic signal for next layer of neural network) by
the active load circuit according to the activation function.

In their paper, Adhikari et al. also provide rigorous
mathematical explanation of the suggested architecture
behavior.

C. Neural Network Training

A composition of an arbitrary number of neurons connected
via memristor-bridge synapses therefore constitutes the artificial
network. Adhikari et al. intend to use Chip-in-the-Loop
technique for training the network of proposed architecture.
They, however, suggest modifying this technique slightly in
order to take into account peculiar properties of memristor-based
circuits. This technique is a viable choice since it provides a way
to deal with memristor bridge non-idealities without explicitly
modelling these nondidealities. According to this technique, the
circuit performs the forward computation of the network,
whereas back-propagation and weight update is done on the
software side.

The hardware circuit network is reproduced by a software
clone, which is used to process the training data. After the
computer network has processed all the training data, synaptic
weights of each individual synapse circuit are programmed by
direct application of strong voltage pulses in order to match with
the weights from computer network’s weight matrix. Hence, the
whole of the hardware network is treated as it consists of a set of
simple single-layer networks. Each one of those single layer
networks is trained separately, according to the weight matrix.

Fig. 2. Memristor Bridge Synaptic Circuit [4]

120 of 251

Because of the nature of memristor bridge synapses, the need in
additional circuitry is eliminated.

V. FRAMEWORK CONCEPT
As one can see, plenty of research has been carried out in the

field of memristors and memristor-based neural networks.
Multiple approaches to both creating and modelling memristors
have been mentioned in previous sections.

It is needed to create a reliable framework for simulating
memristor-based neural networks. So far, rather abundant
overview of the domain has been presented. Despite the vast
variety of works mentioned, the domain at hand lacks general
integrity and is not formalized enough to start composing the
framework at least in its basic form. Hence, the domain must be
formalized to a certain extent. In order to derive this degree of
formalization, the requirements for the stated framework are to
be determined. This will enable framework to be designed
properly and will ensure it complies with the needs and wants of
its users. Requirements are decided to include four major points:
accuracy, performance, flexibility, and explicitness. Accuracy
stands for reliability of framework and if its output data can be
trusted. Performance reflects how quick does the simulation
proceed. Flexibility corresponds to how easy it is to swap
components and models within framework. Finally, explicitness
is determined by the overall convenience of the framework and
how well does it represent results of the simulation. Insights into
these requirements can be better revealed according to the
SMART criteria (a project management technique for
elaborating objectives), which is done in Table II.

The requirements described above help determine what is to
be expected from the framework, what kind of formalization for
the domain is required, and set guidelines for further process of

design and development. The domain may be formalized by
representing it as a graphical scheme, henceforward called
ontological model. The reason for such naming is that this model
encompasses relevant entities of the domain under discourse, as
well as reflects their major properties and interrelations, which
in turn roughly corresponds to the definition of ontology. This
model will limit the complexity of the field of memristor-based
neural networks and expose the intrinsic connections between
the notions at hand.

First, let us derive a set of entities to be found within this
model. At the very core of every network there are neurons and
synapses. These three notions (neural network, synapse and
neuron) constitute the heart of designed model as well.

Multilayer network usually distinguishes between input
layer neurons, output layer neurons and hidden layer neurons,
which may slightly differ. Input neurons should be able to
receive input signals, which may not necessarily coincide with
how the signals are conveyed within the network. Similarly,
output neurons must provide output signals. Consequently, input
and output program modules should be introduced, in order to
convert electrical output signals into human-comprehensible
format and vice versa for the input signals.

Both neurons and synapses of hardware neural networks are
implemented through circuits. Circuit design may vary from one
implementation to another, therefore, the general concept of
neurons and synapses should be decoupled from its’ particular
hardware implementation to ensure flexibility. This will enable
the framework to safely switch between specific circuit
implementations of neurons and synapses, but will also ensure
framework’s operability. The framework must as well be able to
switch between different realizations of memristor, namely,
memristor models. Hence, the latter should be considered a

TABLE II. FRAMEWORK REQUIREMENTS ACCORDING TO SMART

Criterion Accuracy Performance Flexibility Explicitness

Specificity

Results of simulation within
framework must coincide with
corresponding experimental
data.

Simulation processing must be
performed in a reasonable time.

Frameworks components must
be easy to change and replace,
due to the domain’s novelty.

Simulation results should be
clear and easy to observe.

Measurability

Given the same input data the
framework must produce the
same output data as in either
experimental data or in verified
models. Thus, the discrepancy
between these results may be
used to measure accuracy of the
framework.

Time taken to perform the
simulation and calculate the
results reflects how well does
the framework perform in terms
of performance.

Framework’s flexibility can
measured in regard with how
many approaches to memristor
modelling and network training
and architecture does it
implement.

Explicitness is the most
subjective of all requirements
and should be estimated by
direct responses of framework’s

users.

Achievability

Accuracy is achieved through
testing the framework and
tuning it match with known
data.

Performance is achieved
through optimization of
frameworks algorithms and
architecture.

If designed correctly the
architecture (structure) of the
framework should provide
sufficient flexibility.

Various parameters of
framework’s components must
be accessible for the user.
Framework should also provide
visualization methods (graphs,
visual models, etc.)

Relevance

Accuracy is arguably the most
important requirement, without
sufficient accuracy, the purpose
of the framework is defeated.

Performance is quite relevant
since long runtime may hinder
the research progress when
using framework.

Because the domain is so new,
it is extremely important to
make the framework able to
adapt to possible changes.

Visual representation of
simulation results is very
important for the end user.

Timeliness

Accuracy may be achieved after
tuning the initial version of
framework.

Performance should be taken
into account during the
development, but can be also
improved by later optimization.

Flexibility must be ensured
from the very beginning of the
development.

Visualization may be
introduced after the basis of the
framework is complete.

121 of 251

separate entity, which is contently used as a component in
synapse circuitry. For the time being only the metal dioxide class
of memristors is considered to limit already reasonable
complexity of the framework.

Finally, the network must should be able to employ different
learning techniques. Despite the fact that this work considers
only chip-in-the-loop method, the framework should be
designed being able to implement various ways of network
training. Here it is necessary to take into account not only the
learning algorithm, but also how this algorithm is applied to
hardware circuit components of the network.

The ontological model is depicted on Figure 3. Solid border
circles correspond to the entities of the domain; dashed border
circles stand for the properties (attributes) of certain entities;
filled arrows represent association relation between entities;
empty arrows reflect inheritance (or, possibly, interface
implementation); finally, dashed lines reflect attribution
connections.

It must be noticed, that the ontological model is likely to be
changed in the following works and presented version is not
final. Some of the anticipated issues include particular
implementations of learning techniques, for instance, chip-in-
the-loop does not require auxiliary circuitry, whereas spike
timing-dependent plasticity usually does. Another bottleneck to
be expected relates to the circuit implementations of neurons and
synapses. The latter may consist of multiple circuits that should
be represented as separate entities in order to preserve flexibility
of the system, yet should conform to the same interface for the
sake of integrity.

In this way we shed light onto the structural peculiarities of
the future framework. This model is to help composing the
classes to be implemented as well as their interrelations. Let us
now consider the other side of the developed system, namely, its

functional requirements. In this paper, the latter refer to a certain
number of capabilities expected by users from the framework.

Framework under development strives to model memristor-
based neural network suggested by Adhikari et al., which is
described in the previous section. It is also expected to make
possible modeling with better level of preciseness by enabling
swappable memristor models. For instance, employing TEAM
memristor model may significantly raise the relevance of
proposed hardware neural network model through fostering the
accuracy of memristor’s physical model.

The functional scope of the framework may be represented
as a set of intertwined mathematical equations that describe
various parts of the network model. Each entity of the
framework can be characterized with equations that have
adjustable parameters, which are usually derived by the authors
of corresponding models from experimental data analysis.
These equations are extracted from relevant models and are
bound in such way, that one equation’s output usually
corresponds to input of the other equation. This set of equations
is depicted on Figure 4. Each separate square on the scheme
reflects an entity of the framework, while arrows denote the
input-output connections between equations. One may notice
that relations of equations form a cycle, where one iteration of
this cycle corresponds to one layer of hardware memristor
network. This figure depicts what set of functions is expected to
be provided by the future framework.

CONCLUSION AND PROSPECTS
In this paper, a range of memristor models has been reviewed

together with some of the fundamental papers on memristor-
related technologies. Based on this review, a concept of
framework for modeling memristor-based hardware neural
networks has been proposed. This framework represents an

Provides Data

Input module
Output
module

User

Receives Data

Network
Input

Signal(s)

Network
Output

Signal(s)

Neural
Network

Input Level
Neuron

Output Level
Neuron

Hidden Level
Neuron

Synapse

Learning
Technique

Produces Processes

Consists of

Produces

Consists of Consists ofReceives

Consists ofHas

Neuron

Has presynaptic neuron

Has postsynaptic neuron

Chip-in-the-
Loop

Spike Timing-
Dependent

Plasticity

Synapse
Circuit

Neuron
Circuit

Implements

Implements

Synaptic
Weight

Neuron Input
Signal(s)

Neuron
Output Signal

Synapse
Input Signal

Synapse
Output Signal

Activation
Function

Memristor
Model

Employs

Linear Model
Nonlinear

Model

Simmons
Tunnel
Barrier
Model

Threshold
Adaptive

Model

Resistance

Complies

Complies

Fig. 3. Domain’s Ontological Model

122 of 251

implementation of neural network architecture considered in the
paper, but implies ability to swap memristor models in order to
increase the overall flexibility and, possibly, relevance of
models generated with the help of proposed framework. The
ability to switch between model is also expected to help
comparing suggested implementations. In the process of
framework structure discovery a set of criteria has been
formulated to assess the future software product, domain of
memristor-based neural networks has been formalized to a
certain extent, and, finally, the framework has been given a
functional structure strictly defining its’ capabilities.

Specific platform for framework implementation is yet to be
chosen. As of current state of affairs, Unity engine is expected
to be the most favorable candidate. Its architecture perfectly fits
the nature of soft simulation (which the framework ultimately
represents), providing some software patterns that greatly
alleviate the development. Considered engine is also able to
realize extensive visualization of models as well as equip them
with user-friendly interface to further enhance model
explicitness and facilitate employment of the future framework
for academic purposes. Finally, implementing a circuit
simulation framework in Unity also pursues an exploration goal,
since such attempts have not been previously well studied.

REFERENCES
[1] D. Strukov, G. Snider, D. Stewart and R. Williams, "The missing

memristor found", Nature, vol. 453, no. 7191, pp. 80-83, 2008.
[2] J. Mullins, "Memristor minds: The future of artificial intelligence",

NewScientist Magazine, no. 2715, 2016.
[3] S. Draghici, "Neural Networks in Analog Hardware - Design and

Implementation Issues", International Journal of Neural Systems, vol. 10,
no. 1, pp. 19-42, 2000.

[4] S. Adhikari, Changju Yang, Hyongsuk Kim and L. Chua, "Memristor
Bridge Synapse-Based Neural Network and Its Learning", IEEE Trans.
Neural Netw. Learning Syst., vol. 23, no. 9, pp. 1426-1435, 2012.

[5] T. Simonite, "A Better Way to Build Brain-Inspired Chips",
Cacm.acm.org, 2015. [Online]. Available:
http://cacm.acm.org/news/186782-a-better-way-to-build-brain-inspired-
chips/fulltext. [Accessed: 30- Mar- 2016].

[6] L. Chua, "Memristor-The missing circuit element", IEEE Trans. Circuit
Theory, vol. 18, no. 5, pp. 507-519, 1971.

[7] L. Chua and S. Kang, "Memristive devices and systems", Proceedings of
the IEEE, vol. 64, no. 2, pp. 209-223, 1976.

[8] A. Thomas, "Memristor-based neural networks", Journal of Physics D:
Applied Physics, vol. 46, no. 9, p. 093001, 2013.

[9] V. Erokhin and M. Fontana, "Electrochemically controlled polymeric
device: a memristor (and more) found two years ago", Arxiv.org, 2008.
[Online]. Available: http://arxiv.org/abs/0807.0333. [Accessed: 30- Mar-
2016].

[10] F. Alibart, S. Pleutin, D. Guerin, C. Novembre, S. Lenfant, K. Lmimouni,
C. Gamrat and D. Vuillaume, "An Organic Nanoparticle Transistor
Behaving as a Biological Spiking Synapse", Adv. Funct. Mater., vol. 20,
no. 2, pp. 330-337, 2010.

[11] X. Wang, Y. Chen, H. Xi, H. Li and D. Dimitrov, "Spintronic Memristor
Through Spin-Torque-Induced Magnetization Motion", IEEE Electron
Device Lett., vol. 30, no. 3, pp. 294-297, 2009.

[12] A. Chanthbouala, V. Garcia, R. Cherifi, K. Bouzehouane, S. Fusil, X.
Moya, S. Xavier, H. Yamada, C. Deranlot, N. Mathur, M. Bibes, A.
Barthelemy and J. Grollier, "A ferroelectric memristor", Nature
Materials, vol. 11, no. 10, pp. 860-864, 2012.

[13] A. Bessonov, M. Kirikova, D. Petukhov, M. Allen, T. RyhГ¤nen and M.
Bailey, "Layered memristive and memcapacitive switches for printable
electronics", Nature Materials, vol. 14, no. 2, pp. 199-204, 2014.

[14] E. Lehtonen and M. Laiho, "CNN using memristors for neighborhood
connections", 2010 12th International Workshop on Cellular Nanoscale
Networks and their Applications (CNNA 2010), 2010.

[15] M. Pickett, D. Strukov, J. Borghetti, J. Yang, G. Snider, D. Stewart and
R. Williams, "Switching dynamics in titanium dioxide memristive
devices", J. Appl. Phys., vol. 106, no. 7, p. 074508, 2009.

[16] S. Kvatinsky, E. Friedman, A. Kolodny and U. Weiser, "TEAM:
ThrEshold Adaptive Memristor Model", IEEE Trans. Circuits Syst. I, vol.
60, no. 1, pp. 211-221, 2013.

[17] H. Kim, M. Sah, C. Yang, T. Roska and L. Chua, "Memristor Bridge
Synapses", Proceedings of the IEEE, vol. 100, no. 6, pp. 2061-2070, 2012.

Fig. 4. Functional Structure

123 of 251

A Method of Converting an Expert Opinion to

Z-number
Glukhoded Ekaterina#1, Smetanin Sergey#2

#Faculty of Computer Science, National University Research University Higher School of Economics
Moscow 101000, Russia

1glukhodedkate@gmail.com

2sismetanin@gmail.com

Abstract.
The concept of Z-numbers, introduced by Zade in 2011, is

discussed topically nowadays due to it aptitude to deal with

nonlinearities and uncertainties whose are common in real life.

Z-numbers have a significant potential in the describing of the

uncertainty of the human knowledge because both the expert

assessment and the Z-number consists of restraint and reliability

of the measured value. In this paper, a method of converting an

expert opinion to Z-number is proposed according to set of

specific questions. In addition, the approach to Z-numbers

aggregation is introduced. Finally, submitted methods are

demonstrated on a real example.

I. INTRODUCTION

Science and engineering tends to deal with different kinds

of measures and evaluations, but in fact not all assessment of

information can be represented as a clear number. It’s

common practice for human beings to describe the

information in a linguistic terms which are more convenient in

everyday life but unsuitable for a standard mathematical

representation. In this case information seems to be

approximate because usually people assigns a different degree

of the certainty depending on circumstances and the context of

the data.

In order to resolve problem of the uncertainty degree

representation, Zadeh proposed the concept of Z-numbers in

2011[1]. According to this concept, Z-number describes an

uncertain variable V as an ordered pair of fuzzy numbers (A,

B), where the first number is a fuzzy set of the domain X of

the variable V and the second one is a fuzzy set that specifies

the level of a reliability of the first number as a unit interval.

Fuzzy logic methods are discussed topically last few

decades due to its aptitude to deal with nonlinearities and

uncertainties whose are common in real life. Despite the

widespread application of many methods of fuzzy logic, it

seems to be critical to talk about decision appliance without

relation to the confidence and the reliability of analysed

information especially in the field of fuzzy decision-making.

For example, the decision, which was accepted based on low-

reliability data, tends to be useless or even harmful on a

practice usage. In this case, Z-numbers have a significant

potential in describing uncertainty of the human knowledge

because both the expert assessment and the Z-number consist

of restraint and reliability of the measured value. In this paper,

the method of converting an expert opinion to Z-number is

proposed and the new aggregation approach is introduced. At

the end, suggested methods are demonstrated.

The paper is organized as follows. In section 2 required

preliminaries are presented. In section 3 problem statement is

described in details. In section 4 a method of converting

expert assessment to Z-numbers is proposed. In addition, the

approach to Z-numbers aggregation is introduced. In section 5

proposed methods is demonstrated on the real-life example. In

the last section the key results of the article is mentioned and

further ways of research is suggested.

II. PRELIMINARIES

Definition 1: A linguistic variable.
A linguistic variable is a variable whose values are

linguistic expression such as sentences, phrases or words in a

artificial or natural language. Processing data provided in

linguistic variables requires the computing in terms of

nonlinear approaches and leads to results, which are also not

precise as the original data.

In general, the usage of linguistic variables is motivated by

the feature that they provide more generalized information in

contrast with numeric variables. For example, Speed is a

linguistic variable which can be set to ‘very slow’, ‘slow’,

‘middle’, ‘quite high’, ‘high’, ‘very high’, etc. In natural

language this linguistic variable may be represented as follows:

'The speed of the car is slow'. In this case, the characteristic of

object under observations given in generalized form i.e.

without any specific numeric values, so expert has no need in

specific measuring equipment for object estimation.

Definition 2: Fuzzy sets [2].
Let X be a space of points (objects), with a generic element

of X denoted by x. Thus, X = {x}.

A fuzzy set (class) A in X is characterized by a membership

(characteristic) function µ(x) which associates with each point

in X a real number in the interval [0, 1], with the value of µ(x)
at x representing the ‘grade of membership’ of x in A. Thus,

the nearer the value of µ(x) to unity, the higher the grade of

membership of x in A. When A is set in the ordinary sense of

term, its membership function can take on only two values 0

124 of 251

and 1, with µ(x) reduces to the familiar characteristic function

of set A.

 In the decision-making tasks each expert gives his

own opinion and then it is needed to represent given

information in a form that can be processed by a machine. We

can use fuzzy numbers for representing the information.

Fuzzy numbers can be defined as follows.

Definition 3: A fuzzy number.

A fuzzy number is a convex and normalized fuzzy set with

membership function, which is defined in R and piecewise

continuous. In other words, a fuzzy number represents an

interval of crisp numbers with fuzzy boundary.

Classical example of fuzzy number is triangular fuzzy

number. It is represented by a set of two boundary points a1 a3

and a peak point a2, i.e. [a1, a2, a3], as shown in Fig. 1.

Fig. 1 A triangular fuzzy number

A concept of Z-numbers was proposed in 2010,

which was associated with a factor of information reliability

for decision-making tasks, a description of the various aspects

in the world, an expression of ideas or assessments.

Definition 4: A Z-number [3].

A Z-number is an ordered pair of fuzzy numbers denoted as

Z = (A, R). The first component A, a restriction on the values,

is a real-valued uncertain variable X. The second component R

is a measure of reliability for the first component.

Definition 5. A Z+-number.

Z+ number is a combination of fuzzy number, A, and a

random number, R, written as an ordered paid Z+=(A, R). A

plays the same role as in a Z-number, R is a probability

distribution of random number.

III. PROBLEM STATMENT

Communications between people is often reduced to the

expression of their opinions, reviews or evaluations. Some

examples of everyday expert assessments are follows:

(i) «What is the weather forecast for tomorrow? I really don't

know, but I am quite sure that it will be warm» In this

example, during the conversation an expert provides an

assumption of the prospective weather in linguistic terms

and mention a degree of confidence in it. Therefore, X =

Weather forecast for tomorrow, and Z=<warm, quite sure>.

(ii) «It takes me about 2 weeks to finish course work.»

Therefore, X = Time to finish course work, and Z=<about

2 weeks, usually>.

Generally, the formalization of the statements in a natural

language is a complex and unobvious task. For example, the

degree of confidence or reliability of the expert estimation can

be provided in two ways, namely in explicit or implicit form.

The explicit form is represented in example (i) in linguistic

term ‘quite sure’ and the implicit form is contained in the

context in example (ii).

Now, it is needed to formulate the problem in a general

way. Consider, set of objects (Ω) that needs to be assessed by

experts or people who have specific knowledge in the field

that relates to Ω. Also, there is set of criteria (₼), that should

be taken into account. In this paper it is not supposed to

describe the methods for assessments aggregation. That is

why it does not need to involve set of experts in problem

statement formulation.

Each expert expresses his own opinion by filling the form

with question that are written in a developed form. Questions

are formulated using conventional language, such as “how can

you assess the level of safety of the given system?” or “Are

you sure that the level is high?” or, probably, the most

complicated: “How can you assess the distribution of that

parameter? Is it Gaussian?” Strict form will be illustrated in

the chapter V.

When expert filled his questionnaire with answers it is

needed to represent given information in a form that can be

processed by machine. There could be several levels of

abstraction for representing the information.

TABLE I

LEVELS OF ABSTRACTION

Level Numbers

3 Z-numbers or Z+-numbers

2 Fuzzy numbers Random numbers

1 Intervals

0 Crisp numbers (Integer or Float)

In this paper the highest level supposed to be considered –

Z-numbers. Actually, there will be even Z+-numbers in the

chapter IV and V.

The main goal of all paper is to describe the recipe of how

human-readable information could be represented as Z-

numbers. It should be also mentioned that expert’s opinions

per each criterion should be somehow accumulated (or

aggregated) in a common Z-number that will describe whole

relation of a criterion to the considered object.

IV. THE PROPOSED METHOD OF CONVERTING AN EXPERT

OPINION TO Z-NUMBER

First of all, it is needed to describe strict form that expert

needs to fill in order to provide knowledge. Form should

contain N sections of ₼. Each section should contains several

questions that should describe relation of the criterion C ∈ ₼

to the object O ∈ Ω. Common questions are follows:

125 of 251

1. How does O meet C? Specify the level.

2. Do you have an experience with O? How wide

was it?

3. Have you take into account C when using O

previously? (If have any experience)

4. Do you follow the latest information about O?

When was the latest update?

5. (Only if experts said ‘yes’ on second question)

Which distribution, you think, respects to people

perception of C when talking about O?

First and fourth questions are related to the main part of Z-

number, other questions are somehow related to the measure

of reliability for the first component.

Let us begin with the main part of Z-number. First

question is direct. It is supposed that expert assesses the level

of affection C on O in the following terms: very high (8, 9,

10), high (7, 8, 9), medium (5, 6, 7), low (3, 4, 5), very low (1,

2, 3), does not meet at all (0, 1, 2). However, it would be

incorrect to assign fuzzy numbers to each option before he

answered fourth question. This question would show how

precise expert could be answering previous one. For example,

if he says that he does not follow information for a long time,

it should be a clear sign that bounds of each triangle (or

trapezoidal) fuzzy-numbers should be widened due to some

incompetency in the given field. According to that, there

could be different fuzzy numbers for medium: (4, 5, 6) or (2, 5,

8).

The formation of second part should be following.

Possible answers for question two are: wide experience, have

experience, some experience, little experience, no experience.

All these statements could be represented as fuzzy number:

(0.8, 0.9, 1.0), (0.65, 0.75, 0.85), (0.4, 0.5, 0.6), (0.1, 0.3, 0.4),

(0, 0.1, 0.2). Answers for the question three could be: yes, a

lot (0.8, 0.9, 1.0); yes, sometimes (0.5, 0.6, 0.7); yes, a little

(0.2, 0.3, 0.4); no (0.0, 0.1, 0.2). Fifth question is auxiliary and

will not be converted into fuzzy number. It relates to Z+-

numbers. Possible answers: Gaussian, Inverse Gaussian,

Binomial, Gamma. It is not prohibited for an expert to skip

this question. However, if expert answers the question the

specific ‘confidentiality’ fuzzy number has a value of (0.6, 0.7,

0.8) – ‘high’, otherwise – (0.0, 0.1, 0.2) – ‘low’.

Then several rules should be formulated to construct

possibility measure of Z-number:

IF experience=’wide’ AND take-in-account=’a lot’ AND

confidentiality=’high’ THEN measure=’very high’.

Following table is completed according to the given format.

TABLE II
RULES FOR PROBABILITY MEASURE

CONDITION RESULT

Exper. Take-in Conf. Measure

1 Wide A lot High Very high

2 Wide A lot Low High

3 Wide Sometimes High Very high

4 Wide Sometimes Low High

5 Wide A little High High

6 Wide A little Low Medium

7 Wide No High High

8 Wide No Low Medium

9 Have A lot High Very high

10 Have A lot Low High

11 Have Sometimes High High

12 Have Sometimes Low Medium

13 Have A little High High

14 Have A little Low Medium

15 Have No High Medium

16 Have No Low Low

17 Some A lot High High

18 Some A lot Low Medium

19 Some Sometimes High Medium

20 Some Sometimes Low Medium

21 Some A little High Medium

22 Some A little Low Low

23 Some No High Medium

24 Some No Low Low

25 Little A lot High Medium

26 Little A lot Low Low

27 Little Sometimes High Medium

28 Little Sometimes Low Low

29 Little A little High Low

30 Little A little Low Low

31 Little No High Low

32 Little No Low Very low

33 No - - Very low

Then, after the result is given, it should be converted to

fuzzy number:

 Very high – (0.8, 0.9, 1.0)

 High – (0.6, 0.7, 0.8)

 Medium – (0.4, 0.5, 0.6)

 Low – (0.2, 0.3, 0.4)

 Very low – (0.0, 0.1, 0.2)

The B-part is given.

The resulting Z-number should be constructed from both

parts Z (A, B).

Then, it is time to aggregate different Z-numbers into one

Z-number which can describe whole relation of O to the

subject according to C based on expert’s opinion. There are, a

least, three methods of aggregation:

1. Converting Z-number into simple fuzzy number

and aggregate them using simple methods.

2. Aggregating A and B-part separately.

3. Converting Z-number into Z+-number,

aggregating Z+-numbers and then convert given

Z+-number into Z-number.

First approach is the simplest one, but lose some

information from an expert. Third approach is one where loss

of information is minimized, but it is complicated and it

would be difficult to provide all calculations in this paper

(requires some non-linear optimization algorithms at some

stages). That is why second approach is chosen.

At first stage, it is needed to aggregate A-parts:

�̃� = (𝑎𝑟 , 𝑏𝑟 , 𝑐𝑟)

Where 𝑎𝑟 = min(𝑎𝑖) , 𝑏𝑟 =
1

𝑛
∑ 𝑏𝑖 ,

𝑛
𝑖=1 𝑐𝑟 = 𝑚𝑎𝑥 (𝑐𝑖) , N-

total number of Z-numbers. (1)

126 of 251

Aggregation of B-parts are more complicated. First of all, it

is needed to multiply one number on another. The resulting

formulas are shown at Figure 1.

 Fig. 2 The result of multiplication of two fuzzy numbers. (2)

Second stage of aggregation assumes that square root

calculations should be applied to the given fuzzy number.

Somehow, these transformations could be compared with a

calculation of geometric mean, when talking about crisp

numbers. The resulting formulas are shown at Figure 2.

Fig. 2 The result of square root transformation of fuzzy number. (3)

The resulting fuzzy number is aggregated B-part.

V. A NUMERICAL EXAMPLE

Consider following example. It is needed to decide whether

it is important to have a new developer in a company or not.

To decide more accurately, management of software company

introduces a research. Several ‘experts’ are chosen from

different departments. Now, focus on a specialist of marketing.

His assessment should be transformed into Z-number for

further calculations. It is not necessary for that time to come to

a complete conclusion, just focus on how expert’s evaluation

lead to obtaining Z-number.

1. Filling a form
There is a strict form with several questions and two

criteria.

Questions for the 1st criterion – level of business in the

department:

1. How do you think, does the department of software

development are filled with work? (very much, much,

probably, not so much, no, not at all)

2. How often do you communicate with developers

during business tasks? Select from: very often, often,

quite often, rarely, not communicate.

3. Did you notice anytime, that deadline was broken due

to lack of programmers? Do you pay attention on it?

Select from: Notice very often, sometimes notice, I’ve

noticed once, Not at all.

4. Did you follow the news of our developers’ team? Do

you know most of them? Select from: Yes,

communicating each day; Yes, communicating several

times a week; Yes, but communicating rarely; No, I’m

not.

5. Which distribution, you think, respects to people

perception of lack of human resources when talking

about new coming developer? (Only if you know)

Questions for the 2nd criterion – company’s resources:

1. How do you think, does the company have enough

resource to hire new employee(s) in a software

department? Select from: More than enough; enough;

quite enough; probably, not enough; not enough at all.

2. Have you ever been interested in our company’s

revenue, stock prices etc.? Select from: Yes, I follow

all news; yes, sometimes; yes, but rarely; probably,

once; no.

3. Have you ever thought about how newcomers can

change our budget or resources distribution? How you

thought about it when you came? Select from: Yes,

thought a lot; yes, sometimes; yes, when I came; No.

4. Do you follow latest news about our state, about our

resources distribution on different projects? Select

from: Yes, always; yes, sometimes; yes, but rarely; no,

I’m not.

5. Which statistics distribution, you think, respects to

people perception of our resources when talking about

new employees? (Only if you know)

The marketing expert gives answers:

Criterion 1:

1. Not so much

2. Rarely

3. Sometimes notice

4. No, I’m not

5. –

Criterion2:

1. Quite enough

2. Yes, I follow all news

3. Yes, sometimes

4. Yes, sometimes

5. –

2. Constructing Z-numbers
According to calculations in chapter IV and table II it is

possible to calculate two Z-numbers from his answers.

Z-number from the 1st criterion: {(1, 4, 7), (0.2, 0.3, 0.4)}

Z-number from the 2nd criterion: {(5, 6, 7), (0.6, 0.7, 0.8)}

Second part of Z-numbers is given by applying

corresponding rules from Table II.

3. Aggregating Z-numbers
A-part of Z-numbers is aggregated simply by applying

formula (1) from IV chapter. The resulting A-part: (1, 5, 7).

B-part of Z-numbers is calculated using formula (2) and (3)

from Chapter IV. For simplicity, all calculations would not be

provided, only bounds for each of fuzzy number at every step.

After multiplication following fuzzy number is obtained:

127 of 251

𝐵𝑚 = (0.12, 0.21, 0.32)
Then, after applying square root transformation:

𝐵𝑟 ≈ (0.35, 0.46, 0.57)

𝐵𝑟 − 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝐵 − 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑍 − 𝑛𝑢𝑚𝑏𝑒𝑟

It should be noticed, that bounds are not lines in this case,

they are quadratic functions.

That is why, the resulting Z-number looks as follows:

𝒁𝒓 = {(𝟏, 𝟓, 𝟕), (𝟎. 𝟑𝟓, 𝟎. 𝟒𝟔, 𝟎. 𝟓𝟕)}

This Z-number expresses overall relation to the problem of

marketing expert. It could be translated to the normal

language such as: “he doubts that software department needs

new employee and probably, they do not need, but he is not

sure enough”

VI. PROTOTYPE

The prototype of the Z-number converting is implemented

as a web-service. The example of the converting from Section

V is represented in the interactive form. The program is

available by the URL http://fuzzyhse.appspot.com/.

VII. CONCLUSION

As a result of this research, a method of converting an

expert opinion to Z-number was proposed. The key problems

of Z-number extraction from natural language statements were

discussed and an example illustrating the supposed algorithm

were provided. In addition, the new method of Z-numbers

aggregation was proposed and demonstrated on the real

example.

The further research will be aimed on improving methods

of aggregation in order to obtain a more accurate and

reasonable result at the output. The high-quality processing of

experts’ assessments allows the use of this approach in the

real world in order to solve complex problems not only in the

business sector, but also in the everyday life. The next step is

developing an approach to perform arithmetic operations with

observed Z-numbers. Only after successful finishing of these

steps, a complete system for Z-numbers processing could be

built.

REFERENCES

[1] L. Zadeh, "A Note on Z-numbers", Information Sciences, vol.

181, no. 14, pp. 2923-2932, 2011

[2] L. Zadeh, "Fuzzy sets", Information and Control, vol. 8, no. 3,

pp. 338-353, 1965.

[3] B. Kang, D. Wei, Y. Li and Y. Deng, "A Method of Converting

Z-number to Classical Fuzzy Number", Journal of Information

& Computational Science, vol. 9, no. 3, pp. 703–709, 2012.

[4] Rituparna Chutia, Supahi Mahanta, D. Datta, “Arithmetic of Triangular
Fuzzy Variable from Credibility Theory”, vol. 2, August 2011.

[5] Shang Gao and Zaiyue Zhang, “Multiplication Operation on Fuzzy
Numbers”, vol.4, no.4, 2009.

[6] Palash Dutta , Hrishikesh Boruah , Tazid Ali, “Fuzzy Arithmetic with
and without using α-cut method: A Comparative Study”, vol. 2, March,

2011.

[7] Marcin DETYNIECKI, “Fundamentals on Aggregation Operators”,
2001.

128 of 251

http://fuzzyhse.appspot.com/

Development and research of models of self-

organization of data placement in software-defined

infrastructures of virtual data center

Irina Bolodurina

Department of Applied Mathematics

Orenburg State University

Orenburg, Russia

prmat@mail.osu.ru

Denis Parfenov

Faculty of Distance Learning Technologies

Orenburg State University

Orenburg, Russia

fdot_it@mail.osu.ru

Abstract— This article describes self organizing elements of

virtual data centers which allows one to use software-defined

infrastructure for deploy applications and services both in a

mode infrastructure-as-a Service and Platform-as-Service. In

study we developed of model the software-defined infrastructure.

We performed an experiment to analyze the productivity of

software-defined storage. Our experiment has shown that

software-defined storage and scheduling algorithm in software-

defined infrastructure placement can gain be obtained growth

performance compared with the physical storage and virtual

machines. This may be need when storage systems work with

high intensities requests.

Keywords—cloud computing; computing resources; openflow;

software-defined networks; virtual data center; software-defined

infrastructure; software-defined storage;

I. INTRODUCTION

Nowadays, the problem of efficient use of available
computing resources in data centers is an actual task. Modern
communication technologies have built up an environment for
many critical business applications and services based on
cloud computing. In this article, we will discuss controls of
self organizing elements of virtual data centers which allows
one to use software-defined infrastructure (SDI) for deploy
applications and services both in a mode infrastructure-as-a
Service (IaaS) and Platform-as-Service (PaaS).

The traditional problem modern data centers to ensure
quality of service (QoS). In recent years in real data centers to
ensure the service level agreement (SLA) used two ways have
gained best result in enterprise data centers – virtualization of
physical servers and virtualization of network. But these
methods are not always sufficiently. In real data centers to
ensure the service level agreement all the elements must
comply with the following requirements:

1) Load distribution on the existing computing resources

should be with taking into account the type of application, as

well as collection of services which requested access.

Planning should be done from the point of view of compliance

with the SLA.

2) Allow resource migration for consolidation virtualized

objects of cloud systems and eliminate segmentation of

physical resources which occurs in the process of data center

operation.

3) Allow the users to define and use virtual network

functions (VNF) for control and distribute data flows between

virtual and physical nodes.
The requirement 3 may be partially fulfilled by in

software-defined networks. Other requirements do not
supported in existing commercial and open source cloud
platforms [1-2]. Also, none of the known planning algorithms
resources in cloud platforms do not possess all these properties
in the aggregate [1-4]. For the successful carry out all
conditions, need the support of self-organization of resources
at all levels of virtual data centers. Implementing such a QoS
system is challenging in the current data-center architecture.

To solve this problem, all of the critical elements of the
data center should be flexible. This paradigm supports in
software-defined infrastructure of data centers. It is a new
direction, and therefore is not without drawbacks. The main
disadvantage is the bottleneck between the infrastructure
levels – storages. With the rapid growth of data centers and
the unprecedented increase in storage demands, the traditional
storage control techniques are considered unsuitable to deal
with this large volume of data in an efficient manner. Existing
approaches of virtualization data storages and algorithms data
placement either don't consider mapping of all resource types
[5,8] or can only be used for a fixed network topology of data
center [6,7]. The software defined storage (SDS) comes as a
solution for this issue by abstracting the storage control
operations from the storage devices and get it inside a
centralized controller in the software layer [9].

But the inadequate resource allocation, lack of I/O
performance prediction and insufficient isolation are affecting
the storage performance in the multi-tenant cloud storage
environment. In order to guarantee the quality of service,

The research work was funded by Russian Foundation for Basic
Research, according to the research projects No. 16-37-60086 mol_а_dk and

16-07-01004.

129 of 251

software-defined storage is an effective approach in data
centers. However, the lack of intelligence, robustness and self
adjustment are blocking the applications and promotions of
SDS heavily. This paper focuses on the QoS-Aware I/O
resource scheduling problem to build SDI in data centers with
high availability, scalability SDS and QoS. For the
understanding of all the problems we have built a structural
model of software-defined infrastructure.

II. THEORETICAL PART

The basis of the structural model is software-configurable
network, which can be represented as a weighted directed
multigraph defined by

),,(LinksNodesG

Nii
NodeNodes

,1
}{

 – a plurality of network devices

(nodes/servers/etc.);
MjjLinkLinks
,1

}{

 – set of arcs

representing a network connection. Each connection is a
duplex, so there is an inverse of each arc. The connection
point of the arc to the node is a network port of network
devices.

Each network device is characterized by the following
tuple:

),,,,(TMCPLNode ii

iL – set of arcs emanating from this vertices;

}0{: ZLP i – function that characterizes the current

delay for each arc; }0{: ZLC i – its current residual

bandwidth; }0{: ZLM i – its maximum bandwidth;

},{ switchhostT – the type of device. This model provided

the difference between end devices and communication
equipment.

Structural model of software-configurable infrastructure
can be defined as a directed multigraph:

)),(,(tConnectSegSDI

vertices of the graph },...,,{ 21 sSegSegSegSeg – a

plurality of separate geographically separated segments
(autonomous systems), interconnected by global networks;

arcs of the graph)},{()(ji SegSegtConnect – directed

communication between segments through a global network.
To connect segments using gateways and BGP.

The segment SegSegk of the distributed software-

defined infrastructure can be described in the form of a
weighted undirected multigraph:

)).(,,(tFlowsLinksDevicesSeg kkkk

Vertices of the graph are partition of the set

 kkk SwitchesNodesDevices

},...,,{ 21 kknkkk NodeNodeNodeNodes means a set of

computing nodes;

},...,,{ 21 kkmkkk SwitchSwitchSwitchSwitches – means a

set switches;

The kki NodesNode including partition of the set

 kkkkkki StgGWControlVMNode B

},...,,{ 21 kkzkkk VMVMVMVMl – virtual machines;

},...,,{ 21 kkzkkk CCCC – supervisors OpenFlow;

},...,,{ 21 kkwkkk GWGWGWGW – gateways;

},...,,{ 21 kkbkkk BBBB – balancers switches OpenFlow;

},...,,{ 21 kkhkkk StgStgStgStg – hardware storages

(NAS/SAN).

The SwitchSwitchesk including switches with and

without support OpenFlow.

The ribs multigraph)},{(kjkik ppLinks is a two-sided

network connections between the ports of the network device,
and allows multiple concurrent connections between two
devices through different pairs of ports.

Each compute node kki NodesNode has the following

parameters and dynamic characteristics:

))(),(),(,,,,(tstdtmSCoreDMNode node
kikikikikikikiki

with NMki и NDki – being respectively its RAM

size (Mb) and disk capacity (Mb); NCoreki – is the

number of its computing cores;
RSki – is the relative

performance of the cores;]1,0[)(tmki и]1,0[)(tdki – are

RAM and disk relative loads for a computing node at time;

}"","{")(offlineonlinetsnodeki – is the node state at time t .

At each node there is a queue of tasks

)}({)(tQtQ node
kije

node
kij . They are used to provide QoS

according to the minimum guaranteed bandwidth and
guaranteed maximum delay for a given networking.

130 of 251

)),(),(()(tMaxDtMinBtQ node
kije

node
kije

node
kije

}0{)(NtMinBnodekije and }0{)(NtMaxDnodekije

represent respectively the minimum bandwidth (in kb / s) and
maximum delay for the corresponding port queue (in ms),
which were established to ensure QoS mechanism.

The other elements of the infrastructure also have detailed
specifications, but in this paper we will not consider them. Let
more detail on the data storages.

Hardware networked storage devices contains images of
instances of virtual machines, database applications, as well as
infrastructural components of cloud computing.

Earlier we considered solutions for cloud data storage,
providing data migration, as well as algorithms for data
placement on devices [10-11]. Given the new paradigm of
software-defined storage facilities, proposed concepts need to
be improved in terms of defining the types of data to be placed
on their structure. In a study we carried out the classification
of the data to be placed on the devices in a network
environment. On the basis of the matrix of correspondences
we have constructed an algorithm that allows to determine the
structuring of the data to determine the final placement
process (storage / sql / nosql), the type of physical device
(HDD or SSD), as a direct choice of the most appropriate
device. Thus, placed in the data can be represented as a
structure where TypeS storage - method of placement,

TypeD - view of the physical device, RDisk - a physical

storage device.

Each segment kSeg has the following

storage kki StgStg parameters and the dynamic

characteristics

 ,)(),(),(),(,, tstWtRtVolPMaxVStg
stg
kikikiki

stg
kikiki

NkiMaxV – the maximum storage capacity

(Mb); j
storage
kij

storage
ki pP }{ – its set of network ports;

}0{)(NtVolki – available storage capacity in Mb at a time

t ;)(tR ki и)(tW ki – respectively, the average established

by the time of reading and writing speed;

}"","{")(offlineonlinets
storage
ki – storage state at time t .

The study found that the placement of data on the physical
devices has a number of limitations that affect both the
performance of the operation of reading / writing data, and the
process of optimizing the location of data on the devices. To
neutralize this limit is proposed to apply the software-defined
storage. This type of storage can be represented by the
following structure:

)),(,,,,(VdisktRDiskDtypeStypeLanVmSoftStg

Vm - the virtual machine or network container, Lan -

speed network access interface, Stype - supported method of

data placement, Dtype view of the physical device on which

the virtual machine will be placed;)(tRDisk the specific

physical device containing the virtual machine at the time t;

Vdisk - the total amount of data storage. The advantage of this

is the possibility of placing the data migration between the
physical storage devices. In this regard and availability of data
from the cloud-based platform are continuous, as the
connection is made with a virtual repository, rather than a
physical device.

The concept of software-defined storage is built on the
same principles of self-organization on the basis of
abstractions. The present study used a model of computing
resources, cloud system developed previously [10]. In addition
to the existing facilities in the cloud infrastructure model
introduced the concept of an agent and a control unit. An
agent is a compute node cloud system that can act both as a

computing node Snode, storage Sstg , network storage Snas.

Thus at any time, the agent can become the control node. This
is due to the clustering of computing nodes.

The basis of the self-organization software-defined storage
model laid adaptive dynamic reconfiguration change
adaptation resources. This helps to optimize the organizational
structure of the cloud platform, namely the search algorithms
of optimal control units, as well as the allocation of
management groups. Our proposed control model consists of
two parts, components and resources. In the formation of
software-defined storage per virtual compute node runs
software that is responsible for the exchange of technical data
on the devices. This exchange is carried out within a group of
units engaged in storage with a single storage method.
Moreover, among the group of nodes selects the least loaded
node, acting as a control unit. This approach reduces the risk
of degradation of the control unit during operation. However,
if there is a loss of communication with the control unit, the
remaining group of virtual machines are always present data to
each other, allowing you to make an automatic selection of a
new control unit and delegate authority, which also reduces
the risk of failure of the control system. In addition to the
problem of organizing the exchange and storage management
of the group, the control unit interacts with the control units of
other groups to maintain current information on the status of
all system as a whole. Thus, the entire system of software-
defined storage facilities built on the principle of hierarchical
network comprising three basic levels: the level of online
access, the level of control in the group and the level of
exchange of data at the level of the whole system. On the basis
of the concept described software-defined storage facilities we
implemented the algorithm data placement in software-defined
storage.

The basic difference of the structural model of software-
defined infrastructure is that in addition to the standard
elements of heterogeneous cloud platform, which are integral
parts of the notions of cloud applications and services. Each of
the applications is a weighted acyclic directed dependency
graph by in which the vertices are the cloud server database,
storage and other storage and caching resources, arc -

131 of 251

depending on the data between the nodes. Each node-task
characterized imposes resource requirements (to the number of
cores, architectural teams nuclei size memory, and disk, the
presence of special libraries or hardware on the physical or
virtual nodes are used to run processes), the number of
running processes, the measurement of time, communication
patterns transferring data between processes. The originality
of the model lies in the fact that each arc is characterized by
the type of access (access to the file in the storage system to a
local file, a distributed database, a data service and etc.).
Estimate the volume of transmitted data, the QoS
requirements.

Cloud service, as well as cloud application, described as
orient rowan graph data dependencies, the difference lies in
the fact that from the point of view of the user cloud service is
a closed system. Also, all his applications shared between
virtual machines or physical servers pre-set, new instances of
them scaled dynamically depending on the number of
incoming requests to perform the functions of a particular
service from the cloud application, end user or other cloud
services. The figure shows the structure of the physical
computing node, which is an element of a heterogeneous
cloud platform.

III. PRACTICAL PART

The competitive advantage of the developed control
algorithm software-defined storage compared to existing
analogues is heuristic analysis of new data types in the process
of downloading files in the cloud platform. Thus through
storage virtualization is performed transparently to the client
mirroring data on multiple storage devices, that provides an
increase in speed of data allocation in terms of maintaining the
integrity and redundancy. Formation of the self-organizing
software-defined storage on the basis of virtual machines and
containers can not only reduce the risks associated with the
loss of inaccessibility of data, but also provides intelligent
analysis of demand data, which are formed on the basis of the
card placement of virtual machines and containers. The
algorithm is based data placement in software-defined storage
facilities on a model that allows describing the structure and
connections of virtual devices, machines and containers of
data. The model is based on multi-agent approach in the
organization of storage. The agents collect system status. This
information is analyzed with the use of machine learning
algorithms (Data Mining). The output of the analysis is
obtained map of location devices within the cloud platform
tied to physical devices, as well as a map of the demand
generated the data. By analyzing the two cards, and the
heuristic algorithm predicting cloud management system
decides on reconfiguration or moving virtual storage devices,
as well as the rotation and redistribution of data between
different nodes of the system. Map of the location of dynamic
objects are generated by using time interval.

In addition to the designated problem, an algorithm
developed by placing the data in the software-defined storage
is used for increasing the productivity of the system
components of the cloud. Due to the efficient reallocation of
data streams between running instances of virtual machines
and containers, provided not only have the quality of service,

but also a compact arrangement of the devices [10]. To resolve
this issue as one of the elements in the basis of the developed
algorithm, the study data placement in software-defined
storage facilities used aggressive version of the algorithm
Backfill used to optimize the performance of tasks in the Grid
[10]. The task of increasing the efficiency of use of available
storage devices based on the data received from the agents and
management nodes cloud system through the dynamic
resource management in conditions of limited consumption of
the computing power is relevant for the cloud. This is
primarily due to the economic performance of cloud
platforms. A generalized block diagram of the algorithm
shown in Fig. 1.

Analysis of the system state

The calculation of the optimal placement

Formation of demand for resource maps

and map placement of virtual machines

and containers

The solution found feasible?

Begin

Reconfiguration storage

Data migration

End

yes

no

Fig. 1. Base algorithm of data storage organization in SDS

In addition to using elements Backfill algorithm to
improve the efficiency of cloud optimization system produced
a series of improvements relating to direct data access
mechanism. When dealing with services located in the cloud
system does not exclude the situation in which the user's
request for service may be employed multiple data stores with
different access characteristics. When using such data cloud
system is necessary to prepare the access time to optimize the
reading. To do this, the algorithm developed data placement in
software-defined storage in the course of building a series of
internal rules, thereby adjusting to the flow of user requests
every instance storage. As a result, query execution plans with
the same intensity at different times may be distributed
differently. Rebuilding of the rules takes place in accordance
with the demand for resources to efficiently manage the
distribution and dynamic load balancing.

IV. EXPERIMENTAL PART

We will study workload characteristics, requirement
analysis, the theory of QoS in SDS and I/O scheduling
strategies. We obtain such goals by execution mechanisms and
dynamic robust I/O scheduling algorithms for multi-type

132 of 251

resources allocation. In the current progress, scheduling for
software-defined storage has been proposed for the SSD/HDD
hybrid storage. The preliminary evaluation in some
benchmarks shows that SDS can gain better performance
compared with other strategies.

To evaluate the effectiveness of the algorithm data
placement in software-defined storage facilities built in the
context of models of software-defined infrastructure, we have
conducted research work in the cloud system built on the basis
Openstack with different parameters. Thus as reference data
for comparison in the experiment used standard algorithms
used in cloud systems, as well as traditional storage systems.
For the experimental study a prototype cloud environment,
which includes the main components as well as software
modules developed algorithms for modifying the processing of
user requests data in a software-defined storages. Thus as
reference data for comparison in the experiment used standard
algorithms used in cloud systems, as well as traditional storage
systems. For the experimental study a prototype cloud
environment, which includes the main components as well as
software modules developed algorithms for modifying the
processing of user requests data in a software-defined storage.

The OpenStack cloud system implemented module that
applies an algorithm developed by placing the data in the
software-defined storage facilities for the management of
computing resources and cloud system efficient allocation of
virtual machines to physical hosts, as well as related data. In
an experiment designed to analyze the data stream of requests,
similar to real traffic cloud infrastructure based on the data log
records access to certain types of resources, classified by data
type and structure of the query. Retrospective reproducible
requests amounted to 3 years, while for load experiment used
the averaged data. The data are distributed to a pool of virtual
machines on the following criteria: the type of customers to
make an appeal to the data, the type of service demanded by
the connection. The number of simultaneous requests to the
system was 100,000, which corresponds to the maximum
number of potential users of the system.

All queries created reproduced consistently at three pilot
sites. This restriction is due to the need to compare the results
with the physical storage systems are not capable of
reconfiguration. The main difference is the use of
experimental sites SSDs.

In addition to the platforms to analyze the effectiveness
formed 3 groups of experiments aimed at intensive operation
for reading (Experiment 1), write (experiment 2) and
concurrent read and write data (Experiment 3).

TABLE I. THE RESULTS OF EXPERIMENTAL RESEARCH

Experimental

playground
Only HDD

Storage System
Physical

storage

Virtual

storage

software

defined

storage

Experiment (reading/writing/r+w)

Total requests

processed
number of

requests

65040/

54054/

45064

85046/

86450/

76054

95064/

97056/

86578

Experimental

playground
Only HDD

Storage System
Physical

storage

Virtual

storage

software

defined

storage

Experiment (reading/writing/r+w)

Average

execution time

6,5/

9,6/

12,5

4,3/

5,8/

7.6

2,7/

3,6/

5.5

The maximum

amount of data

from the
reference value

(%)

300/

300/
300

178/

155/
156

156/

133/
134

Experiment Only SSD

Total requests

processed
number of

requests

78540/

68054/

55305

94504/

86054/

73080

99153/

99055/

89452

Average

execution time

4,5/

5,6/
9,5

2,3/

3,2/
3,6

1,7/

2,6/
2,5

The maximum

amount of data
from the

reference value

(%)

300/
300/

300

168/
145/

134

146/
118/

128

Experiment Hybrid (HDD + SSD)

Total requests
processed

number of

requests

69480/

78054/
67302

92308/

92450/
96054

98504/

97056/
98778

Average

execution time

5,5/

8,6/

10,5

3,3/

4,8/

7,6

2,2/

3,6/

2,6

The maximum
amount of data

from the
reference value

(%)

300/

300/
300

164/

164/
145

124/

128/
119

The overall

efficiency
50% 64% 87%

The experiment was one hour corresponding to the longest

period of time of peak load, recorded in real traffic. After
analyzing the data of experimental studies proved that the
software-defined storage more efficient, regardless of the type
of physical devices. The findings support the use of the
algorithm and software-defined storage to provide efficient
services to the cloud. The results of the experiments can be
concluded to reduce by 20-25% the number of failures in
service when placing the data in the software and message-
driven data warehouses. In addition, in a pilot study assessed
the amount of storage used for experimental platforms 2 and 3,
as for the physical storage resources do not support scaling in
real time. Due to the optimal allocation of resources for each
compute node is guaranteed to work together to ensure all
running instances of the application that meets the
requirements of potential users. At the same time thanks to the
work of the algorithm data placement in program-controlled
vaults of opportunity of the release of 20 to 30% of the
resources allocated computing nodes. Thus, the proposed
algorithm can be used for any computing system architectures,
including inhomogeneous physical node configuration and
VMs.

133 of 251

V. CONCLUSION

Thus, assessing the overall result of work the algorithm of data

placement in software-defined storage can gain be obtained

performance from 20 to 25% compared with the physical

storages and virtual machines. This may be need when storage

systems work with high intensities requests. In addition,

reducing the number of allocated virtual resources allows for

more efficient scale cloud systems, and to provide a safety

margin with a sharp increase in the intensity of use of the

selected applications.

References
[1] Bein D., Bein W., Venigella S. Cloud Storage and Online Bin Packing //

Proc. of the 5th Intern. Symp. on Intelligent Distributed Computing,
2011, Delft: IDC, P. 63-68.

[2] Nagendram S., Lakshmi J.V., Rao D.V., et al Efficient Resource
Scheduling in Data Centers using MRIS // Indian J. of Computer
Science and Engineering, 2011, V. 2. Issue 5, P. 764-769.

[3] Arzuaga E., Kaeli D.R. Quantifying load imbalance on virtualized
enterprise servers // Proc. of the first joint WOSP/SIPEW international
conference on Performance engineering, 2010, San Josa, CA: ACM,
P.235-242.

[4] Mishra M., Sahoo A. On theory of VM placement: Anomalies in
existing methodologies and their mitigation using a novel vector based
approach // Cloud Computing (CLOUD), IEEE International
Conference, 2011, Washington: IEEE Press, P.275-282.

[5] Cheng X., Sen S., Zhongbao Z., Hanchi W., Fangchun Y. Virtual
network embedding through topology-aware node ranking // ACM

SIGCOMM Computer Communication Review. 2011. V.41. №2. P.38-
47.

[6] Korupolu M., Singh A., Bamba B. Coupled placement in modern Data
Centers // IEEE Intern. Symp. on Parallel & Distributed Processing. N.
Y.: IPDPS, 2009. P.1-12.

[7] Singh A., Korupolu M., Mohapatra D. Server-storage virtualization:
integration and load balancing in Data Centers // Proc. of the 2008
ACM/IEEE Conf. on Supercomputing. Austin: IEEE Press, 2008. P.1-
12.

[8] Plakunov A., Kostenko V. Data center resource mapping algorithm
based on the ant colony optimization // Proc. of Science and Technology
Conference (Modern Networking Technologies) (MoNeTeC), Moscow:
IEEE Press, 2014. P.1- 6.

[9] Darabseh, A., Al-Ayyoub, M., Jararweh, Y., Benkhelifa, E., Vouk, M.,
Rindos, A. SDStorage: A Software Defined Storage Experimental
Framework // Proc. of Cloud Engineering (IC2E), Tempe: IEEE Press,
2015. P.341- 346.

[10] Parfenov, D. Approaches to the effective use of limited computing
resources in multimedia applications in the educational institutions /
Parfenov D., Bolodurina I. // 2015 5th International Workshop on
Computer Science and Engineering: Information Processing and Control
Engineering, WCSE 2015-IPCE, 2015.

[11] Parfenov, D. Approach to the effective controlling cloud computing
resources in data centers for providing multimedia services / Parfenov
D., Bolodurina I., Shukhman A. // 2015 International Siberian
Conference on Control and Communications, SIBCON 2015 -
Proceedings, 2015.

134 of 251

Automated Text Document Compliance Assessment

System

Maria A. Zhigalova
Department of Information Technologies in Business

National Research University Higher School of Economics

Perm, Russia

mariezhigalova@gmail.com

Alexander O. Sukhov
Department of Information Technologies in Business

National Research University Higher School of Economics

Perm, Russia

ASuhov@hse.ru

Abstract—The study is dedicated to the problem of

automating an electronic text document compliance assessment

in accordance with the formal requirements on formatting set in

standards. The need for the software system development of such

kind appeared due to laboriousness and inefficiency of manual

text check. The system functionality is based on the application of

the Open XML SDK solution with the use of

FormattingAssembler module included in PowerTools for Open

XML. The system provides a comprehensive text document check

in accordance with the formatting parameters defined by the

user. In practice, the software product can be used to verify

compliance with the formal requirements of research papers and

dissertations, scientific publications, technical documentation,

etc.

Keywords—formatting rules, text document, compliance

assessment, DSL

I. INTRODUCTION

Text processing, which refers to automation of creation and
manipulation of electronic texts, has always been one of the
primary disciplines in computer science. It involves
determining the quality of publications, identification of
potential duplication, plagiarism, partial borrowings,
classification and clustering of documents, formation of
databases and extensive collections of texts. Despite the fact
that document checks in accordance with formatting rules does
not imply detailed text processing, it should be noted that this
procedure in one way or another is related to general text
analysis and has its specific features.

It is known that document checks in accordance with
formatting rules is primarily manual. It is considered to be
extremely laborious and time-consuming, and researchers, as
well as individuals responsible for document check in
universities or organizations, are likely to appreciate the
simplification of this process. Since the structure of research
papers, dissertations, scientific publications, technical
documents, etc. is a standard-based compulsory requirement,
there is an ongoing need in the instrument allowing users to
check the formatting of their work and automatically fix it if
necessary. Therefore, the goal is to provide users with such
functionality by creating a relevant software product
minimizing the time and effort required.

Thus, the focus of the study is on the development of the
automated text document compliance assessment system. It is
assumed that the software product functionality is extended to
the check of such formatting characteristics as page layout
settings, styles parameters, headers and footers properties etc.
In other words, the document design (not its content) is to be
checked. The application can be used by a wide range of users,
including students, teachers, technical writers, etc. It is
expected, that the automation of text document compliance
assessment will significantly increase the efficiency of business
processes connected with document check.

II. RELATED WORKS

To date, there are two basic methods of control of the text
on the absence of formatting errors and verification of a
document in accordance with certain standards including
ready-made design templates and various software solutions.

Violation of document styling often occurs when text is
copied into a document from sources with diverse formatting
patterns. Although this issue can be partially solved by
application of built-in styles, the probability of error still exists.
In this case, the use of formatting templates is a reasonable
option.

One of the means of creating such templates is a markup
language DocBook, which is an application of XML/SGML
(XML – eXtensible Markup Language, SGML – Standard
Generalized Markup Language). It provides a user with a
unified set of tags for setting formatting of a text document [1].
This approach makes it possible to isolate document content
from its style representation. The apparent advantage of
DocBook is that a predefined set of tags eliminates formatting
errors and allows a large number of users to work with the
same text simultaneously.

Formatting templates are also utilized by the LaTeX
publishing system which provides the capability for automating
a process of inputting and formatting text of a document. The
content of a LaTeX document, similarly to DocBook, is
represented by structural and semantic markup. Text document
formatting is described in a separate file with style
information [2] which defines formatting rules, specific to each
document type. Despite a vast variety of functional
characteristics, it should be mentioned that LaTeX has a

135 of 251

number of disadvantages: firstly, in order to manipulate LaTeX
documents, it is required to have a special development
environment installed on a computer, and secondly, the process
of creating a LaTeX document may be challenging for users
who are not sufficiently skilled to work with the LaTeX
system.

The automation of compliance assessment is implemented
in a number of software products, one of which is an intelligent
web-based system for spell checking "Orogrammka". The
software checks the norms of grammar, punctuation and
document formatting [3]. Compliance assessment is provided
for research papers and dissertations in accordance with
requirements that are set in a number of standards supported by
the service. The software has an intuitive and simple interface,
however, it should be noted that text check is limited to a
strictly predefined set of formatting rules (margin sizes, page
layout settings, reference list format, etc.) without the
possibility of expanding the functionality by a user.

Another tool for automated formatting rules check was
developed in Volgograd State Technical University [4]. This
software solution is a Microsoft Word 2007 add-in which
allows users to check their documents and fix detected errors.
In spite of convenience and ease of use, the service has a
significant drawback: users whose personal computers are not
running Microsoft Office Word are deprived of the opportunity
to perform the compliance assessment of text documents.

