
SYRCoSE 2017

Editors:

Alexander S. Kamkin, Alexander K. Petrenko, and

Andrey N. Terekhov

Preliminary Proceedings of the 11th Spring/Summer Young Researchers’

Colloquium on Software Engineering

Innopolis, June 5-7, 2017

2017

Preliminary Proceedings of the 11th Spring/Summer Young Researchers’

Colloquium on Software Engineering (SYRCoSE 2017), June 5-7, 2017 –

Innopolis, Republic of Tatarstan, Russian Federation.

The issue contains papers accepted for presentation at the 11th Spring/Summer

Young Researchers’ Colloquium on Software Engineering (SYRCoSE 2017) held in

Innopolis, Republic of Tatarstan, Russian Federation on June 5-7, 2017.

The colloquium’s topics include software specification and modelling, testing and

verification, safety and security, operating systems, analysis of texts and social

networks, and others.

The authors of the selected papers will be invited to participate in a special issue of

‘The Proceedings of ISP RAS’ (http://www.ispras.ru/proceedings/), a peer-reviewed

journal included into the list of periodicals recommended for publishing doctoral

research results by the Higher Attestation Commission of the Ministry of Science and

Education of the Russian Federation.

The event is sponsored by Russian Foundation for Basic Research (Project №17-07-20191).

Contents

Foreword ∙∙5

Committees ∙∙6

A Contract-Based Method to Specify Stimulus-Response Requirements

A. Naumchev, M. Mazzara, B. Meyer, J.-M. Bruel, F. Galinier, S. Ebersold∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8

Automated Type Contracts Generation in Ruby

N. Viuginov, V. Fondaratov∙∙∙14

Using Interface Patterns for Compositional Discovery of Distributed System Models

R. Nesterov, I. Lomazova∙∙∙17

An Online Tool for Requirements Engineering, Modeling and Verification of Distributed Software Based

on MDD Approach

D. Lozhkina, S. Staroletov∙∙23

On Minimization of Timed Finite State Machines

A. Tvardovskii, N. Yevtushenko∙∙29

Experiments on Parallel Composition of Timed Finite State Machines

A. Sotnikov, N. Shabaldina, M. Gromov∙∙36

Mining Hybrid UML Models from Event Logs of SOA Systems

K. Davydova, S. Shershakov∙∙42

Tool for Behavioral Analysis of Well-Structured Transition Systems

L. Dworzanski, V. Mikhaylov∙∙∙51

Stochastic Methods for Analysis of Complex Hardware-Software Systems

A. Karnov, S. Zelenov∙∙∙57

Problems of Creation and Dynamic Analysis of Heterogeneous Models of Hardware/Software Systems

K. Agaeva∙∙∙62

Predicate Abstractions Memory Modeling Method with Separation into Disjoint Regions

A. Volkov, M. Mandrykin∙∙∙69

Static Verification of Configurations of Linux Operating System Kernel

S. Kozin, V. Mutilin∙∙74

A Technique for Parameterized Verification of Cache Coherence Protocols

V. Burenkov∙∙∙80

High-Level Model-Based Test Generation for Digital Hardware

M. Chupilko, A. Kamkin, M. Lebedev, S. Smolov∙∙87

Verification of 10 Gigabit Ethernet Controllers

M. Petrochenkov, R. Mushtakov, I. Stotland∙∙91

Creating Test Data for Market Surveillance Systems with Embedded Machine Learning Algorithms

O. Moskaleva, A. Gromova∙∙96

3 из 190

Initial Steps Towards Assessing the Usability of a Verification Tool

M. Khazeev, V. Rivera, M. Mazzara∙∙101

The Study into Cross-Site Request Forgery Attacks within the Framework of Analysis of Software

Vulnerabilities

A. Barabanov, A. Lavrov, A. Markov, I. Polotnyanschikov, V. Tsirlov∙∙∙105

Dataflow Analysis for the Search of the Code Security Defects

S. Borzykh, A. Markov, A. Fadin, V. Tsirlov, P. Gusev∙∙110

Debugger for Real-Time OS: Challenges of Multiplatform Support

A. Emelenko, K. Mallachiev, N. Pakulin∙∙116

Using Modularization in Embedded OS

K. Mallachiev, N. Pakulin, A. Khoroshilov, D. Buzdalov∙∙120

Detecting and Tracking Near Duplicates in Software Documentation

D. Luciv∙∙125

Discovering Near Duplicate Text in Software Documentation

L. Kanteev, Yu. Kostyukov, D. Luciv∙∙130

The Program for Public Mood Monitoring through Twitter Content in Russian

S. Smetanin∙∙∙134

Narrabat – Prototype of News Retelling Service

I. Dolgaleva, I. Gorshkov, R. Yavorskiy∙∙∙138

The Program of Syntax-Based Sentiment Analysis

S. Smetanin∙∙∙142

Fast L1 Gauss 2D Image Transforms

D. Bashkirova, S. Yoshizawa, R. Latypov, H. Yokota∙∙145

Real-time Video Stabilization using MEMS-sensors

A. Kornilova, Ia. Kirilenko, N. Zabelina∙∙150

Type-2 Fuzzy Rule-Based Model of Urban Metro Positioning Service

A. Gimaletdinova, K. Degtiarev∙∙∙156

A Modified Scrum Story Points Estimation Method Based on Fuzzy Logic Approach

S. Semenkovich, O. Kolekonova, K. Degtiarev∙∙164

The Mixed Chinese Postman Problem

M. Gordenko, S. Avdoshin∙∙172

Pareto-optimal Algorithms for Metric TSP

E. Beresneva (Chirkova), S. Avdoshin∙∙∙177

Rapid Prototyping of Smart Mirror for Smart Home Environment

S. Smetanin∙∙∙182

Inverse Kinematics in Ultralight UAV Control Problem with Additional On-Board Microcomputer

V. Kaliteevskiy, K. Amelin∙∙185

4 из 190

Foreword

Dear participants,

It is our pleasure to meet you at the 11th Spring/Summer Young Researchers’ Colloquium on

Software Engineering (SYRCoSE). This year’s colloquium is hosted by Innopolis University, a

young and very ambitious institution focused on education and research in the field of IT and

robotics. The event is organized by Institute for System Programming of the Russian Academy of

Sciences (ISP RAS), Saint-Petersburg State University (SPbSU), and Innopolis University.

SYRCoSE 2017’s Program Committee (consisting of more than 50 members from more than 25

organizations) has selected 34 papers. Each submitted paper has been reviewed independently by

two-three referees. The authors and speakers represent well-known universities, research institutes

and companies including Bauman Moscow State Technical University, Exactpro Systems, Higher

School of Economics, Innopolis University, ISP RAS, JetBrains, Kazan Federal University,

Lomonosov Moscow State University, MCST, Moscow Institute of Physics and Technology, NPO

Echelon, Polzunov Altai State Technical University, RIKEN, Southern Federal University,

SPbSU, Tomsk State University, Toulouse University, and VERIMAG Laboratory (3 countries, 11

cities, and 18 organizations).

We would like to thank all of the participants of SYRCoSE 2017 and their advisors for interesting

papers. We are also very grateful to the PC members and the external referees for their hard work

on reviewing the papers and selecting the program. Our thanks go to the invited speakers, Manuel

Mazzara (Innopolis University), Andrey Belevantsev & Valery Ignatyev (ISP RAS), and Susanne

Graf (VERIMAG Laboratory). We would also like to thank our sponsors: Russian Foundation for

Basic Research (grant 17-07-20191), Federal Agency of Scientific Organizations, and Exactpro

Systems. Our special thanks go to the local organizers, Adil Adelshin, Inna Baskakova, Manuel

Mazzara, Bertrand Meyer, Nikolay Shilov, and Alberto Sillitti, for their invaluable help in

organizing the colloquium in Innopolis.

Sincerely yours,

Alexander S. Kamkin

Alexander K. Petrenko

Andrey N. Terekhov

May 2017

5 из 190

Committees

Program Committee Chairs

 Alexander K. Petrenko – Russia
Institute for System Programming of RAS

 Andrey N. Terekhov – Russia
Saint-Petersburg State University

Program Committee

Jean-Michel Adam – France
Pierre Mendès France University

Manuel Mazzara – Russia
Innopolis University

Sergey M. Avdoshin – Russia
Higher School of Economics

Marek Miłosz – Poland
Institute of Computer Science, Lublin University of Technology

Eduard A. Babkin – Russia
Higher School of Economics

Alexander S. Mikhaylov – Russia
RN-Inform

Nadezhda F. Bahareva – Russia
Povolzhskiy State University of Telecommunications and Informatics

Igor A. Minakov – Russia
Institute for the Control of Complex Systems of RAS

Svetlana I. Chuprina – Russia
Perm State National Research University

Alexey M. Namestnikov – Russia
Ulyanovsk State Technical University

Pavel D. Drobintsev – Russia
Saint-Petersburg State Polytechnic University

Valery A. Nepomniaschy – Russia
Ershov Institute of Informatics Systems of SB of RAS

Liliya Yu. Emaletdinova – Russia
Kazan National Research Technical University

Mykola S. Nikitchenko – Ukraine
Kyiv National Taras Shevchenko University

Victor P. Gergel – Russia
Lobachevsky State University of Nizhny Novgorod

Sergey P. Orlov – Russia
Samara State Technical University

Susanne Graf – France
VERIMAG Laboratory

Elena A. Pavlova – Russia
Microsoft

Efim M. Grinkrug – Russia
Higher School of Economics

Ivan I. Piletski – Belorussia
Belarusian State University of Informatics and Radioelectronics

Maxim L. Gromov – Russia
Tomsk State University

Vladimir Yu. Popov – Russia
Ural Federal University

Vladimir I. Hahanov – Ukraine
Kharkov National University of Radioelectronics

Yury I. Rogozov – Russia
Taganrog Institute of Technology, Southern Federal University

Shihong Huang – USA
Florida Atlantic University

Rustam A. Sabitov – Russia
Kazan National Research Technical University

Iosif L. Itkin – Russia
Exactpro Systems

Nikolay V. Shilov – Russia
A.P. Ershov Institute of Informatics Systems of RAS

Alexander S. Kamkin – Russia
Institute for System Programming of RAS

Alberto Sillitti – Russia
Innopolis University

Andrei V. Klimov – Russia
Keldysh Institute of Applied Mathematics of RAS

Ruslan L. Smelyansky – Russia
Moscow State University

Vsevolod P. Kotlyarov – Russia
Saint-Petersburg State Polytechnic University

Valeriy A. Sokolov – Russia
Yaroslavl Demidov State University

Alexander N. Kovartsev – Russia
Samara State Aerospace University

Petr I. Sosnin – Russia
Ulyanovsk State Technical University

Vladimir P. Kozyrev – Russia
National Research Nuclear University “MEPhI”

Veniamin N. Tarasov – Russia
Povolzhskiy State University of Telecommunications and Informatics

Daniel S. Kurushin – Russia
State National Research Polytechnic University of Perm

Andrei N. Tiugashev – Russia
Samara State Aerospace University

Peter G. Larsen – Denmark
Aarhus University

Sergey M. Ustinov – Russia
Saint-Petersburg State Polytechnic University

Roustam H. Latypov – Russia
Kazan Federal University

Vladimir V. Voevodin – Russia
Research Computing Center of Moscow State University

Alexander A. Letichevsky – Ukraine
Glushkov Institute of Cybernetics, NAS

Dmitry Yu. Volkanov – Russia
Moscow State University

Nataliya I. Limanova – Russia
Povolzhskiy State University of Telecommunications and Informatics

Mikhail V. Volkov – Russia
Ural Federal University

Alexander V. Lipanov – Ukraine
Kharkov National University of Radioelectronics

Nadezhda G. Yarushkina – Russia
Ulyanovsk State Technical University

Irina A. Lomazova – Russia
Higher School of Economics

Rostislav Yavorsky – Russia
Higher School of Economics

Lyudmila N. Lyadova – Russia
Higher School of Economics

Nina V. Yevtushenko – Russia
Tomsk State University

Vladimir A. Makarov – Russia
Yaroslav-the-Wise Novgorod State University

Vladimir A. Zakharov – Russia
Moscow State University

Victor М. Malyshko – Russia
Moscow State University

Sergey S. Zaydullin – Russia
Kazan National Research Technical University

Tiziana Margaria – Ireland
Lero – The Irish Software Research Centre

6 из 190

Organizing Committee

Adil Adelshin
Innopolis University

Bertrand Meyer
Innopolis University

Inna Baskakova
Innopolis University

Alexander Petrenko
Institute for System Programming of RAS

Alexander Kamkin
Institute for System Programming of RAS

Nikolay Shilov
Innopolis University

Manuel Mazzara
Innopolis University

Alberto Sillitti
Innopolis University

Referees

Sergey Avdoshin Alexander Mikhaylov

Nadezhda Bahareva Alexey Namestnikov

Mikhail Chupilko Valery Nepomniaschy

Alexey Demakov Mykola Nikitchenko

Andrei Gein Sergey Orlov

Victor Gergel Elena Pavlova

Susanne Graf Alexander Petrenko

Efim Grinkrug Vladimir Popov

Maxim Gromov Alexei Promsky

Iosif Itkin Yury Rogozov

Alexander Kamkin Nikolay Shilov

Andrei Klimov Alberto Sillitti

Artyom Kotsynyak Sergey Smolov

Alexander Kovartsev Valeriy Sokolov

Vladimir Kozyrev Veniamin Tarasov

Peter Gorm Larsen Andrei Tiugashev

Irina Lomazova Dmitry Volkanov

Vladimir Makarov Mikhail Volkov

Victor Malyshko Nadezhda Yarushkina

Tiziana Margaria Nina Yevtushenko

Manuel Mazzara Vladimir Zakharov

7 из 190

A contract-based method to specify
stimulus-response requirements

Alexandr Naumchev, Manuel Mazzara, Bertrand Meyer
Innopolis University

Innopolis, Russian Federation
{a.naumchev, m.mazzara, b.meyer}@innopolis.ru

Jean-Michel Bruel, Florian Galinier, Sophie Ebersold
Toulouse University

Toulouse, France
{bruel, galinier, ebersold}@irit.fr

Abstract—A number of formal methods exist for capturing
stimulus-response requirements in a declarative form. Someone
yet needs to translate the resulting declarative statements into
imperative programs. The present article describes a method for
specification and verification of stimulus-response requirements
in the form of imperative program routines with conditionals and
assertions. A program prover then checks a candidate program
directly against the stated requirements. The article illustrates the
approach by applying it to an ASM model of the Landing Gear
System, a widely used realistic example proposed for evaluating
specification and verification techniques.

Keywords—Seamless Requirements, Design by Contract, Auto-
Proof, Eiffel, Landing Gear System

I. OVERVIEW AND MAIN RESULTS

The present article describes a technique for specification
and verification of stimulus-response requirements using a
general-purpose programming language (Eiffel) and a program
prover (AutoProof [1]) based on the principles of Design by
Contract [2].

Real-time, or reactive, systems are often run by a software
controller that repeatedly executes one and the same routine
and it is specified to take actions at specific time intervals or
according to external stimuli [3]. This architecture is reason-
able when the software has to react timely to non-deterministic
changes in the environment. In this case the program should
react to the external stimuli in small steps, so that in the event
of a new change it responds timely.

Computation tree logics (CTL) [4] represent a frequent
choice when it comes to capturing stimulus-response require-
ments. Although it may be easier to reason about requirements
using declarative logic like CTL, the reasoning may be of
little value for the software developer who will implement the
requirements. Mainstream programming languages are all im-
perative, and the translation between declarative requirements
and imperative programs is semi-formal.

Requirements have to be of imperative nature from the
beginning. This would bridge the gap in how customers
and developers understand them. For a software developer
it is preferable to reason about the future program without
switching to an additional formalism, notation and tools not
connected to the original programming language and the IDE.

The present article describes a technique to achieve this goal,
in particular:

• Introduces the Landing Gear System (LGS) case study
and the LGS baseline requirements (Section II).

• Generalizes the LGS baseline requirements, maps
them to a well-established taxonomy, and comple-
ments the taxonomy (Section III).

• Provides a general scheme for capturing semantics of
the stimulus-response requirements in the form of im-
perative program routines with assertions (Section IV).

• Exercises utility of the approach by applying it to an
Abstract State Machine (ASM) specification of the
Landing Gear System case study (Section V).

• Concludes the possibility of statically checking a
sequential imperative program directly against a
stimulus-response requirement whose semantics is ex-
pressed in the same programming language through
conditionals, loops, and assertions (Section VII).

Application of the technique leads to discovery of an error
in the published model of the LGS ASM [5]. The error is not
present in the specification the authors have actually used for
proving the properties, but the error has found its way into the
publication.

II. THE LANDING GEAR SYSTEM

Landing Gear System was proposed as a benchmark for
techniques and tools dedicated to the verification of behavioral
properties of systems [6]. It physically consists of the landing
set, a gear box that stores the gear in the retracted position, and
a door attached to the box (Figure 1). The door and the gear are
actuated independently by a digital controller. The controller
reacts to changes in position of a handle in the cockpit by
initiating either gear extension or retraction process. The task
is to program the controller so that it correctly aligns in
time the events of changing the handle’s position and sending
commands to the door and the gear actuators.

III. STIMULUS-RESPONSE REQUIREMENTS

The LGS case study defines a number of requirements,
including several for the normal mode of operation (Figure 2).

8 из 190

Fig. 1. Landing set (source: [6]).

(R11bis)When the command line is working (normal
mode), if the landing gear command handle has
been pushed DOWN and stays DOWN, then even-
tually the gears will be locked down and the doors
will be seen closed.

(R12bis)When the command line is working (normal
mode), if the landing gear command handle has
been pushed UP and stays UP, then eventually the
gears will be locked retracted and the doors will
be seen closed.

(R21) When the command line is working (normal
mode), if the landing gear command handle re-
mains in the DOWN position, then retraction
sequence is not observed.

(R22) When the command line is working (normal
mode), if the landing gear command handle re-
mains in the UP position, then outgoing sequence
is not observed.

Fig. 2. Baseline LGS requirements.

The requirements communicate a common meaning of the
form:

• If stimulus holds, then response will eventually hold
in the future.

For requirement R11bis,

stimulus⇔“The operation mode is normal and

the handle is DOWN”

and

response⇔ (stimulus =⇒ “The gears are down and

the doors are closed”)

The implication in the definition of response reflects the “and
stays DOWN” part of the original requirement.

In addition to that, requirements R21 and R22 communicate
something else:

• Once response holds in the presence of stimulus, and
stimulus holds forever, response will hold forever.

(R11rs) If the gears are locked extended and the doors are
closed when the landing gear command handle is
DOWN, this state will still hold if the handle stays
DOWN.

(R12rs) If the gears are locked retracted and the doors are
closed when the landing gear command handle is
UP, this state will still hold if the handle stays UP.

Fig. 3. LGS response stability requirements.

A. Temporal interpretation of the requirements

The authors of the LGS ASM specification start with a
ground model that satisfies a subset of requirements, and then
refine the model to satisfy more requirements. The present
article focuses on their ground model and the corresponding
baseline requirements it covers (Figure 2). The work ex-
presses the baseline requirements as CTL properties. The CTL
interpretation assigns precise meanings to the requirements
by assuming small-step execution semantics of ASM’s. In
particular, for requirements R11bis and R12bis “the future”
means “after a finite number of execution steps”, while for
R21 and R22 “the future” means “after one execution step”.

The finite number of steps in R11bis and R12bis may be
unacceptably large though for a system like an LGS of an
aircraft. In particular, flights have some expected durations,
and the gears have to react to commands in some limited time
frame as well. The following two major categories of stimulus-
response requirements stem from the speculations above:

• If stimulus holds, then response will hold in not more
than k execution steps.
Requirements of this form are also called maximal
distance requirements [7].

• If stimulus holds, then response will hold in exactly k
execution steps.
Requirements of this form are also called exact dis-
tance, or delay requirements.

These two categories are not enough though for capturing
stimulus-response requirements. For example, if according to
R11bis the gears are locked down and the doors seen closed
as the result of the handle staying down, we want this state to
be stable if the handle stays down. This leads us to stimulus-
response requirements of the following form:

• If response holds under stimulus, it will still hold after
one execution step in the presence of that stimulus.
Let us call such requirements response stability re-
quirements.

It makes sense to complement requirements (R11bis) and
(R12bis) with the corresponding response stability require-
ments (Figure 3): not only do we want the LGS to respond
to a change in the handle’s position, but we also want it to
maintain the response if the position does not change.

IV. TRANSLATION OF STIMULUS-RESPONSE
REQUIREMENTS

Assuming the presence of an infinite loop
from until False loop main end that runs a

9 из 190

response_holds_within_k_steps
-- If stimulus holds,
-- response will hold within k steps.
local
steps: NATURAL

do
if (stimulus) then
from
steps := 0

until
response or (steps =k)

loop
main
steps := steps + 1

end
check
response

end
end

end

Fig. 4. Representation of a maximal distance requirement. Regardless of the
actual reason for the loop to terminate, the response has to hold if the stimulus
held at the entry to the loop.

reactive system, a temporal stimulus-response requirement
(Section III-A) takes the form of a routine with an assertion
(check end construct in Eiffel). The authors draw this
idea from the notion of a specification driver [8] - a
contracted routine that forms a proof obligation in Hoare
logic. AutoProof is a prover of Eiffel programs that makes it
possible to statically check the assertions.

A. Maximal distance

In the representation of a maximal distance requirement
(Figure 4) the “if stimulus then” clause captures the
presence of the stimulus before the up-to-k-length execution
fragment, and the “check response end” assertion ex-
presses the need for the response upon completion of the sub-
execution. The sub-execution may complete for two possible
reasons: either occurrence of the response or consumption of
all of the available k steps. In the both cases the response has
to hold.

B. Exact distance

Representation of an exact distance requirement (Figure 5)
is very similar to that one of a maximal distance, with
the “check (response and (steps =k))end” assertion
that makes the difference. Regardless of whether the loop
terminates because of response or steps=k, the both have
to hold upon the termination.

C. Response stability

Representation of a response stability requirement (Fig-
ure 6) says: whenever response holds under stimulus in a state,
it will still hold in the presence of the same stimulus in the
next state.

V. APPLYING THE TRANSLATION SCHEME TO THE
LANDING GEAR EXAMPLE

The article exercises the approach on the LGS ASM
specification, which is operational by the definition and thus

response_holds_in_k_steps
-- If stimulus holds,
-- response will hold in k steps.
local
steps: NATURAL

do
if (stimulus) then
from
steps := 0

until
response or (steps =k)

loop
main
steps := steps + 1

end
check

(response and (steps =k))
end

end
end

Fig. 5. Representation of an exact distance requirement. Both of the loop
exit conditions have to hold for the first time simultaneously if the stimulus
held at the entry to the loop.

response_is_stable_under_stimulus
-- response keeps holding under stimulus.
do
if (stimulus and response) then
main
check

(stimulus implies response)
end

end
end

Fig. 6. Representation of a response stability requirement. If response holds
under stimulus in some state, the response should hold in the next state in the
presence of the same stimulus.

is a subject for translation into an imperative program. For
this reason the present section starts with explanation of the
rules according to which the authors converted the original
specification into an Eiffel program.

A. Translation of ASM specifications

An ASM specification is a collection of rules taking one
of the following three forms [9]: assignment (Section V-A1),
do-in-parallel (Section V-A2), and conditional (Section V-A3).
If we have general rules for translating these operators into
Eiffel then we will be able to translate an arbitrary ASM into
an Eiffel program.

1) Assignment: An ASM assignment looks as follows:

f(t1, .., tj) := t0 (1)

The semantics is: update the current content of location λ =
(f, (a1, .., aj)), where ai are values referenced by ti, with the
value referenced by t0.

In Eiffel locations are represented with class attributes, so
an ASM’s location update corresponds in Eiffel to an attribute
assignment.

10 из 190

2) Do-in-parallel: An ASM can apply several rules simul-
taneously in one step:

R1||...||Rk (2)

In order to emulate a parallel assignment in a synchronous
setting, one needs to assign first to fresh variables and then
assign their values to the original ones. For example, an ASM
do-in-parallel statement

a, b := max(a− b, b),min(a− b, b) (3)

in Eiffel would look like

local
a_intermediate, b_intermediate: INTEGER

do
a_intermediate := max (a−b, b)
b_intermediate := min (a−b, b)
a := a_intermediate
b := b_intermediate

end

An attempt to update in parallel identical locations in an ASM
corresponds semantically to a crash. The translation scheme
not only preserves but strengthens this semantics: an Eiffel
program with two local variables declared with identical names
will not compile.

3) Conditional: An ASM conditional if t then R1 else
R2 carries the same meaning as in Eiffel, so the translation is
straightforward.

B. Ground model

Translation of the original LGS ASM specification into
Eiffel is publicly available in a GitHub repository [10] and
needs clarification too.

The baseline LGS requirements (Figure 2) talk about
normal mode of operation. The ground ASM specification
captures the normal mode through a model invariant, while
the Eiffel translation introduces a special boolean query
is_normal_mode for this purpose. The reason for that is
rather technical and has to do with the current limitations
in the underlying verification technology. The translation also
contains a number of annotations for disabling the complica-
tions of the underlying verification methodology [11]. Special
comments highlight the annotations and tell explicitly that they
have nothing to do with the problem at hand.

The repository contains two versions of the ground
model, GROUND_MODEL_ORIGINAL and GROUND_MODEL.
The original one keeps the error from the ASM model, which
is not handling opening doors case in the extension sequence.
The second version contains the translation without the error.

C. Requirements

The two classes include the translations of the baseline
requirements plus the response stability requirements intro-
duced in the present article. We do not discuss all of them
here: requirements (R11bis) and (R12bis), (R21) and (R22),
(R11rs) and (R12rs) are pairwise similar, which is why we
prefer to pick one from each pair.

Translation of requirement r11_bis (Figure 7) is an
application of the response_holds_within_k_steps
pattern (Figure 4), where:

• stimulus equates to:

is_normal_mode and
(handle_status=is_handle_down)

• response equates to:

(not (is_normal_mode and
(handle_status=is_handle_down))) or

((gear_status=is_gear_extended) and
(door_status=is_door_closed))

The idea behind the response is that there may be two
reasons for the gear not to extend and the door not to close:

• An abnormal situation that leads to quitting the normal
mode.

• The crew changes their mind and pushes the handle
up.

VI. RELATED WORK

Modeling of real-time computation and related require-
ments is a well-investigated matter [12]. Representation of
real-time requirements, expressed in general or specific form,
is a challenging task that has been attacked by the use of
several formalisms both in sequential and concurrent settings,
and in a broad set of application domains. The difficulty (or im-
possibility) to fully represents general real-time requirements
other than in natural language, or making use of excessively
complicated formalisms (unsuitable for software developers),
has been recognized.

In [13] the domain of real-time reconfiguration of system is
discussed, emphasizing the necessity of adequate formalisms.
The problem of modeling real time in the context of services
orchestration in Business Process, and in presence of abnormal
behavior has been examined in [14] and [15] by means, re-
spectively, of process algebra and temporal logic. Modeling of
protocols also requires real-time aspects to be represented [16].
Event-B has also been used as a vector for real-time extension
[17] in order to handle embedded systems requirements.

In all these studies, the necessity emerged of focusing on
specific typology of requirements using ad-hoc formalisms and
techniques, and making use of abstractions. The notion of
“real-time” is often abstracted as number of steps, a metric
commonly used. In this paper we follow the same approach,
inheriting both strength (simplicity of the model and effective-
ness for applicative purposes) and limitations (temporal logic
and time automata themselves miss to capture a precise notion
of real-time).

VII. CONCLUSIONS AND FUTURE WORK

Software developers reason in an imperative/operational
manner. This claim is supported both by anecdotal experience
and by empirical evidence [18]. Requirements expressed in
imperative/operational fashion would therefore results of easier
comprehensions for developers and would simplify the process
of negotiation behind requirements elicitation.

11 из 190

r11_bis
-- If (is_normal_mode and (handle_status =is_handle_down)) hold and remain,
-- ((gear_status =is_gear_extended) and (door_status =is_door_closed)) will hold within 10 steps.
local
steps: NATURAL

do
if (is_normal_mode and (handle_status =is_handle_down)) then
from
steps := 0

until
(not (is_normal_mode and (handle_status =is_handle_down))) or
((gear_status =is_gear_extended) and (door_status =is_door_closed)) or
(steps= 10)

loop
main
steps := steps + 1

end
check

(not (is_normal_mode and (handle_status =is_handle_down))) or
((gear_status =is_gear_extended) and (door_status =is_door_closed))

end
end

end

Fig. 7. Translation of the “r11 bis” requirement.

r21
-- If (is_normal_mode and (handle_status =is_handle_up)) holds and remains,
-- (gear_status 6=is_gear_extending) will hold within 1 step.
local
steps: NATURAL

do
if (is_normal_mode and (handle_status =is_handle_up)) then
from
steps := 0

until
(not (is_normal_mode and (handle_status =is_handle_up))) or
(gear_status 6=is_gear_extending) or
(steps = 1)

loop
main
steps := steps + 1

end
check

(not (is_normal_mode and (handle_status =is_handle_up))) or
(gear_status 6=is_gear_extending)

end
end

end

Fig. 8. Translation of the “r21” requirement.

r11_rs
-- ((gear_status =is_gear_extended) and (door_status =is_door_closed)) keeps holding under
-- (is_normal_mode and (handle_status =is_handle_down))
do
if ((is_normal_mode and (handle_status =is_handle_down)) and

((gear_status =is_gear_extended) and (door_status =is_door_closed))) then
main
check

((is_normal_mode and (handle_status =is_handle_down)) implies
((gear_status =is_gear_extended) and (door_status =is_door_closed)))

end
end

end

Fig. 9. Translation of the “r11 rs” requirement.

12 из 190

In the method described in this paper, requirements are
expressed in a formalism (or language) that seamlessly stay the
same along the whole process, without the need of switching
between different instruments or mental paradigms. At the
same time, the linguistic tool used to define them also allows
for automatic verification of correctness.

The meaning of correctness here remains subject to the
assumption that requirements engineers and stakeholders agree
on a list of desiderata that is indeed the intended one. Assum-
ing a non-faulty process of intention transferring (and this as-
sumption is common to any other approach too), requirements
are now more easily manageable by software engineerings all
the way from elicitation to verification.

The result of elicitation process is a set of requirements in
natural language. The full realization of the presented method
would imply an automatic (or semi-automatic) translation from
natural language into a structured representation that, although
completely intuitive for software developers, it is possibly not
easy to manage for average stakeholders. The first part of
this process, i.e., the translation from natural language into
the current representation (and back) is under development. A
tool automatically translates semi-structured natural language
into the Hoare-triple-based representation [19], allowing also
the opposite direction, i.e. back to natural language [20],
so that software engineers would be able to negotiate back
requirements with stakeholders using a format they would
comprehend. The role of the requirement engineers would
then consist in concluding the elicitation phase with a set of
requirements in semi-structured natural language, which the
tool would be able to process in an entirely automatic manner.

This paper supports the idea of seamless development de-
scribing a method supported by a formalism that stay the same
along the whole process, from requirements to deployment.
Alternative approaches have also been experimented which
make use of formalism-based toolkits, where ad hoc notations
are adopted for each development phase [21].

REFERENCES

[1] J. Tschannen, C. A. Furia, M. Nordio, and N. Po-
likarpova, “Autoproof: Auto-active functional verifi-
cation of object-oriented programs,” arXiv preprint
arXiv:1501.03063, 2015.

[2] B. Meyer, Touch of Class: learning to program well with
objects and contracts. Springer, 2009.

[3] I. J. Hayes, M. A. Jackson, and C. B. Jones, Determining
the Specification of a Control System from That of Its
Environment, pp. 154–169. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003.

[4] E. Clarke and E. Emerson, “Design and synthesis of
synchronization skeletons using branching time temporal
logic,” Logics of programs, pp. 52–71, 1982.

[5] P. Arcaini, A. Gargantini, and E. Riccobene, “Modeling
and analyzing using asms: the landing gear system case
study,” in International Conference on Abstract State Ma-
chines, Alloy, B, TLA, VDM, and Z, pp. 36–51, Springer,
2014.

[6] F. Boniol and V. Wiels, “The landing gear system case
study,” in International Conference on Abstract State Ma-
chines, Alloy, B, TLA, VDM, and Z, pp. 1–18, Springer,
2014.

[7] R. Koymans, “Specifying real-time properties with metric
temporal logic,” Real-time systems, vol. 2, no. 4, pp. 255–
299, 1990.

[8] A. Naumchev and B. Meyer, “Complete contracts through
specification drivers,” in 2016 10th International Sym-
posium on Theoretical Aspects of Software Engineering
(TASE), pp. 160–167, July 2016.

[9] Y. Gurevich, “Sequential abstract-state machines capture
sequential algorithms,” ACM Transactions on Computa-
tional Logic (TOCL), vol. 1, no. 1, pp. 77–111, 2000.

[10] A. Naumchev, “Lgs asm ground model in eiffel..” https:
//github.com/anaumchev/lgs ground model, 2017.

[11] N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer,
“Flexible invariants through semantic collaboration,” in
FM 2014: Formal Methods, pp. 514–530, Springer, 2014.

[12] H. Yamada, “Real-time computation and recursive func-
tions not real-time computable,” IRE Transactions on
Electronic Computers, vol. EC-11, pp. 753–760, Dec
1962.

[13] M. Mazzara and A. Bhattacharyya, “On modelling and
analysis of dynamic reconfiguration of dependable real-
time systems,” in Proceedings of the 2010 Third Inter-
national Conference on Dependability, DEPEND ’10,
(Washington, DC, USA), pp. 173–181, IEEE Computer
Society, 2010.

[14] M. Mazzara, “Timing issues in web services composi-
tion,” in Formal Techniques for Computer Systems and
Business Processes, European Performance Engineer-
ing Workshop, EPEW 2005 and International Workshop
on Web Services and Formal Methods, WS-FM 2005,
Versailles, France, September 1-3, 2005, Proceedings,
pp. 287–302, 2005.

[15] L. Ferrucci, M. M. Bersani, and M. Mazzara, “An LTL se-
mantics of businessworkflows with recovery,” in ICSOFT-
PT 2014 - Proceedings of the 9th International Confer-
ence on Software Paradigm Trends, Vienna, Austria, 29-
31 August, 2014, pp. 29–40, 2014.

[16] M. Berger and K. Honda, “The two-phase commitment
protocol in an extended pi-calculus,” Electr. Notes Theor.
Comput. Sci., vol. 39, no. 1, pp. 21–46, 2000.

[17] A. Iliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna,
and T. Latvala, “Augmenting event-b modelling with real-
time verification,” in Proceedings of the First Interna-
tional Workshop on Formal Methods in Software En-
gineering: Rigorous and Agile Approaches, FormSERA
’12, 2012.

[18] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber,
M. Weidlich, and S. Zugal, Declarative versus Imperative
Process Modeling Languages: The Issue of Understand-
ability. Springer Berlin Heidelberg, 2009.

[19] A. Bormotova, “Translation of natural language
into hoare triples.” https://github.com/An-Dole/
Semantic-mapping.

[20] V. Skukov, “Translation of hoare triples into natural
language.” https://github.com/flosca/hybrid.

[21] R. Gmehlich, K. Grau, F. Loesch, A. Iliasov, M. Jackson,
and M. Mazzara, “Towards a formalism-based toolkit
for automotive applications,” in 1st FME Workshop on
Formal Methods in Software Engineering, FormaliSE
2013, San Francisco, CA, USA, May 25, 2013, pp. 36–42,
2013.

13 из 190

https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/lgs_ground_model
https://github.com/An-Dole/Semantic-mapping
https://github.com/An-Dole/Semantic-mapping
https://github.com/flosca/hybrid

Automated Type Contracts Generation in Ruby
Nickolay Viuginov

Software engineer chairs
St.-Petersburg State University

St.-Petersburg, Russia
Email: viuginov.nickolay@gmail.com

Valentin Fondaratov
Team Lead in RubyMine

JetBrains
St.-Petersburg, Russia

Email: fondarat@gmail.com

Abstract—Elegant syntax of Ruby language pays back when
it comes to finding bugs in large codebases. Static analysis is
hindered[1] by specific capabilities of Ruby, such as defining
methods dynamically and evaluating string expressions. Even in
dynamically typed languages, type information is very useful,
because of better type safety and more reliable checks. One may
annotate the code with YARD (Ruby documentation tool) which
also enables improved tooling such as code completion.

This paper reports a new approach to type annotations
generation. We trace direct method calls while the program is
running, evaluate types of input and output variables and use
this information to derive implicit type annotations.

Each method or function is associated with a finite-state
automaton, to which all variants of typed signatures are added.
Then an effective compression technique is applied to the au-
tomaton, which reduces the cost of storage and allows to display
the collected information in a human-readable form.

Index Terms—Ruby, Dynamically typed languages, Ruby VM,
YARV, Method signature, Type inference, Static code analysis.

I. INTRODUCTION

Developers suffer from time-consuming investigations with
a goal to understand why the particular piece of code does
not work as expected. The dynamic nature of Ruby allows
for great possibilities which has a drawback — the codebase
as a whole becomes entangled and investigations become
more difficult compared to the statically typed languages like
Java or C++. Another downside of its dynamic features is a
drastic static analysis performance reduction due to inability
to resolve some symbols reliably.

Consider the dynamic method creation which is often done
with define_method call. Names and bodies of dynami-
cally created methods may be calculated at runtime[2].

class User
ACTIVE = 0
INACTIVE = 1
PENDING = 2

attr_accessor :status

def self.states(*args)
args.each do |arg|
define_method "#{arg}?" do
self.status == User.const_get(arg.upcase)

end
end

end
states :active, :inactive, :pending

end

One of the possible workarounds is using code documen-
tation tools like RDoc or YARD. As @param and @return
annotations may help, they have several drawbacks, too:

• the type system used for documenting attributes, pa-
rameters and return values is pretty decent however it
is not clear how to connect the types with each other.
For example, def []= for array usually returns the
same type as the second arg taking any type so in
YARD this will look like @param value [Object],
@return [Object] which is not really helpful.

• from some perspective, such documentation itself a kind
of contradicts the purpose of Ruby — to be as short,
natural and expressive as possible.

The proposed approach is inspired by the way people tackle
this problem manually: one may run or debug the program to
inspect some valuable info about the code they’re interested
in. This suggests that collecting direct input and output types
of the method dispatches during the program execution, post-
processing and structuring of this data will make up implicit
type annotations. As the process is automated, one can retrieve
a plenty of information about the covered code.

The collected information not only might be used for YARD
annotations generation but also could be stored in a public
database to be shared and reused by different users in order to
maximize the coverage of the analyzed code and the quality
of the results. Moreover, generated implicit annotations can be
built into the static analysis tools[3]) to improve existing and
provide additional checks and code completion suggestions.

The project implementation can be divided into two main
parts:

• At the first stage, the information about called methods
and their input and output types is being collected though-
out the script execution. It is very important to collect the
necessary information as quickly as possible not to force
users to wait for script completion many times longer
compared to the case of the regular execution. To achieve
this we implement a native extension, which receives all
the necessary information directly from the internal stack
of the virtual machine instead of using the standard API
provided by language.

• At the second stage, the data obtained in the first stage
is structured, reduced to a finite-state automaton and
prepared for further use in code insight. This storage

14 из 190

scheme was chosen because of the ability to quickly
obtain a regular expression that is easily perceived by
a human.

II. RELATED WORKS

For Ruby, as for most dynamically typed languages, there
are tools for source code analysis. But they do not allow to
statically identify all errors associated with type mismatch.
Here are some of them:

• Rubocop [4] - A Ruby static code analyzer, based on the
community Ruby style guide. But it does not allow to
detect actual errors in types

• Ruby-lint - A tool for detecting syntax errors, such as
undeclared variables, an invalid argument set for calling
a method, or unreachable sections of code.

• Diamondback Ruby [5] - an extension to Ruby that aims
to bring the benefits of static typing to Ruby. But at the
moment it’s impossible to analyze even the standard Ruby
library.

III. COLLECTING INFORMATION ABOUT METHOD CALLS

Method parameters in Ruby have the following structure:

def m(a1, a2, ..., aM, # mandatory(req)
b1=(...), ..., bN=(...), # optional(opt)

*c, # rest
d1, d2, ..., dO, # post
e1:(...), ..., eK:(...), # keyword

**f, # keyword_rest
&g) # block

TracePoint is a API allowing to hook several Ruby VM
events like method calls and returns and get any data through
Binding, which encapsulates the execution context(variables,
methods) and retain this context for future use.

def foo(a, b = 1)
b = ’1’

end

TracePoint.trace(:call, :return) do |tp|
binding = tp.binding
method = tp.defined_class.method(tp.method_id)
p method.parameters
puts tp.event, (binding.local_variables.map do |v|
"#{v}->#{binding.local_variable_get(v).inspect}"

end.join ’, ’)
end

foo(2)

[[:req, :a], [:opt, :b]]
call
a->2, b->1
[[:req, :a], [:opt, :b]]
return
a->2, b->"1"

The big disadvantage of this approach is that calculation of
full execution context is a time-consuming operation. But

later we will need information only about a small part of
it. Namely: types of arguments, types and names of method
parameters. Creating a native extension for the Ruby VM[6],
which will receive information about the method name directly
from YARV instruction list (Figure 1) and receive information
about argument types directly from the internal stack. Code

Fig. 1. YARV’s internal registers.

analysis often handles direct method calls, so it is important to
separate which arguments were directly passed to the method
by the user, and which ones were assigned the default values.
When Ruby VM hook the call event, all not specified optional
arguments already initialized with default values. So we need
to build one more native extension and gem this information
from internal stack. Lets take a look at simple Ruby method
with optional parameter and on appropriate bytecode.

def foo(a, b=42, kw1: 1, kw2:, kw3: 3)
#...

end

foo(1, kw1: ’1’, kw2: ’2’)

== disasm: #<ISeq:<compiled>@<compiled>>============
0000 trace 1
0002 putspecialobject 1
0004 putobject :foo
0006 putiseq foo
0008 opt_send_without_block

<callinfo!mid:core#define_method, argc:2,
ARGS_SIMPLE>

0011 pop
0012 trace 1
0014 putself
0015 putobject_OP_INT2FIX_O_1_C_
0016 putstring "1"
0018 putstring "2"
0020 opt_send_without_block <callinfo!mid:foo,

argc:3, kw:[kw1,kw2], FCALL|KWARG>
0023 leave
== disasm: #<ISeq:foo@<compiled>>===================
0000 putobject 42
0002 setlocal_OP__WC__0 6
0004 trace 8
0006 putnil
0007 trace 16
0009 leave

So we need to find bytecode instruction for current method
dispatch. For this, it is necessary to find caller control frame,
and get last executed instruction in this frame. Thats how we

15 из 190

get number of arguments(argc:) and list of key words(kw:[])

IV. TRANSFORMING RAW CALL DATA INTO CONTRACTS

Huge amount of raw signatures received from the Ruby
process must be structured and processed so that it can be
easily used and perceived. Each traced method is associated
with a finite-state automaton. This storage structure allows
you to quickly add raw data obtained from the Ruby process.
It is also can easily be reduced to a human-readable regular
expression.

Fig. 2. Example of generating a non-minimized automaton.

In each automaton there is a single starting vertex and a
single terminal vertex. To the automaton consistently added
words obtained by concatenating signatures and corresponding
output types. Then the minimization algorithm[7] is applied to
this automaton. Quite often there are situations when the types
of the two or more arguments of the method always coincide.
Or even the type of the result coincides with type of one of the
arguments. Consider an algorithm of processing such methods
using method equals as an example.

def equals(a, b)
raise StandardError if a.class != b.class
a == b

end
p equals(1, 1) # (Integer, Integer) -> TrueClass
p equals(1, 2) # (Integer, Integer) -> FalseClass
...

Fig. 3. Automaton with counted bit masks.

In this case, the types of arguments are the same, so the
automaton can be markedly reduced. The algorithm consists
in storing a bit mask on each automaton transition. Bit with
one indicates a match of the type written on the edge with
the corresponding previous type (Fig 3). In case the mask is
greater than 0, the type written on the edge can be replaced
with a mask. Subsequently, the transition along the edge will

be carried out only when a readable signature is applied to
the mask. After that, minimization algorithm is applied to the
automaton one more time.

Fig. 4. Minimizing the automaton with reference edges.

When during the code analysis it will be necessary to
calculate the type returned by the method, we simply read
through the automaton the set of input types of this method,
and all the transitions from the vertex in which we turn out
to be the desired output types.

V. CONCLUSION

The paper describes the approach to generation of implicit
type annotations.

This approach provides information about the types of meth-
ods that can not be obtained by static analysis of the source
code in case if it is possible to understand in which library
the method was declared and resolve the method receiver. This
approach is useful for methods that are declared dynamically
or in their body there are complex syntactic constructions, for
example evaluating a string variable . In addition, this approach
can be applied to other languages with dynamic typing, such
as Python or JavaScript.

At the moment, we are working on optimizing the time of
collecting of statistics. In the future, it will be necessary to
test the approach, carry out load testing and implement the
prototype in the existing static analysis of the Ruby language.

REFERENCES

[1] Brianna M. Ren. The ruby type checker.
[2] blog.codeclimate. Gradual type checking for ruby, 2014.
[3] O. Shivers. Control flow analysis in scheme. ACM

SIGPLAN 1988 conference on Programming language
design and implementation, 1988.

[4] Bozhidar Batsov. Rubocop, 2017.
[5] Jeff Foster Mike Hicks Mike Furr, David An. Diamond-

back ruby guide, 2009.
[6] Pat Shaughnessy. Ruby Under a Microscope. No Starch

Press, 2013.
[7] Jeffrey D. Ullman John E. Hopcroft, Rajeev Motwani.

Introduction to Automata Theory. Addison-Wesley, 2001.

16 из 190

Using Interface Patterns for Compositional
Discovery of Distributed System Models

Roman A. Nesterov∗, Irina A. Lomazova†
National Research University Higher School of Economics

20 Myasnitskaya Ulitsa, 101000, Moscow, Russia
E-mail: ∗ranesterov@edu.hse.ru, †ilomazova@hse.ru

Abstract—Process mining offers various tools for studying
process-aware information systems. They mainly involve several
participants (or agents) managing and executing operations on
the basis of process models. To reveal the actual behavior of
agents, we can use process discovery. However, for large-scale
processes, it does not yield models which help understand how
agents interact since they are independent and their concurrent
implementation can lead to a very sophisticated behavior. To
overcome this problem, we propose interface patterns which
allow getting models of multi-agent processes with a clearly
identified agent behavior and interaction scheme as well. The
correctness of patterns is provided via morphisms. We also
conduct a preliminary experiment, results of which are highly
competitive compared to the process discovery without interface
patterns.

Index Terms—Petri nets, interface patterns, synchronization,
composition, morphisms, process discovery, multi-agent systems,
distributed systems

I. INTRODUCTION

Process mining is the relatively new direction in studying
process-aware information systems. They include information
systems managing and executing operational processes which
involve people, applications and information resources through
process models [1, p. 3]. Examples of these systems include
workflow management systems, business process management
systems, and enterprise information systems. The underlying
interactions among participants (also called agents) of process-
aware information systems are intrinsically distributed multi-
agent systems. An agent acts autonomously, but it can interact
with the others via shared resources, restrictions, and other
means. Process mining helps to extract a model of this system
for further study from a record of its implementation called
an event log. However, extracted models are hard for analysis
since there might be complex interactions among process
participants the number of those can be significant.

In this paper, we propose a compositional approach to
address this problem. Given an event log of a distributed
system, we can filter it by agents and mine a model of each
agent. Then, agent models can be composed to get a com-
plete model of a multi-agent distributed system which might
be simulated. Composing agent models allows us to obtain
more structured models compared to models extracted from
complete logs since the behavior of an agent can be clearly
identified. We compose agent models via interface patterns
which describe how they intercommunicate. This approach

was presented at TMPA-2017 [2]. The formal proof of the
composition correctness is based on using net morphisms
[3]. Moreover, interface patterns allow inheriting deadlock-
freeness and proper termination from agents by construction.

We conduct a preliminary experiment on using one interface
pattern for mining multi-agent models. The outcomes are
evaluated with the help of conformance checking quality
dimensions [1, p. 128], [4] and complexity metrics [5].

This paper is structured as follows. The next section pro-
vides an overview of process discovery and compositional
approaches. In Section 3 we introduce basic terms which are
used in the paper. Section 4 shows a general description of the
compositional approach to process discovery. Section 5 briefly
introduces how we compose agent models using interface
patterns and net morphisms. In Section 6 we describe the
preliminary experiment and analyze results.

II. RELATED WORK

There exist three types of process mining, namely discovery,
conformance, and enhancement. Process discovery produces a
process model out of an event log – a record of implemented
activities. Existing discovery approaches can yield a model
in a variety of notations including Petri nets, heuristic nets,
process trees, BPMN, and EPC. Petri nets are the most
widespread process model representations discovered from
event logs. Conformance checking is used to check whether
a discovered model corresponds to an input event log and to
identify probable deviations. The main idea of enhancement
is to improve existing processes using knowledge of actual
processes (usually denoted AS-IS) obtained from event logs.

Process discovery offers several methods to be used for
constructing models from event logs. One of the first and
the most straightforward discovery approach is α-algorithm
which identifies ordering relations among activities in logs,
but it has severe usage limitations connected with cycles and
the overall quality of obtained models [1, pp. 136-139]. It has
several refined versions and improvements, for example [6],
but there are other more sophisticated and efficient discovery
algorithms. S. Leemans et al. [7] has proposed inductive
miner allowing to extract process models from logs containing
infrequent or incomplete behavior as well as dealing with
activity lifecycle when there are separate actions of start
and finish for each activity. Apart from that, inductive miner
always produces well-structured models in the form of Petri

17 из 190

nets. HeuristicsMiner is another process discovery algorithm
proposed by A. Weijters et al. [8]. It can process event logs
with a lot of noise (excessive activities) and also deals with
infrequent process behavior. HeuristicsMiner uses intermediate
casual matrices and produces heuristics net which can easily
be converted into Petri nets and applied for other notations
including EPC, BPMN, and UML. S. van Zelst et al. [9]
proposed the approach to process discovery based on integer
linear programming and theory of regions. Their algorithm
can produce Petri nets with complex control flow patterns, and
its recent improvements guarantee the structural correctness
of discovered models. C. Gunther and W. van der Aalst have
proposed adaptive fuzzy mining approach [10] to deal with
unstructured processes extracted from event logs since they
can produce different abstractions of processes distinguishing
”important” behavior.

Since state-of-the-art process discovery algorithms can deal
with complex process behavior, the other problem is to obtain
models that are appropriate concerning their structure. There
is a so-called continuum of processes ranging from highly
structured processes (Lasagna models) to unstructured pro-
cesses (Spaghetti models) [1, pp. 277-317]. The problem of
obtaining well-structured models is extensively studied in the
literature. Researchers offer different techniques to improve
model structure [11], and to produce already well-structured
process models [12], [13], [14]. In the case of multi-agent
and distributed systems using well-structured models should
also allow identifying agent behavior clearly for the model
understandability improvement.

We suggest discovering models of agents independently and
then composing them together to produce a structured multi-
agent system model with the clearly visible behavior of each
agent. Several compositional approaches for process discovery
have been proposed. In [15] A. Kalenkova et al. have shown
how to obtain a more readable model from an event log by
decomposing extracted transition systems. A special tecnique
to deal with cancellations in process implementation and to
produce clear and structured process models which can contain
cancellations have been studied in [16].