Overall, the analysis of the studies mentioned above
highlights the need for the software system that provides an
extensive functionality for formatting rules check, yet, has a
user-friendly interface appealing for a large group of users.
This work is to propose such a system.

III. TEXT DOCUMENT FORMATTING

A. Overview and Comparative Analysis of Popular Text
Document File Formats

It is known that electronic text documents represent a major
part of stored and processed data. This explains availability of a
significant number of file formats used for specification of
textual information. However, due to the fact that formatting
check of various types of text documents requires the use of
special software tools, there is a need for selecting the most
appropriate file format which is to be used as the basis for the
development of a software product.

Thus, the most common editable text file formats were
identified:

 OpenDocument Text (*.odt) – a file format for text
documents with an open specification standardised by
ISO/IEC 26300; based on XML.

 Rich Text Format (*.rtf) – a closed cross-platform file
format for storing text documents developed by
Microsoft. A document with *.rtf extension consists of
commands which can be divided into control words and
control characters.

 Microsoft Word (*.doc) – a proprietary binary text file
format used in Microsoft Word 97-2003. Document

files represent complex objects organized according to
the rules of structured storage [5]. The basic unit of data
measurement is a symbol; all information about
characters is in document stream.

 Microsoft Word (*.docx, *.docm) – an open file format
for storing electronic text documents used in Microsoft
Word since version 2007. DOCM extension indicates
support of built-in macros and scripts. Microsoft Word
with DOCX (DOCM) extension is part of the Office
Open XML format. Office Open XML was initially
standardized by Ecma-376 and then redefined in
ISO/IEC 29500 standard [6]. OpenXML is a structured
archived file that contains markup of a document in an
XML format, graphical information and other data
included in this text document.

Table I contains results of the comparison of electronic text
documents formats by a number of parameters that will
identify the option most preferred for research purposes.

TABLE I. TEXT DOCUMENTS FORMATS COMPARISON

 OpenDocument

Text

(*.odt)

Microsoft Word Rich Text

Format

(*.rtf)
*.doc *.docx

(*docm)

Date of

creation

2005 1997 2007 1982

Open or
proprietary

Open Proprietary Open Proprietary

Document

file self-
sufficiency

Partial Full Full Partial

Ability to

convert to

other

formats

Yes Partial Yes

(partial

for

*.docm)

Yes

Free

software

Yes Partial Partial Yes

File size
compactness

High Low High Low

Unlike Rich Text Format and Microsoft Word (*.doc),
OpenDocument Text and Microsoft Word (*.docx, *.docm)
file formats have open specifications which allows third-party
developers to freely create software for processing text
documents with ODT and DOCX extensions. It is also worth
mentioning that ZIP archive compression used by these formats
significantly reduces file sizes making them more compact.

Microsoft Word documents of all versions are self-
sufficient, i.e. they store all necessary data for correct content
representation, whereas OpenDocument Text documents may
not be displayed correctly in different programs or operating
systems and RTF is fully supported only in a limited number of
software products. The capability to convert from one format to
the other is represented in every case. Comprehensive free
software is only available for OpenDocument Text (some
features of Rich Text Format are not implemented in freely
distributed products). However, it is worth noting that, despite
strong connectivity of Microsoft Word to the original
Microsoft software and the absence of free alternatives, the
usage of the format prevails. Such a conclusion can be drawn

136 of 251

on the basis of statistics from Microsoft [7], according to which
about 1.2 billion people around the world use Microsoft Office
applications as their primary tool when working with
spreadsheets, texts, presentations, etc.

The advantages of a Microsoft Word file format based on
an Open XML format [8] include:

1. Interoperability. The capacity of the format to interact
and function with a large set of both custom and commercial
applications provides a high degree of compatibility of
documents for different tasks.

2. Backward compatibility. The ability of transformation
of MS-DOC files into Open XML format with high accuracy
allows end users to convert these documents to the Open XML
format, and then programmatically access the converted
documents.

3. Programmability. Minimum requirements for working
with Open XML include a tool that can open and save ZIP files
and an XML parser/processor. ZIP and XML libraries allow
creating documents in Open XML format on a software level.

4. Integration of business data. Office applications support
custom XML schemas that can extend the capabilities of the
existing Office document types. Thus, users can export data
from existing systems to the documents in the Office file
formats.

5. Compact file format. Open XML format uses the
technology of ZIP compression for storing documents which
provide the possibility of reducing storage space. Opening the
file causes the automatic unpacking of the archive, and saving
the file results in its compressing.

Thus, a comparative analysis of the formats of text
documents showed that Microsoft Word (since 2007 version)
seems to be the most appropriate option in terms of the use of
open standards based on ZIP and XML, the capability of
processing in third-party applications, the ability to convert to
other formats and popularity among users

B. WordprocessingML Description
An ISO/IEC 29500 standard specifies a markup language

for text document description which is called
WordprocessingML. In a WordprocessingML file elements are
grouped in accordance with functionality and stored in separate
parts of a ZIP archive. For example, information about all
footnotes in a document is gathered in one element, however,
in case of footers, the situation is slightly different: each
section of the document can store up to three different
configurations of headers and footers with different numbering
options, special first page settings, etc. Thus, the structure of
WordprocessingML includes a set of the following elements: a
main document, comments, document settings, footnotes,
header/footer, styles, fonts table, document glossary, etc. Fig. 1
illustrates parts of a document TestFile.docx opened with a tool
Open XML Package Editor PowerTool for Visual Studio that
allows to view the file hierarchy of the document archive and
the relationships between them and also to modify their
markup.

Fig. 1. Microsoft Word document file structure

In the main document part paragraphs (w:p) and tables
(w:tbl) can be child elements for document body (w:body),
table cell (w:tc) or text box (w:txbxContent). Paragraphs, in
their turn, are a run-level content container for text runs (w:r),
or images – a VML document (w:pict) or a DrawingML object
(w:drawing). Finally, sub-run-level content incorporates
multiple text elements (w:t).

Formatting of a text document with the use of Microsoft
Word refers to implementation of various styles with
parameters included in styles.xml file of a document
archive [9]. This file contains data on styles of paragraphs,
characters and tables, latent styles and standard settings of
styles for an entire document (document defaults). Styles of
paragraphs, characters and tables comprise information about
current formatting of a document, whereas hidden styles are
not used directly and serve primarily as a cache repository for
style settings, for example, the ones copied from a template.
Standard styles store default values for the entire document
formatting. However, it should be noted that styles.xml file
does not involve data on formatting of numbered and bulleted
lists that is included in a special numbering.xml file.

The fact that content of a document can be formatted on
multiple levels leads to a problem of determining a
comprehensive set of formatting parameters used for a
particular paragraph or a run of the text. These levels of
formatting are schematically represented in Fig.2.

Fig. 2. Levels of Microsoft Word text document formatting

137 of 251

Thus, if it is needed to retrieve information about a
paragraph (e.g. line spacing or indentation), the first aspect that
has to be checked is direct formatting which is specified in a
file called document.xml. Yet, paragraph parameters might not
be indicated in this file, and, in this case, it is necessary to
inspect the style which is referred to in paragraph properties. If
this style does not contain data on the paragraph formatting,
then the styles from which it inherits are to be checked. If this
action did not bring any results, then the only option left is to
process the contents of the node Global default, i.e. default
settings of all styles in a document.

Similar approach is credible for checking text runs
formatting (defining such font settings as size, name, etc.); the
only difference is that character styles are put into
consideration and they can also form an inheritance hierarchy.

Data on tables formatting are defined in styles with
conditional formatting that specify the properties of rows and
columns. Table styles are also inheritable. Text inside table
cells is checked according to algorithms of determining
formatting of paragraphs and runs. In case of numbering, each
list item may include formatting from a paragraph, a
numbering format in numbering.xml or a style that is indicated
by this format.

Overall, the major difficulty of text document formatting
check lies in determining precise formatting parameters for
paragraphs, tables, numbering and runs of text for the purpose
of conducting as extensive an analysis of conformity of a
document to specified rules as possible.

IV. SYSTEM DEVELOPMENT

The compliance assessment procedure can be described as
follows: the system sequentially retrieves formatting data from
document markup and compares it to formatting parameters
specified by the user. In order to work with
WordprocessingML markup, it was decided to use Open XML
SDK 2.5 for Microsoft Office. Retrieval of information on
document formatting was performed by using the
FormattingAssembler module which is a part of PowerTools
for OpenXML. This module accesses style information on
every level of formatting and assembles it, so that the markup
of an original document is modified in a way that there is only
direct formatting left. However, this direct formatting contains
all formatting parameters (even from hidden styles) that were
applied to a document.

OpenXML SDK built on the System.IO.Packaging API
allows users to manipulate documents that adhere to the Office
Open XML File Formats Specification, e.g. documents created
with Microsoft Office applications. This package provides a set
of strongly-typed classes to obtain data about the formatting of
a document and makes it possible to modify an original
document (for example, to add comments).

Despite the fact that .NET offers standard assemblies for
working with Microsoft Office, the preference was given to
OpenXML SDK. COM Interop (Component Object Model)
provides access to Word objects (sections, paragraphs, tables,
etc.) and has functionality for creating and editing documents,

however, it does not support server-side automation and
processes documents markedly slower than SDK.

The analysis of documents demanding certain formatting
resulted in identification of a number of essential parameters
for assessing the accuracy of text document formatting. Thus,
the system is to perform compliance assessment according to
these parameters:

1) page layout (page margins, paper format, orientation,
columns, page numbers, header/footer settings);

2) paragraph (spacing, indentation, alignment);
3) font (size, name, color, toggle properties – bold, italics,

underlined);
4) numbering and lists (level, numbering format, start

value);
5) tables (vertical and horizontal text alignment, borders,

cell margins, width, table header);
6) images (placement – anchor or inline, size).

The process of text documents check can be divided into
several stages. Firstly, it is needed to define a set of rules
according to which compliance assessment will be performed.
The system provides a user with a possibility to specify design
requirements for various documents by loading a formatting
template or entering parameters manually, modify these
requirements, or delete them if necessary; all information is
stored in a formatting rules repository.

The second step is to upload the document into the system
and select appropriate formatting rules. After that check of a
document can be performed. The system reloads the document
and adds comments with identified inconsistencies between the
formatting used in a checked document and specified
formatting requirements (see Fig. 3). So, in this case the system
has detected that sizes of a header and a footer, page margin
sizes, and some settings of a style "Heading 1" were selected
incorrectly, and all this information was reported to the user. It
should be noted that if there are no formatting mistakes in the
original document, the system will not create any annotations.
Comments on inaccurate paragraphs styling are added
accordingly to each paragraph with incorrect formatting; notes
on violation of formatting requirements for page layout
settings, header/footer, etc. are added to the first paragraph of
text. If there are formatting errors inside paragraphs or runs of
text (for instance, some word has odd font settings), the system
makes comments on each word in particular.

Fig. 3. Compliance assessment system interface

138 of 251

Thus, the user-system interaction complies with a number
of different scenarios. The first scenario (see Fig. 4) implies
that a user enters formatting rules manually, and then loads an
original document for the check. In this case, the system (FRC
System – Formatting Rules Check System) provides a user
with either the resulting document containing the notes or the
one with formatting corrected in accordance with rules
specified by a user.

Fig. 4. Correct document generation

According to the second scenario (see Fig. 5) a user
uploads a properly formatted template document, the system
performs its analysis and downloads its formatting rules into
the rules repository. This procedure significantly simplifies the
entry of formatting rules of a document.

Fig. 5. Creation of rules based on document template

The third scenario of the interaction (see Fig. 6) suggests
that a user manually enters formatting rules of a document, the
system saves them in the repository, and then generates a
document template with an automatically created styles which
a user can use for further work with a document.

Fig. 6. Creation of document template based on rules

V. TEXT DOCUMENT STRUCTURE CHECK

As noted earlier, the task of a text document analysis is not
reduced to formatting rules check. In the more general case, it
is necessary to analyze document structure, i.e. verify that all
required sections are included. This problem often arises in
preparation of design documentation, for example, in the
process of developing information systems. Design
documentation has a normative function, i.e. it contains mutual
obligations of participants of a project that helps to avoid
misunderstandings and abuses at the stage of handover-
acceptance [10; 11].

The types and completeness of project documents are
standardized. However, due to the fact that all technical
documents are structurally very similar (they all consist of
sections and subsections, may include additional documents,
diagrams, tables, etc.), a special language for defining
document structure and links between different documents can
be developed. It will allow automating the process of analysis
of an original set of project documents and generation of the
new ones [12]. In the same way, it is reasonable to develop
tools for extracting system requirements from the project
documentation, and then control their compliance in the
process of implementing the system. However, the process of
creating design documents is quite a laborious task that
requires precise knowledge of a document structure. This
process can also be automated. Means of automating the
generation of project documentation will allow generating a
document template on the basis of descriptions of different
sections of a document specified in a convenient visual user
interface. This template can later be modified manually.

In order to describe documentation used in the process of
information systems design, visual domain-specific language
can be developed. Domain-Specific Language (DSL) is a
modeling language designed for solving problems of a certain
class in a particular domain. Unlike general-purpose modeling
languages, DSL is more expressive, easy to use and intelligible
to various categories of professionals, since it operates with the
familiar terminology of the domain. Therefore, a large number
of DSLs is designed nowadays in order to describe systems in
different subject areas: artificial intelligence systems,
distributed systems, mobile applications, real-time and
embedded systems, simulation systems, etc.

Since description of project documents implies not only
determining their structure, but also specifying the relations
between them, the developed domain-specific language
describing project documentation has two levels [13].

The first level of the language makes it possible to describe
a set of documents and relations between them, the second
level – the structure of a particular document. Due to a simple
graphical notation of the language, the system can be used by
IT‑specialists, as well as clients who are not professional
programmers.

VI. CONCLUSION

The main result of the work done is the developed system
that automates the check of a text document in accordance with
formatting rules specified by a user. As it was tested, the

Rules

Repository

User

FRC System StylesRules

Rules

Document

Template

Rules

Repository

Document

Template

FRC SystemStyles

Rules

Rules

Repository

User

Source

Document

FRC System

Document

with

commentsText

Rules

Comments

Correct

Document

Text +

StylesRules

139 of 251

system substantially reduces the complexity of operations
performed and makes the process less time-consuming.

Moreover, the visual DSL for describing the structure of a
document was created. This language can be integrated into the
support system of work of an analyst when information
systems are designed. On the one hand, this provides means to
perform analysis and parsing of a set of design documents
loaded into system, presenting the sections of a document as
individual elements of a model. On the other hand, with the use
of the developed language an analyst can describe each section
of a design document separately, and then generate a single text
description on their basis.

Despite the fact that the system performs all the main
functions, there is still space for improvement. The system can
be upgraded by developing web-interface for more convenient
use and expanding the set of criteria for document check in
order to perform more comprehensive compliance assessment.

REFERENCES

[1] S. Berdachuk, Use the DocBook for Documentation Writing.
[http://www.berdaflex.com/ru/eclipse/books/
rcp_filemanager/ch01s04.html] (Checked: 10.04.2016).

[2] S.M. Lvovsky, Typing and formatting in LaTeX System. Moscow:
MTSNMO, 2006.

[3] Orfogrammka. Spelling Checking Web Service. [http://orfogrammka.ru]
(Checked: 10.04.2016).

[4] A.A. Sokolov, A.M. Dvoryankin, A.Yu. Uzhva, “Development of the
Method of Process of Technical Documentation Normative Control
Automation,” in Izvestia VSTU, 2013, no. 22 (125), pp. 116-117.

[5] K.E. Klementyev, Internal MS WORD document format
[http://uinc.ru/articles/39/] (Checked: 10.04.2016).

[6] ISO/IEC 29500. Information technology – Document description and
processing languages – Office Open XML File Formats. International
Organization for Standardization, Geneva, Switzerland, 2012.

[7] Microsoft. Microsoft by the Numbers [http://news.microsoft.com/
bythenumbers/planet-office] (Checked: 10.04.2016).

[8] OpenXMLDeveloper.org. Benefits of Open XML.
[http://openxmldeveloper.org/wiki/w/wiki/benefits-of-open-xml.aspx]
(Checked: 21.10.2015).

[9] W. Vugt, Open XML Explained. [http://openxmldeveloper.org/cfs-
file.ashx/__key/communityserver-components-postattachments/00-00-
00-19-70/Open-XML-Explained.pdf] (Checked: 21.10.2015).

[10] A.V. Zaboleeva-Zotova, Yu.A. Orlova, “Automation of Procedures of
the Product Requirements Document Text Semantic Analysis,” in
Izvestia VSTU, 2007, no 3, vol. 9, pp. 52-55.

[11] Yu.A. Orlova, “Product Requirements Document Text Analysis
Methods,” in Izvestiya TSU. Engineering Sciences, 2011, no 3, pp. 213-
220.

[12] M.A. Zhigalova, A.O. Sukhov, “Validation of the Design
Documentation Based on Domain-specific Language,” in Vestnik
molodykh uchenykh PSNRU. Vol. 4. P. 224-228.

[13] M.A. Zhigalova, A.O. Sukhov, “Domain-specific Language for
Describing Documents Used in Information Systems Design,” in
Izvestiya SFedU. Engineering Sciences, 2015, no. 2, pp. 126-134.

140 of 251

Complete contracts through specification drivers
Alexandr Naumchev∗, Bertrand Meyer†

Software Engineering Laboratory
Innopolis University

Innopolis, Russian Federation
†Also Politecnico di Milano

Email: ∗a.naumchev@innopolis.ru, †Bertrand.Meyer@inf.ethz.ch

Abstract—Existing techniques of Design by Contract do not
allow software developers to specify complete contracts in many
cases. Incomplete contracts leave room for malicious implemen-
tations. This article complements Design by Contract with a
simple yet powerful technique that removes the problem without
adding syntactical mechanisms. The proposed technique makes
it possible not only to derive complete contracts, but also to
rigorously check and improve completeness of existing contracts
without instrumenting them.

Index Terms—specification driver, abstract data type, Design
by Contract, complete contract, Eiffel, Hoare triple, AutoProof

I. INTRODUCTION

The main contribution of this work is a new approach to
seamless software development, bridging the heretofore wide
gap between two fundamental and widely used techniques:
Abstract Data Types (ADTs) and Object-Oriented Program-
ming (OOP). These techniques seem made for each other, but
trying to combine them in practice reveals a glaring impedance
mismatch. We explain the problem, provide a remedy, and
subject it to formal verification.

ADTs [1] are a clear, widely known way to specify systems
precisely. OOP [2] is the realization of ADT ideas at the design
and programming level, with Design by Contract (semantic
properties embedded in the program) providing the connection.
At least, that is the accepted view. However, the correspon-
dence is far less simple than this view would suggest. While
it would seem natural to use ADTs for specification and OOP
for design and implementation, in practice this combination
hits an impedance mismatch:

• At the ADT level, some axioms involve two or more com-
mands. For example, an axiom for stacks (the standard
example of ADTs, which remains the best for explanatory
purposes) will state that if you push an element onto a
stack and then pop the stack, you end up with the original
stack.

• In a class, the standard unit of OOP, the contracts can only
talk about one command, such as push or pop, but not
both. Specifically, the postcondition of a command such
as push can describe the command’s effect on queries
such as top (after you have pushed an element, that
element is the new top), but there is no way to refer
to the effect on pop as expressed by the ADT axiom.

The present work introduces a practical solution to this
mismatch. The essence of the solution is that classes directly

reflecting ADTs, such as a class STACK, cannot by them-
selves capture such multi-command (or "second-degree") ADT
axioms, but this does not mean that the OOP approach fails
us. The idea will be to introduce auxiliary classes whose role
is to "talk about" the features of the basic classes such as
STACK (the ones directly corresponding to ADTs). Such a
class has features that combine those of basic classes, e.g.
a command push_then_pop that works on an arbitrary stack,
pushing an element on a stack and then popping the stack.
Then the postcondition of push_then_pop can specify that the
resulting stack is the same as the original.

We call such features specification drivers by analogy with
"test drivers", which are similarly added to the basic units
of a system for the sole purpose of testing them. Like test
drivers, specification drivers serve purely verification purposes,
rather than providing system functionality. The difference is of
course that test drivers appear in dynamic verification (testing),
whereas specification drivers are for static verification (for
example, as in this paper, correctness proofs). But the basic
idea is the same.

Specification drivers are not just a specification technique;
we also submit them to formal, mechanical verification. As
part of the AutoProof formal verification tool [3], we have
mechanically proved the correctness of the examples given in
this paper.

Section II explains the problem through a working ex-
ample. Section IV describes the essentials of the solution.
Section V compares this approach with other possible ones.
Section VI presents our experience with mechanical veri-
fication. Section VII draws conclusions and outlines future
research prospects.

II. MOTIVATING EXAMPLE

Figure 1 contains the standard ADT specification of stacks.
The standard names of the functions are changed in favor
of the mechanical verification experiment in Section VI: the
existing implementation, to which the experiment is applied,
uses exactly these names.

Figure 2 contains the result of applying the traditional
process of DbC [2] to the specification in Figure 1:

• The name of the class is derived from the name of the
ADT it implements.

• The signatures of the implementation features are deriva-
tives of the ADT functions’ descriptions.

141 of 251

• Preconditions of the ADT functions go to require clauses
of the implementation features.

• Postconditions of the implementation features capture
ADT axioms A1, A3 and A4.

• The create clause lists the implementation feature new to
highlight its special mission of instantiating new stacks.

Axiom A2 introduces the problem. The axiom constrains

TYPES
• STACK[G]

FUNCTIONS
• extend : STACK[G]× G→ STACK[G]
• remove : STACK[G] 7→ STACK[G]
• item : STACK[G] 7→ G
• is empty : STACK[G]→ BOOLEAN
• new : STACK[G]

AXIOMS
For any x : G, s : STACK[G]

(A1) item(extend(s, x)) = x
(A2) remove(extend(s, x)) = s
(A3) is empty(new)
(A4) not is empty(extend(s, x))
PRECONDITIONS
(P1) remove(s : STACK[G]) require not is empty(s)
(P2) item(s : STACK[G]) require not is empty(s)

Fig. 1. ADT specification of stacks

class STACK_IMPLEMENTATION [G] -- Type STACK[G]
create new -- Marking new as a creation feature
feature
extend (x: G) -- Extending with a new element
do
ensure
a1: item = x
a4: not is_empty

end

remove -- Removing the topmost element
require
p1: not is_empty

do
end

item: G -- The topmost element
require
p2: not is_empty

do
end

is_empty: BOOLEAN -- Is the stack empty?

new -- Instantiating a stack
do
ensure
a3: is_empty

end
end

Fig. 2. Applying the traditional process of DbC to the stacks ADT specifi-
cation

class STACK_IMPLEMENTATION [G]
create new
feature
extend (x: G) -- Extending with a new element
do
item := x
is_empty := False

ensure
a1: item = x
a4: not is_empty

end

remove -- Removing the topmost element
do

is_empty := True
end

item: G -- The topmost element

is_empty: BOOLEAN -- Is the stack empty?

new -- Instantiating a stack
do
is_empty := True

ensure
a3: is_empty

end

end

Fig. 3. Underspecified postconditions may lead to invalid implementations

two functions simultaneously, extend and remove: the former
one should do nothing but extend the stack with the given
element, and the latter should do nothing but remove the
topmost element of the stack. As a consequence, it is not
possible to capture the axiom in a single implementation
feature postcondition. Postconditions operate on two objects:
the target object before calling the feature and the target object
after invoking the feature. If the feature has formal parameters,
they also parameterize the postcondition. Axiom A2 involves
three stacks: the original one s, s1 resulting from applying
function extend to s, and finally s2 resulting from applying
remove to s1. Formally:

∀ s, s1, s2 : STACK[G]; x : G •
(s1 = extend(s, x) ∧ s2 = remove(s1)⇒ s2 = s

Or, writing the quantified expression in terms of postcondi-
tions:

(Postextend(s, s1, x) ∧ Postremove(s1, s2))⇒ s2 = s (1)

On one hand, it is not possible to capture A2 in a single
postcondition. On the other hand, postconditions of extend and
remove should exist and be strong enough to satisfy Equation 1.

Failures to capture such important properties as A2 in
postconditions leave room for invalid implementations. In
particular, inability to capture axiom A2 makes it possible to
implement stacks which store only the last added element and
thus are useless as data containers. Still, such an implementa-
tion satisfies all the other axioms as its postconditions capture
them.

142 of 251

Figure 3 depicts such an invalid implementation. For the
sake of simplicity, it ignores preconditions, but this does not
render the reasoning invalid: an empty precondition defaults to
TRUE, the weakest conceivable precondition. According to the
rule of consequence for preconditions [4], correctness against
a weaker precondition implies correctness against a stronger
one. Submitting the class STACK_IMPLEMENTATION to AutoProof
confirms the point: the tool successfully proves "correctness"
of the implementation.

For purist developers the problem of underspecified post-
conditions may easily become a reason for not using them at
all. Intuitively, it seems better to keep all the properties written
in a single place, and the described problem prevents doing
this: although it is possible to capture some ADT axioms in
postconditions, some of them will have to exist in separate
documents and thus carry the risk of misuse and all the
associated traceability costs.

III. AXIOMS AS SPECIFICATION DRIVERS

The example in Figure 2 translates axiom A1 directly to the
postcondition of the implementation feature extend. Is it in fact
the only way to do the translation of the axiom? A closer look
at the original axiom and its translation in Figure 2 reveals two
facts:

• The axiom uses the function extend in a sense of ap-
plying it, while its translation in Figure 2 specifies the
implementation feature directly without invoking it.

• The axiom uses an explicit stack instance s, while the
translation implicitly operates on the current object de-
scribed by class STACK_IMPLEMENTATION[G].

Is it possible to devise a translation of axiom A1 that would
be closer to the origin?

Existing techniques of DbC completely ignore a large family
of program constructs: features with pre- and postconditions
whose only purpose is to serve as proof obligations. Such
features do not implement any ADT functions and are not
to be invoked. Instead, they are intended solely for static
verification.

Figure 4 gives an example. The feature extend_updates_item

is an alternative translation of axiom A1. It possesses the
following properties:

• It operates on explicit objects s and x.
• It uses an explicit invocation of implementation feature

extend.
The example in Figure 4 takes the whole feature

extend_updates_item as the translation of the axiom, as opposed

extend_updates_item (s: STACK_IMPLEMENTATION [G]; x: G)
do

s.extend(x)
ensure

s.item = x
end

Fig. 4. Axiom A1 as a specified feature

remove_then_extend (s1, s2: STACK_IMPLEMENTATION [G]; x: G)
require

s1.is_equal(s2)
do

s1.extend (x)
s1.remove

ensure
s1.is_equal(s2)

end

Fig. 5. Axiom A2 as a specified feature

to the one in Figure 2, where the axiom is captured with
the assertion item = x in the postcondition of implementation
feature extend.

Using this approach, it is possible to capture axiom A2 in
the form of the feature remove_then_extend in Figure 5. Again,
the whole feature is the translation of the axiom. The feature
is_equal defines an equivalence relation over run time objects
representing stacks. It is declared by default in all Eiffel classes
and compares its operands by value. The notion of equality
deserves a separate analysis; Section IV-B gives the details.

Henceforth, this article will use the term specification
drivers for specified features serving as translations of certain
ADT axioms. A specification driver can be proven correct
only if the implementation features it invokes have strong
enough postconditions. Consequently, specification drivers, as
their name suggests, drive specifying stronger postconditions.

IV. SPECIFICATION DRIVERS IN PRACTICE

The present section derives the complete set of specification
drivers for the stacks ADT (Figure 1). This set includes not
only specification drivers that directly represent the original
axioms of stacks because some specification drivers stem from
a fundamental difference between ADT specifications and
object-oriented programs: in the former it is not possible to
have more than one occurrence of one and the same abstract
stack, while in the latter it is possible to instantiate two
run time objects denoting one and the same abstract stack.
Section IV-B and Section IV-C discuss the issue in detail and
derive additional specification drivers caused by it.

A. ADT axioms

Specification drivers do not bring any functional value
to the system: they exist only to be eventually discharged
as proof obligations. Consequently, they should not pollute
implementation classes like STACK_IMPLEMENTATION in Figure 2.
Concerning where to store them, the simplest option is to
create a separate class within the source code project. The
ADT_AXIOMS_SPECIFICATION_DRIVERS class in Figure 6 contains spec-
ification drivers capturing the ADT axioms of stacks. This
class is generic: since it talks about instances of a generic
concept, STACK_IMPLEMENTATION [G] in this case, it needs to assume
existence of type G to keep the genericity. The {NONE} clause
suggests that the features listed within the corresponding
feature block do not supply any useful functionality. The
deferred keyword in front of the class declaration suggests that

143 of 251

it is not possible to instantiate any objects of this class, which
makes sense as the class serves as a document containing
specification drivers rather than a blueprint for creating run
time objects.

B. Equivalence

It is possible to see that the specification drivers in Figure 6
use two different operators for objects comparison: = and
is_equal, while the original ADT specification in Figure 1
invokes only =. This section discusses the difference between
comparing instances of ADTs and comparing objects instan-
tiated from object-oriented classes and introduces a set of
specification drivers capturing the difference.

ADT specifications operate on sets of instances in the
mathematical sense of the word "set": an abstract data type
cannot contain two instances of one and the same abstract
object. For example, the range of the function new consists of
the only stack instance, which is the empty stack, as axiom
A4 suggests. When an object-oriented program is running, it
is perfectly fine for it to have two run time objects in its
memory denoting one and the same instance of the ADT.
For example, it is possible to declare two variables of type
STACK_IMPLEMENTATION [INTEGER] and make them both refer to
two different stack objects in the memory, as in Figure 7.
Consequently, run time objects form not a set of abstract
objects, but a multiset, or bag [5]. That is why there are two
different comparison operators: the = operator checks whether

deferred class ADT_AXIOMS_SPECIFICATION_DRIVERS [G]
feature {NONE}
axiom_a1 (s: STACK_IMPLEMENTATION [G]; x: G)
do
s.extend (x)

ensure
s.item = x

end

axiom_a2 (s1, s2: STACK_IMPLEMENTATION [G]; x: G)
require
s1.is_equal (s2)

do
s1.extend (x)
s1.remove

ensure
s1.is_equal (s2)

end

axiom_a3 (s: STACK_IMPLEMENTATION [G]; x: G)
do
s.extend (x)

ensure
not s.is_empty

end

axiom_a4: STACK_IMPLEMENTATION [G]
do
create Result.new

ensure
Result.is_empty

end
end

Fig. 6. Specification drivers capturing the axioms of stacks

s1, s2: STACK_IMPLEMENTATION [INTEGER]
create s1.new
create s2.new

Fig. 7. Creating two instances of the empty stack

deferred class EQUIVALENCE_SPECIFICATION_DRIVERS [G]
feature {NONE}
reflexivity (s: STACK_IMPLEMENTATION [G])
do
ensure
s.is_equal (s)

end

symmetry (s1, s2: STACK_IMPLEMENTATION [G])
require
s1.is_equal (s2)

do
ensure
s2.is_equal (s1)

end

transitivity (s1, s2, s3: STACK_IMPLEMENTATION [G])
require
s1.is_equal (s2)
s2.is_equal (s3)

do
ensure
s1.is_equal (s3)

end
end

Fig. 8. Capturing the definition of equivalence

the operands refer to identical run time objects, and is_equal

checks whether the objects referenced by the operands repre-
sent the same instance of the ADT implemented by the class.
As a consequence, if specification drivers representing ADT
axioms use the feature is_equal, the corresponding implemen-
tation class should redefine the feature and its postcondition
should be strong enough to satisfy the definition of equivalence
relations. A relation over stacks is an equivalence relation if
and only if it possesses the following properties:

• Reflexivity: every stack is equal to itself.
• Symmetry: if stack s1 is equal to stack s2, then s2 is equal

to s1 as well.
• Transitivity: if stack s1 is equal to stack s2, and s2 is

equal to s3, then s1 is equal to s3.
As Figure 8 illustrates, the three properties may be captured
by a separate class created specifically for this goal. If
all the features of class EQUIVALENCE_SPECIFICATION_DRIVERS are
correct, then the postcondition of is_equal indeed defines an
equivalence relation over run time objects instantiated from
STACK_IMPLEMENTATION [G].

It is worth noting that because equivalence definition is
static, specification drivers for equivalence may be generated
automatically for every class.

C. Well-definedness

The ADT specification in Figure 1 lists certain functions
over stacks. It is necessary to ensure that they remain func-

144 of 251

deferred class WELL_DEFINEDNESS_SPECIFICATION_DRIVERS [G]
feature {NONE}
new_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G])
require
s1.is_empty
s2.is_empty

do
ensure
s1.is_equal (s2)

end

is_empty_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G])
require
s1.is_equal (s2)

do
ensure
s1.is_empty = s2.is_empty

end

item_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G])
require
not s1.is_empty
not s2.is_empty
s1.is_equal (s2)

do
ensure
s1.item = s2.item

end

extend_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G]; x: G)
require
s1.is_equal (s2)

do
s1.extend (x)
s2.extend (x)

ensure
s1.is_equal (s2)

end

remove_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G])
require
not s1.is_empty
not s2.is_empty
s1.is_equal (s2)
s1 6= s2

do
s1.remove
s2.remove

ensure
s1.is_equal (s2)

end
end

Fig. 9. Specification drivers for well-definedness

tions in the presence of an equivalence relation. Invoking a
given implementation feature for two run time objects, which
represent a single ADT object, should be indistinguishable
from applying the ADT function implemented by this feature
to that ADT object. Since a function application produces
only one element from its range set, the two run time ob-
jects should also be considered equal after the invocation.
This property is called well-definedness under an equivalence
relation [6]. The class WELL_DEFINEDNESS_SPECIFICATION_DRIVERS

in Figure 9 contains specification drivers that encode well-
definedness for every stacks implementation feature. The spec-
ification drivers item_is_well_defined and remove_is_well_defined

contain assertions not s1.is_empty and not s2.is_empty. These
specification drivers invoke implementation features item and
remove, which have preconditions that need to be satisfied.
The purpose of the mentioned assertions is exactly this. The
s1 6= s2 assertion in the precondition of the specification driver
remove_is_well_defined is there for a very specific reason. If s1

and s2 are identical, the precondition for the s2.remove call may
not hold: even if the stack object referenced by s1 and s2 is not
empty in the beginning, it may not be the case anymore after
the s1.remove call. This additional assertion does not remove
any generality: indeed, identity always implies equality, and
proving the latter is exactly the purpose of this specification
driver, according to its postcondition.

Specification driver new_is_well_defined deserves special at-
tention too. In fact, it encodes something stronger than just the
well-definedness of the implementation feature new. It says that
two empty stacks are always equal. This makes perfect sense
and at the same time implies the necessary well-definedness
property: from the ADT specification in Figure 1 and its first
approximation in Figure 2, it is known that instantiating a
stack with function new results in the empty abstract stack.
Consequently, the new_is_well_defined specification driver cov-
ers this case, since it applies to every pair of run time objects
denoting the empty abstract stack.

Similarly to equivalence, the notion of well-definedness is
long-established; as such, it may be possible to generate the
corresponding specification drivers automatically.

D. Complete contracts

Although some works ([7], [8]) talk about contract
(in)completeness, they do not define this notion precisely. In
light of the fundamental difference between ADT specifica-
tions and object-oriented programs, which causes the notion
of equivalence over run time objects to appear (Section IV-B),
the definition cannot be implicitly equal to the definition of
sufficiently complete ADT specifications [9] and needs to be
written down explicitly.

As the other details of the original definition in [2] do not
bring any value to the discussion, this article uses a simplified
definition of a contract.

Definition 4.1: A contract is a set composed of all pairs of
the form (Precondition(f),Postcondtion(f)) for every imple-
mentation feature f .

This definition ignores the possible presence of class invari-
ants as it is always possible to get rid of them by appending
to pre- and postconditions of the implementation features.

Definition 4.2: A contract is correct if and only if:

• Its postconditions are strong enough to ensure correctness
of the specification drivers derived from the input ADT
axioms (Section IV-A)

• In the event that specification drivers for the input ADT
axioms use equivalence, its postconditions are strong
enough to ensure correctness of the specification drivers
for equivalence (Section IV-B).

145 of 251

Definition 4.3: A contract is well-defined if and only if its
postconditions are strong enough to ensure correctness of the
specification drivers for well-definedness (Section IV-C).

Definition 4.4: A contract is complete if and only if it is
correct and well-defined.

V. RELATED WORK

Doctoral thesis [7] uses features with pre- and postcon-
ditions for checking completeness of model-based contracts
(discussed later in this section). The definition of a complete
model-based contract is not related to the definition of com-
pleteness in Section IV-D. According to [7], completeness is
what the current article calls well-definedness, expressed in
terms of abstract mathematical concepts.

Although the specification driver approach allows capturing
ADT axioms in their original form, it does specify how to
actually build complete contracts having a set of specification
drivers. As Section II suggests, in many cases it is not possible
to specify strong enough postconditions in terms of the ADT
specification itself. This is where the need for representation
appears: the implementation class has to stick to some al-
ready implemented data structure in order to enable stronger
postconditions expressed it terms of this data structure. The
problem of choosing an ideal representation has been aptly
handled in multiple publications, therefore the present article
does not propose its own methodology, but chooses instead to
reference these publications.

Work [10] shows that it makes sense to use mathematical
abstractions for representations: for example, it seems reason-
able to think about stacks as mathematical sequences. That
work also shows how to prove correctness against contracts
strengthened with precise mathematical abstractions. Work [8]
introduces the Mathematical Model Library (MML) - Eiffel
library containing core abstractions: sets, sequences, bags,
tuples etc. A more recent work [11] introduces EiffelBase2,
a usable library of essential data structures, including stacks,
represented as mathematical abstractions from MML. Eiffel-
Base2 is fully verified with the AutoProof verifier. The under-
lying verification methodology [12] assumes writing quite a
number of assertions related to program execution semantics,
so giving complete examples here would introduce confusion
rather than clarity. Instead, Figure 10 presents the idea in a
nutshell. The STACK_SEQUENCE_IMPLEMENTATION class is the abstract
model of stacks from the EiffelBase2 standpoint. EiffelBase2
equips classes implementing stacks with the sequence attribute
and strengthens postconditions of the implementation features
in terms of it. Class MML_SEQUENCE cannot be instantiated into any
run time objects and exists only for verification purposes: it
maps directly to the data structure representing mathematical
sequences in the underlying proving engine. The sequence

attribute is further connected to meaningful data structures
by means of abstraction and refinement techniques [13].
Works [11] and [7] give more implementation details.

In Figure 10, the implementation features are formally
defined with assertions over the sequence attribute (marked with
the "definition" tag) added to the features’ postconditions. The

class STACK_SEQUENCE_IMPLEMENTATION [G]
inherit ANY redefine is_equal end
create new -- Marking new as a creation feature
feature
sequence: MML_SEQUENCE [G] -- Stack representation

extend (x: G) -- Extending with a new element
do
ensure
a1: item = x
a4: not is_empty
definition: sequence = old sequence.extended (x)

end

remove -- Removing the topmost element
require
not is_empty

do
ensure
definition: sequence = old sequence.but_last

end

item: G -- Retrieving the topmost element
require
not is_empty

do
ensure
definition: Result = sequence.last

end

is_empty: BOOLEAN -- Is the stack empty?
do
ensure
definition: Result = sequence.is_empty

end

new -- Instantiating a stack
do
ensure
a3: is_empty
definition: sequence.is_empty

end

is_equal (other: STACK_SEQUENCE_IMPLEMENTATION [G]): BOOLEAN --
Redefining equality

do
ensure then
definition: Result = (sequence.count = other.sequence.count

and then
(across 1 |.. | sequence.count as i all sequence[i.item] =

other.sequence[i.item] end))

end
end

Fig. 10. Abstract model of stacks as sequences

comparison feature is_equal is redefined so that two stacks
are considered equal if and only if the sequences representing
them are equal. Two sequences are considered equal if and
only if their sizes are equal and they contain same objects.
The feature extended models a sequence where an object is
appended to the target sequence on to which the feature
is invoked; feature but_last models the target sequence, but
without the last element; feature last models the element
added to the target sequence last; feature is_empty models the
indication whether the target sequence is empty or not; finally,
feature count models the size of the target sequence.

146 of 251

Mathematical concepts from MML are abstract, but they
still form particular representations in EiffelBase2, though
mathematically precise. The concept of model-based contracts
helps to specify complete contracts, but does not say how to
rigorously check contracts with representations for complete-
ness. Furthermore, it fails to define what complete contracts
are. The notion of specification drivers bridges this gap. All the
specification drivers derived in the present article are expressed
in terms of the original ADT specification (Section IV-A)
plus the abstract equivalence (Section IV-B and Section IV-C),
whose presence is inevitable due to the nature of computing
which allows programs to keep in their memory several
instances of one and the same abstract object. They do not
require making any assumptions about possible representations
and enable defining complete contracts precisely.

VI. PROVING CONTRACTS COMPLETENESS

It is possible to give a manual proof of completeness of the
contract depicted in Figure 10. Fortunately, this work may be
done automatically. This advantage makes it possible to apply
the specification drivers approach to legacy implementations.
Indeed: if there is a source code project with a number of
classes in it, then it is possible to devise an additional class,
write all the applicable specification drivers into it and submit
the resulting class to the prover. Instead of showing how to
derive complete contracts having a set of specification drivers
from scratch, the article shows how to apply the approach to
existing contracts.

The EiffelBase2 library seems to be a natural choice for the
experiment. The library contains a complete implementation of
stacks specified as mathematical sequences. The corresponding
implementation class is V_LINKED_STACK. In order to perform the
experiment, it is necessary to take the stacks specification
drivers from Section IV and modify them so that the name
of the implementation class would be V_LINKED_STACK instead of
STACKS_IMPLEMENTATION. The specification driver axiom_a4 comes
with a pitfall: the V_LINKED_STACK class does not introduce its
own creation feature, but redefines the default creation feature
defined for all classes. Hence, the create Result.new instruction
is not applicable here; one should use create Result instead.
After these modifications, the specification drivers should
successfully compile and be ready for verification.

The initial verification attempt using AutoProof will result
in numerous precondition violations. As Section V suggests,
the verification methodology [12] behind AutoProof assumes
writing additional non-stack related assertions. For example,
the extend_is_well_defined specification driver can be verified
by AutoProof only in the form depicted in Figure 11. The five
assertions in the beginning of the require precondition clause
seem to be worth explaining them briefly. The s1.is_wrapped
assertion says that reference s1 is assumed to be non-void and
not participating in any call; the s1.observers.is_empty assertion
says that the set of objects interested in the state of s1 should
be empty - it is a part of the precondition of feature extend

of class V_LINKED_STACK; finally, the modify([s1, s2]) assertion
is a frame specification: it says that the enclosing feature,

extend_is_well_defined (s1, s2: V_LINKED_STACK [G]; x: G)
require
s1.is_wrapped
s2.is_wrapped
s1.observers.is_empty
s2.observers.is_empty
modify([s1, s2])

s1.is_equal (s2)
do
s1.extend (x)
s2.extend (x)

ensure
s1.is_equal (s2)

end

Fig. 11. Specification driver for verifying by AutoProof

extend_is_well_defined in this case, is going to modify objects
referenced by s1 and s2 (square brackets [] denote set constants
in Eiffel). The precondition needs the modify assertion because
the extend_is_well_defined feature uses feature invocations with
side effects, extend in this case, on references s1 and s2.
Although the verification failures caused by the absence of
these assertions do not bear any relation to stacks, they
uncover certain weaknesses in the verification methodology:
namely, the defaults do not seem sufficiently reasonable. For
example, a violation of the s1.is_wrapped assertion would detect
a callback situation, and callbacks are not so common as to
assume them by default. The observers.is_empty requirement
makes extending stack objects applicable only in situations
when no other objects depend on their states. The modify frame
specification may be generated automatically based on the
presence of invocations with side effects in the implementation
body.

After complementing the specification drivers with all
necessary assertions related to verification methodology and
rerunning AutoProof, it uncovers some stack-related is-
sues. This is visible from the fact that this time the
verification errors come from the postconditions. Namely,
AutoProof fails to prove correctness of all the verifica-
tion drivers from classes EQUIVALENCE_SPECIFICATION_DRIVERS and
WELL_DEFINEDNESS_SPECIFICATION_DRIVERS as well as verification
driver axiom_a2 from the ADT_AXIOMS_SPECIFICATION_DRIVERS class.
As all of these specification drivers involve implementation
feature is_equal, the first guess is that V_LINKED_STACK does
not redefine it. This guess appears to be right: the class
defines its own custom feature for comparing run time objects,
but does not redefine the standard comparison feature in
terms of the new one. Giving this flaw’s fix here would
not bring much value to the discussion, so it seems better
to move on. After redefining feature is_equal, AutoProof
succeeds in proving classes ADT_AXIOMS_SPECIFICATION_DRIVERS

and EQUIVALENCE_SPECIFICATION_DRIVERS completely, but still fails
to prove specification driver new_is_well_defined from the
WELL_DEFINEDNESS_SPECIFICATION_DRIVERS class. As this specifica-
tion driver uses the is_empty implementation feature, it falls

147 of 251

under suspicion. Apparently, its postcondition does not have
a clause corresponding to the definition clause in its abstract
model in Figure 10. After fixing this flaw, everything verifies
successfully, including the V_LINKED_STACK implementation class.

VII. CONCLUSIONS AND FURTHER WORK

The article makes the following main contributions:
• Presents the specification driver approach for encoding

ADT axioms, which are not possible to encode using
traditional DbC techniques.

• Illustrates the process of axiomatizing abstract equiva-
lence using the new approach.

• Introduces an exhaustive definition of contract complete-
ness.

• Demostrates how to apply completeness checks to legacy
implementations.

The new approach allows adding, changing or removing
ADT axioms at any given moment of the development process
without necessarily modifying the implementation classes.
Although specification drivers occupy separate classes com-
pletely disjoint from implementation classes, they are simul-
taneously expressed in terms of objects instantiated from the
implementation classes. The result is a seamless integration
of software axiomatization and implementation driven by
automatic verification of functional correctness. Attempts to
check specification drivers can uncover weak postconditions
of implementation features. Once strengthened, these postcon-
ditions potentially yield firmer executable instructions.

In light of the presence of different kinds of specification
drivers described in Section IV it seems feasible to propose
the following changes to the Eiffel Verification Environment
tool set:

• Develop a template for fast creation of classes intended
to keep specification drivers.

• Automate generation of specification drivers for equiva-
lence and well-definedness.

• Revise verification methodology underlying AutoProof:
in essence, specification drivers are a new syntactical
specification construct, which may potentially remove
some particularly egregious verification challenges.

Work [14] introduces the notion of multirequirements, and
work [15] illustrates how to apply this notion in practice. The
underlying idea is that a separate item in a software require-
ments document should be expressed using several interwoven
notations, e.g. natural language, graphical form and formal no-
tation. For the formal notation, it was suggested to use a rather
expressive programming language. The present paper talks
about expressing ADT axioms in a programming language
with pre- and postconditions. Since ADT specifications are
one of the languages for expressing software requirements, it
makes sense to revisit the original multirequirements approach
to see how the idea of specification drivers could improve it.

The idea of specification drivers was inspired mostly by
seminal works [13] and [2], and driven by the will to unify
requirements and code seeded in the work [14].

ACKNOWLEDGMENT

The authors would like to thank Innopolis University for
supporting the Software Engineering Laboratory where the
research resulted in this work is taking place.

Special thanks goes to Daniel Johnston from MSIT-SE Pro-
gram at Innopolis University, who kindly agreed to proofread
this paper line-by-line.

REFERENCES

[1] J. Guttag, “Abstract data types and the development of data structures,”
Communications of the ACM, vol. 20, no. 6, pp. 396–404, 1977.

[2] B. Meyer, Object-oriented software construction. Prentice hall New
York, 1988, vol. 2.

[3] J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof:
Auto-active functional verification of object-oriented programs,” arXiv
preprint arXiv:1501.03063, 2015.

[4] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[5] W. D. Blizard et al., “Multiset theory,” Notre Dame Journal of formal
logic, vol. 30, no. 1, pp. 36–66, 1989.

[6] D. S. Dummit and R. M. Foote, Abstract algebra. Prentice Hall
Englewood Cliffs, 1991, vol. 1999.

[7] N. Polikarpova, “Specified and verified reusable components,” Ph.D.
dissertation, Diss., Eidgenössische Technische Hochschule ETH Zürich,
Nr. 21939, 2014, 2014.

[8] B. Schoeller, T. Widmer, and B. Meyer, “Making specifications complete
through models,” in Architecting Systems with Trustworthy Components.
Springer, 2006, pp. 48–70.

[9] J. V. Guttag and J. J. Horning, “The algebraic specification of abstract
data types,” Acta informatica, vol. 10, no. 1, pp. 27–52, 1978.

[10] B. Meyer, “A framework for proving contract-equipped classes,” in
Abstract State Machines 2003. Springer, 2003, pp. 108–125.

[11] N. Polikarpova, J. Tschannen, and C. A. Furia, “A fully verified container
library,” in FM 2015: Formal Methods. Springer, 2015, pp. 414–434.

[12] N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer, “Flexible in-
variants through semantic collaboration,” in FM 2014: Formal Methods.
Springer, 2014, pp. 514–530.

[13] C. A. R. Hoare, Proof of correctness of data representations. Springer,
2002.

[14] B. Meyer, “Multirequirements,” in Modelling and Quality in Require-
ments Engineering (Martin Glinz Festscrhift), N. Seyff and A. Koziolek,
Eds. MV Wissenschaft, 2013.

[15] A. Naumchev, B. Meyer, and V. Rivera, “Unifying requirements and
code: an example,” To appear in Ershov Informatics Conference, PSI,
Kazan, Russia (LNCS), 2016.

148 of 251

Usability of AutoProof:
a case study of software verification

Mansur Khazeev∗, Victor Rivera†, Manuel Mazzara‡ and Alexander Tchitchigin§
Innopolis University, Software Engineering Lab.

Innopolis, Russia
Email: ∗m.khazeev@innopolis.ru, †v.rivera@innopolis.ru, ‡m.mazzara@innopolis.ru, §a.chichigin@innopolis.ru

Abstract—Many verification tools come out of academic
projects, whose natural constraints do not typically lead to a
strong focus on usability. For widespread use, however, usability is
essential. Using a well-known benchmark, the Tokeneer problem,
we evaluate the usability of a recent and promising verification
tool: AutoProof. The results show the efficacy of the tool in
verifying a real piece of software and automatically discharging
nearly two thirds of verification conditions. At the same time,
the case study shows the demand for improved documentation
and emphasizes the need for improvement in the tool itself and
in the Eiffel IDE.

I. INTRODUCTION

Modern systems have grown fast in complexity, and demand
for quality. Focus on quality, in turn, demands stronger atten-
tion to the entire development life-cycle. With the tendency
to reuse and integration, the need for software quality is even
more important since applications and components have to rely
on each other with partial knowledge of the implementation
and based on interface only.

Tools for software verification allow the application of the-
oretical principles in practice, in order to ensure that nothing
bad will ever happen (safety). The extra effort required by the
use of these tools is certainly not for free and comes with
increased development costs [1]. There is a common belief in
industry that developing software with high level of assurance
is too expensive, therefore not acceptable, especially for non
safety-critical or financially-critical applications.

Tools and techniques for the formal development of soft-
ware have played a key role on demystifying this belief. There
are several approaches, for instances abstract interpretation
and model checking [2], [3], that seek the automation to
formally proving certain conditions of systems. However,
these techniques tend to verify simple properties only. On the
other end of the spectrum, there are interactive techniques for
verification such theorem provers [4]. These techniques aim at
more complex properties, but demand the interaction of users
to help the verification.

Nowadays, there are new approaches that aim at finding
a good trade-off between both techniques, e.g. auto-active:
users are not needed during the verification process (it is
automatically performed); they are required instead to provide
guidance to the proof using annotations. AutoProof [5], is a
static auto-active verifier for functional properties of object-
oriented programs. Using AutoProof, users write code and

equip classes with contracts and annotations to help the tool
to prove certain properties.

The main goal resented in this paper is to provide insights on
how easy/difficult is for users (mainly engineers without deep
knowledge of formal verification) to use current methodologies
and tools for the development of software with high level of
assurance, in particular on the use of the AutoProof tool.

Generally, to prove the correctness of a program one needs
some mechanisms to express what the program is supposed to
do and clearly state it in the specifications that are used later
to verify the program. Eiffel programming language natively
supports these mechanisms by means of contracts. Eiffel
is an object-oriented programming language which directly
implements the concepts of Design-by-Contract (DbC) [1], [6].
The key concept is viewing the relationship between a class
and its clients as a formal agreement, expressing each party’s
rights and obligations. This is realized equipping methods with
pre- and post-conditions, and classes with invariants. The key
feature of the Eiffel language is indeed the idea that all the
methods might and should contain contracts.

Contracts and annotations used in Eiffel are used by Au-
toProof to statically verify the consistency of the classes. To
demonstrate the usability of the tool, the Tokeneer project [7]
was implemented in Eiffel and AutoProof was used to verify
the consistency of the code. The Tokeneer project is a sys-
tem specified and implemented by National Security Agency
(NSA). Initially, NSA carried out this challenge to prove that
it is possible to develop secure systems rigorously in a cost
effective manner. Since its development, it became a testing
range for different software development methodologies and
verification tools. Results of the project are publicly available.
This paper reports on the use of AutoProof to verify an
Eiffel implementation of Tokeneer and also reports on how
easy/difficult is for users to use the tool, e.g. the burden of
helping the tool by means of annotations in the code.

The rest of the paper is organized as follows: Section II
introduces the Tokeneer project, Eiffel and the AutoProof
tool. Section III describes the methodology used to verify the
implementation of the Tokeener project. Section IV presents
empirical results helping to draw conclusions. Section V
is devoted to related work and Section VI concludes and
mentions future work.

149 of 251

Fig. 1. The Tokeneer System

II. PRELIMINARIES

A. The Tokeneer Project

In 2002, with the aim to prove/disprove the common believe
in industry that development of software of high level of
assurance is too expensive and therefore not feasible, the
National Security Agency (NSA) asked Altran to undertake a
research project to develop part of an existing secure system,
the Tokeneer System, in accordance with Altran’s Correctness
by Construction development process. The system was spec-
ified using Z notation [8] and implemented in Ada [9]. The
project was successfully delivered in 2003 within 260 days of
effort, and later, in 2008, all the results were made available by
NSA to the software development and security communities in
order to demonstrate the possibility to develop secure systems
in a cost effective manner. It includes the “Core” Tokeneer
ID System Software, test cases derived from the system test
specification, “Support” Tokeneer ID System Software and
test tokens and biometric data, project documents. Since the
delivery, the Tokeneer project has become a milestone point
and a testing range for different verification tools before
applying them in industrial projects. Despite the fact that after
delivery 4 bugs1 were found, the system is still deemed to be
very secure.

Tokeneer is a secure enclave consisting of a set of system
components, some housed inside the enclave and some outside,
as depicted in Figure 1. The ID Station (TIS) is part of the
larger Tokeneer system. It has four connected peripherals,
namely, a fingerprint reader, a smartcard reader (users use To-
kens -smartcards- as identification), a door and visual display.
The objective of the enclave is to ensure that anyone who
enters the enclave has a proper access, and no one else can
access to the enclave.

1According to [7]

In order to ensure the entrance of users to the enclave, TIS
implements a series of protocols and checks (the use of smart
cards and biometrics) to grant or deny the entrance to it. This
paper discusses one of these protocols: the Enrollment to the
ID Station. The protocol starts in a state where the user is
not enrolled. Users can request enrollment and then insert a
FLOPPY (it retains an internal view of the last data written)
for the system to proceed. The system reads the information
in the floppy and either fails the enrollment process, in which
case takes the process to the initial state, or correctly validates
the data in the floppy.

B. Eiffel

Eiffel is a real complex object oriented programming lan-
guage that natively supports Design-by-Contract methodology.
Users can specify the behavior of Eiffel classes by equipping
them with contracts: pre- and post-conditions and class invari-
ants, that are represented as assertions.

class
ACCOUNT

create make

feature−− Initialization
make −−Initialize empty account.
do
balance := 0

ensure
balance set: balance = 0

end

feature−− Access
balance : INTEGER −− Balance of account.

feature−− Element change
deposit (amount : INTEGER)
−− Deposit ‘amount’ on account.

require
amount not negative : amount >= 0

do
balance := balance + amount

ensure
balance increased : balance =

old balance + amount
end

withdraw (amount : INTEGER)
−− Withdraw ‘amount’ from account.

require
enough balance : amount <= balance

do
balance := balance - amount

ensure
balance decreased : balance = old balance - amount

end

invariant
non negative balance : balance >= 0

end

Fig. 2. ACCOUNT Eiffel class

150 of 251

Figure 2 depicts a reduced implementation of a Bank
Account. In Eiffel, creation procedures are listed under the
keyword create, for class ACCOUNT, routine make is used
as a creation procedure. The class defines a class attribute
balance to represent the current balance of the account. It also
defines two routines (methods), deposit and withdraw. de-
posit implements a deposit of amount amount of money to the
account and withdraw implements withdrawing money. Eiffel
encourages software developers to express formal properties of
classes by writing assertions. Routine pre-conditions express
the requirements that clients must satisfy whenever they call a
routine. They are introduced in Eiffel by the keyword require.
Routine deposit imposes a pre-condition on the call, the
client must pass as an argument a non-negative number (i.e.
amount not negative: amount >= 0) for the routine to
work correctly: a negative value might invalidate the invariant
of the class. Routine post-conditions, introduced in Eiffel
by the keyword ensure, express conditions that the routine
(the supplier) guarantees on method exit, assuming the pre-
condition. Routine deposit guarantees that the balance of the
account will be the previous value of the balance (expressed
in Eiffel by the keyword old: the value on entrance of the
routine) plus the amount being deposited. Routine withdraw
imposes the constraint to the caller that the argument must be
less than or equal to the current balance of the account to avoid
having negative value in the balance. The routine ensures that,
after execution, the new value of balance will be the value
on routine entry minus the amount withdrawn.

A class invariant must be satisfied by every instance of
the class whenever the instance is externally accessible: after
creation, and after any call to an exported routine of the
class (public routines). The invariant appears in a clause
introduced by the keyword invariant. Class ACCOUNT’s
invariant imposes the restriction that class attribute balance
can never be negative (i.e. non negative balance: balance
>= 0).

C. AutoProof

AutoProof [5] is a static verifier of contracts for Eiffel
programs. It follows the auto-active paradigm where verifica-
tion is done completely automated, similar to model checking
[3], but users are expected to feed the classes providing
additional information in the form of annotations to help the
proof. AutoProof identifies software issues without the need
of executing the code, therefore opening a new frontier for
“static debugging”, software verification and reliability, and in
general for software quality.

AutoProof verifies the functional correctness of Eiffel
classes. It translates Eiffel code to Boogie programs [10] and
calls the Boogie tool to generate verification conditions: logic
formulas whose validity entails correctness of the input pro-
grams. Finally, retrieves the answer back to Eiffel. AutoProof
verifies that routines satisfy pre- and post-conditions, mainte-
nance of class invariants, loops and recursive calls termination,
integer overflow and non Void (null in other programming
languages) references calls. The tool also supports most of

class
ID STATION

. . . Some lines were omitted. . .
create

make
feature−−Initialization

make
note

status : creator
do

. . . Some lines were omitted. . .
end

end

Fig. 3. Initialisation of ID STATION Eiffel class.

the Eiffel language constructs: in-lined assertions such as
check (assert in other programming languages), types, multi-
inheritance, polymorphism.

III. VERIFICATION OF TOKENEER USING AUTOPROOF

The Tokeneer project was implemented in Eiffel following
the specifications file 41 2.pdf (see [7]) of the Tokeneer
System and equipping classes with contracts. This research
work encompasses only the enrolment process of the whole
Tokeneer System therefore it implements only the entities
involved in this process.

One of the main parts of TIS is the ID STATION (see
Figure 8) - it describes how all components of the system are
related to each other: one of the components is implemented in
class INTERNAL S (not shown here) whose responsibility is
to keep knowledge of the status of user entry and the enclave
and to hold a timeout when relevant; another component is
implemented on class FLOPPY (not shown here) that retains
an internal view of the last data written to the floppy as
well as the current data on the floppy. ID STATION displays
the configuration data on the screen which is implemented
in SCREEN DISPLAY. There are a number of messages
that may appear on the TIS screen. The Real World types
(described in [7] Specification document, section 2.7.1) of
the system such as messages that appear on the display and
screen, were implemented all together in class CONST which
implements the constants used in the TIS. And finally, a
number of interactions between all these entities within the
enclave are implemented in ENCLAVE OPERS.

AutoProof does not make any assumptions out of box there-
fore users are expected to feed the Eiffel classes for a succeed
verification. This is expressed by means of Eiffel’s note clause.
note clause enables users to attach addition information to the
class that is ignored by the Eiffel’s compiler. AutoProof uses
this information to succeed in the verification. For instance,
Autoproof’s annotation status defines which procedure is used
to initialize newly created objects: Figure 3 depicts procedure
make with annotation note (e.g. note status: creator) to help
Autoproof to discharge the corresponding proof obligations
related to creation procedures: the procedure will be called

151 of 251

RequestEnrolment
EnrolContext

ΞKeyStore
ΞAuditLog
ΞInternal

enclaveStatus = notEnrolled
floppyPresence = absent

currentScreen′.screenMsg = insertEnrolmentData

currentDisplay′ = blank

Fig. 4. Z schema of RequestEnrolment

make
. . . Some lines were omitted. . .

ensure
enclave status = cons floppy.not enrolled
floppy presence = cons internal.absent
token removal timeout = 0

end

Fig. 5. ensure clause in feature make

only when an object of this class is being created, AutoProof
needs to verify a creation routine only once.

note clause is also used to define models queries to express
the abstract state space of a classes. Model queries are part of
model-based contracts to help users to write abstract and con-
cise specifications [11], they are used to specify the behavior
of the class. In Eiffel, this is specified by adding a note clause
at the beginning of the class followed with a keyword model:
and listing one or more attributes of the class. Model queries
are also used to describe frame conditions: which allocations
are allowed to be modified by procedures. In Eiffel, frame
conditions are listed using the modify clause, which lists the
model queries that the feature is allowed to modify, as shown
in Figure 7 (i.e. modify model(”current display”, Current)).

According to RequestEnrolment (a Z-schema that is a
part of the formal specification of the project Tokeneer),
which is presented in Figure 4, requesting enrolment involves
EnrolContext, KeyStore, AuditLog, Internal. Schemas in Z
consist of an upper part, in which some variables are declared,
and a lower part, which describes the relationship between
values and variables. The notation Ξ indicates an operation in
which the state does not change, and the apostrophe indicates
the state of the variable after the change [12]. RequestEn-
rolment specifies that the ID station will request enrolment
by displaying a request string on the screen and keeping
the display blank. This is only possible while there is no
Floppy present. Therefore, initially floppyPresence = absent
and enclaveStatus set to notEnrolled. An ensure clause was
used in the creation procedure to guarantee this after the
initialization of ID STATION object:

invariant
constants.display message.has(current display)
constants /= Void

Fig. 6. Invariants of ID STATION Eiffel class.

feature−−Element Change
set current display(v: STRING)

require
constants.display message.has(v)
modify model(”current display”, Current)

do
current display := v

ensure
current display = v

end

Fig. 7. Feature equipped with modify clause

Figure 6 depicts the class invariant for class ID STATION.
It states that a message displayed on the display outside the en-
clave is one of the available from the list of messages (i.e. con-
stants.display message.has(current display)) and that
class attribute constants is attached to an object (i.e. con-
stants /= Void).

Figure 7 shows the implementation of procedure
set current display. Its first pre-condition was added
to satisfy the invariant ensuring that argument v belongs to
the allowed displayed messages. The second pre-condition
restricts the procedure to change values only to model query
current display.

Figure 8 shows the final version of class ID STATION:
with the respective annotations for Autoproof to successfully
verify the class. In class ID STATION, class attributes cur-
rent screen and current display implements the physical
screen and display, respectively, of the enclave.

IV. EMPIRICAL RESULTS

The usability of a verification tool cannot be considered
in isolation and, in particular, cannot be hived off by the
effectiveness of the tool itself. First, as a general observation,
the cost of using an instrument can only be justified by its re-
turn, which can ultimately be linked to financial consideration
by top management. Second, and this aspect is less general
and more peculiar to the auto-active verification approach,
a tool like AutoProof is as much effective and usable as
is its ability to discharge verification conditions completely
automatically, without feeding the code of annotation overhead
or requiring particular tweaking. Finally, the necessity for
users to add further annotations and dedicate extra effort
(and considerable time) is, by itself, an obstacle to adoption
and (technically) an usability issue. Verification tools should
require minimal annotational effort and give valuable feedback
when verification fails.

The case study analyzed in this paper presented good results
in term of automatic discharge of verification conditions,

152 of 251

class
ID STATION

. . . Some lines were omitted. . .

create
make

feature−−Initialization
make

note
status: creator

do
create constants
current display := constants.blank
create current screen.make

create cons floppy
enclave status := cons floppy.not enrolled
token removal timeout := 0

create cons internal
floppy presence := cons internal.absent

ensure
enclave status = cons floppy.not enrolled
floppy presence = cons internal.absent
token removal timeout = 0

end

feature−−Element Change
set current display(v: STRING)

require
constants.display message.has(v)
modify model(”current display”, Current)

do
current display := v

ensure
current display = v

end

feature−−Access
constants : CONST
current screen : SCREEN DISPLAY
current display : STRING

invariant
constants.display message.has(current display)
constants /= Void

end

Fig. 8. Verified ID STATION Eiffel class.

though not comparable to others seen in literature [13]. In
total there were 38 generated proof. Of these, 22 (58%) were
discharged automatically, 8 (21%) could not be satisfied, and
the rest (21%) failed due to internal errors, which in our case
were basically caused by the attempt to create objects in the
contract, and that is not allowed by the tool. As observed
before, the success of verification is unsurprisingly linked to
the complexity of programs [13]. Previous literature mostly
dealt with students users and university projects. The use of
Tokeener as a benchmark demands for detailed comparisons
with different verification efforts (for example, [14]).

V. RELATED WORK

Formal/mathematical notations have existed for a long time
and have been used to specify and verify systems. Examples
are process algebras [15], specification languages like Z [16],
B [17] and Event-B [18]. The Vienna Development Method
(VDM) is one of the earliest attempts to establish a formal
method for the development of computer systems [19]. A
survey of these (and others) formalisms can be found in [20]
while a discussion on the methodological issues of a number
of formal methods is presented in [21].

All these approaches (and others described in the literature)
still leave an open issue, i.e., they are built around strict
formal notations which affect the development process from
the very beginning. These approaches demonstrate a low
level of flexibility. To overcome this problem, a seamless
methodological connection built on top of a portfolio of
diverse notations and methods is presented in [22]. Another
approach is presented in [14], [23] using [24], where users
start the development of system from a strict formal notation
(i.e. Event-B), to then automatically translate it to Java code
with JML [25] specifications embedded (following Design-by-
Contract methodology). Even though this approach enables
users with less mathematical expertise to work on formal
development, it does not give a seamlessly methodology for
the development as presented in this paper.

On the other side, Design-by-contract [6] when combined
with AutoProof technology offers the pros of both rigorous
methodologies and supporting tools able to semi-automate the
process. Before this to be available for the average developer
it is however necessary to improve the users’ experience.
A comparison between different approaches (for example
Event-b/Rodin and Design-by-contract/AutoProof) is beyond
the scope of this paper and it is left as future work.

VI. CONCLUSION

AutoProof allows for “static debugging”, i.e. debugging be-
comes possible without the need of executing the program. The
most effective way to release correct software is a combination
of static debugging and traditional run-time debugging. Being
all human activities (therefore including programming and
testing itself) error-prone, there is no magic or free lunches
out there. Abandoning testing and adopting a proof-oriented
approach does not make miracles, debugging remains a trial-
and-error long and laborious process. AutoProof does not
change the rules of the game: developers will have to try,
observe the results and make changes as a consequence. A
proof-oriented approach does not make the process smoother
and necessarily simpler. However, it makes it more accurate
and robust, therefore effective. Adjustment can be now focused
on the the implementation side (possibly sinergically with run-
time debugging), on the specification side (the contracts used
to annotate the code as integral part of the code itself), or in
the proof itself (fine-tuning may be necessary for AutoProof
and its behind-the-curtains machinery to be able to prove
correctly).

153 of 251

All this comes with a cost: the willingness and ability of
the user to use extra tools and being able to master them, and
possibly invest extra time in the process. On the other side, it
is necessary for the tools to be simple to master and to provide
intelligible feedback.

The Tokeener project case study showed the efficacy of
AutoProof in verifying a real piece of software, the complexity
of which can be compared not only with most of the commer-
cial Off-the-Shelf software, but also with safety and financial-
critical applications, both in terms of computational logic
and architectural organization. AutoProof is capable to verify
industrial software and may well be adopted in commercial
companies and its use injected into the development process.
However, some obstacles have been identified that could
prevent its broader adoption.

As result of an academic effort, documentation is not at par
with commercial software, in particular for what concerns the
size of the library of correctly verified examples: tutorials on
the official website are quite useful, but not enough. On top of
this, the tool itself has limitations. First, existing implementa-
tions need to be modified in order to be verified. This would
represent an unsurmountable obstacle in most institutions since
the overall cost of code adaptation may overrun the saves
occurring to the testing phase. This consideration may be
different, however, for safety-critical systems. Second, the
Eiffel IDE - necessary for functioning - calls for increased
stability and robustness.

ACKNOWLEDGMENTS

We would like to thank Innopolis University for logistic and
financial support, and the laboratories of Software Engineering
(SE) and Service Science and Engineering (SSE) for the
intellectual engagement and vivid discussions.

REFERENCES

[1] B. Meyer, Touch of Class: Learning to Program Well with Objects and
Contracts. Springer Publishing Company, Incorporated, 1 ed., 2009.

[2] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, (New York, NY,
USA), pp. 238–252, ACM, 1977.

[3] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[4] D. W. Loveland, Automated Theorem Proving: A Logical Basis (Fun-
damental Studies in Computer Science). sole distributor for the U.S.A.
and Canada, Elsevier North-Holland, 1978.

[5] J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof:
Auto-active functional verification of object-oriented programs,” in 21st
International Conference, TACAS 2015, London, UK, April 11-18, 2015.
Proceedings, pp. 566–580, 2015.

[6] B. Meyer, Object-oriented software construction, ch. 11: Design by
Contract: building reliable software. Prentice Hall PTR, 1997.

[7] AdaCore, “Tokeneer.” http://www.adacore.com/sparkpro/tokeneer/download,
accessed in April 2016.

[8] J.-R. Abrial, S. Schuman, and B. Meyer, “Specification Language,” in On
the Construction of Programs, R. M. McKeag and A. M. Macnaghten,
editors, pp. 343–410, Cambridge University Press, 1980.

[9] J. Barnes, High Integrity Software: The SPARK Approach to Safety and
Security. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[10] K. R. M. Leino, “This is boogie 2,” tech. rep., June 2008.

[11] N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying reusable
components,” in Proceedings of the 3rd International Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE’10) (G. T.
Leavens, P. O’Hearn, and S. Rajamani, eds.), vol. 6217 of Lecture Notes
in Computer Science, pp. 127–141, Springer, August 2010.

[12] J. Spivey, “An introduction to Z and formal specifications,” Software
Engineering Journal, 1989.

[13] C. A. Furia, C. M. Poskitt, and J. Tschannen, “The autoproof verifier:
Usability by non-experts and on standard code,” in Proc. Formal
Integrated Development Environment (F-IDE 2015), vol. 187, pp. 42–
55, Electronic Proceedings in Theoretical Computer Science (EPTCS),
2015.

[14] V. Rivera, S. Bhattacharya, and N. Cataño, “Undertaking the tokeneer
challenge in Event-B,” To appear in 4th FME Workshop on Formal
Methods in Software Engineering (FormaliSE), 2016.

[15] J. C. M. Baeten, “A brief history of process algebra,” Theor. Comput.
Sci., vol. 335, no. 2-3, pp. 131–146, 2005.

[16] J. Abrial, S. A. Schuman, and B. Meyer, “Specification language,” in
On the Construction of Programs, pp. 343–410, 1980.

[17] J. Abrial, The B-book - assigning programs to meanings. Cambridge
University Press, 2005.

[18] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
New York, NY, USA: Cambridge University Press, 1st ed., 2010.

[19] C. B. Jones, Software Development: A Rigorous Approach. Englewood
Cliffs, N.J., USA: Prentice Hall International, 1980.

[20] M. Mazzara and A. Bhattacharyya, “On modelling and analysis of dy-
namic reconfiguration of dependable real-time systems,” in Proceedings
of the 2010 Third International Conference on Dependability, DEPEND
’10, (Washington, DC, USA), pp. 173–181, IEEE Computer Society,
2010.

[21] M. Mazzara, “Deriving specifications of dependable systems: toward a
method,” in Proceedings of the 12th European Workshop on Dependable
Computing, EWDC, 2009.

[22] R. Gmehlich, K. Grau, A. Iliasov, M. Jackson, F. Loesch, and M. Maz-
zara, “Towards a formalism-based toolkit for automotive applications,”
1st FME Workshop on Formal Methods in Software Engineering (For-
maliSE), 2013.

[23] V. Rivera, N. Cataño, T. Wahls, and C. Rueda, “Code generation for
Event-B.” To appear in International Journal on STTT, 2016.

[24] V. Rivera and N. Cataño, “Translating Event-B to JML-Specified Java
programs,” in 29th ACM SAC, (Gyeongju, South Korea), March 24-28
2014.

[25] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of jml:
A behavioral interface specification language for java,” SIGSOFT Softw.
Eng. Notes, vol. 31, pp. 1–38, May 2006.

154 of 251

Certified Grammar Transformation to Chomsky
Normal Form in F*

Marina Polubelova
Saint Petersburg State University

St. Petersburg, Russia
Email: polubelovam@gmail.com

Sergey Bozhko
Saint Petersburg State University

St. Petersburg, Russia
Email: gkerfimf@gmail.com

Semyon Grigorev
Saint Petersburg State University

St. Petersburg, Russia
Email: Semen.Grigorev@jetbrains.com

Abstract—Certification programming allows to prove that the
program meets its specification. The check of correctness of a
program is performed at compile time, which guarantees that
the program always works as specified. Hence, there is no
need to test certified programs to ensure they work correctly.
Among the toolchains designed for certified programming, F*
is the only language that support semi-automated proving and
general-purpose programming. We work on the application of
this technique to a grammarware research and development
project YaccConstructor. We present a verified implementation
of transformation of Context-free grammar to Chomsky normal
form, that is making progress toward the certification of the
entire project. We also discuss advantages and disadvantages of
such approach and formulate topics for further research.

Keywords—certified programming; F*; program verification;
context-free grammar; Chomsky normal form; grammar trans-
formation; dependent type; refinement type

I. INTRODUCTION

Certified programming is designed for proving that a pro-
gram meets its specification. For this technique, proof as-
sistants or interactive theorem prover are used [1], what
allows to check correctness of the program at compile time
and guarantees that the program always works according to
its specification. Classical fields of application of certified
programming are the formalization of mathematics, security
of cryptographic protocols and the certification of properties
of programming languages.

There are two approaches to certified programming [2].
In the classical approach the program, its specification, and
the proof that the program meets its specification are written
separately, as different modules. Such technique costs too
much to be applied in software development. More effective
approach is to combine program, its specification, and the
proof in one module by means of dependent types [3], [4].
The most well-known toolchains for program verification are
Coq [5], Agda [6], F* [7] and Idris [8]. Among them, F* is
the only language which supports semi-automated proving and
general-purpose programming.

As a proof assistant, F* allows to formulate and prove
properties of programs by using lemmas and enriching types.
F* not only infers types of functions, but also the properties of
its computations such as purity, statefulness, divergence. For
example, consider the following function:

val f : (int -> Tot int) -> int -> Tot int
let f g x = g x

The keyword val indicates that we declare a function f and
its type signature. The function f takes a function g and an
integer value, as arguments. The effect of computation Tot t

is used for total expression which always evaluates to a t-typed
result without entering an infinitive loop, throwing exception
or other side effects. Hence, one can prove for some programs
not only their properties and restrictions on the types, but also
guarantee their termination and that a result has assigned type.

We apply certified programming using F* to a grammarware
research and development project YaccConstructor (YC) [9],
[10]. YC is a tool for parser construction, grammar processing,
parser generators and other grammarware for .NET platform.
The verification of its programs covers the topic of parser
correctness: how to obtain formal evidence that a parser is
correct with respect to its specification [11].

In this article, we consider only one algorithm implemented
in YC, namely the transformation of context free grammar
to Chomsky normal form, that is a small step towards the
certification of entire project. The algorithm of grammar nor-
malization consists of four transformations. We prove totality
of each of them and establish an order of their application to
the input grammar. In addition, we describe the peculiarities
of evaluation F* as a proof assistant and formulate topics for
further research.

II. OVERVIEW OF F*

We use a functional programming language F* [7] for
program verification. It is the only language that support semi-
automated proving and general-purpose programming [12].
The main goal of this tool is to span the capabilities of
interactive proof assistants like Coq [5] and Agda [6], general-
purpose programming languages like OCaml and Haskell, and
SMT-backed semi-automated program verification tools like
Dafny [13] and WhyML [14].

Type system of F* includes polymorphism, dependent types,
monadic effects, refinement types, and a weakest precondition
calculus [15], [16]. These features allow expressing precise
and compact specification for programs [7].

• Dependent function type has the following form:
x1 : t1 → . . . → xn : tn[x1 . . . xn−1] → E t[x1 . . . xn].

155 of 251

Each of a function’s formal parameters are named xi and
each of these names in the scope to the right of the first
arrow that follows it. The notation t[x1 . . . xm] indicates
that the variables x1 . . . xm may appear free in t.

• Refinement type has a form x : t{phi(x)}. It is a sub-type
of t restricted to those expression of type t that satisfy
the predicate phi(e).

• In addition to inferring a type, F* also infers side effects
of an expression such as exceptions, state. We consider
the main monadic effects.

– Tot t — the effect of a computation that guaran-
tees evaluation to a t-typed result, without entering
an infinite loop, throwing an exception, reading or
writing the program’s state.

– ML t — the effect of a computation that may have
arbitrary effects, but if some result is computed, then
it is always of type t.

– Dv t — the effect of a computation that may di-
verge.

– ST t — the effect of a computation that may di-
verge, read, write or allocate on a heap.

– Exn t — the effect of a computation that may
diverge or raise an exception.

The effects {Tot, Dv, ST, Exn, ML} are arranged in a
lattice, with Tot at the bottom, ML at the top, and with ST

unrelated to Exn.
There are two main approaches to prove properties: either

by enriching the type of a function (intrinsic style) or by
writing a separate lemma about it (extrinsic style). You can
see an example of the first approach, in which the keyword
val indicates declaration of a value and its type signature,
below.
val append: l1:list ’a -> l2:list ’a
-> Tot (l:list ’a{length l=length l1+length l2})

let rec append l1 l2 =
match l1 with
| [] -> l2
| hd :: tl -> hd :: append tl l2

The following example demonstrates extrinsic style, in
which the formula after keyword requires is the pre-
condition of the function/lemma, while the one after keyword
ensures is its post-condition:
val append_len: l1:list ’a -> l2:list ’a

-> Lemma (requires True)
(ensures (length (append l1 l2) =

length l1 + length l2)))

let rec append_len l1 l2 =
match l1 with
| [] -> ()
| hd::tl -> append_len tl l2

There is no rule which style of proving to use, but in some
cases it is impossible to prove a property of a function directly
in its types and one has to use a lemma.

When defining lemmas or expressions that are total, F*

automatically proves their termination. The termination check
is based on a well-founded relation. For natural numbers,
F* uses classical decreasing metric, for inductive types —
the sub-term ordering, for recursive function, it requires the
tuple of parameters to be in decreasing lexicographic ordering.
The last case can be overrided with using clause decreases

%[x1; ...;xn], which explicitly chooses a lexicographic order-
ing on arguments.

So, we can use F* to write effectful programs, to specify
them using dependent and refinement types, to verify them
using an SMT solver or providing interactive proofs. Programs
written in F* can be translated to OCaml or F# for further
execution.

III. VERIFICATION OF TRANSFORMATION OF CFG TO CNF

In this section we briefly describe a part of theory of formal
languages used, the proof of totality of one of transformations
of grammar to Chomsky normal form in F*, and formulate
some advantages and disavantages of this approach.

A. Context-free grammar and Chomsky normal form

In this section we give basic definitions and formulate a
theorem that helps us to verify implemented algorithm of
transformation of context-free grammar to Chomsky normal
form.

In formal language theory, a context-free grammar (CFG)
is a formal grammar in which every production rule is of the
form A → α, where A is single nonterminal symbol and α is
a string of terminals and/or nonterminals (α can be empty).

Context-free grammar F is said to be in Chomsky normal
form (CNF) if all of its production rules are of the form:

• A → BC
• A → a
• S → ϵ,
where A,B and C are nonterminal symbols, a is a terminal

symbol, S is a start nonterminal, and ϵ denotes the empty
string. Also, neither B nor C may be the start symbol, and
the third production rule can only appear if ϵ is in L(G),
namely, the language produced by the context-free grammar
G.

Context-free grammars given in Chomsky normal form are
very convenient to use. It is often assumed that either CFGs are
given in CNF from the beginning or there is an intermediate
step of normalization. Having a certified implementation of
normalization for CFGs enables us to stop thinking in terms of
CFG and consider grammar in CNF without losing guarantees
of correctness.

CFG normalization theorem: There is an algorithm which
converts any CFG into an equivalent one in Chomsky normal
form.

The full normalization transformation for a CFG is the
composition of the following constituent transformations.

• Replacing all rules A → X1X2 . . . Xk, where k ≥ 3 with
rules A → X1A1, A1 → X2A2, . . ., Ak−2 → Xk−1Xk,
where Ai are “fresh” nonterminals.

• Elimination of all ϵ-rules.

156 of 251

• Elimination all chain rules.
• For each terminal a, adding a new rule A → a, where A

is a “fresh” nonterminal and replacing a in the right-hand
sides of all rules with length at least two with A.

B. Verification with F*

Our purpose is a verification of programs in YaccConstruc-
tor (YC) using F*. YC is an open source modular tool for
research in lexical and syntax analysis and its main develop-
ment language is F# [17]. In this paper we consider only a
verification of normalization grammar algorithm [18], which
in YC looks like:
let toCNF (ruleList: Rule.t<_,_>list) =

ruleList
|> splitLongRule
|> deleteEpsRule
|> deleteChainRule
|> renameTerm

The function toCNF is a composition of the four transfor-
mations mentioned. Notice that the order of rule execution is
important. The first rule must be executed before the second,
otherwise normalization time may increase to O(2n). The
third rule follows the second, because elemination of ϵ-rules
may produce new chain rules. Also, the fourth rule must be
executed after the second and the third as they can generate
useless symbols.

F* as a proof assistant allows to formulate and
prove properties of function of interest using lem-
mas or enriching types. For example, in F# function
(f (x:int)= 2*x) is inferred to have type (int -> int),
while in F* we infer (int -> Tot int). This indicates that
(f (x:int) = 2*x) is a pure total function which always
evaluates to int. A lemma is a ghost total function that
always returns the single unit value (). When we specify
a total function, we have to prove totality of every nested
function, because F* supports only high-level annotations. In
others words, we cannot add annotation for nested function.
Therefore, to prove totality of a function containing nested
function, we need to lift all nested functions up and explicitly
prove totality of these functions.

We describe each function of interest in an individual mod-
ule to avoid namespace collision. We use module architecture
similar to YC architecture. We have module IL, that contains
type constructors for describing rules, productions and etc.
Also, there is a module Namer, which contains a function
to generate new names. Finally, there are individual modules
for each transformation, and a separate, main, module which
contains the definition of toCNF transformation.

F* does not provide any primitive support for object-
oriented features. That is why records became the main
structure, used in the implementation. Hence, as records do not
have constructors, for each of them we created functions that
generate elements of the type directly; some of these functions
described in module TransformAux. In other words, rather
than create class Person with constructors and methods like
this:

let person = new Person("Nick", 27)

We have to do it the following way:
let new_Person name age = {name=name; age=age}

We rewrote all the transformations in F*, but in this paper
we consider only one of them, namely SplitLongRules

which eliminates long rules. Firstly, we describe all the helpers
we need, prove their totality and other necessary properties,
and then explain why this transformation is correct.

In the first transformation it is necessary to create new
nonterminals, so we need a function to supply them. The
function Namer.newSource defined below is used.
val newSource:

n:int->oldSource:Source->Tot Source
let newSource n old =

({old with text=old.textˆ(string_of_int n)})

Integer n is equal to the size of the list of rules which
we have at the moment of function Namer.newSource call.
Obviously, function Namer.newSource is injective. In other
words, if we have unique rule names, they remain unique
after application splitLongRule. Some necessary helpers are
grouped in TransformAux module: for example, functions
createRule and createDefaultElem, which take some
arguments and return Rule and Elem respectively. Elem is
the right part of the rule if the latter is a sequence. Also, we
define follow one simple function which returns the length of
the right part of the rule.
val lengthBodyRule:Rule ’a ’b->Tot int
let lengthBodyRule rule =

List.length (match rule.body with
|PSeq(e, a, l) -> e
| _ -> [])

The most interesting function is cutRule. It takes a rule
and a list-accumulator as an input. If the length of the right
part of the rule is less or equal to 2, we do not need to do
anything and cutRule only renames a nonterminal to avoid
name collision. Otherwise we have to create new nonterminal
Bk−2, cut off last two elements Xk−1Xk, pack them into a
new rule Bk−2 → Xk−1Xk, and then add the nonterminal to
the end of the long rule. Then the new rule is added to the
accumulator and the function cutRule is recursively called
on the new rule and accumulator. This way, we reduce our
rule by one. Function signature is the following.
val cutRule: rule:(Rule ’a ’b)
-> resRuleList:(list (Rule ’a ’b))
-> Tot (list (Rule ’a ’b))

(decreases %[lengthBodyRule rule;
List.length resRuleList])

There are some peculiarities in our implementation which
are worth mentioning. One of them is the representation of the
right part of the rules by lists. In the algorithm we need to cut
off two last elements of a rule, so we carry out the following
steps.
let revEls = List.rev elements
let cutOffEls = [List.Tot.hd revEls;

157 of 251

List.Tot.hd (List.Tot.tl revEls)]

Standard functions List.hd and List.tl are not defined
for an empty list, but we need to use total functions. In F*
there is a module List.Tot, in which these functions are
described. We only give their signature here.
val hd: l:list ’a{is_Cons l}->Tot ’a
val tl: l:list ’a{is_Cons l}->Tot (list ’a)

Where is_Cons takes a list as an input and returns false
if it is empty, otherwise it returns true.

It means that if we try to apply function List.Tot.hd to
a list, nonemptiness of which is not clear from the context, F*
reports a type mismatch. A pleasant peculiarity of F* is that in
some rare cases it can derive necessary properties. We divide
only the rules which have more than two symbols in the right
side. In this case F* is able to automatically derive required
type, so we can choose two elements. It can be explained in
the following example.
// lst has type list int and can be empty
assume val lst: list int
// f takes only nonempty lists
assume val f:
lst:(list int){is_Cons lst}->Tot int
assume val g: lst:(list int)->Tot int

//Ok
let test1 (lst:list int) =

if List.length lst >= 1
then f lst
else g lst

//Fail: subtyping check failed
let test2 (lst:list int) =

if List.length lst >= 0
then f lst
else g lst

At the same time, we have to prove and explicitly add even
simple lemmas for functions. For example, if list lst has
type (list ’a){is_Cons lst}, then (List.rev lst)

only has type (list ’a). This can be easily fixed with
the instruction SMTPat. In addition, we should formulate the
following lemma which proof can be derived automatically by
F*. The following code makes List.rev preserve information
about the length:
val rev_length:

l:(list ’a)
-> Lemma (requires true)
(ensures
(List.length (List.rev l)=List.length l))
[SMTPat (List.rev l)]

We proved totality of all the nested functions. Now we
want to prove termination of the general one. In our case,
it is sufficient that the length of the rule strictly decreases on
each recursive call and we are not interested in the length of
the accumulator. To prove this we must explicitly specify that
after applying List.Tot.tl to a list, its length reduces by 1.
So, we must use the same method as we used before.

val tail_length :
l:(list ’a){is_Cons l}
-> Lemma (requires True)
(ensures
(List.length (List.Tot.tl l)=(List.length l)-1))
[SMTPat (List.Tot.tl l)]

With this sufficient information F* has to conclude that
cutRule is total.

Function splitLongRule takes a list of rules and ap-
plies (fun rule -> cutRule rule []) to each rule,
then concatenates all the results and returns the combined list.
val splitLongRule: list (Rule ’a ’b)

-> Tot (list (Rule ’a ’b))
let splitLongRule ruleList =

List.Tot.collect
(fun rulecutRule rule []) ruleList

Totality is proved automatically by F*.
Previously we proved totality of our transformation, but we

had not mentioned properties of the rules we get after applying
splitLongRule. We add restriction on the type of function,
which guarantees the necessary property of the result, instead
of proving the lemma about these properties. The function
signature now look like this.
val cutRule: rule:(Rule ’a ’b)

-> acc:(list (Rule ’a ’b))
{List.Tot.for_all

(fun x->lengthBodyRule x<=2) acc}
-> Tot (res:(list (Rule ’a ’b))

{List.Tot.for_all
(fun x->lengthBodyRule x<=2) res})

(decreases %[lengthBodyRule rule;
List.length resRuleList])

val splitLongRule:list (Rule ’a ’b)
-> Tot (res:list (Rule ’a ’b)

{List.Tot.for_all
(fun x->lengthBodyRule x<=2) res})

Now we have almost everything we need to prove such
properties. We have to add some more information so that F*
could check arguments type when recursively called. At the
moment of cutting the rule off, we should fix the length in
the type of the cut part. For this purpose we have to define a
function to take our list and return part with that type. Further,
we have to prove lemma that states that concatenation of two
lists with short rules is a list with short rules. After that F*
accepts type correctness.

C. Advantages and disadvantages of F*

In F#, even if we have some correct functions, we may
get incorrect result by applying them in a wrong order. An
advantage of F* is that it can prevent such situations, if we
specify the properties we demand from an input data in a type
of a function. For instance, we can apply deleteChainRule

only after deleting all the epsilon rules. The signature of
deleteChainRule is described in the following way.
val deleteChainRule:

ruleList:(list (Rule ’a ’b))

158 of 251

{is_non_eps_rules ruleList}
-> Tot (list (Rule ’a ’b))

Unfortunately, there are some significant disadvantages of
F*. It would be better if F* was more automated, because one
can usually realize totality of a function far earlier than F*.
Sometimes it is hard to understand why proofs do not pass
correctness tests. The reason is that F* does not give us any
information about errors. There are subgoals in Coq, which
allow user to create a proof interactively, from a hypothesis to
prove, and with the help of tactics he divides it to subgoals,
which let us understand proof process. Such mechanism would
be useful in F*. There are a special construct in many
functional languages which checks whether some property
holds for a value. Such construct is called guard in Haskell
and when in OCaml and F# and is often used in pattern
matching to simplify code. Unfortunately, it is not supported
in F* and one could only hope that it will be supported in the
latter language versions.

IV. CONCLUSION AND FUTURE WORK

We presented a verification of some transformations of
context-free grammar to the Chomsky normal form. The
purpose of that is a proof of totality of each function used. This
property guarantees that computations always terminate and do
not enter in infinite loop, throw exception and don not have
other side effects. Although a correctness proof of the rest of
transformations is still in progress, we have significant results.
We can specify an input and an output of functions, using
refinement and dependent types, that allow us to establish an
order of application of the four transformations. So, when
we prove totality of each function, we prove that an entire
conversion of grammar is total which is very useful in practice.

For verification of considered algorithm, we use a program-
ming language F* which only allows to verify the input code,
but not to execute it. To execute F* code one needs to extract
it to OCaml or F# and then compile it using the OCaml or
F# compiler respectively. At the moment, the mechanism of
extraction code from F* to F# omits casts, erases dependent
types, higher rank polymorphism and ghost computation [12].
These features are very important and lack of them breaks
the consistency and correctness of programs within the target
language. As far as we know, F* is a language which is
still under development, and implementation of the extraction
mechanism, which cope with the above shortcoming, is actual
topic for our further research.

REFERENCES

[1] H. Geuvers, “Proof assistants: History, ideas and future,” Sadhana,
vol. 34, no. 1, pp. 3–25, 2009.

[2] A. Chlipala, “Certified programming with dependent types,” 2016.
[3] T. Sheard, A. Stump, and S. Weirich, “Language-based verification will

change the world,” in Proceedings of the FSE/SDP workshop on Future
of software engineering research. ACM, 2010, pp. 343–348.

[4] E. Tanter and N. Tabareau, “Gradual certified programming in Coq,” in
Proceedings of the 11th Symposium on Dynamic Languages. ACM,
2015, pp. 26–40.

[5] The Coq proof assistant. [Online]. Available: https://coq.inria.fr/
[6] The Agda homepage. [Online]. Available:

http://wiki.portal.chalmers.se/agda/pmwiki.php

[7] The F* homepage. [Online]. Available: https://www.fstar-lang.org/
[8] The Idris homepage. [Online]. Available: http://www.idris-lang.org/
[9] The YaccConstructor homepage. [Online]. Available:

https://github.com/YaccConstructor/
[10] I. Kirilenko, S. Grigorev, and D. Avdiukhin, “Syntax analyzers de-

velopment in automated reengineering of informational system,” St.
Petersburg State Polytechnical University Journal. Computer Science.
Telecommunications and Control Systems, no. 174, pp. 94 – 98, 2013.

[11] J.-H. Jourdan, F. Pottier, and X. Leroy, “Validating LR (1) parsers,” in
Programming Languages and Systems. Springer, 2012, pp. 397–416.

[12] N. Swamy, C. Hriţcu, and C. Keller, “Dependent Types
and Multi-monadic Effects in F*,” in Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL 2016. New York,
NY, USA: ACM, 2016, pp. 256–270. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837655

[13] The Dafny project. [Online]. Available:
http://research.microsoft.com/en-us/projects/dafny/

[14] The WhyML project. [Online]. Available: http://why3.lri.fr/
[15] B. C. Pierce, Types and Programming Languages. Cambridge, MA,

USA: MIT Press, 2002.
[16] F* tutorial. [Online]. Available: https://www.fstar-lang.org/tutorial/
[17] Programming language F#. [Online]. Available: http://fsharp.org/
[18] D. Firsov and T. Uustalu, “Certified normalization of context-free gram-

mars,” in Proceedings of the 2015 Conference on Certified Programs and
Proofs. ACM, 2015, pp. 167–174.

159 of 251

Performance Testing of Automated Theorem Provers

Based on Sudoku Puzzle

Maxim Sabyanin, Dmitry Senotov, Grigory Skvortsov, Rostislav Yavorsky

Faculty of Computer Science

Higher School of Economics

Moscow, Russia

Sabyanin.mx@gmail.com, disenotov@gmail.com,

skvortsovg@yandex.ru, ryavorsky@hse.ru

Abstract— This paper reports on work in progress on

developing a test suite to assess performance of automated

theorem provers Isabelle, Yices, and Z3. The developed tests are

based on logical formalization of well-known Sudoku puzzle.

Keywords—automated theorem provers, testing, SAT solvers,

performance testing, formal verification

I. INTRODUCTION

 In this paper we suggest a simple and user friendly way to
test performance of different automates proof systems. The
idea is to start from a well-known puzzle game Sudoku,
reformulate it in logical terms and then use the obtained
formula to assess performance of formal verification tools.

In our work we are interested to compare performance of the
following tools: Z3, Isabelle, and Yices. Since not all these
systems participate in regular competitions like SMT-COMP
(see [1]), we were motivated to design our own tests.

II. AUTOMATED THEOREM PROVERS

Theorem provers are widely used as core engines of formal
verifications systems [2]. The following three are among the
leaders, although they have slightly different purposes and
application domains.

A. Isabelle
Isabelle is a generic proof assistant. It allows mathematical

formulas to be expressed in a formal language and provides
tools for proving those formulas in a logical calculus. The main
application is the formalization of mathematical proofs and in
particular formal verification, which includes proving the
correctness of computer hardware or software and proving
properties of computer languages and protocols [4].

B. Yices
Yices 2 is an SMT solver that decides the satisfiability of

formulas containing uninterpreted function symbols with
equality, linear real and integer arithmetic, bitvectors, scalar
types, and tuples [3].

C. Z3
Z3 is a state-of-the art theorem prover from Microsoft

Research. It can be used to check the satisfiability of logical
formulas over one or more theories. Z3 offers a compelling
match for software analysis and verification tools, since several
common software constructs map directly into supported
theories [5].

III. SUDOKU LOGICAL FORMULA

A. The Original Puzzle
Sudoku is a very popular puzzle game and its goal is to fill

a 9*9 grid with numbers under certain rules. These rules are:
each row, column and 3*3 square must contain all of the digits
from 1 to 9.

B. Formalization
 There are at least two ways to reformulate a Sudoku puzzle
in logical terms. The first one is to use Boolean logic, that is to
create a Boolean formula with 243 variables

{ Pijk | 1 i 9, 1 j 9, 1 k 9 }

where Pijk stands for a fact that cell (i, j) is filled with value k.
The logical formula itself implements the rules of Sudoku.

 Another way is to formalize the same rules using integer
variables and arithmetical relations.

Below is a fragment of such a formula in Isabelle syntax:

valid e1 e2 e3 e4 e5 e6 e7 e8 e9 ==

(e1 \<noteq> e2) \<and> (e1 \<noteq> e3) \<and> (e1
\<noteq> e4) \<and> (e1 \<noteq> e5) \<and> (e1
\<noteq> e6) \<and> (e1 \<noteq> e7) \<and> (e1
\<noteq> e8) \<and> (e1 \<noteq> e9) \<and> (e2
\<noteq> e3) \<and> (e2 \<noteq> e4) \<and> (e2
\<noteq> e5) \<and> (e2 \<noteq> e6) \<and> (e2
\<noteq> e7) \<and> (e2 \<noteq> e8) \<and> (e2
\<noteq> e9) \<and> (e3 \<noteq> e4) \<and> (e3
\<noteq> e5) \<and> (e3 \<noteq> e6) \<and> (e3
\<noteq> e7) \<and> (e3 \<noteq> e8) \<and> (e3
\<noteq> e9) \<and> (e4 \<noteq> e5) \<and> (e4

This work is a part of ongoing collaborative research project on

verification of financial algorithms at Higher School of Economics sponsored

by Exactpro LLC, London Stock Exchange Group.
160 of 251

mailto:Sabyanin.mx@gmail.com
mailto:disenotov@gmail.com
mailto:skvortsovg@yandex.ru
mailto:ryavorsky@hse.ru

\<noteq> e6) \<and> (e4 \<noteq> e7) \<and> (e4
\<noteq> e8) \<and> (e4 \<noteq> e9) \<and> (e5
\<noteq> e6) \<and> (e5 \<noteq> e7) \<and> (e5
\<noteq> e8) \<and> (e5 \<noteq> e9) \<and> (e6
\<noteq> e7) \<and> (e6 \<noteq> e8) \<and> (e6
\<noteq> e9) \<and> (e7 \<noteq> e8) \<and> (e7
\<noteq> e9) \<and> (e8 \<noteq> e9) \<and> (e1 < 10)
\<and> (e2 < 10) \<and> (e3 < 10) \<and> (e4 < 10) \<and>
(e5 < 10)\<and> (e6 < 10) \<and> (e7 < 10) \<and> (e8 <
10) \<and> (e9 < 10) \<and>(e1 \<ge> 1) \<and> (e2
\<ge> 1) \<and> (e3 \<ge> 1) \<and> (e4 \<ge> 1) \<and>
(e5 \<ge> 1)\<and> (e6 \<ge> 1) \<and> (e7 \<ge> 1)
\<and> (e8 \<ge> 1) \<and> (e9 \<ge> 1)

For Z3 besides others we used the following method to call the
prover API:

void add_inequalities(z3::solver &solver, Sudoku& sudoku)
{

 for (int number_sq = 0; number_sq < 9; ++number_sq) {
 int start_i = (number_sq / 3) * 3,
 start_j = (number_sq % 3) * 3;

 for (int first_var = 0; first_var < 9; first_var++) {
 int i = start_i + dx[first_var],
 j = start_j + dy[first_var];
 if (sudoku[i][j] == EMPTY_CELL) {
 //continue;
 }

 for (int second_var = first_var + 1; second_var < 9;

second_var++) {
 int a = start_i + dx[second_var],
 b = start_j + dy[second_var];
 solver.add(sudoku.get_const({a, b}) !=

sudoku.get_const({i, j}));
 }
 }
 }

For Yices we used the Yices 2 language to formalize the
Sudoku rules:

(assert (distinct e11 e12 e13 e14 e15 e16 e17 e18 e19))

(assert (distinct e21 e22 e23 e24 e25 e26 e27 e28 e29))

(assert (distinct e31 e32 e33 e34 e35 e36 e37 e38 e39))

(assert (distinct e41 e42 e43 e44 e45 e46 e47 e48 e49))

(assert (distinct e51 e52 e53 e54 e55 e56 e57 e58 e59))

(assert (distinct e61 e62 e63 e64 e65 e66 e67 e68 e69))

(assert (distinct e71 e72 e73 e74 e75 e76 e77 e78 e79))

(assert (distinct e81 e82 e83 e84 e85 e86 e87 e88 e89))

(assert (distinct e91 e92 e93 e94 e95 e96 e97 e98 e99))

(assert (distinct e11 e21 e31 e41 e51 e61 e71 e81 e91))

(assert (distinct e12 e22 e32 e42 e52 e62 e72 e82 e92))

(assert (distinct e13 e23 e33 e43 e53 e63 e73 e83 e93))

(assert (distinct e14 e24 e34 e44 e54 e64 e74 e84 e94))

(assert (distinct e15 e25 e35 e45 e55 e65 e75 e85 e95))

(assert (distinct e16 e26 e36 e46 e56 e66 e76 e86 e96))

(assert (distinct e17 e27 e37 e47 e57 e67 e77 e87 e97))

(assert (distinct e18 e28 e38 e48 e58 e68 e78 e88 e98))

(assert (distinct e19 e29 e39 e49 e59 e69 e79 e89 e99))

(assert (distinct e11 e12 e13 e21 e22 e23 e31 e32 e33))

(assert (distinct e41 e42 e43 e51 e52 e53 e61 e62 e63))

(assert (distinct e71 e72 e73 e81 e82 e83 e91 e92 e93))

(assert (distinct e14 e15 e16 e24 e25 e26 e34 e35 e36))

(assert (distinct e44 e45 e46 e54 e55 e56 e64 e65 e66))

(assert (distinct e74 e75 e76 e84 e85 e86 e94 e95 e96))

(assert (distinct e17 e18 e19 e27 e28 e29 e37 e38 e39))

(assert (distinct e47 e48 e49 e57 e58 e59 e67 e68 e69))

 (assert (distinct e77 e78 e79 e87 e88 e89 e97 e98 e99))

Distinct is an operator that generalizes disequality. In other
words, (distinct t_1 t_2 … t_n) is true if t_1 … t_n are different
from each other.

IV. THE RESULTS

The work is still in progress, yet we already have some
figures. See figures 1 and 2 below. We started from a single
puzzle, which has 22 predefined cells out of 81. According to
the Sudoku rules the puzzle has a unique solution. Then we
sequentially erased predefined and passed the task to prover
under the test.

Fig 1.Performance of Isabelle prover on Sudoku test

161 of 251

On the graphs the horizontal scale corresponds to the
number of predefined cells, the vertical one is to show the time
the prover took to solve the task. The first value, 0 on the
horizontal scale, corresponds to the situation with most
freedom, when no cell is predefined (so called zero-test).

Results for Isabelle are on Fig. 1 above.

 The following graph is for Z3:

 And the next graph is for Yices:

 In addition, we used some puzzles to test Yices and
Isabellse. For instance, “The Mepham diabolical Sudoku
puzzle” from [6].

It took Yices about 1,5 seconds to solve this puzzle. In
comparison, Isabelle solved it in 12,2 seconds.

Second puzzle we tested Yices in is “Will Shortz’s puzzle
301”

It took Yices about 5 seconds to solve this puzzle, and it
took Isabelle 10,8 seconds to do so.

V. CONCLUSTION

One can clearly see that the graph shapes are very different
for different provers. Z3 turned out to be levels of magnitude
more efficient on formulas with very little number of solutions.
For example, it took approximately 76 milliseconds to solve
the original puzzle. To compare, Isabelle worked on it 13.3
seconds, which is 175 times slower.

Fig. 3. Performance of Yices prover on Sudoku test

Fig 5. Will Shortz’s puzzle 301

Fig 4. The Mepham diabolical Sudoku puzzle

Fig. 2. Performance of Z3 prover on Sudoku test

162 of 251

On the other hand, Isabelle outperformed Z3 on tasks
which are not that strict, 7.4 seconds for Isabelle versus 25.1
seconds for Z3 for the zero-test.

As for the Yices, for these tests it always works faster than
Isabelle, and it works faster than Z3 for relatively small amount
of filled cells.

Such results were quite surprising for us. A possible
explanation could be that the provers use different heuristics,
which are targeted at different kinds of formulas.

REFERENCES

[1] Barrett, Clark, Leonardo De Moura, and Aaron Stump. "SMT-COMP:
Satisfiability modulo theories competition." Computer Aided
Verification. Springer Berlin Heidelberg, 2005.

[2] Milne, George J. Formal specification and verification of digital
systems. McGraw-Hill, Inc., 1993.

[3] The Yices SMT Solver Overwiew, URL : http://yices.csl.sri.com/

[4] Izabelle Overwiew, URL : https://isabelle.in.tum.de/overview.html

[5] Z3 – a Tutuorial, URL :
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi
=10.1.1.225.8231

[6] J. F. Crook, A Pencil-and-Paper Algorithm for Solving Sudoku Puzzles.
Notices of the ASM, Vol 57, No 4, April 2009

http://www.ams.org/notices/200904/rtx090400460p.pdf

163 of 251

http://yices.csl.sri.com/
https://isabelle.in.tum.de/overview.html
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.225.8231
http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.225.8231
http://www.ams.org/notices/200904/rtx090400460p.pdf

Translation of Nested Petri Nets into Petri Nets
for Unfoldings Verification

Vera Ermakova
National Research University

Higher School of Economics (HSE)
Email: voermakova@edu.hse.ru

Irina Lomazova
National Research University

Higher School of Economics (HSE)
Email: ilomazova@hse.ru

Abstract—Nested Petri nets (NP-nets) is an extension of the
Petri nets formalism within the nets-within-nets approach, allow-
ing to model systems of interacting dynamic agents in a natural
way. One of the main problems in verifying of such systems is
the State Explosion Problem. To tackle this problem for highly
concurrent systems the unfolding method has proved to be very
helpful. The purpose of this research is to study the application
of unfoldings in the context of nested Petri nets and compare
unfolding of NP-net translated into classical Petri net with direct
component-wise unfolding.

Keywords —multi-agent systems; verification; Petri nets;
nested Petri nets; unfoldings

I. INTRODUCTION

Multi-agent systems have been studied explicitly for the last
decades and can be regarded as one of the most advanced
research and development area in computer science today.
They are used in various practical fields and areas, such as
artificial intelligence, cloud services, grid systems, augmented
reality systems with interactive environment objects, informa-
tion gathering, mobile agent cooperation, sensor information
and communication.

However, multi-agent systems are very complex because of
their distributed structure. They consist of interacting agents
inhabiting an environment and having an autonomous behav-
ior. When develop such a system, it is very important to check
whether this system meets a given specification. That is why
we create model for it: to check whether model works properly
and only then we implement it. In order to do this check,
verification approach is used.

One of the formalisms, successfully representing distributed
systems behavior, is Petri nets. However, due to the flat
structure of classical Petri nets, they are not so good for
modeling complex multi-agent systems. For such systems a
special extension of Petri nets, called nested Petri nets [1],
can be used. Nested Petri nets naturally represent multi-agent
systems structure because tokens in the main system net are
Petri nets themselves, and can have their own behavior.

To check nested Petri net model properties one of the
most common ways of verification, model checking, is used.
The basic idea of model checking is to build a reachability
(transition) graph and check properties on this graph. However,
there is a crucial problem for verification of highly concurrent
systems using model checking approach - a large number of

interleavings of concurrent processes (possible events sequenc-
ings in the system). This leads to the so-called state-space
explosion problem. It means that if we add a single component
to the system, the number of states will grow vastly.

To tackle this problem, unfolding theory [2], [3] was intro-
duced. In [4] applicability of unfoldings for nested Petri nets is
shown and the branching process of conservative nested Petri
nets is defined in a component-wise manner. It was proved,
that nested Petri nets satisfy the unfoldings fundamental prop-
erty, and thus can be used for verification of conservative
nested Petri nets same as classical unfoldings methods. A
special subclass of nested Petri nets was considered here -
conservative safe nested Petri nets. This means that net tokens,
representing agents, cannot be destroyed or created, but can
change the location in the system net and can change their
inner states. Thus, the number of agents is constant and each
agent is presented in a single copy in the system.

However, for this particular class of nested Petri nets it
is possible to build equivalent classical Petri nets. Thus we
are interested is unfolding approach proposed in [4] better
in terms of verification complexity. To answer this question,
we proposed to compare two ways of unfoldings: to make an
unfolding directly for a nested Petri net, as it was proposed in
[4], or to translate a nested Petri net (source net) into a classical
Petri net (target net) and only then to build an unfolding for
it.

a) Related work: Nested Petri nets (NP-nets) are widely
used in modeling of distributed systems [5], [6], [7], serial
or reconfigurable systems [8], [9], [10], protocol verification
[11], coordination of sensor networks with mobile agents [12],
innovative space system architectures [13], grid computing
[14].

Several methods for NP-nets behavioral analysis were pro-
posed in the literature, among them compositional methods
for checking boundedness and liveness for nested Petri nets
[15], translation of NP-nets into Colored Petri nets in order to
verify them with CPNtools [16], verification of a subclass of
recursive NP-nets with SPIN [17].

Unfolding approach and state-space explosion problem are
explicitly studied in the literature. The original development
in unfoldings (of P/T-nets) is due to [18]. McMillan [2] was
the first to use unfoldings for verification. He introduced the
concept of complete finite prefixes of unfoldings, and demon-

164 of 251

strated the applicability of this approach to the verification of
asynchronous circuits.

The original McMillan’s algorithm was used to solve the
executability problem — to check whether a given transition
can fire in the net. This algorithm can be used also for checking
deadlock-freedom and for solving some other problems. Later,
numerous improvements to the algorithm have been proposed
([19], [20], [21] to name a few); and the approach has been
applied to high-level Petri nets [22], process algebras [23] and
M-nets [22].

The general method for truncating unfoldings, which ab-
stracts from the information one wants to preserve in the
finite prefix of the unfolding, was proposed in [24], [25]. This
method is based on the notion of a cutting context. We use
this approach for defining branching processes and unfoldings
of conservative nested Petri nets.

b) The paper is organized as follows: In Section II we
present the basic notions of Petri nets and nested Petri nets.
In Section III we present an algorithm for nested Petri nets
into classical Petri nets translation. In Section IV we provide
a comparison of two unfolding methods. Lastly, we discuss the
applicability of our construction to the verification algorithms
based on the canonical prefixes of unfoldings and classical
unfoldings method on Petri nets.

II. PRELIMINARIES

Multisets. Let S be a finite set. A multiset m over a set S is a
function m : S Ñ Nat, where Nat is the set of natural numbers
(including zero), in other words, a multiset may contain several
copies of the same element.

For two multisets m,m1 we write m � m1 iff @s P S :
mpsq ¤ m1psq (the inclusion relation). The sum and the union
of two multisets m and m1 are defined as usual: @s P S : pm�
m1qpsq � mpsq �m1psq, pmYm1qpsq � maxpmpsq,m1psqq.

A. P/T-nets

Let P and T be two finite disjoint sets of places and
transitions and let F � pP �T qY pT �P q be a flow relation.
Then N � pP, T, F q is called a P/T-net.

A marking in a P/T-net N � pP, T, F q is a multiset over the
set of places P . By MpNq we denote a set of all markings
in N . A marked P/T-net pN,M0q is a P/T-net together with
its initial marking M0.

Pictorially, P -elements are represented by circles, T -
elements by boxes, and the flow relation F by directed arcs.
Places may carry tokens represented by filled circles. A
current marking m is designated by putting mppq tokens into
each place p P P .

For a transition t P T , an arc px, tq is called an input arc,
and an arc pt, xq — an output arc. For each node x P P Y T ,
we define the pre-set as x � ty | py, xq P F u and the post-set
as x � ty | px, yq P F u.

We say that a transition t in P/T-net N � pP, T, F q is
enabled at a marking M if t � M . An enabled transition
may fire, yielding a new marking M 1 �M � t� t (denoted
M

t
ÝÑ M 1). A marking M is called reachable if there exists

a (possibly empty) sequence of firings M0
t1ÝÑM1

t2ÝÑM2 ÝÑ
� � � ÝÑ M from the initial marking to M . By RMpNq we
denote the set of all reachable markings in N .

A marking M is called safe iff for all places p P P we
have Mppq ¤ 1. A marked P/T-net N is called safe iff every
reachable marking M P RMpNq is safe. A reachability graph
of a P/T-net pN,M0q presents detailed information about the
net behavior. It is a labeled directed graph, where vertices
are reachable markings in pN,M0q, and an arc labeled by a
transition t leads from a vertex v, corresponding to a marking
M , to a vertex v1, corresponding to a marking M 1 iff M t

ÝÑM 1

in N .

B. Classical Petri nets unfoldings

a) Branching processes and unfoldings of P/T-nets:
Unfoldings are used to define non-sequential (true concurrent)
semantics of P/T-nets, and complete prefixes of unfoldings are
used for verification. Here we give necessary basic notions and
definitions, connected with unfoldings. Further details can be
found in [26], [27].

Let N � pP, T, F q be a P/T-net. The following relations
are defined on the set P Y T of nodes in N :

1) the causality relation, denoted as , is the transitive
closure of F , and ¤ is the reflexive closure of ; if
x y, we say that y causally depends on x.

2) the conflict relation, denoted as #: for nodes x, y P P Y
T , x#y :� Dt, t1 P T.t � t1 ^ t X

t1 � H ^ t ¤

x^ t1 ¤ y;
3) the concurrency relation, denoted as co : two nodes are

concurrent if they are not in conflict and neither of them
causally depends on the other.

For a set B of nodes we write co pBq iff all nodes in B are
pairwise concurrent.

An occurrence net is a safe P/T-net ON � pB,E,Gq s.t.
1) ON is acyclic;
2) @p P B : |p| ¤ 1;
3) @x P BYE the set ty | y xu is finite, i.e., each node

in ON has a finite set of predecessors;
4) @x P B Y E : px#xq, i.e., no node is in self-conflict.

In occurrence nets, elements from B are usually called con-
ditions and elements from E are called events.

As occurrence nets are represented using true concurrency
semantics, we should clearly distinguish between them and
interleaving concurrency. True concurrency is contrary to
interleaving concurrency. It cannot be reduced to interleaving.
The main difference between them is that in interleaved
concurrency only one atomic action may happen. In contrast,
in true concurrency there can be more than one atomic action.
For example, in interleaving concurrency only one message
can be sent from a server to a client in each step (moment of
time).

From the observers point of view, true concurrency and
interleaved concurrency behave the same. Also, interleaving
concurrency is easier to handle in proofs, it is more rea-
sonable in some problems to use simpler interleaving based
concurrency (e.g. CCS and π - calculi). And it is a good
true concurrency decomposition. However, when we deal with

165 of 251

timed computation, the difference between them becomes
observable.

A configuration C in an occurrence net ON � pB,E,Gq
is a non-conflicting subset of nodes, which is downwards-
closed under , i.e., @x, y P C : px#yq, and px yq ^ y P
C implies x P C. For each x P B Y E we define a local
configuration of x to be rxs � ty | y P B Y E, y xu.
The definition of a local configuration can be straightforwardly
generalized to any non-conflicting set of nodes X � B Y E,
namely rXs � ty | y P B Y E, x P X, y xu.

We define the set of branching processes of a given marked
P/T-net N � pP, T, F,M0q using the so-called canonical
representation.

The set C of canonical names for N is defined recursively
to be the smallest set s.t. if x P P YT and A is a finite subset
of C, then pA, xq P C.

A C-Petri net is an occurrence net pB,E,Gq such that:
 B Y E � C;
 @pA, xq P B Y E,

pA, xq � A.
The initial marking of a C-Petri net is a subset of nodes
tpH, xq | pH, xq P Bu. For each C-Petri net CN , the
morphism h maps the nodes of CN to the nodes of N :
hppA, xqq � x. If hpyq � z, we say that y is labeled by
z.

Let S be a (finite or infinite) set of C-Petri nets. The union
of S is defined component-wise, i.e.,�

S � p
�

pP,T,F,MqPS P,
�

pP,T,F,MqPS T,
�

pP,T,F,MqPS F,�
pP,T,F,MqPS Mq.

The set of branching processes of a marked P/T-net N �
pP, T, F,M0q is defined as the smallest set satisfying the
following conditions:

1) The occurrence net pI,H,Hq, where I � tpH, pq | p P
M0u (consisting of conditions I and having no events),
is a branching process.

2) Let B1 be a branching process and M be a reachable
marking of B1, and M 1 � M , such that hpM 1q � t
for some t in T . Let B2 be a net obtained by adding an
event pM 1, tq and conditions tptpM 1, tqu, pq | p P tu to
B1. Then B2 is a branching process.

3) Let BB be a (finite, or infinite) set of branching pro-
cesses. The union

�
BB is a branching process.

An example of a P/T-net and its branching process is shown
in Figs. 1 and 2. The P/T-net PN1 has the initial marking tp1u
and is shown in Fig. 1. One of its possible branching processes
is shown in Fig. 2, in which the labeling function h is indicated
by labels on nodes.

A branching process B1 � ppP1, E1, F1q, h1q is called a
prefix of a branching process B2 � ppP2, E2, F2q, h2q (denoted
B1 � B2) iff P1 � P2 and E1 � E2.

The maximal branching process of a net N w.r.t the prefix
relation � is called the unfolding of N and is denoted by
UpNq.

The fundamental property of P/T-nets unfoldings [27] states
that the behavior of the unfolding is equivalent to the behavior
of the original net. Formally it can be formulated as follows.

p1

p2

p3

p4

p5

p6t1

t2

t3

t4

t5

t6

Figure 1. Petri net PN1

p1

p2

p3

p4

p5

p6

p6

p1

p1t1

t2

t3

t4

t5

t6

t6

Figure 2. Branching process of PN1

b) Fundamental property of P/T-nets unfoldings: Let M
be a reachable marking in a P/T- net N , and let MU be a
reachable marking in UpNq s.t. hpMU q �M . Then

1) if there is a step MU
tUÝÑM 1

U of UpNq, then there is a
step M t

ÝÑ M 1 of N , such that hptU q � t ^ hpM 1
U q �

M 1;
2) if there is a step M

t
ÝÑ M 1 of N , then there is a step

MU
tUÝÑM 1

U in UpNq, such that hptU q � t^hpM 1
U q �

M 1.
In other words, the fundamental property of unfoldings

states that the reachability graph of the unfolding is isomorphic
to the reachability graph of the P/T-net. This property is crucial
for the use of unfoldings in semantic study and verification.

Unfoldings were defined and studied for different classes
of Petri nets, namely for high-level Petri nets [22], contextual
nets [28], time Petri nets [29], Hypernets [30] (to name a
few). All these constructions has similar properties, which
act as a “sanity check”. Further in the paper we define an
unfolding operation for nested Petri nets, which posses a
similar fundamental property.

C. Nested Petri nets

In this paper we deal with nested Petri nets (NP-nets)
— in particular, a proper subclass of NP-nets called strictly
conservative NP-nets. The basic definition of nested Petri nets
can be found in [1], [7]. Here we give a reduced definition,
sufficient for defining conservative NP-nets.

In nested Petri nets (NP-nets), tokens may be Petri nets
themselves. An NP-net consists of a system net and element
nets. We call these nets the NP-net components. Marked
element nets are net tokens. Net tokens, as well as usual
black dot tokens, may reside in places of the system net.