Correct coordination of system components is an error-
prone task. Their interaction can generate complex behav-
ior. The majority of process discovery tools produce Petri
nets, and a large amount of literature has investigated the
problem of composing Petri nets. They can be composed via
straightforward merging of places and transitions [17, pp. 75-
80], but the composition result will not preserve component
properties. One of the possible ways to achieve inheritance
of component behavioral properties is to use morphisms
[18]. Special constructs for composing Petri net based on
morphisms were studied in [3], [19], [20]. The key idea of
this approach is that distributed system components refine an
abstract interface describing the interactions between them.
In [21] I. Lomazova has proposed a compositional approach
for a flexible re-engineering of business process by using a
system of interacting workflow nets. There also exists a several
techniques for compositional synthesis of web services [22].

However, in [23] R. Hamadi and B. Benatallah have proposed
an algebraic approach to the regular composition of services.

These compositional approaches do not let specify the
explicit order of inner behavior of two interacting components.
This situation is schematically represented in Fig. 1. Having
two discovered component models with always executable
actions A and B, we want to require that they interact in a
way that A is implemented before B. This way of intercom-
munication is also shown in the form of Petri net.

… A …

… B …

(a) Modeling components

A B

(b) Interaction scheme

Fig. 1. Defining relations on inner actions of components

In [2] we have proposed a solution to this problem and two
other patterns for composing two interacting components. The
obtained composition inherits properties, such as deadlock-
freeness and proper termination, from components.

In this paper we show how these patterns can be used for
discovering a multi-agent system model from an event log in a
compositional way. Applying compositional patterns allows us
to obtain a more readable model improving time complexity
due to the parallelization of process discovery.

We can assess process models obtained from event logs
against four standard quality dimensions – fitness, precision,
generalization, and simplicity [4]. Fitness identifies how ac-
curately an extracted model can replay a source event log.
Precision indicates a fraction of a behavior allowed by the
model but not seen in the event log. Generalization tries
to measure the extent to which the model will be able to
implement the behavior of the process unseen so far in the
log. Simplicity focuses on assessing structural complexity
alongside with other graph characteristics - a number of
elements and a structuredness measure [5].

III. PRELIMINARY DEFINITIONS

A. Petri nets

We use Petri nets [17] to represent agent models and an
interaction scheme called interface.

Definition 1: A multiset m over a set S is a function
m : S → N ∪ {0}. Let m, m′ be two multisets, m′ ⊆ m
iff ∀s ∈ S : m′(s) ≤ m(s). Also, ∀s ∈ S : (m + m′)(s) =
m(s) +m′(s) and (m−m′)(s) = max(0,m(s)−m′(s)).

Then, an ordinary set is a multiset in which distinct elements
occurr only once.

Definition 2: A Petri net is a bipartite graph N =
(P, T, F,m0, L), where:

1) P = {p1, p2, ..., pn} – a finite non-empty set of places.
2) T = {t1, t2, ..., tm} – a finite non-empty set of transi-

tions, P ∩ T = ∅.
3) F ⊆ (P × T) ∪ (T × P) – a flow relation.

18 из 190

4) m0 : P → N∪ {0} – a multiset over P , initial marking.
5) L : T → A ∪ {τ} – a labeling for transitions, where τ

is a name for silent transitions.
Pictorially, places are shown as circles, and transitions are

shown as boxes (silent transitions are depicted by black boxes).
A flow relation is depicted by directed arcs (see Fig. 2).

Let X = P ∪ T . We call a set •x = {y ∈ X|(y, x) ∈ F} a
preset of x and a set x• = {y ∈ X|(x, y) ∈ F} – a postset
of x. Also, •x• = •x ∪ x• is a neighborhood of x.

The behavior of Petri nets is defined by the firing rule, which
specifies when an action can occur, and how it modifies the
overall state of the system.

A marking m : P → N∪{0} enables a transition t, denoted
m[t〉, if •t ⊆ m. The t firing in m leads to m′, denoted
m[t〉m′, where m′ = m−•t+t•. When ∀t ∈ T and ∀w ∈ T ∗,
m[tw〉m′ = m[t〉m′′[w〉m′, w is called the firing sequence.
We denote a set of all firing sequences of a net N as FS(N).

A B

B

B

Fig. 2. A Petri net

We call a marking m reachable from m0 if ∃w ∈ FS(N) :
m0[w〉m. A set of all markings reachable from m0 is denoted
by [m0〉. So, [m〉 is a set of all markings reachable from m.
A net N is safe iff ∀p ∈ P,∀m ∈ [m0〉 : m(p) ≤ 1.

A marking mf is called final if ∀p ∈ mf : p
• = ∅. A net N

is deadlock-free if ∀t ∈ T∃m ∈ [m0〉 : m[t〉, and m 6= mf .
A net N terminates properly if a final marking is reachable
from all reachable states ∀m ∈ [m0〉 : mf ∈ [m〉.

B. Event logs

Process discovery techniques allow generating process mod-
els from event logs containing information on executed ac-
tions. In a simple case, event logs may contain actions names
and a corresponding implementation order. We can augment
this record with a timestamp (when an action occurs) and
executor (what agent implements it).

Definition 3: Let N be a set of action names and E be
a set of agent names. An activity is a triple (n, e, t), where
n ∈ N , e ∈ E , and t corresponds to a timestamp. The set
of all activities is denoted by Act. A trace σ ∈ Act+ is a
sequence of activities. An event log L is a multiset over Act+,
L ∈ m(Act+).

Different traces can be combined to form a case correspond-
ing to a process implementation scenario. XES is a standard
representation format adopted by IEEE [24] for logging events
and processing them via process mining tools.

IV. COMPOSITIONAL PROCESS DISCOVERY

A. General outline

To support the compositional discovery of models from
event logs generated by multi-agent systems, we assume a
record of each action has a corresponding label of an agent

TABLE I
FRAGMENT OF AN EVENT LOG

Trace ID Action ID Timestamp Executor

Trace 1
t1 2017-03-01T17:23:40 Agent 1
e2 2017-03-01T19:12:05 Agent 2
...

Trace 2
e3 2017-03-02T21:13:47 Agent 2
t1 2017-03-04T21:14:40 Agent 1
...

implementing it. The procedure of the compositional synthesis
includes several steps to be implemented:

1) capturing a complete event log L from multi-agent
system operation;

2) filtering the event log L by agent labels and producing
a set of event logs Le (|Le| = |E|), each trace in Le

consists of actions implemented by e only;
3) discovering a model for each agent separately from a set

of event logs Le;
4) defining interface pattern which describes how agents

intercommunicate;
5) composing agent models and producing a multi-agent

system model.
The step of defining interface pattern for agent interaction

is implemented manually so far. We rely on an expert view
on how agents should intercommunicate.

B. Software overview

A wide range of process discovery tools is implemented
within the context of the open-source project ProM [25]
continuously improving nowadays. However, there also exist
many commercial tools using process mining approach to
analyze and improve business process. They include Disco
[26], QPR ProcessAnalyzer [27, pp. 11-12], myInvenio [28] to
name but a few. Contrary to ProM, they provide more business-
related solutions for process performance analysis and further
improvement.

To process event logs we use the advanced ProM plug-
in GENA [29] which allows to generate event logs with
timestamps and originator labels as well as to augment logs
with artificial events representing noise.

V. COMPOSING PETRI NETS VIA INTERFACE PATTERNS

This section provides a brief introduction to our approach
to Petri net composition using interfaces and net morphisms.

A. Composing Petri nets via morphisms

The notion of ω-morphism on Petri nets was first introduced
in [3] for net systems and can be applied for safe nets.

Definition 4: Let Ni = (Pi, Ti, Fi,m
i
0, Li) for i = 1, 2

be two Petri nets, Xi = Pi ∪ Ti. The ω-morphism is a total
surjective map ϕ : X1 → X2 such that:

1) ϕ(P1) = P2.

19 из 190

2) ∀p1 ∈ P1 : m
1
0(p1) > 0⇒ m2

0(ϕ(p1)) = m1
0(p1).

3) ∀t1 ∈ T1 : ϕ(t1) ∈ T2 ⇒ ϕ(•t1) = •ϕ(t1), ϕ(t1•) =
ϕ(t1)

•.
4) ∀t1 ∈ T1 : ϕ(t1) ∈ P2 ⇒ ϕ(•t1

•) = {ϕ(t1)}.
Figure 3 helps to explain requirements 2 and 3 of the

definition, i.e. how transitions of N1 can be mapped onto
places and transitions of N2.

A

A’

(a) ϕ(A) = A′ ∈ T2

A

B

B’

(b) ϕ(A) = p ∈ P2

Fig. 3. Transition map options for ω-morphisms

To use morphisms for Petri net composition, we need
to define morphisms from agent nets towards an interface
which describes how they intercommunicate. Then we merge
transitions having common labels and images. Figure 4 shows
how two Petri nets are composed via ω-morphisms represented
as dotted arrows.

C D

A

B

A

B

E F

A

B

(a) Defining ω-morphisms

E F

A

C D

B

(b) Composition

Fig. 4. Composing two Petri nets via ω-morphisms

As it was proved in [19], the use of morphisms allows
preserving properties of interacting components in a composed
process net. A composition obtained via ω-morphisms is
deadlock-free and properly terminates iff source component
nets and an interface net are deadlock-free and terminate
properly as well.

B. Compositional interface patterns

To facilitate Petri net composition, we use compositional
patterns for typical interfaces [2]. One of such patterns called
the simple causality is schematically shown in Fig. 1, and
Fig. 5 provides its instantiation. A pattern includes component
and interfaces nets which might be merged according to the
morphism composition rules if there is a need to produce a
complete process model for comprehensive simulation.

It also has to be mentioned that to preserve concurrency
in the implementation of interacting agents we expand in-
terface nets with additional places and transitions keeping
them weakly bisimilar with original interfaces. Consequently,
extended interfaces allow us to obtain composition results with
the clearly identified behavior of each component.

A B

(a) Behavior of agents

A

B

(b) Interface

Fig. 5. Instantiating simple causality pattern

Figure 5(b) shows how we have expanded interface net for
this pattern. We use expanded interfaces only for our inner
purposes. The end user does not need to know the underlying
theoretical aspects of our approach.

VI. SOME EXPERIMENTAL EVALUATION

In this section, we describe a preliminary experiment on
using the simple causality pattern for compositional process
discovery.

A. Processing event logs

Using GENA and the composition result obtained from
the instantiated simple causality pattern (see Fig. 5) we have
generated the event log with 3000 traces. Then we have filtered
the initial log by executors using ProM. The obtained event
logs have the characteristics presented in Table II. Generation
results for Agent A show bigger values due to cycles.

TABLE II
CHARACTERISTICS OF THE EVENT LOGS

Log L Log LA Log LB

Number of traces 3000 3000 3000
Number of events 58466 34466 24000
Events per trace (min) 17 9 8
Events per trace (max) 43 35 8
Events per trace (mean) 19 11 8

20 из 190

B. Discovering a system model from log L

Figure 6 shows the fragment of the Petri net discovered
from the event log L using Inductive Miner and ProM. The
behavior of agents is distinguished by colors.

A

B

Fig. 6. The fragment of the system model discovered from L

This discovered model is quite well-structured (constructed
out of clear blocks) but it does not allow to identify the
behavior of different agents. That is why, it is hard to yield
the complete picture of agent intercommunication scheme.

C. Discovering and composing models from logs LA and LB

Figure 7 shows the fragment of the merged Petri nets we
discovered from the agent event logs LA and LB also using
Inductive Miner and ProM. Note, that Petri nets discovered
by Inductive Miner are always safe. Hence we can apply
morphisms to compose discovered models of agents.

A …

B …

Fig. 7. The fragment of the composed model discovered from LA and LB

The merged model allows us to identify the behavior of
agents clearly and how they intercommunicate. Using mor-
phisms guarantees inheritance of properties such as deadlock-
freeness and proper termination of agents by the entire net.

D. Analysis of the experiment results

ProM implementation of Inductive miner offers three con-
figuration options:

1) event logs with infrequent behavior;
2) event logs with incomplete behavior;
3) event logs with lifecycle events (start/finish of events);
4) exhaustive k-successor algorithm.
We do not work with incomplete logs or with lifecycle

logs for now. So, in our experiment we have discovered
models of system and agents shown in previous subsections
in accordance with options 1 and 4 and compared them using
structural process discovery metrics.

Table III provides the comparison of structural characteris-
tics for the directly discovered and composed system models.

We compared obtained models with respect to the number
of Petri net elements and structure metric which assess the
overall complexity of a model by breaking it into trivial
constructs and assigning weights to each reducing step. Models
discovered with infrequent configuration are denoted as INFR,
models discovered with exhaustive configuration are denoted
as EXHS.

TABLE III
STRUCTURAL ANALYSIS OF SYSTEM MODELS

Direct Composition

Source INFR EXHS INFR EXHS

Places 28 30 47 35 39
Transitions 27 44 46 40 41
Arcs 68 100 114 89 93
Structuredness 9360 240 496 872 1208

The experiment results show the increase in transition
numbers because of adding silent transitions. Compositional
patterns obviously decrease a number of arcs, compared to
direct discovery, as long as we simplify agent intercommuni-
cation. Composed models also preserve complex control flows
as shown by structuredness measure. Separately discovered
agent models and their composition exhibit more precise cycle
discovery.

We have also conducted conformance checking for di-
rectly discovered and composed models. As it was mentioned
above, there are four standard quality dimensions, namely
fitness, precision, simplicity, and generalization. Simplicity is
analyzed above via structural analysis. We do not estimate
generalization since there are no complex cyclic or concurrent
constructs to instantiate the simple causality pattern. Table IV
shows values obtained for fitness and precision of discovered
and composed system models.

TABLE IV
QUALITY ANALYSIS OF SYSTEM MODELS

Direct Composition

Source INFR EXHS INFR EXHS

Fitness 1,0000 1,0000 0,9684 1,0000 1,0000
Precision 0,6992 0,3631 0,5508 0,5629 0,6232

Both discovered and composed system models preserve the
appropriate level of fitness, the composition does not block
its preservation. What is more important, using compositional
patterns produces models with precision nearer to that of the
source model compared to direct discovery results. Composed
models approximately 30% more precise than discovered ones.

To sum up, we used the simple causality pattern to produce
the model of the multi-agent system. Assessment results
showed that the composed models are highly competitive with
the models directly discovered from complete event logs in the
context of their relative structural complexity evaluations and
conformance checking results.

21 из 190

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the solution to the problem
of discovering structured models for the processes with several
participants (agents). The key idea is to automatically obtain
the correct and complete process models from the separate
source models of its components. The interaction between
agents is defined by experts.

To prove the correctness of the composition we adopt the
approach based on Petri net morphisms. We refer to the
compositional patterns proposed for the correct synthesis of
models for multi-agent processes. In the context of this work,
we conducted the preliminary experiment on using the simple
causality pattern for constructing the complete model from
discovered agent models. The analysis of experimental results
(conformance and complexity) showed that composed models
are highly competitive compared to the models obtained
directly. Moreover, our compositional approach to process
discovery allows producing models with the clearly identified
behavior of interacting agents.

We aim to continue developing of compositional patterns for
typical interfaces and providing experimental process discov-
ery implementations for them using also real-live event logs.
Also, we will proceed with complex synchronization patterns
with relations on action sets and their correct combinations.

VIII. ACKNOWLEDGMENTS

This work is supported by the Basic Research Program at
the National Research University Higher School of Economics
and Russian Foundation for Basic Research, project No.16-01-
00546.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes, 1st ed. Springer Publishing
Company, Incorporated, 2011.

[2] R. A. Nesterov and I. A. Lomazova, “Compositional process model
synthesis based on interface patterns,” in Tools and Methods of Program
Analysis, TMPA-2017. Proceedings, ser. Communications in Computer
and Information Science. Springer International Publishing, 2017, (to
be published).

[3] L. Bernardinello, E. Mangioni, and L. Pomello, “Local state refinement
and composition of elementary net systems: An approach based on
morphisms,” Trans. Petri Nets and Other Models of Concurrency, vol. 8,
pp. 48–70, 2013.

[4] J. Buijs, B. Dongen, and W. Aalst, “On the Role of Fitness, Precision,
Generalization and Simplicity in Process Discovery,” in OTM Federated
Conferences, 20th International Conference on Cooperative Information
Systems (CoopIS 2012), ser. Lecture Notes in Computer Science, vol.
7565. Springer-Verlag, Berlin, 2012, pp. 305–322.

[5] K. B. Lassen and W. M. P. van der Aalst, “Complexity metrics for
workflow nets,” Inf. Softw. Technol., vol. 51, no. 3, pp. 610–626, 2009.

[6] L. Wen, W. M. Aalst, J. Wang, and J. Sun, “Mining process models with
non-free-choice constructs,” Data Min. Knowl. Discov., vol. 15, no. 2,
pp. 145–180, Oct. 2007.

[7] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
block-structured process models from event logs containing infrequent
behaviour,” in Business Process Management Workshops - BPM 2013
International Workshops, Beijing, China, August 26, 2013, Revised
Papers, 2013, pp. 66–78.

[8] A. J. M. M. Weijters, W. M. P. Van Der Aalst, and a. K. A. D.
Medeiros, “Process Mining with the HeuristicsMiner Algorithm,”
BETA Working Paper Series WP, vol. 166, 2006. [Online]. Available:
http://cms.ieis.tue.nl/Beta/Files/WorkingPapers/Beta wp166.pdf

[9] S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst, “Ilp-
based process discovery using hybrid regions,” in Proceedings of the
International Workshop on Algorithms & Theories for the Analysis of
Event Data, ATAED 2015, 2015, pp. 47–61.

[10] C. W. Günther and W. M. P. van der Aalst, “Fuzzy mining - adaptive
process simplification based on multi-perspective metrics,” in Business
Process Management, 5th International Conference, BPM 2007, Pro-
ceedings, 2007, pp. 328–343.

[11] W. M. P. van der Aalst and C. W. Gunther, “Finding structure in
unstructured processes: The case for process mining,” in Proceedings of
the Seventh International Conference on Application of Concurrency to
System Design, ser. ACSD ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 3–12.

[12] J. C. A. M. Buijs, “Flexible Evolutionary Algorithms for Mining
Structured Process Models,” Ph.D. dissertation, Eindhoven University
of Technology, 2014.

[13] J. D. Smedt, J. D. Weerdt, and J. Vanthienen, “Multi-paradigm process
mining: Retrieving better models by combining rules and sequences,”
in On the Move to Meaningful Internet Systems: OTM 2014, Amantea,
Italy, October 27-31, 2014, Proceedings, 2014, pp. 446–453.

[14] J. de San Pedro and J. Cortadella, “Mining structured petri nets for the
vizualization of process behavior,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, ser. SAC ’16. New York,
NY, USA: ACM, 2016, pp. 839–846.

[15] A. A. Kalenkova, I. A. Lomazova, and W. M. P. van der Aalst, Process
Model Discovery: A Method Based on Transition System Decomposition.
Cham: Springer International Publishing, 2014, pp. 71–90.

[16] A. A. Kalenkova and I. A. Lomazova, “Discovery of cancellation regions
within process mining techniques,” Fundam. Inform., vol. 133, no. 2-3,
pp. 197–209, 2014.

[17] W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[18] G. Winskel, “Petri nets, morphisms and compositionality,” in Advances
in Petri Nets 1985, Covers the 6th European Workshop on Applications
and Theory in Petri Nets-selected Papers. London, UK, UK: Springer-
Verlag, 1986, pp. 453–477.

[19] L. Bernardinello, E. Monticelli, and L. Pomello, “On preserving struc-
tural and behavioural properties by composing net systems on inter-
faces,” Fundam. Inf., vol. 80, no. 1-3, pp. 31–47, Jan. 2007.

[20] L. Bernardinello, L. Pomello, and S. Scaccabarozzi, “Morphisms on
Marked Graphs,” in International Workshop on Petri Nets and Software
Engineering (PNSE’14), vol. 1160, 2014, pp. 113–127.

[21] I. A. Lomazova, “Interacting workflow nets for workflow process re-
engineering,” Fundam. Inform., vol. 101, no. 1-2, pp. 59–70, 2010.

[22] Y. Cardinale, J. E. Haddad, M. Manouvrier, and M. Rukoz, “Web service
composition based on petri nets: Review and contribution,” in Resource
Discovery - 5th International Workshop, RED 2012, Heraklion, Greece,
May 27, 2012, Revised Selected Papers, 2012, pp. 83–122.

[23] R. Hamadi and B. Benatallah, “A petri net-based model for web
service composition,” in Proceedings of the 14th Australasian Database
Conference - Volume 17, ser. ADC ’03. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2003, pp. 191–200.

[24] “XES (eXtensible Event Stream.” [Online]. Available:
http://www.processmining.org/logs/xes

[25] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J.
M. M. Weijters, and W. M. P. van der Aalst, The ProM Framework: A
New Era in Process Mining Tool Support. Springer Berlin Heidelberg,
2005, pp. 444–454.

[26] C. W. Günther and A. Rozinat, “Disco: Discover your processes,” in
BPM (Demos). CEUR Workshop Proceedings, vol. 940, 2012, pp. 40–
44.

[27] I.-M. Ailenei, “Process Mining Tools: A Comparative Analysis,” Mas-
ter’s thesis, Eindhoven University of Technology, 2011.

[28] “Business Process Management Tool — myInvenio.” [Online].
Available: https://www.my-invenio.com

[29] I. S. Shugurov and A. A. Mitsyuk, “Generation of a Set of Event
Logs with Noise,” in Proceedings of the 8th Spring/Summer Young
Researchers Colloquium on Software Engineering (SYRCoSE 2014),
2014, pp. 88–95.

22 из 190

An online tool for requirements engineering,
modeling and verification of distributed software

based on the MDD approach

Daria Lozhkina,
Sergey Staroletov

Polzunov Altai State Technical University,
Lenin avenue 46, Barnaul, 656038, Russia

Email: serg soft@mail.ru

Abstract—The existing verification tools are so complex and
intended for experts in this area, so it can be a significant
obstacle to the practical use of them. While these tools have many
advantages, they have not been widely used. For the purpose
of automatic verification, properties of complex systems can be
expressed in Linear-time Temporal Logic, and the model of the
system is described in a special language. In this context, there
is a problem to use it by the software engineers. This problem
led us to the idea of developing an MDD online tool for modeling
distributive software that allows many users to describe their
systems and set the specification for it by using natural language
and visual notations and then verify the created model.

Keywords—MDD, verification, requirements engineering, LTL,
Spin

I. INTRODUCTION

As the software products become more complex, a problem
of their correctness and safety is coming up, especially when
we develop high-risk, vital software or distributive software
with an amount of highly-interoperable components. In some
cases, it is possible to develop a product, deploy it and run
to find software bugs under some test cases. Software testing
is widely used in practice, but it is clearly not possible to
prove the correctness of the system by such an approach,
that ambiguous makes usage of the software in vital areas
unacceptable, the cost of undetected bugs can be too high.

Our paper is devoted to another solution, a formal veri-
fication. It is an important method for improving the quality
of complex systems. The developer must specify system re-
quirements, and a formal verifier automatically ensures that the
product satisfies them. The approach provides a powerful way
to detect errors that are often subtle and difficult to reproduce.
A formal verification of software programs proves that the
model of a program satisfies to a formal specification of its
behavior. To perform a process of automatic verification, the
software engineer must describe the model of the system and
formulate the properties expressed in a calculus language. Here
we have the two main problems - how to build an adequate
model and how to collect all the requirements to check?

This paper considers that the properties are expressed in
Linear-time Temporal Logic [1]. However, a syntax of LTL is
complicated and can be a significant obstacle to the practical
use of verification tools which works with LTL predicates.

For example, according to the specification the system must
always be in the following state: if stateP becomes true,
sometimes in the future stateQ will be true, and stateP will
remain true until stateQ becomes true [2]. This requirement
is expressed in LTL language as a formula:

G(p→ (pUq))

Here G is a temporal operator ”Global”(”Always”), and U is
a temporal operator ”Until”.

It is rather difficult to translate the natural language of
system requirements to an LTL approach. Some formulas can
be very long and complex; even the experts cannot express the
properties without troubles.

Our solution to this problem to develop a web portal
is devoted to building a model of the checked system and
collect all the requirements for it in one place. We use visual
notation to express temporal operators graphically. We assume
it is a right approach to help software engineers to set the
requirements as they usually construct some flowcharts. We
propose an MDD (Model-driven development [3]) solution to
describe a model of a software system for further verification
and implementation.

II. SOFTWARE TESTING VS VERIFICATION

We need a lot of procedures to ensure that a product
meets its quality goals and satisfies the specified functional
requirements. In this case, software developers use verification
and validation processes and software testing. Only the com-
bination of these procedures can improve the system quality.

Software testing today is a widely used process in software
engineering to executing an application with the intent of
finding the software bugs (errors or other defects) under some
test cases. However, testing under all the combinations of
inputs and initial states is not feasible, it can find only some
bugs and cannot be used as conformity checking of the system
to given requirements in all cases. Even for single-threaded
application with respect to Turing’s Halting problem we cannot
prove the absent of errors. Especially, it is a fundamental
problem with testing of parallel and distributed communication
systems. The developer is not able to control all the possible
combinations of interactions between parallel processes, thread
scheduling and interleaving, common resources sharing.

23 из 190

So we need a way to prove that the model of software
meets all the requirements, and we need a formal verification.
This process is much more complicated than testing, and it
requires specialized knowledge.

The software testing process must be used in association
with verification and validation. Testing and verification are the
pieces of checking process to ensure that a software system
meets its specifications and that it fulfills its intended purpose
[4]. However, they are not the same thing.

Briefly, software verification is ensuring that the product
conforms to its specifications, while software validation en-
sures that the product meets the customer’s actual needs. The
most well-known questions to distinct these terms (they were
expressed by Boehm [5]):

• Validation: Are we building the right product?

• Verification: Are we building the product right?

The verification generally comes before the validation and
can catch errors that validation cannot catch. Therefore, the
goal of the software verification is to assure that a product
fully satisfies all the expected requirements.

The main problem of verification today - is a big amount
of different academic methods and lack of popular tools in the
software engineering community.

III. REQUIREMENTS ENGINEERING

The process of requirements engineering includes many
activities, from goal elicitation to requirements specification.
The aim is to develop an operational requirements specification
that is guaranteed to satisfy the goals [6].