166 of 251

Some transitions in NP-net components may be labeled with
synchronization labels. Unlabeled transitions in NP-net com-
ponents may fire autonomously, according to the usual rules
for Petri nets. Labeled transitions in the system net should
synchronize with transitions (labeled by the same label) in net
tokens involved in this transition firing.

In strictly conservative NP-nets, net tokens cannot emerge
or disappear. They can “move” from one place in a system net
to another and “change” their marking, i.e., inner state. In the
basic NP-net formalism new net tokens may be created, copied
and removed as usual Petri net tokens. It should be noted
that although this restriction is rather strong, many interesting
multi-agent systems can be modeled with conservative NP-
nets. Here we consider safe and typed NP-nets, i.e., each place
in a system net can contain no more than one token: either a
black dot token, or a net token of a specific type.

Let Type be a set of types, Var — a set of typed (over Type)
variables, and Lab — a set of labels. A (typed) nested Petri net
(NP-net) NP is a tuple pSN, pEN1, . . . ,ENkq, υ, λ,W q, where

 SN � pPSN, TSN, FSNq is a P/T net called a system net;
 for i � 1, k, ENi � pPENi

, TENi
, FENi

q is a P/T net called
an element net, where all sets of places and transitions
in the system and element nets are pairwise disjoint; we
suppose, each element net is assigned a type from Type;

 υ : PSN Ñ TypeY tu is a place-typing function;
 λ : TNP Ñ Lab is a partial transition labeling function,

where TNP � TSN Y TEN1
Y � � � Y TENk

; we write that
λptq � K when λ is undefined at t.

 W : FSN Ñ VarY tu is an arc labeling function s.t. for
an arc r adjacent to a place p the type of W prq coincides
with the type of p.

A binding of t is a function b assigning a value bpvq (of the
corresponding type) from A to each variable v occurring in
W ptq. A marked element net is called a net token. In what
follows for a given NP-net by Anet � tpEN,mq | Di �
1, . . . , k : EN � ENi,m P MpENiqu we denote the set of
all (possible) net tokens, and by A � Anet Y tu the set of
all net tokens extended with a black dot token.

A system-autonomous step is the firing of an unlabeled
transition t P TSN in the system net according to the firing
rule for high-level Petri nets (e.g., colored Petri nets [31]), as
described above.

A synchronization step. Let t be a transition labeled λ in
the system net SN, let t be enabled in a marking M w.r.t. a
binding b and let α1, . . . , αn P Anet be net tokens involved
in this firing of t. Then t can fire provided that in each αi

(1 ¤ i ¤ n) a transition labeled by the same synchronization
label λ is also enabled. The synchronization step goes then in
two stages: first, firing of transitions in all net tokens involved
in the firing of t and then, firing of t in the system net w.r.t.
binding b. An NP-net NP is called safe iff in every reachable
marking in NP there are not more than one token in each
place in the system net, and not more that one token in each
net token place. Hereinafter we consider only safe NP-nets.

D. Conservative NP-nets

Now we give a definition of (strictly) conservative NP-
nets, as well as some related definitions. We then define an
unfolding operation for a simple class of strictly conservative
nets.

A safe NP-net N � pSN, pEN1, . . . ,ENkq, υ, λ,W q is called
strictly conservative iff

1) For each t P TSN and for each p P t, D!p1 P
t .W pp, tq �W pt, p1q or W pp, tq �

2) For each t P TSN and for each p P t, D!p1 P
t .W pp1, tq �W pt, pq or W pp, tq �

The definition of strict conservativeness ensures that no net
token emerges or disappears after a transition firing in the
system net.

Note that in [32] NP-nets are called conservative, iff tokens
cannot disappear after a transition firing, but can be copied;
hence, the number of net tokens in such conservative NP-nets
can be unlimited. Here we consider a more restrictive subclass
of NP-nets with a stable set of net tokens (tokens cannot be
copied). Hereinafter we consider only strictly conservative NP-
nets, and call them just conservative nets for short.

III. TRANSLATION OF SAFE CONSERVATIVE NP-NETS
INTO P/T-NETS

As reachability graph of the unfolding is isomorphic to the
reachability graph of the P/T-net, unfoldings can be used in
verification. Since safe conservative nested Petri nets have
finite number of states, it will be apparent to assume, that
they can be translated into classical Petri nets and then can be
unfolded according to the classical unfolding rules for further
verification.

To make a correct translation we have to set a number of
requirements for a translation. The main goal for building a
model is the possibility to make a simulation. Simulation im-
plies behavioral equivalence: a possibility to repeat all possible
moves of one model on another model. Behavioral equivalence
is guaranteed by establishing strong bisimulation equivalence
between states of two models. The second requirement is
about constructing a reachability graph. It means that we need
exact correspondence between nodes (states) of our model.
If these two requirements are met, we can build a translation
algorithm which allows us to use target model having the same
behavioral properties like original for verification and analysis.

Now we present an algorithm for translating a conservative
safe nested Petri net into a safe P/T net.

The algorithm will be illustrated by an example of a NP-net
NP2, shown in Fig. 3 (system net) and 4 (element nets). This
net will be translated into a safe P/T net PN.

167 of 251

p1

p2

p3

αt1

x

x y y

t2

z z

Figure 3. NP-net NP2

Element net in p1

Element net in p2

q1

q2

α

k1

k2

k3

q1

q2

α

k1

k2

k3

Figure 4. NP-net NP2

The translation algorithm: Let NP � pSN, pE1, . . . , Ekq, υ,
λ,W q be an NP-net with a set NTok of identified net tokens
in the initial marking. By I we denote the set of all identifiers
used in NTok, and by IE � I the subset of all identifiers for
net tokens of type E. The net NP will be translated into a P/T
net PN � pPPN, TPN,FPNq with an initial marking m0.

1) First, we define the set PPN of places of the target net
PN. For each type E of some place in the system net SN
we create a set SE of places for PPN. The set SE will
contain a copy of each place of type E in the system
net for each net token of type E (labeled by net token
identifiers) and a copy of each place in PE for each net
token of type E, i.e. SE � tpp, idq|p P PSN, υppq �
E, id P IEu Y tpq, idq|q P PE , id P IEu. For a place
p in SN with black token type we create just one copy
of p without any identifier. Then the set PPN of places
for the target net PN is created as the union of all these
sets. The first step is depicted in a Fig. 5.

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

Figure 5. Creation of places for PN

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

t22

t21

Figure 6. System-autonomous step

2) To define the initial marking for PN we define an
encoding of markings on places from PNP in a NP-net
by markings on constructed places from PPN. If a net
token η � pid, E,mq resides in a place p in a marking
M of the system net, then in the target net there are
black tokens in the place pp, idq, and all places pq, idq
for all q s.t. mpqq � 1. If a place of black token type in
SN has a black token, then the only corresponding place

168 of 251

in PN is also marked by a black token. It is easy to see
that this encoding defines a one-to-one correspondence
between markings in a safe conservative NP-net and safe
markings in PN.
In our example the first element net resides in a place
p1, second - in p2. Thus, correspondingly, we define
marking in a places pp1, 1q and pp2, 2q. The same way
marking for places pq1, 1q and pq1, 2q is defined.

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

t22

t21

Figure 7. System-autonomous step

3) For each autonomous transition t in a system net SN we
build a set Tt of transitions as follows. Each input arc
variable of t may be, generally speaking, be binded to
any of identified net token of the corresponding type. So,
for each such binding we construct a separate transition
for PN with appropriate input and output arcs.
Thus for the transition t2 we construct two transitions:
t21 and t22 . It is shown in Fig. 7.

4) For each autonomous transition in a net token from NTok
identifies=d with id we construct a similar transition
on places labeled with id. Thus in our example net we
obtain four transitions: k21 , k22 , k31 and k32 . Element-
autonomous step is illustrated in Fig. 8.

5) A firing of a synchronization transition supposes simul-
taneous firing of a transition, which belongs to a system
net, and firing of some transition, which has the same
label in each involved net token. So synchronization step
is a combination of Step 3 and Step 4. Thus as in our
example there are two element nets, we add transitions
for each net, marked with α1 and α2. Suchwise we can
model a synchronization step for every possible initial
marking in a system net, which is shown in Fig. 9.

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

k31

k21

k22

k32

Figure 8. Element-autonomous step

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

α1 α2

Figure 9. Synchronization step

169 of 251

pp1, 1q

pp2, 1q

pp3, 1q

pq1, 1q

pq2, 1q

pp1, 2q

pp2, 2q

pp3, 2q

pq1, 2q

pq2, 2q

α1 α2

t22

t21

k31

k21

k32

k22

Figure 10. Translated net NP2

Theorem. Let NP be a NP-net. Let also PN be a P/T net,
obtained from NP by the translation, described above. Then
reachability graphs of NP and PN are isomorphic. Step 2 of
the algorithm defines a one-to-one correspondence between
reachable markings of nets NP and PN. It is easy to see that
according to translation definition corresponding firing steps
in both nets do not violate this correspondence.

IV. UNFOLDINGS

A. Branching Processes of a Conservative NP-net

A possible branching process of NP2 is shown in Fig. 11.
In Fig. 11, a transition is labeled with t, if it is of the form
pA, tq, and a place is labeled with pp,Nq if it is of the form
pA, p,Nq.

pq2, N2q

pq1, N2q

tk3u

pp2, N2q

pp1, N1q

pq1, N1q

pq2, N2q

pp3, N2q

pp2, N1q

pq2, N1q

pp3, N2q

tt2u

. . .

tt2u

α

pq2, N2qk2

pq2, N1q

k2

pq1, N2q

pq1, N2q

pq1, N1q

pq1, N1q

pq2, N2q

pq2, N2q

pq2, N1q

pq2, N1q

. . .

. . .

. . .

. . .

tk3u tk2u tk3u

tk3u tk2u tk3u

tk3u tk2u tk3u

tk2u tk3utk3u

Figure 11. Branching process of NP2

A method for direct unfolding of nested Petri nets was
proposed in [4]. It was shown that main properties of Petri net
unfolding are valid for conservative safe Petri nets. Unfoldings
for NP-net are defined using branching processes, similarly to
the case of Petri nets. It allows us to avoid construction of
the intermediate net. It is interesting to compare complexity
of these two methods, the method proposed in [4] and the
method based on nested Petri nets into Petri nets translation.

pq2, 2q

pq1, 2q

tk32u

pp2, 2q

pp1, 1q

pq1, 1q

pq2, 2q

pp3, N2q

pp2, N1q

pq2, 1q

pp3, 2q

tt2u

. . .

tt2u

α

pq2, 2qk2

pq2, 1q

k22

pq1, 2q

pq1, 2q

pq1, 1q

pq1, 1q

pq2, 2q

pq2, 2q

pq2, 1q

pq2, 1q

. . .

. . .

. . .

. . .

tk32u tk22u tk32u

tk31u tk21u tk31u

tk31u tk21u tk31u

tk22u tk32utk32u

Figure 12. Branching process of translated net NP2

B. Comparing two ways of nested Petri net unfolding

We have shown that each conservative safe NP-net can
be converted into a behaviorally equivalent classical Petri
net, namely their reachability graphs are isomorphic. So, to
construct unfoldings for NP-net we can either translate it
into a P/T net and then apply P/T net unfolding, or directly
apply to NP-nets unfoldings, as it is described in the previous
subsection.

The fundamental property of unfoldings states that the
reachability graph of the unfolding is isomorphic to the
rechability graph of the initial net. Since the fundamental
property holds both for P/T net unfoldings and for NP-net
unfoldings, we can immediately conclude that both approaches
give the same (up to isomorphism) result. We show it in
Fig. 11, Fig. 12.

The difference is in the complexity of these two solutions.
It is easy to see, that when there are several net tokens of
the same type in the initial marking, the translation leads to
a significant net growth. Thus e.g. for a system net transition
with n input places of the same type and k tokens of this
type in the initial marking we are to construct kn copies of
this transition in the target P/T net. And it is rather clear, that
we cannot avoid this, since we are to distinguish markings of
net tokens residing in different places, and hence to provide
different P/T net transitions for different modes of system net
transitions firings.

170 of 251

To check the advantage of the direct unfolding method w.r.t.
time complexity for concrete examples we’ve developed a
software application which allows

1) translation of a conservative safe nested Petri net into a
P/T net and then building an unfolding for it;

2) building an unfolding directly for a nested Petri net.
We expected that a large number of net tokens cause

significant net growth during translation. To get representative
results, we conducted experiments on nets having similar
structure, but different number of element nets with different
types.

Even experiments with rather small models confirm our
assumptions. Thus for our example net NP2 we’ve got 0.38
ms. for the direct unfolding, and 0.54 ms. for unfolding via
the translation into a P/T net. So, even in the case of two net
tokens we get a noticeable difference in time.

If we are dealing with a system, which consists of a
large number of net tokens and incoming arcs, after applying
translation of a nested Petri net into a P/T net the net graph
will increase strongly. Since we do not know in advance, which
transitions will be used in the unfolding, we should create an
intermediate graph with a lot of transitions unnecessary for
unfolding.

V. CONCLUSION

In this paper we proposed the unfolding method, which is
based on equivalent translation of NP-nets into safe P/T nets
and then applying standard unfolding procedure described in
the literature. We also compared it to existing direct unfolding
method, proposed and justified in [4].

For that we’ve developed and justified an algorithm for
translation of a safe conservative NP-net into an equivalent
P/T net. Analysis of the algorithm complexity allows us to
conclude that the direct unfolding has a distinct advantage
in time complexity. To check this advantage with practical
examples we’ve implemented the algorithms for translation
and unfolding. Experiments on small nets have demonstrated
the anticipated benefits of direct unfolding.

For further work, we plan to enlarge the complexity of nets
and number of experiments.

ACKNOWLEDGEMENT

This work is supported by the Basic Research Program at
the National Research University Higher School of Economics
and Russian Foundation for Basic Research, project No. 16-
01-00546.

REFERENCES

[1] Lomazova, I.A.: Nested Petri nets—a formalism for specification and
verification of multi-agent distributed systems. Fundamenta Informaticae
43(1) (2000) 195–214

[2] McMillan, K.L.: Using unfoldings to avoid the state explosion problem
in the verification of asynchronous circuits. In: Computer Aided
Verification, Springer (1992) 164–177

[3] Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and
domains, part i. Theoretical Computer Science 13(1) (1981) 85–108

[4] Frumin, D., Lomazova, I.A.: Branching processes of conservative nested
Petri nets. In: VPT@ CAV. (2014) 19–35

[5] Lomazova, I.A., van Hee, K.M., Oanea, O., Serebrenik, A., Sidorova,
N., Voorhoeve, M.: Nested nets for adaptive systems. Application and
Theory of Petri Nets and Other Models of Concurrency, LNCS (2006)
241–260

[6] Lomazova, I.A.: Modeling dynamic objects in distributed systems with
nested petri nets. Fundamenta Informaticae 51(1-2) (2002) 121–133

[7] Lomazova, I.A.: Nested petri nets for adaptive process modeling. In:
Pillars of computer science. Springer (2008) 460–474

[8] López-Mellado, E., Villanueva-Paredes, N., Almeyda-Canepa, H.: Mod-
elling of batch production systems using Petri nets with dynamic tokens.
Mathematics and Computers in Simulation 67(6) (2005) 541–558

[9] Kahloul, L., Djouani, K., Chaoui, A.: Formal study of reconfigurable
manufacturing systems: A high level Petri nets based approach. In:
Industrial Applications of Holonic and Multi-Agent Systems. Springer
(2013) 106–117

[10] Zhang, L., Rodrigues, B.: Nested coloured timed Petri nets for
production configuration of product families. International journal of
production research 48(6) (2010) 1805–1833

[11] Venero, M.L.F., da Silva, F.S.C.: Modeling and simulating interaction
protocols using nested Petri nets. In: Software Engineering and Formal
Methods. Springer (2013) 135–150

[12] Chang, L., He, X., Lian, J., Shatz, S.: Applying a nested Petri net
modeling paradigm to coordination of sensor networks with mobile
agents. In: Proc. of Workshop on Petri Nets and Distributed Systems,
Xian, China. (2008) 132–145

[13] Cristini, F., Tessier, C.: Nets-within-nets to model innovative space
system architectures. In: Application and Theory of Petri Nets. Springer
(2012) 348–367

[14] Mascheroni, M., Farina, F.: Nets-within-nets paradigm and grid com-
puting. In: Transactions on Petri Nets and Other Models of Concurrency
V. Springer (2012) 201–220

[15] Dworzański, L.W., Lomazova, I.A.: On compositionality of boundedness
and liveness for nested Petri nets. Fundamenta Informaticae 120(3-4)
(2012) 275–293

[16] Dworzański, L., Lomazova, I.A.: Cpn tools-assisted simulation and
verification of nested petri nets. Automatic Control and Computer
Sciences 47(7) (2013) 393–402

[17] Venero, M.L.F.: Verifying cross-organizational workflows over multi-
agent based environments. In: Enterprise and Organizational Modeling
and Simulation. Springer (2014) 38–58

[18] Winskel, G.: Event structures. Springer (1986)
[19] Bonet, B., Haslum, P., Hickmott, S., Thiébaux, S.: Directed unfolding

of petri nets. In: Transactions on Petri Nets and Other Models of
Concurrency I. Springer (2008) 172–198

[20] McMillan, K.L.: A technique of state space search based on unfolding.
Form. Methods Syst. Des. 6(1) (1995) 45–65

[21] Heljanko, K.: Using logic programs with stable model semantics to solve
deadlock and reachability problems for 1-safe petri nets. Fundamenta
Informaticae 37(3) (1999) 247–268

[22] Khomenko, V., Koutny, M.: Branching processes of high-level Petri
nets. In Garavel, H., Hatcliff, J., eds.: Tools and Algorithms for the
Construction and Analysis of Systems. Volume 2619 of Lecture Notes
in Computer Science. Springer (2003) 458–472

[23] Langerak, R., Brinksma, E.: A complete finite prefix for process algebra.
In: Computer Aided Verification, Springer (1999) 184–195

[24] Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net
unfoldings. Acta Informatica 40(2) (2003) 95–118

[25] Khomenko, V.: Model Checking Based on Prefixes of Petri Net
Unfoldings. Ph.D. Thesis, School of Computing Science, Newcastle
University (2003)

[26] Esparza, J., Heljanko, K.: Unfoldings: a partial-order approach to model
checking. Springer (2008)

[27] Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6)
(1991) 575–591

[28] Baldan, P., Corradini, A., Knig, B., Schwoon, S.: Mcmillans complete
prefix for contextual nets. In Jensen, K., Aalst, W.M., Billington, J.,
eds.: Transactions on Petri Nets and Other Models of Concurrency I.
Volume 5100 of Lecture Notes in Computer Science. Springer (2008)
199–220

[29] Fleischhack, H., Stehno, C.: Computing a finite prefix of a time Petri
net. In Esparza, J., Lakos, C., eds.: Application and Theory of Petri Nets
2002. Volume 2360 of Lecture Notes in Computer Science. Springer
(2002) 163–181

171 of 251

[30] Mascheroni, M.: Hypernets: a Class of Hierarchical Petri Nets. Ph.D.
Thesis, Facolt di Scienze Naturali Fisiche e Naturali, Dipartimento di
Informatica Sistemistica e Comunicazione, Università Degli Studi Di
Milano Bicocca (2010)

[31] Jensen, K., Kristensen, L.M.: Coloured Petri nets: modelling and
validation of concurrent systems. Springer (2009)

[32] Dworzański, L.W., Lomazova, I.A.: On compositionality of boundedness
and liveness for nested Petri nets. Fundamenta Informaticae 120(3)
(2012) 275–293

172 of 251

Automatic Code Generation from Nested Petri nets
to Event-based Systems on the Telegram Platform

Denis Samokhvalov
National Research University Higher School of Economics

disamokhvalov@edu.hse.ru

Leonid Dworzanski
National Research University Higher School of Economics

leo@mathtech.ru

Abstract—Nested Petri net formalisms is an extension of
coloured Petri net formalism that uses Petri Nets as tokens.
This formalism allows to create comprehensive models of multi-
agent systems, simulate, verify and analyse them in a formal and
rigorous way. Multi-agent systems are found in many different
fields — from safety critical systems to everyday networks of
personal computational devices. While several methods and tools
were developed for modelling and analysis of NP-nets models,
the automatic code-generation from NP-nets is still under active
development.

In this paper, we demonstrate how Nested Petri net formalism
could be applied to model operations coordination systems
and automatically generate executable code for the Telegram
platform. We augment the NP-nets models with annotations on
the Action Language, which enables us to link transition firings
to Telegram Bot API calls. The suggested approach is illustrated
by the example of a search and rescue coordination system.

Keywords—nested petri nets, telegram bot api, action language,
event-based systems, code-generation.

I. INTRODUCTION

Messengers have become the integral part of our life in
recent years; and, almost all the people who have Whatsapp,
Viber or Telegram installed on their mobile devices use them
in everyday life. That is all because of hands-on approach
in terms of receiving and sending information. Telegram Bot
API (TBA)[1] appeared not so long time ago has made a
breakthrough in messengers evolution; and, many IT and
business experts see the great potential in appliance of the
tool for both business and computer science domains.

The variety of TBA usage shows the great diversity of
different applied domains starting with service bots, which
are designed in order to meet customers requirements, ending
with Artificial Intelligence bots (e.g. YandexBot), which can
answer different kind of queries and even strike up and sustain
a coherent conversation. The one sphere where TBA could be
applied in — people coordinating in different types of special
operations. These operations turn out to be extremely difficult
to plan and support when it comes to coordination of big
squads; especially, in the state of emergency cases. A thorough
planning of search and rescue or military operations are rather
struggling to deal with, because of the lack of time to create a
detailed schedule of part-taking for each agent and deprecated
methods for sending and receiving notifications from agents
who are involved in those operations. TBA provides a great
opportunity for that purpose because it is extremely easy to
use when the bot logic is designed according to a consecutive
and well-structured scheme. However, it is not easy to create

a coherent TBA logic, because it requires programming skills
and is time-consuming. As the time factor plays a crucial role,
this makes such system much less attractive and unsuitable in
the fast changing context of emergency and rescue operations.

Nested Petri Nets (NP-nets) are a well-known formalism
which provides an approach for modelling multi-agent systems
[2], [3], [4], [5]. NP-nets are generally used to describe the
complex processes with dynamic hierarchical structure. NP-
nets are convenient for specification of that kind of processes
because of the visible and coherent structure [6]. A number
of methods for the analysis and verification of NP-nets were
developed [7], [8], [9]. However the practical application is
impeded by the necessity of manual implementation of the con-
structed model. Even if the model correctness is verified, code
defects can be introduced on the error-prone implementation
phase of software construction process. The reasons for such
defects: different understanding of the model by a software
architect and software developers; the complex behaviour of
multi-agent systems with dynamic structure; the distributed
systems testing and debugging problems. The alternative to
manual coding is automatic codegeneration from the model to
an executable system. Automatic generation provide consider-
able saving of the project resources, reproducible quality of
the generated code, better support for round-trip developing
by regenerating code after model changes. The approach does
not guarantee zero-defect implementation, but, after long term
usage, a codegeneration system becomes reliable and allows
to obtain code with reproducible quality.

The goal of the project is to develop a codegeneration
system which allows to automatically construct multi-agent
systems on the Telegram platform from NP-nets models. The
generated software is designed according to the event-base
paradigm and consists of a complex Telegram Bot and mobile
Telegram applications. The main purpose of the Telegram bot
is to coordinate and communicate with the agents according
to the original NP-net model.

The section II contains basic notation and definitions. In
the section III, a motivating example of Search and Rescue
coordination system modelled with the NP-nets formalism
is given. In the section IV, we provide the architecture and
technical details on the implementation of the automatic code
generation. The section V contains the suggested action lan-
guage description. In the section VI, we discuss the application
of the suggested technology to the motivating example. The
section VII concerns the related work, the previous studies on
NP-nets translations, and further directions.

173 of 251

II. PRELIMINARIES

At first, we provide the classical definition of a Petri Net.

Definition 2.1: A Petri net (P/T-net) is a 4-tuple
(P, T, F,W) where

• P and T are disjoint finite sets of places and transi-
tions, respectively;

• F ⊆ (P × T) ∪ (T × P) is a set of arcs;

• W : F → N \ {0} – an arc multiplicity function,
that is, a function which assigns every arc a positive
integer called an arc multiplicity.

A marking of a Petri net (P, T, F,W) is a multiset over
P , i.e. a mapping M : P → N. By M(N) we denote the set
of all markings of the P/T-net N .

We say that a transition t in P/T-net N = (P, T, F,W)
is active in marking M iff for every p ∈ {p | (p, t) ∈ F}:
M(p) ≥ W (p, t). An active transition may fire, resulting in a
marking M ′, such as for all p ∈ P : M ′(p) = M(p)−W (p, t)
if p ∈ {p | (p, t) ∈ F}, M ′(p) = M(p) −W (p, t) + W (t, p)
if p ∈ {p | (t, p) ∈ F} and M ′(p) = M(p) otherwise.

For simplicity, we consider here only two-level NP-nets,
where net tokens are classical Petri nets.

Definition 2.2: A nested Petri net is a tuple NPN =
(Atom,Expr,Lab, SN, (EN1, . . . , ENk)) where

• Atom = Var ∪ Con – a set of atoms;

• Lab is a set of transition labels;

• (EN1, . . . , ENk), where k ≥ 1 – a finite collection
of P/T-nets, called element nets;

• SN = (PSN , TSN , FSN , υ,W,Λ) is a high-level Petri
net where
◦ PSN and TSN are disjoint finite sets of system

places and system transitions respectively;
◦ FSN ⊆ (PSN × TSN) ∪ (TSN × PSN) is the

set of system arcs;
◦ υ : PSN → {EN1, . . . , ENk}∪{•} is a place

typing function;
◦ W : FSN → Expr is an arc labelling function,

where Expr is the arc expression language;
◦ Λ : TSN → Lab∪{τ} is a transition labelling

function, τ is the special “silent” label.

Let Con be a set of constants interpreted over A =
Anet ∪ {•}; and, Anet = {(EN,m) | ∃i = 1, . . . , k : EN =
ENi,m ∈ M(ENi)} is a set of marked element nets. Let
Var be a set of variables. Then the expressions of Expr are
multisets over Con ∪ Var. The arc labelling function W is
restricted such that: constants or multiple instances of the same
variable are not allowed in input arc expressions of transitions;
constants and variables in the output arc expressions corre-
spond to the types of output places; and, each variable in an
output arc expression of a transition occurs in one of the input
arc expressions of the transition.

A marking M of an NP-net NPN is a function mapping
each p ∈ PSN to a multiset M(p) over A. The set of all
markings of an NP-net NPN is denoted by M(NPN). Let

V ars(e) denote a set of variables in an expression e ∈ Expr.
For each t ∈ TSN we define W (t) = {W (x, y) | (x, y) ∈
FSN ∧ (x = t ∨ y = t)} – all expressions labelling arcs
incident to t. A binding b of a transition t is a function
b : V ars(W (t)) → A, mapping every variable in the t-
incident arc expression to a token. We say that a transition
t is active in a binding b iff ∀p ∈ {p | (p, t) ∈ FSN}:
b(W (p, t)) ⊆ M(p). An active transition t may fire yielding
a new marking M ′(p) = M(p)− b(W (p, t)) + b(W (t, p)) for

each p ∈ PSN (denoted as M
t[b]→ M ′).

A behaviour of an NP-net consists of three kinds of steps. A
system-autonomous step is a firing of a transition, labelled with
τ , in the system net without changing the internal markings
of the involved tokens. An element-autonomous step is a
transition firing in one of the element nets according to the
standard firing rules for P/T-nets. An autonomous step in a net
token changes only this token inner marking. An autonomous
step in a system net can move, copy, generate, or remove
tokens involved in the step, but doesn’t change their inner
markings.

A (vertical) synchronization step is a simultaneous firing
of a transition labelled with some λ ∈ Lab in a system net
with firings of transitions labelled with the same λ in all net
consumed tokens involved in this system net transition firing.
For further details see [5]. Note, however, that here we consider
a typed variant of NP-nets, when a type of an element net is
instantiated to each place.

III. MOTIVATING EXAMPLE

Search and rescue operations is what happens all over the
world; they require the well-trained and skilled employees,
well-structured planning, and knowledgeable human manage-
ment. There were 2447 emergency callouts registered in Russia
throughout 2005–2014 [10], and about 100 times more in USA
[11]. Earthquakes, water floods, and hurricanes hit the earth
rarely than ordinary emergency cases like fires or gas leaks,
but they leave whole regions and even countries devastated,
thousands of people killed or lost without a trace. Therefore,
the crucial goal of rescuers is to treat such cases quickly and
cohesively.

In this example we will explain how a particular search
and rescue operation in an earthquake could be handled with
a multi-agent model based on the nested Petri net formalism.
First, we need to introduce the purposes of the basic compo-
nents which we will use further to design our search and rescue
coordination plan. Our model relies on two basic components:

• System net – the main component of an NP-net which
is a high level Petri net. It will be used to define
the activity coordination of the agents involved in the
operation. The system net will be implemented on the
Telegram platform to receive the notifications from
agents and to process them with the Action Language
(AL) event handlers assigned to the transitions of the
system net;

• Element net – represents the activity of a particular
agent type that is supposed to be performed by the
agent while taking part in the operation. There are two
element nets in our example. The first one corresponds

174 of 251

to the acting plan for medical workers involved in the
operation, while the second one will provide the plan
for the rescues participating in the operation.

The system net in Fig 1 represents the main model of our
operation. Basically, it reflects the dependence of the agent
actions on server responses. In other words, it describes how
an operation coordinator interacts with the rescuers and medics
and reacts on their signals to the server. The model deals
only with those agent requests where coordinators answer is
essential for the further operation progress. The actions happen
when a particular agent reaches a state and the coordinator
response expected are defined with AL code assigned to the
system net transitions. To understand how the model works,
we need to understand how the agents intercommunicate with
the server coordinating this operation.

Fig. 1. The system net example.

In the initial marking of the places “Medical Staff” and
“Rescuers” of the system net , there are all the agents –
rescuers and medical staff respectively. The transitions have
the next functions:

• Transitions T0 and T4 ”Contact” — handle commu-
nication between the rescuers and the coordinator.

• Transition T1 ”Go to the place” — represents the
event when a rescuer had found a victim, and a
medical agent is supposed to go to the place where
the victim is found;

• Transition T2 ”Victim is found” – represents the
event when a rescuer agent has found a victim. It is
connected to the T1, as the medical agent needs to start
acting only when the victim is found by the rescuer;

• Transition T3 ”SOS” – a rescuer has stuck in emer-
gency;

The agents behaviour is determined by two element nets.
The medical staff element net is depicted in Fig. 3 and the
rescuer element net — in Fig. 6. In the real Search and Rescue
operations there are usually more element nets and they are
more detailed.

Medical staff element net represents what kind of actions
should a medical agent perform while taking part in the
operation. At first, the medical agent needs to get the medicine
and learn about the operation. He will not be allowed to
the next stage of the operation before he performs both of
these actions. After doing that, he is supposed to wait until
he receives the notification on the accidence. Then he has to
send his arrival time, and start making his way to the place
where the accidence had happened. The next two steps are to
report the victim condition and to transport the victim to the
infirmary. The medical agent also may contact coordinator at
any time.

Rescuers element net is the model of part-taking for res-
cuers. Before entering the operation, each agent is required to
do the following: get the equipment; obtain the information
about other agents; and, get briefing about the operation. The
equipment consists of three parts; and, the agent must equip
them all. After entering the operation, the agent has to go to
the exploration area. If a victim is found, the agent is supposed
to send a photo, a description, and the accurate coordinates of
the victim location. If something goes wrong, the agent can
just send the location and the coordinator will handle it. Once
the exploration is completed, he can receive the coordinates of
the new area to explore.

IV. ARCHITECTURE

The way this system is designed relies on three basic
components:

• NPNtool (Eclipse plugin) [7] for creating Petri Nets
model and linking AL code to the transitions. The
main purpose of this tool is to model a system net
and element nets which will represent the model of
the bot. The AL code will be linked to the transitions
and then compiled to the executable file according to
the model;

• Java-library consists of AL-compiler and AL-linker.
AL-linker traces the system and element nets, collects
all the code from the transitions, and eventually con-
verts in to a text file that will be compiled by the AL-
compiler. AL-compiler is created with the ANTLR[12]
tool. AL-compiler gets an input text file and translates
it to the executable artifact that actually represents the
Telegram bot;

• Telegram Bot API library that consists of the code for
requesting data via HTTP-requests from the Telegram
Bot API server.

The overall technology chain is as follows. At first, a
developer creates and verifies the NP-net model of a system
via NPNtool. When the model is constructed, the developer
inscribes AL code to the transitions according to the expected
logic of the bot. Then the developer launches AL-linker
which traverses the constructed NP-net collecting the textual
representation of the transitions AL code into a text file. After
that, AL-compiler reads the artifacts generated by AL-linker
and generates a Telegram Bot code. The codegeneration of
distributed systems from NP-nets models has been studied in
[13]. Once a JAR file is compiled from that code, it could be
executed. All the actions of the agents are displayed on the

175 of 251

Fig. 2. The developed system workflow

bot host and could be processed at real-time (saved or directly
answered) by the coordinator who ran the Bot.

Telegram bot consists of TBA library and several Java
classes. Each Java class corresponds to an element net or a
system net and stores a number of methods corresponding to
the transitions with AL-code inscribed to them. These methods
will use TBA to interchange the information. There is also
a class that links all the element and system nets libraries
together and proceeds the logic using event-based paradigm
and asynchronous requests.

It shall be noticed that the compiled Telegram Bot is a
server that communicates with the software clients — the
rescue and medical staff software mobile clients. The bot is
connected to the Telegram server via the webhook technology;
namely, all the requests that agents send to the Telegram server
via Telegram mobile applications are redirected to and served
on the deployed bot server.

The fragment of code represents the method which corre-
sponds to one of the Medical Staff element net transition:

public void taskReportVictimsCondition(String
mes, String chatId) throws
TelegramApiException{

SendMessage message = new SendMessage();
String[] tasks = {"Report about the

victim’s condition"};
ReplyKeyboardMarkup replyKeyboardMarkup

= makeKeyboard(tasks);
message.setReplayMarkup(

replyKeyboardMarkup);
message.setText(mes);
sendTo(message, chatId);

}

V. ACTION LANGUAGE

AL compiler has been developed with ANTLR compiler
which enables to define a grammar in a ANTLR grammar
language and compile it to the Java classes which represent
the lexer and parser of AL. The code generated by ANTLR

is able to build the syntax tree of AL code. To execute
semantical actions while tracing through the nodes of this
tree, the package visitor was created that contains classes for
generating Java code from AL code.

Fig. 3. An agent is confirming the task implementation

Fig. 4. The rescuer agent Telegram mobile client.

A. AL grammar

• <initialization >::= <variable>= <value>— it is
possible to assign variables of the types <file>,
<float>, <string>

• <SystemNet>::= <SP>: <name>— the name of
system net

• <ElementNet>::= <EP>: <name>— the name of
element net

• <file>::= file(<text>) – loads file from file-system

176 of 251

• <sendMessage>::= sendMessage(<file>| <text>|
<variable>) — sends a message from a transition of
an element net

• <sendPhoto>::= sendPhoto(<file>| <variable>) –
send a Photo from a transition of an element net

• <sendLocation>::= sendLocation(longitude :
<variable>| <float>, latitude : <variable>|
<float>— sends Location

• <sendVideo>::= sendVideo(<file>| <variable>) –
sends Video

• <sendAudio>::= sendAudio(<file>| <variable>) –
sends Audio

• <transition element net>:: = <name>= <text>
response: (<sendAudio>| <sendVideo>|
<sendLocation>| <sendPhoto>| <sendMessage>)*
– this is the structure of the code which should be
inscribed on the distinct transition of an element net.

• <connect>::= connect (<name>.<transition>) –
links a transition from an element net to a transition
of a system net.

• <display>::= display() – displays the object received
on a transition of a system net

• <save>::= save(<file>| <text>| <variable>) – saves
the object received on the transition of a system net

• <transition system net>::= <name>= (receive (photo
| video | audio | message | location) : (save | dis-
play)*)*

• <loop>::= forall <variable>in <variable botVari-
able.add(<variable>)

The AL example is actually based on our model which was
provided in the motivating example. It illustrates what kind of
code must be inscribed to the transition of the Medical staff
element net (Fig. 7) and the coordinator system net (Fig. 8).
We will not provide the code for Rescue element net because
it follows the same pattern of coding as for the Medical staff
element net.

VI. APPLICATION OF THE TELEGRAM BOT
CODEGENERATION TECHNOLOGY

In this section, we examine the application of the suggested
technology to the motivating example provided in the sec-
tion III. The main components of the system are modelled with
system net and element nets. Then the codegenerator translates
NP-nets into Telegram bots components of the target Telegram-
based multi-agent system being constructed.

The bot server serves the received requests according to
the NP-net system net behaviour and sends the answers to the
agents. All the actions, except the actions described on the
system net transitions, of the developed Search and Rescue
operation are handled by the Bot automatically. However, it
is possible to interact ad-hoc during the operation, i.e. if an
agent sends any kind of request that was not described by AL,
the coordinator will be notified and will be able to answer
this request with the standard Telegram client interface. All

the phases that were described on the system net transitions
require the direct interaction of the coordinator. The agent will
not be allowed to proceed to the next stage of operation, unless
he receives the answer from the coordinator.

As soon as we launch the compiled bot, all the rescuers
and medicals that were loaded to the system will receive
notifications from the Telegram bot. The concurrent transitions
(e.g. Helmet, Respirator, Gloves) from the Rescuer element net
allow that all the actions inscribed on them could be executed
by agents in any order. An agent will not be allowed to the
next stage unless he performed all of them. After performing
an action, the agent must confirm that in the mobile client
by pressing the OK button (Fig. 3). The button appears on the
screen after every time the agent has actions-transitions to fire.

When an agents reaches the “Begin the operation” action,
the bot moves to the awaiting state and notifies the coordinator,
that the agent has reached the state and waits till the next
instructions will be given. As soon as the coordinator fill the
form and submit the answer, the agent will be allowed to move
to the next state of his plan. That happens because the Begin
the operation transition is synchronized with the T2 system net
transition.

VII. RELATED WORK AND FURTHER DIRECTIONS

The codegeneration from models to executable software ar-
tifacts has attracted attention when model driven development
became industrial valuable approach [14]. The codegeneration
from Petri net like models to executable software systems
is studied for many formalisms and semi-formal industrial
modelling languages like UML[15], [16] and SDL[17]. In [18],
[19] the code generation tool for Input-Output Place-Transition
Petri Nets was developed. In [20] the application of Sleptsov
nets for modelling and implementation of hardware systems is
studied. In [21] the technology to construct embedded access
control systems from coloured Petri nets models is suggested.
The approach to generate C++ code from SDL models is
developed in [17]. The code generation from the UML state
machines[15] and sequence [16] diagrams to executable code
was studied. These are a lot of studies in the field, so we only
cited a few.

The translation from NP-nets to coloured Petri nets was
developed in [8]. The translation from NP-nets to PROMELA
models to verify the correctness of LTL properties is studied
in [22]. The automatic translation from NP-nets models to
distributed systems components that preserve liveness, con-
ditional liveness, and safety properties was studied in [13]. In
the current work, we adopted the translation scheme developed
in the latter work to obtain executable code from the structure
of NP-nets models.

The further research concerns theoretical as well as practi-
cal aspects of the developed automatic codegeneration system.
From the theoretical point of view, it is interesting to study
preservation of different behavioural properties by the imple-
mented translation and securing different behavioural consis-
tencies of generated systems. As the underlaying technologies
are too large to conduct exhaustive formal verification, the both
dynamic and static behavioural analyses techniques should be
applied to study the correctness of the translation. From the
practical point of view, there are lot of attractive features that

177 of 251

Fig. 5. The Medical Staff element net.

Fig. 6. The Rescuer element net.

are to be implemented. For example, it is not possible to
change the deployed bots at runtime in the tool. However,
such function could be of use for long term operations, when
new actions should be integrated into an operating Telegram
system without recompiling the whole system. The runtime
deployment will be considered in the future research. Also,
the scalability of generated Telegram systems and possible
schemes of agents distribution in the system are the subjects
of the further research.

VIII. CONCLUSION

The developed technology enables developers to create
Telegram Bots according to a visually clear model that could
be verified and tested with help of the developed methods [22],
[8], [9]. It allows to create distributed event-based Telegram
Bots systems that operate on the Telegram platform and the
AL language supports all the features provided by Telegram
Bot API up to the moment.

The automatic code-generation reduces the risk of in-
troducing defects on the implementation phase of software

178 of 251

Fig. 7. The element net augmented with code

development process and improves the quality of the resultant
code. It not only reduces the cost of software production, but
also makes the quality of developed systems more predictable.
The suggested technology is demonstrated with the example
of a Search and Rescue system.

The authors would like to thank the anonymous referees
for valuable and helpful comments.

ACKNOWLEDGMENT

This work is supported by the Basic Research Program at
the National Research University Higher School of Economics
and Russian Foundation for Basic Research, project No. 16-
01-00546.

REFERENCES

[1] (2016) Telegram Bot API online documentation. [Online]. Available:
https://core.telegram.org/bots/api

[2] L. Chang, X. He, J. Li, and S. M. Shatz, “Applying a nested Petri
net modeling paradigm to coordination of sensor networks with mobile
agents,” in Proc. of Workshop on Petri Nets and Distributed Systems.
Xian, China, 2008, pp. 132–145.

[3] I. A. Lomazova, “Nested Petri nets - a formalism for specification and
verification of multi-agent distributed systems,” Fundamenta Informat-
icae, vol. 43, no. 1, pp. 195–214, 2000.

[4] ——, “Nested Petri nets: Multi-level and recursive systems,” Funda-
menta Informaticae, vol. 47, no. 3-4, pp. 283–293, Oct 2001.

[5] ——, “Nested Petri nets for adaptive process modeling,” in Pillars of
Computer Science, ser. Lecture Notes in Computer Science, A. Avron,
N. Dershowitz, and A. Rabinovich, Eds. Springer Berlin Heidelberg,
2008, vol. 4800, pp. 460–474.

[6] K. Hoffmann, H. Ehrig, and T. Mossakowski, “High-level nets with nets
and rules as tokens,” in ICATPN, 2005, pp. 268–288.

[7] D. Frumin and L. Dworzanski, “NPNtool: Modelling and analysis
toolset for nested Petri nets,” in Proceedings of the 7th Spring/Summer
Young Researchers Colloquium on Software Engineering, 2013, pp. 9–
14.

[8] L. Dworzanski and I. Lomazova, “CPN tools-assisted simulation and
verification of nested Petri nets,” Automatic Control and Computer
Sciences, vol. 47, no. 7, pp. 393–402, 2013. [Online]. Available:
http://dx.doi.org/10.3103/S0146411613070201

[9] ——, “On compositionality of boundedness and liveness for nested Petri
nets,” Fundamenta Informaticae, vol. 120, no. 3-4, pp. 275–293, 2012.

[10] (2016) The ministry of the russian federation for civil defence,
emergencies and elimination of consequences of natural disasters.
emergency cases registered in russia. [Online]. Available: http:
//25.mchs.gov.ru/document/2644168

[11] (2013) United states coast guard search and rescue summary statistics.
[Online]. Available: https://www.uscg.mil/hq/cg5/cg534/SARfactsInfo/
SAR%20Sum%20Stats%2064-13.pdf

[12] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic
Bookshelf, 2013.

[13] L. Dworzanski and I. Lomazova, “Automatic construction of distributed
component system from nested Petri nets (in Rus),” 2016, in print,
Programmirovanie, ISSN: 0361-7688.

[14] B. Selic, “The pragmatics of model-driven development,” IEEE soft-
ware, vol. 20, no. 5, p. 19, 2003.

[15] A. Knapp and S. Merz, “Model checking and code generation for uml
state machines and collaborations,” Proc. 5th Wsh. Tools for System
Design and Verification, pp. 59–64, 2002.

[16] D. Kundu, D. Samanta, and R. Mall, “Automatic code generation from
unified modelling language sequence diagrams,” Software, IET, vol. 7,
no. 1, pp. 12–28, 2013.

[17] P. Morozkin, I. Lavrovskaya, V. Olenev, and K. Nedovodeev, “Inte-
gration of sdl models into a systemc project for network simulation,”
in SDL 2013: Model-Driven Dependability Engineering: 16th Interna-
tional SDL Forum, Montreal, Canada, June 26-28, 2013. Proceedings.
Springer Berlin Heidelberg, 2013, pp. 275–290.

[18] L. Gomes, J. P. Barros, A. Costa, and R. Nunes, “The input-output
place-transition Petri net class and associated tools,” in Industrial
Informatics, 2007 5th IEEE International Conference on, vol. 1. IEEE,
2007, pp. 509–514.

[19] R. Campos-Rebelo, F. Pereira, F. Moutinho, and L. Gomes, “From
IOPT Petri nets to C: An automatic code generator tool,” in Industrial
Informatics (INDIN), 2011 9th IEEE International Conference on.
IEEE, 2011, pp. 390–395.

179 of 251

Fig. 8. The system net augumented with code

[20] D. Zaitsev and J. Jürjens, “Programming in the sleptsov net language for
systems control,” Advances in Mechanical Engineering, vol. 8, no. 4,
p. 1687814016640159, 2016.

[21] K. H. Mortensen, “Automatic code generation method based on
coloured petri net models applied on an access control system,” in
Application and Theory of Petri Nets 2000. Springer, 2000, pp. 367–
386.

[22] M. L. F. Venero and F. S. C. da Silva, “Model checking multi-level and
recursive nets,” Software & Systems Modeling, pp. 1–28, 2016.

180 of 251

Mining Hierarchical UML Sequence Diagrams from
Event Logs of SOA systems while Balancing between

Abstracted and Detailed Models
Ksenia V. Davydova

National Research University
Higher School of Economics,

PAIS Lab. at the Faculty of Computer Science,
20 Myasnitskaya st.

Moscow, 101000, Russia
Email: kvdavydova@edu.hse.ru

Sergey A. Shershakov
National Research University
Higher School of Economics,

PAIS Lab. at the Faculty of Computer Science,
20 Myasnitskaya st.

Moscow, 101000, Russia
Email: sshershakov@hse.ru

Abstract—In this paper we consider an approach to reverse
engineering of UML sequence diagrams from execution traces of
SOA information systems represented as event logs. UML sequence
diagrams are suitable for representing interactions in heterogeneous
component systems; in particular, they include increasingly popular
SOA-based information systems. In this paper we consider a new ap-
proach to inferring UML sequence diagrams from execution traces.
They are logged by almost all modern information systems to so-
called event logs. In contrast with conventional reverse engineering
techniques which require source code for their work, our approach
deals with event logs only. The approach consists of several parts of
building UML sequence diagrams according to different perspectives
and having different structures. They include mapping log attributes
to diagram elements with an ability to set a level of abstraction and
build hierarchical diagrams. We evaluate the approach in a software
prototype implemented as a Microsoft Visio Add-In. The Add-In
builds a UML sequence diagram from a given event log according
to a set of customizable settings.

Index Terms—Event log, UML sequence diagram, reverse engi-
neering.

I. INTRODUCTION

Nowadays there are a lot of information systems. They are
developed by people which are error-prone. Systems also can have
a difficult to understand structure. Thus, models are necessary to
understand systems and find errors. When there is no complete
model of a system, reverse engineering techniques can be applied
to extract necessary information from the system and build an
appropriate model. There are a number of tools for this purpose,
they analyze source code of the system and build a model.

There are some types of models which are useful to analyze
in software engineering. For example, state machines are able
to model a large number of software problems. However, they
have a weakness in describing an abstract model of computation.
Another example of a software model is Petri nets which can
describe processes with concurrent execution. Furthermore, there
is a number of models described by a standard of Unified
Modeling Language (UML) for visualizing design of information
systems. UML 2.4.1 [1] has two groups of diagrams, structural
and behavioral ones. In particular, such kind of UML diagrams
as state class diagrams, statecharts and sequence diagrams are
widely applied to reverse engineering domain.

Almost every information system has an ability to write results
of its execution to event logs. We propose approaches to mine
UML sequence diagrams (UML SD) from these logs. Event logs

of information systems with a service-oriented architecture (SOA)
are considered and UML SD are applied to modeling interaction
between SOA information system components.

In contrast to existing reverse engineering tools which use
source code, we work with system execution traces in the form
of event logs. A technique that allows analysis of business
processes based on event logs is called process mining [2]. It uses
specialized algorithms for extracting knowledge from event logs
recorded by an information system. Moreover, process mining
helps to check the conformance of a derived model with its earlier
specification. Using execution traces works even if there is no
access to the source code of an information systems. Also, not all
versions of code are normally stored. Moreover, large information
systems tend to be distributed. Different components of a system
are often implemented using different programming languages.
Such a problem is solved by considering event logs instead of
source code.

A. Motivating example

There is an event log written by a SOA-based banking infor-
mation system (Table I). We are interested in building a model in
the form of a UML sequence diagram reflecting processes in the
system. We have only some of the runs of the process, so one
of the problems is to build an as feasible model as possible. The
log contains a number of execution traces. Each trace consists of
a sequence of events ordered by Timestamp attribute. Columns
represent attributes of the log and rows represent its events.
System executions are maintained by different components of
the system. They are grouped in attributes such as Domain,
Service/Process and Operation. Domains group Services and
Processes, and the latter consist of Operations [3].

Interaction between program system components can be rep-
resented at different abstraction levels. For example, by mapping
some log attributes onto structural elements of UML SDs, such
as lifelines and messages, one can get a UML SD diagram such
as on Figure 1. Specific values of these attributes appear with
head names such as “Domain::Service/Process”. Similarly, values
of Operation and Payload attributes which are mapped onto
messages parameters appear with message arrows. Timestamp
attribute sets an order of calls (time goes from the top to the
bottom of a diagram).181 of 251

Fig. 1. Mapping log attributes onto UML sequence diagram components

Fig. 2. Merge of diagram components based on a regular expression
182 of 251

Fig. 3. Hierarchical UML sequence diagram using nested fragments

Fig. 4. Meta-model of a SOA system

183 of 251

TABLE I. Log fragment L1. Banking SOA-system

CaseID Domain Service/Process Operation Action Payload Timestamp

23 Account Operations GetLastOperations REQ user=a, today=23.07.2015,
client=Alex, manager=Julia 17:32:15 135

23 Account CardInfo GetCardID REQ user=a 17:32:15 250
23 Account CardInfo GetCardID RES res=15674839 17:32:15 297
23 Card Operations GetOperations REQ days=30 17:32:15 378
23 Utils Calendar GetDate REQ days=30 17:32:15 409
23 Utils Calendar GetDate RES res=23.06.2015 17:32:15 478
23 Card Operations GetOperations RES res={BP Billing Transfer, Retail} 17:32:15 513
23 Card OperationData GetPlaceAndDate REQ op=BP Billing Transfer 17:32:15 589

23 Card OperationData GetPlaceAndDate RES res=RUS SBERBANK ONLAIN
PLATEZH, date=20.07.2015 17:32:15 601

23 Card OperationData GetPlaceAndDate REQ op=Retail 17:32:15 638

23 Card OperationData GetPlaceAndDate RES res=RUS MOSCOW OAO
MTS, date=05.07.2015 17:32:15 735

23 Account Operations GetLastOperations RES res=succ 17:32:15 822

25 Account Operations GetLastOperations REQ user=a, today=23.07.2015,
client=Alex, manager=Julia 17:40:18 345

25 Account CardInfo GetCardID REQ user=a 17:40:18 408
25 Account CardInfo GetCardID RES res=error 17:40:18 489
25 Account Operations GetLastOperations RES res=no bounded cards 17:40:18 523

It can also be useful to merge some messages or lifelines in
order to reduce the size of a diagram and avoid “spaghetti-like”
models. A regular expression suits it and the example of their
usage is depicted on Figure 2.

Some interaction sometimes can be useful to picture on one
diagram and other interactions on nested diagrams. Those dia-
grams use an interaction fragment labeled ref. An example of
that hierarchical diagram is on Figure 3.

It would be good to have a tool which can do mapping of
event log attributes on UML sequence diagram elements with
ability to set an abstraction level for seeing different perspectives
of the system execution. An approach approved in VTM4Visio
framework is applied, which allows building these diagrams.

B. Related work

Reverse engineering of UML sequence diagrams is not a new
problem. There are a number of works, such as [4], [5], [6],
[7], applied static approaches (getting models from source code
without execution) for solving this problem. Moreover, there is a
number of CASE tools for reverse engineering of UML sequence
diagrams and other types of UML diagrams. However, most of
them use static program analysis without execution of a program.
Static program analysis usually uses source code or object code
(a result of source code compilation). Some of these tools analyze
source code, some of these tools analyze both source code and
object code. However, event logs are execution traces of source
code. Thus, we do not need access to source code.

The most popular CASE tools are Sparx Systems’ Enter-
prise Architect [8], IBM Rational Software Architect [9], Visual
Paradigm [10], Altova UModel [11], MagicDraw [12], StarUML
[13], ArgoUML [14]. There are both tools for end-to-end design
and simple UML editors. The former include Sparx Systems‘
Enterprise Architect, IBM Rational Software Architect, Visual
Paradigm, Altova UModel and MagicDraw, the latter include
StarUML and ArgoUML. Beside that, the main aim of these tools
is to get models from source code. Table II [15] contains CASE
tools and program languages, for which models can be built. As
we can see, none of these tools is able to infer models from the
most popular languages used for developing SOA information
systems. Moreover, a SOA architecture can be developed with
various programming languages. For example, some modules

TABLE II. Programming languages of reverse engineering tools

Tools Programming languages
PHP C++ Java Ruby Python VB C#

Sparx Systems’
Enterprise Architect + + + - + + +
IBM Rational
Software Architect - + - - - + +
Visual Paradigm + + + + + - +
Altova UModel - - + - - + +
MagicDraw - + + - - - +
StarUML - + + - - - +
ArgoUML - + + - - - +

can be written in C#, others can be developed in Java, they
can interact with LAMP service, so a single CASE tool cannot
produce models for that system. Mining diagrams from event logs
solves this problem.

There are some works, such as [16], [17], [18], [19], where
approaches are applied for building UML sequence diagrams from
program system execution traces (dynamic approaches). One of
related works [16] analyzes one trace using a meta-model of the
trace and a UML SD. The trace includes information not only
about invocation of methods but also about loops and conditions,
which makes easier recognition of fragments such as iteration,
alternatives and option. However, program systems logging does
not usually include this information, so it is necessary to change
source code to apply this approach. In opposite to this approach,
our approach recognizes fragments as conditions based on traces’
difference.

There is a dynamic approach to build a UML sequence diagram
based on multiple execution traces in [18]. The authors apply an
approach to build a Labeled Transition System (LTS) from a trace
and an algorithm to merge some LTSs into one. After that the LTS
is transformed into a UML sequence diagram. In opposite to this
approach, we propose not to use other data structures to represent
traces and merge them. We propose to map traces onto a UML
sequence diagram directly without intermediate models, which is
more efficient.

In [19] the authors pay more attention to analysis of derived
models. They describe an approach briefly, without details. They
mention that diagrams of one trace are merged into one UML
sequence diagram. However, there is no mathematically strict
definition of a trace or a UML sequence diagram and it is not184 of 251

Fig. 5. Service-Oriented Architecture structure

clear how they merge several diagrams.
The rest of the current paper is organized as follows. Section

II gives definitions. Section III introduces our approach to mining
UML sequence diagrams. Section IV discusses results of some
experiments on deriving models with the help of the developed
tool. Section V concludes the paper and gives directions for
further research.

II. PRELIMINARIES

Definition 1. (Event log) Let E be a set of events. An event
is a tuple e = (a1, a2, ..., an), where n is a number of attributes.
σ =< e1, e2, ...ek > is an event trace (i.e. an ordered set of events
which normally belongs to one case). Log = P(E) is an event
log which is a multi-set of traces.

In the paper we consider primarily event logs written by
SOA information systems. Logs have a structure according to
a SOA systems standard. A meta-model of such systems is
depicted on Figure 4. The model complies with a Service Oriented
Architecture standard (Figure 5) proposed by Object Management
Group [20].

We introduce a formal definition of a UML sequence diagram
as follows.

Definition 2. (UML Sequence Diagram) A UML sequence
diagram is a tuple USD = (L,A,M, T, P,Ref, δ), where:
• L is a set of lifelines, they represent objects whose interaction
is shown on the diagram.
• A is a set of activations (emit and take messages) mapped onto
lifelines. A ⊆ (L× T × T)
• T is time, it goes from the top of the diagram to the bottom.
∀t ∈ T, δ(t) = y, where y ∈ Z
• M is a set of messages (call and return) with its parameters
and is ordered by time. M ⊆ ((A∪Ref)×T ×P × (A∪Ref))
m ∈ M : m = (a1, t, p, a2), where a1 ∈ A ∪ Ref, t ∈ T, p ∈
P, a2 ∈ A ∪Ref
a1 = (l1, t11, t12), a2 = (l2, t21, t22) : t11 < t21, t11 <
t12, t21 < t22
• P is a set of parameters of messages.
• Ref is a set of ref fragments which group lifelines and hide
them interaction. The interaction is shown on another diagram.
• δ : USD = (USD1, UHSD|L′ ⊆ L,L1 ⊆ L
A′ ⊆ A,A1 ⊆ A,A1 ∩A′ = ∅

M ′ ⊆M,M1 ⊆M,M1 ∩M ′ = {m = (a1, t, p, a2)|
a1 ∈ A1, a2 ∈ A′}
P ′ ⊆ P, P1 ⊆ P, P1 ∩ P ′ = {p|m = (a1, t, p, a2),
a1 ∈ A1, a2 ∈ A′, p ∈ P1, p ∈ P ′}
Ref ′ ⊆ Ref,Ref1 ⊆ Ref,Ref1 ∩Ref ′ = ∅),
where :
USD = (L,A,M, T, P,Ref) − a detailed diagram.
USD1 = (L1, A1,M1, T, P1, Ref1) −
a diagramwith ref fragment.
UHSD = (L′, A′,M ′, T, P ′, Ref ′) − anested
diagram.

III. APPROACHE TO BALANCE BETWEEN ABSTRACTION AND
DETALISATION

We propose an approach to mining UML sequence diagrams
from an event log with a various degree of detalization. The
approach consists of three steps derived one from another. It is
necessary to map attributes of the log onto elements of a diagram
prior to begining a mining procedure. Some mapping functions
are therefore needed. First, it is necessary to define which
interaction of SOA components (Services, Processes, Domains
etc.) must be depicted on the diagram. Function α (1) maps events
of the log with their attributes onto lifelines of diagrams. It allows
to choose attributes to be represented on the diagram as lifelines.

E = (e1, e2, ..., ek), k − anumber of events

α : U(E)→ L
(1)

A. Mapping log attributes onto UML sequence diagram compo-
nents

The first step allows getting diagrams with different abstraction
levels by choosing log attributes for mapping onto lifelines and
attributes for mapping onto parameters. To map attributes onto
lifelines function α is used. Values of attributes Domain and
Service are mapped onto composite lifeline objects with head
names such as “Domain::Service/Process” on Figure 1. Also,
function γ (2) is introduced for mapping attributes onto message
parameters. Operation and Payload attributes are mapped onto
messages parameters on Figure 1 such as “Operation, Payload”.

γ : U(E)→ P (2)

The diagram depicted on Figure 1 demonstrates interaction of
services. The model represents one of the possible configurations
of abstraction for the event log in table I. For example, another
possible configuration includes Service/Process and Operation
attributes as diagram objects. Choosing such attributes allows to
infer diagrams with different abstraction levels.

B. Merge of diagram components

On Figure 1 we see that the last two invocations of Get-
PlaceAndDate function are almost equal except for operation
parameters. The second step of our approach performs merging
of some parts of a diagram. We propose to merge similar parts
by using regular expressions. A regular expression contains a
common part of a number of merged parts. The approach allows
to reduce the size of a model by merging similar parts. It increases
generalization of the model.

The approach involves a Cartesian product of a log to itself
with filtering. Function β (3) is used to map a filtered Cartesian185 of 251

product of a log to itself on the set {1, 0} so that the element
of the product will be a pair “event” - “event from a set of next
events”. If the pair satisfies a regular expression then it is marked
as 1, otherwise as 0. We introduce η (4) to compare elements
of the product. η considers events as equal to each other if their
corresponding attributes are equal. In this case attributes are equal
if they can be matched as a single regular expression. Functions
α and γ are used in this approach for mapping event attributes
onto UML sequence diagram elements. There is also introduced
function ξ (5) which determines a family of messages which are
satisfied with pair event attributes. A message can be just a value
of attributes or a regular expression applicable to single event
attributes.

β : E × E → {0, 1} (3)

ei = (a1,1, a1,2, ..., a1,n) − an eventwith n attributes

(e1, e2) ∈ E × E
ẽ1 = (a1,1, a1,3, ..., a1,p) − an eventwith p

sample attributes, p < n

ẽ2 = (a2,1, a2,3, ..., a2,p) − an eventwith p

sample attributes, p < n

η : ẽ1 = ẽ2 ⇒
a1,1 = a2,1 & a1,3 = a2,3 & ...& a1,p = a2,p

(4)

∀m ∈M ∃ ẽ ∈ E × E : ξ(ẽ) = m&β(ẽ) = 1,

M − set of messages
(5)

If one looks at an example introduced above on Figure 2, the
diagram is obtained through applying this function and regular
expressions. It is noticeable that two invocations of operation
GetPlaceAndDate are merged in one invocation with regular ex-
pressions in message parameters. Regular expression “.*” means
that any sequence of symbols can be inserted instead of this
expression. It is also possible to merge lifelines by using regular
expressions. It can be useful if class A is invoked by only class
B; so, these classes can be merged into one lifeline.

C. Mining a hierarchical UML sequence diagram using nested
fragments

One of the ways to represent a complex model is creating a
hierarchical model. The UML standard [1] allows us to divide
a complex diagram into more abstract and detailed models
interacting through gates.

In order to define a hierarchy in a UML sequence diagram
we introduce a definition of a selection criterion as follows. The
definition of a hierarchical UML sequence diagram is given in
Definition 2.

Definition 3. (Selection criterion) Let k be a number of hier-
archical levels and RE be a regular expression defined in [21]
with an added symbol “.” as an any symbol designation. Then,
c =< ci|ci ∈ RE >, ci is a selection criterion of events for i-
hierarchical level. c = c1∪ c2∪ ...∪ ck and c1∩ c2∩ ...∩ ck = ∅.
The regular expressions defined in [21] as selection criteria
are boolean expressions because their abstract syntax includes
Boolean operations.

The components of SOA systems described by a meta-model
depicted on Figure 4 have hierarchical relationship with each
other. According to the SOA model there is a hierarchy in L1

event log because processes invoke different subprocesses or
services.

It is also possible to distinguish some technical sublevels
from main level by applying regular expressions. We propose
a previously defined step with regular expressions to group
elements.

Each hierarchical level is able to be encapsulated into another
level on a UML sequence diagram. We propose to use nested
fragments labeled as ref which are defined in [1]. It allows
combining high-level and detailed views of diagrams at the same
time.

For applying the approach a number of hierarchical levels
and selection criteria, which are defined in Definition 3, need
to be specified. Function β defines whether two events can
be grouped into a single sublevel. If events match a selection
criterion then they are moved to a nested diagram. For this case
values of some attributes must be equal or match a single regular
expression. Function δ (Definition 2) maps some part of a UML
sequence diagram considered as nested on a separate UML SD.
The mapping uses interaction use which is shown as a combined
fragment with operator ref [1]. This fragment hides some details
of a high-level diagram moved to a nested diagram while the
referred diagram allows seeing details.

On Figure 3, a hierarchical UML sequence diagram for event
log L1 is depicted there. There is some elements’ interaction on
the high-level diagram and some interaction is abstracted as ref
fragment and depicted on the nested one. A selection criterion
used for building the diagrams is “Operation=GetDate” which
defines a part to be abstracted.

IV. EVALUATION

This section discusses our evaluation of the approach presented
in this paper.

A. VTM4Visio Framework

Microsoft Visio is a professional drawing tool for making
business charts and diagrams. It also supports some of UML
diagrams. Besides, Visio has reverse engineering of databases,
but it does not support UML reverse engineering. One of flexible
features is that it can be expanded by add-ins. It is possible to
use Visio SDK [22] for having access to a Visio object model.
Thus, it is a good solution to implement our tool for visualizing
results (UML sequence diagrams) of our mining algorithm.

VTM4Visio is an extensible framework aimed at process min-
ing purposing. It is implemented as an add-in for Microsoft Visio
2010. Our tool is implemented as a plug-in which is supported
by one of the VTM4Visio components called Plugin Manager.

This framework was chosen because it provides useful instru-
ments for accessing Microsoft Visio object models. It also has a
convenient GUI.

B. Log pre-processing

It is necessary to have an event log in a definite format to apply
our algorithm. A lot of information systems write logs in their
own format. Our algorithm requires the event log must contain
attributes which can be used as a case id, timestamp and activity
attributes. It is necessary to format and validate the event log
before applying the algorithm.186 of 251

Fig. 6. Class diagram of Event log object model library

C. Log library
Our algorithm requires an event log for mining a UML SD

to be in some definite format. That is why it is necessary to
have a library for work with event logs. We made the library and
called it “Event Log Object Model Library” whose UML class
diagram is depicted on Figure 6. The structure of our library
is inspired by XES format [23]. It is not based on it but main
components are taken from XES standard. We introduce special
types such as EvntsOrdering and EventAttrFilterType for CSV and
RDBMS-based event logs [24] because XML-based XES format
is excessive. The library is written in C#. It is extensible, which
allows working with different event log formats.

D. Prototype implementation
Our prototype was written in C# programming language as

a plug-in for VTM4Visio framework. The prototype allows to
configuring parameters for our approaches as CaseID, Timestamp
and Activity, names of lifelines and messages’ parameters, a
regular expression through some GUI forms (Figures 7 and
8). The configuration for reading of event logs from a file is
implemented as shown on Figure 7. The configuration of the
diagram is implemented as shown on Figure 8. This GUI form
allows setting different perspectives and a regular expression for
merging diagram elements and, hence, specifying hierarchy.

The processing result of the event log in Table I is depicted on
Figures 1, 2, 3.

V. CONCLUSION

This paper proposes a method of reverse engineering of UML
sequence diagrams from event logs of SOA information systems.
It contains three approaches to balance high-level diagrams and
low-level ones.

Our method is a dynamic analysis of software because it uses
only event logs. This is an advantage since source code is not
always available. Also, our approaches do not use intermediate
models of an event log representation. The proposed method 1)
maps log attributes onto diagram components, 2) merges diagram
elements based on regular expressions and 3) builds hierarchical
UML diagrams using a ref fragment.

Work with event logs of real-life SOA information systems
shows that it is necessary to mine diagrams not only from single-
threaded event logs but also from multi-threaded ones. Thus, it is

Fig. 7. Event log configuration

Fig. 8. Diagram configuration

a direction of our future work. UML sequence diagrams do not
always show parallel interactions properly. Thus, we are going
to mine hybrid diagrams as UML sequence diagrams with a ref
fragment, which abstracts parallel interactions and refers to UML
activity diagram illustrated parallel processes.

ACKNOWLEDGEMENT

This work is supported by the Basic Research Program at the
National Research University Higher School of Economics and
Russian Foundation for Basic Research, project No. 15-37-21103.

REFERENCES

[1] OMG. OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.4.1, August 2011.

[2] Wil M. P. van der Aalst. Process Mining: Discovery, Con-
formance and Enhancement of Business Processes. Springer
Publishing Company, Incorporated, 1st edition, 2011.

[3] Rubin V.A. Shershakov S.A. System runs analysis with
process mining. In Modeling and Analysis of Information
Systems, pages 818–833, 2015.

[4] Atanas Rountev and Beth Harkness Connell. Object naming
analysis for reverse-engineered sequence diagrams. In Pro-
ceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 254–263, New York, NY,
USA, 2005. ACM.

[5] Atanas Rountev. Static control-flow analysis for reverse
engineering of uml sequence diagrams. In In Proc. 6th
Workshop on Program Analysis for Software Tools and En-
gineering (PASTEâĂŹ05, pages 96–102. ACM Press, 2005.187 of 251

[6] P. Tonella and A. Potrich. Reverse engineering of the
interaction diagrams from c++ code. pages 159–168. IEEE
Computer Society, 2003.

[7] E. Korshunova, Marija Petkovic, M. G. J. van den Brand,
and Mohammad Reza Mousavi. Cpp2xmi: Reverse engi-
neering of uml class, sequence, and activity diagrams from
c++ source code. In WCRE, pages 297–298. IEEE Computer
Society, 2006.

[8] Sparx Systems’ Enterprise Architect. http://www.
sparxsystems.com.au/products/ea/.

[9] IBM Rational Software Architect. https://www.ibm.com/
developerworks/downloads/r/architect/.

[10] Visual Paradigm. https://www.visual-paradigm.com/
features/.

[11] Altova UModel. http://www.altova.com/umodel.html.
[12] MagicDraw. http://www.nomagic.com/products/magicdraw.

html.
[13] StarUML. http://staruml.io.
[14] ArgoUML. http://argouml.tigris.org.
[15] Hafeez Osman and Michel R. V. Chaudron. Correctness and

completeness of CASE tools in reverse engineering source
code into UML model. The GSTF Journal on Computing
(JoC), 2(1), 2012.

[16] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. To-
ward the reverse engineering of uml sequence diagrams
for distributed java software. IEEE Trans. Softw. Eng.,

32(9):642–663, September 2006.
[17] Romain Delamare, Benoit Baudry, and Yves Le Traon.

Reverse-engineering of uml 2.0 sequence diagrams from
execution traces. In Proceedings of the workshop on Object-
Oriented Reengineering at ECOOP 06, Nantes, France, July
2006.

[18] Tewfik Ziadi, Marcos Aurélio Almeida da Silva, Lom-
Messan Hillah, and Mikal Ziane. A fully dynamic approach
to the reverse engineering of uml sequence diagrams. In
Isabelle Perseil, Karin Breitman, and Roy Sterritt, editors,
ICECCS, pages 107–116. IEEE Computer Society, 2011.

[19] Yann gaël Guéhéneuc. Automated reverse-engineering of
uml v2.0 dynamic models. In Proceedings of the 6
th ECOOP Workshop on Object-Oriented Reengineering.
http://smallwiki.unibe.ch/WOOR, 2005.

[20] OMG. The OMG and Service Oriented Architecture, 2006.
[21] Scott Owens, John Reppy, and Aaron Turon. Regular-

expression derivatives re-examined. J. Funct. Program.,
19(2):173–190, March 2009.

[22] Visio 2010: Software Development Kit, 2010. https://www.
microsoft.com/en-us/download/details.aspx?id=12365.

[23] Christian W. Günther and Eric Verbeek. XES Standart
Definition version 2.0, 2014.

[24] Scott Owens, John Reppy, and Aaron Turon. Vtmine
framework as applied to process mining modeling. pages
166–179, 2015.

188 of 251

http://www.sparxsystems.com.au/products/ea/
http://www.sparxsystems.com.au/products/ea/
https://www.ibm.com/developerworks/downloads/r/architect/
https://www.ibm.com/developerworks/downloads/r/architect/
https://www.visual-paradigm.com/features/
https://www.visual-paradigm.com/features/
http://www.altova.com/umodel.html
http://www.nomagic.com/products/magicdraw.html
http://www.nomagic.com/products/magicdraw.html
http://staruml.io
http://argouml.tigris.org
https://www.microsoft.com/en-us/download/details.aspx?id=12365
https://www.microsoft.com/en-us/download/details.aspx?id=12365

Applying MapReduce to Conformance Checking
Ivan Shugurov, Alexey Mitsyuk

National Research University Higher School of Economics,
Laboratory of Process-Aware Information Systems,

20 Myasnitskaya St., Moscow 101000, Russia
Email: shugurov94@gmail.com, amitsyuk@hse.ru

Abstract—Process mining is a relatively new research field,
offering methods of business processes analysis, which are based
on their execution history (event logs). Conformance checking
is one on the main sub-fields of process mining. Conformance
checking algorithms are aimed to assess how well a process model
and an event log correspond to each other. The paper deals with
the problem of high computational complexity of the alignment-
based conformance checking algorithm. This particular issue is
important for checking the conformance between models and
real-life event logs, which is quite problematic using existing
approaches.

MapReduce is a popular model of parallel computing which
allows simple implementation of efficient and scalable dis-
tributed calculations. In this paper, a MapReduce version of the
alignment-based conformance checking algorithm is described
and evaluated. We show that conformance checking can be
distributed using MapReduce and that computation time scales
linearly with the growth of size of event logs.

Index Terms—Process mining, Conformance checking, MapRe-
duce, Hadoop, Big data.

I. INTRODUCTION

Ever-increasing size and complexity of modern information
systems force both researchers and practitioners to find novel
approaches of formal specification, modeling, and verifica-
tion. This process is absolutely essential for ensuring their
robustness and for possible optimization and improvements
of existing business processes. Process mining is a research
field which offers such approaches [1]. Process mining is a
discipline which combines techniques from data analysis, data
mining and conventional process modeling. Typically, three
main sub-fields of process mining are distinguished in the
literature: (1) process discovery; (2) conformance checking
and (3) enhancement [1].

The aim of process discovery is to build a process model
based solely on the execution history of a particular process.
Event logs are the most common and natural way of persisting
and representing execution history. By an event log we under-
stand a set of traces where each trace corresponds exactly to
one process execution. A typical process discovery algorithm
takes an even log as an input parameter and constructs a pro-
cess model which adequately describes the behavior observed
in the event log.

The task of conformance checking is to measure how
well a given process model and an event log fit each other.
Furthermore, usually showing only the coefficient of confor-
mance is insufficient for real-life application since analysts
often need to see where and how often deviations happen in

order to draw any conclusions. Therefore, it is often the case
when conformance checking algorithms include computation
of additional metrics as well as visualization of deviations.

Process enhancement deals with improvements of processes
as well as corresponding process models.

One of the challenges of process mining, when applied in
real life, is the size of data to be processed and analyzed [2],
[3]. Since process discovery has drawn significant attention of
researchers, there are a number of solutions which allow fast
process discovery from large event logs [4]. These solutions
vary from using distributed systems and parallel computing [5]
to applying more efficient algorithms, which require less data
scans and manipulations [6], [7]. In contrast, conformance
checking remains problematic to be made fast due to its theo-
retical and algorithmic difficulties. At the same time, efficient,
easy-to-use and robust conformance checking is the key to
better process improvement since enhancement approaches
often rely heavily on measuring conformance (for example,
see model repair approaches [8], [9]).

This paper is focused on implementation details of dis-
tributed conformance checking rather than on its theoretical
aspects. It describes a possible way of speeding up confor-
mance checking. It implies improving one of the existing
conformance checking algorithms so that it can be executed
in a distributed manner by means of using MapReduce [10].
One of the very first papers discussing distributed conformance
checking [11] was dedicated solely to theoretical foundations
of process models and event logs decomposition. The author
takes a look at the algorithmic side of distributed confor-
mance checking and totally skips problems of its software
implementation. In this paper we consider practical aspects
of distributed conformance checking. Furthermore, we prove
viability of the proposed approach by demonstrating that it
really allows measuring conformance of bigger event logs
better than currently existing approaches.

This paper is structured as follows. Section II introduces
foundational concepts we use in the paper. In section III, the
reader can find the main contribution. Section IV proposes
several improvements of the approach proposed in section III.
An implementation of the presented approach is described in
section V. Related work is reviewed in section VI. Finally,
section VII concludes the paper.

189 of 251

Fig. 1. Petri Net and Event Log

II. PRELIMINARIES

In this paper we consider process models in the Petri net
(simple P/T-nets) notation. A Petri net is a bipartite graph
which consists of nodes of two types. In process mining,
transitions, denoted by rectangles, are considered as process
activities, whereas places, denoted by circles, designate the
constraints imposed on the control-flow. String labels may be
associated with transitions in order to show the correspon-
dence between activities and transitions. Transitions without
labels are called silent. It implies that silent transitions model
behavior and constrains of an activity in a process, executions
of which are not recorded into event logs. Each place denotes
a causal dependence between two or more transitions. Places
may contain so-called tokens. A transition may fire if there
are tokens in all places connected to it via incoming arcs.
When fired, it consumes one token from each input place
and produces one token to each output place. Marking is a
distribution of tokens over all places of a Petri net, thus a
marking denotes the current state of a process.

An event log is a recorded history of process runs. Usually
the execution of a process in some information system is
recorded for documenting, administrative, security, and other
purposes. The main goal of process mining is to explore
and these data for the diagnosis and improvement of actual
processes.

We consider event logs of standardized nature as they are
used in process mining. Formally, an event log is multiset of
traces where each trace is a sequence of events. Each trace
corresponds to exactly one process run. An event contains
the name of associated activity, timestamp, performer name
and may contain other additional properties. In this paper
we consider simple event logs, in which events contains only
names of activities. An example model with the corresponding
event log are shown in Figure 1.

A. Conformance Checking

The conformance checking and its place in process mining
are defined in [1]. Usually four dimensions of conformance are
considered: fitness, precision, generalization, and simplicity.

However, this paper focuses exclusively on fitness. By the
term fitness we understand the extent to which a model can
reproduce traces from an event log. In other words, fitness
shows how well the model reflects the reality. The fitness
dimension is typically regarded as being the most frequently
used and best-defined [1] among the dimensions.

Nowadays, the most advanced and refined conformance
checking approach is the one using alignments [12]. The term
alignment is used to denote the set of pairs where each pair
consists of an event from an event log and a corresponding
transition of a model. Such pairs are constructed sequentially
for each event in a trace. A simple alignment for the trace Tr3
(see Figure 1) is depicted in Figure 2. However, it is allowed
to pair an event with no transitions (special ”no move“ symbol
�). This means that the event is present in a log but cannot
be replayed by any transition in the model. It is also possible
to map a transition to no events (this is denoted by the same
symbol �). In that case the transition is fired but there are
no evidence of this fact in the event log. Thus, there are two
main types of steps composing any alignment: a synchronous
move (a transition fired with the same label as an event name
from the event log) and a non-synchronous move (a transition
label and an event name are the different ones, or a move is
skipped either in the model or in log).

Fig. 2. Alignment

Alignments help to measure the difference between a trace
from an event log and behavior specified by a model. In order
to quantify the difference one has to calculate the number
of non-synchronous moves and assess their significance. This
assessment is accomplished by introducing a cost function,
which is used for calculating cost of an alignment. By cost

190 of 251

we understand a number which somehow designates the sig-
nificance. The general idea is that some deviations are more
severe than others, thus these deviations have more impact on
the overall conformance. Using cost function one can assign
cost for each type of deviation for each transition and event.
Thus, cost function maps a pair of an event and a transition to
a number, which signifies a penalty for having such a pair in a
trace. The more the cost is, the more significant this deviation
is. Assuming that all costs are set to 1, the alignment shown
in Figure 2 has the cost 1, because there is only one non-
synchronous move in it (event D in the trace has to be skipped
during model run). Accumulating costs for all alignments of
a particular event log, it is possible to derive the cost for the
entire log.

It is possible that a particular run through the model and
a particular trace have several possible alignments. In order
to choose between them a cost function is used to evaluate
the cost of each alignment. An alignment with the lowest
cost is selected as the optimal alignment. According to [12] it
makes sense to use only optimal alignments when calculating
fitness. Alignment-based fitness can be measured using the
metric defined in [13]:

f(L,N) = 1−
∑
tr∈L

∑
e∈tr cost

δopt
fn (e,N)∑

tr∈L costai
, (1)

where L is an event log, N is a model, costδoptfn (e,N) is a
cost of a pair (e, (ti, tli)) (e is an event, ti is a transition from
model run, tli is its label) in the particular optimal alignment
δopt, which depends on used cost function cf , costai is a
total cost of the trace tr if all moves in it are considered as
non-synchronous. Thus, fitness is a normalized ratio of the
accumulated costs calculated for the optimal alignments to
the accumulated costs for the worst possible alignments for a
particular event log.

It is shown in [12] that construction of alignments and selec-
tion of optimal among them for each trace can be converted to
solving the shortest path problem. Formally, a trace from the
event log is represented as an event net, which is a special Petri
net having the form of the sequence of transitions connected
through places. Then the product of the model and this event
net is constructed. It is shown in [12] that the problem of
optimal alignment calculation can be viewed as a problem
of finding a firing sequence in this product, which can be
achieved by using a state-space exploration approach.

The proposed approach has a low computational perfor-
mance when dealing with large models, large event logs or in
case of low fitness because of the necessity to solve the short-
est path problem, especially for model of certain types [12].
The author himself states in [12] that ”from a computational
point of view, computing alignments is extremely expensive“.
Moreover, its existing implementation keeps the processed
models, event logs, event nets, and computed alignments in
computer’s main memory. This approach allows for flexible
configuration of visualization settings, and, in some cases,
faster completion. However, this feature makes usage of ex-

isting implementation rather hard and inconvenient because
the algorithm typically consumes several gigabytes of main
memory even for processing relatively small models and small
event logs (dozens of megabytes). Thus, it is not suitable for
real-life usage.

This paper proposes a way of checking conformance be-
tween process models and big event logs of gigabyte sizes
using MapReduce.

B. MapReduce

MapReduce is a computational model proposed and popu-
larized in [10], although the idea dates back to the origins of
functional programming. MapReduce is a popular technology
among practitioners and a research area among scientists. It
has a good tool support, all major cloud platform vendors
provide the possibility to execute MapReduce jobs on their
cloud clusters.

The model simplifies parallel and distributed computing
by allowing software developers to define only two quite
primitive functions: map and reduce. At each invocation of
a map function (also called mapper), it takes a key-value
pair and produces an arbitrary number of key-value pairs. The
aim of reduce functions (also called reducers) is to aggregate
values with the same key and perform necessary computations
over them. Thus, a reduce function takes a key-list pair as
input parameters. Usage of such rather trivial functions makes
their distribution straightforward. Last but not least, comes
another important function allowed by MapReduce which
is called combine. Its main purpose is to perform reduce-
like computation between mappers and reducers. Combine
functions (also known as combiners) are invoked on the
same very computers as mappers. Combiners allow for further
parallelizing computations and decreasing amount of data
transferred to reducers and processed by them. It was pointed
out even in the original article [10] that combiners may
dramatically decrease computation time.

One of the most crucial advantages of MapReduce is that
algorithms expressed in such a model are inherently deadlock-
free and parallel. Another important advantage is the tendency
to perform computations where required data resides. Gener-
ally, computation of map tasks take place where the required
data is stored since its location is known beforehand. Such
an approach ensures that data transfer between computers
and latency, inflicted by it, are minimized. Ideally, data is
transfered between computers where map tasks are executed
and computers where reduce tasks are executed. Unfortunately,
it is rarely achievable since all files are separated into smaller
parts, called blocks, and distributed (and also replicated) over
a cluster, thus data needed for execution of a single map task
may reside in different data chunks — there will be a need to
move a portion of data from one computer to another.

III. FITNESS MEASUREMENT USING MAPREDUCE

This section describes the approach we propose for checking
conformance.

191 of 251

Fig. 3. Conformance Checking with MapReduce

The few adjustments of the existing conformance checking
algorithm with alignments need to be done in order to imple-
ment the proposed schema. It is expected that the algorithm
will benefit if distribution is applied to traces. It means that
traces are distributed over a cluster so that their alignments
can be computed in parallel. Another possible option was to
distribute computation of each alignment since efficient dis-
tributed graph algorithms for solving the shortest path problem
are known. However, use of them seems excessive because
they are aimed at solving problems on graphs consisting of
thousands and millions of nodes, which is not the case for
business process models. A process model consisting of more
than a hundred nodes seems unrealistic.

The general schema is depicted in Figure 3. Map function
takes traces one by one and computes their alignments. This
process can easily be carried out in parallel since, by its
definition, an alignment is computed individually for each
trace. It is enough to use a single reduce function which
aggregates fitnesses of all traces and calculating fitness of the
overall event log. Single reducer implies that key-value pairs
emitted by all mappers have the same key. Single reducer can
be considered as a bottleneck due to the reason that before
it can start processing it waits for completion of all maps
and transition of all costs to a single computer. To diminish
the negative effect of a single reducer, a combiner function
comes in handy. The problem is that calculating average is
not an associative operation, thus it is impossible to use the
basic reduce function instead of the combine function. We
implemented it in a manner resembling the one described
in [14]. The general idea is that calculating average can be
easily decomposed into calculating a sum of all entries of some
metric and counting a number of entries, where both of them
are associative operations. It implies changing the structure
of values used in key-value pairs. The modified version of
values contains not only statistics (fitness and so on) but also
a counter which shows how many traces describes a particular
value. Given that, combiners only have to sum the values they
receive and increment the counter.

IV. POTENTIAL IMPROVEMENTS

One of the possible improvements of the algorithm is to
enhance it by adding trace deduplication. When large event

logs are considered, the possibility of the equivalent traces
occurring several times is very high. Hence, it might be
desired to find only unique traces, number of their occur-
rences and compute alignments only for them. It will allow
for lessening the number of computed alignments. However,
efficient MapReduce algorithm for deduplication of event
sequences is far from trivial. Moreover, it is not guaranteed that
time needed for deduplication and subsequent conformance
checking will be shorter than in case of using the standard
approach. This question can only be answered by conducting
relevant experiments.

Even though process models is not prone to be large, a lot
of time is still required for checking conformance. Another
possible improvement, which aims at reducing model size, is
to employ the ”divide and conquer“ principle. The way how
the principle can be applied to cope with high computational
complexity of conformance checking was proposed in [15] and
[16]. The general idea is to divide a process model into smaller
sub-parts. Next step is event log projection. This means that
for each fragment of a model all events from the event log that
correspond (names of events are equal to labels of activities)
to a particular fragment are selected. As a result, we get as
many projected event logs as decomposed Petri net fragment.

Once it is done, alignments and costs of each fragment
can be computed. Then it is possible to sum costs of parts
following specific rules to get a lower bound of the cost
of the entire log. Having these costs, an upper bound of
fitness can be computed. Performance gain is the most crucial
motivation of this approach. Since time needed for computing
alignments depends on trace size, usage of smaller parts of
the model ensures faster computation. A wide range of model
decomposition strategies have been proposed in [17], [15],
[18], which leaves the user with the necessity to empirically
choose between them. Last but not least, decomposition also
incurs time overhead and projected event logs takes up disk
space, so usage of the algorithm is not beneficial (or even
feasible) in all the possible cases. Furthermore, there is no
research done to establish when usage of which approach
makes more sense.

It is possible to employ a similar approach in the MapRe-
duce environment. There are two possible options: (1) compu-

192 of 251

Fig. 4. Possible Approach with Vertical Decomposition

tation of the overall event log fitness and (2) computation of
fitness of each separate model part. In all the cases fitness is
computed in a three-stage process as it is shown in Figure 4.
The zero stage again is the splitting of the log by traces, which
is followed by trace decomposition. Traces are decomposed
using the maximal decomposition described in [15]. However,
incorporation of other decomposition techniques [15], [17],
[16] is also possible. At the second stage, alignments of sub-
traces are computed and then aggregated. The final stage
differs depending on the selected computation option. At this
stage either fitness of the overall event log is computed at a
single reducer or fitnesses of individual parts are computed at
different reducers (the number of reducers can be up to the
number of model parts). If fitness of individual process parts
is calculated, after the second map unique identification of a
model part is used as a key for emitted key-value pairs. When
decomposition is applied, log deduplication’s importance and
potential benefit grow even more.

V. IMPLEMENTATION AND TESTING

This section describes the actual implementation1 of the
proposed approach and its experimental testing. Hadoop [19]
was used for implementation and testing of the approach
because it is a common and widely supported open source
tool.

A. Implementation

The original algorithm was implemented as a ProM Frame-
work plugin. The ProM Framework [20], [21] is a well-known
tool for implementation of process mining algorithms. The
ProM Framework consists of two main components:

1) ProM core libraries which are responsible for the main
functionality used by all users and extensions;

2) extensions (typically called plugins) which are created
by researchers and are responsible for import/export
operations, visualization, and actual data processing.

The platform is written in such a way that it allows plugins
to use data produced by other plugins. Furthermore, ProM
encourages programmers to separate concerns: export plugins
are only used for exporting data, visualization plugins are
used for visualizing objects. As a result, a common usage

1The tool is available at https://sourceforge.net/p/distributedconformance/

scenario always consist of a chain of invocations of different
plugins. Among main advantages of ProM are configurability,
extensibility, and simplicity of usage. Last but not least, the
platform allows researchers to easily create and share plugins
with others thus extending the tool and contributing to the
overall field of process mining. Despite all these positive sides,
usage of ProM can be inconvenient and tedious, if the desired
goal is unusual in any way.

XES [22] is often considered as a de facto standard for
persisting event logs in the area of process mining. Technically,
it is an XML-based standard, which means that it is tool-
independent, extensible, and easy to use. Moreover, ProM fully
supports this standard and has all required plugins for working
with it.

Our approach involves usage of raw event logs stored in the
format of XES only at the zero step of the algorithm. Before
separate traces are available for the required computations, it
is necessary to sequentially read XES files dividing them into
separate traces. It is accomplished by using the XMLInputFor-
mat from the Mahout project [23]. XMLInputFormat provides
the capability of extracting file parts located between two
specified tags. Moreover, the class is responsible for ensuring
that the entire requested part (in our case — trace) is read, no
matter in which blocks and on which data nodes it resides.

The fact that the initial algorithm was implemented for
ProM inflicts several inconveniences for its distribution. First
of all, it is assumed that the plugin is invoked by ProM via a
special context. Essentially, it implies several things:

1) the entire ProM distribution has to be sent to each
computational node;

2) at each computational node, it is required to start up
ProM (it may take up to couple of minutes on an average
computer).

As a result, it may significantly increase latency and incur
higher time needed for termination of computations. To avoid
this, it was decided to alter implementation in such a way that a
number of libraries the algorithm depends on in as minimal as
it is possible to achieve. In other words, on the one hand it was
desired to separate the implementation of the algorithm from
ProM. On the other hand, usage of ProM could be useful for
initial settings and visualization of final results. As a result, we
achieved such a level of decoupling, that it is possible to launch

193 of 251

Fig. 5. Implementation of the Approach

the algorithm completely autonomously without the need of
installation of the ProM Framework or any ProM plugins.

The resulting architecture is illustrated in Figure 5. Con-
formance measurement is done in two-step approach. At first
step, the user loads a model, represented by a Petri net into a
special ProM plugin which serves for setting the options of the
alignments-based conformance algorithm (mapping between
transitions and events in event logs, costs of insertion and
skipping in alignments). We use standard ProM classes for
representing Petri nets because they allow for easier compat-
ibility with other ProM plugins. Loading a model to a main
memory should not be a problem because it is highly unlikely
for such models to contain even hundreds of nodes, thus the
size of process models is typically relatively small. Another
possible option was to specify settings exclusively via XML
files, though we found it less intuitive and convenient than
visual settings. Once the algorithm is configured, settings are
written to a file which later will be uploaded to a cluster. Last
but not least, it is important to state that this ProM plugin
depends neither on Hadoop nor on a chosen cloud cluster nor
on any other auxiliary Hadoop libraries.

When Hadoop job is initiated, the user is asked to specify
directories where event logs are placed, a path to a Petri net,
and a path to conformance settings. A model and settings are
then automatically added into the Hadoop distributed cache —
the files are replicated to each data node, so they are available
for fast access by any mapper. At a startup of each model, the
files are loaded into main memory because they will be used
for all the alignment computations.

After completion of conformance measurement, the results
are written to a single file which afterwards can be downloaded
and viewed in ProM. Another sub-task is to find in which
cases deduplication is worthwhile and how exactly it affects
computational time.

Fig. 6. Computation time of the standard approach

Fig. 7. Computation time with MapReduce

B. Experimental Results

The proposed algorithm was tested and evaluated using
Amazon Web Services [24]. In our cluster we used five
m3.xlarge instances (one as a master node, four as data nodes).
A local computer used for conducting experiments with the
original algorithm had the following configuration: Intel Core
i7-3630QM, 2.40 GHz, 8 GB of main memory, Windows 7
64 bit.

For testing purposes we created a process model comprising
some of the main workflow patterns: sequence, parallel split,

194 of 251

synchronize, exclusive choice, and simple merge [25]. After-
wards, several models derived from the original were created
— they all differ in fitness. Artificial event logs were generated
using the approach proposed in [26]. Logs were generated only
for the original model. All resulting logs were of different
sizes.

Figure 6 illustrates how computation time depends on a
number on traces and fitness. It is clear from the plots that
computational complexity scales linearly with the growth of a
number of traces. Moreover, it is seen that computation time
highly depends on fitness. The lower the fitness, the slower
the computations will be. It seems that computation time does
not scale linearly with the decrease of fitness if the same
quantity of logs is used. The clear indicators are the margins
between lines representing fitness 1 and 0.96, and 0.96 and
0.9. Furthermore, we can conclude that the lower fitness, the
faster computation time increases with the rise of the number
of traces.

Figure 7 provides an overview of how the algorithm scales
when it is distributed using MapReduce. It is worth mentioning
that 1.66 Gb of logs contain 500 thousand traces. As in the
case of the not distributed algorithm, the graph shows that
the algorithm scales linearly with the increase of a number
of traces. Furthermore, similarly to the not distributed case,
for non-fitting models computations take considerably longer
than for perfectly fitting ones, and that computation time grows
faster for non-fitting models.

In Figure 8 a comparison of distributed and not distributed
approaches is provided. Unfortunately, it is impossible to
establish exactly when the distributed implementation beats
the original in terms of performance since the original one
cannot handle event logs of considerable size. In addition,
the original algorithm was not able of handling more than
a hundred of Mbytes. On data of such small sizes MapReduce
and Hadoop fail to work efficiently because they are designed
for processing much bigger files. As a matter of fact, Hadoop
does not parallelize processing of files which are smaller than
a single file block. It is clear from Figure 8 that for relatively
small event logs the distributed version works more slowly.
It is clear from the graph that our solutions can handle event
logs of several dozens of GBs even on a small cluster used
for conducting these experiments.

VI. RELATED WORK

Although applicability of MapReduce or distributed systems
for the tasks of process mining has not drawn significant
attention yet, there are a few papers which consider this
subject.

In [27] the authors focus exclusively on finding process
and events correlation in large event logs. According to them,
MapReduce solution for such a computationally and data
intensive task as events correlation discovery performs well
and can be scaled to large datasets.

Other works where the authors study applicability of
MapReduce to process mining are [28], [29]. In these ar-
ticles, a thorough description of several popular discovery

algorithms is provided (the alpha algorithm [30], and the
flexible heuristics miner [31]). Every one of them consists of
several consequent MapReduce jobs. First MapReduce jobs
is responsible for reading event logs from the disc, splitting
them into traces, and ordering event in each trace. The general
idea of the second MapReduce all the implementations is that
first step of process discovery typically requires extracting
trivial dependencies between events called log-based ordering
relations. Examples of those are:

• a > b — event a is directly followed by event b,
• a >> b — a loop of length two,
• a >>> b — event a is followed by event b somewhere

in the log.

These relations can be found individually for each trace.
Therefore, their computations are trivially parallelized using
Mappers. Further MapReduce jobs vary but they somehow
use mined primitive log-ordering relations to build a process
model. The main potential problem of implementations is that
these further MapReduce jobs typically compute relations for
the overall event log. To achieve this, it is often the case
when it is necessary for mappers to produce identical keys
for all emitted pairs so that they all end up on the same
computer and processed by the same reducer. Moreover, the
proposed implementations extensively use identity mappers.
It is a standard term for mappers which emit exactly the
same key-value pairs as they receive without performing any
additional computations — all useful computations performed
by combiners or reducers. They are used only because MapRe-
duce paradigm requires presence of mappers. Despite these
concerns, it is shown that performance and scalability provided
by MapReduce are good enough for the task of process
discovery from large volumes of data. Our solution, in contrast
to the described above, uses a more suitable file format. It
allows measuring conformance without extra steps needed for
preliminary log transformations.

In [32] the authors describe their framework for simplified
execution of process mining algorithms on Hadoop clusters.
The primarily focus of this work is to show how process
mining algorithm can be submitted to a Hadoop cluster via
the ProM user interface. In order to demonstrate viability of
their approach, the authors claim that they implemented and
tested the Alpha miner, the flexible heuristics miner, and the
inductive miner [33]. We opted for not using the presented
framework in order to simplify the usage of our ProM plugin
and not to force the user to download all the codebase required
by Hadoop and its ecosystem.

To sum up, these papers clearly demonstrate not only that
process mining can benefit from using distributed systems
and MapReduce, but also that such distributed process mining
algorithms are needed and desired for usage in the real-life
environment. Moreover, from these papers it is clear that
some common approaches and techniques of process mining
suit the MapReduce model well. Last but not least, analysis
of the related work reveal that there are only theoretical
considerations of parallel or distributed conformance checking

195 of 251

Fig. 8. Comparison of the standard and the distributed approaches

and its usefulnesses.

VII. CONCLUSIONS

This paper presents one of the possible ways of speeding
up large-scale conformance checking. The paper provides
a helicopter-view of distributed conformance checking and
suggests ways for possible extensions and improvements. One
of the proposed algorithms was implemented and evaluated on
event logs which were different in terms of size and fitness.

As a possible extension it is worth considering implement-
ing the algorithm using the Spark framework rather than
Hadoop because as it is often claimed Spark might provide
better performance due to its in-memory nature. Furthermore,
the XES standard which defines how event logs should be
structured for convenient process mining, but it seems that the
XES standard is not the best option for using with Hadoop.
Thus, it is possible to consider other storage formats such as
Hadoop sequence files or the Avro format.

ACKNOWLEDGMENT

This work is supported by the Basic Research Program at
the National Research University Higher School of Economics
and Russian Foundation for Basic Research, project No. 15-
37-21103.

REFERENCES

[1] Wil M. P. van der Aalst, Process mining: discovery, conformance and
enhancement of business processes. Springer, 2011.

[2] S. A. Shershakov and V. A. Rubin, “System runs analysis with process
mining,” Modeling and Analysis of Information Systems, vol. 22, no. 6,
pp. 818–833, December 2015.

[3] S. A. Shershakov, “VTMine framework as applied to process mining
modeling,” International Journal of Computer and Communication
Engineering, vol. 4, no. 3, pp. 166–179, May 2015.

[4] W. M. van der Aalst, “Process Mining in the Large: A Tutorial,” in
Business Intelligence. Springer, 2014, pp. 33–76.

[5] C. Bratosin, N. Sidorova, and W. van der Aalst, “Distributed Genetic
Process Mining,” in Evolutionary Computation (CEC), 2010 IEEE
Congress on, 2010, pp. 1–8.

[6] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discov-
ering Block-Structured Process Models from Event Logs Containing
Infrequent Behaviour,” in Business Process Management Workshops,
ser. Lecture Notes in Business Information Processing, N. Lohmann,
M. Song, and P. Wohed, Eds. Springer International Publishing, 2014,
vol. 171, pp. 66–78.

[7] A. A. Kalenkova, I. A. Lomazova, and W. M. P. van der Aalst,
“Process Model Discovery: A Method Based on Transition System
Decomposition,” in Petri Nets, ser. Lecture Notes in Computer Science,
vol. 8489. Springer, 2014, pp. 71–90.

[8] D. Fahland and W. M. P. van der Aalst, “Model Repair - Aligning
Process Models to Reality,” Inf. Syst., vol. 47, pp. 220–243, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.is.2013.12.007

[9] I. S. Shugurov and A. A. Mitsyuk, “Iskra: A Tool for Process Model
Repair,” Proceedings of the Institute for System Programming, vol. 27,
no. 3, pp. 237–254, 2015.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[11] W. M. P. van der Aalst, “Distributed Process Discovery and Confor-
mance Checking,” in Fundamental Approaches to Software Engineering,
ser. Lecture Notes in Computer Science, J. de Lara and A. Zisman, Eds.
Springer Berlin Heidelberg, 2012, vol. 7212, pp. 1–25.

[12] A. Adriansyah, “Aligning Observed and Modeled Behavior,” PhD The-
sis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands,
2014.

[13] A. Adriansyah, B. van Dongen, and W. M. van der Aalst, “Conformance
Checking using Cost-Based Fitness Analysis,” in IEEE International
Enterprise Computing Conference (EDOC 2011), C. Chi and P. Johnson,
Eds. IEEE Computer Society, 2011, pp. 55–64.

[14] D. Miner and A. Shook, MapReduce Design Patterns: Building Effective
Algorithms and Analytics for Hadoop and Other Systems, 1st ed.
O’Reilly Media, Inc., 2012.

[15] W. M. P. van der Aalst, “Decomposing Petri Nets for Process Mining: A
Generic Approach,” Distributed and Parallel Databases, vol. 31, no. 4,
pp. 471–507, 2013.

[16] J. Munoz-Gama, “Conformance checking and diagnosis in process
mining,” PhD Thesis, Universitat Politècnica de Catalunya, 2014.

[17] W. M. P. van der Aalst, “Decomposing Process Mining Problems Using
Passages,” in Application and Theory of Petri Nets, ser. Lecture Notes

196 of 251

in Computer Science, S. Haddad and L. Pomello, Eds. Springer Berlin
Heidelberg, 2012, vol. 7347, pp. 72–91.

[18] J. Munoz-Gama, J. Carmona, and W. M. van der Aalst, “Single-Entry
Single-Exit Decomposed Conformance Checking,” Information Systems,
vol. 46, pp. 102–122, 2014.

[19] “Apache hadoop,” http://hadoop.apache.org/, accessed: 2016-04-01.
[20] W. M. P. van der Aalst and. B. van Dongen, C. Günther, A. Rozinat,

E. Verbeek, and T. Weijters, “ProM: The Process Mining Toolkit,” in
Business Process Management Demonstration Track (BPMDemos 2009),
ser. CEUR Workshop Proceedings, A. Medeiros and B. Weber, Eds., vol.
489. CEUR-WS.org, 2009, pp. 1–4.

[21] “Prom framework,” http://www.promtools.org/doku.php, accessed:
2016-04-01.

[22] IEEE Task Force on Process Mining, “XES Standard Definition,”
www.xes-standard.org, 2013.

[23] “Apache mahout,” http://mahout.apache.org/, accessed: 2016-04-01.
[24] “Amazon EMR,” https://aws.amazon.com/ru/elasticmapreduce/, ac-

cessed: 2016-04-01.
[25] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski,

and A. P. Barros, “Workflow Patterns,” Distrib. Parallel Databases,
vol. 14, no. 1, pp. 5–51, Jul. 2003. [Online]. Available: http:
//dx.doi.org/10.1023/A:1022883727209

[26] I. S. Shugurov and A. A. Mitsyuk, “Generation of a Set of Event
Logs with Noise,” in Proceedings of the 8th Spring/Summer Young
Researchers Colloquium on Software Engineering (SYRCoSE 2014),
2014, pp. 88–95.

[27] H. Reguieg, F. Toumani, H. R. Motahari-Nezhad, and B. Benatallah,
“Using MapReduce to Scale Events Correlation Discovery for Business
Processes Mining,” in Business Process Management. Springer, 2012,
pp. 279–284.

[28] J. Evermann, “Scalable Process Discovery using Map-Reduce,” IEEE
Transactions on Services Computing, vol. PP, no. 99, pp. 1–1, 2014.

[29] J. Evermann and G. Assadipour, “Big Data meets Process Mining:
Implementing the Alpha Algorithm with Map-Reduce,” in Proceedings
of the 29th Annual ACM Symposium on Applied Computing. ACM,
2014, pp. 1414–1416.

[30] W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster,
“Workflow Mining: Discovering Process Models from Event Logs,”
IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 9,
pp. 1128–1142, 2004.

[31] A. J. M. M. Weijters and J. T. S. Ribeiro, “Flexible Heuristics Miner
(FHM),” in Computational Intelligence and Data Mining (CIDM), 2011
IEEE Symposium on, April 2011, pp. 310–317.

[32] S. Hernandez, S. Zelst, J. Ezpeleta, and W. M. P. van der Aalst,
“Handling big (ger) logs: Connecting ProM 6 to Apache Hadoop,”
in Proceedings of the BPM2015 Demo Session, ser. CEUR Workshop
Proceedings, vol. 1418, 2015, pp. 80–84.

[33] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
Block-Structured Process Models from Incomplete Event Logs,” in
Application and Theory of Petri Nets and Concurrency, ser. Lecture
Notes in Computer Science, G. Ciardo and E. Kindler, Eds. Springer

197 of 251

Modelling the People Recognition Pipeline
in Access Control Systems

Frederik Gossen∗, Tiziana Margaria†
Lero - The Irish Software Research Centre

University of Limerick, Ireland
Email: ∗frederik.gossen@lero.ie, †tiziana.margaria@lero.ie

Thomas Göke
SysTeam GmbH

Dortmund, Germany
Email: thomas.goeke@systeam-gmbh.com

Abstract—We present three generations of prototypes for a
contactless admission control system that recognizes people from
visual features while they walk towards the sensor. The system
is meant to require as little interaction as possible to improve
the aspect of comfort for its users. Especially for people with
impairments, such a system can make a major difference. For
data acquisition, we use the Microsoft Kinect 2, a low-cost
depth sensor, and its SDK. We extract comprehensible geomet-
ric features and apply aggregation methods over a sequence
of consecutive frames to obtain a compact and characteristic
representation for each individual approaching the sensor.

All three prototypes implement a data processing pipeline
that transforms the acquired sensor data into a compact and
characteristic representation through a sequence of small data
transformations. Every single transformation takes one or more
of the previously computed representations as input and com-
putes a new representation from them.

In the example models presented in this paper, we are focusing
on the generation of frontal view images of peoples’ faces which
is part of the processing pipeline of our newest prototype. These
frontal view images can be obtained from colour, infrared and
depth data by rendering the scene from a changed viewport.
This pipeline can be modelled considering the data flow between
data transformations only. We show how the prototypes can be
modelled using modelling frameworks and tools such as Cinco
or the Cinco-Product Dime. The tools allow for modelling the
data flow of the data processing pipeline in an intuitive way.

Index Terms—Visual Modelling, Face Recognition, People
Recognition, Computer Vision.

I. INTRODUCTION

When using today’s admission control systems some kind
of interaction is required to check permission for every indi-
vidual. Among the most widely used technologies are RFID
chips on check cards. When attempting to pass the admission
control system people have to swipe their check card through a
reader to transfer a unique ID to the system. The system will
then check whether or not access should be granted. Once
a person is identified, it is easy to assign different levels
of permission to different people. This might be useful to
restrict access to certain areas in a building. Other methods
for identification include PINs, passwords or keys. All these
methods have one thing in common: They require the user to
carry something, either physically or in mind. That means it
is likely that someone who is allowed to pass the admission
control system is not able to do so because he or she has
forgotten his or her password or key. To overcome this issue

iris recognition, fingerprint recognition and face recognition
can be used [1]. All of these methods identify a person by
something that cannot be forgotten such as the eye or the
face.

In our work, we focus on identity recognition from colour
and depth data using low-cost depth sensors such as the
Microsoft Kinect 2 [2]. These sensors offer colour, infrared
and depth images at high frame rates. Our goal is to recognize
people with as little interaction as possible. The user should
be able to walk towards the admission control system looking
forwards as he or she walks. The system picks up his or her
head and face and predicts the identity that is most likely to
have caused the observation. Moreover, the system will have
notion of certainty. In cases where the prediction is possibly
wrong a fall back method for identification will be used. This
can be a PIN, password or a check card but it is also possible
to redirect the person to a staff member to be identified with
human capabilities.

The proposed system primarily improves the aspect of
comfort for everybody who uses the admission control system
as they no longer have to carry check cards or keys or
remember PINs or passwords. Such an admission control
system can be used in many places. Starting from fitness
studios, spa and swimming pools where members have to
be recognized to give access, reaching to institutions where
staff members have to be recognized. In these scenarios, the
proposed system primarily improves the aspect of comfort.
However, in some cases people are not able to use any of
the alternative methods for identification. Especially in places
like hospitals and retirement homes where many people suffer
from impairments such a system can make a major difference.
People with Parkinson’s disease might be unable to swipe a
check card with the tremor in way that allows the system to
read the card. They will also have problems to enter a PIN
or a password while a visual recognition system would not
require them to interact in a particular way. Other examples
include patients with Alzheimer’s disease, people wearing a
cast or doctors with sterilized hands.

We are currently working on the third version of a proto-
type for contactless admission control. Previous versions have
suggested that geometric features can contribute to reliable
recognition of individuals but are alone not sufficient for
reliable access control [3]. We are currently focusing on

198 of 251

Fig. 1. Visualization of 8 distances that were extracted from the Kinect’s face
model (left) and 23 distances that were extracted from the Kinect’s skeleton
model (right). The distances are estimated in space rather than in the image
plane to be invariant under the viewport.

the generation of frontal view images from people’s faces
which we will use to extract comprehensible and characteristic
features for individuals. This will allow for recognizing them
in the application of an admission control system. In what
follows we will present the three versions of our prototype in
Section II. All three prototypes implement a data processing
pipeline that transforms the acquired sensor data into a com-
pact and characteristic feature representation. In order to show
how this pipeline can be modelled, Section III introduces the
reader to the meta modelling framework Cinco and to Cinco-
Products that we use to model the pipeline. We present two
alternative models of the data processing pipeline in Section IV
that are based on these Cinco-Products. Section V concludes
this paper and points our directions of future work.

II. PROTOTYPES

We are currently working on the third version of our
prototype. The first two versions were based on the Microsoft
Kinect [2] and its SDK while our new version will be based
only on its low-level API that is similar to that of comparable
sensors. The low-cost sensor provides capabilities to acquire
colour, depth and infrared images at high frame rates. It comes
with a powerful SDK that provides reliable algorithms to
detect people’s skeletons and faces.

In this section, we will describe the three versions of our
prototype and we analyse their differences.

A. First Prototype

Starting with the first prototype, we decided to use the
Microsoft Kinect 2 sensor. This sensor acquires colour, in-
frared and depth images at high frame rates. Moreover, the
sensor comes with a Software Development Kit (SDK) that
offers a high resolution face model and a skeleton model.
The first system is based on the capabilities of the Kinect
SDK. We use the high resolution face model to extract
characteristic geometric features with clear interpretation. The
features are extracted on frame by frame basis. The compact

and comprehensible set of features is used to predict the person
who is most likely to have caused the observation. In this
first approach we use our own implementation of a Bayesian
Classifier to perform this task on every frame separately.

As we aim to recognize human identities in a comprehensi-
ble way we need features that provide clear interpretation. As
one of the first features that were used for facial recognition,
geometric features fulfil this requirement [4] [5]. In contrast
to early approaches we extract distances in space rather than
in the image plane using the Kinect’s face and its skeleton
model.

The Kinect’s face model provides a set of 1347 feature
points many of which are interpolated. In order to obtain
features with clear meaning we decided to focus on a subset
of 12 feature points as shown in Figure 1. These feature points
represent the eye corners, the moth corners, the lower and the
upper lip and the left, right, lower and upper boundary of the
nose. The face model provides these points’ positions in both,
the image plane and in space. As distances in the image plane
are affected by the view point we use the Euclidean distances
between points in space. We extract the following distances
from the face model

• the inner and the outer eye distance
• the width and the height of the nose
• the width and the height of the mouth
• the width of the left and of the right eye.
Figure 1 visualizes all of the 8 facial features. Note, that

some of these might vary a lot. For instance, the estimated
height of the mouth will vary when people open or close
their mouth. The features are therefore not invariant to facial
expressions but can nevertheless characterize the face of an
individual. Note, that we extract only a small subset of
possible distances with clear interpretation that we expect to
be characteristic for the human face. In this way we maintain
comprehensibility of our representation. Moreover, too many
features would lead to overfitting during the learning process
as our data set was small at this stage of the development
process.

The Bayesian Classifier that we used for classification as-
sumes conditional independence of features. This assumption
is obviously violated for the proposed features meaning that
the Bayesian Classifier is no longer guaranteed to be optimal.
However, Bayesian Classifier are often successful although
their assumptions might be violated. In order to allow for
a good representation of the conditional probability distribu-
tion, we introduce another assumption that the conditional
probability for each features is normally distributed. Hence,
the learned model for a person can be represented by mean
and variance per feature. Note, that a normal distribution is a
reasonable assumption for geometric features from the Kinect
face model as shown in [3]. However, this introduces yet
another assumption that might be violated to some degree.
The Bayesian Classifier is therefore no longer guaranteed to be
optimal. However, it shows reasonable performance in many
classification problems as well as in our preliminary evaluation
in [3].

199 of 251

With recognition rates of up to 80% on a preliminary data
set with only 5 people, this first prototype was far from being
sufficiently accurate for reliable access control. However, it
proofed, that geometric features from the Kinect’s models
can be used to recognize people. This first system was not
exploiting the redundancy of the records among consecutive
frames as its prediction was on a frame by frame basis.
Moreover, the feature set was extremely small.

B. Second Prototype

To overcome the weaknesses of our first prototype, we
introduce more features and feature aggregation in the second
version of our prototype and tested different classifiers to
analyse the quality of the feature set. One feature that is
expected to be particularly predictive for a person’s identity
is his or her height. The height varies a lot between different
individuals and can be estimated using the Kinect’s skeleton
model. The model provides the position for 25 joints in both,
the image plane and in space. We extract Euclidean distances
in the same way as we extract them from the face model.
In order to capture meaningful features from the model we
consider distances from a selection of adjacent skeleton joints.
In addition, we extract features between joints that are not
adjacent if we expected the feature to be characteristic for
a person. In particular, we wanted to represent a person’s
height and his or her shoulder width. Figure 1 shows all of
the proposed 23 features that are considered from the skeleton
model.

We introduced feature aggregation to this version of our
prototype. Frames are still processed separately to extract the
set of features from them leading to 31 values per frame. When
a person approaches the Kinect sensor, up to 15 frames were
considered during our experiments. As the Kinect’s models
have high computational demands, the low frame rate did not
allow for more records in most situations. All of the 15 records
aim to measure the same set of distances. In order to benefit
from this redundancy, we aggregated the sequence into a single
value per feature using one of 6 aggregation methods. As the
most prominent aggregation method for real values, we used
the mean in our experiments. In order to be more robust against
outliers, we also analysed the median and four variants of
truncated mean which can be seen as intermediate aggregation
methods between mean and median.

The larger the distance to an object, the more noise can
be observed in depth images. This makes approximation of
the facial shape more difficult leading to lower quality of
the Kinect’s models. We therefore expect the measures for
the proposed geometric features to be particularly noisy for
records that were taken far away from the sensor. As these
measures might have a negative impact on the quality of the
aggregated features, we consider only a subset of the closest
N records during our experiments.

In order to select a good classifier for our system, we use
Rapid Miner [6] to evaluate the quality of our feature set. We
tested two classifiers in our experiments, k-Nearest Neigh-
bour (k-NN) [5] and Linear Discrimination Analysis (LDA)

and report a recognition rate of up to 88% for k-NN and up
to 89% for LDA on a data set with 37 individuals.

These recognition accuracies are a significant improvement
over our previous system while the aggregated features are still
as comprehensible as the previously used raw features. Most
importantly, the aggregation of feature values was shown to
improve the recognition accuracy significantly. In order to be
used in an access control system, we aim to further increase
our system’s performance.

C. Third Prototype

As based on the Kinect’s face and skeleton model, the first
two versions of our prototype are not easily adoptable to the
use of other sensor devices. Moreover, the Kinect’s face and
skeleton model have high demands with regard to hardware.
This might be a problem once the system is in use on site
where such machines are not available or increase the costs
dramatically. Hence, we wanted to become independent of
the Kinect SDK’s advanced capabilities while we still use
the sensor and its low-lever API. The subset of the provided
functionality that we use in the third version of the system is
available for many other low-cost sensors. We acquire colour,
infrared and depth frames as well as a mapping between these
data sources. This functionality is also offered in OpenNI [7]
for a variety of different sensors.

Although the recognition accuracies using aggregated ge-
ometric features are a significant improvement over the first
version of our prototype they are not yet sufficient for reliable
access control. However, they have shown that geometric
features can contribute to reliable recognition in a compre-
hensible manner. To explore additional features and to improve
the system’s accuracy, we currently focus on colour, infrared
and depth data directly which were not used in the previous
systems. We aim to extract comprehensible features from these
images as an intermediate representation. These features can
again be geometric features as the distances between certain
feature points but they are not restricted in this way and more
importantly, no longer based on the Kinect’s models.

As a basis for feature extraction we decided to generate
frontal view images of detected faces. When a person ap-
proaches the sensor, his or her head and face are detected.
We also estimate the person’s head pose meaning that the
exact position and orientation of a person’s face is known.
As the depth frame provides spatial information, this allows
to render the scene from a normalized position in front of a
person’s face. In this way we obtain depth images of detected
faces that that are aligned in a predefined position.

Given the mapping from depth frame to the colour frame
respectively the infrared frame, it is further possible to use
these as a texture. Hence, we are able to render frontal views
of a detected face using either the colour frame or the infrared
frame as a texture. Three different kinds of frontal views of
a person’s face can be computed in this way. As the system
is currently under development, we want to focus on this part
of the data processing pipeline in what follows. These first
steps as a part of the data processing pipeline are sufficient

200 of 251

to point out the idea of how such a system can be modelled
using existing modelling frameworks.

III. MODELLING FRAMEWORKS AND TOOLS

All three prototypes implement a data processing pipeline
that transforms the acquired sensor data into a compact and
characteristic feature representation through a sequence of
small data transformations. Every single transformation takes
one or more of the previously computed representations as
its input and computes a new representation from them. As
only the final outcome is of any interest while intermediate
representations are solely used for the computation of the final
outcome, all of our prototypes can me modelled intuitively by
focusing on the data flow only. In fact, we will show that the
control flow can be derived from the data flow in our example.

In the example presented in this paper, we are focusing on
the newest version of our prototype. As the final recognition
is not implemented to date, we will focus on the generation of
frontal view images of peoples’ faces which will be part of the
final data processing pipeline. These frontal view images can
be obtained from colour, infrared and depth data by rendering
the acquired data from a changed viewport. In order to do
so the face position and its orientation have to be estimated
precisely. Our newest prototype approaches this task in four
steps based on a single depth frame.

We show two example models of our prototype using
two different modelling tools that were generated using the
modelling framework Cinco. In what follows, we will first
introduce the reader to the modelling framework Cinco and
to Dime, the most complex Cinco-Product to date. We will
further show a small custom Cinco-Product that models the
data flow only and is tailored to the needs of our prototypes’
models.

A. Cinco

Cinco is a meta modelling framework for graphical Do-
main Specific Languages that is developed at TU Dortmund
University since 2014 [8] [9] [10]. It is based on the popular
Eclipse Open-Source IDE and allows for the generation of
Cinco-Products that are themselves based on the Eclipse IDE.
Graphical Domain Specific Languages in Cinco are based on
the concept of directed graphs meaning that a predefined set
of custom nodes and edges is defined for a particular Cinco-
Product. The meta modelling framework allows to define the
appearance for each kind of node and edge and allows to
constrain their connectivity. In this way it is possible to allow
certain edges to connect only very particular kinds of nodes,
but many other ways of constraining the graphical language
are possible.

To enable rich features in Cinco-Products, the framework
implements the concepts of hooks which allows to program-
matically adjust the graph in case of a particular event. Such
an event can be that a node was moved on the canvas or that
it was removed from it. In particular, this allows to implement
custom spatial arrangement of multiple nodes relative to one
another but many other applications are possible.

As a meta modelling framework Cinco is used to generate
modelling tools that are referred to as Cinco-Products. Due
to the only assumption that a graphical Domain Specific
Language is a directed graph, Cinco is very flexible and
allows to generate modelling tools for a wide range of ap-
plications. Cinco itself does not associate any semantics with
the graphical language but allows for the generation of an
API that can be used to generate code from the graph models
or to interpret them otherwise. Particularly interesting for our
example models, edges can be used to represent both, control
flow and data flow.

B. Dime

As the most complex Cinco-Product to date, Dime is the
prime example of the Cinco’s flexibility. As a Cinco-Product,
Dime defies a set of nodes and edges, their appearance and
also constraints the way they can be connected. While nodes
represent situations during model’s execution, edges are used
to model both, control flow and data flow.