To build a good and reliable software the customers,
software engineers and business analytics have to hard work
together. They must produce a specification where all the
requirements will be reflected. But it is hard to do, because
even the customer doesn’t know exactly what does he need.

Our goal is to provide a place to model the system prop-
erties online, to collaborate customers and engineers to build
requirements to complex systems with properties expressed in
a visual notation of logic formulas we have created (see Figure
1).

IV. MODEL BASED DEVELOPMENT

MDD [3] is a common name for techniques to build
software starting from the certain model. The Model could be a
static one to describe class-to-class relations and a dynamic one
to describe activities and parallel processes inter-operations.

Well known UML diagrams changed a way of software
development process, to develop a software based not on
code, but on a model. In the past, methodologies were called
in *OP style (like Object-Oriented Programming, Aspect-
Oriented Programming) and were related to a ”programming”,
but now in the software engineering, we see that *DD method-
ologies are upcoming which relate now to a ”development” (
”development” is much stronger word than ”programming”).

The goal of *DD methodology is something that encour-
ages us to write code. In the MDD, a model is a way to write

Fig. 1. Requirements engineering as links between customer, engineer, portal
and tools

code and even not to write but to get the most of the code
from the model and then to verify it.

In the paper [7] we created a link from the MDD process
to the verification process by generating and checking the
model of a system as modified agent-based finite automatons,
provided ways to transform the model to a formal verifier to
check the properties.

Now the aim of the research is to improve the MDD process
and combine it with the requirements engineering and Model-
based checking approach.

V. MODEL-BASED CHECKING

Model-based checking in general is an automated technique
for verifying finite-state concurrent systems to check whether
the software meets system requirements formulated at the
initial stage [8] or to provide a counterexample.

There are several steps in verifying the correctness of the
system [8]:

1) To specify the properties that prescribe what the
system should do, and what should not do.

2) To construction a formal model for the system that
addresses how the system behaviour.

3) To perform the verification process.

VI. VERIFICATION TOOLS PROBLEM

Today a lot of model checking tools (usually called ver-
ifiers) have been developed by the research institutions. The
tools are powerful but very complex, and programming shells
for them are inconvenient. Most of them use specific functional
languages to describe the input model.

Spin (Simple Promela Interpreter) is a popular open-
source software verification tool designed specially to model
distributed and parallel software.

To use SPIN, the software engineer needs to know follow-
ing languages:

24 из 190

1) A high level functional language Promela (short for:
PROcess MEta LAnguage) [9] to specify software
system’s description as a model.

2) A Linear-time Temporal Logic [1] to express the
system requirements. Many of the system properties
can be expressed and verified without the use of LTL,
but most of them must be.

Now we are targeting to Promela language, but in future, it
is possible to extend the software with some target languages
and verifiers.

As we develop an online portal, the user is not needed to
install any software to do the verification. The verifier checker
can run on the server to verify the model generated from the
user’s diagrams.

Fig. 2. The online portal life-cycle

VII. A VERIFICATION PROCESS

We are working on verification automation process to allow
the portal to be a bridge between a user and a verifier. An
executable model code is automatically generated from the
constructed diagram, and then a verifier on the server is called
on it. We use the Spin to perform the verification process. For
this, the model diagram is translated into Promela language,
and for each of the formulas given by the user the LTL Never
Claims checking are executed. The output stream of the verifier
is collected, parsed and displayed to the user on the site. If
there were no errors, the user will receive the verdict ”No
errors found”, otherwise the verifier will run in the simulation
mode with the counter-example as an error trail. Then the
output stream of verifier will contain an information about

the incorrect sequence of work, and the user will receive the
data about the sequence of messages in the form of a diagram
indicating the wrong steps.

VIII. A VISUAL NOTATION FOR BOOLEAN AND
TEMPORAL OPERATORS

To provide a better understanding of LTL formulas for
humans, we use a visual notation, different to an existing
approach [10].

The Model-based checking tools perform the Temporal
Logic translation of the model as the sequence of system states.
A formula of Temporal Logic describes the set of sequences
in time for which it is true. A state in our solution is a set of
given system variables values.

Each user-defined state is depicted as a single block that
can connect with other states with Temporal operators.

All the operators are represented by a circle that contains
a special symbol (see Table I).

TABLE I. OUR VISUAL NOTATION FOR LTL OPERATORS

Operator LTL Formula Promela syntax Visual Notation
State State State

And State1 ∧ State2 State1 && State2

Or State1 ∨ State2 State1 || State2

Xor State1 xor State2 State1ˆˆState2

Implication State1 → State2 State1 -> State2

Equivalence State1 ≡ State2 State1 <-> State2

Negation ¬ State !State

Globally G State []State

Finally F State <>State

Until State1 U State2 State1 U State2

Parenthesis (State1 ∧ State2) (State1 && State2)

For classical Boolean operators it is the proper initial letter
(A for And, O for Or, X for Xor) or the common symbol
(for Implication, Negation and Equivalence). As our target was
to develop a visual notation for an LTL expression as clear
as possible, we developed the following visual elements for
representation of temporal operators:

• Globally is depicted with an infinity symbols, ideally
representing the event that has to hold during all the
times.

• Finally means that the state eventually has to hold, we
propose an asterisk as a symbol of new event.

• Until is represented with the triangle touching the line,
that means the fact that the first event has to hold at
least until the second one, which holds at the current
or future time.

• Parenthesis are necessary for specifying evaluation
property in formula, also we can surround existing
sequences of states and operators into one block and

25 из 190

use it as a single unit, so we represent it as a rounded
rectangle. Thereby it is possible to translate complex
formulas.

In case of unary operators (Globall, Eventually, Negation
and Equivalence) the circle attaches the one operand on one
side and in case of binary operator (And, Or, Xor, Implication,
Until), the operator attaches to the both operands.

IX. IMPLEMENTATION OF OUR ONLINE TOOL

The application allows users to create an account, add, store
projects and edit them. Preparation for the verification process
consists of two steps.

A. Creating the model

The first one is to create the model of a system. This
tool allows a user to declare global variables, processes and
channels for communication between them. The user interface
of the model-creating tool contains several panels.

The top tool consists of four panels, which can be hidden.
One of them is intended to edit project properties (e.g., title,
description).

The Global Variables Panel (see Figure 3) allows a user to
add system variables as follows: choosing a type with using
the selected list contains Promela types and entering a name,
an initial value and a description of a variable. On the bottom
of this panel, a user can see the complete list of the variables.
The frame of this panel is used as a template for the entire
application.

Fig. 3. The Global Variables Panel

The channel (models a Promela’s channel) initializer spec-
ifies a channel capacity, as a constant, and the structure of the
messages that can be stored here, as a comma-separated list
of type names. Therefore, the Channel Panel (see Figure 4)
looks like a Variables Panel and allows creating the channel
with necessary parameters: there are fields for name, buffer
size and a selection list contains all possible system types.

Fig. 4. The Channel Panel

Also, the syntax of the Promela language includes mtype
declaration for defining symbolic names, so the top panel

contains a special Message Type Panel (see Figure 5) to set
the possible message types. Chan and mtype are not available
in the list of the possible system types in other panels.

Fig. 5. The Message Type Panel

The main panel is a tabbed field, where each tab contains
a model of a particular process (see Figure 6). It consists of
the board for drawing a diagram of a process, the palette
with a set of visual primitives and text fields for the name
and local variables. Set of the visual primitives contains the
standard shapes: circles for Start and End states, a simple
rectangle for Step, a diamond for If and Switch operators
and a special symbol to start the process. Processes are able
to interactive with messages, so we propose to represent
primitives for message sending and receiving processes with
rectangles contain light or dark symbol of mail on the top-left
corner. A user can drag objects from the panel to the board,
change the text and connect the shapes with arrows to model
their order.

Fig. 6. The Main Panel

When user finished declaring the variables and created the
diagrams that represented processes, the software can generate
the runnable code of the system in Promela language to do
further verification.

B. Setting requirements

The second step is to declare system requirements.

The top panel contains a tabbed field with template panel
that was mentioned before (see Figure 7). Each tab is intended
to declare and describe one state; variables properties are
defined as follows: the system variables and the possible
operators are available to the user as selection lists, so the

26 из 190

user can choose them, set the values, enter the description and
push the button to add it to the current state. There is the
complete list of the states of the bottom of the tab. The next
panel shows the created code so that the user can look on it
to create desired requirements.

Fig. 7. The State Panel

The interface of the main panel is similar to the Process
one (see Figure 8). It is also a tabbed field for the requirements,
consists of the drawing board and panels with the user-defined
states and logic operations, allows dragging objects from the
panels to the board and connecting them. It is also possible
to set a name, definition and description for each requirement.
We are able to parse this diagram and translate it to an LTL
formula according to our visual notation and Promela syntax.

Fig. 8. The Requirement Panel

The bottom panel shows the complete list of the system
requirements as a table with the following fields: name, defi-
nition, and description of the requirement, an LTL formula that
was generated from the diagram, and an image representation
of this one (see Figure 9).

Finally, as a result of the MDD process, we have all
necessary data for further verification: Promela code and LTL
formulas.

X. PRACTICAL USE

Last year we developed a replicated chat using the Leader
Election Algorithm as the problem of reliable distributive
communication [11] . Leader’s election is the process of desig-
nating a single process as the organizer of some task distributed
among several computers (nodes) [12]. In other words, there
are some distributed nodes with the special weights (under
the word weight we can specify any information about this
node, e.g. the size of the log, the id, the special number
etc.). The nodes interact with each other asynchronously. The

Fig. 9. The List of the requirements

problem is to find the node that will be the global leader for the
entire system. During our research work, we analyzed some
special algorithms: Paxos [13], Leader Election in rings[14]
and others. As these algorithms are intended for distributed
systems and the states of processes after some steps only
depend on the states of neighbor nodes, their work has to be
verified.

Now it is easy to check the correctness of our developed
distributive chat with using our online portal.

As an example, we can do it for the Leader Election
Algorithm in unidirectional ring. Firstly, We need to design
a model of this algorithm to generate a Promela code. Each
node executes the process, which updates the parameter values
on the active nodes. We added the global variables (see Figure
3), channels (see Figure 4) and message types (see Figure 5).
Also, we designed the model using the diagram-builder tool
(see Figure 10).

The second step is to set states and define requirements
(see Figure 9):

1) Leader election eventually has to hold.
2) The state, in which there is no leader, has to hold at

least until a leader will be elected.
3) There is always a leader in the system.
4) It is not possible to elect more than one leader.

Therefore, now we can perform modeling and then the
verification process and ensure that the algorithm is correct
without having special software on the user’s computer and
knowledge of the specialized languages.

XI. CONCLUSION AND FUTURE WORK

The described online tool has been implemented in PHP
and JS programming languages with using Symfony MVC
framework.

We are going to deploy the portal to our domain [15].

Next steps are:

• some pre-defined templates of LTL formulas;

• sample projects for well known distributive algo-
rithms;

27 из 190

Fig. 10. The model of the Leader Election algorithm

• generate not only Promela code from the model to
verify it but also an Erlang code to run (because Erlang
and Plomela are actor-based languages);

• think about ability of distributed running the verifier
process on the server side and balance the load;

• think to a better way to represent multiple processes
into one window;

• examine ways of getting the requirements from the
informal text of specification and convert it to visual
notation.

The results partially were obtained within the RFBR grant
(project No. 17-07-01600).

REFERENCES

[1] Linear-Time Temporal Logic. http://www-
step.stanford.edu/tutorial/temporal-logic/temporal-logic.html

[2] Model Checking: A Complement to Test and Simulation.
http://www.cse.chalmers.se/

[3] T. Stahl, M. Voelter. Model-Driven Software Development: Technology,
Engineering, Management (book, ISBN 0470025700)

[4] Verification, Validation & Certification. https://users.ece.cmu.edu/ koop-
man/des s99/verification/index.html

[5] Boehm B.W., Software engineering economics, IEEE Trans. on Software
Eng., Vol. 10, no. 1, Jan. 1984. pp. 4 - 21.

[6] D. Alrajeh, J. Kramer, A. Russo, S. Uchitel. Elaborating Requirements
using Model Checking and Inductive Learning. IEEE Transactions on
Software Engineering (Volume: 39, Issue: 3, March 2013). pp. 361-383

[7] S. Staroletov. Model Driven Developing & Model Based Check-
ing: Applying Together / Tools & Methods of Program Analy-
sis TMPA-2014:Kostroma, 2014. - pp. 215-220. ISBN 975-5-8285-
0719-1. Presentation: http://www.slideshare.net/IosifItkin/model-driven-
developingmodelbasedchecking

[8] Clarke E. M., Grumberg Orna, Peled Doron A. Model Checking. Cam-
bridge, Mass : The MIT Press, Jan. 1999. p. 314.

[9] Spin - Formal Verification. http://spinroot.com
[10] M. Brambilla, A. Deutsch, L. Sui, V. Vianu. The Role of Visual Tools

in a Web Application Design and Verification Framework: A Visual
Notation for LTL Formulae. D. Springer-Verlag. ICWE 2005, LNCS
3579, pp. 557-568,

[11] Lozhkina D.D., Staroletov S.M. The application of the distributed
leader selection algorithm for the problem of reliable communications.
Abstracts at the All-Russian Scientific and Technical Conference of
Students, Post-Graduates and Young Scientists ”Science and Youth -
2016”. Software engineering section. AltSTU, 2016, pp. 19-23 (in
Russian), http://edu.secna.ru/media/f/pi2016.pdf

[12] D. Ongaro, J. Ousterhout. In Search of an Understandable Consensus
Algorithm. Stanford University, 2014. p. 18.

[13] Lamport, Leslie. Paxos Made Simple. ACM SIGACT News (Distributed
Computing Column), Vol. 32, no. 4. 2001, pp. 51 - 58.

[14] H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simu-
lations and Advance Topics, John Wiley & Sons inc., 2004.

[15] Deep verification project. http://deepverification.com/

28 из 190

On minimization of Timed Finite State Machines

Aleksandr Tvardovskii, Nina Yevtushenko

National Research Tomsk State University

Tomsk, Russia

tvardal@mail.ru, nyevtush@gmail.com

Abstract – Finite State Machines (FSMs) are widely used as

formal models for analysis and synthesis of components of

control systems. In order to take into account time aspects, timed

FSMs are considered. In this paper, we first discuss how timed

models can be used when implementing controllers for various

systems and then address the problem of minimizing a FSM with

timed guards and input and output timeouts (TFSM) as the

complexity of many problems of analysis and synthesis of digital

and hybrid systems including high-quality test derivation

significantly depends on the size of the system (component)

specification. The behavior of a TFSM can be described using a

corresponding FSM abstraction and a proposed approach for

minimizing a TFSM is based on such abstraction. Moreover, we

minimize not only the number of states as it is done for classical

FSMs but also the number of timed guards and timeout duration.

We show that for a complete deterministic TFSM there exists the

unique minimal (canonical) form, i.e., a unique time and state

reduced TFSM that has the same behavior as the given TFSM;

for example, this minimal form can be used when deriving tests

for checking whether an implementation under test satisfies

functional and nonfunctional requirements.

Keywords – Timed Finite State Machines; reduced form;

minimal form

I. INTRODUCTION

Finite State Machines (FSM) are widely used for synthesis
and analysis of components of digital and hybrid control
systems [see, for example, 1, 2], especially when
implementing controllers for various systems and processes
[3, 4, 5]. The complexity of solving a number of synthesis and
analysis problems significantly depends on the number of
states of a FSM that represents the system (component)
specification. In particular, almost all FSM-based test
derivation methods [2, 6, 7] for telecommunication protocols
and other control systems with deterministic behavior are
developed for reduced FSMs, i.e., FSMs which have different
behavior at any two different states. In the classical FSM
theory, the FSM minimization methods are well developed,
i.e., given a deterministic FSM, it is well known how to derive
a reduced form of the FSM.

Nowadays time aspects become very important when
describing the behavior of digital and hybrid control systems,
and, respectively, classical FSMs were extended with time
variables [see, for example, 7, 8, 9]. In this paper, we consider
FSMs with timed guards and (input and output) timeouts
(TFSM) which generalize TFSM models which have only
timed guards or only timeouts [10, 11]. Timed guards describe
the system behavior depending on a time instance when an
input is applied. If no input is applied until an (input) timeout

is expired then the system can spontaneously move to another
state. An output timeout (delay) describes time that is needed
for processing a given transition. In the model with timed
guards and timeouts, we can also take into account that for
example, pressing a button to execute an appropriate action
can take some time.

The complexity of many problems of analysis and
synthesis of digital and hybrid systems including derivation of
high-quality tests significantly depends on the size of the
system (component) specification. For example, to the best of
our knowledge, most test derivation techniques are developed
for minimal forms of FSMs [6, 12]. When minimizing
classical FSMs (and other trace models) most attention is paid
to minimizing the number of states (and possibly) actions of
the machine under investigation. Differently from classical
FSMs, a timed FSM can have several non-isomorphic state
reduced forms [10, 11]. The reason is that for timed transition
systems, time aspects should be also taken into account when
minimizing a TFSM.

In this paper, we propose the minimal (canonical) form of
a complete deterministic FSM with timed guards and
timeouts; this minimal form is a reduced well-defined TFSM
having the same behavior as the given TFSM. A method for
deriving the minimal form of a deterministic complete TFSM
is also proposed.

The structure of the paper is as follows. Section 2 contains
the preliminaries for classical and timed FSMs. In Section 3,
the related work on minimizing TFSMs is briefly described;
this section also has a TFSM example for describing a part of
the system for elevator management. In Section 4, we show
how the behavior of a TFSM can be described using an
appropriate FSM abstraction. Section 5 contains the
minimization procedure for a deterministic complete TFSM.
In Section 6, the notion of a well-defined TFSM is proposed
and the minimal form of a TFSM is defined as a state reduced
well-defined TFSM that has the same behavior as the given
TFSM; we also show that for each deterministic complete
TFSM the minimal form is unique (up to isomorphism).
Section 7 contains experimental results. Section 8 concludes
the paper.

II. PRELIMINARIES

The notion of a Finite State Machine (FSM) is used when
describing the behavior of a system that moves from state to
state under input actions and produces a predefined output

response. Formally, a FSM is a 4-tuple S = S, I, O, hS where
I and O are input and output alphabets, S is a finite non-

empty set of states and hS (S  I  O  S) is the transition

29 из 190

(behavior) relation. A transition (s, i, o, s) describes the
situation when an input i is applied to S at the current state s.

In this case, the FSM moves to state s and produces the output
(response) o. In this paper, we consider complete and

deterministic FSMs, i.e., for each pair (s, i)  S  I there

exists exactly one transition (s, i, o, s)  hS. A trace or an

Input/Output sequence /, written often as an I/O sequence,
of the FSM S at state s is a sequence of consecutive

input/output pairs starting at the state s. Given a trace /,  is

the input projection of the trace (input sequence) while  is
the corresponding output projection (output sequence), i.e.,

the output response of the FSM to sequence  of applied
inputs. At each state of a complete deterministic FSM, there
is exactly one output response for each input sequence.

Given complete deterministic FSMs S and P and their
states s and p, states s and p are equivalent if output
responses at these states coincide for each input sequence,
i.e., FSMs S and P at states s and p have the same behavior.
If states s and p are not equivalent then they are
distinguishable. For two states of a single FSM, there is the
same definition of equivalent states. Complete deterministic
FSMs S and P are equivalent if for each state of FSM S
there exists an equivalent state of FSM P and for each state
of FSM P there exists an equivalent state of FSM S. If any
two different states of FSM S are distinguishable then FSM
S is (state) reduced. A reduced FSM P is a reduced form of
FSM S if FSMs S and P are equivalent. It is known [1] that
given a complete deterministic FSM, two reduced forms of
this machine are isomorphic, i.e., the reduced form is a
canonical representation of a complete deterministic FSM.

The equivalence relation induces a partition E of the set of
states of a complete deterministic FSM. Two states of the
same class of the partition E are equivalent; two states of
different classes of partition E are distinguishable.

A FSM with timed guards and timeouts (TFSM) is a FSM
annotated with a clock; such TFSM has input and output
timeouts and input timed guards [9]. When an input timeout
expires at state s, the TFSM can spontaneously move to
another state. A good example is a mobile when the screen
becomes dark if no button is pressed during appropriate
number of time units, i.e., no input is applied. An output
timeout describes how long an applied input is processed at a
given state. Input timed guards describe the behavior at a
given state for inputs which arrive at different time instances.
Correspondingly, a TFSM is a 5-tuple S = (I, S, O, hS, ΔS)
where I and O are input and output alphabets, S is the finite

non-empty set of states, hS (S  I  O  S   Z) is the

transition relation and ΔS is the timeout function. The set 
is a set of input timed guards, and Z is a set of output delays
which are nonnegative integers. The timeout function is the

function ΔS: S  S N  {}) where N is the set of
positive integers: for each state this function specifies the
maximum time for waiting an input. An input timed guard g

  describes the time domain when a transition can be

executed and is given in the form of interval min, max from

[0; T), where   {(, [}, {,),]} and T is value of the (input)
timeout at the current state. An output delay describes the
number of ticks when an output has to be produced after

applying an input. The transition (s, i, o, s, g, d)  S  I  O 

S Z means that TFSM S being at state s accepts an

input i applied at time t  g measured from the moment when
TFSM S entered state s; the clock then is set to zero and S
produces output o after d time units counted from the moment
when the input has been applied. Given state s of FSM S such
that ΔS(s) = (s', T), if no input is applied before the timeout
T expires, the TFSM S moves to state s' and the clock is set
to zero. If s = s' then the clock is set to zero when timeout is
expired. Given TFSM S, BS is the largest finite boundary of
timed guards.

For example, consider TFSM S in Figure 1. The output
response of TFSM S at state s0 to input i applied at time
instance 0 is output o1 with the delay of one tick, while if input
i is applied at time instance 1, then S produces output o2 with
the delay of three ticks. If an input is not applied to TFSM S at
state s0 during 2 time units then S moves to state s3 according
to the timeout function.

Similar to [7], for each state s of TFSM S we consider
the function time(s, t) = s' that determines state s' that will be
reached by the TFSM if no input was applied during t time
units.

A timed input is a pair (i, t) where i  I and t is a real; a
timed input (i, t) means that input i is applied to the TFSM at

time instance t. A timed output is a pair (o, d) where o  O

and d is the output delay. A sequence of timed inputs  = (i1,
t1) … (in, tn) is a timed input sequence, a sequence of timed

outputs  = (o1, d1) … (on, dn) is a timed output sequence. A

sequence / = (i1, t1)/(o1, d1) … (in, tn)/(on, dn) of consecutive
pairs of timed inputs and timed outputs starting at the state s is
a timed I/O sequence or a timed trace of TFSM S at state s.

Similar to FSMs,  is an applied timed input sequence while

 is the corresponding output response of the TFSM to

sequence  of applied inputs.
In order to determine the output response of the TFSM at

state s to a timed input (i, t), state s' = time(s, t) is calculated
first. State s' is a state where TFSM moves from state s via

timeout transitions such that the maximum sum  of all
timeouts starting from state s is less than t. At the second step,

a transition (s', i, o, s'', g, d) such that t –   g is considered.
According to this transition, the machine produces the output
(o, d) to a timed input (i, t) applied at state s and moves to the
next state s''. Thus, the output response of the TFSM to a
timed input sequence at state s is iteratively determined
starting from state s. Similar to FSMs, the set of all timed
traces at all states of the TFSM determines the TFSM
behavior.

TFSM S is a deterministic complete TFSM if for each two

transitions (s, i, o1, s1, g1, d1), (s, i, o2, s2, g2, d2) hs, it holds

that g1  g2 =  and the union of all input timed guards at
state s under input i equals [0; T) when ΔS(s) = (s', T). In this
paper, we consider only deterministic complete TFSMs.

Given complete deterministic TFSMs S and P and their
states s and p, states s and p are equivalent if output
responses at these states coincide for each timed input
sequence. The notions of a (state) reduced TFSM,
equivalent TFSMs and the partition into equivalent states are
defined similarly to classical FSMs.

Two TFSMs S and P are isomorphic if there exists the

one-to-one correspondence H: S  P such that there exists a

30 из 190

transition (s, i, o, s, g, d) hs if and only if there exists a

transition (H(s), i, o, H(s, g, d) hp and ΔP(H(s)) = (H(s'),
T) if ΔS(s) = (s', T).

Fig. 1. TFSM S

III. RELATED WORK

There is a big body of work for minimizing classical
deterministic (complete and partial) FSMs. An interested
reader can be referred to [1] and other papers in the area. As
mentioned above, the equivalence relation induces a partition
E of the set of states of a complete deterministic FSM. Two
states of the same class of the partition E are equivalent; two
states of different classes of partition E are distinguishable.
Correspondingly, states of the reduced form correspond to
classes of the partition E, i.e. the number of states of the
reduced form equals the cardinality of E. The transition
relation of the reduced form is derived based on transitions
between E classes.

 For complete deterministic FSMs with time guards [10],
the minimization procedure is almost the same. The only
difference is that TFSM has to be well-defined, i.e., at the
first step of the procedure, each two transitions, (s, i, o, s1,

g1, d), (s, i, o, s1, g2, d) hs where g1 and g2 can be merged
into a single timed guard are replaced by a single transition

(s, i, o, s1, g1  g2, d1). In [10], it is shown that there exists a
unique well-defined reduced FSM with timed guards that is
equivalent to a given TFSM.

For complete deterministic FSMs with timeouts [11], the
minimization procedure is based on the corresponding FSM
abstraction and in fact, according to a procedure proposed in
[11], a complete deterministic FSM with timeouts can have
two non-isomorphic reduced forms. In order to have the
minimal form of a complete deterministic FSM with
timeouts, the input timeouts should be also minimized and
in this paper, we show how this can be done.

We now consider an example where the model of a FSM
with timed guards and timeouts can be used. More examples
can be found in [13]. In our example, we consider a part of
the system for elevator management; a corresponding TFSM
is shown in Figure 2 where for the sake of simplicity, some

transitions are not shown.