The most important nodes are the so called Service Indepen-
dent Building Blocks (SIB) which represent executable code in
the model. Every SIB has a list of input ports similar to func-
tion or method parameters in other programming languages.
The functionality represented by the SIB relies only on the
data provided by means of these input ports. The execution
of a SIB can result in different cases which are modelled
using the concept of branches. Every SIB must have one or
more branches as its successors, each representing one case.
Depending on the outcome of the execution of the SIB, one
branch is chosen that determines the SIB that is to be executed
next. In this way branches are used to model the control flow
of the system. In addition, the selection of a particular branch,
any other outcome of a SIB will be represented as variable. In
Dime the set of computed variables can be defined for every
branch separately. This is often appropriate as there will be no
computation result in some error cases or different results can
be computed in different cases. Dime represents the outcome
in terms of data by output ports that are associated with the
branch nodes. Figure 2 shows a small example of a Dime

Fig. 2. Minimal example of a Dime model.

201 of 251

model with one SIB that has two branches only one of which
has an output port.

As Dime allows the user to model control flow and data
flow, it has to provide at least two different kinds of edges.
In fact, there are many more kinds of edges but for the sake
of simplicity, we want to focus on data flow and control flow.
The control flow starts at the start SIB which is represented by
a blue arrow. To make the entry point unique, there can only
exist one start SIB in every model. Together with the end SIBs
they are the only SIBs that have no branches. During execution
the start SIB will do nothing as it is solely used to represent
the start of the control flow an potential input ports. The end
SIBs are used to represent different cases as an outcome of the
model’s execution and their associated output ports. As such
they serve a similar purpose as branches on the level of the
entire model. In fact, this is how Dime allows users to model
in a hierarchical manner, meaning that the whole model can
be used as a SIB in other models. In order to define the control
flow from the start SIB to one of the possible end SIBs, the
user has to define the control flow. This is done by connecting
branches as the outcome of SIBs to exactly one other SIB.
Depending on the outcome of the execution of a SIB, this
allows to define the successor separately for every case. The
control flow must be defined for every possible branch to make
the model valid.

When the control flow reaches a SIB, all of its input ports
must be available. The required data can be provided by the
initial input parameters on the level of the entire model or
it can be provided as the outcome of a previously executed
SIB. In any case, the variable to be used as an input must be
defined using data flow edges. These edges are dashed and
connect exactly one output port of a branch to one input port
of a SIB. Moreover, the start SIB’s ports can be used as output
ports and the end SIBs’ ports can be used as input ports. It is
the user’s responsibility to define the data flow and the control
flow in such a way that required input data is available when
a SIB is reached. Hence, the data flow imposes constraints on
the control flow and vice versa which can be exploited in the
example that we present in this paper.

As Dime is a Cinco-Product and defines a set of nodes and
edges, with clear interpretation, Dime is no longer as flexible
as the use of Cinco for a tailored Cinco-Product. However, by
modelling both, control flow and data flow its graphical models
can express similar things as many programming languages in
an intuitive fashion. Dime is still flexible in the sense that SIBs
can have arbitrary functionality.

C. Custom Cinco-Product

Although Dime is suitable for many applications as it
allows to model both, data flow and control flow, there are
applications that can be modelled more intuitively in other
ways. In our example, we are only interested in the final
outcome of the computation, respectively the final data rep-
resentation. As every data transformation depends on one or
more data representations, an order of all data transformations
is implicitly defined by the data flow. Hence, this example

allows for modelling the data flow only while the control flow
can be derived automatically.

For our second example we have therefore created our own
Cinco-Product that allows for modelling the data flow only.
There are three kinds of nodes, namely input representations
(blue), output representations (green) and intermediate repre-
sentations (white) and only one kind of edges to model data
flow. All of these nodes represent a form of data that will
be computed during the execution of the model if necessary.
Note, that intermediate representations also represent a data
transformation as they are computed from one or more other
representations.

IV. EXAMPLE MODELS OF OUR PROTOTYPE

All of our prototypes were developed in a way that allows to
easily model their data processing pipeline using either Dime
or a custom Cinco-Product. The recognition algorithm can be
clearly separated into a sequence of data transformations as
will be shown by means of the following two example models.
We present example models for both of the modelling tools,
Dime and our own Cinco-Product.

A. Dime Model Example

As Dime allows for modelling control flow and data flow,
the data processing pipeline can be easily modelled in Dime.
Each of the data transformations as part of the data processing
pipeline can be represented as a SIB. The required input
representations are inputs to the SIBs and will therefore be
connected to the SIBs’ input ports. In our example we want to
focus on the data flow and we want to show that the control
flow can be automatically derived from it. For the sake of
simplicity this example is therefore limited to a single branch
per SIB. When the model is used to generate code in future
versions of our system, more than one branch will be necessary
to handle exceptions in any of the data transformation steps.
For instance, there might be no person visible in an acquired
frame and hence no meaningful head pose can be computed.

Ignoring these exceptions in the current version of the
model, every SIB has exactly one branch which is the success
branch. The success branch is necessary to provide outputs
of the computation, namely a new data representation. In the
example new frames are acquired from each of the three
sources as a very first step. The first three SIBs fulfil this
purpose and provide colour, infrared and depth frames as
output ports of their success branches. While colour and
infrared frames are solely used as a texture for the generation
of the frontal view images, the depth frame plays an important
role. As it provides information about the facial shape it can
be used to approximate the head pose. In the newest version
of our prototype, this problem is approached as a sequence
of four refinements as shown in the second row of the model
in Figure 3. First, the head position is roughly approximated
from the raw depth image as given to the first SIB’s input port.
The success branch provides the head position approximation
which serves as an additional input for the more precise
head position computation. Both, the raw depth frame and

202 of 251

Fig. 3. Dime model for the generation of frontal view images from colour, infrared and depth data.

the head position approximation are connected to the head
position computation SIB’s input ports. In a similar fashion,
the head pose is computed in two consecutive steps. Finally,
a precise estimate of the head pose is available which allows
for rendering of frontal views.

Given the head pose, the first three SIBs in the third row of
our model in Figure 3 render the frontal view images. As input
parameters, all of them expect the raw depth image as acquired
from the sensor which provides spatial information and also
the precise head pose estimate which defines the viewport from
which the scene is to be rendered. In addition, colour and
infrared images are used as a texture leading to three different
frontal view images of the detected face. For demonstration
purposes the last SIB takes all of these images as inputs and
displays them.

Note, that some data representations such as the depth image
and the head pose are used more than once. In Dime this
requires the use of a data context that holds variables and
allows for them to be used multiple times. In general, this
is necessary as SIBs can change the value of their input
parameters. However, in our example all of the input variables
are only read which allows for using them multiple times in
an arbitrary order.

Our goal is to define reusable components from the data
processing pipeline of our final version of the admission
control system and to provide them as SIBs in Dime. Not only
would this allow to modify the system in a very intuitive way
and would allow non-programmers to adjust the system at any
time, but also would this allow for building similar systems
from the existing components in a very easy way. Especially
people with little to no programming skills would be enabled
to create advanced systems that detect people, their head poses
and many other things depending on the capabilities of the
palate of provided SIBs.

B. Custom Cinco-Product Model Example

As only the displayed image the displayed image in this
example as the final outcome of our model’s execution is
of any interest, the order of execution is irrelevant as long
as required input representations are available for every data
transformation in the data processing pipeline. In order to
exploit this property, we use our custom Cinco-Product to
model the data flow of the pipeline only. Every node represents
data while intermediate data representations (white) implicitly
represent data transformations that define how the new data
representation can be obtained from others. In the example,

203 of 251

Fig. 4. Cinco-Product model for the generation of frontal view images from colour, infrared and depth data.

raw sensor data is given as input representations (blue). In
particular, these are colour, infrared and depth frames that
were acquired using the Kinect sensor. Per execution of the
pipeline one frame from each source is available and all of
them can be used to obtain the final data representation. As
the newest version of our prototype does not implement the
final recognition of an individual yet, we limit the example
to the generation of a collage of frontal view images from all
three sources. The frontal views will later be used to extract
facial features for the recognition of individuals. In order to
render frontal view images of faces, the head pose must be
known which defines the viewport from which the scene has
to be rendered.

As the prototype is the same one that was used for the
Dime model example, the computation of the head pose is
again approached in four steps. First, the head position is
approximated in the raw depth frame. The data representation
Head Position Approximation implicitly represents the data
transformation from a raw depth frame to an approximation
of a person’s head position. The new data represents only the
approximation of the head position and no longer the depth
frame. It is therefore a significantly smaller data representation
than the Depth Frame which was provided as an input rep-
resentation. In a second step, the Head Position is computed
more precisely from the raw Depth Frame and from the Head
Position Approximation. The new data representation therefore
depends on two others which have to be available before
the Head Position can be computed. Hence, the data flow as
defined in the model in Figure 4 imposes constraints on the
order of data transformations.

Note, that the model in Figure 4 does not define the
control flow but only the data flow. As the data flow imposes

constraints on the order in which data representations must be
available, a possible control flow can be deduced automatically
from the topological order of the graph. More precisely every
input representation must be available before a new data
transformation can be applied. In our example, this means
that Head Position Approximation, Head Position, Head Pose
Approximation and Head Pose must be computed in exactly
this order before any of the other data representations can be
derived. For the generation of the separate frontal view images,
the order can be arbitrary as they do not depend on one another
but only on input representations and the Head Pose. Finally,
the Merged Image must be computed at the very end. This is
also defined as the final output representation (green) of our
model. Any case in which the order of computation is irrele-
vant allows for parallelism. In our example, the generation of
the separate frontal view images can in fact be performed in
parallel once their input representations are available.

As an alternative to SIBs in Dime our custom Cinco-
Product has strong focus on data flow. While this simplifies
modelling of a data processing pipeline, there is no easy way
of modelling side effects, defining the order of execution etc.
This Cinco-Product is nevertheless useful for data oriented
applications such as processing pipelines in computer vision
systems similar to the one in our example.

V. CONCLUSION

In this paper, we presented three generations of prototypes
for a contactless admission control system with high potential
to be modelled with available modelling frameworks and tools.

We presented the three versions of our prototype and their
commonalities and differences. In particular, we focused on
the data processing pipeline which all prototypes implement

204 of 251

in a similar fashion. This part of the system can be modelled
intuitively with modelling tools such as Dime or our custom
Cinco-Product.

In order to show our prototypes’ potential to be modelled,
we introduced the reader to Cinco, Dime and our custom
Cinco-Product. Focusing on the first part the newest processing
pipeline, we show examples of models in both tools. We dis-
cussed the possibility to derive the control flow automatically
from a specification of the data flow in the data processing
pipeline.

We continue to develop the most recent version of our
prototype in a way that maintains its high potential to modelled
visually. This will enable us to define reusable components
from the data processing pipeline of our final admission con-
trol system and to provide them as SIBs in Dime. Moreover,
we aim to model the system using a similar Cinco-Product to
the one that we presented in this paper. Not only would this
allow to modify the system in a very intuitive way and would
allow non-programmers to adjust the system at a later stage,
but also would this allow for building similar systems from
the existing components in a very easy way. Especially people
with little to no programming skills would be enabled to create
advanced systems that detect people, their head poses and
many other things. Once a set of powerful SIBs, respectively
data transformations is developed for computer vision related
applications, it can be extended continuously leading to a rich
palate of SIBs. Depending on the extend of this palate, this
would allow for modelling a wide range of computer vision
related applications. In the long term, such a palate could
also be extended to an even broader range of systems that
implement any kind of a data processing pipeline.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation
Ireland grant 13/RC/2094 and co-funded under the European
Regional Development Fund through the Southern & Eastern
Regional Operational Programme to Lero - the Irish Software
Research Centre (www.lero.ie).

REFERENCES

[1] G. S. Gagandeep Kaur and V. Kumar, “A review on biometric recogni-
tion,” International Journal of Bio-Science and Bio-Technology, vol. 6,
no. 4, pp. 69–76, 2014.

[2] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MultiMedia,
vol. 19, no. 2, pp. 4–10, 2012.

[3] F. Gossen, “Bayesian recognition of human identities from continuous
visual features for safe and secure access in healthcare environments,”
in Design Technology of Integrated Systems in Nanoscale Era (DTIS),
2015 10th International Conference on, 2015.

[4] I. Marqués and M. Graña, Computational Intelligence in Security
for Information Systems 2010: Proceedings of the 3rd International
Conference on Computational Intelligence in Security for Information
Systems (CISIS’10), ch. Face Processing for Security: A Short Review,
pp. 89–96. 2010.

[5] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Informa-
tion Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27, 1967.

[6] “Rapid miner.” https://rapidminer.com/. Accessed: 2016-02-02.
[7] “Openni 2 sdk.” http://structure.io/openni. Accessed: 2016-04-01.
[8] S. Naujokat, L.-M. Traonouez, M. Isberner, B. Steffen, and A. Legay,

Leveraging Applications of Formal Methods, Verification and Valida-
tion. Technologies for Mastering Change: 6th International Symposium,
ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings,
Part I, ch. Domain-Specific Code Generator Modeling: A Case Study
for Multi-faceted Concurrent Systems, pp. 481–498. Springer Berlin
Heidelberg, 2014.

[9] S. Naujokat, M. Lybecait, B. Steffen, D. Kopetzki, and T. Margaria,
“Full generation of domain-specific graphical modeling tools: a meta
modeling approach.” under submission, 2015.

[10] “Cinco scce meta tooling framework.” http://cinco.scce.info/. Accessed:
2016-04-01.

205 of 251

System for Deep Web Users Deanonimization

Aleksandr Lazarenko
Software Engineering School

National Research University Higher School of Economics
Moscow, Russia

avlazarenko@edu.hse.ru

Scientific Advisor: Prof. Sergey Avdoshin
Software Engineering School

National Research University Higher School of Economics
Moscow, Russia

savdoshin@hse.ru

Abstract— Privacy enhancing technologies (PETs) are
ubiquitous nowadays. They are beneficial for a wide range of
users. However, PETs are not always used for legal activity. The
present paper is focused on Tor users deanonimization using out-
of-the box technologies and a basic machine learning algorithm.
The aim of the work is to show that it is possible to deanonimize a
small fraction of users without having a lot of resources and
state-of-the-art machine learning techniques. The
deanonimization is a very important task from the point of view
of national security. To address this issue, we are using a website
fingerprinting attack.

Keywords—Tor, deanonimization, website fingerprinting,
traffic analysis, anonymous network, deep web

I. INTRODUCTION
Internet privacy is considered to be an integral part of

freedom of speech. A lot of people are concerned about their
anonymity in public and therefore there is a growing need for
privacy enhancing technologies.

The Deep Web is the layer of the Internet which can not be
accessed by traditional search engines, so the content in this
layer is not indexed. The typical website in the deep web is
static with potentially no links to outer resources. That is why it
is very hard to measure the real size of the deep web.

In the modern world, there are a lot of networks and
technologies which grant access to the deep web resources, for
example, Tor, I2P, Freenet, etc. Each of these instruments
hides users traffic from adversaries, thus making the
deanonimization a hard thing to do. A detailed overview of
such technologies can be accessed in paper [1].

Nowadays, the largest and most widely used system is Tor
[2]. Our research is focused on Tor users deanonimization,
because of its popularity and prevalence.

II. TOR BACKGROUND
Tor is the largest active anonymous network in the world.

There are more than two million users per month and the
number of relays is close to 7000 [3]. Tor is a distributed
overlay network which consists of volunteer servers. Every
user in the world can provide Tor with computational resources
needed for traffic retranslation over the network.

Despite of being a great privacy enhancing technology for
law-abiding citizens, Tor is an essential tool in criminal

society. Terrorists, drug and arm dealers in line with other
offenders use Tor for their criminal activities. Thus, the
solution of the deanonimization problem is very important for
government special services [4]. For example, Russian
Ministry of Internal Affairs (MIA) has recently announced a
bidding for Tor deanonimization system [5].

The next key component of Tor is Hidden Services (HS).
Tor HS provides users with anonymous servers to host their
websites or any other applications. HS are accessed via special
pseudo-domains «.onion», where The Deep Web is located.
From the user`s point of view, accessing a particular hidden
service is as easy as visiting a normal website.

In order to establish a connection with Tor network, the
user must have pre-installed software (Tor client). The easiest
way is to install TorBrowser, which is a customized version of
Mozilla Firefox with built-in Tor software. To initiate the
connection, a Tor client obtains a list of Tor nodes from a
directory server. Then, the client builds a circuit of encrypted
connections through relays in the network. The circuit is
extended hop by hop and each relay on the path knows only
which relay gives data and which relay it is giving data to.
There is no particular relay in the circuit (see Fig. 1) which
knows the complete users path through the network.

A Layered encryption is used along the path. The most
interesting relays for a potential attacker are entry and exit
relays. Every piece of information in the network is transferred
in the Tor cells, which have an equal size. An Entry relay (also
called the guard) knows the IP address of the user and Exit
relay knows the destination resource. Traffic interception in the
middle would not give any advantage to the attacker because
everything is encrypted and secure.

Fig. 1. Tor circuit example

206 of 251

III. DEANOMIZATION TECHNIQUES
There is a wide range of deanonimization methods

(attacks). Some of them are passive: an adversary only
observes traffic, without any trials to modify it somehow.
Contrariwise, some of them are active: an attacker modifies
traffic (causing delays, insert patterns, etc.). We proposed a
classification of attacks, where the main principle is the amount
of resources needed by an attacker to perform the
deanonimization (see Table 1).

TABLE I. CLASSIFICATION OF DEANONIMIZATION TECHNIQUES

Resources Attacks
1 Corrupted entry guard • Website fingerprinting attack
2 Corrupted entry and exit

nodes
• Traffic analysis
• Timing attack
• Circuit fingerprinting attack
• Tagging attack

3 Corrupted exit node • Sniffing of intercepted traffic
4 Corrupted entry and exit

nodes, external server
• Browser based timing attack

with JavaScript injection
• Browser based traffic analysis

attack with JavaScript injection
5 Autonomous system • BGP hijacking

• BGP interception
• RAPTOR attack

6 Big number of various
corrupted nodes

• Packet spinning attack
• CellFlood DoS attack
• Other DoS and DDoS attacks

More information about attacks mentioned in Table 1 can
be accessed in paper [6]. We are focused on the resource-
effective attack (WF), which only requires an attacker to
control an entry relay of the user. The relay which is fully
controlled by an attacker is called a corrupted relay.

IV. WEBSITE FINGERPRINTING ATTACK

A. Website Fingerprinting Attack Overview
A website fingerprinting attack (WF) is an attack designed

for a local passive eavesdropper to determine the client’s
endpoint using features from packet sequences. Generally
speaking, WF breaks privacy which is achieved by the proxy,
VPN or Tor. This is an application of various machine learning
techniques in the field of privacy.

The first appearance of the WF was discussed in paper [7].
This attack has been widely discussed in the researchers`
community because it has proven its effectiveness against
various privacy enhancing technologies, such as Tor, SSL and
VPN.

Fig. 2. Configuration of Tor circuit suitable for the WF attack

To perform a WF, an eavesdropper has to simulate users`
behavior in the network, using the same conditions as the
victim. In case of Tor, an attacker must have a corrupted entry
relay (see Fig.2) that will be used for collecting data. The
Attacker visits each site from the list and stores all packet
sequences related to the request. Then he uses the traffic for
training a classifier in a supervised way. The machine learning
problem could be stated as a binary classification problem or
multilabel classification problem. In the first case, classifier is
trained to answer the question: «If the user visits a site from
our list?». The second option is about guessing a particular
website that the user visits.

B. The Oracle Problem
Since WF works with packet sequences, determining the

sequences related to the webpage is quite a difficult task. This
issue is known as the Oracle problem. Researchers make two
major assumptions, which simplify WF a lot: 1) an attacker has
such an oracle at his disposal, 2) the victim loads pages one-by-
one in a single tab. The Oracle helps to find precise
subsequence of packets from overall captured traffic. Any
excess packet sequence sent to classifier can significantly
reduce its’ accuracy. That is why splitting the whole sequence
is crucially important. Another reason is the user`s web-
browsing behavior. The majority of people uses multi-tab
browsing instead of loading a page in a single tab, working
with it and loading another one. This behavior makes WF
difficult in real life.

An oracle problem for packet sequences has not been
solved yet, but Wang proposed a solution for Tor, which can
work with a single tab. He proposed a three-step process of
determining correct split in case of single tab browsing
between two pages. Wang used Tor cells instead of packets.
The first step is making a time based split. The Attacker splits
sequences if the time gap between two adjacent cells is greater
than some constant, then the sequence is split there into two
subsequences. If the time gap is too small, classification-based
splitting is typically used. Wang uses machine learning
techniques that decide where to split and whether or not to
split. After splitting, the result is ready for further
classification. This method achieves quite good accuracy.
However, the proposed solution doesn’t work with multi-tab
browsing and raw packet sequences, narrowing the range of
real implementations. Study [8] proposed a time-based way to
split traffic traces when the user utilizes 2 open tabs. They
classify the first page with 75.9% and second with 40.5%
accuracy.

C. Real World Scenario
Overall, the applicability of WF in the real world scenario

is still questionable. Users may visit hundreds of thousands of
webpages every day. So, can the attacker successfully apply
WF in reality? Panchenko et al. [9] checked the attack with a
really huge dataset and their approach outperformed the
previous state of the art attack proposed by Wang. To
conclude, WF attacks are still a serious threat to anonymous
communication systems.

The aim of the current work is to show that an attacker can
build a deanonimization system, applying learning libraries on

207 of 251

most popular programming languages, which will be able to
deanonimize a group of users that try to access the deep web
content.

V. DEANONIMIZATION SYSTEM SCHEME
For the sake of simplicity, we will use as much

preconfigured software as possible. In order to deal with
deanonimization problem, our system must have two modules.
The first module is for mining Tor data which will be used for
collecting traffic traces. The second is for applying machine
learning techniques.

A. Data Mining
The data mining module is using various software, which

can be easily installed on Mac OS or any Linux distributive.
Since the packet traces can be collected on the relay side, or on
the client side (the difference is only in the source/destination
pair), we can use data mining module on local machine or on
the remote server. We will use local machine for data mining
(see Fig. 3). Simple data transformation can be applied for
packet traces, to look exactly like those collected on the relay.

The following software must be installed on the machine:

• Tor - free software for enabling anonymous
communication.

• Torsocks - free software that allows using any kind of
application via the Tor network.

• Wget – a program which retrieves content from the web
server, supports downloading via http, https, ftp.

• Tshark – a free and open packet analyzer. It is used for
network troubleshooting, analysis, etc.

• Mozilla Firefox or Tor Browser - an open web-browser.
In case of Mozilla Firefox, you will need to configure it
for using Tor manually.

Nevertheless, any program can be replaced by the specific
library. The simplest solution is to use the proposed software.
We must have full control over Tor circuits construal to use our
own relay. For this purpose, we will use Stem Python library,
which is freely accessible on the web. Stem is a Python
controller library for Tor.

We use Stem to create Tor circuits through our corrupted
entry guard. Without this action, the accuracy of the classifier
might become worse, because of different Tor versions on the
relays and other reasons. Another option is to modify Tor
configuration for using specified entry guards. It is very
important to use the same entry guard which will be used in
production.

Tshark is used as the main packet capturing tool. We also
use Tshark for extracting TLS records from data. Tshark can be
substituted with any library, which supports capturing of TCP
packets.

After that, the attacker has to automate the data gathering
process. There are two ways to do it, namely, using wget via
torsocks, or Mozilla Firefox. In case of wget, an attacker just
launches page downloading from the command line, but

Mozilla Firefox requires more work. The automation of
Mozilla can be done in two ways. The first option is to launch
it from the command line and wait while the page is uploading,
another one is to use Selenium Webdriver to automate the
process.

Fig. 3. Data mining process

B. Feature Extraction
We can extract features of the traffic at three different

levels (see Fig.3) – they are Tor cells, TLS, TCP. On the
application level, Tor retranslates data in the fixed size packets,
called cell. All cells have an equal length, which is 512 bytes,
and travel throughout the network in TLS records. It is
noteworthy that several cells can be packed in a single TLS
record. The last level is transport level: TLS record is then
fragmented into several TCP packets. TCP packets size is
limited by the MTU. Furthermore, several TLS records can be
packed into a single TCP packet. However, it is questionable
which level is the most informative from the website
fingerprinting attack perspective. The majority of researchers
assume that the most informative level is the cells level.

208 of 251

Fig. 4. Information extraction levels

Firstly, the cell traces extraction should be performed in the
following way: an attacker must extract TLS records from TCP
packets. It could be achieved with the tshark software.

Here the file_name should be substituted by the .pcap file
with TCP packets, whereas ouput_file is the desired ouput file
with textual representation of TLS records. Hence, a simple
regular expression can than be used for length extraction. Once
the number is an extended extraction, an attacker should then
multiply it by -1 if it is outgoing.

The resulting array of TLS records lengths should then be
transformed into Tor cells. An attacker should divide each
number by 512 and append to the cells vector as many -1 or 1
as the number of integers in the result of division. For example,
if the length of TLS record is equal to 2048, the resulted cells
vector would be [1,1,1,1].

After cell traces extraction, we will have the following
representation of the data [-1,1,1,1,-1,…]. Such arrays are then
used as features, subsequently, the actual webpages are then
used as labels. However, such arrays have different lengths.
Hence, as we are trying to simplify the process, we will append
zeros to the end of input vectors because the majority of
machine learning algorithms requires the input vectors to have
equal lengths. By means of such operation, we will equalize the
length of the cell vectors.

C. Machine Learning Module
For machine learning purposes we will use sklearn Python

library, which is the most popular Python library for machine
learning. The trained model will be used for classification of
new traffic samples.

This module works in a straightforward way. An attacker
must train the model using collected cells and then use it as a
ready model.

VI. EXPERIMENTAL SETUP
We have implemented such a scheme using Java

programming language and Python (Fig. 5). The aim of our
experiment is to show that we can deanonimize a small fraction
of users in the real world even if we don’t use cutting-edge
deanonimization techniques.

A. Experimental Environment
Consider the following situation: the group of terrorists is

trying to gain access to illegal content from a small room in the
dormitory. The list of resources was provided by the Group-IB
cybersecurity company. In our experiment there were three

users playing the role of terrorists. Each of them visited the
resources from the list according to the following rules: only
single tab browsing and the time spent to read the webpage is
at least 5 seconds. According to the research, this is realistic
[10]. Such rules allow us to simplify the process of splitting
packet sequences and extracting traces.

Fig. 5. UML class diagram of traffic collection module

B. Data Gathering
Before trying to deanonimize users, we made a preparation

step and collected 80 traffic instances from our list of
resources. Such a low number of traffic instances is sufficient
because bigger datasets are not increasing accuracy of classifier
on the same number of websites. We have studied 7 resources
related to drugs, weapons and extremism issues.

Our users repeated the process of reading and uploading a
webpage for 5 times for each webpage from the list. After that,
we downloaded collected packet sequences and made the data
preprocessing step. We used time-based splitting as was done
by Wang [11]. After this step, our data became ready by the
classifier.

C. Machine Learning Model
Support vector machines (SVM) are supervised learning

models with associated learning algorithms that analyze data
used for classification and regression analysis. An SVM model
represents the examples as points in space, mapped so that the
examples of the separate categories are divided by a clear gap
that is as wide as possible. New examples are then mapped into
that same space and predicted as belonging to a category based
on which side of the gap they fall to.

We used the NuSVC machine learning algorithm with
default hyperparameters from the sklearn library. NuSVC is
Nu-Support vector classification based on the support vector
machines. This algorithm uses a parameter to control the
number of support vectors, where the parameter is an upper

209 of 251

bound of the fraction of training errors and lower bound of the
fraction of support vectors.

VII. EVALUATION

A. Evalution metrics
• True positives (tp) - equal with hit.

• False positives (fp) - equal with correct rejection.

• False negatives (fn) - type 2 error.

• Precision - the ratio tp / (tp + fp); there is an intuitive
ability of the classifier to avoid labelling a negative
sample with the positive label.

• Recall - is the ratio tp / (tp + fn); there is an intuitive
ability of the classifier to find all the positive samples
(the best is 1, the worst is 0).

• F1-score - is a weighted average of the precision and
recall (its best value is 1, worst 0) = 2 * (precision *
recall) / (precision + recall).

• Score – the subset accuracy returns in a multilabel
classification. If the entire set of predicted labels for a
sample strictly matches with the true set of labels, then
the subset accuracy is 1.0, otherwise it is 0.0.

B. Experimental results
We have performed the classifier evaluation using a built-in

sklearn function. For ethical reasons documented in Tor ethical
research [12], we’ve anonymized the websites used for the
experiment.

Our simple model achieved the following results:

TABLE II. CLASSIFIER EVALUATION

Website Precision Recall F1-score
Site_1 1.00 1.00 1.00
Site_2 0.80 0.80 0.80
Site_3 0.80 0.80 0.80
Site_4 0.50 0.40 0.44
Site_5 1.00 1.00 1.00
Site_6 0.38 0.60 0.46
Site_7 0.67 0.40 0.50
Avg/total 0.73 0.71 0.72

Overall, the total score of the classifier = 0.714

These results are not outstanding in comparison with the
state-of-the-art techniques, but they show that we can
deanonimize users with the help of a relatively simple program
and achieve sufficient accuracy.

VIII. CONCLUSION
It was shown that an attacker without cutting-edge machine

learning techniques can apply website fingerprinting. If the
attacker has enough experience and technical competence, he
will be able to build such a system and use it for the purpose of

deanonimization. Moreover, the proposed solution will work
best if the attacker sniffs Wi-Fi or other local network because
it is very easy for him to find tor related traffic and collect
traces. In this case, the deanonimization is targeted and easily
implemented.

IX. FUTURE WORK
In our future work we are going to solve the oracle problem

using the recurrent neural networks and test them in the field of
website fingerprinting attacks. Next, we are going to build a
cloud application as proposed in [13] using state-of-the art
techniques and results based on RNN research.

The main purpose of solving the oracle problem is to have a
pretty accurate splitting algorithm, which will allow to use WF
attacks even with the multi tab browsing.

REFERENCES
[1] S.M. Avdoshin, A.V. Lazarenko, “Technology of anonymous

networks,” Information Technologies, vol. 22, №4, pp. 284-291.
[2] R. Dingledine, N. Mathewson, P. Syverson, “Tor: The Second-

Generation Onion Router,” in Proceedings of the 13th USENIX Security
Symposium, August 2004, URL: http://www.onion-
router.net/Publications/tor-design.pdf (accessed: 3.04.2016).

[3] Relays and bridges in the network. Tor METRICS. Url:
https://metrics.torproject.org/networksize.html (accessed: 15.02.2016).

[4] The NSA’s Beet Trying to Hack into Tor’s Anonymous Internet For
Years. Gizmodo [Official website]. Url: http://gizmodo.com/the-nsas-
been-trying-to-hack-into-tors-anonymous-inte-1441153819 (accessed:
28.09.2015)

[5] Zakupka No0373100088714000008. State Procurements. Url:
http://zakupki.gov.ru/epz/order/notice/zkk44/view/common-
info.html?regNumber=0373100088714000008 (accessed: 2.10.2015).

[6] S.M. Avdoshin, A.V. Lazarenko, “Tor Users Deanonimization
Methods,” Information Technologies, vol. 22, №5, pp. 362-372.

[7] X. Cai, X.C. Zhang, B. Joshy, R. Johnson, «Touching from a Distance:
Website Fingerprinting Attacks and Defenses», URL:
http://www3.cs.stonybrook.edu/~xcai/fp.pdf (accessed: 20.03.2016).

[8] X.Gu, M.Yang, J.Luo, “A Novel Website Fingerprinting Attack Against
Multi-Tab Browsing Behavior,” in Computer Supported Cooperative
Work in Design (CSWD), 2015, URL:
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7230964&url=ht
tp%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumb
er%3D7230964 (accessed: 3.04.2016).

[9] A. Panchenko, F. Lanze, A. Zinnden, M. Henze, J. Pannekamp, K.
Wehrle, T. Engel, “Website Fingerprinting at Internet Scale,” URL:
https://www.comsys.rwth-aachen.de/fileadmin/papers/2016/2016-
panchenko-ndss-fingerprinting.pdf (accessed: 1.04.2016).

[10] T. Wang, “Website Fingerprinting: Attacks and Defenses”, PhD Thesis,
2015, URL:
https://uwspace.uwaterloo.ca/bitstream/handle/10012/10123/Wang_Tao.
pdf?sequence=3 (accessed: 3.04.2016).

[11] J.Nielsen, “How Long Do Users Stay on Web Pages,” URL:
https://www.nngroup.com/articles/how-long-do-users-stay-on-web-
pages/ (accessed: 20.03.2016).

[12] “Ethical Tor Research: Guidelines,” URL:
https://blog.torproject.org/blog/ethical-tor-research-guidelines (accessed:
9.05.2016).

[13] A.V. Lazarenko, “Structure of intellectual system of Tor Users
Deanonimization,” in Proceedings of Armenskogo Conference, 2016,
URL: https://www.hse.ru/data/2016/03/04/1125807985/MIEM-HSE-
2016.pdf (accessed: 3.04.2016).

210 of 251

Model of security for object-oriented and object-
attributed applications

Pavel P. Oleynik, Ph.D.
System Architect Software, Aston OJSC, Associate

Professor, Shakhty Institute (branch) of Platov Southern
Russian State Polytechnic University (NPI),

Rostov-on-Don, Russia
xsl@list.ru

Sergey M. Salibekyan, Ph.D.,
Associate Professor; Institute of Electronics and

Mathematics, Russia of Natal Research University "Higher
School of Economics", (NRU HSE),

Moscow, Russia
ssalibekyan@hse.ru

Abstract The paper provides a survey of current approaches

to the security organization and access control in various
architectural applications. The paper presents the author's
approach to the permission assignment in classes, attributes, and
objects satisfying certain criteria. This is done by using the
hierarchy of classes whose composition and structure are
described in detail in the paper. Also the applications based on
the security model already implemented by the authors are
described. At the end of the paper, it is proposed approach to the
security organization in object-attribute system

Keywords: Security of information systems; Object-oriented
applications; Object System Metamodel; Model of Permissions;
object-attribute approach.

I. INTRODUCTION
At present, the greatest number of new applications is

being developed by an object-oriented approach. This
paradigm, based on the inheritance technology, allows one to
reuse the previously developed elements implemented as
classes. The result is the reduced development time and the
costs of the whole information system. This is the key
advantage when large software products are created. Such
systems are typically multi-user systems. At the same time,
each category of user needs is only a part of the available
information, i.e. there is a problem of access control for multi-
user applications. The paper presents a model of access
control for object-oriented applications, which was developed
by the authors and repeatedly used when developing large
applications, and a model of access control in object-attribute
computation system.

The paper is organized as follows. Section 1 provides a
detailed survey of the papers devoted to similar topics. Section
2 describes the model of access control used by the author.
Section 3 shows real examples of implementation of this
model and the selected roles of users. Section 4 shows the
approach to security in Object-attribute system. At the end of
the paper, conclusions on this work and plans for the further
study are given.

II. A SURVEY OF THE AVAILABLE RESEARCH
Access permission is one of the main problems appearing

after the development of the required functionality of the
program. Therefore, there are a lot of researches representing
different approaches to solving this problem. In [1], the
authors propose an approach called business-oriented
development (Business-Driven Development), in which the
key role is given to the security configuration in the
application. The authors use the Model-Driven Architecture
(MDA) of architecture of the program. They introduce the
concepts of business processes and models at the model level,
and then determine the security policies and templates
specifying certain rules for them. The present research
describes principles of access permission assignment at the
level of platform-independent models and the further
transformation into platform-dependent models. As a result,
the authors present a set of templates for access control
providing that their configuration can be adjusted if necessary.
This solution is tested using a service-oriented architecture
(SOA). To improve the efficiency of the description of the
software product life cycle and the corresponding access
permissions, the authors propose to make several changes in
the languages of software development, such as UML and
BPEL. An advantage of the paper is the presence of a number
of charts illustrating the proposed solution, as well as many
code fragments represented as XML.

The research [2] is more practical and special. It describes
a model of adaptive security for multi-agent information
systems used by the authors in the medical information system
called HealthAgents. The authors start from describing the
classical model of access control based on Role-based access
control (RBAC) and extend it to be used in multi-agent
systems. In their research, the authors present a meta-model
that allows one to manage access control by using the UML
class diagram. To interact with the security role, the authors
introduce the base class Subject attributed with different user
permissions. The derived class represents users, organizations
and agents. An analysis of research shows that the object-
oriented approach for describing access rights is implemented.
To describe the process of applying the security policies, the
authors depict the Interaction Diagram and present, in the
XML-code, an example of test description of access rights of
certain users, stored in the system.

211 of 251

The research [3] presents the simulation of multi-level
security, integrated within a service-oriented application. In a
service-oriented architecture (SOA) that allows one to develop
different Web applications, the security is critical. The
security is provided by the Web service WS-Security
controlled by SOAP messages. These messages may be
attacked either by anonymous customers or by trusted clients.
In addition, there are other possible types of attacks, for
example, the so-called denial of service (DoS), which can
exhaust the computer resources and make the Web service
unavailable. The described security model consists of three
levels. Attention is paid to each of the levels. The obtained
multi-level security architecture is presented graphically,
namely, various security domains, as well as the composition
and structure of the software installed on each of them are
depicted. After this, various types of possible attacks at each
of the levels are discussed. They are described using the UML
Class Diagram. This allows one to analyze the results obtained
by the authors and then to design the desired security models
based on the results.

The framework for describing the security model of
service-oriented applications (SOA) is presented in [4]. The
authors focusing on the process of modeling business
processes use the BPEL notation. The security model is used
with the model of business processes. The authors argue that
the difference in approaches of a Business analyst and an
Expert to solving the security problems leads to certain
permission assignment that ultimately compromise the safety
of user data. The authors developed several annotations that
allow the security Experts to specify the security model. The
proposed approach is demonstrated by an example of business
processes of a service-oriented information system providing
data about the progress of students. The paper describes a
possible implementation of the framework, its basic modules
and rules of interaction between the experts and the system.

The paper [5] presents model-oriented templates (patterns)
of application security obtained by the authors by an analysis
of phases of the application development. The authors
examine the applications working in Internet. The templates
contain descriptions of solutions to common security
problems. The selection of an appropriate pattern depends not
only on the situation but on other templates applied earlier, i.e.
the dependence between the patterns is taken into account.
The authors present an analysis of such dependencies for the
first time. The technology of changes of General security
templates is proposed on the basis of a rule transformation
model based on previously used patterns. This allows one to
avoid inappropriate application of the security templates. The
authors identify two levels of abstraction: 1) the analysis
Phase; 2) the design Phase. Certain modules are responsible
for each of them. The software structure and the functions of
the modules are considered in detail by the authors. In
conclusion, the authors present the syntax of the language
used to describe the transformation rules of different patterns.
This is similar to languages such as SQL, OCL, LINQ. To
demonstrate the obtained results, the authors describe the test
information system containing information about the patients
of a hospital. The use chart (Use Case) shows the different
categories of users and the types of the applied security

patterns. Then the structure of the template and the class
diagram of the subject area after the application of this
decision are illustrated in the form of a UML Class Diagram.
This approach is applied to all selected templates, and the
complexity of manual and automated applications is
evaluated.

In [6], the model-oriented approach to the security applied
in the information system of electronic voting is presented.
The necessary security requirements, illustrated as the Use
Diagrams of UML, were represented as functional
requirements at the requirement formalization stage. After
this, the authors describe the step-by-step algorithm for
identifying and implementing the security requirements and
then describe each key element in detail. The paper presents
the application architecture and the main computing nodes
(computers) which play a certain role. This allows the authors
to determine possible vulnerability and attacks against which
the system should be projected. The authors also present an
approach to the security model implementation in the
information system of electronic voting. The model is
illustrated by the Sequence Diagram of language UML.

III. THE MODEL OF ACCESS CONTROL
Currently, the classical model access control based on

roles (Role-based access control, RBAC) has been widely
used. Appeared in operating systems, it has the form presented
in Fig. 1.

Fig. 1. Classical Role-based Access Control, (RBAC) model

This model is popular due to its plain architecture whose
functions are as follows. The security system (model) creates
multiple roles represented by the Role class. Each role is
assigned certain access permissions represented by the
Permission class. Permissions are assigned to different objects
in the system, which is represented by the class Object. The
user described by the User class is attached to at least one role.
Moreover, these roles can be inherited, and this can simplify
the process of assigning permissions to objects. This scheme is
optimal for delineation of rights for objects of one type, for
instance, for managing the permissions of access to file system
objects (files, directories) in an operating system.

Software applications written in object-oriented
programming languages require another security means
because it are several types of objects that can be attributed by
rights. For the optimal systems design the following optimality
criteria (OC) for features are selected:

 1. access rights for classes (OC1);

 2. access rights for class properties (OC2);

 3. access rights for objects (instances of classes)
(OC3).

212 of 251

Fig. 2 shows the structure of an optimal model of access
rights management for object-oriented applications.

Fig. 2. Classical Role-based Access Control, (RBAC) model

We will examine this figure in more detail. To describe the
objects which can be assigned the access rights, an advanced
meta-model of the object system is used. In our case, it is
enough to have information about the class and attributes
(properties) of classes. To match the selected OC1, the class
TypePermission which allows differentiating the access rights
for the classes is designed. To differentiate the rights
according to the properties of classes (see OC2), the class
MemberPermission is introduced. The Class ObjectPermission
is used to set permissions on the class copies corresponding to
the OC3 requirement.

After clearing the structure and concept implementation,
we begin to study of the final system. Figure 3 shows the
implemented-by-authors model of access control for object-
oriented applications in the form of class diagrams.

We will consider Figure 3 in more detail. All base classes
implementing the key functionality of the security system
have names ending by the suffix Base. So the
SecuritySystemRoleBase and SecuritySystemUserBase classes
form the root class for representing the roles of security and
the system user, respectively. The TypePermissionMatrixItem
class is used to specify the data type (class name) which needs
the access rights. The following permission types are used for
the classes:

1. AllowCreate allows the user to create objects (class
instance);

2. AllowCreate allows the user to delete objects (class
instance);

3. AllowNavigate allows the user to display a menu item
to view the class instance;

4. AllowRead allows the user to view objects of the class;

5. AllowWrite allows the user to replace some objects of
the class by other.

The class SecuritySystemMemberPermissionsObject
allows one to describe the rights to some individual properties
and to implement a complex security policy in which the user
is prohibited from reading certain attributes of the class.

The class SecuritySystemObjectPermissionsObject is used
to distinguish the rights between individual objects of the class

which satisfy some predicate. This condition holds in the
property Criteria.

The UML diagram shows the relationship between
associations which allows one to understand the relationship
between classes. In the end, it should be noted that the
developed security system allows an unlimited description of
the types of access rights in an object-oriented system, which
corresponds to the previously identified optimality criteria.

IV. EXAMPLES OF USING THE MODEL OF ACCESS CONTROL
To implement the above-described model of access

control, it is very important to have the meta-information of
the object system. The model is physically stored in a
relational database according to the principles described in [7].
When designing a meta-model, the key challenge was to
develop a hierarchy of meta-classes which allows one to save
information about literal types and different classes of domain
entities [8-10]. The design of the developed meta-model
allows one to realize the subject-oriented approach to
designing database applications for different fields [11-13]. In
[14-16], the use of the metamodel in the design of information
systems is described.

Then paper [17] describes the previously-used security
model for access rights applied to an information system used
to carry out scientific conferences. The model was repeatedly
employed to manage the conference "Object system"
(objectsystems.ru). Attention was paid to the security issues at
the design stage. For this, the following roles were allocated to
the users in the system:

1. The organizer of the conference. He is the main
person and the user of the system. His responsibilities include
the following tasks:

6. to register the publications;

7. to appoint the reviewer;

8. to verify the corrections made by the authors according
to the reviewer comments;

9. to check the payments;

10. to prepare the journal;

11. to send the proceeding books and certificates to the
authors of the papers.

2. The author writes an paper and sends it to the
conference. The author’s responsibility is also to revise the
paper according to the reviewer's comments about the paper
and, if necessary, to pay the registration fee.

3. The reviewer checks the author’s paper and evaluates
its quality. The review includes: to write a review indicating
the observations and recommendations for its improvement; to
formulate the review result (to accept the paper for publication
or to reject it or to send it back for revision). During the
preparation of the conference proceedings, the reviewers
award nominations to the best papers submitted to the
conference. However, in the general case, there are several
reviewers.

213 of 251

Fig. 3. UML class diagram of the implemented model of differentiation of access rights

On the basis of this information, classes and types of
access are detected for different roles. Next, instances of
classes presented in Figure 3 are created.

The paper [18] describes an information system of a
beauty salon. Studying the business logic in this field shows
that the system must implement a variety of different financial
calculations determining the costs and profitability of the
salon. This information can be presented only to the owner of
the salon. The following roles are emphasized:

1. Master. Main task of the master is to provide services to
clients. Therefore, each master can only view (read) the main
system directories such as: Operating Schedule, Record/Visit,
Schedule of visits, Customer, Leave/Sick leave/Compensatory
leave/Absence, Service, Commodity, Certificate, Price,
Interest, Master, master Category, room Category, Remnants
of goods, Work schedule, Working hours;

2. Salon administrator. The main task of a manger is to
monitor the activities of the salon. Namely, an administrator
registers clients and monitors progress of master work. In the
system, an administrator has right to add/edit/delete data from
the directories: Visiting Schedule, Customer Master, work
Schedule, Record/Attendance, Vacation/Sick

leave/Compensatory leave/Absence, Service, Commodity,
Certificate, Discount, goods Receipt, Inventory, Price, Stock,
Percent, client Category, master Category, service Category,
Document, Movement of goods, remaining Stock, Sales,
Salon, Working hours, Working time;

3. Owner of the Salon has all the same rights as the
Administrator of the salon. In addition, he has right to view
information from processed forms such as: Wages, Profit, and
Profitability. The salon owner can also introduce new users in
the system and add them only to the existing roles.

The papers [19-21] describe the information system
architecture of fast food restaurants. The key feature of
application of this class is that they are used in the places of
public service with a large number of clients. In such software
products, the critical maintenance time is very important, and
so the graphical interface of the user must be ergonomic. The
monoblocks with touch screens are often used as the hardware
platform in such systems. Therefore, in such applications,
attention is paid to the graphical interface of the user and to
the principles of security settings. In this case, the following
roles are selected:

214 of 251

 Waiter. The waiter’s main task is to create purchase
orders, to add the goods purchased by clients to the
orders, and to arrange the payment;

 Cashier. A cashier cannot create new orders but can
remove erroneous orders, view all orders issued in the
current and previous shifts, and also issue the payment
orders;

 Manager. His main task is to form consolidated
reports on the work of a shift and to add new waiters
and cashiers to the system;

 Merchandiser. The main task of the merchandiser is to
introduce information about new food into the system.

When designing each of the above-described applications,
the role of system administrator, who sets permissions for the
existing roles and creates new roles, was also assigned. In fact,
this role corresponds to the system administrator of a domain
of the Windows operating system.

V. INFORMATION SECURITY IN OA-SYSTEMS
The OA-approach to organization of the data structure and

the computational process is currently being developed. The
approach implements the object-oriented (OO) programming
principle with a few other features [22,23,24]. The OA-
approach requires new methods for the information security
organization.

Unlike the OO paradigm, in OA, there is no distinction
between the concepts of class and object. Instead of the class,
a semantic network template, which is copied to generate a
new semantic network, is used [25]. Also, there is no such a
concept as the field of an object: a data and a program are
represented as an information capsule (IC). Therefore, in the
OA-system, the data security is focused on an information
capsule (IC), and the OA-graph is protected through it. Let us
explain it. The functional unit (FU) processes an OA-graph.
Let us call it a processing FU. The processing FU usually
takes reference to one of the IC (starting IC) of the OA-graph
and produces a traversal from the IC. The traversal is
performed as follows. A FU looks for the information pair (IP)
in the IC with a specific attribute and goes by the link
contained in its load to another IC of the OA-graph. Thus, the
OA-graph security is provided through the security of the
starting IС. Any other IC may be secured in the ОА-graph
similarly to the protection of the object field in the OO
paradigm.

For the implementation of information security, a
specialized FU, called the "Guard", is required. The functions
of the FU are the control of the user accounts and roles (if the
RBAC approach is used) and the creation and control of the
access control list (ACL) for IC contained in the OA-graph.
The Guard integrated to the processing FU controls the access
permissions to a IC. The control is ensured as follows:
operating FU before the analysis, the IC passes a reference to
the access controller that checks the access permission to IC.
If the access is denied, then the Guard blocks the FU
performing the OA-graph traversal.

The access permissions information is stored in the ACL
(fig. 4). The ACL can be attributed to the IC of the OA-graph
by adding IP, called the security IP, with the attribute "ACL",
the load of the IP contains a pointer to the ACL (one ACL can
be assigned to one or several IC.). To prevent unauthorized
access to the ACLs, the manipulation protection of security IP
is included in the algorithm for controlling the processing FU:
prohibition to remove the secure IP (the IP can only be
removed during the removal of the IC, where the IP is
located), prohibition to use the reference of the secure IP load,
etc. The ACL is processed (creation, destruction and
modification) by the Guard.

The proposed mechanism well emulates the protection
class in the OO paradigm. If the secure IP is contained in the
OA-graph, then when copying the OA-graph, the secure IP
with the load containing the reference to the access rights
matrix is copied too.

ACL Pointer

PointerPointer

Guard

Access Control ListAccess Control List (ACL)

ACL

ACL

Fig. 4. The mechanism of data security in OA-computing system

The proposed methodology provides maximum flexibility
of the security mechanism of the OA-graph and corresponds to
all three criteria (OC1, OC2, OC3) applicable to the security
of OO systems, i.e., protection of OA-graph (similar to
object), a separate IC (similar to object fields), and OA-graphs
copied from the OA-graph template (similar to the class
protection). Moreover, all criteria are satisfied with a single
protection mechanism.

VI. CONCLUSIONS AND FURTHER RESEARCH
The above description shows that the established model of

differentiation of access rights can successfully be used in
applications in various domains, i.e. it is universal. Several
applications where the security comes first are currently
designed and implemented. This allows testing the proposed
model completely and modifying it in accordance with the
discovered drawbacks.

The model was developed in the OA-approach. The model
is quite simple and satisfies all criteria for the security in the
OO approach.

References

[1] Nagaratnam N., Nadalin A., Hondo M., McIntosh M., Austel P.
Business-driven application security: from modeling to managing secure
applications // IBM Systems Journal, Volume 44 Issue 4, 2005, 847-867
pp.

[2] Xiao L., Peet A., Lewis P., Dashmapatra S., Saez C., Croitoru M.,
Vicente J., Gonzalez-Velez H., Lluch i Ariet M. An Adaptive Security

215 of 251

Model for Multi-agent Systems and Application to a Clinical Trials
Environment // 31st Annual International Computer Software and
Applications Conference, COMPSAC 2007, 24-27 July 2007, Beijing,
China, 2007, 261-268 pp.

[3] Fengyu Zhao, Xin Peng, Wenyun Zhao. Multi-Tier Security Feature
Modeling for Service-Oriented Application Integration // Eighth
IEEE/ACIS International Conference on Computer and Information
Science, ICIS 2009, 1-3 June 2009, Shanghai, China, 2009, 1178-1183
pp.

[4] Saleem M.Q., Jaafar J., Hassan M.F. Model Driven Security Framework
for Definition of Security Requirements for SOA Based Applications //
2010 International Conference on Computer Applications and Industrial
Electronics (ICCAIE), 5-8 Dec. 2010, Kuala Lumpur, 2010, 266-270 pp.

[5] Shiroma Y., Washizaki H., Fukazawa Y., Kubo A., Yoshioka N. Model-
Driven Security Patterns Application Based on Dependences among
Patterns // ARES '10 International Conference on Availability,
Reliability, and Security, 15-18 Feb. 2010, Krakow, Poland, 2010, 555-
559 pp.

[6] Salini P., Kanmani S. Application of Model Oriented Security
Requirements Engineering Framework for Secure E-Voting // 2012 CSI
Sixth International Conference on Software Engineering (CONSEG), 5-
7 Sept. 2012, Indore, 2012, 1-6 pp.

[7] Oleynik P.P. Predstavlenie metamodeli ob''ektnoy sistemy v
relyatsionnoy baze dannykh. Izvestiya vysshikh uchebnykh zavedeniy.
Severo-Kavkazskiy region. Spetsvypusk «Matematicheskoe
modelirovanie i komp'yuternye tekhnologii», 2005. - S. 3-8.

[8] Oleynik P.P. Organizatsiya ierarkhii atomarnykh literal'nykh tipov v
ob''ektnoy sisteme, postroennoy na osnove RSUBD. Programmirovanie,
2009, № 4. - S. 73-80

[9] Oleynik P.P. Implementation of the Hierarchy of Atomic Literal Types
in an Object System Based of RDBMS // Programming and Computer
Software, 2009, Vol. 35, No.4, pp. 235-240.

[10] Oleynik P.P. Class Hierarchy of Object System Metamodel. Object
Systems – 2012: Proceedings of the Sixth International Theoretical and
Practical Conference. Rostov-on-Don, Russia, 10-12 May, 2012. Edited
by Pavel P. Oleynik. 37-40 pp. (In Russian),
http://objectsystems.ru/files/2012/Object_Systems_2012_Proceedings.p
df

[11] Oleynik P.P. Domain-driven design of the database structure in terms of
object system metamodel. Object Systems – 2014: Proceedings of the
Eighth International Theoretical and Practical Conference (Rostov-on-
Don, 10-12 May, 2014) / Edited by Pavel P. Oleynik. – Russia, Rostov-
onDon: SI (b) SRSPU (NPI), 2014. - pp. 41-46. (In Russian),
http://objectsystems.ru/files/2014/Object_Systems_2014_Proceedings.p
df

[12] Oleynik P.P. Using metamodel of object system for domain-driven
design the database structure // Proceedings of 12th IEEE East-West
Design & Test Symposium (EWDTS’2014), Kiev, Ukraine, September
26 – 29, 2014, DOI: 10.1109/EWDTS.2014.7027052

[13] Oleynik P.P. Unified Metamodel of Object System. Object Systems –
2015: Proceedings of X International Theoretical and Practical
Conference (Rostov-on-Don, 10-12 May, 2015) / Edited by Pavel P.
Oleynik. – Russia, Rostov-on-Don: SI (b) SRSPU (NPI), 2015.,
http://objectsystems.ru/files/2015/Object_Systems_2015_Proceedings.p
df

[14] Oleynik P.P. The Elements of Development Environment for
Information Systems Based on Metamodel of Object System. Business
Informatics. 2013. №4(26). – pp. 69-76. (In Russian),
http://bijournal.hse.ru/data/2014/01/16/1326593606/1BI%204(26)%202
013.pdf

[15] Oleynik P.P., Kurakov Yu.I. The Concept Creation Service Corporate
Information Systems of Economic Industrial Energy Cluster. Applied
Informatics. 2014. №6. 5-23 pp. (In Russian)

[16] Kurakov Y. I., Oleynik P. P. Implementation method a unified
information system of economic production and energy cluster in coal
industry // Mining information-analytical Bulletin (scientific and
technical journal). 6 2015, pp. 260-273.

[17] Borodina N.E., Oleynik P.P., Galiaskarov E.G. Reengineering of Object
Model by the Example of Information System for Cataloging Scientific
Articles for International Conferences. Object Systems – 2014 (Winter
session): Proceedings of IX International Theoretical and Practical
Conference (Rostov-on-Don, 10-12 December, 2014) / Edited by Pavel
P. Oleynik. – Russia, Rostov-on-Don: SI (b) SRSPU (NPI), 2014, 17-23
pp. (In Russian),
http://objectsystems.ru/files/2014WS/Object_Systems_2014_Winter_ses
sion_Proceedings.pdf

[18] Kozlova K.O., Borodina N.E., Galiaskarov E.G., Oleynik P.P. Domain-
Driven Design of Information System of a Beauty Salon in Terms of
Unified Metamodel of Object System. Object Systems – 2015:
Proceedings of X International Theoretical and Practical Conference
(Rostov-on-Don, 10-12 May, 2015) / Edited by Pavel P. Oleynik. –
Russia, Rostov-on-Don: SI (b) SRSPU (NPI), 2015. (In Russian),
http://objectsystems.ru/files/2015/Object_Systems_2015_Proceedings.p
df

[19] Oleynik P.P, Yuzefova S.Yu., Nikolenko O.I. Experience in Designing
an Information System for Fast Food Restaurants. Object Systems –
2014 (Winter session): Proceedings of IX International Theoretical and
Practical Conference (Rostov-on-Don, 10-12 December, 2014) / Edited
by Pavel P. Oleynik. – Russia, Rostov-on-Don: SI (b) SRSPU (NPI),
2014. – pp. 12-16. (In Russian),
http://objectsystems.ru/files/2014WS/Object_Systems_2014_Winter_ses
sion_Proceedings.pdf

[20] Nikolenko O.I., Oleynik P.P, Yuzefova S.Yu. Prototyping and
Implementation of Graphical Order Form for the Information System of
Fast Food Restaurants. Object Systems – 2015: Proceedings of X
International Theoretical and Practical Conference (Rostov-on-Don, 10-
12 May, 2015) / Edited by Pavel P. Oleynik. – Russia, Rostov-on-Don:
SI (b) SRSPU (NPI), 2015. (In Russian),
http://objectsystems.ru/files/2015/Object_Systems_2015_Proceedings.p
df

[21] Pavel P. Oleynik, Olga I. Nikolenko, Svetlana Yu. Yuzefova.
Information System for Fast Food Restaurants. Engineering and
Technology. Vol. 2, No. 4, 2015, pp. 186-191.,
http://article.aascit.org/file/pdf/9020895.pdf

[22] P. B. Panfilow, S. M. Salibekyan Dataflow Computing and its Impact on
Automation Applications. Procedia Engineering. Volume 69 (2014),
Pages 1286-1295. URL:
http://www.sciencedirect.com/science/article/pii/S1877705814003671

[23] Pavel P. Oleynik, Sergey M. Salibekyan. The Approaches to
Implementation of Patterns of Static Object Models for Database
Applications: Existing Solutions and Unified Testing Model.
International Journal of Applied Engineering Research ISSN 0973-
4562 Volume 10, Number 24 (2015) pp 45513-45516.

[24] Salibekyan S.M., Panfilov P. B Object-Attribute Architecture is a New
Approach to Object Systems Developing // Information technologies 2,
2012, pp 8-14

[25] Salibekyan S. M., Belousov, A. Yu., Graph Database Implemented by
Object-Attribute Approach // Object systems – 2014 (winter session):
materials of IX International scientific-practical conference (Rostov-on-
don, 10-12 may 2014) / ed. by P. P. Oleynik. - Rostov-on-don: SHI (f)
SRSTU (NPI) to them. M. I. Platov, 2014. S. 70-76 URL:
http://objectsystems.ru/files/2014WS/Object_Systems_2014_Winter_ses
sion_Proceedings.pdf

216 of 251

Dynamic Key and Signature Generation According to the Starting Time

Andrey Kiryantsev
Volga Region State University of Telecommunications and

Informatics Moskovskoe sh. 77, Samara, Russia
Email: reyzor2142@gmail.com

Irina Stefanova
Volga Region State University of Telecommunications and

Informatics Moskovskoe sh. 77, Samara, Russia
Email: aistvt@mail.ru

Annotation – the article describes the algorithm of data

encryption and digital signature algorithm. The keys are

dynamically generated according to the starting time.

Keywords – cryptography, encryption, decryption, digital

protection, digital signature, symmetric and asymmetric

cryptosystems.

I. INTRODUCTION
The necessity to secure information brings us to the

basic concepts of cryptography: digital protection, digital
signature and encryption. As you know, cryptography is
engaged in search for solutions to such important security
issues as confidentiality, identity verification, integrity and
control of participants in the interaction.

Encryption is the process of converting data into a form
which is not possible to read. It uses the encryption –
decryption keys. The encryption process of the original
message helps to ensure privacy by keeping information
secret from someone it is not addressed to. A cryptographic
system is formed by a set of conversion algorithms and keys
used by these algorithms for encryption, key management
system, as well as the original and the encrypted texts.
Cryptosystems ensure the secrecy of transmitted messages
as well as their authenticity and user’s identity verification.
The article offers new ideas for dynamic generation of keys
and signatures depending on the starting time of the
interaction between two subscribers.

II. APPROACHES TO THE CONSTRUCTION OF
CRYPTOSYSTEMS

There are two methods of cryptographic information
processing with the keys – symmetric and asymmetric [1].
A symmetric (private) method implies that a sender and a
receiver use the same key which they agree before the
interaction for both encryption and decryption. If the key
has not been compromised, then decryption database
automatically verifies the sender, since it is only the sender
who has the key which he/she can use to encrypt
information, and it is only the recipient who has the key to
decrypt the information.

The symmetric encryption algorithms use keys that are
not very long and can quickly encrypt large amounts of
data. Symmetric encryption systems have a common
drawback – that is the complexity of the keys distribution.
When an external party intercepts the key, the system of
cryptographic protection will be compromised. When it is
necessary to replace a key, it should be sent confidentially

to the participants of the encryption. Obviously, this method
is not suitable when one needs to establish a secure
connection with a large number of Internet subscribers. The
main problems of this method are generation and secure
transmitting of keys to the participants of the interaction.
The question is what way it is better to establish a secure
communication channel between the participants of
interaction while sending keys through insecure
communication channels. The lack of a secure key exchange
method limits the expansion of symmetric methods of
encryption in the Internet.

This problem is resolved in an asymmetric (public)
encryption method. In an asymmetric system the document
is encrypted with one key and decrypted with another one.
Each participant of the information transfer generates two
random numbers (private and public keys). The public key
is transmitted through public communication channels to
another participant of the encryption, but the private key is
kept in secret. The sender encrypts the message with the
public key of the recipient, and it is only the private key
owner who may decrypt the message. This method is
suitable for a wide usage. If each Internet user is assigned to
his/her own pair of keys and the public keys are published
as the numbers in the phone book, almost all users can
exchange encrypted messages with each other.

All asymmetric cryptosystems are the object of direct
attacks through the direct key enumeration, and, therefore,
they must use much longer keys than those used in
symmetric cryptosystems to provide an equivalent level of
protection. This immediately affects the calculation
resources required for encryption.

There is the necessity to verify that there is no distortion
into the information in an e-document. Digital signature is
used for this sake. Digital signature in a cryptosystem
protects a document from changes or substitution and,
thereby, guarantees its validity. It is a line, where the
attributes of the document (for example, checksum of a file,
etc.) and its contents are encoded, so that any change in the
file even with the unchanged signature may be detected.
When a document is protected by a digital signature, it
verifies the document itself along with the private key of the
sender, and the recipient's public key. The owner of a
private key is the only one who can sign the document
correctly. To verify the digital signature of the document,
the recipient uses the sender's public key. No other key pair
is suitable for verification. Thus, unlike an ordinary
signature, digital signature depends on the document and the

217 of 251

sender's public key. Therefore, it is several times safer than
an ordinary signature and a seal.

Despite the fact that digital signature certifies the
authenticity of the document, it does not protect it from
unauthorized reading. Both symmetric and asymmetric
encryption systems have their advantages and
disadvantages. The shortcomings of symmetric encryption
are in the complexity of replacing a compromised key, and
the disadvantages of asymmetric encryption are in a
relatively low speed of work.

These problems are addressed to the encryption systems
that use the combined algorithm, which enables high-speed
encryption and sending of the encryption keys through the
public channels. In order to avoid low-speed of asymmetric
encryption algorithms, a temporary symmetric key is
generated for each message. The message is encrypted with
a temporary symmetric session key. Then this session key is
encrypted with a public asymmetric key of a recipient and
an asymmetric encryption algorithm. Due to the fact that a
session key is much shorter than a message itself, the time
of encryption will be relatively short. After that this
encrypted session key is transferred to the recipient along
with the encrypted message. The recipient uses the same
asymmetric encryption algorithm and his/her private key to
decrypt the session key and the received session key is used
to decrypt the message.

The mentioned above makes it obvious that integrated
encryption algorithms currently have a promising line of
development in modern cryptosystems.

III. ALGORITM DESCRIPTION
It is time to consider the operation principle of the

suggested method to data encryption with a session
symmetric key, generated at the moment of interaction
between two subscribers. A session key is encrypted with
the exposed asymmetric key of the recipient and Diffie-
Hellman’s algorithm [2]. The algorithm allows two sides to
get common private key through the channel that is
unprotected from discreet listening, but it is protected from
the channel substitution. The received key can be used for
message exchange through symmetric encryption.

Diffie-Hellman’s algorithm uses one-sided function
F(X) with two attributes:

− there is a polynomial algorithm of values F(Х),
− there is not a polynomial algorithm of inverted

function F(X).
To put simply, this function doesn’t include decryption

of the encrypted text.
Figure 1 presents encryption’s block diagram according

to the Diffie-Hellman’s algorithm.
The function with a secret is the function Fk; it depends

on k and has the following properties: there is a polynomial
algorithm of calculation Fk(X) value for any k and X, and
there is not a polynomial algorithm of the inverted Fk for
unknown k; but there is a polynomial algorithm of inverted
Fk for the known k parameter.

Fig. 1. Block diagram of Diffie-Hellman algorithm

The algorithm operation is presented in the following

example. Andrew defines variables g and p which are large
numbers. And he also conceives his private number a and
calculates the value A using the formula
 𝐴 = 𝑔𝑎𝑚𝑜𝑑 𝑝 (1).
Then he transmits it to Natasha along with the conceived
values of 𝑔 and p. Natasha conceives her private number b.
Through the same formula as Andrew does, she calculates
her public number
 𝐵 = 𝑔𝑏𝑚𝑜𝑑 𝑝 (2)
and sends to Andrew. It is possible that the malicious user
can get both values, but he will not modify them as he is
unable to interfere in broadcasting process.

At the second stage Natasha calculates the value of K
having number B and the received number A:
 𝐾 = 𝐴𝑏𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝 , (3)
This is the key for encryption. Then, Andrew calculates his
key using number B received from Natasha and his
calculated number A
 𝐾 = 𝐵𝑎𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝. (4)

Start

Open parameters setting
p and q

End

Random number generation of
 a (or b)

 Key computation A, B
𝐴 = 𝑔𝑎𝑚𝑜𝑑 𝑝 , 𝐵 = 𝑔𝑏𝑚𝑜𝑑 𝑝

Public keys exchange
 A and B

Private key computation
𝐾 = 𝐴𝑏𝑚𝑜𝑑 𝑝 = 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝

218 of 251

You can see in examples (3) and (4) that Andrew gets
the same number k, as Natasha. As a result, there is a root
key that will be used in generating temporary key and
message’s signature in the future.

If the root key is used as a private key, a malefactor will
be forced to meet with a practically undecidable (for a
reasonable period of time) problem of calculating the
number 𝑔𝑎𝑏𝑚𝑜𝑑 𝑝 having numbers 𝐴 = 𝑔𝑎𝑚𝑜𝑑 𝑝 and
𝐵 = 𝑔𝑏𝑚𝑜𝑑 𝑝, intercepted in the public channel if p, a and
b are large enough numbers.

Now it is time to explain the process of temporary key
generation. It follows the same HMAC (hash-based message
authentication code) algorithm [3] and its standard
RFC2104. According to them, information integrity is
verified with private key. This standard allows to ensure that
transmittable or stored at unreliable environment data were
not change by unknown persons.

The HMAC algorithm contains the standard, describing
the process of data exchange, the process of data integrity
verification with the help of private key and hash-function.
Depending on the hash-function we can distinguish HMAC-
MD5, HMDC-SH1 etc.

In the article the hash-function is generated from the root
key by the suggested algorithm, for example: md5 (rootKey
+ Time). Function md5 is a modification of hash-function
MD5. While generating hash-function the time, particularly
its second value, will be rounded. As it is known, time is
presented in the format HH:MM:SS and rounding happens
in the last format’s unit. If there are more than 30 sec. in the
value of starting time SS, then they are rounded upward, if
there are less than 30 sec., then they are rounded downward.
The message will be encrypted exactly with this key, and
also through this algorithm one can generate digital
signature of a message to verify the message. As a result we
get a resistant system of dynamic keys for messages
encryption and signature, where participants do not need to
exchange some data for generation and root key generally.

A generalized algorithm of messages encryption in
cryptosystem with the key and signature generation is
presented on Figure 2.

IV. WORKING PROTOTYPE
Web technologies and JavaScript language were chosen

for prototype realization. Due to it, the program will become
a cross-platform and can be loaded everywhere, when there
is a support of JavaScript specification (EcmaScript 5) and
HTML 4 support. The JavaScript language was not chosen
randomly, as at this moment it is the only “native” language
for browser and it is supported by all browsers on default.

Below we can consider fragments of prototype code as
an example.

Mass Math.random is used for generation of a large
number p with Diffie-Hellman algorithm.

This approach is justified by the fact that the JavaScript
language cannot work with large numbers (BigInt), as the
algorithm requires it.

Fig 2. Block diagram of encryption by the key and signature
generation algorithm

The code generation example of a large number in

JavaScript language looks as this:
random(1000000000,9999999999) + '' +

random(1000000000,9999999999) + '' +

random(1000000000,9999999999) + '' +
random(1000000000,9999999999) + '' +

random(1000000000,9999999999) + '' +
random(1000000000,9999999999) + '' +

 random(1000000000,9999999999) + '' +
random(10000000,99999999);

 Then the code of message’s generation to JavaScript
language looks as this:

 $scope.getSign = function(){
 return md5($scope.msg + $scope.username +

bigInt2str(a_sec, 10).toString() + datetime);
 }
Function md5(arg) returns the hash line from argument

arg. Function bigInt2str is a function that allows to work
with large numbers in JavaScript. $scope.username allows
to insert a username. In this way we get a unique signature
for each user. There is a screenshot of text values’
substitution and the result of the performed program:

Start

Generating
md5 hash

End

Password generation with
Diffie-Hellman prorocol

Generating
digital signature

Sending the encrypted
message

219 of 251

The time test of script was conducted through the

prototype. In this test the following e-devices were used:
1) The computer – INTRL i5 (Windows 10/chrome)
2) The phone – Nexus 5 (android 6.0.1/ chrome)
3) The phone – Samsung galaxy ace (android 4.2.2/

browser).
In table 1 the results of the algorithm individual steps are

provided. The steps are applied in different application. In
Figure 3 there is a diagram that visualizes experiment
results. From the table analysis it is obvious that the
algorithm works very fast on the mobile phones

Hash-function algorithm MD5 is not selected
occasionally, it is the fastest, the most common one. It has
the simplest hashing algorithm that may be used for
signature generation. Besides MD5 possesses a very
interesting property. For instance, if at least one byte in a
line is changed, the view of the resulting hash line will
change dramatically.

Table 1. Time of algorithm application in different
devices at different stages (msec).

The logic of the encryption algorithm can be considered

in five steps. After the data are received there is the process
of preparing the data flow to the calculations.

Step 1. First, the flow line requires alignment for
hashing. At the end of the stream one on-bit and the
necessary number of off-bits are registered. After the input
data alignment, the length of the stream should be equal to
512 * N + 448.

Step 2. At the end of the message one should add 64-bit
result for alignment. There are 4 low-order bits which are
put first, and then high-order bits follow. If the stream
length exceeds 264– 1, only low-order bits are written down.
After that, the stream length becomes 512-fold. The
calculations are made with data flow presented as an array
of 512-bit words.

Step 3. Then it is necessary to initialize four 32-bit
variables (A, B, C, D) and to set their initial values with hex
numbers: "low-order byte comes first". For example,

A = 01 23 45 67; // 67452301h

B = 89 AB CD EF; // EFCDAB89h

C = FE DC BA 98; // 98BADCFEh

D = 76 54 32 10. // 10325476h
The results of intermediate calculations will be stored in

these variables. Then it is time to initialize constants and
functions required in further calculations

Four laps will require 4 functions with the logical
operators XOR (⊕), AND (∧), OR (∨), NOT (¬):

 𝐹𝑢𝑛𝐹(𝑋,𝑌,𝑍) = (𝑋 ∧ 𝑌) ∨ (¬𝑋 ∧ 𝑍),

𝐹𝑢𝑛𝐺(𝑋,𝑌,𝑍) = (𝑋 ∧ 𝑍) ∨ (¬𝑍 ∧ Y),

𝐹𝑢𝑛𝐻(𝑋,𝑌,𝑍) = (𝑋 ⊕ Y ⊕ 𝑍),

𝐹𝑢𝑛𝐼(𝑋,𝑌,𝑍) = 𝑌 ⊕ (¬𝑍 ∨ X).

The 64-element table of invariables is structured as
follows:

𝑇[𝑛] = 𝑖𝑛𝑡(232 ∙ |sin (𝑛)|)

Each 512-bit block of the flow passes through 4 stages
of calculation, 16 laps each. For this the block is presented
as an array X of sixteen 32-bit words. All the laps are of the
same type, but they differ in the rotate shift by s bits of a 32-
bit argument. The number s is defined for each lap.

Step 4. Steps in loop calculations. Put n element into the
block from an array of five 12-bit blocks. The values A, B,
C, D, remain after operations with the previous blocks (or
their values in case the array goes first).

AA = A

BB = B

CC = C

DD = D
Sum the values with the result of the previous loop:

A = AA + A

B = BB + B

C = CC + C

D = DD + d
After the loop ends, check if there are any blocks for

calculations left. If there are some, go to the next array
element (n+1) and the loop repeats.

Step 5. The result of the hash-function calculation is
formed in ABCD buffer. If the result starts with the low-
order byte A, one gets MD-5 hash.

Figure 4 presents a screenshot of md5 hash function
working prototype in the CRYP2CHAT app [4]. It resorts to
a modified MD5 hash function.

220 of 251

Fig 3. Histogram of algorithm performance time by different e-devices

Fig 4. Prototype of Application work

221 of 251

V. EVALUATION OF ALGORITHM
EFFECTIVENESS

The cryptographic strength of the proposed algorithm for
keys and signatures generation depends on the encryption
method that combines the algorithms of symmetric and
asymmetric encryption.

The cryptographic strength is a quantitative
characteristic of encryption algorithms – intrusion into a
particular algorithm requires a certain number of resources.
This is the amount of information and time required to
perform the attack, as well as the memory required to store
information used in the attack.

An attacking encryption algorithm typically aims at
solving the following tasks:

− to get public text version from the encrypted one,
− to calculate the encryption key.

The second task is usually more challenging than the
first one. However, having the encryption key the
cryptanalyst can later decrypt all the data encrypted with a
key.

The algorithm is considered to be secure if a successful
attack at it requires from an attacker unattainable calculating
resources in practice, or open intercepted and encrypted
messages, or if decryption is so time-consuming that
currently protected information would lose its relevance. In
most cases, the cryptographic strength cannot be
mathematically proven, you can only prove the vulnerability
of the algorithm or calculate the time required to find a key.
For this sake one should take into consideration the
difficulty of a given mathematical problem that serves as the
basis for the encryption algorithm.

To estimate the time of password configuration to gain
an unauthorized access to the channel of two subscribers,
we have the equation [5]:

 𝑡 = 𝑁0+𝑁1+𝑁2+𝑁𝐿

𝑉
 (5)

It estimates time in the worst case. Here t is the time
required for the guaranteed password configuration, V is the
number of combinations per second in brute search, N is the
number of characters in the configurated password, L is the
length of the password.

In case with md5 algorithm the number of characters is
36. This number includes 26 symbols-letters in the Latin
alphabet (a...z) and 10 symbols of Arabic numerals (0..9).
The number of symbols in the secure key for encryption or
signing is 32. To calculate speed of the brute symbol search,
we'll take an intel i7 and a video card Radeon HD5850 1024
MB. Their power equals to 65 000 passwords per second,
calculated empirically.

As a result of substitution of values in (5) the estimated
time will be:

𝑡 =
360 + 361 + 362 + 3632

6500
= 9.745х1044с.

Converting the seconds into a larger value, we get the
result 3.09 × 1037 years.

Conclusion: this algorithm can be considered secure
from attacks and encryption key calculation, as the time for
the key search outweighs the actual time of work with data.

In sources [5, 6] an algorythm of dynamic key
generation is offered. It is presented as a self-authenticated
method with timestamp. In the patent the author employs
asymmetric encryption-decryption algorithm. In contrast in
this article the described algorithm is symmetric. This helps
exclude sending and receiving any key, which increases
security of data transmission. Moreover, Google team uses
slightly similar algorithm of key generation. However, its
development group employs another hash function that is
not connected with encryption. Additionally, password
configuration is a part of the algorithm that we provide.

CONCLUSION
The algorithm for temporary keys and signatures

generation can be used to teach students the basics of
cryptography, and used in real projects. Coupled with a
VPN or TOR networks it becomes more secure due to the
new encryption level [7].

REFERENCES
1. Mikhail Adamenko. The basics of classical cryptology.

The secrets of ciphers and codes. Publishing DMK. p.
2014 - 256.

2. Diffie, W. and Hellman, M. E. New directions in

cryptography, 1976.
3. Maurer U.M, Wolf S. The Diffie-Hellman Protocol.

Retrieved. Designs, Codes and Cryptography, 2000. T.
№ 2-3. p.147-171.

4. The construction of the password generator. Retrieved
from www.scritub.com/limba/rusa/ 194620205.php,
2013-08-02 (accessed February, 2016).

5. Self-authenticated method with timestamp. Patent US
20140325225 A1. Retrieved from http://www.
google.com/patents/US20140325225 (accessed Oct.
30, 2014).

6. SELF-AUTHENTICATED METHOD WITH TIMESTAMP -
DIAGRAM, SCHEMATIC, AND IMAGE 06. Retrieved from
http://www.faqs.org/patents/imgfull/20140325225_06
(accessed Oct. 30, 2014 Sheet 5 of 5).

7. Kiryantsev A. C., Stefanova I. A. Constructing Private
Service with CRYP2CHAT application // Proceedings of
the Institute for System Programming of RAS, Volume
27. Issue 3. 2015. p. 279-290.

.

222 of 251

http://www/
http://www.faqs.org/patents/imgfull/20140325225_06

Investigating Concurrency in the Co-Simulation
Orchestration Engine for INTO-CPS

Casper Thule
Department of Engineering

Aarhus University
Aarhus, Denmark

Email: casper.thule@eng.au.dk

Peter Gorm Larsen
Department of Engineering

Aarhus University
Aarhus, Denmark

Email: pgl@eng.au.dk

Abstract—The development of Cyber-Physical Systems often
involves cyber elements controlling physical entities, and this
interaction is challenging. It can be useful to create models of
the constituent components and simulate these in what is called
a co-simulation, as it can help to identify undesired behaviour.
The Functional Mock-up Interface describes a standard for con-
stituent components participating in such a co-simulation. This
paper describes an exploration of whether different concurrency
features (actors, parallel collections, and futures) increase the
performance of an existing Co-Simulation Orchestration Engine
performing co-simulations. The analysis showed that concurrency
can be used to increase the performance in some cases, but in
order to achieve optimal performance, it is necessary to combine
different strategies.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) need to have close interac-
tion between computer-based cyber parts controlling physical
artefacts in a dependable way. In order to develop CPSs in
a dependable manner it can be useful to create models of
constituent components that jointly form the system. A con-
stituent model is an abstract description of a constituent, where
the irrelevant details are abstracted away. Constituent models
can be described in very different forms depending upon their
nature, but here we will restrict ourselves to Discrete Event
(DE) and Continuous-Time (CT) models representing very
different disciplines. Such constituent models can then be used
in a collaborative simulation (a co-simulation), which is able
to couple models created in different formalisms. Thereby it
is possible to simulate the entire system by simulating the
components and exchange data as the common simulated time
is progressing.

Typically such co-simulations are organised with a master-
slave architecture where a Master Algorithm (MA) is used
to manage the simulation. Figure 1 shows an example of
four slaves, their dependencies, and input/output ports. It
is the responsibility of the MA and thereby the master to
orchestrate the simulation. This means to allow the different
slaves to progress for determined time steps and resolve the
dependencies between steps. A co-simulation often consists
of three phases: Initialisation, simulation, and tear down. In
the initialisation phase the master gets the properties of the
slaves, chooses an MA, initialises the slaves, and establishes
the communication channels. Next, in the simulation phase

the master retrieves output values from the slaves, sets input
values on the slaves, and invokes them to run a simulation
step with a specific time step size. The slaves must respond
with a status whether the step was accepted. In this phase, it
can be necessary to perform a rollback1 (if possible) for the
relevant slave and run the simulation again with a different
step size. Lastly, the outputs from the slaves are retrieved and
the process repeats until a configured end time is reached.
The final phase is tear down, where the slaves are shut down,
memory is released, results are reported and so forth.

Fig. 1. Example of a simulated CPS with dependencies between slaves (the
gray boxes) via their respective ports (the black ellipses) [1].

A challenge in using co-simulation as part of developing
CPSs is that many complex multi-disciplinary systems cannot
be modelled naturally in one simulation tool alone, but require
several specialised simulation tools, that each do their part
[2]. This makes it necessary to develop solutions tailored for
a specific purpose instead of generalised solutions, which is
expensive.

The Functional Mock-up Interface (FMI) was created to
solve these challenges, as it is a tool-independent standard
for co-simulation [3]. The standard provides and describes
C interfaces, that can be partly or fully implemented by a
component, which is then called a Functional Mock-up Unit
(FMU). This makes it possible to create generalised solutions,
as the components can contain their own solvers, and still

1A rollback can be necessary e.g. if a slave rejects a step size.

223 of 251

adhere to FMI. The INTO-CPS project2 [4] makes use of
FMI for a simulation kernel of a tool suite ranging from
original requirements expressed in SysML over heterogeneous
constituent models that can be co-simulated and gradually
moved down to their corresponding realisations.

When developing CPSs using co-simulation, it is desirable
to execute the simulations as fast as possible to enable the
use of increasingly complex models and try a greater range
of test scenarios. As many processors today have multiple
cores [5] concurrency may increase the performance of an
application, but it also introduces overhead. It is therefore
of keen interest to determine, how concurrency can be used
to potentially improve the performance. The performance in
this context is considered to be how fast a co-simulation is
performed, and is therefore measured in terms of time.

This paper describes how the usage of concurrency
was implemented in an existing application called the Co-
Simulation Orchestration Engine (COE), which orchestrates
co-simulations using FMI. Different implementations were
performed in Scala using three different concurrency features:
Akka Actors [6], futures [7], and parallel collections [8]. These
were chosen because they offer different capabilities that can
be taken advantage of in the COE, and therefore the trade-off
between features and performance is interesting. One of the
most important capabilities is composability, because FMUs
can have different step sizes and rollbacks can be necessary,
which can lead to complicated scenarios. Following is a short
description of the concurrency features:
Parallel Collections: The motivation behind adding parallel
collections to Scala was to provide a familiar and simple high-
level abstraction to parallel programming [8]. Parallel collec-
tions are conceptually simple to use, as a regular collection can
be converted to a parallel collection by invoking the function
“par”. Once it is a parallel collection, functions such as map
and filter are executed concurrently. Parallel collections are
considered less composable than the other implementations,
as the results are gathered in a blocking fashion.
Futures: A future is a placeholder for a value, that is the
result of some concurrent calculation, and it can be accessed
synchronously or asynchronously. The term “future” was
originally proposed by Baker and Hewitt [9] in the context
of garbage collection of processes. As opposed to parallel
collections, it is possible to chain futures, such that when a
future has been computed, the computed value is passed to the
chained future.
Actors: The Actor Model was introduced as an architecture
to efficiently run programs with a high degree of parallelism
without the need for semaphores [10]. An actor is an au-
tonomous object that encapsulates data, methods, a thread,
a mailbox, and an address [11]. Actor methods can return
futures, and therefore offer the same composability as futures
in this regard. Actors also provide additional composable
features, such as hierarchical structures, remote capabilities,

2Public deliverables and more information regarding the INTO-CPS project
can be retrieved from http://into-cps.au.dk.

message parsing, and so on.
The paper is structured as follows: Section II describes the

initial implementation and the implementations using concur-
rency. Afterwards, Section III describes how the implementa-
tions were tested and presents the results. Then related work
is treated in Section IV. Lastly, the work is summarised in
Section V and the future work is outlined in Section VI.

II. CO-SIMULATION ORCHESTRATION ENGINE
IMPLEMENTATIONS

This section concerns the implementations of the COE
application3. It focuses on the MA part of the implementations,
as the initialisation and tear down phases are unaltered for the
implementations described below.

The COE application runs as a web server using HTTP. The
following HTTP requests are performed in the given order to
run a simulation:
Initialise: A configuration file is sent to the web server.
The configuration file contains the FMUs to be used in the
simulation, the mapping between input and output values, and
whether to use a fixed or variable step size.
Simulate: This request starts a simulation.
Results: This requests returns the result and duration of a
given simulation.

There are different implementations of the MA in the
COE: A sequential implementation, and three implementations
that execute concurrently, as described above. These different
implementations were developed in order to test and compare
the performance of the COE in a sequential/concurrent setting
and determine whether using concurrency could improve the
performance.

A. Sequential Implementation

The sequential implementation of the MA consists of the
following steps in the given order:
Resolve inputs: This step consists of mapping the outputs of
the FMUs to the inputs of the other FMUs.
Set inputs: The input values determined in the previous step
are passed to the FMU instances in this step.
Serialize state: In this step the states of the FMUs are
serialized, so it is possible to perform a rollback in case of an
error.
Get step size: If variable step size is supported by the FMUs,
then the maximum step size is retrieved in this step. Otherwise
a configured fixed step size is used.
Do step: The FMU instances are invoked to perform a step
with the step size determined in the previous step. This
function contains the most extensive calculations performed
by the FMUs.
Process result: The return values from the previous invoca-
tions are analysed and in case of any errors a roll back is
performed or the simulation is terminated.
Get state: The state in terms of output values is retrieved in
this step, and thereby the next iteration can begin.

3See [12] for further details on the implementation.

224 of 251

In the sequential implementation a mapping operation is
performed over the FMU instances in every step except the
“Process result” step, where it depends on whether errors
are encountered and possibly which errors. This sums to six,
possibly seven, mapping operations over the FMU instances.

B. Implementations with Concurrency

When implementing concurrency in the COE it is desirable
that as much work as possible is performed in every concurrent
invocation. To allow for a better usage of concurrency some
functions should be grouped, such that a group of functions
can be invoked concurrently. If concurrency was used in the
sequential implementation to invoke the FMUs without refac-
toring the implementation, it would be necessary to invoke
every step in different concurrent invocations. This would
result in several thread initialisation and synchronizations per
simulation step, where a synchronization is a waiting operation
until all threads have finished computing. An example of this
is shown in Figure 2. The figure shows a possible usage
of concurrency based on the sequential implementation with
four FMUs (black frame), where the functions “Set inputs”,
“Serialize state”, “Do step”, and “Get state” are invoked in
different concurrent invocations. The realised implementation
(orange frame) invokes the functions using the same concur-
rent invocation for a given FMU. This will be described further
below.

Fig. 2. The orange frames represents a possible usage of concurrency based
on the sequential implementation. The black frames represents the usage of
concurrency based on the implementations.

By refactoring and grouping these functions, it is possible
to reduce the thread initialisations and synchronizations. This
leads to more work performed by every spawned thread and
fewer synchronizations, which minimizes the overhead of us-
ing concurrency. It is not possible to eliminate synchronization
completely, because it is necessary to resolve the inputs for
the FMUs before progressing, which requires retrieving the
outputs from other FMUs, and therefore the simulation cannot
continue until this has been performed. Besides minimizing the
overhead of using concurrency, this grouping will also help to
minimize the number of mapping operations performed in the
steps in the sequential implementation, which is desirable to
improve the performance.

The grouping and flow of a simulation step for the imple-
mentation using concurrency is shown in Figure 3. The group-
ing was implemented in a separate and encapsulated function
that exhibits referential transparency to prevent the necessity

Fig. 3. Simulation step flow in the implementation using concurrency. The
box represents the functions grouped together.

of locking mechanisms. This grouping will be referred to as
the concurrent entity below.

By creating these concurrent entities, it was a conceptually
simple task to take advantage of the concurrency features. Fur-
thermore, it effectively reduced the mapping operations from
six, possibly seven depending on the step “Process result”, to
three. This implementation also makes it possible to include
“assignment functions” such as “Set inputs” in the concurrent
entity without lowering performance. Including “Set inputs” as
its own concurrent invocation (as shown in the black frame in
Figure 2) would lower the performance, because the overhead
of using concurrency is too high compared to invoking the
function sequentially. Using the grouping (the orange frame
in Figure 2) it improves performance to include “Set inputs”,
because it can be grouped with the other functions, e.g. “Do
step”, without additional overhead. However, the grouping
also came with a trade-off: In the sequential implementation,
the state would not be retrieved, if one or more FMUs fail
in the step called “Do step“, because it would be wasteful
due to the error(s). But in the implementation using grouped
functions, the state of the FMUs not failing in the step “Do
step” would still be retrieved, because the entities responsible
for the FMU simulation step are unaware of the state of other
entities until the synchronization phase4. This can therefore
lead to unnecessary retrieval of states.

In the sequential implementation, the flow is to calculate
the parameters necessary for the next immediate function to
be invoked on the FMUs, and then calculate the parameters
again. In the implementations with concurrency this is changed
to calculate the parameters necessary for an entire simulation
step, and invoke the concurrent entity for each FMU concur-

4Several programming languages offer the possibility to abort threads in a
case like this. However, that increases the complexity and is not considered
applicable in general.

225 of 251

rently. This makes it possible to maximize the workload for
each concurrent invocation.

III. TESTING

This section presents the evaluation of the COE described
in Section II. The purpose is to gain data that can be used
to compare performance of the sequential implementation
and the implementations using concurrency. Furthermore, as
concurrency can lead to non-determinism, it is important to
verify the simulation results, which are the output values
of the FMUs at different points in time relative to the step
sizes. For this purpose, the sequential implementation was
considered an oracle, and therefore simulation results of the
concurrent implementations were compared against simulation
results from the sequential implementation. In the longer term
the plan is to use a representation of the FMI semantics as
the ultimate oracle [13]. Here semantics is provided using the
Communicating Sequential Processes [14] and this has been
used to model check FMI for deadlock and livelock properties
using the FDR tool [15].

The following test principles were followed during testing:
Test environment: A test consisting of multiple simulations
should be performed on the same hardware with approximately
the same processes running during the test. The reason for
stating “approximately the same processes” is, that the tests
were run in a Windows environment, where it is not possible to
completely control the running processes from the Operating
System. All processes irrelevant to the execution of tests
should be disabled during the tests.
Test functions: To limit inconsistencies in the processes
running between simulations, each test should be implemented
as a single test function. This means that a test performing
simulations using the sequential implementation and the three
concurrent implementations should be implemented in one test
function to avoid undesirable interaction required to start other
tests. To further ensure usable results the COE application
should be restarted for every simulation.
Correct simulation results: The sequential implementation is
considered to be an oracle and it is assumed that it calculates
the “correct” simulation results. It should be verified that
the concurrent implementations calculate the same simulation
results as the sequential implementation.
Automation: The tests should be automated so they are easy
to replicate and less prone to manual errors. This will also
make them usable in the future development of the COE.

A. Test Setup

To enable automatic testing a framework was developed.
This enabled testing of different concurrent implementations,
evaluation of performance, and verification of consistency
between the sequential simulation results and the concurrent
simulation results. Implementation-wise this required support
for launching the different implementations with different
arguments, invoking the web servers using HTTP requests
along with gathering, and verifying the consistency of results.
To verify the consistency of results, the simulation results

TABLE I
RESULTS FROM HVAC #1

Sequential Future Par Actor
31256 29822 31980 30919

TABLE II
RESULTS FROM SI #1

Wait Sequential Future Par Actor
0.0 195 330 656 374
0.5 4468 4635 5161 4715
1.0 8758 8938 9545 9032

of the implementations using concurrency are automatically
compared to the simulation results of the sequential imple-
mentation, as this is considered an oracle.

Different FMUs were used in the tests to investigate the
performance, including a configurable FMU, that was de-
veloped to control the level of computations, which will be
described below. The tests and their corresponding FMUs are
the following:
Heating, Ventilation, and Air Conditioning (HVAC) test:
This test uses FMUs that perform the most extensive compu-
tations available in the project. The simulation consists of five
FMUs: one controller FMU and four Fan Coil Unit FMUs. A
test, which will be referred to as HVAC #1, was set up with
an end time of 1000 seconds and a step size of 0.1 seconds.
Sine Integrate Wait tests: These tests consist of three differ-
ent FMUs, that perform limited computations, and therefore
one has been modified. The FMUs are: a sine FMU generating
a sine wave, an integrate FMU that integrates the sine values,
and a modified integrate FMU. It is possible to configure the
modified integrate FMU, such that it performs busy waiting in
the “Do step” function for a given number of microseconds.
It makes use of “QueryPerformanceCounter” recommended
by Microsoft to use when high-resolution time stamps are
required with microsecond precision [16]. The configuration of
the busy wait does not have any impact on the performance of
the FMU, because it happens in the initialisation phase, which
is not part of the performance measurement. These FMUs were
used to set up three tests, referred to as SI #1/2/3, where each
simulation in the tests have an end time of 100 seconds and
time step size of 0.1 seconds. The tests are the following:

SI #1 consists of one sine FMU, one modified integrate
FMU, and three simulations: In the first simulation, the modi-
fied integrate FMU has a wait time of zero milliseconds, then
0.5 milliseconds, and lastly 1 millisecond.

SI #2 uses one sine FMU and five modified integrate FMUs
with the same simulation setup as SI #1.

SI #3 uses one sine FMU and 100 integrate FMUs.

B. Test Results

This section contains the results of the tests described in
Section III-A. The results are presented in tables, where the
unit of the numbers is milliseconds, and the table columns
represent the following: Sequential refers to the sequential im-
plementation, “Future” refers to the concurrent implementation

226 of 251

TABLE III
RESULTS FROM SI #2

Wait Sequential Future Par Actor
0.0 355 434 834 622
0.5 21904 4679 5042 4746
1.0 43356 8970 9348 9184

TABLE IV
RESULTS FROM SI #3

Sequential Future Par Actor
1464 1432 1967 1857

using futures, “Par” refers to the concurrent implementation
using parallel collections, and “Actor” refers to the concurrent
implementation using actors. The result for the HVAC test
is presented in Table I, and the results for the SI tests are
presented in Table II, III, and IV.

Based on these tests it is possible to draw some conclusions:
Executing simulations concurrently can be faster than
executing them sequentially: The results for HVAC #1, SI
#2, and SI #3 show that concurrent execution can be faster
than sequential execution.
Executing simulations sequentially can be faster than exe-
cuting them concurrently: The results for HVAC #1, SI #1,
SI #2 and SI #3 show, that sequential execution can be faster
than concurrent execution. Some of these test results contradict
the previous conclusion, and therefore it is necessary to pay
attention to the concurrency feature used.
Trade-off: An interesting discovery is that parallel collections
perform worse than futures and actors. This indicates, that
even though parallel collections offer fewer capabilities than
the other concurrency features, it does not perform faster.

IV. RELATED WORK

In order to make use of the improvements in hardware, it
is necessary to improve the software. An adage known by
“Wirth’s law” goes: “Software is getting slower more rapidly
than hardware becomes faster” [17]5. He argues, that method-
ologies are important in order to take full advantage of the
improvements in hardware. Sutter urges application developers
to take a hard look at the design of their applications and
identify places that could benefit from concurrency [19]. This
is necessary to exploit hardware capabilities, as processor
manufacturers are turning to multicore processors. Harper
et. al. conducted a study on a large-scale Publish/Subscribe
bus system, and found an overall performance of 80 percent
based on concurrency experiments [20]. Additionally, they
surveyed concurrency design patterns with the purpose of
helping developers towards the “right” patterns.

As mentioned previously, it is important to reduce commu-
nication and synchronization overhead between processes to
achieve a fast simulation. Agrawal et. al. have implemented
and evaluated three communications primitives for hard-
ware/software co-simulation and found, that a message-queue

5Wirth attributes this to a different saying by Reiser [18].

based communication backplane is preferable [21]. The other
two primitives evaluated were shared memory and file-based
sockets. Strategies that address the issue of synchronization
are also introduced by Bishop et. al., and these strategies also
deal with time management [22]. They conclude that using
the design strategies discussed can enable the development of
high-performance application-specific co-simulations. Kim et.
al. consider synchronization between components simulators
as the main reason for poor performance of HW/SW co-
simulation [23]. They propose a novel technique based on
virtual synchronization, which improves the simulator speed
and minimizes the synchronization overhead. Becker et. al.
describes an approach, where distributed communicating pro-
cesses are used for the interaction between software and hard-
ware using Unix interprocess communications mechanisms
[24]. The approach does not accurately simulate the relative
speeds of the hardware and software components, but the
author’s found this to be acceptable in their case.

V. CONCLUDING REMARKS

Using FMI it is possible to develop a generalised appli-
cation capable of performing co-simulation, thereby avoiding
the need for tailored solutions developed to support the co-
simulation of specific systems. It is desirable to perform a
co-simulation as fast as possible, as it can help to verify the
behaviour of systems or lead to the discover of undesired
behaviour. It was therefore investigated whether concurrency
could be used to improve the performance of an application
performing co-simulation. In some cases the usage of concur-
rency resulted in faster co-simulations, whereas in other cases
sequential computation offered better performance. Because of
this it is reasonable to conclude, that it is necessary to allow for
different simulation strategies to achieve the fastest simulation.
These strategies should support running simulations sequen-
tially, concurrently, or a mix of these. For example, if an FMU
that performs long-lasting computations is to be simulated with
three FMUs that performs fast computations, then it could be
optimal to run this simulation using two threads as shown in
Figure 4.

Fig. 4. Master Algorithm simulating four FMUs using an additional step
Master Algorithm.

Allowing for different strategies inevitably involves com-
puting which strategies to use. A way of assisting the choice
of strategy is to include a measure of how long-lasting the
computations performed by an FMU are within the properties
of the given FMU. However, this might be difficult to realise

227 of 251

in a practical manner, where different hardware is used. An
alternative approach is to use meta data for a given simulation.
This can be configured beforehand, or the COE can determine
it, when running the first co-simulation using the given FMUs.

VI. FUTURE WORK

In order to improve the performance of the COE and choose
when to use concurrency, there are several tasks to undertake:
Testability: Currently, the COE supports reporting the dura-
tion of an entire simulation without initialisation and reporting
of results. As these steps inevitably are part of a simulation,
they should be part of the performance tests. Additionally, the
COE should offer better granularity for performance measure-
ments. Better granularity will make it possible to examine the
performance of different parts of the application, which can aid
in finding bottlenecks and help target the development effort.
Investigate concurrency: Besides concluding that concur-
rency can/cannot improve the performance of the application
in some cases, it is interesting to investigate when concurrency
can improve the performance. Part of this investigation is to
determine, whether an increase of performance is achievable
by enabling sequential, concurrent, and mixed processing, as
mentioned in the previous section. If this investigation results
in multiple strategies being implemented in the COE, then it
should also be investigated how to configure the COE, so the
right strategy for a given simulation is chosen.
Guidelines: Since the future work concerns investigation of
concurrency, it is compelling to attempt to generalise the
lessons that will be learned and apply them on different
case studies. The hope is, that this can contribute to existing
methodologies and guidelines on using concurrency.
Semantics alignment: The continuation of the FMI semantics
work referred to above will also involve theorem proving using
the Isabelle theorem prover [25] and we hope that it will be
possible to align that with the COE work in order to use
the semantics directly as an oracle of checking conformance.
This also involves examining the semantic properties of the
concurrency features.

ACKNOWLEDGMENT

The work presented here is partially supported by the INTO-
CPS project funded by the European Commission’s Horizon
2020 programme under grant agreement number 664047.
Furthermore, the authors would like to thank Nick Battle for
reviewing and providing input to this paper.

REFERENCES

[1] D. Broman, C. Brooks, L. Greenberg, E. Lee, M. Masin, S. Tripakis,
and M. Wetter, “Determinate composition of fmus for co-simulation,” in
Embedded Software (EMSOFT), 2013 Proceedings of the International
Conference on, Sept 2013, pp. 1–12.

[2] J. Bastian, C. Clauss, S. Wolf, and P. Schneider, “Master for Co-
Simulation Using FMI,” in 8th International Modelica Conference, 2011.

[3] FMI development group, “Functional mock-up interface for model
exchange and co-simulation 2.0,” Modelica, Tech. Rep. Version 2.0, July
2014.

[4] J. Fitzgerald, C. Gamble, P. G. Larsen, K. Pierce, and J. Woodcock,
“Cyber-Physical Systems design: Formal Foundations, Methods and
Integrated Tool Chains,” in FormaliSE: FME Workshop on Formal
Methods in Software Engineering. Florence, Italy: ICSE 2015, May
2015.

[5] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38,
no. 5, pp. 11–13, May 2005.

[6] Typesafe Inc, “Akka scala documentation,” http://akka.io/docs/, Akka,
September 2015, Release 2.4.0.

[7] P. Haller, A. Prokopec, H. Miller, V. Klang, R. Kuhn, and V. Jo-
vanovic, “Futures and promises - scala documentation,” http://docs.scala-
lang.org/overviews/core/futures.html, (Visited on 05/03/2016).

[8] A. Prokopec and H. Miller, “Parallel collections - overview
- scala documentation,” http://docs.scala-lang.org/overviews/parallel-
collections/overview.html, 2015, (Visited on 05/03/2015).

[9] H. C. Baker, Jr. and C. Hewitt, “The incremental garbage
collection of processes,” in Proceedings of the 1977 Symposium
on Artificial Intelligence and Programming Languages. New
York, NY, USA: ACM, 1977, pp. 55–59. [Online]. Available:
http://doi.acm.org/10.1145/800228.806932

[10] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” in Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, ser. IJCAI’73.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1973,
pp. 235–245. [Online]. Available: http://worrydream.com/refs/Hewitt-
ActorModel.pdf

[11] G. A. Agha and W. Kim, “Actors: A unifying model for
parallel and distributed computing,” Journal of Systems Architecture,
vol. 45, no. 15, pp. 1263 – 1277, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1383762198000678

[12] C. T. Hansen, “Investigating Concurrency in the Co-
Simulation Orchestration Engine for INTO-CPS,” Department of
Engineering, Aarhus University, Finlandsgade 22, Aarhus N,
8200, Tech. Rep. ECE-TR-26, May 2016. [Online]. Available:
http://ojs.statsbiblioteket.dk/index.php/ece/issue/archive

[13] N. Amalio, A. Cavalcanti, C. König, and J. Woodcock, “Foundations
for FMI Co-Modelling,” INTO-CPS Deliverable, D2.1d, Tech. Rep.,
December 2015.

[14] T. Hoare, Communication Sequential Processes. Englewood Cliffs,
New Jersey 07632: Prentice-Hall International, 1985.

[15] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. Roscoe,
“FDR3 — A Modern Refinement Checker for CSP,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS,
vol. 8413, 2014, pp. 187–201.

[16] Microsoft, “Acquiring high-resolution time stamps (windows),”
https://msdn.microsoft.com/en-us/library/dn553408(v=vs.85).aspx,
2015, (Visited on 05/03/2016).

[17] N. Wirth, “A plea for lean software,” Computer, vol. 28, no. 2, pp.
64–68, Feb 1995.

[18] M. Reiser, The Oberon System: User Guide and Programmer’s Manual.
New York, NY, USA: ACM, 1991.

[19] H. Sutter, “A fundamental turn toward concurrency in software,” Dr.
Dobb’s Journal, vol. 30, no. 3, pp. 16–23, 2005.

[20] K. E. Harper, J. Zheng, and S. Mahate, “Experiences in initiating
concurrency software research efforts,” in Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
2, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 139–148.
[Online]. Available: http://doi.acm.org/10.1145/1810295.1810316

[21] B. Agrawal, T. Sherwood, C. Shin, and S. Yoon, “Addressing the
challenges of synchronization/communication and debugging support in
hardware/software cosimulation,” in VLSI Design, 2008. VLSID 2008.
21st International Conference on, Jan 2008, pp. 354–361.

[22] W. Bishop and W. Loucks, “A heterogeneous environment for hard-
ware/software cosimulation,” in Simulation Symposium, 1997. Proceed-
ings., 30th Annual, Apr 1997, pp. 14–22.

[23] D. Kim, Y. Yi, and S. Ha, “Trace-driven hw/sw cosimulation using
virtual synchronization technique,” in Design Automation Conference,
2005. Proceedings. 42nd, June 2005, pp. 345–348.

[24] D. Becker, R. K. Singh, and S. G. Tell, “An engineering environment
for hardware/software co-simulation,” in In 29th ACM/IEEE Design
Automation Conference, 1992, pp. 129–134.

[25] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Berlin, Heidelberg: Springer-Verlag,
2002.

228 of 251

A static approach to estimation of execution time of

components in AADL models

Aleksey Troitskiy, Denis Buzdalov

ISP RAS

Abstract—In this paper we work on a problem of
estimation of execution time for components appear-
ing in model-based avionics design. We describe one
static approach for components of AADL-models with
standard behavior specifications based on specialized
extended finite-state machines.

I. Introduction

Modern avionics is responsible for control of almost all
aspects of aircraft operation. As a result, the complexity
of such systems is really high. Thus making sure that
developed system is correct is a challenging task.

Nowadays problems and their solution bring additional
complexity to avionics systems. To satisfy models require-
ments for weight and power consumption, integrated mod-
ular avionics (IMA) approach is used. It means that several
resources (e.g. universal processor modules and network)
are shared between several pieces of software.

This approach solves weight and power consumption
problems, but leads to potential problems of interfering
of applications. The approach leads to appearing of step
of the integration of the whole system, i.e. deployment of
software on different hardware, network configuration and
etc. It means that the whole system correctness must be
checked and this problem is not solvable by checking of
correctness of each part of the system.

The model-driven approach of development allows to
manage with the complexity of a system being developed.
In particular, models are needed to perform different kinds
of analysis of the modelled system though analysis of
appropriate models. Such analyses are intended to be
performed on different stages of development, in particular,
to eliminate errors at early steps of development.

One kind of checks that are needed to be performed is
check of timing properties of software components.

In particular, during design and deployment stages,
each particular application is bound to a processor module.
Appropriate timing properties are assigned to them, for
example

• dispatch protocol, i.e. whether an application is fired
periodically, eventually (sporadically) or both;

• period of execution for periodic applications;
• compute deadline, i.e. time interval in which an ap-

plication has to finish its work after it was given an
ability to execute;

• recover deadline, i.e. time interval in which an appli-
cation has to recover from recoverable errors;

• data processing time, i.e. the time between sending an
processed output data after getting some input data;

• output rate, i.e. rate at which an application has to
produce its output, when it is periodic;

• output jitter, i.e. maximum deviation of time for peri-
odic output and etc.

Being assigned to some particular application, these
properties can be used in schedulability analysis, data
flow timing analysis, worst case execution time (WCET)
analysis and etc. Some desired or expected values can
appear before implementation of particular software.

During the system development, models of it are re-
fined. In particular, for software some behaviour specifi-
cations can appear. Such behaviour specifications can be
purely functional (i.e. containing only information about
which outputs will be produced in particular inputs at the
given state).

Also such specifications can contain how much time
will be consumed in this or that situation. The addition
of this information can lead to inconsistency in the model,
because some assumptions about timing properties of soft-
ware can already exist in the model and these assumptions
can contradict with behaviour specification. To check the
consistency of a model, it is important to estimate timing
properties of particular behaviour specifications.

Compute deadline consistency example Consider a
periodic software component with some particular
period set in the model. Consider also that this com-
ponent has compute deadline property bounds set to
a range p from p1 to p2 ms. Obviously, higher bound
of p must be not more than period property.
Compute deadline property can be used in the sched-
ule building: e.g. a time frame of p2 ms can be reserved
each period to ensure this software component has
enough time to compute. This can be done on early
stages of system development when no particular
behaviour is known yet.
Consider the case when this software component is
refined after some steps of the model development:
now its behaviour is specified with automaton with
transitions containing how much time is consumed by
computations assigned to them. Consider that we have
estimated time consumption of the application using
this automaton as a range h from h1 to h2 ms each
period.
After getting estimations h we can compare it with
bounds p from the model and there are several deci-
sions we can take:

229 of 251

Figure 1. Example of behaviour specification

• when h = p, behavior corresponds to property and
the model is consistent;

• when h 6⊂ p, the model can be inconsistent because
real execution time may miss the bounds;

• when h ⊂ p, p 6= h, the behaviour specification
corresponds to the property; also, we can say that
the property in the model can be refined to a more
precise value;

• when p ∩ h = ∅, the model is inconsistent.
Example of consistent case Consider an example

when the model has bounds for compute deadline
property set to be from 3 to 10 ms. Consider also
that this application has behaviour specification with
automaton shown on the fig. 1. Each period this
application begins in state s0 and finishes in sf .
In this example we can estimate execution time of the
application to be between 5 and 10 ms. This value is
consistent with property set in the model.

There is another case when such estimations are useful.
Consider a situation when some software component in
the model did not have any timing properties set. Con-
sider then, that later it was refined and some behaviour
specification has appeared for it. The model still needs
to be checked for schedulability and other timing-aware
properties. So, we need to derive these timing properties
for a component with some behaviour specification. Again,
we run into an issue of estimation of timing properties
having a particular behaviour specification.

So, generally we can resume that there is an important
issue of estimation of timing properties in responsible
systems’ models with behaviour specifications.

II. AADL and BA

We use AADL (Architecture Analysis and Design Lan-
guage, [1]) as a modelling language. It allows to describe
both physical and logical parts of the modelled system,
connections between components and bindings between
layers of the system. AADL has a mechanism of the
language extending though special language annexes and
it has a number of standard annexes.

One of such extensions is called Behavior Model An-
nex [2] (BA). It allows to specify behavior of AADL-
components using extended time-aware finite-state ma-
chine.

Behaviours are set to components of a modelled system.
The basic elements used in BA behaviour specifications are

• automaton states change;
• internal computations;
• accessing and assigning to internal or external vari-

ables (data components);
• interaction with the outer world using input/output

ports; depending of behaviour, input ports can be
managed both by pulling data and by waiting for data
to come;

• handling dispatch events, i.e. a situation when soft-
ware component is allowed to perform its execution
(e.g., an operating system signals a thread to start).

Behavior Annex automaton must contain a single ini-
tial state. When the automaton goes out from the initial
state, its internal variables are being initialized. The au-
tomaton can contain several final states, in these states
automaton can stop its execution.

Each state of the automaton belongs to one of the
classes of complete states or execution states.

Transitions from execution states occur immediately
after automaton comes to such state. In complete states
automaton waits for external events (data for input ports
or dispatch event). Transitions going out of complete states
are fired as soon as corresponding event happens.

In BA each state transition is assigned with a list
of actions which is run when automaton performs this
transition.

There are actions that appear in the list of actions in
BA behaviour specification:

• actions with ports: reading, writing, getting of mes-
sages count in ports;

• actions with local and accessible external variables:
reading and assignment;

• locking on resources: getting and releasing;
• action for modelling of time consumption

(computation(tmin..tmax));
• stop action for automaton interruption;
• composite actions: loops, conditionals;
• computation of arithmetical expressions.

In fact, since loops and conditionals can appear in
actions for transitions, every behaviour specification can
be represented with complete states only. But using of
execution states allows a modeller to express behaviour
specification in easier and cleaner way.

III. Problem

We focus on AADL models with behaviour specifica-
tions set using Behavior Model Annex language.

We consider a BA behaviour specification of a single
component in a model. Also, we consider two states sstart

and send of the automaton are given.

We want to estimate the maximum and minimum
model time the BA automaton will consume to go out from
state sstart and to come to send.

230 of 251

IV. Solution

Automaton can reach a given state starting from an-
other given state in several ways depending on variables
state, external events and nondeterminism. We will call an
interleaving sequence of states and transitions as a path in
automaton.

Thus we divide the original problem to considering
a single path in automaton and then considering the
automaton itself as a source of paths.

A. Path estimations

First, let us look at a finite path starting and ending
at given states sstart and send, and going through states
s1, s2, . . . , sn, which could be equal to each other and to
states sstart and send. We would designate it as sstart →
s1 → s2 → · · · → sn → send. The question is how long
does it takes to go along this path out from sstart to send.

Some of states in the path may be complete. An
automaton is waiting for external events in these states
while going through them. It is a hard task to estimate how
much time would it take because it is not a local property,
i.e. it depends on other components in the model.

Execution states do not consume any time by defini-
tion, thus there is not such problem for them.

Also, in BA actions assigned to transitions can take
some time (e.g. computation action takes time, which is
specified with its argument; input/output operations may
take time too). Time taken by composite actions (loops
and conditionals) depend on very actions inside them and
external conditions (state of variables and ports). Having
dependency on external conditions, estimation of time
consumption by conditionals it a tricky task (undecidable
in the general case).

Thus, task of estimation of time, taking by execution of
a finite path, can be split into two tasks: time estimation
for each complete state in the path and for each list of
actions assigned to a transition in the path.

B. Automaton estimations

The whole automaton containing both execution and
complete states is a challenging object. Let us at first con-
sider simpler kind of automatons containing only execution
states and then to consider the general case.

1) Automata with execution states only: In this case
automaton is not waiting for external events and goes
through states right away.

We can represent such automaton as a weighted graph.
Vertexes of the graph are states of the automaton, and
edges of the graph are transitions of the automaton.
Weight of each edge is time estimation for the actions of
corresponding transition.

We can use all known algorithms for finding minimum
and maximum times (e.g. for finding minimum time we
can use Dijkstra’s algorithm [3]).

However, when the graph is cyclic these estimations
can be inaccurate. For example, we have a loop of the

automaton which is executed exactly 50 times. If this fact
is not used, estimation of the time consuming by this loop
may be too imprecise, up to +∞ for the higher bound and
to 0 for the lower bound. Considering information of the
number of loop iterations, we can estimate the time to be
50∗tbody where tbody is an estimation of the time consuming
by the loop body, or even more precise if tbody depends on
the loop iteration number in a known way.

Despite inaccuracy in some cases, time estimation for
this kind of automaton is a pretty studied problem.

2) Automata with complete states too: Approaches with
simple Weighted graphs with weights only on edges do not
model the fact that automaton can wait some time in a
complete state during its execution. But we work with
automata having complete states. Thus we need to manage
with it somehow while estimating automata execution
time.

It seems that this problem can be reduced to the
previous one, e.g. though replacing a single complete state
with two connected execution states with a transition
consuming the same time as automaton waits in this
complete state.

But what we realized trying to implement such ap-
proach is that time of waiting in a complete state is not
local and cannot be represented by some constant. This
time actually depends both on the way this state was
reached and on how regular external events occur. So,
automatons with complete states need special treatment,
one variant of which will be discussed below.

C. Resume

So, to solve the original task we have divided the
original problem to the following subtasks:

• estimation of time consumption of paths in automa-
ton:

◦ estimation of execution time for transitions;
◦ estimation of time of waiting in complete states;

• estimation of time consumption by automaton itself:

◦ in a particular case, when the automaton contains
only execution states;

◦ in the general case, when automatons with both
complete and execution states are considered.

The rest of the paper follows this division.

V. Estimation of time for paths

A. Estimation of time for transitions

Let us estimate how much time can take different
Behavior Annex actions. At first, look at simple actions.

The action computation has a time as an argument,
which is the execution time of this action.

Also the action get resource can take some time,
because at the moment when this action is executed,
needed resource can be used by some other component.
And so it will be necessary to wait for some time until the
resource can be used. We will estimate this time from 0 to
+∞.

231 of 251

If action stop occurs at some point, then the execution
of automaton became interrupted and it does not go to
the next state. The action does not take time. However,
since we are interested in the time between the states of
the automaton, it is convenient to assume that the time
of this action is +∞. Indeed, if the transition from s to q
with action stop exists, it means that automaton will not
ever be in state q after this transition.

Now let us consider composite actions. Loops, which
contains the actions occupied some time, we will estimate
with time from 0 to +∞. Other loops do not take any time.

We will estimate conditional constructions with time
the from 0 to the maximal time, which could take the
actions performed when the condition is true. In this
way, estimations for transitions of the automaton can be
performed.

Now let us estimate time, which automaton is waiting
in complete states.

B. Estimation of time for complete states

Behavior Annex allows to handle two types of exter-
nal events: receiving message to input port and dispatch
signal.

At first, look at the first type of events. Since the
expectation of the receiving message can take arbitrary
large time, we will estimate this time with 0 to +∞. So,
this is the estimations of time of waiting in the complete
states for the external event of the first type.

Estimations of time waiting for events of the second
type can be performed more accurately when the compo-
nent is a thread. This is due to the fact, that AADL allows
to set properties for the thread, which determined how
often dispatch signal arrives to the thread (this properties
are Dispatch Protocol and Period).

So, this properties determine the time between neigh-
boring complete states in automaton. Consider any path
from the graph, which starts and ends in complete states,
all other states are execution, and the transition from the
first complete state is the transition of the second type.
Above AADL-properties can determine the execution time
of this path from going out from the first complete state to
going out from the second complete state. This time can
be determined hard, or it can have only lower or upper
bound, or it can be not limited.

In this way, when automaton comes to complete state,
the waiting time in this state is determined by the time
elapsed from going out from the previous complete state
and by the AADL-properties.

VI. Estimation of time for the whole

automaton

A. Particular case, execution states only

1) Problem: The weighted oriented graph G = {V, E}
and two vertices sstart, send are given. The weights of the
edges are determined by the function f : E → IR2. Weight
of each edge is a range of two real numbers [r1, r2]; r2 ≥ r1,

Figure 2. Graph G and strongly connected components

r1 — lower bound, r2 — upper bound of the range. The
set of weights is partially ordered by the native function:

[r1, r2] < [q1, q2] ⇔ r2 < q1

Also the adding function for weights is determined:

[r1, r2] + [q1, q2] = [r1 + q1, r2 + q2]

The problem is to find the weights of the longest and
the shortest paths from sstart to send.

For example, we will consider the graph on the fig. 2
and vertices s0 and s6 as sstart and send respectively.

2) Algorithm:

1) We find strongly connected components (SCC) in
graph G with Tarjan’s algorithm [4].
Strongly connected components of the graph G are
highlighted by a dotted line on fig. 2.

2) We build acyclic graph E from strongly connected
components of the graph G (fig. 3).

3) Let vertices sstart and send belong to strongly con-
nected components cstart and cend respectively. Then
we find all paths in acyclic graph E from cstart to cend.
In the example, this is all paths from c0 to c3: c0 →
c1 → c3 and c0 → c2 → c3.

4) For each SCC-path cstart → c1 → · · · → cn−1 → cend

we find paths from sstart to send as:

sstart sout
0 → sin

1 sout
1 → sin

2 . . .

· · · → sin
n−1 sout

n−1 → sin
n send (1)

There sin
i , sout

i ∈ ci; i ∈ [1..n − 1] ∪ {start, end},
and edges ej = (sout

j → sin
j+1), ej ∈ E, i ∈ [1..n −

1] ∪ {start, end}. The arrow sin
i sout

j represents
automaton walking in one SCC-component from state
si to state sj .
And besides vertices sin

i and sout
i could be coincided.

In this case, if SCC-component ci contains only one
state, which does not have an edge to self (for exam-
ple, SCC-component c2 from the example), then the
transition sin

i sout
i has zero weight and it can be

removed from the path.

232 of 251

Figure 3. Graph E.

Figure 4. Paths in graph G from s0 to s6.

On the fig. 4 all paths are presented.
5) Let find the weight of each path like (1). To do

that we need to estimate transitions: sin
i sout

i , i ∈
[1..n−1]∪{start, end}, as weights of other transitions
determined by the function f .
So, now we need to solve our problem for strongly
connected component.
To find the weight of the shortest path we can use
one of well-known algorithms (e.g. Dijkstra’s algo-
rithm [3]). To do that we need to replace weights of
the edges: [r1, r2] → r1.
The weight of the longest path in SCC-component is
+∞, if this SCC-component is cyclical (contains more
than one vertex, or has the only vertex with edge to
itself).

B. General case, both execution and complete states

1) Problem: The Behavior Annex automaton and two
states of the automaton are given. The problem is to find
estimations for the execution time of the automaton from
exit from the state sstart to enter to the state send.

The set of states of the automaton defined as S, the
set of transitions of the automaton defined as T . The set
of execution states of the automaton is Exec ⊂ S, the set
of complete states of the automaton is Comp ⊂ S.

For example, let consider the automaton on fig. 5.
Complete states are marked by white color, execute states
are gray. The goal is to find time between state e2 and state
c2.

Figure 5. Graph with complete states and execution states.

Figure 6. Graph Ge and graph Gc.

2) Solution idea: Two different states types are deter-
mined in Behavior Annex. So we consider two different
graphs.

We consider graph of the complete states and the graph
of the execution states separately. Then if we need to find
time between exit from one complete state to exit from
other complete state, we use graph of complete states. In
other cases we use the graph of execution states.