Fig. 2. A system for the elevator management

At state “Door is closed”, the elevator is waiting for a call
and moves to the state “Door is open” by an input “open” with

the picture | | as the output. After opening the door the
elevator waits for a command “move up” or “move down” in
order to start moving. If an input is applied during the timed
guard [0, 7), then the TFSM moves to state “Closing timeout

(up)/(down)” with the picture || as the output and waits for
passing 5 seconds before closing the door; the clock is reset if
there are problems in the doorway. At the state “Closing the
door (up)/(down)”, the door begins to close and the TFSM
moves to state “Movement up/down” by an input “Door
closed” obtained from corresponding sensors with the picture
↕ as the output. If an input “Move up” or “Move down” is
applied at state “Door is open” during the timed guard [7, 10)
when door already started closing, the TFSM moves to state
“Closing the door (up)/(down)” immediately. The TFSM
remains at the state “Movement up/down” until the next stop.
If an input is not applied before the timeout (10 sec) expires at
the state “Door is open”, then the TFSM moves to state “Door
is open”.

IV. DERIVING THE FSM ABSTRACTION OF TFSM

The behavior of a TFSM can be adequately described
using a classical FSM that is called the FSM abstraction of the
TFSM and is derived similar to [9] but in [9] the authors do
not consider output delays.

Given a complete deterministic TFSM S = (S, I, O, S, ΔS,
s0), the largest finite boundary of timed guards BS and
maximum output delay D, we derive the FSM abstraction of

TFSM S as the FSM AS = (SA, I  {I}, OA, AS, s0) where SA =

{(s, 0), (s, (0, 1)), …, (s, (BS – 1, BS)), (s, BS), (s, (BS, )): s 

S}, OA = {(o, 0), (o, 1), …, (o, D): o  O}  {I}. The input I
is a special input of the FSM abstraction. Given state (s, tj), tj
= 0, …, BS, of FSM AS and input i, a transition ((s, tj), i, (o, d),

(s, 0)) is a transition of the FSM abstraction AS if and only if

there exists a transition (s, i, o, s, gi, d)  S such that tj  gi.

Given state (s, gj), gj = (0, 1), …, (BS – 1, BS), (BS, ), of FSM

AS and input i, a transition ((s, gi), i, (o, d), (s, 0)) is a

31 из 190

transition of AS if and only if there exists a transition (s, i, o, s,

g, d)  S such that gi  g. In other words, transitions under

input i  I correspond to timed inputs (i, t) where t is
‘hidden’ as the second item of states of the FSM abstraction
AS. Transitions under the special input I correspond to the
clock change between non-integer and integer values, or to a
timeout transition between states. Given state s such that

ΔS(s) = (s', T), transitions ((s, n), I, I, (s, (n, n  1))) and

((s, (n – 1, n)), I, I, (s, n)) are in the transition relation AS

if and only if n < T. Transition ((s, (n – 1, n)), I, I, (s, 0))

 AS if and only if n  T  . In [9], it is shown that the
FSM abstraction of complete and deterministic TFSM S is
also complete and deterministic.

A timed input sequence  of TFSM S can be transformed

into a corresponding input sequence FSM of the FSM
abstraction AS. In this case, each timed input (i, t) is replaced
by sequence I, I, …, I, i, of inputs of the FSM abstraction
where the number of inputs I equals the number of clock
transitions between a non-integer and integer values for the
time duration t. At the same time the response of the FSM
abstraction to sequence I, I, …, I, i equals I, I, …, I, (o,
d), where the number of inputs I is the same as for the
timed input (i, t) and (o, d) is the response of the TFSM to
timed input (i, t). Thus, the output sequence of the FSM

abstraction FSM can be transformed into corresponding timed

output sequence  by removing all outputs I. Using the results
of the paper [9] the following statement can be established.

Proposition 1. A timed trace / exists for TFSM S if

and only if there exists a trace FSM/FSM for the FSM
abstraction AS.

According to Proposition 1, all the trace features of a
TFSM are preserved for its FSM abstraction and thus, the
state equivalence of a TFSM can be analyzed based on a
classical FSM. However, states of this classical FSM
abstraction have the information about time properties
which should be taken into account when minimizing a
TFSM. The following statement establishes necessary and
sufficient conditions for two TFSM states to be equivalent.

Proposition 2. States s1 and s2 of TFSM S are equivalent if
and only if states (s1, 0) and (s2, 0) of the FSM abstraction AS
are equivalent.

 In fact, states s1 and s2 of TFSM S are equivalent if and
only if for each input sequence, the output responses at these
states coincide. By Proposition 1, the latter means that for
each input sequence, the output responses at states (s1, 0) and
(s2, 0) of AS also coincide.

Thus, the conclusion about the state equivalence of a given
TFSM can be drawn based on its FSM abstraction and there
are methods for checking the equivalence of states of FSM [1].

V. MINIMIZATION PROCEDURE

In this section, we propose the minimization procedure
for FSMs with timeouts and timed guards. The procedure
can be seen as the generalization of two minimization
procedures for FSMs which only have either timeouts or
timed guards elaborated by the authors [10, 11].

Procedure 1 for deriving a (state) reduced form of a
complete deterministic TFSM

Step 1: Derive the FSM abstraction AS of TFSM S and the
partition EFSM into equivalent states of the abstraction AS.

Step 2: Derive the partition E into equivalent states of
TFSM S as follows: states s1 and s2 of TFSM S are in the
same class of E if and only if states (s1, 0) and (s2, 0) are in the
same class of EFSM.

Step 3: Derive a reduced form B of TFSM S. Input and
output alphabets of TFSM B coincide with those of TFSM S,
states b1, b2, …, bl of TFSM B correspond to classes B1, B2,

…, Bl of E. For each class Bj of E, choose any state sj  Bj.

There exists a transition (bj, i, o, bk, g, d) hB if and only if

there exists a transition (sj, i, o, sk, g, d) hs such that sk Bk.
There exists a timeout ΔB(bj) = (bk, T) in TFSM B if and only

if there exists a timeout ΔS(sj) = (sk, T) such that sk Bk.

The following proposition confirms that the above
procedure returns a reduced form of the given TFSM.

Proposition 3. Given a deterministic complete TFSM S
and TFSM B returned by Procedure 1, B is a complete
deterministic TFSM and state bj of B is equivalent to state sj of

TFSM S if and only if sj Bj.
Proof. By Proposition 2, states s1 and s2 TFSM S are in

the same class of partition E if and only if states (s1, 0) and
(s2, 0) of the FSM abstraction AS are in the same class of
partition EFSM. Thus, partition E derived at Step 2 of the
procedure is the partition of equivalent states of TFSM S. The
TFSM B is complete and deterministic because S is a
complete deterministic TFSM and for each state bj, the set of

transition ‘repeats’ the set of transition at state sj Bj.
We now show that states sj and bj where bj corresponds to

class Bj of partition E such that sj  Bj are equivalent. Each

transition from state bj ‘repeats’ a transition from state sj Bj
which is equivalent to any state sj of Bj (Proposition 2). At the

same time, if ΔS(sj) = (sk, T) and ΔB(bj) = (bk, T), T < , then

state sk Bk is equivalent to sk where transitions from state sk
‘repeat’ those from state bk. Thus, output responses to any
timed input at states sj and bj coincide. Since a transition (bj, i,
o, bj'', gj', d) of TFSM B corresponds to a transition (sj, i, o, sj'',

gj', d) of TFSM S, where sj'' Bj'', the same reasoning can be
applied for states sj'' and bj'', and for all next state pairs. Thus,
output responses of TFSMs B and S at states bj and sj,
respectively, coincide for each timed input sequence. In the

same way, we can show that states sj Bj and skj Bk, k  j,
are not equivalent.

Thus, the following theorem holds.
Theorem 1. Given a complete deterministic TFSM S, the

complete deterministic TFSM B returned by Procedure 1 is a
(state) reduced form of TFSM S.

After applying Procedure 1 to TFSM S in Figure 1 the
TFSM in Figure 3 is obtained and due to Theorem 1, this
TFSM is state reduced and equivalent to S, i.e., it is a (state)
reduced form of TFSM S.

32 из 190

Fig. 3. A reduced form of TFSM S in Figure 1

In general, a state reduced form of a TFSM is not unique,
similar to FSMs with timed guards [10] and FSMs with
timeouts [11] despite the fact that all reduced forms have the
same number of states. The reason is that for timed FSMs not
only the state set should be minimized as it happens for
classical FSMs but also timed guards and timeouts need to be
optimized too. In particular, in some cases, input timed guards
at some states could be merged as well as the value of input
timeouts could be minimized. For example, timeout ΔS(s0) =
(s2, 2) of TFSM S (Figure 3) can be replaced by timeout
ΔS(s0) = (s1, 1) without breaking the equivalence relation
between TFSMs in Figures 1 and 3. Below we introduce a
class of well-defined TFSMs for which time aspects are
optimized in such a way that any two minimal forms of a
TFSM are isomorphic, i.e., the minimal form of a TFSM is
unique and can be considered as the canonical
representation of a given TFSM.

VI. THE UNIQUENESS OF TFSM MINIMAL FORM

A FSM with timed guards and timeouts S is well-defined
if for each two transitions (s, i, o, s', g1, d), (s, i, o, s', g2, d)

hs it holds that timed guards g1 and g2 cannot be merged into
a single guard. Moreover, for each state s such that ΔS(s) =
(s', T), it holds that for each state s'' and integer T' < T, TFSM
S' which is obtained from S by replacing the timeout at state s
to ΔS(s) = (s'', T'), is not equivalent to S. Given a
deterministic complete TFSM S, a well-defined reduced
TFSM P that is equivalent to S is the minimal form of TFSM
S.

If for two transitions (s, i, o, s', g1, d), (s, i, o, s', g2, d)

hs of TFSM S timed guards g1 and g2 can be merged into a
single guard, then these two transitions can be replaced by a

transition (s, i, o, s', g1  g2, d). Minimal timeouts for states of
TFSM S can be found based on the FSM abstraction AS. In
order to find a minimal timeout at state s, states (s, 1), …, (s,
j), … of the FSM abstraction are considered. If there exists a
state (s', 0) such that states (s', 0) and (s, j) are equivalent, then
a transition ((s, (j – 1, j)), I, I, (s, j)) of AS can be replaced
by a transition ((s, (j – 1, j)), I, I, (s', 0)). Respectively, the
timeout at state s of TFSM S can be replaced by ΔS(s) = (s', j)
without changing the TFSM behavior. Thus, for each state of
the TFSM S, a minimal possible timeout can be chosen that
does not change the behavior of TFSM S.

Respectively, given a TFSM S, in order to derive the
minimal form of S, i.e., a well-defined equivalent (state)

reduced TFSM, two operations can be used: 1) transitions
under the same input where timed guards can be merged
should be replaced by a single transition; 2) each timeout
should be set to minimum value. Below a procedure is
proposed for deriving a well-defined TFSM.

Procedure 2 for deriving a well-defined equivalent TFSM
for a given TFSM S

Step 1. Replace each two transitions (s, i, o, s', g1, d), (s,
i, o, s', g2, d) of S such that g1 and g2 can be merged into a

single timed guard, by a transition (s, i, o, s', g1  g2, d).
Step 2. Derive the FSM abstraction AS of TFSM S and the

partition EFSM into equivalent states of the abstraction AS.
Step 3. For each state s of TFSM S where ΔS(s) = (s', T),

determine whether there exists state (s, j) of AS, j = 1, …, T 
1, with minimal j such that there exists state (s'', 0) which is
equivalent to (s, j). If there exists such pair of states (s, j) and
(s'', 0) then replace timeout at state s to ΔS(s) = (s'', j).

Step 4. For each state s of TFSM S where ΔS(s) = (s', ),
determine whether there exists state (s'', 0) of AS such that

states (s'', 0) and (s, (j, )) are equivalent. If there exists such

a state (s'', 0), then replace timeout at state s by ΔS(s) = (s'', j 
1).

Step 5. For each state s of TFSM S where ΔS(s) = (s', T)

and T  , remove a transition (s, i, o, s', g, d) such that g 

[0, T) = . If for a transition (s, i, o, s', a, b, d) it holds that

a, b  [0, T)   but a, b is not contained in [0, T), then

replace a transition (s, i, o, s', a, b, d) by a transition (s, i, o,

s', a, T), d).

Proposition 4. Given a complete deterministic TFSMs S,
Procedure 2 returns a well-defined TFSM P that is equivalent
to S.

Proof. Step 1 where transitions (s, i, o, s', g1, d) and (s, i,

o, s', g2, d) are merged as a transition (s, i, o, s', g1  g2, d),
does not change behavior of TFSM S. Consider Step 3 of
the procedure for replacing timeouts. Let there exist states s
and s'' of TFSM S such that ΔS(s) = (s', T), j < T, and states
(s, j) and (s'', 0) of the FSM abstraction AS are equivalent. In
this case, the pair of states (s, j) and (s'', 0) will be identified
at Step 3 of the procedure. By Proposition 2, if states (s, j)
and (s'', 0) are equivalent then the output response of TFSM S
at state s'' to each timed input sequence coincides with the
corresponding response of TFSM S at state s at time instance
j. Thus, the replacement of a timeout ΔS(s) = (s', T) at state s
by ΔS(s) = (s'', j) does not change the behavior of TFSM S at
state s. Similarly, the replacement of a timeout at Step 4 of
the procedure does not change the behavior of TFSM S. At
Step 5 of the procedure, a transition (s, i, o, s', g, d) is
removed if the input timed guard g and [0, T) are disjoint
where ΔS(s) = (s'', T), since this transition cannot be
executed in the TFSM S. Transition (s, i, o, s', g, d) such that
input timed interval g = [a, b) intersects [0, T) but the upper
bound of g is beyond the value of timeout T cannot be
executed in the TFSM S for the interval [T, b). Thus,
removing and bound a transition at Step 5 does not change
the behavior of TFSM S.

We now show that TFSM P is well-defined. Assume that
for state p0 of TFSM P the timeout ΔP(p0) = (p1, T1) is

replaced by a timeout ΔP(p0) = (p2, T2) where T1  T2, and

33 из 190

the behavior of TFSM P at state p0 is not changed. The latter
means that in the FSM abstraction AP there exists either pair
of equivalent states (p0, T2) and (p2, 0) or a pair of

equivalent states (p0, (T2  1, )) and (p2, 0). The pair of
equivalent states (p0, T2) and (p2, 0) does not exist in AP
(Step 3 of the procedure). If there exist equivalent states (p0,

(T2  1, )) and (p2, 0) in AP then the output response of
TFSM P at state p2 to each timed input sequence coincides
with that of TFSM P at state p0 starting from timed instance T

 (T2  1). In this case, by construction of the FSM
abstraction AP has no state (p0, T2), but according to Step 4
of the procedure, the timeout at state p0 is replaced by

ΔP(p0) = (p2, T2). Thus, equivalent states (p0, (T2  1, ))
and (p2, 0) do not exist in AP.

At the same time, each two transitions (s, i, o, s', g1, d), (s,

i, o, s', g2, d) hs, such that guards g1 and g2 can be merged as
a single guard, are replaced by a single transition (s, i, o, s',

g1g2, d) (Step 1 of the procedure).
Theorem 2. Two deterministic complete well-defined

reduced TFSMs are equivalent if and only if they are
isomorphic.

 Let deterministic complete well-defined reduced
TFSMs S and P be equivalent. Since both TFSMs are reduced
they have the same number of states. Consider the one-to-one

correspondence H: S  P such that H(s) is a state of TFSM P
which is equivalent to state s. We now show that for each pair
of states s and p = H(s) such that ΔS(s) = (s', Ts) and ΔS(p) =
(p', Tp), it holds that Ts = Tp and p' = H(s'). If Tp < Ts then
due to the fact that S and P are equivalent, there exists state
s'' which is equivalent to state p'. Since states s and p are also
equivalent, the timeout at state s can be replaced by ΔS(s) =
(s'', Ts') where Ts' = Tp < Ts. The latter is not possible as S is
well-defined. Since P is well-defined, the same reasoning
applies when Ts < Tp. Thus, Tp = Ts. Since states s and p are
equivalent, states time(s, Ts) and time(p, Tp) are also
equivalent and respectively, p' = H(s'). Similar to [10], since
TFSMs S and P are equivalent, there exists a transition (s, i, o,

s', g, d) hs if and only if there exists a transition (H(s), i, o,

H(s'), g, d) hp. Thus, TFSMs S and P are isomorphic.

 Since isomorphic TFSMs coincide up to state renaming,
isomorphic TFSMs are equivalent.

Corollary. Given a deterministic complete TFSM S, two
well-defined reduced forms of TFSM S are isomorphic.

For example, the minimal form of TFSM S (Figure 1) is
shown in Figure 4.

By direct inspection, one can assure that in Figure 4 the
timeout ΔS(s0) = (s2, 2) has been replaced by the timeout
ΔS(s0) = (s1, 1), while a transition (s0, i, o2, s0, [1, 2), 3) has
been removed. At the same time, two transitions from state s2

have been merged and timeouts ΔS(s1) = (s1, ) and ΔS(s2) =

(s2, ) were replaced by ΔS(s1) = (s2, 1) and ΔS(s2) = (s2, 1),
respectively.

Theorem 3. Given a deterministic complete TFSM S, the
minimal form of S is unique.

According to Theorem 3, for FSMs with timed guards and
timeouts, there exists the minimal (canonical) form that is a
well-defined reduced TFSM.

As a corollary, similar statement can be drawn for FSMs
with only timed guards or only with timeouts.

Corollary. Given a deterministic complete FSM S with

only timed guards (only with timeouts), the minimal form of
S is unique.

Fig. 4. Well-defined reduced form of TFSM S (Figure 1)

Given the TFSM in Figure 2, by direct inspection, one
can assure that there are equivalent states in the TFSM.
Namely, state “Closing timeout up” is equivalent to state
“Closing timeout down”; state “Closing the door up” is
equivalent to state “Closing the door down”, state “Movement
up” is equivalent to state “Movement down”. When a TFSM
is implemented by the use of a microcontroller tests which
check transition and output faults have to be applied to an
implementation at hand. However, to the best of our
knowledge, the known methods ask for a minimal
specification TFSM. Correspondingly, the minimal form of
a system in Figure 1 should be derived by Procedures 1 and
2; the result is shown in Figure 5.

Fig. 5. The minimal form of the TFSM for the elevator management

VII. EXPERIMENTAL RESULTS

Procedures 1 and 2 for deriving the minimal form of a
TFSM have been implemented. When experimenting with this
program implementation, randomly generated TFSMs with ten
inputs and outputs, |I| = |O| = 10, and two timed guards in the
form [a, a + 2) have been considered. Finite timeouts at states
did not exceed four. We generated machines with 10, 20, ….,
90, 100 states, 1000 TFSMs for each value. Experimental
results are presented in Figure 6.

The performed experiments show that the complexity of
the minimization procedure is polynomial with respect to the
number of states of a TFSM; moreover, the complexity is
almost not increased compared with classical FSMs when the
largest finite boundary of timed guards is rather small.
However, more experiments are needed to evaluate the

34 из 190

efficiency of proposed procedures for TFSMs which describe
the behavior of real systems.

Fig. 6. Runtime dependence on number of TFSM states

VIII. CONCLUSION

In this paper, a method for deriving the minimal
(canonical) form of a Finite State Machine with timed guards
and timeouts (TFSMs) has been proposed. We first show how
the partition into equivalent states of a given TFSM can be
derived based on the corresponding partition of the
corresponding FSM abstraction. We also propose the class of
well-defined FSMs with timed guards and timeouts and show
that given a complete deterministic TFSM, the (state) reduced
well-defined equivalent TFSM is unique. A procedure for
deriving such a canonical form is proposed and illustrated by
examples.

ACKNOWLEDGMENT

This work is partly supported by RSF Project No. 16-49-
03012.

REFERENCES

[1] Gill A. Introduction to the Theory of Finite-State Machines. 1962, 207 p

[2] Lee, D., Yannakakis, M. (1996) Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE. 84(8) (1996) 1090-
1123.

[3] T.E. Murphy, X.-J. Geng, and J. Hammer. On the control of
asynchronous machines with races. IEEE Transactions on Automatic
Control, 48(6):1073-1081, 2003.

[4] R. Kumar, V.K. Garg. Modeling and control of logical discrete event
systems. Kluwer Academic Publishers, 1995.

[5] C. C. Cassandras, S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, 1999.

[6] Rita Dorofeeva, Khaled El-Fakih, Stephane Maag, Ana R. Cavalli, Nina
Yevtushenko FSM-based conformance testing methods: A survey an-
notated with experimental evaluation // Information and Software
Technology, 2010, 52, pp. 1286-1297.

[7] Maxim Zhigulin, Nina Yevtushenko, Stéphane Maag, Ana R. Cavalli
FSM-Based Test Derivation Strategies for Systems with Time-Outs //
Proc. of the 11th International Conference on Quality Software, QSIC
2011, IEEE, 2011. pp. 141-149.

[8] M. Merayo, M. Nunez, I. Rodriguez, Formal testing from timed finite
state machines, Comput. Netw. 52 (2) (2008) 432–460.

[9] Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed
Finite State Machines: Equivalence Checking and Expressive Power.
Intern Conf. GANDALF, 2014, pp. 203-216.

[10] A. Tvardovskii, N. Yevtushenko. Minimizing timed Finite State
Machines // Tomsk State University Journal of control and computer
science, № 4 (29) 2014, pp. 77-83.

[11] Tvardovskii. A. On the minimization of timed Finite State Machines.
Proceedings of ISP RAS, Vol. 26, Issue 6, 2014, pp. 77–84.

[12] Khaled El-Fakih, Nina Yevtushenko, Hacène Fouchal. Testing Timed
Finite State Machines with Guaranteed Fault Coverage.
TestCom/FATES, 2009, pp. 66-80.

[13] O. Kondratyeva. Timed FSM Startegy for Optimizing Web Service
Compositions w.r.t. the Quality and Safety Issues. Thèse de doctorat
en Informatique, Paris Saclay, 2015.

35 из 190

Experiments On Parallel Composition of Timed

Finite State Machines

Alexander Sotnikov
1
, Natalia Shabaldina

2
,

Maxim Gromov

3

Department of Information Technologies for Studying Discrete Structures,

Tomsk State University,

Tomsk, Russia
1
sotnikhtc@gmail.com,

2
nataliamailbox@mail.ru,

3
maxim.leo.gromov@gmail.com

Abstract — In this paper we continue our work that is devoted

to the parallel composition of Timed Finite State Machines

(TFSMs). We consider the composition of TFSMs with timeouts

and output delays. We held experiments in order to estimate how

often parallel composition of nondeterministic TFSMs (with and

without timeouts) has infinite sets of output delays. To conduct

these experiments we have created two tools: the first one for

converting TFSMs into automata (this tool is integrated into

BALM-II), the second one for converting the global automaton of

the composition into TFSM. As it was suggested in earlier works,

we describe the infinite sets of output delays by linear functions,

and it is important to know how often these sets of linear

functions appear to justify the importance of future

investigations of the TFSM parallel compositions (especially for

deriving cascade composition). Results of the experiments show

significant amount (around 50 %) of TFSMs with infinite

number of output delays. We also estimate the size of the global

automaton and the composed TFSM. In the experiments we do

not consider global automata with the huge number of states

(more then 10000).

Keywords — Timed finite state machines, parallel composition,

BALM-II.

I. INTRODUCTION

Different systems, for example web-services,
telecommunication protocols digital networks etc. are targeted
on interaction with each other. To analyze and synthesize such
systems one needs an adequate formal model. The Finite State
Machine (FSM) has proven to be a classical model for
description of input-output reactive discrete event systems [1].
Here, by “input-output reactive” we mean, that every input
action is always followed by output reaction, and by “discrete
event” we mean, that domains for input and output actions are
finite (discrete) sets. In this case, when talking about
interacting systems, main concept is a composition of FSMs.
If there are two communicating systems and the behavior of
each system is described by an FSM, then their common work
can be described by the composition of those FSMs. Under
appropriate assumptions [2,3] this composition will also be an
FSM. In this work we consider so-called parallel
composition [2]. In the parallel composition the interacting
systems work asynchronously in the assumption of a slow
environment and this is enough to guarantee the composition
to be an FSM again. To build an FSM composition BALM-II
(Berkeley Automata and Language Manipulation) can be

used [3].

For more precise description of a system one should
consider time aspects of its behavior as well. For that reason
we need some model which would be appropriate for
description of an input-output reactive timed discrete event
system. Probably the most general way to describe timed
discrete event system (not necessarily input-output reactive) is
a timed automaton [6]. In works [4, 5] authors describe web-
services, using language BPEL. In [4] authors tell how they
translate web services into timed automata in order to verify
them. In [5] the authors use more complicated model – so-
called Timed Extended Finite State Machine. Then they
convert a TEFSM into timed automaton. For further analysis,
both, [4] and [5], use UPPAAL [16] as an instrument.

Although timed automata are more than enough to
describe any input-output reactive timed discrete event
system, they are not convenient for us. The reason is that we
would like to keep some room for analysis of the composition.
Namely, we would like to use the composition as a
specification for a test generation. For the best of our
knowledge, methods of a test generation with guaranteed fault
coverage for (timed) automata are not well developed (frankly
speaking we know only one paper [7], which describes such a
method). In contrary, test generation methods for FSMs are
well-developed and are still developing [8, 9]. And since
parallel composition of FSMs guarantees, that the result is
FSM again, we would like to consider some kind of Timed
Finite State Machine as a model, which would presume this
property of the parallel composition. One possible timed
augmentation of the FSM was mentioned in [5]. But this
model is quite complex and it is not clear, how to build
parallel composition for it. Another option to introduce timed
FSM is Timed FSM with time guards [10]. The theory of this
model is highly developed [11], but it lacks an efficient
method to build parallel composition as well as the precious
model.

And at last, the model we use in this paper, is the Timed
Finite State Machine with output delays and timeouts
(TFSM) [12-15]. This model allows building parallel
composition in the same manner as it is done for common
FSM. Given two TFSMs we need to compose. First, the
corresponding automata should be built [7], then we compose
those automata, obtaining so called the global automaton of
the composition. And then we need to transform the global

This work is supported by the grant for the basic research №16-49-03012
of Russian Scientific Fund.

36 из 190

mailto:nataliamailbox@mail.ru

automaton into TFSM. In [12] very interesting effect of the
parallel composition is shown. It turned out that composition
of two TFSMs (with constant delays) can have infinite number
of output delays for a some transitions and those delays can be
described by a finite set of linear functions

{b + k·t | b, k  {0}  ℕ}. The main objective of this paper is
to investigate how often this effect occurs. This would justify
further development of the theory of TFSM with infinite
(countable) number of delays.

In some works [4, 5] authors use UPPAAL [16] as an
instrument for manipulation with models. Although UPPAAL
is very powerful tool of timed systems analysis it does not suit
us, because it does not allow to build the composition
explicitly. In [14] we compare some tools that can be used for
deriving the parallel composition of TFSMs, and explain why
we have chosen BALM-II.

BALM-II was designed to build parallel composition of
two FSMs. To be able to use this tool for TFSMs we use well-
known transformation of TFSM into FSM, and in this work
we create a tool for converting TFSM into automaton and
integrate it into BALM-II. After deriving two automata for the
given two TFSMs we construct a global automaton (using
BALM-II). In work [14] we suggest two approaches for
getting output delays from the composition of corresponding
automata: first deals with BALM-II once again, and the
second is based on analyzing of time loops in the automaton.
In this work we create tool for converting global automaton
into TFSM based on the second approach.

Moreover, in works [14, 15] we consider TFSMs with
output delays (without timeouts). In this work we consider
TFSMs with output delays and timeouts.

We use implemented tools to hold experiments. Since we
describe the infinite sets of output delays by linear functions, it
is important to know how often these sets of linear functions
appear. The experimental results show significant amount
(around 50 %) of TFSMs with infinite number of output
delays. We also estimate the size of the global automaton and
the composed TFSM. Unfortunately the upper bound of the
number of states in the global automaton is exponential due to
fact that the automaton determinization is needed for
composition. In order to get the results of the experiments in
reasonable time, we throw away all examples for which the
number of states in the global automaton is too huge (more
than 10000 states).

We see the contribution of the paper as three points. First,
the algorithm for deriving TFSM from the given global
automaton (for the case, when TFSMs have both output delays
and timeouts). Second, new tools that allow to derive the
binary parallel composition of TFSMs automatically (taking in
the mind that composition of two automata can be derived
using BALM-II). And probably the main point, the
experiments have shown, that the theory of TFSMs with
linearly-countable output delays is worth to be developed.

The outline of the paper is as follows. In Section II some
preliminaries are given. In Section III we describe the
structure of the composition that we consider in our work, and
how the components communicate with each other. Section IV

is devoted to one of the implemented tools which allow to
derive TFSM based on the global automaton; we discuss
extraction of output delay functions from the global automaton
using an example, and propose an algorithm that is lied in the
basis of the tool. Section V describes the experiments and
experimental results. Section VI concludes the paper.

II. PRELIMINARIES

A finite automaton S is a 5-tuple (S, X, s0, F, λS), where S is
a finite nonempty set of states with s0 as the initial state and

F  S as a set of final (accepting) states; X is an alphabet of

actions; and λS  SXS is a transition relation. In this work
we consider only finite automata, so we will write simply
“automaton” (meaning finite automaton). The transition
relation defines all possible transitions of the automaton. The

language LS of automaton S is the set of all sequences  in
alphabet X, such that in automaton S there is a sequence of

transitions (marked by ) from the initial state to some final
state. An FSM S is a 5-tuple (S, I, O, s0, λS), where S is a finite
nonempty set of states with s0 as the initial state; I and O are

input and output alphabets; and λS  SIOS is a transition
relation. In FSM all states are final.

Let ℕ be the set of natural numbers. Let ℱ ={b + k·t | b,

k  {0}  ℕ} – the set of all possible linear functions.
TFSM [12] is an FSM with timeouts and output delays

S = (S, I, O, s0, λS, ΔS, S), where 5-tuple (S, I, O, s0, λS) is

underlying FSM, ΔS: S  S  (ℕ {}) is a timeout function
that determine maximal time of waiting for input symbol,

S: λS  (2 ℱ \) is an output delay function that determine
for each transition time delay for producing output symbol
(output timeout).

The semantics of Timed FSM is as follows. We describe
the behavior of a system that has time aspects: timeouts and
output delays. Timeouts describe the situation when the
system comes from one state to another not under the input
symbol, but in the case when no inputs are applied during
some period of time. In practice it’s the case of waiting for the
password in internet-banking, etc. As for output delays, the
meaning of them is that the output symbol is produced for the
given input symbol not immediately but after some period of
time. For example, a light can change not immediately after a
button is pushed but after some time.

We suppose that there is a global clock (timed variable)
and this clock is reset to zero when an input symbol (action) is
applied, when an output symbol is produced and when the
state of the system is changed (for example, in the case of
transition under timeout).

III. COMPOSITION OF TIMED FINITE STATE MACHINES

Parallel composition describes a dialog between two
components. The structure of the composition is presented in
Figure 1.

37 из 190

Fig. 1. Structure of binary parallel composition

We suppose that the system works in “slow environment”
(it means that the next input can be applied to the composition
only after it produces external output to the previous input),
the alphabets of different channels don’t intersect and there are
no infinite dialogs under internal inputs (it means no
livelocks). We also suppose that each component and the
whole composition have timed variables. The values of these
variables are increasing synchronously, and they reset when
the system gets an input or when the state is changed.

In order to compose two TFSMs using BALM-II, we need,
first of all, to derive the corresponding automaton for each
TFSM [12, 13]. In this work we implement a tool for this step
and integrate it into BALM-II as a new command

TFSM2AutV1. This implementation requires, that MV
description of TFSM (BALM-II format) contains special
variable called Time. Domain of the variable Time contains
only non-negative integers which are used to describe
timeouts and delays. For example, if a table of transitions has
head as follows

.table I Time O CS -> NS

and we would like to represent timeout transition

 , then

it will appear as

^ t ^ s1 s2

where I – is the variable for input action, O – is the variable
for output action, CS – is the variable for the current state, NS
– is the variable for the next state, t – is some non-negative
integer from the domain of the variable Time and the symbol ^
represents the fact, that there is no action in corresponding

channel. The ordinary transition with delay, like

 is

described as

i d o s1 s2

where i – is from the domain of I, o – is from the domain of O,
and d – is from the domain of Time.

Then we derive parallel composition of two automatons
using BALM-II (we describe how to do this in works
[14, 15]). The resulting automaton is so-called global
automaton and it describes the common behavior of two
automata that are working together in a dialogue mode.

After deriving a global automaton that describes the
common behavior of two given TFSMs we need to construct

the corresponding TFSM. We also develop a tool for this step
and describe the corresponding algorithm in the next section.

IV. DERIVING TFSM BASED ON THE GLOBAL AUTOMATON.

EXTRACTING OUTPUT DELAYS FUNCTIONS

Let’s consider an example of a global automaton (Figure
2) and describe how to derive the corresponding TFSM
(Figure 3). One can see that after Request there can be output
Deliver after 3 + 5t or 4 + 5t tick counts, where t is arbitrary
non-negative integer number.

Fig. 2. An example of global automaton

Fig. 3. Corresponding TFSM

In work [14] we propose a procedure for deriving TFSM
based on the global automaton for the case when the given
TFSMs have only output delays (no timeouts). In this work we
propose more common algorithm that works also for the case
when the given TFSMs have both output delays and timeouts.
The idea of this algorithm is very simple. According to the
theory the final states of the global automaton correspond to
the states of TFSM. Every sequence, which starts and finishes
at some final states of the automaton and goes through non-
final states, corresponds to the transition of the TFSM. The
sequence can start only with input action or with special action
1. If this sequence starts with special action 1, then every
action of the sequence is 1 and corresponding transition is
timeout transition (timeout is the number of 1

s
 needed to reach

final state). If the first action of the sequence is input action,
then the last action is output action and the intermediate
actions are 1

s
. In this case the corresponding TFSM transition

is ordinary input-output transition with delay. The delay – is
the number of 1

s
 in-between the input and the output actions

of the sequence. We just need to keep in mind, that sequence
of 1

s
 may form a loop. So we do some precautions to detect

loops when traversing the automaton transitions. The number
of 1

s
 before the loop gives us b for linear function and the

length of the loop gives k for the function.

Algorithm 1. Deriving TFSM based on the global
automaton.

Input. Global automaton A = A, I  O  {1}, a0, F, λA

Output. TFSM T = T, I, O, t0, λT, ΔT, T with the same
behavior.

t0  a0; T := {t0};

FOREACH non-visited state t from T DO

 IF  t, 1, t  λA THEN DO

left right

X

Y

U

V

38 из 190

 ADD t in T;

 IF t == t THEN ADD t, , t in ΔT;

 ELSE ADD t, 1, t in ΔT;
 DONE

 FOREACH input action i such, that

  t, i, t  λA

 DO

 b := 0; V := ;

 WHILE t != NULL AND t is NOT visited

 DO

 t.b := b;

 FOREACH output action o such, that

  t, o, t  λA

 DO

 IF t  F THEN DO

 ADD t in T;

 ADD t, o, t in V;

 DONE
 DONE

 mark t as visited;

 b++;

 IF  t, 1, t  λA THEN t := t;

 ELSE t := NULL;

 DONE

 IF t == NULL THEN k := 0, nloop := ;

 ELSE k := b – t.b, nloop := t.b;

 FOREACH t, o, t in V DO

 ADD t, i, o, t in λT;

 IF t.b < nloop THEN

 ADD t, i, o, t, t.b in T;

 ELSE

 ADD t, i, o, t, t.b + k*x

 in T;

 DONE

 DONE

 mark t as visited;

DONE

V. EXPERIMENTAL RESULTS

We conduct the experiments according to the following
steps:

Step 1. Generate two complete nondeterministic

observable timed FSMs: left.fsm and right.fsm. At
this step we use FSM generator from the tool [17].

Step 2. Convert generated TFSMs into AUT-format

(BALM-II format). After this step we have two files in AUT-

format: left.aut and right.aut.

The number of all states in the automaton is
S + S*I*D + S*T, where S – is the number of states in original
TFSM, I – number of input symbols, D – maximal delay, T –
maximal finite timeout. The number of stable states is S*T.

If we have no timeouts then T = 0 and the number of states
of the automaton is S + S*I*D.

Step 3. Convert files left.aut and right.aut with

TFSMs into files left_aut.aut and right_aut.aut
with corresponding automata. In order to do this, we created
the tool and integrated it into BALM-II. We described the
algorithm for this transformation in the work [14]. In this work
we only add in that algorithm the transformation for timeout
transitions.

Step 4. Derive the global automaton. We derive the global
automaton using the same sequence of BALM-II commands
as we described in work [14].

The number of final states in the product automaton is
S1*T1*S2*T2, where S1 is the number of final states in the
left component, S2 is the number of final states in the right
component, T1 is the maximal finite timeout in the left
component, T2 is the maximal finite timeout in the right
component.

After the restriction we will have the global automaton

with at most 2
S1*T1*S2*T2

 – 1 states (since the restriction
command includes determinization of the automaton).

If we have no timeouts then the number of final states in
the product automaton is at most S1*S2 and after restriction
we have at most 2

S1*S2
 – 1.

Step 5. Derive TFSM based on the global automaton. For
this step we created the tool based on the algorithm that was
proposed in the previous section.

We generated one hundred pairs of TFSMs for each set of
parameters values (number of states, maximal time delays and
timeouts). In order to get results of the experiments in
reasonable time we fixed the number of inputs and outputs for
each channel to 2. We also need to mention that in
experiments we did not consider global automata with the
huge number of states (more than 10000). It means that we
have thrown away such examples. The reason is that the upper
bound of the number of states in the global automaton is
exponential because of determinization used during
composition.

The experimental results are represented in Table 1. In the
3

rd
 and 4

th
 columns there are percentages of TFSMs with

infinite number of output delays (we need to use linear
functions for describing output delays). The difference is that
for the 3

rd
 column we calculated percentage of such TFSMs

for the case when the components are TFSMs with timeouts
and output delays, and for the 4

th
 column – only output delays

(no timeouts). First of all, we would like to comment on
dashes (‘-’) in the 3

rd
 and 4

th
columns. In those cases we could

not conduct the experiments for the given parameters in the
reasonable time and the reason is the exponential upper bound
of the state’s number in the global automaton. For example,
let’s consider the last row in the Table 1: we have 4 states in
the left TFSM and 4 states in the right TFSM, the maximal
finite timeout for the both is the same and it is equal to 7.
According to our experiments’ procedure, we first derive the
corresponding automata for the given TFSMs. The number of
final states in the automata is S*T, where S is the number of

39 из 190

states in original TFSM, T – maximal finite timeout. So for
our case the number of states in the automaton for the left
component (let’s denote it as S1) will be equal to the number
of states in the automaton for the right component (let’s
denote it as S2) and S1 = S2 = = 4*7 = 28. So, each automaton
will have 28 stable states. Then, we estimate the number of
states in the product automaton as S1*T1*S2*T2, where T1 is
the maximal finite timeout in the left component, T2 is the
maximal finite timeout in the right component, so, for our case
the number of states in the product automaton will be
28*7*28*7 = 38416. After the restriction we will have the
global automaton with at most 2

S1*T1*S2*T2
 – 1 states since the

command restriction does determinization of the
automaton, and for the last row in our table in the worst case it
can be 2

38416
 – 1 states and of cause it’s too huge automaton to

deal with.

TABLE I. EXPERIMENT RESULTS

Number of

states

Maximal

delay /

timeout

Percent of

TFSMs

with

infinite

number of

output

delays (with

timeouts)

Percent of

TFSMs

with

infinite

number of

output

delays

(without

timeouts)

2 2 38 23

3 2 39 37

4 2 43 28

5 2 34 -

2 3 47 38

3 3 56 42

4 3 66 55

2 4 46 42

3 4 61 47

4 4 63 53

2 5 67 36

3 5 - 51

4 5 34 69

2 6 - 52

3 6 - 54

4 6 - 68

2 7 - 51

3 7 - 50

4 7 - 75

According to our experimental results, around 50 % of
TFSMs, that describe the behavior of the composition, has the
infinite number of output delays, so, further investigations of
such compositions are needed. It is an actual task especially
for the case of cascade composition [15], when each

component is a TFSM with timeouts and final sets of output
delays, and we first compose two internal components and
then we need to compose the resulting TFSM with the
remaining part of the system. However, according to our
experimental results, this resulting TFSM has infinite number
of output delays with high probability. So, more investigations
of such compositions are needed.

VI. CONCLUSIONS

This paper is devoted to parallel composition of Timed
Finite State Machines (TFSMs). We consider the composition
of TFSMs with transitions under timeouts and output delays. It
is known that even for the case when output delays are the
finite sets of nonnegative integers, the result of such
composition can be a TFSM with infinite set of output delays,
and we describe such infinite sets by linear functions. It is
important to know how often these sets of linear functions
appear in order to estimate the importance of future
investigations such compositions (especially for deriving
cascade composition). In order to conduct the experiments we
created two tools: the first one for converting TFSM into
automaton (we integrated it into BALM-II), the second one for
converting the global automaton into TFSM. The experimental
results show significant amount (around 50 %) of TFSMs with
infinite number of output delays, so, further investigations of
such compositions are needed. We also estimate the size of
global automaton and the composed TFSM. In experiments we
do not consider global automata with the huge number of
states (more then 10000). The reason is that the upper bound
of the number of states in the global automaton is exponential
because of determinization used during composition. We plan
to propose another approach for deriving the composition of
Timed Finite State Machines. It will be the part of our future
work.

REFERENCES

[1] Gill A. Introduction to the theory of finite state machines, New-York,
McGraw-Hill, 1962.

[2] N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A. Sangiovanni-
Vincentelli. Solution of parallel language equations for logic synthesis //
In The Proceedings of the International Conference on Computer-Aided
Design. 2001. P. 103–110.

[3] G. Castagnetti, M. Piccolo, T. Villa, N. Yevtushenko, A. Mishchenko,
Robert K. Brayton. Solving Parallel Equations with BALM-II //
Technical Report No. UCB/EECS-2012-181, Electrical Engineering and
Computer Sciences University of California at Berkeley. 2012.
[Electronic resource]
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.pdf
(date of access: 21.04.2016).

[4] Gregorio Diaz, Juan-Jos e Pardo, Mar a-Emilia Cambronero, Valent n
Valero, and Fernando Cuartero. Automatic Translation of WS-CDL
Choreographies to Timed
Automata, volume 3670 of Lecture Notes in Computer Science, book
section 17, pages 230{242. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-28701-8. doi:
10.1007/11549970 17. URL http://dx.doi.org/10.1007/11549970_17.

[5] M. Lallali, F. Zaidi, and A. Cavalli. Timed modeling of web services
composition for automatic testing. In Signal-Image // Technologies and
Internet-Based System, 2007.
Bibliography 102 SITIS '07. Third International IEEE Conference on,
pages 417{426, Dec 2007. doi: 10.1109/SITIS.2007.110.

[6] R. Alur and D. L. Dill. A theory of timed automata // Theoretical
computer science. 1994. Vol.126, Iss. 2. P. 183–235.

40 из 190

http://dx.do/
http://dx.do/

[7] Springintveld J., Vaandrager F. and D’Argenio P. Testing timed
automata // Theoretical Computer Science, 254 (1-2). pp. 225-257, 2001.

[8] Kushik N., Lopez J., Cavalli A., Yevtushenko N. Improving Protocol
Passive Testing through 'Gedanken' Experiments with Finite State
Machines // Proceedings - 2016 IEEE International Conference on
Software Quality, Reliability and Security, pp. 315-322.

[9] Hierons R., Turker U. Parallel Algorithms for Testing Finite State
Machines: Generating UIO Sequences // IEEE Transactions on Software
Engineering, 42(11),7429774, pp. 1077-1091, 2016.

[10] K. El-Fakih, M. Gromov, N. Shabaldina, N. Yevtushenko.
Distinguishing Experiments for Timed Non-Deterministic Finite State
Machines // Acta Cybernetica. 2013. Vol. 21, № 2. P. 205–222.

[11] Tvardovskii A., Yevtushenko N. Minimizing timed Finite State
Machines // Vestnik TGU [The Bulletin of TSU], 2014. Vol. 4 (29). P.
132.

[12] O. Kondratyeva, N. Yevtushenko, and A. Cavalli. Parallel composition
of nondeterministic finite state machines with timeouts // Journal of
Control and Computer Science. Tomsk State University, Russia. 2014.
Vol. 2(27). P. 73–81.

[13] O. Kondratyeva, N. Yevtushenko, A. Cavalli. Solving parallel equations
for Finite State Machines with Timeouts // Trudy ISP RАN [The
Proceedings of ISP RAS]. 2014. Vol. 26, Iss. 6. P. 85–98.

[14] Shabaldina N., Gromov M. Using BALM-II for deriving parallel
composition of timed finite state machines with outputs delays and
timeouts: work-in-progress // Sistemnaya informatika. 2016. № 8. P. 33-
42.

[15] Gromov M. .L, Shabaldina N. V. Using balm-ii for deriving cascade
parallel composition of timed finite state machines // Modeling and
Analysis of Information Systems, 23:3 (2016), p.699-712.

[16] http://www.uppaal.com/

[17] N. Shabaldina , M. Gromov. FSMTest-1.0: a manual for researches //
Proceedings of IEEE East-West Design & Test Symposium
(EWDTS’2015). Ukraine, Kharkov: SCITEPRESS, 2015. P. 216-219.

41 из 190

https://www.scopus.com/sourceid/18711?origin=resultslist
https://www.scopus.com/sourceid/18711?origin=resultslist

Mining Hybrid UML Models from Event Logs of
SOA Systems

Ksenia V. Davydova
National Research University
Higher School of Economics,

PAIS Lab. at the Faculty of Computer Science,
20 Myasnitskaya st.

Moscow, 101000, Russia
Email: kvdavydova@edu.hse.ru

Sergey A. Shershakov
National Research University
Higher School of Economics,

PAIS Lab. at the Faculty of Computer Science,
20 Myasnitskaya st.

Moscow, 101000, Russia
Email: sshershakov@hse.ru

Abstract—In the paper we consider a method for mining so-
called “hybrid” UML models, that refers to software process
mining. Models are built from execution traces of information
systems with service-oriented architecture (SOA), given in form
of event logs. While common reverse engineering techniques
usually require the source code, which is often unavailable, our
approach deals with event logs which are produced by a lot of
information systems, and some heuristic parameters. Since an
individual type of UML diagrams shows only one perspective
of a system’s model, we propose to mine a combination of
various types of UML diagrams (namely, sequence and activity),
which are considered together with communication diagrams.
This allows us to increase the expressive power of the individual
diagram. Each type of diagram correlates with one of three
levels of abstraction (workflow, interaction and operation), which
are commonly used while considering web-service interaction.
The proposed algorithm consists of four tasks. They include
splitting an event log into several parts and building UML
sequence, activity and communication diagrams. We also propose
to encapsulate some insignificant or low-level implementation
details (such as internal service operations) into activity diagrams
and connect them with a more general sequence diagram by using
interaction use semantics. To cope with a problem of immense
size of synthesized UML sequence diagrams, we propose an
abstraction technique based on regular expressions. We prototype
our approach as a Windows-application in C#. It produces UML
models in the form of XML-files. The latter are compatible
with well-known Sparx Enterprise Architect and can be further
visualized and utilized by that tool.

Index Terms—Event log, process mining, hybrid UML model,
UML sequence diagram, UML activity diagram, reverse engi-
neering.

I. INTRODUCTION

Nowadays we use information systems everywhere. They
are used not only at home to increase the comfort of our
life but also to support business processes. The complexity
of the systems are growing together with the complexity of
processes and tasks. Moreover, a lot of systems interact with
each other. There is an increasing chance of error as the
complexity of the system increases. If the system finds these
errors, they are written into so-called event logs together with
other information about system execution. The logs store a lot
of information during the work of the system. On the one hand,
manual processing of the logs is almost impossible because of

their size and lack of structure. On the other hand, the event
logs are an inestimable source of knowledge about real-life
system behavior. Tools, which help to obtain this knowledge
in suitable form for analytics are extremely useful.

Different approaches, such as modeling, development within
the standardized life cycle, testing, quality assurance (QA),
verification, etc., are applied to improve the system quality
and error correction. Using combinations of these instruments
(for example, testing and verification, modeling and reverse
engineering with continuous delivery) gives good results. New
tools, modeling tools in particular, help to make the process
more convenient and more effective.

Models are built on different life cycle stages. In the classic
approach, an architect models an information system based on
the customer‘s requirements. However, the implemented sys-
tem often differs from previously developed models because
the system is developed faster than its models. Developers may
sometimes make mistakes and may need to spend additional
time on critical situations and deadlines. This means that
the design and implementation of some components is not
completed properly.

When there is no complete model of a system, reverse
engineering techniques can be applied to extract the necessary
information from the system and build an appropriate model. It
allows us to obtain models of a real-life system automatically
or semi-automatically. These models correspond to a devel-
oped system rather than to an initial plan and initial models.
Such models aim both to understand a structure/behavior of a
real system and to eliminate any inadequacy of a real model
as compared to the initial model. This also makes it easier to
fix errors in the system. There are a number of approaches
and tools aimed for this purpose. Most of them require the
source code of a system to perform analysis. It is not always
possible because of different reasons: the source code may
not be available to analysts, it is impossible to get the last
copy of code or it can be lost. Also, different work groups
can develop different system components which complicates
centralized collection of source code.

Unlike existing reverse engineering approaches that use
source code, we propose an approach that works with system

42 из 190

execution traces which can be extracted from event logs. Our
approach can be considered as a particular implementation of
Process Mining [1], a discipline aimed to discover, analyze and
improve business processes and their models. Our approach
also includes features that are relevant to software engineering.
Hence, we refer to it as software process mining [2].

Process mining usually uses process models such as Petri
nets, BPMN, Fuzzy maps, etc. which are produced by applying
different algorithms such as α-algorithm [1], [3], [4], NLP-
algorithm [5] or fuzzy miner [6] respectively. However, these
models are not perfectly suitable for software developers. In
areas such as software engineering, more specific approaches
such as the Unified Modeling Language (UML) [7] are more
common. The most common approaches deal with state class
diagrams, statecharts, sequence and activity diagrams con-
sidering them as more descriptive than other. According to
UML 2.5, there are two groups of diagrams: structural and
behavioral. In this work we primarily focus on the behavioral
group, in particular, on sequence, activity and communication
diagrams.

Modern approaches to developing information systems
make out small reusable well-defined pieces of code, which are
commonly refered to as services. Systems, using services as
a main component, are based on service-oriented architecture
(SOA) [8]. Services from heterogeneous SOA-systems are de-
veloped using different languages, environments and tools, but
they work in a single information space. Mining unified mod-
els of those systems is a challenge and has some difficulties.
For example, none of the popular reverse engineering tools
works with all languages used for web-service development
[9]. As almost all systems produce event logs which contain
information about interesting system components, it is possible
to build models including all of these components. It simplifies
the process of reverse engineering and allows us to expand its
application area.

In the paper, we consider event logs written by SOA-
systems. Our goal is to expand the applicability of UML-
based models for SOA-systems by developing new approaches
and tools for mining such models from event logs. UML-
standard describes different types of models which suit differ-
ent modeling aspects of an information system. Nevertheless,
there are situations when analysts would like to use expressive
opportunities of several diagram types. UML 2.5. does not
describe such diagrams, but it does not forbid them. In our
paper, we propose a new approach to UML-modeling which
includes mining a so-called hybrid diagram which includes
elements of UML sequence and UML activity diagrams.

To illustrate the proposed approach, consider the following
example.

A. Motivating example

We consider an event log (Table I) produced by an online
banking information system with service-oriented architecture.
The log contains a number of traces corresponding to in-
dividual instances of a business process maintained by the
information system. Our goal is to obtain a UML model,

Fig. 1. Usual UML sequence diagram mined from event log
L1.

which represents some behavioral aspects of the system from
different perspectives [9].