3) Algorithm:

1) Let define weighted oriented graph Ge. The vertices of
the graph Ge are all execution states of the automa-
ton. For each transition e1 → e2 of the automaton
we build edge e1 → e2 in graph Ge. The weight of
this edge is time estimation of transition’s actions
(sec. V-A).
Graph Ge could be not connected.
Graph Ge is presented on fig. 6 on the right.

2) We build weighted oriented graph Gc. The vertices of
the graph Gc are complete states of the automaton.
We will build edge c1 → c2, if a path like c1 → e1 →
e2 · · · → en → c2, where ei ∈ Exec; n ∈ [0, +∞],
exists in automaton. This path does not come through
any of complete state besides c1 and c2.
In particular case, if the automaton contains transi-
tion from c1 to c2, then graph Gc will contain edge

233 of 251

Figure 7. Usage of graph Ge.

from c1 to c2. Weights of edges are determined with
AADL-properties of the component as it described in
the section V-B.
Graph Gc for the example is presented on fig. 6.

3) Graphs Ge, Gc and the algorithm described in the
previous section we will use as follows.
When we need to find time between exit from the
complete state to enter to complete state, we will
execute an algorithm on graph Gc.
With graph Ge we can find time between exit from
state q ∈ S to enter to state p ∈ S across only
execution states. If state q is complete state, we will
temporarily push it to graph Ge (fig. 7). If state p is
also complete, we will temporarily push it too.
Also, we will temporary push edges, which are corre-
sponding to out transitions (from T) from state q to
states from Ge and in the transitions from states to p.
After that we can execute the algorithm on updated
graph Ge.
On the second line of fig. 7 the graph Ge for calculating
the time between exit from complete state c2 to enter
to complete state c3 is presented.

4) Let consider two sets: P REVout and P REVin. If state
sstart is complete, we define as follows: P REVout =
{sstart}. If state sstart is execution, we find all previ-
ous complete states for state sstart (e.g. with DFS). It
is possible to go state sstart from any of that complete
states.
Similarly, P REVin is set of possible previous complete

states for state send.
In example for e2 and c3: Sout = {c0, c1}, Sin = c2.

5) Let introduce set T imes = {}, initially it will be
empty. We find the length of the way from exit from
state sstart to enter to send with graph Ge (fig. 7
first line for the example). If this way exists and
the estimation does not equal to +∞, we add the
estimation to set T imes (on the example it does not
exist).

6) For each cout ∈ P REVout and cin ∈ P REVin we find
estimations for paths: te(cout → sstart), tc(cout →
cin), te(cin, send) and add to T imes estimation

tc(cout → cin) − te(cout → sstart) + te(cout → send)

7) The result of the algorithm is the minimum time
range, that contains all time ranges from the set
T imes.

VII. Related works

One close problem to the problems, considered in this
paper, is WCET problem. This problem is famous, and
a lot of algorithms looking for WCET exist. But these
algorithms cannot be applied to our problem directly, due
to considered specific object class, defined by Behaviour
Annex language. As Behavior Annex describes behaviour
based on timed atomata, consider WCET algorithms work-
ing on timed automata.

The WCET problem for timed automata was con-
sidered in the paper [5]. This paper has a description
of the algorithm using the difference-bound matrix data
structure to represent zones (heuristic). This algorithm
can be applied in the particular case, which was described
upper, in the following way.

The main specific construct in Behavour Annex is
complete states. In the particular case we consider au-
tomata with only execution states. These automata are
very similar to timed automata from the paper [5]. It
means that algorithms from the paper can be applied to
the particular case. We are thinking out about applying it,
but currently we have chosen simpler algorithm.

But to use it in the general case, it should be adapted.
We have decided that the adaptation of the algorithm
would be harder, than to develop the new algorithm
applied to a needed object class.

VIII. Results and future works

The algorithm for finding time estimations of execution
time of behaviour of AADL-components on Behavior An-
nex was developed. It was realized in tool MASIW [6] —
IDE for development and analysis of AADL models.

Characteristics of behaviours, that are got with algo-
rithm, could be used for checking model consistency and
for model refinement, when AADL-properties have not
given.

234 of 251

References

[1] Architecture Analysis & Design Language (AADL), SAE
International standard AS5506B, SAE International, 2012,
http://standards.sae.org/as5506b/.

[2] Architecture Analysis & Design Language (AADL), Annex
Volume 2, Behavior Model Annex, SAE International, 2011,
http://standards.sae.org/as5506/2/.

[3] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, 1959.

[4] R. E. Tarjan, “Depth-first search and linear graph algorithms,”
SIAM Journal on Computing, 1972.

[5] O. I. Al-Bataineh, “Verifying worst-case execution time of timed
automata models with cyclic behaviour,” Ph.D. dissertation,
School of Computer Science & Software Engineering, 2015.

[6] D. Buzdalov, S. Zelenov, E. Kornykhin, A. Petrenko, A. Strakh,
A. Ugnenko, and A. Khoroshilov, “Tools for system design of
integrated modular avionics,” in Proceedings of the Institute for

System Programming of RAS, vol. 26, no. 1, 2014, pp. 201–230.

235 of 251

Practical experience of software and system

engineering approaches in requirements

management for software development in aviation

industry

Igor Koverninskiy, Аnna Kan, Vladimir Volkov, Yuri Popov, Natalia Gorelits

Department 2100

State Research Institute of Aviation Systems (GosNIIAS)

7 Viktorenko Str., Moscow, 125319, Russia

nkgorelits@2100.gosniias.ru

The article describes the technical world evolution tendencies,

which require software and system engineering approaches used

for complex systems creation. Basics of software and system

engineering are set out. Information systems which have been

created in GosNIIAS are considered: information system of

requirements management, information system of problem

reports management, technological environment for test methods

preparation and test results registration. Some perspective

directions of software and system engineering approaches

applying in GosNIIAS are listed.

Software engineering; system engineering; requirements

management; complex on-board equipment; aircraft design

I. INTRODUCTION

Nowadays there is a considerable change in industries all
over the worlds. The change is related with the rapidly
increasing complexity level of systems and devices which are
created and used.

Safety and reliability requirements to products of
aerospace, defense and other industries become stricter as well
as certification requirements to management processes of
products creation. At the same time we have to use new
industry standards.

Aerospace imposes some restrictions and requirements on
the software development process and its result. These
restrictions are caused by safety requirements to the aircrafts on
which the software will be used. Requirements are set out in
the industry standards, these standards must be complied very
carefully for high quality results and successful certification.

II. SOFTWARE AND SYSTEM ENGINEERING APPROACHES

REALIZATION

Using and customizing software and system engineering
processes and approaches are an appropriate response to
technical world complication tendencies. These processes and
approaches are base of the most standards and guidelines
which define methods to achieve necessary safety and
reliability levels during development, design and engineering
of critical technical and software systems.

Nowadays software in complex technical systems is
responsible for executing of the most critical functions [1].

The most important discipline of software and system
engineering for software development is requirements
management. If there is no requirement management process or
its bad realization then obvious or hidden defects and faults
appear. It takes more and more efforts to repair these defects
and faults at the later stages of development lifecycle.

Problems in requirements are leaders in projects failures
reasons lists and rework costs lists (Standish Group reports).

That’s why requirements are mandatory basis of design and
development processes according to guidelines of standards
R4754 (R4754A is now a draft, it is Russian analogue of ARP
4754), KT-178 (DO-178), KT-254 (DO-254), DO-330, GOST
R 51904. Development of the software, hardware and systems
begins from creation of requirements. Design is based on
requirements. We also have to inspect how result corresponds
with initial requirements during verification, validation, testing
processes.

Some important tasks arose GosNIIAS due to the changes
in the world. These tasks were about modernization of existing
approaches and work processes in order to minimize potential
risks for software design and development [2].

A number of current situation researches were done in
GosNIIAS. Existing world approaches to the software and
system engineering approaches were adapted considering the
specialization of the institute. The results of analysis and
adaptation as well as software and system engineering
fundamental principles formed the basis of newest works of
GosNIIAS.

Fundamentals of software and system engineering:

 Requirements are base of software development
process,

 There should be coherent architecture of
modules/subsystems and communication interfaces
(points of input and output) between modules should be
predefined,

236 of 251

 Verification process (product check for requirements
compliance) should be organized for cases when
accurate measurement is impossible,

 Modeling approaches and then model verification and
validation are used for earlier failures and bug
detection,

 Communication protocols between process participants
should be defined like strict regulations.

Nowadays GosNIIAS has built the number of systems
accordingly to software and system engineering approaches.
The list of created systems consists of the following systems:

 Requirements management information system,

 Problem reports management information system,

 Technological testing environment,

 Practical approaches and skills in software and system
engineering adapted for real tasks.

A. Requirements management information system
Requirements management information system (RMIS)

was created for support requirements management activities in
design and development of complex systems like aircraft
onboard software.

RMIS processes are built based on R4754 (ARP 4754)
processes.

RMIS realizes such functions and processes like:

 Cross-cutting requirement management process during
the software and system development entire lifecycle,

 Single requirements change and configuration
management process,

 All necessary lifecycle artifacts tracing,

 Generation and publishing of reporting documents and
documents with any necessary data in accepted formats.

Documents and projects templates required by standards
R4754, KT-178, KT-254, DO-330, GOST R 51904, GOST 34
are created and included in RMIS suite. These items allow to
decrease labor costs for audit preparation and passage in
certification authorities – processes and products must strictly
comply the standards.

Some methodological materials were made to help with
requirements management and configuration management
using RMIS.

Using RMIS while designing and developing aircrafts
allows to significantly reduce:

 Efforts for execution of works,

 Time for approval, negotiation and final products
release,

 Errors from difficult work with requirements,

 Provides actual information to all the participants
during entire development lifecycle.

This way RMIS gives opportunities to make reasonable and
timely decisions.

RMIS was successfully implemented in some
organizations. The list of successful users of RMIS in aviation
industry includes companies such as GosNIIAS, SpecTechnica,
Techodinamika and others.

GosNIIAS effectively uses RMIS in testing avionics
processes on integration stand for Irkut MS-21 aircraft. RMIS’s
database contains traced data from AP-25 (like EASA CS-25,
FAR-25 – Airworthiness standards for transport categories
airplanes), Certification basis, Special technical conditions and
some other data for Irkut MS-21 aircraft. There is active
ongoing process of creation, customization and implementation
of requirements management process, configuration
management process, verification and validation management
process in GosNIIAS.

B. Problem reports management information system
Specialists from GosNIIAS also made Problem reports

management information system (PRMIS) during MS-21
project. PRMIS allows support of problem reports management
activities on testing avionics processes on integration stand for
MS-21 aircraft.

PRMIS processes are built on the base of R4754A
(R4754A’s part about problem reports actvities). Main of
PRMIS tasks are

 Collection and storage data of problem situations,

 Problem analysis,

 Resolving problem documenting,

 other functions.

C. Technological environment for test methods preparation
and test results registration
Technological environment for test methods preparation

and test results registration (TET) was made during MS-21
project as well. TET allows support of test methods preparation
and testing activities on integration stand for MS-21 aircraft’s
avionics testing. Processes of TET are built in accordance with
industry standard R4754.

TET provides the following functions:

 Preparation of test programs, test methods, test cases
and test procedures for avionics, integrated flight
control system testing,

 Maintenance of testing activities on integration stand,

 Creating test reports,

 Other functions.

TET provides such opportunities as:

 Test methods approval processes,

237 of 251

 Test methods development history logging,

 Test results control and changing of succeeding test
methods accordingly to revealed remarks for test
requirements, hardware, methods, etc.

Some of TET goals are:

 Reducing labor costs for test methods, test procedures
and test cases creation,

 Transparent control for finished tests considering
received and registered test results,

 Increasing quality of tests traced with requirements, test
methods and programs and received results,

 Possibility to work with the set of integrated hardware
on the integration stand,

 Information integration with RMIS, PRMIS and
configuration control system for further integration in
entire software and system engineering process of
GosNIIAS, which will allow effective reusing of
prepared test organization process for certification
audit.

III. CURRENT AND FUTURE TASKS

Nowadays there are actively realized system engineering
approaches in GosNIIAS. Some tasks about development,
design and implementation such processes of system
engineering as requirement management process, problem
reports management process, information management process,

verification and validation management process, version and
configuration management processes during software and
system development lifecycle processes.

Processes listed above and traced with its software and
system engineering approaches will be performed for the
further researches. Real-time operation system creation and
creation of Russian instrumental set for support of the software
and system engineering processes were chosen as nearest
researches for perform these processes. There were defined
some models for chosen researches – change request lifecycle
processes model and problem report lifecycle processes model.

IV. CONCLUSION

GosNIIAS has plans to create cross-cutting process based
on developed processes and realized with software which is
already developed and which will be developed soon. It should
be cross-cutting process of software and system engineering
with necessary instrumental support in GosNIIAS.

REFERENCES

[1] G.A. Chuyanov, V.V. Kosyanchuk, N.I Selvesyuk, “Prospects of
development of complex onboard equipment on the basis of integrated
modular avionics,” in Izvestiya SFedU, vol. 3, pp. 55-62, March 2013
(in Russian).

[2] G.A. Chuyanov, V.V. Kosyanchuk, N.I Selvesyuk and S.V.
Kravchenko, “Directions of perfection on-board equipment to improve
aircraft safety,” in Izvestiya SFedU, vol. 6, pp. 219-229, June 2014 (in
Russian).

238 of 251

Design and architecture of real-time operating system

Kurbanmagomed Mallachiev

Institute for System Programming

of the Russian Academy of Sciences,

CMC MSU,

Moscow, Russian Federation

mallachiev@ispras.ru

Nikolay Pakulin

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

npak@ispras.ru

Alexey Khoroshilov

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

khoroshilov@ispras.ru

Abstract—The Integrated modular avionics (IMA)

architecture describes real-time computer network airborne

systems. ARINC 653 is a specification for software partitioning

constrains to the underlying safety-critical avionics real-time

operating system and for associated application programming

interfaces.

Most existing partition based operating systems with ARINC

653 support are commercial and proprietary software.

In this paper, we present Jet OS, an open source real-time

operating system with ARINC 653 support with time and space

partitioning, inter- and intra-partition scheduling and complete

implementation of ARINC 653 part 1 rev 3 API

Keywords—ARINC 653; RTOS; IMA; partitioning; real-time.

I. INTRODUCTION

Real-time Safety-critical systems have strong
requirements in terms of time and resource
consumption. Most of them have several
concurrently executing separate functions
(applications), which communicate from time to
time. The most obvious approach is running those
applications on separate devices and connecting to
sensors and actuators by point-to-point link, on
which applications should communicate. But firstly,
there will be a lot of wires in large system. And
secondly, having a separate computing node for
periodic application, which is idle most of the time,
results in a great number of computing nodes and
high cost of hardware.

Integrated modular avionics (IMA) network is a
solution to those problems in avionics. Core
modules are main part of IMA network. Core
module runs a real-time operating system (RTOS),
which supports independent execution of several
avionics applications that might be supplied by
different vendors. System provides partitioning, i.e.,
space and time separation of applications for fault
tolerance (fault of one application doesn’t affect
others), reliability and deterministic behavior. The

unit of partitioning is called partition. Basically
partition is the same as process in commodity
operating systems. ARINC 653 standardizes
constraints to the underlying RTOS and associated
API. [1]

Civil aircraft airborne computers are mostly
PowerPC architecture. In this paper we present the
project on development of an open source ARINC
653 compatible operating system, which can run on
PowerPC CPU and, in the future, on other CPU
architectures, such as MIPS and x86.

A. Overview of ARINC 653
ARINC 653 is the standard for implementing

IMA architecture, it defines general purpose
APplication Executive (APEX) interface between
avionics software and underlying real-time operating
system, including interfaces to control the
scheduling, communication, concurrency execution
and status information of its internal processing

elements.

Key concept of ARINC 653 is partitioning of
applications in integrated module by space and time.
[2]. A partition is a partitioning program unit
representing an application. Every partition has its
own memory space, so one partition cannot get

Fig. 1. Example module architecture

239 of 251

mailto:mallachiev@ispras.ru
mailto:npak@ispras.ru
mailto:npak@ispras.ru

access to the memory of another. Partitions are
executed in user (non-privileged) mode, so errors in
partition cannot affect OS kernel (which is executed
in privileged mode) and other partitions. Partition
consists of one or more processes, which operate
concurrently. Processes in partition have the same
address space and can have a different priority.
Process has an execution context (processor registers
and data and stack areas), and they resemble well-
known concept of threads. Fig 1 shows example
architecture.

Partitions are scheduled using a simple round-
robin algorithm. System defines a major time frame
of fixed duration which is constantly repeated
through integrated module execution time. Major
frame is divided into several time windows. Each
partition is assigned to one or more time windows,
and partitions are running only during corresponding
assigned time window. Assignment of time windows
and major frame duration are statically configured
by the system integrator, therefore scheduling is
fully deterministic.

Scheduling of processes within partition is a
dynamic priority based scheduling and
communication and synchronization mechanism
make it more sophisticated than partitions
scheduling.

ARINC 653 provides interface for
communication between applications (partitions),
potentially running on different modules connected
by onboard communication network. All inter-
partition communication is conducted via messages.
Message is a continuous block of data. The ARINC
653 interface doesn’t support fragmented messages.
Message source and destination are linked by
channels; a channel links a single source to one or
more destinations. Partitions have access to channels
via defined access points called ports. Port has
single direction; it can be either source or destination
port. One port can be assigned only to one partition.
Each partition can have multiple ports. It is even
possible to have a channel where both source and
destination ports are assigned to one partition

Partition code works with ports regardless of
underlying channels. Channels are preconfigured
statically.

To control the concurrent execution of processes
ARINC 653 offers synchronization primitives such

as semaphores, events and mutexes. Buffers and
blackboards provide inter-process communication
within a partition. Buffer is a messages queue, while
blackboard has only one message, which is rewritten
by every write operation.

II. RELATED WORKS

ARINC-653 requirements results in constrains to
underlying operating system. OS must support:

 space partitioning, so partitions have no
access to memory areas of the other partitions
and OS kernel;

 time partitioning, so not more than one
partition can run at any time;

 strict and determinate inter-partition
scheduler that ensures application response
time.

Furthermore in safety-critical systems the
operating system must undergo certification process.
As a result, size and complexity of OS become a real
issue.

Popular real-time operating systems (such as
RTERMS [3] and FreeRTOS[4]) don’t support
ARINC 653. Furthermore RTERMS doesn’t support
memory protection.

Operating systems that satisfy all of these
constrains are exist, but they are commercial and
proprietary software. They are VxWorks[5] (by
Wind River), PikeOS[6] (by Sysgo), LynxOS [7](by
LynuxWorks).

There are research projects on real-time and
ARINC 653 [12] enhancements of Linux. But Linux
is a large system, so certification of Linux kernel
seems impossible.

There are research projects that exploit the
virtualization technology to support ARINC 653.
But they are either proprietary like LithOS[8]
(works over open hypervisor XtratuM[9]), or limited
prototype link VanderLeest implementation of
ARINC 653 over Xen [10].

Only POK operating system [13], which is
available under BSD license terms, mostly satisfies
our requirements, so we decided to fork POK and
continue it development.

240 of 251

III. POK

POK is a partitioned operating system focused on
safety and security [11]. We describe it in detail here
since it is the basis for the Jet OS that we are
working on.

POK has been designed for x86 and ported to
PowerPC (PReP) and Sparc. POK has two layers:
kernel and partition, where services of partition layer
run at low-privileged level (user mode), and kernel
services are executed at high-privileged level (kernel
mode). Besides the kernel POK provides a library
for partition code (libpok), which translates ARINC
653 API to POK kernel syscalls. Fig 2 shows POK
architecture.

We selected POK as the basis for our RTOS.
Below in this paper we describe parts of POK that
were changed or rewritten. We describe limitations
of current implementation or architecture of these
parts.

Partition management. POK provides partition
isolation:

 in time by allocating fixed time slots for
partitions in the schedule,

 in space by associating a unique memory
segment to each partition.

Partition scheduling and memory management of
POK partly comply the ARINC 653 specification.
But PowerPC processor, on which we focus
(P3041), doesn’t support memory segmentation.

Processes management. POK supports ARINC
653 partition processes. All processes are
represented in the kernel as array entries of a single
processes array that stores process information for

all partitions. POK has no logical separation in
kernel representation of ARINC-653 processes of
different partitions.

POK supports two intra-partition schedulers:
Rate Monotonic Scheduling (RMS) and Earliest
Deadline First (EDF). Those partitions schedule
processes within a partition when its time slot is
active.

The problem with POK scheduler is that ARINC
653 requires much more from intra-partition
scheduler: priority scheduling and fault
management.

POK runs both inter- and intra-partition
schedulers in the kernel mode.

Inter-partition communication. For every
ARINC port there is a buffer of corresponding size
inside the kernel. User code while sending to (or
receiving from) port accesses those buffers by
means of syscalls. A the beginning of every major
frame POK copies data from source buffers to
destinations. For large buffers there is possibility to
spend significant part of partition time slot on
buffer-to-buffer copying.

If a process tries to send to a full port (or read
from an empty one) the kernel blocks the process
until buffer becomes operational. POK supported
this feature but did not obey to the ARINC-653
requirement on that the order of unblocking should
be the same as the order of blocking on each priority
level.

Intra-partition communication support is
implemented by the user-mode library libpok, using
system calls for synchronization purpose. It supports
locking resources for concurrent access to shared
data resources (such as buffer and blackboards)
between processes in partition. When process tries to
accesses a locked resource, it will be blocked (so
scheduler will skip this process) until the resource is
unlocked.

POK scheduler has some inherent problems with

handling of locked processes. Let’s consider an

example. A low-priority locks a buffer for writing
and before it unlocks the buffer a higher priority
process wakes up. POK scheduler unconditionally
switches to the second process. If the second process
tries to get status information about the locked
buffer it blocks and POK wakes the first process.

Fig. 2. POK architecture

241 of 251

But according to ARINC-653 standard the process
that requests status information must not block.

IV. JET OS

Jet OS is the real time operating system with
ARINC-653 support that we currently develop at
ISPRAS. It originates from POK but has evolved
significantly since then.

Before we introduce the new features of Jet OS
compared to POK let us mention the facility that
was removed from POK: the AADL configuration
tool. Originally POK was designed and implemented
as a demonstration of a number of approaches, and
the developed selected rather exotic approach to
configuration. The suggested way to create an
embedded application by means of POK is to
specify its environment and capabilities as an AADL
specification. In Jet OS we dropped AADL support
in favor of XML-based configuration files.

Furthermore we dropped support of the SPARC
platform as there are no onboard avionics systems
that are built atop of SPARC CPUs. At the moment
Jet OS runs on x86 and PowerPC (Book E branch).

Partition management. Unlike x86 and SPARC
the new target hardware for Jet OS, PowerPC
platform, features direct MMU control through TLB
writes. To reduce cache flushes at context switches
and simplify TLB lookups PowerPC provides
tagged cache where each tag is an 8 bit identifier.
We use that identifier as partition identifier (pid). At
context switch we just change value of the special-
purpose register responsible for current pid. This is
simple and secure method.

The inter-partition scheduler of POK was able to
switch partitions only when the active process runs
in user mode. If a process calls syscall it cannot be
switched until the end of that call. Such behavior
violates requirements of real-time since system calls
might be prolonged. Currently we are working on
kernel-mode critical section and synchronization
primitives to enable context switch while a process
executes a system call.

Processes management. We store process-
related data in kernel separately for different
partitions. Intra-partition scheduler was fully
rewritten to support ARINC 653 specification. The
new scheduling facility allows for multiple
scheduler, and different partitions might utilize

different schedulers (a.g. ARINC-653 for avionics
applications and preemptive pthreads for system
partitions). New intra-partition scheduler can be
accessed only by functions

 start() is called when partition is starting or
restarting

 on_event() is called on every event such as
timer interrupt and returning control to
partition.

Inter-partition communication. We use one
ring buffer for every channel. Its size is the sum of
source and destination ports buffers size in original
POK design. It removes the need for copying from
source to destinations buffers. Correct work of send
and receive function achieved by two pointers, one
for source port, and one for destination. Sending
increases source port pointer, receiving increases
destination port pointer. When pointers are met then
buffer either full or empty, uncertainty is resolved
by another variable associated with the channel,
which stores current number of messages in the
channel’s buffer. Example can be seen at Fig 3.

Intra-partition communication. Correct
handling of concurrent data access to buffers and
blackboards without violating the ARINC 653
scheduling requirements with user mode scheduler
is a hard task. Therefore the intra-partition
schedulers are implemented in the kernel to simplify
lock-wait-unlock and priority scheduling. In future
versions we may design a solution that solves this
issue while keeping a code in user space.

B. Configuration
The characteristic feature of real-time operating

systems is deterministic behavior. The primary way
to ensure reliable and dependable behavior is static
pre-allocation of all resources – memory, CPU time,
access to devices, etc. For instance, partition code is
executed only during fixed time slots within the

Fig. 3. Example kernel channel buffer. Yellow cells are already received

messages, blue cells are sent but not yet received messages, white
cells are empty

242 of 251

schedule, no sooner, but no later. Memory is pre-
allocated for every partition, memory image of the
partition is fixed, no pages could be added or
removed during runtime.

Many parameters of our operating system are
configured statically and cannot be changed
dynamically. These parameters are number of
partitions and their memory size, number of ports,
their names, sizes and directions, channels etc.

Configuration of the system is stored in xml
documents. To keep the kernel minimal we got rid
of the need to include xml parser to kernel: the
configuration files are processed at build time. The
processor generates C code where parameters are
presented as either preprocessor macros (#define
constants) or enum constants. The generated files are
included in the build process.

C. System partitions
Beside ordinary partitions, that interact with the

kernel and the outer world thought ARINC 653
APEX, the standards allows for so called system
partitions that utilize interfaces outside the scope of
APEX services, such access to devices or network
sockets. The standard doesn’t specify their
operations and interfaces other than constraints on
time and space partitioning: system partitions are
subject to scheduling. The difference between
system partitions and kernel modules is that system
partitions run in user space and have time and space
partitioning constrains.

Our OS supports system partitions. From the
kernel point of view system partitions are like
ordinary partitions with some additional memory
mapping and additional system calls.
Communication between application partitions and
system partitions is performed through ARINC-653
ports.

 Currently we have only one system partition: the
IO partition that is responsible for communication
over the network. In the future we will implement a
number of other system partitions – file system,
graphics server,

IO partition has access (by corresponding entry
in TLB) to special memory areas, where network
card registers are mapped, so IO partition can work
directly with hardware without kernel system calls.

IO partition receive and send data either from
partitions in the same integrated module by ports or
from other integrated modules by network card
drivers. In the simple case the communication over
network is based on UDP messages, and the
configuration defines mapping between ARINC 653
port and a pair of IP address and UDP port. This
mapping looks like ARINC channel, so we also call
it channel.

But network communication may be based on
other protocols, such as AFDX. So in general, the
channel maps ARINC port to some network specific
data. We support parallel work with several network
protocols, by assigning channel driver to channel.
Channel driver is interlayer between port and device
driver. In most cases channel driver is a network
stack.

System can have several network cards, so we
support parallel independent work of several device
drivers. Currently we support three network cards
drivers: virtio, ne2k family and hardware cards on
the platform with P3041 processor.

Each network driver manages one or more
uniform devices. During initialization each driver,
which cards are connected through PCI bus,
registers as PCI device in PCI driver. After
initialization of all network drivers PCI driver starts
enumeration of PCI bus. If it finds a physical device
that matches a registered PCI device, then it signals
to the corresponding network driver. Network driver
dynamically for every signal registers a network
device. Network device has a name and method to
send and receive data from assigned physical device.
Names to network device are assigned dynamically,
name is concatenation of drivers name and
sequential number of current device in driver.

Fig. 4. Two messages are being parallel sent to different network cards

243 of 251

The configuration assigns channel drivers to
network devices by name. Example of sending two
messages in parallel to two different network cards
can be seen at Fig. 4.

Different drivers require different configuration.
We have dedicated xml parsers of some specific part
of xml document, this parser generates data specific
for corresponding driver.

This architecture allows independent work of
different drivers, which can possibly come from
different developers. Furthermore it allows adding
new drivers with minimal effort and change of
common parts.

V. FUTURE WORK

There is research group to develop openGL
renderer and frame buffer driver for our OS. Their
work will show how well we thought out
architecture of IO partition.

We finally need to measure latency without
providing which we cannot tell that our operating
system is a real-time system.

We are going to seek way to minimize kernel
code, and move code, for which it is possible, to
user-space.

Currently we use only one CPU core of the
e500mc multicore processor. Newest version of
ARINC 653 introduces interfaces for multicore
work. We are going to support multicore CPUs as
well.

Another objective is to port the OS to MIPS CPU
family and another PowerPC family, namely IBM
PPC 440.

VI. CONCLUSION

In this paper we sketched Jet OS, a real-time
operating system, which support ARINC 653
standard. Our system is a fork of POK OS. We
describe architecture of POK, architecture of our
operating system and differences between them.

REFERENCES

[1] Avionics application software standard interface part 0 overview of
ARINC 653, ARINC specification 653P0-1, August 3, 2015

[2] Avionics application software standard interface part 1 – required
services, ARINC specification 653P1-3, november 15, 2010

[3] RTEMS http://www.rtems.com

[4] FreeRTOS http://www.freertos.org/

[5] VxWorks http://www.windriver.com

[6] PikeOS https://www.sysgo.com

[7] LynxOS http://www.lynuxworks.com/rtos/

[8] Masmano, M., Valiente, Y., Balbastre, P., Ripoll, I., Crespo, A. and
Metge, J.J., 2010. LithOS: a ARINC-653 guest operating for XtratuM.
In Proc. of the 12th Real-Time Linux Workshop, Nairobi (Kenya).

[9] XtratuM http://www.xtratum.org

[10] S. H. VanderLeest. ARINC 653 hypervisor. In Proc. Of IEEE/AIAA
DASC, Oct. 2010.

[11] Delange, J. and Lec, L., 2011. POK, an ARINC653-compliant operating
system released under the BSD license. In 13th Real-Time Linux
Workshop (Vol. 10).

[12] Sanghyun Han and Hyun-Wook Jin. 2012. Kernel-level ARINC 653
partitioning for Linux. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing (SAC '12). ACM, New York, NY,
USA, 1632-1637. DOI=http://dx.doi.org/10.1145/2245276.2232037

[13] J.Delange, L.Lec. POK, an ARINC653-compliant operating system
released under the BSD license, 2011,
http://julien.gunnm.org/data/publications/articledl11-osadl11.pdf

244 of 251

Developing a Debugger for Real-Time Operating
System

Alexander Emelenko
Institute for System Programming

of the Russian Academy of Sciences
Moscow, Russian Federation

emelenko@ispras.ru

Kurban Mallachiev
Institute for System Programming

of the Russian Academy of Sciences
Moscow, Russian Federation

mallachiev@ispras.ru

Nikolay Pakulin
Institute for System Programming

of the Russian Academy of Sciences
Moscow, Russian Federation

npak@ispras.ru

Abstract—In this paper we report on the work in progress on
the debugger project for real-time operating system ISPRAS
RTOS for civil airborne systems. We discuss the major
requirements to such a debugger, review a number of debuggers
for various embedded systems, and present our solution, that
works both in emulator QEMU and on the target hardware. The
presented debugger is based on GDB debugging framework but
contains a number of extensions specific for debugging embedded
applications.

Keywords—debugger; GDB; real-time OS; remote debugger

I. INTRODUCTION

Application debugger is an indispensable tool in
developer’s hands. But debugger in a real-time operating
system is more than just plain debugger. In this paper we
present an on-going project on debugger development for
ISPRAS RTOS, a real-time operating system that is being
developen in the Institute for System Programming of the
Russian Academy of Sciences.

ISPRAS RTOS is a prototype operating system for civil
airborne avionics. It is designed to work within Integrated
Modular Avionics (IMA) architecture and implements ARINC-
653 API specification, the de-facto architecture for applied
(functional) software.

The primary objectives of ARINC 653 are deterministic
behavior and reliable execution of the functional software. To
achieve this ARINC-653 imposes strict requirements on time
and space partitioning. For instance, all memory allocations
and execution schedules are pre-defined statically.

The unit of partitioning in ARINC-653 is called partition.
Every partition has its own memory space and is executed in
user mode. Partitions consist of one or more processes,
operating concurrently, that share the same address space.
Processes have data and stack areas and they resemble well-
known concept of threads.

Embedded applications might be run in two different
environments: in an emulator and on the target hardware. In
our project we use QEMU system emulator. Although QEMU
has its own debugger support, its functionality proved to be
insufficient for debugging embedded applications. Therefore

we implemented a debugger not only for the target hardware,
but for the emulator as well.

II. MAIN TARGETS FOR DEBUGGER

Debugger for an embedded operating system has a number
of specific features compared to typical debugger used by
desktop developers.

Firstly, an embedded application runs under constrained
conditions, such as limited on-board resources and lack of
interactive facilities – no keyboard and screen. This makes it
impossible to do debugging on the same device where
application runs. Therefore the debugger for embedded
applications has to be remote: the developer interacts with
workstation while the application runs on a target hardware.

Secondly, an embedded application typically consists of a
number of interacting processes that needs to be debugged
simultaneously. This means that the debugger must support
dynamic and transparent switching between execution contexts
during debugging session.

Thirdly, the debugged should support developers of system
software, mostly device drivers and network stack. This
requires switching between low-privilege code and highly
privileged kernel code in the same debugging .

It is also important to mention that embedded developers
widely use emulators in their work process. Typically most of
development runs on top of emulators, therefore the debugger
must support corresponding emulators as well.

The above mentioned features impose a number of
restrictions on the design of the debugger that we considered:

 There are many different applications compiled in OS,
which can have overlapping virtual address spaces.

 Typically target hardware board for embedded OS has
only one port to communicate with the external world
– a single serial port. Since it is used to stream
console output of the running applications we need to
share it between debugger traffic and applications'
output.

245 of 251

mailto:npak@ispras.ru
mailto:mallachiev@ispras.ru
mailto:emelenko@ispras.ru

 Multifunctional debugger is a complex program. It is
very complicated to develop it from scratch, so we
decided to base our debugger on an existing one.

 Support debugging both on hardware and with
emulator because this support can expand developers'
capabilities and improve their efficiency.

 Support capabilities of debugging for kernel and for
user mode code, as well as capabilities of
multiprocess mode.

 It must excel QEMU debugger, which we use to
emulate environment for our system.

 Since the OS in question is real-time, it is important to
minimize debugger's impact on system during
debugging.

In order to meet these restrictions we selected the
architecture of remote debugger with server and client parts,
that communicate over a serial port using multiplexer.

We have chosen GDB (GNU debugger) for the client part
of our debugger.

III. RELATED WORKS

We are not the first to consider the problem of remote
debugging. For example, Pistachio microkernel uses kdebug
for debugging [4]; besides, there is Fiasco debugger [1] and
many different debuggers for VxWorks, for example, RTOS
debugger [2].

Here we briefly consider some debuggers for embedded
OSes and their primary features.

A. Fiasco OS

Fiasco OS is a 3rd-generation microkernel, based on L4
microkernel [1]. The kernel is simplistic, it misses most of the
features available in “big” operating systems like Linux or
Windows: program loading, device drivers and file system. All
these features must be implemented in user-level programs on
top of it (L4 Runtime Environment provides a basic set such
functions).

Fiasco OS has built-in support for debugger that:

 supports threads;

 provides stack backtrace

 sets breakpoints;

 does single step;

 provides reading/writing in memory;

 provides reading hardware registers;

 support interprocess communication (IPC)
monitoring.

The Fiasco Kernel Debugger (JDB) is a debugger for
Fiasco. It has the following special functionality:

 It always freezes the system when it is working. It
means that JDB disables all interrupts and halts clock.

All processes and kernel don't work when JDB is
invoked.

 JDB doesn't use any part of Fiasco kernel, because it
is a stand-alone debugger with drivers for keyboard,
display, etc.

In general, JDB is not a part of Fiasco µ-kernel, and Fiasco
µ-kernel can run without connection with JDB or another
debugger.

The debugger operates remotely over the serial line.

B. VxWorks

VxWorks [5] is a real-time operating system (RTOS)
developed as proprietary software by Wind River of Alameda,
California, US. It supports Intel (x86, including the new Intel
Quark SoC and x86-64), MIPS, PowerPC, SH-4, and ARM
architectures.

 RTOS debugger for VxWorks implements the following
set of features:

 Task Stack Coverage

 Task Related Breakpoints

 Task Context Display

 Debugging Modules (for example, Kernel
module)

 Debugging Real-Time Processes

 Debugging Protection Domains

 Collecting statistics for function and tasks

RTOS debugger displays all system states, tasks, message
queues, memory partitioning, modules and etc.

The key feature of the RTOS debugger is that is based on
Lauterbach's TRACE32 debugger [3] that utilizes hardware
interfaces like JTAG. It does not use serial port for
communication with the target hardware but rather requires
specific debug module.

C. L4Ka::Pistachio:

L4Ka::Pistachio [4] is the latest L4 microkernel developed
by the System Architecture Group at the University of
Karlsruhe. It is the first available kernel implementation of the
L4 Version 4 kernel API, which provides support of both 32-bit
and 64-bit architectures, multiprocessoring and superfast local
IPC. The current release supports x86-x64 (AMD64/ EM64T,
K9 / P4 and higher), x86-x32 (IA32, Pentium and higher),
PowerPC 32bit (IBM 440, AMCC Ebony / Blue Gene P).

The debugger for Pistachio kernel can direct its I/O via the
serial line or the keyboard/screen. It is a local debugger and
does not support remote debugging mode.

This debugger is also a low-level device with very limited
amount of functions.

Debugger for Pistachio can:

 Set breakpoints

246 of 251

https://en.wikipedia.org/wiki/Alameda,_California
https://en.wikipedia.org/wiki/Alameda,_California

 Single step

 Dump memory

 Read registers

When the processor meets special instruction (for example,
int3 instruction), it passes control to interrupt handler, which is
the part of Pistachio kernel. In turn, interrupt handler checks
instructions, which come next, and if they correspond to the
special layout, it prints special message before passing control
to interrupt handler. This feature is a simplistic implementation
of a facility to trace execution.

IV. TECHNICAL DESCRIPTION:

The primary goal of the debugger is Power PC platfrom,
based on e500mc CPU core. The debugger is based on GDB, it
uses the GDB architecture to establish link to the remote target.

The architecture includes three major components: front
end, local client and remote server. The front end provides user
interface, it runs on the same workstation as the client part. The
latter translates the commands from the front end into GDB
protocol and communicates with the remote server. The server
implements the actual command embedded into protocol
messages such as reading memory regions, setting breakpoints,
processing debug interrupts, ets. Remote server is sometimes
called “stub”.

Gdb-stub for i386 was taken as a basis for our debugger.
This stub was totally redesigned for e500mc processor, which
belongs to PowerPC architecture family. We left only the
packet exchange and some of the packet processing
mechanisms.

We use common gdb client, which was built for PowerPC
with somewhat extended functional, to connect to our stub.
This functional was developed using special user defines
commands, so developers don't need to use special version of
GDB. Instead, they can use any version, but it needs to use gdb
commands file by utilizing special “source” command in GDB.

Accordingly, messaging mechanism between client and
server doesn't change – the client sends a special-type packet to
the server and waits for the server's answer. The server receives
this message, checks control sum, which was sent in this
packet, and if it matches the message contents, informs the
client that the message was accepted for processing. Then the
server performs the action described in the packet and sends its
own packet to the client.

Let us consider an example on Fig. 1. Here client sends to
server packet “$m8000acac,4#1d”. This means that client
wants to read 4 bytes of memory from virtual address
0x8000acac. In this packet “1d” is the control sum,that is, the
sum of all bytes in message modulo 256. If the server fully
receives this message, it sends “+”, and the client knows that
the message was accepted. After that, server sends 4 bytes of
memory from that address to the client in the same way, and
message exchange continues. All these types of packets are
described in GDB manual.

Fig. 1. GDB messaging mechanism

Implementation of the server side

In general, debugger's work consists of packet exchange
between client and server. Client sends certain types of packets
to perform the action, which the user needs. Our goal is to
develop server part because we use client part from common
GDB.

During the connection between server part of the debugger
with client part our system stands in frozen state where no
interrupts are available and the clock is halted. This
opportunity allows us to work with partitions and debugger as
if there is no debugger in the system.

We implemented functions in our debugger in the following
way:

Breakpoint setting was implemented using special
PowerPC instruction 'trap'. When the trap instruction occurs,
server code in interrupt handler is called.

For Single step operation, we can use two different
methods. The first one is when the system stops on the next
instruction of the current partition. The second one is to stop
the system stops on the next instruction wherever it is. The
difference is how system calls are handled; the first method
skis all kernel code and traverses application only. The second
method allows entering kernel and stepping through system
call implementation. Furthermore, it is sensitive to interrupts: if
an interrupt occurs during the step, the debugger switched to
the interrupt handler.

However, GDB structure requires interrupts to be disabled
during single step. This requirement imposes restrictions on
partition's work, so we gave up the second method. Because of
the lack of debug registers in QEMU we need to disable
interrupts and set trap instruction on the next instruction.

Watchpoints were implemented using special capabilities of
hardware, such as Debug registers. Unfortunately, QEMU
doesn't have such registers, so we need to use another way to

C
L
I
E
N
T

$m8000acac,4#1d

+

Answer

+

Next packet

S
E
R
V
E
R

247 of 251

set watchpoints in emulator. This method isn't implemented
yet, but we are working in this direction.

Fig. 2. Multiplexer work

We also developed multiplexer to use one serial port for
both GDB and another application. Multiplexer allows
message exchange for debugger and for internal system
service. The transformation of one serial port into two serial
ports with the help of our multiplexer is not so difficult.

There are two parts of multiplexer, local and remote. Local
part is a superstructure responsible for information
input/output in the system. During the output it puts a special
symbol before every printable symbol, determining to which of
the two virtual serial ports the next symbol should be sent.
Working with input symbols is very similar: two symbols are
read, with the first of them specifying the application to which
we want to send the second symbol. Remote part of
multiplexer looks the same. This solution is not the fastest, but
it provides smooth debugger's work via one serial port together
with other applications. This connection between remote and
local parts of multiplexer is shown on Fig. 2.

V. DEBUGGER'S CAPABILITIES

Our debugger supports all standard debugging features.
Among them are:

1. Setting Breakpoints on Kernel and Partitions.

Setting breakpoints is the key feature of any debugger.
Considering that client knows only virtual addresses, the server
part of the debugger must correctly translate this address into
physical address. Our debugger can do this, that's why users
can debug partitions with overlapping virtual address spaces
and debugger stops only on the partition that the user wants.

2. Single Step.

Stepping through code step by step is a convenient way of
finding bugs. However, there can be a situation in real-time
OS, when the next instruction in code is not the next executable
instruction, for example, because of timer interrupt. That's why
we disable interrupts during the single step.

3. Showing Information about Processes and Threads,
Inspecting Memory, Instructions and Registers.
Memory Reading and Writing.

Memory view must correctly translate virtual addresses into
physical as with breakpoints. The capability to find out all
information about threads in OS, their states, registers and
memory is very important too.

Support of memory writes allows changing process state as
user's discretion.

4. Setting Watchpoints.

Watchpoints are one of the most comfortable ways to
control user's partition. They give the opportunity to follow
changes in memory sectors and stop\pause while trying to read
or record memory. This opportunity increases the number of
ways to control partitions' states.

5. Stack Inspection.

Stack inspection makes tracing possible: for example,
tracing the queue of called functions, which can help user to
understand exactly what has happened in the system.

VI. FUTURE WORK

Implementation of the debugger is not complete yet. There
are a number of features that can improve debugger usability:

 Enhance debugging capabilities to the level of
standard GDB functionality.

 Accelerate debugger interaction time with the system
through multiplexer.

 Improve hardware support on bare metal.

 Increase user convenience in multiplexer. Enhance its
functionality for working with more devices (now
multiplexer supports only two devices). This solution
allows us to work on bare metal with as many ports as
we need, regardless of the actual amount of ports.

 Add watchpoints implementation to QEMU, which
doesn't support debug registers. This is the reason why
we can't use debug registers for setting watchpoints
like we do on bare metal. In that case, we need to
change code handling in QEMU to develop
instruction for watchpoints creation.

VII. CONCLUSION

In this paper we have presented our project on
implementation of the debugger for real-time operating system
ISPRAS RTOS. In contrast to other systems and their
debuggers, where user can use some functions to debug
applications, but not all we need, our debugger meets the
majority of our requirements and restrictions. However, we
will able to update our debugger in near future and increase its
functionality, but it is already more functional than common
GDB debugger for QEMU.

Debugger

OS

Another
application

Multiplex
er,

Local
part

Multiplex
er,

Remote
part

Virtual
Serial
Port 1

Serial
port

Virtual
Serial
Port 2

248 of 251

REFERENCES

[1] F. Mehnert, J. Glauber and J. Liedtke, “Fiasco Kernel Debugger
Manual” Dresden University of Technology, Department of Computer
Science, November 2008

[2] Lauterbach GmbH, “RTOS debugger for VxWorks”, November 2015

[3] Lauterbach GmbH, “RTOS-VxWorks”, 18 August 2014

[4] System Architecture Group University of Karlsruhe. “The L4Ka::
Pistachio Microkernel”. May 1, 2003

[5] Wind River Systems, Inc “VxWorks Product Overview”, March 2016

[6] Free Software Foundation, Inc. “Debugging with gdb: the gnu Source-
Level Debugger”,The Tenth Edition

249 of 251

Building and Testing an Embedded Operating System

Alexey Ovcharov

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

aovch@ispras.ru

Nikolay Pakulin

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

npak@ispras.ru

Abstract—In this paper we report on the work in progress

concerning embedded OS building and testing environment. By

switching from make to SCons, which is essentially Python, we

achieve a greater level of convenience and maintainability.

Keywords—embedded OS; SCons; software development

I. INTRODUCTION

It is only natural to wish for simplicity instead of
complexity. Simplicity is next to elegance, and complexity is
error-prone. In the world of rapidly evolving software, where a
typical project codebase is measured in thousands or even
millions of source lines of code, maintainability is an issue of
highest priority. A project needs to be reconfigured, rebuilt,
and put to tests countless times a day. It goes without saying,
that maintenance overhead has the annoying ability to stall the
development.

Working on a real-time operating system, we were faced
with a challenge of making our build and test system as simple
and convenient as possible. Traditional Makefiles, used in the
project when we set to work on the OS, did not provide the
required flexibility and ease of maintenance. Makefiles were
difficult to read, dependencies between files were handled
badly, and every change in the source, even the smallest one,
led to the full rebuild. It was a matter of utmost importance,
and it needed to be resolved quickly.

Of course, we could honor the traditions and cling to Make.
We could rewrite the Makefiles (from scratch, apparently).
Instead, we opted for SCons [1] (mostly because it was used in
our previous project and we already saw its potential).

The OS we are working on is developed in pure C and
ASM. It is quite small in size, totaling in about 30,000 lines of
code. It consists of nothing more than the kernel, several BSP,
a single userspace library, and a couple of user applications.

As befits an embedded OS, our OS cannot be changed (e.g.,
extended with new applications) when in operation. The
majority of parameters such as the number of processes and
ports in the system are configured statically, and the kernel and
user applications are linked into a single bootable image.

Hence, every application-like test (of which we have
approximately 400) must be a separate complete OS image.
Nevertheless, when the test suite is run, the kernel can be
reused for every test, so only test files and bootable images

must be built. This was also taken into account when rewriting
our build system.

Our first and foremost goal was to reduce the impact of
modifications in the source code on build time. We did not
want to rebuild the whole OS when all that changed was a
single source file, and we wanted the dependencies to be
handled correctly when, for example, a header file was
modified. In the following section we will discuss several
mature OS with regard to their maintenance systems.

II. KNOWN APPROACHES TO EMBEDDED OS BUILDING

Our OS is not the first and, probably, not the last developed
embedded OS. In this section we will briefly review OS such
as VxWorks [2], PikeOS [3], and RTEMS [4].

VxWorks is a safety-critical OS with modular architecture.
Wind River Workbench, the Eclipse-based configuration and
build system, is designed with three goals in mind. The first
goal is the dependency minimization, which makes it possible
to build and certify different elements of the module separately.
The second goal is the support of incremental building in order
to reduce the number of files that have to be rebuilt as a
consequence of source change. The third goal is the distributed
development, allowing to smoothly divide tasks between
different development groups.

VxWorks modules can be built both with command-line
tools and through the GUI [2]. The build system is based on
Makefiles and provides the user with the control over three
aspects of the system: mode (cert or debug), CPU for which to
build the module, and image type (RAM, ROM, or network-
loadable).

PikeOS is bundled with CODEO, the Eclipse-based IDE
[3]. Among its facilities are configuration editor, integrity
checker, system monitor, and so on.

In contrast to proprietary VxWorks and PikeOS, RTEMS is
an open-source OS. RTEMS supports development with
Makefiles as well as with Eclipse. For integration with Eclipse,
a CDT-based plugin is provided [4].

III. SCONS

SCons is a Python-based software construction tool [1].
SCons is better than Make for a variety of reasons. First of all,
configuration scripts are written in Python. The ability to use a
full-fledged programming language is a blessing by itself;

250 of 251

however, SCons offers a range of other features, each of them a
reason to switch to this instrument.

SCons uses MD5 signatures to detect changes in the source
tree. This is best coupled with caching of built files to speed up
the builds. Fortunately, SCons can cache all types of files,
while ccache works only with C/C++ compilation output.

Another advantage of SCons over Make is sophisticated
dependency handling. SCons does not require a separate launch
to generate dependencies – they are deduced automatically. In
our case, we need to generate C source files from user
application XML configuration before building the system.
These C files are specified as source for the application ELF
file, and modifications in XML are transferred to
corresponding ELFs. Of course, if the changes in XML do not
impact the resulting C files (e.g., a comment was added), no
rebuild will be necessary.

If out-of-the-box dependency handling turns out to be not
enough, additional dependencies can easily be defined in the
building scripts. For example, our ELFs depend on BSP-
specific linker scripts, which default SCons builders cannot
handle properly. There is a simple solution to this problem,
however. We just had to add “-T /path/to/linker/script.lds”
string to linker flags and make the resulting ELF depend on the
linker script with the call to Depends method.

Naturally, SCons supports parallel builds, as does Make.

Cleaning the project is as simple as typing “scons -c”, and
everything created during the build is located via the
dependency tree and removed. Should the need arise, SCons
provides the ability to define clean targets similar to those of
Make.

Unfortunately, SCons does not come without drawbacks.
When launched, the utility first scans all its scripts in the
project in order to construct a dependency tree. This can take
some time, and might be a bit frustrating, especially if SCons
decides that there is nothing to build. In our case, an idle run on
an already built project takes SCons slightly less than two
seconds. Nevertheless, we consider it a step forward from the
full rebuild.

Another major drawback of migrating from Make to SCons
is the need to rewrite the build system, but once it is done,
adding files to build and tweaking the scripts becomes a lot
more comfortable.

IV. VARIOUS ISSUES

This section will be dedicated to the variety of problems we
had to take into account when working on the build system.

1. Building for multiple BSP.

An embedded OS targeted at a single BSP does not stand a
chance against its more broad-minded counterparts. The wider
the BSP range, the higher the OS chances of attracting
customers. But how to organize support for multiple BSP?

SCons provides VariantDir method, allowing to set up
multiple builds with different options and separate built files
from source.

Naturally, each architecture requires a different toolchain.
To specify BSP, we pass it to SCons as a command-line
parameter. The set of tools suitable for a particular architecture
is defined in one of our SCons scripts, and can be effortlessly
extended should a new architecture come into play.

2. Distributed development.

It would be very unwise to deny application developers the
ability to work independently from each other. Our build
system enables the pre-built applications to be configured by
system integrator and linked into a single bootable OS image.

3. Running and debugging.

Our OS runs under QEMU, an open-source machine
emulator. To boot the OS image, QEMU requires a number of
BSP-specific parameters. For the sake of convenience, we
construct the suitable command line in SCons scripts and
define target “run” as an alias to it. Thus, “scons run” executes
this command, launching QEMU with the OS image.

QEMU is equipped with gdbserver to facilitate emulated
targets debugging via gdb. It is enabled by yet another option,
so we define two more targets: “rundbg” for launching QEMU
ready for connection from gdb, and “debug” for gdb itself. To
debug the OS with an application, users must open two
terminals in this application's directory, then type “scons
rundbg” in one terminal and “scons debug” in the other.

V. FUTURE WORK

There is no such thing as too many test runs. It seems like a
good idea to add nightly build functionality to our project. We
are currently looking into buildbot in the hope that it will help
us automate scheduled testing.

VI. CONCLUSION

In this paper we have presented our improvements to OS
building/testing environment. Giving up Make in favor of
SCons, we gain a significant boost in convenience and
maintainability. Whereas with Make our test suite completed in
a several hours, with SCons it now takes about 20 minutes.

REFERENCES

[1] SCons: A software construction tool [Online]. Available:
http://scons.org/

[2] Wind River. VxWorks 653 Configuration and Build Guide 2.3 Edition
2.

[3] PikeOS Hypervisor: Eclipse based CODEO [Online]. Available:
https://www.sysgo.com/products/pikeos-rtos-and-virtualization-
concept/eclipse-based-codeo/

[4] RTEMS Eclipse Support [Online]. Available:
https://devel.rtems.org/wiki/Developer/Eclipse/Information

251 of 251

	01_title.pdf
	02_annotation.pdf
	03_content.pdf
	04_foreword.pdf
	05_committee.pdf
	06_submissions.pdf
	01_SYRCoSE_2016_paper_53.pdf
	Introduction
	Main ideas
	Two approaches to constraining type parameters
	Languages with ``Constraints-are-Types'' Philosophy
	Interfaces in Ceylon and Kotlin
	Scala Traits
	Rust Traits
	Swift Protocols

	Languages with ``Constraints-are-Not-Types'' Philosophy
	JavaGI Generalized Interfaces
	Language G and C++ concepts
	C# with concepts
	Constraints in Genus

	Which Philosophy Is Better If Any?

	Single Model versus Multiple Models
	Concept Pattern
	Instance Uniqueness in Haskell
	Parameters versus Predicates
	Modular Implicits in OCaml
	Concept Parameters for C#

	Conclusion and Future Work

	02_SYRCoSE_2016_paper_16.pdf
	03_SYRCoSE_2016_paper_54.pdf
	04_SYRCoSE_2016_paper_14_short.pdf
	05_SYRCoSE_2016_paper_34.pdf
	06_SYRCoSE_2016_paper_51.pdf
	07_SYRCoSE_2016_paper_43.pdf
	Introduction
	Domain analysis approaches
	Proposed approach
	Evaluation
	Conclusion
	References

	08_SYRCoSE_2016_paper_5.pdf
	09_SYRCoSE_2016_paper_52.pdf
	10_SYRCoSE_2016_paper_48.pdf
	I. Introduction
	II. common view on stand-alone verification of microprocessor caches
	III. Test stimuli generation
	A. The general approach
	B. Generation of primary requests for caches with out-of-order execution

	IV. Correctness checking
	A. Checking of indeterministic caches
	1) “Gray box” method: one of the ways to solve aforementioned problem is to replace usual “black box” method of device verification. That is, we should not consider only external interfaces of the device while analysing its behaviour. To determine which variant of behaviour has happened in the cache one could use “hints” from the implementation. To use this approach, a set of internal interfaces and signals is defined and its behaviour is specified. This interfaces must be chosen in a way that information on their state could be used to eliminate indeterminism. In general, in caches such signals are results of primary request arbitration and interfaces of finite automata of cache eviction mechanism. Additionally, that information can be used in request generator and for the estimation of verification quality. This method is usually easy to implement. Drawbacks of this methods are additional requirements for specification and reliance on interfaces that could also exhibit erroneous behaviour.
	2) Dynamic refinement of behavioural model: Another approach is to create additional instances of model for each variant of behaviour in case of nondeterministic choice in the device[4]. Each reaction is checked against every spawned device model. If reaction is impossible for one variation of behaviour, then it is removed from set. If set of possible states after some reaction becomes empty, the system must return error. In general, this approach may cause exponential growth of number of states with each consecutive choice. But for caches this approach could be implemented efficiently, because of several properties of caches: serialization of requests and cache line independence. Information on which indeterministic choice was made in the device (for use in request generator or for verification quality estimation) could also be extracted from reactions. Strong points of that approach compared to “gray box” method is elimination of reliance on implementation details of the device. Drawback is additional complexity of implementation.
	3) Assertions: Test stimulus generators simulate the behaviour of the device under test. It also should be noted that interaction between the device and its environment must adhere to some protocol. Based on that protocol, one can include functional requirements of protocols as an assertions in the generator. Then, violation of an assertion represents signals an error. Usage of assertions is an effective method of detection of a broad class of errors. In addition to assertions that are common for all memory subsystem devices, several cache-specific assertions could be included. They represent invariants of cache coherence protocol. To check this invariants, coherence of states of a single cache line is analyzed in all parts of test system after each change.

	B. Checking caches with out-of-order execution

	V. Case study
	VI. Conclusion

	11_SYRCoSE_2016_paper_12.pdf
	12_SYRCoSE_2016_paper_4.pdf
	13_SYRCoSE_2016_paper_41.pdf
	14_SYRCoSE_2016_paper_55.pdf
	15_SYRCoSE_2016_paper_7.pdf
	I. Introduction
	II. GOST 27.310-95 summary
	III. Tools overview
	A. OSATE
	B. RAM Commander

	IV. Comparison
	V. Conclusion

	16_SYRCoSE_2016_paper_31.pdf
	17_SYRCoSE_2016_paper_24.pdf
	18_SYRCoSE_2016_paper_15.pdf
	19_SYRCoSE_2016_paper_2_short.pdf
	20_SYRCoSE_2016_paper_37_short.pdf
	21_SYRCoSE_2016_paper_27_short.pdf
	Introduction
	Motivating Example
	Axioms as Specification Drivers
	Specification Drivers in Practice
	ADT axioms
	Equivalence
	Well-definedness
	Complete contracts

	Related Work
	Proving contracts completeness
	Conclusions and further work
	References

	22_SYRCoSE_2016_paper_13.pdf
	23_SYRCoSE_2016_paper_21.pdf
	24_SYRCoSE_2016_paper_33_short.pdf
	25_SYRCoSE_2016_paper_35.pdf
	Introduction
	Preliminaries
	P/T-nets
	Classical Petri nets unfoldings
	Nested Petri nets
	Conservative NP-nets

	Translation of Safe Conservative NP-Nets into P/T-Nets
	Unfoldings
	Branching Processes of a Conservative NP-net
	Comparing two ways of nested Petri net unfolding

	Conclusion
	References

	26_SYRCoSE_2016_paper_49.pdf
	27_SYRCoSE_2016_paper_23.pdf
	Introduction
	Motivating example
	Related work

	Preliminaries
	Approache to balance between abstraction and detalisation
	Mapping log attributes onto UML sequence diagram components
	Merge of diagram components
	Mining a hierarchical UML sequence diagram using nested fragments

	Evaluation
	VTM4Visio Framework
	Log pre-processing
	Log library
	Prototype implementation

	Conclusion

	28_SYRCoSE_2016_paper_20.pdf
	29_SYRCoSE_2016_paper_3.pdf
	30_SYRCoSE_2016_paper_25.pdf
	31_SYRCoSE_2016_paper_36.pdf
	32_SYRCoSE_2016_paper_17.pdf
	Dynamic Key and Signature Generation According to the Starting Time
	REFERENCES

	33_SYRCoSE_2016_paper_1.pdf
	34_SYRCoSE_2016_paper_6.pdf
	35_SYRCoSE_2016_paper_29.pdf
	36_SYRCoSE_2016_paper_10.pdf
	37_SYRCoSE_2016_paper_8.pdf
	I. Introduction
	II. Main Targets for Debugger
	III. Related Works
	A. Fiasco OS
	B. VxWorks
	C. L4Ka::Pistachio:

	IV. Technical Description:
	V. Debugger's Capabilities
	1. Setting Breakpoints on Kernel and Partitions.
	2. Single Step.
	3. Showing Information about Processes and Threads, Inspecting Memory, Instructions and Registers. Memory Reading and Writing.
	4. Setting Watchpoints.
	5. Stack Inspection.

	VI. Future Work
	VII. Conclusion
	References

	38_SYRCoSE_2016_paper_9.pdf