Each row of Table I represents a single event. Columns
represent attributes of the log. Events are grouped in cases (by
CaseID attribute); then, cases are represented in the log by
traces. Events are ordered by Timestamp attribute. Different
components of SOA are represented by other attributes such as
Domain, Service/Process and Operation. Domains
contain services and processes while the latter consist of
operations [10].

By applying a method [9] to the example log, we obtain a
UML sequence diagram as depicted in Figure 1 representing
the overall process. The diagram contains all possible details
(excluding operation parameters) of the behavior of the system
as it is represented in the event log. Along with regular
messages which connect two different lifelines (depicted as
vertical dash lines), the diagram also contains a number of self-
calls represented as labeled loop arrows, e.g. GetCardInfo,
GetCard. These self-calls are not important for studying the
model from a more abstract perspective. In contrast, they are
important when modeling the process of the individual service
or another SOA component.

Thus, we propose to hide these calls on the general model
with giving a reference to another diagram. Note, that the
hidden calls are restricted by one lifeline only. So, using
UML sequence diagram here loses its meaning, since only
one agent is involved. Therefore, it is convenient to model
such behavior by using UML activity diagram, another type
of UML diagram. Figures 2, 3 and 4 illustrate this idea and
represent a hybrid UML diagram combining the best features
of two different model types.

A distinctive feature of SOA, which is considered, is that
processes call other processes and services while services
do not call other participants. To demonstrate this feature,
it is important to show the interaction between one selected
service and its direct services-neighbors which it commu-

43 из 190

TABLE I. Log fragment L1. Banking SOA-system

CaseID Domain Service/Process Operation Action Payload Timestamp

23 Account Operations GetLastOperations REQ user=a, today=23.07.2015,
client=Maria, manager=Julia 17:32:15 135

23 Account CardInfo GetCardID REQ user=a, num=0 17:32:15 250
23 Account CardInfo GetCardInfo REQ num=0 17:32:15 260

23 Account CardInfo GetCardInfo RES date=07/16, name=MARIA
GRISHINA, id=15674839 17:32:15 267

23 Account CardInfo GetCardID RES res=15674839 17:32:15 297
23 Card Operations GetOperations REQ days=30 17:32:15 378
23 Utils Calendar GetDate REQ days=30 17:32:15 409
23 Utils Calendar GetDate RES res=23.06.2015 17:32:15 478
23 Card Operations GetOperations RES res={BP Billing Transfer} 17:32:15 513
23 Card OperationData GetPlaceAndDate REQ op=BP Billing Transfer 17:32:15 559
23 Card OperationData GetPlace REQ op=BP Billing Transfer 17:32:15 563

23 Card OperationData GetPlace RES res=RUS SBERBANK ONLAIN
PLATEZH 17:32:15 571

23 Card OperationData GetDate REQ op=BP Billing Transfer 17:32:15 575
23 Card OperationData GetDate RES res=20.07.2015 17:32:15 589

23 Card OperationData GetPlaceAndDate RES res=RUS SBERBANK ONLAIN
PLATEZH, date=20.07.2015 17:32:15 601

23 Account Operations GetLastOperations RES res=succ 17:32:15 822

25 Account Operations GetLastOperations REQ user=a, today=23.07.2015, client=
Maxim, manager=Julia 17:40:18 345

25 Account CardInfo GetCardID REQ user=a 17:40:18 408
25 Account CardInfo GetCard REQ num=0 17:40:18 422
25 Account CardInfo GetCard RES res=no cards 17:40:18 434
25 Account CardInfo GetCardID RES res=error 17:40:18 489
25 Account Operations GetLastOperations RES res=no bounded cards 17:40:18 523

Fig. 2. UML sequence diagram with hidden self calls. High-
level diagram of hybrid UML diagram.

nicates with. A UML communication diagram suits this
purpose. Example diagrams for Card::Operations and
Card::OperationData processes from example event log
are depicted in Figure 5 and 6 respectively. We can see that
these processes are called by other processes and call both
different services and itself.

We developed a tool which can build hybrid diagrams of
UML sequence and activity diagrams automatically. Also, it
is able to build a UML communication diagram for a selected
SOA component.

B. Related work

Reverse engineering of behavioral UML diagrams is not a
new area. There are a number of works [11], [12], [13], [14],

Fig. 3. UML activity diagram with activity inside Ac-
count::CardInfo service.

Fig. 4. UML activity diagram with activity inside
Card::OperationData service.

Fig. 5. UML communication diagram for Card::Operations
service.

Fig. 6. UML communication diagram for Card::OperationData
service.

44 из 190

about building the UML diagrams based on static source code
analysis. Besides, there are some CASE tools [15], [16], [17],
[18], which can be used for reverse engineering of sequence
and activity UML diagrams. There is also a plug-in [19] for
development environment NetBeans which is able to build
different types of behavioral models from Java source code.

However, all of the above mentioned methods and tools
use static program analysis (getting models from source code
without execution) for their work. As it was said earlier,
source code and all of its versions are not always available
for analysis. Thus, these tools and methods are useless in
this case. Furthermore, none of these tools are able to infer
models from the most popular languages used for developing
SOA information systems. Moreover, SOA architecture can be
developed with various programming languages. For example,
some modules can be written in C#, others can be developed in
Java, they can interact with LAMP service, so a single CASE
tool cannot produce models for that system. Mining diagrams
from event logs solves this problem.

In [20], [21], [22], approaches to building models based on
execution traces are proposed. One related work [20] analyzes
one trace using meta-models of an event log trace and a UML
sequence diagram (UML SD). The trace includes information
not only about invocation of methods but also about loops
and conditions, which makes easier recognition of fragments
such as iteration, alternatives and options. However, program
systems logging does not usually include this information, so it
is necessary to change the source code to apply this approach.

There is a description of the mining UML sequence dia-
grams method based on several execution traces in [22]. The
authors propose to use a labeled transition system (LTS) as
an intermediate model to present one trace and an algorithm
to merge LTSs built by several traces. After that, the LTS is
transformed into a UML sequence diagram. Moreover, LTS
can be used to build a Petri net which can be converted into a
UML activity diagram [23]. This conversion possibility can be
used to apply different process mining algorithms for receiving
a UML activity diagram. The approach to mining hierarchical
UML sequence diagrams is proposed in [9] (see Section III-D).

In [24], the authors describe a framework which allows not
only behavioral but also static UML diagrams to be built.
Their framework generates execution traces by itself from Java
source code. After that, the framework is able to build UML
activity diagrams from traces but it requires source code for
its work.

Process mining proposes to use three abstraction levels for
mining models for web services interaction [25]: workflow,
interaction and operation. On the operation level only one
service is considered in order to look at its internal behavior
and functionality. On the interaction level they consider not
only one selected service but also its direct callers and callees.
Finally, the overall services interaction is covered on the
workflow level. We apply all of these levels to service-oriented
architecture in the paper.

Furthermore, research on service mining was described
in [26]. The author builds different Petri nets for different

services (considered at the operation level) and then combines
them by places. Thus, he builds a generalized model which
refers to the workflow level.

The rest of the paper is organized as follows. Section II
gives definitions. Section III introduces our approach to mining
hybrid UML models. Section IV contains a description of
tool implementation. Section V concludes the paper and gives
directions for further research.

II. PRELIMINARIES

P(X) is the powerset over some set X; Λ is a set of all
possible string labels.

Definition 1. (Event log) Let e = (a1, a2, ..., an) be an event,
where ai is an i-th attribute and n is a number of them. E is
a set of events. σ =< e1, e2, ...ek > is an event trace where
e1, ..., ek is an ordered set of events. Log = P(E) is an event
log which is a powerset of traces.

Definition 2. (UML Sequence Diagram) A UML sequence
diagram is a tuple USD = (L, T,A, P,M,Ref, F), where:
• T is a set of moments of discrete time, which determine a
partial order over diagram components.
• L is a set of named lifelines. L = {l = (λ, t)|λ ∈ Λ, t ∈ T}
• A is a set of activations mapped onto lifelines. a ∈ A : a =
(l, tb, te), where l ∈ L, tb, te ∈ T, tb < te
• P ⊂ Λ is a set of message parameters.
• Ref is a set of interaction use (ref fragments) which group
lifelines and hide them interaction. ref ∈ Ref : ref =
(L′, λ), where L′ ⊂ L, λ ∈ Λ
• M is a set of messages. m ∈M : m = (a1, t, λ, a2, type),
where a1, a2 ∈ A ∪ Ref ∪ L, t ∈ T, λ ∈ P, type ∈
{call, return}
a1 = (l1, t11, t12), a2 = (l2, t21, t22) : t11 < t21, t11 <
t12, t21 < t22
• F is a set of combined fragments of the diagram. F =
{(frag,M ′)|M ′ ⊆M,frag ∈ {alt, loop, opt, par}}

Figure 1 represents an example of UML sequence diagram.
A lifeline is represented as a vertical dashed line with its
name at the top. An activation is represented as a rectangle
on a lifeline, which takes and emits messages (represented
as arrows). Message can be call and return and they contain
text parameters. Messages inside one fragment are ordered by
time. Fragments contain a number of messages and can contain
other combined fragments. They are able to show alternatives,
loops, parallelisms and other control structures. Another type
of fragment, ref fragments, refer to other diagrams. Such
diagrams can be both UML sequence diagrams and UML
activity ones.

Definition 3. (UML Activity Diagram) A UML activity
diagram is a tuple UAD = (N,E,NT), where:
• NT is a set of node types. NT =
{control, object, executable}
• N is a set of nodes. n ∈ N : n = (λ, type), where λ ∈
Λ, type ∈ NT
• E is a set of edges. e ∈ E : e = (n1, n2), where n1, n2 ∈ N

45 из 190

Figure 3 represents an example of a UML activity diagram
for Account::CardInfo service. Different node types
have different meanings. Control nodes represent different
behavioral elements such as start, fork and decision. Ob-
ject nodes represent data (input and output) of an action.
Executable nodes represent steps (actions) of the modeling
activity. There are three named executable nodes and four
control nodes (start, end, decision and merge) in Figure 3.
Different control nodes can impose limitations. For instance,
start nodes cannot have incoming edges, end nodes cannot
have outgoing edges, decision and fork nodes can have only
one incoming edge but several outgoing ones; the opposite is
true for merge and join.

UAD is a set of all possible UML activity diagrams UAD.

Definition 4. (Hybrid UML Diagram) A hybrid UML dia-
gram is a tuple UHD = (USD, AD, f), where:
• USD = (L, T,A, P,M,Ref, F) is a UML sequence dia-
grams.
• AD ⊂ UAD.
• f : Ref → AD is a function which maps ref fragments
from a UML sequence diagram onto corresponding activity
diagram.
Figures 2, 3 and 4 illustrate an example of a hybrid UML
diagram. Figure 2 is a UML sequence diagram and represents
a high-level diagram. It refers to UML activity diagrams
(Figures 3 and 4) using ref fragments.

Definition 5. (UML Communication Diagram) A UML
communication diagram is a tuple UCD = (LCD,MCD),
where:
• LCD ⊂ Λ is a set of named lifelines which represent
interaction participants.
• MCD is a set of messages. mCD ∈ MCD : mCD =
(l1, l2, λ), where l1, l2 ∈ LCD, λ ∈ Λ

Figures 5 and 6 provide examples of UML communication
diagrams for two different services.

UCD is a set of all possible UML communication diagrams
UCD.

Definition 6. (Hybrid UML Model) A hybrid UML model
is a tuple UHM = (UHD, CD), where:
• UHD is a hybrid UML diagram.
• CD ⊂ UCD.
Figures 2, 3, 4, 5 and 6 represent a hybrid UML model built
for example event log L1.

III. MINING HYBRID UML MODELS

The authors in [25] propose definitions of three levels of
abstraction: operation, interaction and workflow. The levels
are used for consideration of web service interaction. It
motivated us to use different types of UML diagrams which
demonstrate features of these levels. In the following sections
we consider which UML diagrams suit each abstraction level
and why.

Algorithm 1: Building a hybrid UML model UHM

Input : an event log Log;
an attribute name with REQ/RES value ARR;
a set of attributes for mapping onto lifelines AL;
a set of attributes for mapping onto message parameters
AM ;
a case ID which defines trace for which it is necessary to
build model caseId;
a set of regular expressions for merging diagram
components LRE ;
Output: UHM = (UHD, CD) — hybrid UML model;

begin
/* Split event log into several
parts */
Logw, Logo ← splitEventLog(Log,AL, ARR);
/* Build activity diagrams using
α-algorithm [3] */
AD ← buildADsAlpha(Logo);
USD ←
buildSD(Logw, AD,LRE , AL, AM , ARR, caseId);
CD ← buildCDs(Logw, AL, ARR);
return UHM ;

A. Operation and workflow abstraction levels

Operation level of abstraction shows what is happening
inside one isolated service. Activity outside the service is not
considered on the operation level. Service is the only process
participant. Using a UML sequence diagram leads to a large
number of self-calls and “snowball models”. It makes the
diagram less readable and less understandable. A UML activity
diagram suits this purpose since it allows us to demonstrate
the complex relationships between operations inside a single
participant. Figure 3 shows an example of a UML activity
diagram for service Card::OperationData.

A business process, provided by services, is represented on
a workflow abstraction level. There are a lot of participants, so
it is useful to use a UML sequence diagram for this level. The
diagram is suitable to present not only a sequence of business
process actions but also participants of this process and their
interaction. An example for event log L1 is depicted in Figure
1.

To bind different abstraction levels, it is necessary to
connect them. Our proposal is to use hybrid UML diagrams
to represent and connect operation and workflow abstraction
levels together. A UML sequence diagram is used to repre-
sent a business process at a workflow abstraction level. The
diagram contains special objects, ref fragments, which make
a connection to corresponding UML activity diagram. Every
such activity diagram models the behavior of a single service.
An example of considered hybrid diagram is presented in
Figures 2, 3 and 4.

B. Interaction abstraction level

This level shows interaction of one selected service or
process with its nearest neighbors. For a given service its

46 из 190

Algorithm 2: Splitting of an event log into several parts
splitEventLog

Input : an event log Log;
a set of attributes for mapping onto lifelines AL;
an attribute name with REQ/RES value ARR;
Output: Logw — a part of an event log which contains

interaction between different services;
Logo — a set of event logs (parts of initial event log).
Each of them contains events related to an individual
service;
Data: f : K → P(V), where K is a set of keys and

P(V) is a set of value sets;

begin
/* Get lifeline names from an event
log */
K ← getLifelineNames(Log,AL);
for σ ∈ Log do

σ′ ← ∅;
/* stack - stack with nested
events */
stack ← ∅;
for i← 1 to |σ| do

e← σ[i];
f(getLifelineName(e,AL))←
f(getLifelineName(e,AL))

⋃
{e};

if isRequest(e,ARR) = true then
eprev ← stack.peek();
if
i = 0

∨
getLifelineName(e,AL)! =

getLifelineName(eprev, AL) then
σ′ ← σ′

⋃
{e};

stack.push(e);

if isRequest(e,ARR) = false then
stack.pop();

Logw ← Logw
⋃
{σ′};

for k ∈ K do
Logo ← Logo

⋃
{f(k)};

return Logw, Logo;

nearest neighbors are caller and callee services. A UML
sequence diagram does not fully suit for representing this
level as well as an activity diagram. In the former case, a
UML sequence diagram contains a time perspective on which
no relation can be mapped. Thus, this leads us to have a
“blind” diagram. In the latter case it does not support multiple
participants which is important for this abstraction level.

We propose to use UML communication diagrams for
depicting processes occurring in SOA system on interac-
tion abstraction level. An example of such a diagram for
Card::Operations and Card::OperationData from
an example event log is presented in Figures 5 and 6.

Algorithm 3: Building a UML sequence diagram
buildSD
Input : an event log Log; a set of UML activity

diagrams AD which USD will be refer to;
a set of regular expressions for merging diagram
components LRE a set of attributes for mapping onto
lifelines AL; a set of attributes for mapping onto
message parameters AM ; an attribute name with
REQ/RES value ARR;
a case ID which defines trace for which it is necessary to
build model caseId;
Output: USD = (L, T,A,Λ,M,Ref, F) — UML

sequence diagram referring to UML activity
diagrams;

begin
/* Get lifelines from event log */
L← mapLifelines(Log,AL) ;
if caseId = ∅ then

isAlt← true;
caseId←
getCaseIdOfLongestTrace(Log);

else
isAlt← false;

/* Get trace with case ID which is
equal to caseId */
σ ← Log[caseId];
for i← 1 to |σ| do

e← σ[i];
while isRequest(e,ARR) = true do

if isAlt = true then
/* Look for differences
between corresponding events
in other traces, add found
events to diagram using
combined fragments */
findFrames(Log, caseId, e, USD, AM , ARR);

else
/* Get a message parameter
and add its message to
diagram */
mapMessage(e,AM ,M,A,Ref);

i← i+ 1;

while isRequest(e,ARR) = false do
if isAlt = true then

findFrames(Log, caseId, e, USD);

else
mapResponseMessage(e,AM ,M,A,Ref);

i← i+ 1;

if LRE ! = ∅ then
/* Merge components of the diagram
using regular expressions */
changeDiagramUsingREs(USD, LRE)

return USD;
47 из 190

C. Building process

Figure 7 represents the workflow diagram of a hybrid
mining process. The scheme contains the following tasks (see
Algorithm 1):
• An event log is split into several parts. The workflow part

of the log refers to services communication. Such com-
munication is represented on a UML sequence diagram
at workflow level. The operation parts consist of events
referred to activity only inside a specific service.

• A UML sequence diagram is built from a workflow
part of an event log using the method proposed in [9]
(see Section III-D) extended by a number of necessary
ref fragments used for connecting with corresponding
activity diagrams.

• UML activity diagrams are built from operation log parts
independently using one of the process mining algorithms
which produces a Petri net. For instance, α-algorithm [4]
or inductive miner [27] can be considered here. Then,
Petri nets are converted into activity diagrams by a simple
translation routine. This conversion is rather trivial since
UML activity diagrams are initially based on Petri nets
[7], [23].

• Finally, UML communication diagrams are built using
the initial event log.

D. Mining UML sequence diagrams

To mine a UML sequence diagram we use a method
proposed in [9]. There, we propose an approach to mining
UML sequence diagrams with different levels of abstraction.
It consists of three steps. The first step of the approach is
mapping event log attributes onto UML sequence diagram
components. There are two functions for mapping attributes
onto lifelines and message parameters. The smaller the SOA
element we choose for mapping onto lifelines, the lower the
abstraction level we receive.

The second step is set to build a smaller model by ap-
plying regular expressions for merging similar messages and
lifelines on a diagram. For example, we have two mes-
sages with the following parameters: GetPlaseAndDate,
op=BP Billing Transfer and GetPlaseAndDate,
op=Retail. They differ in op value, thus, these messages
can be combined into one message with the following parame-
ter: GetPlaseAndDate, op=.*. After the merging, a de-
rived model becomes more generalized and its size decreases
in width and height.

To demonstrate the hierarchy of calls, which is important for
SOA, a hierarchical diagram can be applied. Thus, the third
step of our approach contains a way to present a complex
model by using hierarchical UML diagrams. UML standard
[7] allows us to divide the model into some parts and connect
them by means of interaction use (ref fragment) and gates.

IV. TOOL OVERVIEW

This section presents a brief overview of the software tool
implementing the proposed algorithm.

Algorithm 4: Looking for differences between corre-
sponding events in other traces findFrames

Input : an event log Log;
a current event e;
a UML sequence diagram
USD = (L, T,A,Λ,M,Ref, F);
a set of attributes for mapping onto message parameters
AM ;
an attribute name with REQ/RES value ARR;
a case ID which defines trace for which it is necessary to
build model caseId;
Data: Tree is a tree with interaction operands

begin
equalCases← ∅;
/* Look for corresponding not equal
events in other traces, group case
IDs with equal events into equalCases

*/
notEqEvents←
findNotEqEvents(e, Log, caseId, equalCases);
if notEqEvents! = ∅

∨
isLastTrace(e, Log) = true then

/* Look for operand where it is
necessary to add events */
toAdd← findOperand(equalCases, Tree);
addMessagesToFragment(e, equalCases,
toAdd, Tree);

else
if Tree = ∅ then

Tree← newNode(equalCases);

if isRequest(e,ARR) = true then
mapMessage(e,AM ,M,A,Ref);

else
mapResponseMessage(e,AM ,M,A,Ref);

Fig. 7. The workflow diagram of a hybrid mining process.

48 из 190

Algorithm 5: Building UML communication diagrams for
each service buildCDs
Input : an event log Logw;
a set of attributes for mapping onto lifelines AL;
an attribute name with REQ/RES value ARR;
Output: CD — a set of UML communication diagrams

for each service;

begin
/* Iterate through lifeline names
(participants) from an event log */
for l ∈ getLifelines(Logw, AL) do

LCD ← {l};
MCD ← ∅;
for σ ∈ Log do

for i← 1 to |σ| do
e← σ[i];
if i! = 0

∧
getLifeline(e,AL) = l

then
l′ ← getLifeline(eprev, AL);
if l′ /∈ LCD then

LCD ← LCD

⋃
{l′};

MCD ←MCD

⋃
{(l′, l, ∅)};

if i! = 0
∧

getLifeline(eprev, AL) = l then
l′ ← getLifeline(e,AL);
if l′ /∈ LCD then

LCD ← LCD

⋃
{l′};

MCD ←MCD

⋃
{(l, l′, ∅)};

if isRequest(e,ARR) = true then
eprev ← e

UCD ← (LCD,MCD,Λ);
CD ← CD

⋃
{UCD};

return CD;

A. Event log

The tool requires an input event log to be presented in
definite format. We use simple CSV text files to represent
event logs. An event log should contain some fields that are
mapped onto mandatory attributes, namely CaseID, Timestamp
and Activity.

B. Tool implementation

The tool is implemented as a Windows application written in
C# programming language. The tool allows users to configure
main parameters such as regular expressions, hierarchy and
type of output diagram (regular UML, hierarchical or hybrid).
Regular expressions are applied for merging diagram com-
ponents. It is implemented as shown in Figure 8. The GUI
allows the user to set the type of diagram. The perspective of
the diagram (a mapping attributes onto diagram lifelines and
messages) is set as it described in [9].

Fig. 8. GUI to set a type of the diagram and regular expressions
for merging its components.

The output of the tool is an XMI-file containing a model
and a description of diagrams. It can be visualized by Sparx
Enterprise Architect [15].

V. CONCLUSION

This paper introduced a new concept of hybrid UML models
and proposed a method of mining them from event logs of
SOA information systems using a service mining approach.
Our method can also be applied to other types of UML
diagrams. The paper discussed approaches to mining diagrams
on different abstraction levels.

Our method builds models by using only event logs. This
is an advantage over some reverse engineering techniques
because the source code is not always available. The proposed
method includes mining hybrid UML diagrams which repre-
sent workflow abstraction level on UML sequence diagrams
and operation level on UML activity diagrams. Moreover, we
proposed to build UML communication diagrams to show
interaction abstraction level with regards to the service mining
approach.

Generally, control structures in system‘s behavior lead to a
presence of a big number of nested combined fragments within
a UML sequence diagram. It makes the diagram less readable
and less understandable. Although UML activity diagrams
have no time perspective in contradistinction to sequence
diagrams, the former show alternatives, loops and parallelism
more clearly. Since there are also a lot of event logs which are
not produced by SOA systems, we are going to expand our
approach to mining hybrid UML diagrams from event logs of
more broad types of software architecture in the future.

ACKNOWLEDGEMENT

This work is supported by the Basic Research Program
at the National Research University Higher School of Eco-
nomics.

49 из 190

REFERENCES

[1] W. M. P. van der Aalst. Process Mining: Discovery,
Conformance and Enhancement of Business Processes.
Springer Publishing Company, Incorporated, 1st edition,
2011.

[2] V. Rubin, C. W. Günther, W. M. P. van der Aalst,
E. Kindler, B. F. van Dongen, and W. Schäfer. Process
Mining Framework for Software Processes, pages 169–
181. Springer Berlin Heidelberg, Berlin, Heidelberg,
2007.

[3] A. K. A. de Medeiros, B. F. van Dongen, W. M. P.
van der Aalst, and A. J. M. M. Weijters. Process
mining: Extending the α-algorithm to mine short loops.
In Eindhoven University of Technology, Eindhoven, 2004.

[4] W. M. P. van der Aalst, A. J. M. M. Weijter, and
L. Maruster. Workflow Mining: Discovering process
models from event logs. IEEE Transactions on Knowl-
edge and Data Engineering, 16:2004, 2003.

[5] F. Friedrich, J. Mendling, and F. Puhlmann. Process
Model Generation from Natural Language Text, pages
482–496. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[6] C. W. Günther and W. M. P. van der Aalst. Fuzzy Min-
ing – Adaptive Process Simplification Based on Multi-
perspective Metrics, pages 328–343. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[7] OMG. OMG Unified Modeling Language (OMG UML),
Superstructure, Version 2.5, August 2015.

[8] T. Erl. Service-Oriented Architecture: Concepts, Tech-
nology, and Design. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 2005.

[9] K. V. Davydova and S. A. Shershakov. Mining Hier-
archical UML Sequence Diagrams from Event Logs of
SOA systems while Balancing between Abstracted and
Detailed Models. 28(3):85–102, 2016.

[10] S. A. Shershakov and V. A. Rubin. System runs analysis
with process mining. In Modeling and Analysis of
Information Systems, pages 818–833, 2015.

[11] A. Rountev and B. H. Connell. Object Naming Analysis
for Reverse-engineered Sequence Diagrams. In Proceed-
ings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 254–263, New York, NY,
USA, 2005. ACM.

[12] A. Rountev, O. Volgin, and M. Reddoch. Static Control-
flow Analysis for Reverse Engineering of UML Sequence
Diagrams. SIGSOFT Softw. Eng. Notes, 31(1):96–102,
September 2005.

[13] P. Tonella and A. Potrich. Reverse engineering of the
interaction diagrams from C++ code. In International

Conference on Software Maintenance, pages 159–168.
IEEE Computer Society, 2003.

[14] E. Korshunova, M. Petkovic, M. G. J. van den Brand,
and M. R. Mousavi. CPP2XMI: Reverse Engineering of
UML Class, Sequence, and Activity Diagrams from C++
Source Code. In WCRE, pages 297–298. IEEE Computer
Society, 2006.

[15] Sparx Systems’ Enterprise Architect. http://www.
sparxsystems.com.au/products/ea/.

[16] IBM Rational Software Architect. https://www.ibm.com/
developerworks/downloads/r/architect/.

[17] Visual Paradigm. https://www.visual-paradigm.com/
features/.

[18] Altova UModel. http://www.altova.com/umodel.html.
[19] NetBeans UML. http://plugins.netbeans.org/plugin/1801/

netbeans-uml.
[20] L. C. Briand, Y. Labiche, and J. Leduc. Toward the

Reverse Engineering of UML Sequence Diagrams for
Distributed Java Software. IEEE Trans. Softw. Eng.,
32(9):642–663, September 2006.

[21] R. Delamare, B. Baudry, and Y. Le Traon. Reverse-
engineering of UML 2.0 Sequence Diagrams from Exe-
cution Traces. In Proceedings of the workshop on Object-
Oriented Reengineering at ECOOP 06, Nantes, France,
July 2006.

[22] T. Ziadi, M. A. A. da Silva, L. M. Hillah, and M. Ziane.
A Fully Dynamic Approach to the Reverse Engineering
of UML Sequence Diagrams. In Isabelle Perseil, Karin
Breitman, and Roy Sterritt, editors, ICECCS, pages 107–
116. IEEE Computer Society, 2011.

[23] B. Agarwal. Transformation of UML Activity Diagrams
into Petri Nets for Verification Purposes. 2(3):798–805,
2013.

[24] A. Bergmayr, H. Bruneliere, J. Cabot, J. García, T. May-
erhofer, and M. Wimmer. fREX: FUML-based Reverse
Engineering of Executable Behavior for Software Dy-
namic Analysis. In Proceedings of the 8th International
Workshop on Modeling in Software Engineering, MiSE
’16, pages 20–26, New York, NY, USA, 2016. ACM.

[25] S. Dustdar, R. Gombotz, and K. Baina. Web Services In-
teraction Mining. Tech. Rep. TUV-1841-2004-16. 2004.

[26] W. M. P. van der Aalst. Service Mining: Using Pro-
cess Mining to Discover, Check, and Improve Service
Behavior. IEEE Transactions on Services Computing,
6(4):525–535, 2013.

[27] S. J. J. Leemans, D. Fahland, and W. M. P. van der
Aalst. Discovering Block-Structured Process Models
from Event Logs Containing Infrequent Behaviour, pages
66–78. Springer International Publishing, Cham, 2014.

50 из 190

http://www.sparxsystems.com.au/products/ea/
http://www.sparxsystems.com.au/products/ea/
https://www.ibm.com/developerworks/downloads/r/architect/
https://www.ibm.com/developerworks/downloads/r/architect/
https://www.visual-paradigm.com/features/
https://www.visual-paradigm.com/features/
http://www.altova.com/umodel.html
http://plugins.netbeans.org/plugin/1801/netbeans-uml
http://plugins.netbeans.org/plugin/1801/netbeans-uml

Tool for Behavioral Analysis of Well-Structured

Transition Systems

Leonid Dworzanski

Department of Software Engineering

National Research University Higher School of Economics

Moscow, Russia

leo@mathtech.ru

Vladimir Mikhaylov

Department of Software Engineering

National Research University Higher School of Economics

Moscow, Russia

vemikhaylov@edu.hse.ru

Abstract— Well structured transition systems (WSTS) became

a well known tool in the study of concurrency systems for proving

decidability of properties based on coverability and boundedness.

Each year brings new formalisms proven to be WSTS systems

[11,12]. Despite the large body of theoretical work on the WSTS

theory, there has been a notable gap of empirical research of well-

structured transition systems. In this paper, the tool for

behavioural analysis of such systems is presented. The WSTS

systems are described via the extension of SETL language. It

makes the description of the formalism close to the formal

definition. It allows to easily introduce new formalisms and

conduct analysis of the behavioural properties without

programming efforts. Two most studied algorithms for analysis of

well-structured transition systems behavior (backward

reachability and the Finite Reachability Tree analyses) have been

implemented; and, their performance was measured through the

runs on such models as Petri Nets and Lossy Channel Systems. The

developed tool can be useful for analysis of different subclasses of

well-structured transition systems.

Keywords—formal verification; infinite systems; well-quasi-

ordering; Petri net

I. INTRODUCTION

Formal verification provides researchers and developers
with approaches that are widely-used for proving that a program
satisfies a formal specification of its behavior. These methods
are highly demanded in the software and hardware engineering,
as they provide appropriate level of systems reliability; which,
in most cases, cannot be ensured by simulation.

One of the most common technique of formal verification is
model checking or property checking. It involves algorithmic
methods that are applied to check satisfiability of a logic formula
used for the representation of the model of the system and the
specification. The main advantage of model checking is
considered to be the fact that it enables almost completely
automatic process of verification. Model checking proved to be
effective in practice for analysis of finite-state systems [1];
however, in case of systems with infinite state space the situation
is more complicated because exhaustive search, which is usually
used by verification tools, cannot be applied directly.

In order to deal with infinite-state systems Finkel proposed
the idea of well-structured transition systems (WSTS) in 1987
[2]. “These are transition systems where the existence of a well-

quasi-ordering over the infinite set of states ensures the
termination of several algorithmic methods. [3]” The suggested
model has provided researchers with an abstract generalization
of several models (i.e. Petri nets, lossy channel systems and
timed automata). Therefore, the results obtained from the
analysis of such a generalized model can be also applied to these
specific models.

The WSTS analysis can be used to solve, for instance,
covering, termination, inevitability and boundedness problems.
However, the application of the WSTS analysis is hampered by
the necessity of implementing algorithms and data structures to
support the analysis for each new formalism. In this work, the
tool that can be used for analysis of WSTS is presented. We
introduce the WSTSL language - modification of SETL
language – set-theoretical programming language. The language
provides the user with opportunity to define the structure of
analyzed system very close to the original formal definition.
After definition of the formalism, it is immediately possible to
run backward reachability method [4] or the Finite Reachability
Tree [5] on it. It allows a computer scientist to conduct the
analysis of a WSTS system almost instantly after proving the
well-structuredness of his or her formalism, and to postpone the
implementation phase after what-if experiments were conducted
successfully.

The rest of the paper is organized as follows. The second
section describes WSTS’s basic terms and underlying concepts.
The third section provides the description of two used
algorithms (the backward reachability method and the Finite
Reachability Tree). The forth section presents the architecture of
the developed analysis tool. The fifth section shows how the
developed tool is used for the analysis of Petri nets and provides
performance analysis results. The sixth section summarizes and
provides possible applications of the study for the future
research.

II. WELL-STRUCTURED TRANSITION SYSTEMS

The definition of well-structured transition systems (WSTS)
was proposed by Finkel in [2]. It is based on the two main
concepts: transition systems (TS) and well-quasi-orderings on
the states of these systems.

Transition system (TS) is one of the most general and
widely-used models for formal description of the behavior of
different systems. A transition system is defined by a structure

51 из 190

http://lms.hse.ru/?ap&t_id=100027
http://lms.hse.ru/?ap&t_id=100027
mailto:vemikhaylov@edu.hse.ru
mailto:vemikhaylov@edu.hse.ru

𝑇𝑆 = (𝑆, →) where 𝑆 = {𝑠, 𝑡, … } is a set of states, and →⊆ 𝑆 ×
𝑆 is any set of transactions [3]. 𝑇𝑆 can be also supplemented by
initial states, labels for transitions, durations or causal
independence relations, and other information [3]; however, for
the consideration of the concept of WSTS using of set of states
along with labeled transactions is sufficient.

A binary relation ≤ on a set 𝑋 is called preorder or quasi-
ordering (qo) if it is reflexive and transitive. So for any 𝑎, 𝑏, 𝑐 ⊆
𝑋 we have:

1) 𝑎 ≤ 𝑎 (reflexivity);

2) 𝑖𝑓 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑐 𝑡ℎ𝑒𝑛 𝑎 ≤ 𝑐 (transitivity).

Definition 1. A well-quasi-ordering (wqo) is a quasi

ordering in which for every infinite sequence of elements
𝑥0, 𝑥1, 𝑥2, 𝑥3, … ⊆ 𝑋 there exist such indices 𝑖 < 𝑗 that 𝑥𝑖 ≤
𝑥𝑗 [3, 6]. According to [7], there are several equivalent

definitions of wqo; however, the definition given here is
generally used in the WSTS theory.

Definition 2. A well-structured transition system (WSTS) is
a transition system T𝑆 = (𝑆, →, ≤) equipped with a qo ≤⊆ 𝑆 ×
𝑆 between states such that the two following conditions hold:

1) well-quasi-ordering: ≤ is a wqo, and

2) compatibility: ≤ is (upward) compatible with →, i.e. for
all 𝑠1 ≤ 𝑡1 and transition 𝑠1 → 𝑠2, there exists such a
sequence of transitions 𝑡1 →∗ 𝑡2 that 𝑠2 ≤ 𝑡2 [3].

𝑆𝑢𝑐𝑐(𝑠) denotes the set {𝑠′ ∈ 𝑆 | 𝑠 → 𝑠′} of immediate

successors of 𝑠. Likewise, 𝑃𝑟𝑒𝑑(𝑠) denotes the set {𝑠′ ∈
𝑆 | 𝑠′ → 𝑠} of immediate predecessors.

An upward-closed set is any set 𝐼 ⊆ 𝑋 such that 𝑦 ≥ 𝑥 and

𝑥 ∈ 𝐼 entail 𝑦 ∈ 𝐼. A basis of an upward-closed 𝐼 is a set 𝐼𝑏 such

that 𝐼 =∪𝑥∈𝐼𝑏↑ 𝑥, where ↑ 𝑥 =𝑑𝑒𝑓 {𝑦 | 𝑦 ≥ 𝑥}.

III. ALGORITHMS

A. Backward Reachability Method

Backward reachability method proposed by Abulla et al. in
[4] is intended to solve the covering problem which is to decide,
given two states 𝑠 and 𝑡, whether starting from 𝑠 it is possible to
reach a state 𝑡′ ≥ 𝑡. This is essentially one of set-saturation
methods termination of which relies on the lemma that says that
any increasing sequence of upward-closed sets (𝐼0 ⊆ 𝐼1 ⊆ 𝐼2 ⊆
⋯) eventually stabilizes (i.e. there is such a 𝑘 ∈ 𝑁 that 𝐼𝑘 =
𝐼𝑘+1 = 𝐼𝑘+2 = ⋯) [3].

Assume there is some WSTS 𝑇𝑆 = (𝑆, →, ≤) and some
upward-closed set of states 𝐼 ⊆ 𝑆. Backward reachability
method on the each j-th step generates the set of states from
which 𝐼 can be reached by a sequence at most 𝑗 transitions [4].

More strict generalization was suggested by Finkel and
Schnoebelen in [3], where it involves computing 𝑃𝑟𝑒𝑑∗(𝐼) as

the limit of the sequence 𝐼0 ⊆ 𝐼1 ⊆ ⋯ where 𝐼0 =𝑑𝑒𝑓 𝐼 and

𝐼𝑛+1 =𝑑𝑒𝑓 𝐼𝑛 ∪ 𝑃𝑟𝑒𝑑(𝐼𝑛).

 Definition 3. A WSTS has effective pred-basis if there exists
an algorithm accepting any state 𝑠 ∈ 𝑆 and returning 𝑝𝑏(𝑠), a
finite basis of ↑ 𝑃𝑟𝑒𝑑(↑ 𝑠).

The covering problem is decidable for WSTS if it has
effective pred-basis and decidable ≤. The proof of this statement
is given in [3]. Essentially, it is said that if there is a sequence

𝐾0, 𝐾1 … with 𝐾0 =𝑑𝑒𝑓 𝐼𝑏 (finite basis of I), 𝐾𝑛+1 =𝑑𝑒𝑓 𝐾𝑛 ∪
𝑝𝑏(𝐾𝑛) and 𝑚 is the first index such that ↑ 𝐾𝑚 = ↑ 𝐾𝑚+1, then
↑∪ 𝐾𝑖 = 𝑃𝑟𝑒𝑑∗(𝐼). By decidability of ≤, it is possible to check
whether 𝑠 ∈ ↑ 𝑃𝑟𝑒𝑑∗(↑ 𝑡).

B. Finite Reachability Tree

The Finite Reachability Tree belongs to tree-saturation
methods which represent methods that consider all possible
computations inside a finite tree-like structure [3]. It is also
called the forward analysis method, in contrast to the backward
analysis. Essentially, it is based on the ideas proposed by Karp
and Miller in [5].

Assume there is some WSTS 𝑇𝑆 = (𝑆, →, ≤). For any state
𝑠 ∈ 𝑆, the Finite Reachability Tree is such a finite directed graph
(tree) that:

1) nodes of the tree are labeled by states of 𝑆;

2) nodes are either dead or live;

3) the root node is a live node 𝑛0, labeled by 𝑠 (written 𝑛0 ∶
𝑠);

4) dead nodes have no child nodes;

5) a live node 𝑛 ∶ 𝑡 has one child 𝑛′ ∶ 𝑡′ for each successor
𝑡′ ∈ 𝑆𝑢𝑐𝑐(𝑡);

6) if along the path from the root 𝑛0 : 𝑠 to some node 𝑛′ : 𝑡′
there exists a node 𝑛 ∶ 𝑡 (𝑛 ≠ 𝑛′) such that 𝑡 ≤ 𝑡′, we
say that 𝑛 subsumes 𝑛′, and then 𝑛′ is a dead node [3,
6].

The Finite Reachability Tree is effectively computable if 𝑆
has (1) a decidable ≤, and (2) 𝑆𝑢𝑐𝑐 mapping is computable [3].
All paths in the finite reachability tree are finite as any infinite
path would include a covering node [6].

This algorithm can be applied to termination, inevitability,
and boundedness problems (see [3] for details).

IV. PROPOSED ARCHITECTURE

The general structure of the architecture of the developed
tool is illustrated in Fig. 1. It consists of two main parts: Well-
Structured Transition Systems Language (WSTSL) and WSTS
Analyzer. Also there are four input parameters that are set by the
user through WSTSL.

52 из 190

Fig. 1. Architecture of the developed tool

WSTSL is a programming language used in the developed
system as the front-end which provides user with a means of
describing the structure of WSTS and its essential operations
and relations: 𝑆𝑢𝑐𝑐, 𝑃𝑟𝑒𝑑, preorder ≤. The supported data types
are: integers, tuples, maps and sets. The analysis algorithms are
implemented as the commands: backwardanalysis() and
forwardanalysis(). As it is depicted in the Fig.1 the parser for
WSTSL is built with the compiler-compiler Another Tool for
Language Recognition (ANTLR) [8]. The WSTSL parser’s
sources are generated in Java.

WSTS Analyzer represents that part of the system which is
responsible for the analysis of the transition system, which it
gets from the WSTSL parser. WSTS Analyzer is implemented
in Java, as it allows to naturally interact with the parser Java
classes generated by ANTLR.

As it was noted above, the input that is provided by the user,
consists of the four parts. Firstly, a general structure (WSTS
structure) of the analyzed transition system should be described.
Secondly, a well-quasi-ordering compatible with the defined
structure should be specified. Then, a structure of a specific
transition system (WSTS instance) that corresponds to the
general structure is provided. Finally, the desired analysis
algorithm with appropriate parameters (query) is invoked.
Essentially, all these parts are described in a single input
program written in WSTSL. Afterwards, the WSTS Analyzer
runs the selected algorithm on the specified system and
generates report which format depends on the choice of the
algorithm.

V. EXPERIMENT

A. Petri Net

The applicability of the proposed approach could be
demonstrated by an example of a Petri net which is well-
structured transition system. The classical definition of this
model is the following.

Definition 4. A Petri net (P/T-net) is a 4-tuple (𝑃, 𝑇, 𝐹, 𝑊)
where

 𝑃 and 𝑇 are disjoint finite sets of places and transitions,
respectively;

 𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of arcs;

 𝑊 ∶ 𝐹 → ℕ \ {0} – an arc multiplicity function, that is,
a function which assigns every arc a positive integer
called an arc multiplicity or weight.

A marking of a Petri net (𝑃, 𝑇, 𝐹, 𝑊) is a multiset over 𝑃,
i.e. a mapping 𝑀 ∶ 𝑃 → ℕ. By 𝑀(𝑁) we denote the set of all
markings of the P/T-net 𝑁.

We say that a transition 𝑡 in the P/T-net 𝑁 = (𝑃, 𝑇, 𝐹, 𝑊) is
active in marking 𝑀 if for every 𝑝 ∈ {𝑝 | (𝑝, 𝑡) ∈ 𝐹}:
𝑀(𝑝) ≥ 𝑊(𝑝, 𝑡). An active transition may fire, resulting in a
marking 𝑀′, such as for all 𝑝 ∈ 𝑃: 𝑀′(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡)
if 𝑝 ∈ {𝑝 | (𝑝, 𝑡) ∈ 𝐹}, 𝑀′(𝑝) = 𝑀(𝑝) − 𝑊(𝑝, 𝑡) + 𝑊(𝑡, 𝑝)
if 𝑝 ∈ {𝑝 | (𝑡, 𝑝) ∈ 𝐹) and 𝑀′(𝑝) = 𝑀(𝑝) otherwise.

For the experiment, we will use the Petri net illustrated in
Fig. 2.

Fig. 2. A simple unbounded Petri net

First of all, the general structure of the Petri net model
described above should be defined by means of WSTL (Fig. 3).

Fig. 3. General structure of Petri net in WSTSL

Secondly, we describe the specific Petri net instance in
WSTSL (Fig. 4). PT1 and TP1 represent the arcs from places to
transitions and vice versa, respectively. In tuples, defining arcs,
the corresponding transition goes first for the convenience in the
description of Succ and Pred function as it will be seen below.

Fig. 4. Description of the specific Petri net instance in WSTSL

Then, a well-quasi-ordering should be described (Fig. 5). As
it is shown in [3], the element-wise ordering 𝑀 ⊆ 𝑀′, when
𝑀(𝑝) ≤ 𝑀′(𝑝) for every place, is a wqo based on the Dickson’s
lemma [9]. Operator forall iterator | test generates a boolean
value true if the condition test is met for each step in iterator and
a boolean value false otherwise.

53 из 190

Fig. 5. Well-quasi-ordering definition in WSTSL

As it has been mentioned above in the Algorithms section,
Backward Reachability Method requires effective algorithm for
computation of pred-basis. The algorithm to compute it for Petri
Net was suggested in [4]. How it is described in WSTSL is
shown in Fig. 6.

Fig. 6. Description of the pred-basis and pred functions in WSTSL

To state the covering problem, the initial state and the state
which coverability is required to check should be specified.
Afterwards, backwardanalysis function should be invoked with
appropriate arguments (Fig. 7).

Fig. 7. Description of the initial marking and the marking which coverability

it is required to check with Backward Reachability Method invocation

The tool provides the user with the output that contains
sequence of sets 𝐾𝑖, where 𝐾0 = {𝑚𝑐}, 𝐾𝑛+1 = 𝑝𝑏(𝐾𝑛), their
union ∪𝑖∈ℕ 𝐾𝑖 and its minimal elements (basis). Finally, it is
reported whether the analyzed state (marking) 𝑚𝑐 is covered or
not (Fig. 8).

Fig. 8. Report of the tool for the backward analysis invocation

As it has been mentioned above in the Algorithms section,
Finite Reachability Tree requires effective algorithm for
computation of Succ. How it is described in WSTSL is shown in
Fig. 9.

Fig. 9. Description of the Succ function in WSTSL

To construct Finite Reachability Tree only the initial state
should be specified. Afterwards, forwardanalysis function
should be invoked with appropriate arguments (Fig. 10).

Fig. 10. Description of the initial marking and the Finite Reachability Tree
construction invocation in WSTSL

The tool provides the user with the image which illustrates
constructed Finite Reachability Tree (Fig. 11). Nodes are
labeled with their states. Dead nodes are red. The node labeled
with {P1=1, P2=0, P3=2, P4=2} state is dead since {P1=1,
P2=0, P3=2, P4=2} ≥{P1=1, P2=0, P3=2, P4=1} (the latter state
is represented by the root which subsumes the dead node labeled
by the former state). It demonstrates that the place P4 is not
bounded, as the red state has the P4 place large than P4 place in
the initial state.

54 из 190

Fig. 11. Constructed finite reachability tree

B. Lossy Channel System

Another model that we considered was Lossy channel
system (LCS) which is a subclass of FIFO-channel systems.

Definition 5. FIFO-channel system is a 6-tuple
(𝑆, 𝑠0, 𝐴, 𝐶, 𝑀, 𝛿) where

 𝑆 is a finite set of control states;

 𝑠0 ∈ 𝑆 is the initial control state;

 𝐴 is a finite set of actions;

 C is a finite set of channels;

 𝑀 is a finite set of messages (𝑀∗ is a set of finite strings
composed of elements from 𝑀);

 𝛿 is a finite set of transitions, each of which is
represented by one of the following tuples
(𝑠1, 𝑐! 𝑚, 𝑠2), (𝑠1, 𝑐? 𝑚, 𝑠2), (𝑠1, 𝑎, 𝑠2), where 𝑠1, 𝑠2 ∈
𝑆, 𝑐 ∈ 𝐶, 𝑚 ∈ 𝑀 and 𝑎 ∈ 𝐴 (see below).

Transition (𝑠1, 𝑐! 𝑚, 𝑠2) changes the control state from 𝑠1 to
𝑠2, adding the message 𝑚 to the end of the channel 𝑐. Operation
𝑐! 𝑚 is also known as a send action.

Transition (𝑠1, 𝑐? 𝑚, 𝑠2) changes the control state from 𝑠1 to
𝑠2, removing the message 𝑚 from the beginning of the channel
𝑐. If the channel 𝑐 is empty or its first element is not 𝑚, then this
transition cannot occur. Operation 𝑐? 𝑚 is also known as a
receive action.

Transition (𝑠1, 𝑐? 𝑚, 𝑠2) changes the control state from 𝑠1 to
𝑠2 and does not change the state of the channels.

In LCS it is also assumed that each message in some
channels can be lost at any moment. To model this behavior one
more operation 𝜏(𝑐, 𝑚) is introduced.

Transition (𝑠1, 𝜏(𝑐, 𝑚) , 𝑠2) removes the message 𝑚 from
the channel 𝑐, and does not change the control state.

For LCS = (𝑆, 𝑠0, 𝐴, 𝐶, 𝑀, 𝛿) the ordering ≤ is defined on
the set of global states {(𝑠, 𝑤)| 𝑠 ∈ 𝑆, 𝑤: 𝐶 → 𝑀∗} as follows:

(𝑠, 𝑤) ≤ (𝑠′, 𝑤′) ⟺ 𝑠 = 𝑠′ ∧ 𝑤(𝑐) ≪ 𝑤′(𝑐) ∀𝑐 ∈ 𝐶.

The ordering ≪ is a subword ordering: 𝑢 ≪ 𝑣 iff 𝑢 can be
obtained by erasing letters from 𝑣. It is shown in [6] that this
ordering is a wqo; and, LCS systems are WSTS systems.

The concrete model that we considered was Alternating Bit
Protocol (ABP). It is represented by Sender and Receiver which
communicate via two FIFO-channels 𝑐𝑀 and 𝑐𝐴. Sender sends
messages to Receiver via 𝑐𝑀, while Receiver sends
acknowledgements via 𝑐𝐴. Both channels can lose messages.
Messages and acknowledgements contain one-bit sequence

number 0 or 1. Sender continuously sends the same message
with the same sequence number, until it receives an
acknowledgement from Receiver with the same sequence
number. Then, Sender changes (flips) the sequence number and
proceeds with sending the next message. Receiver starts by
waiting the message with the sequence number 0 (actually, it can
initially send acknowledgments with the sequence number 1).
When it receives such a message it starts sending
acknowledgements with the same sequence number, until it
receives the message with the flipped sequence number and so
on. The described model is illustrated in terms of Lossy Channel

System in Fig. 12.

Fig. 12. Alternating Bit Protocol modelled as a Lossy Channel System

 The WSTSL definition of the structure and operators of
LCS formalisms is analogously to the Petri Nets formalism
WSTSL definition introduced in the Fig. 3-10.

C. Performance

To measure the performance of the implemented Finite
Reachability Tree algorithm we applied it to the four different
models, which include a model shown in Fig. 2 (Example 1) and
the Petri Net models simulating the dining philosophers problem
[10] for a number of philosophers equal to 5, 6 and 7. We
executed the experiment on the following machine: Intel Core
i7, 2.22 GHz, 16 GB RAM running OS X El Capitan (v.
10.11.6). System.nanoTime() method was invoked immediately
before of the beginning of construction of a FRT and
immediately after the end of construction, then the difference
was calculated to measure run time for one run. In Table I in the
Run time column average results for 20 runs are given in
seconds. As well, sizes of the constructed FRTs are given. It can
be seen that both run time and size of FRT grow exponentially
for the philosophers problem instances.

TABLE I.

 Run time (s) Size of FRT

Example 1 0.03596 3

Phil5 0.08587 241

Phil6 1.87815 25711

Phil7 5221.64756 88062003

VI. SUMMARY

This paper address a lack of practical results in studies of
well-structured transition systems. In order to fill this gap, there
was presented one of the possible ways for development of the

55 из 190

system capable to analyze WSTS with two common algorithms:
backward reachability method and the Finite Reachability Tree.
Well-Structured Transition Systems Language is introduced as
a means of describing the user’s input, which consists of the
description of transition system’s structure in general and
specific instance’s relations and values.

The tool can be used by researchers to investigate the
efficiency of the implemented algorithms. It is expected that it
is appropriate for conducting experiments on small and medium-
sized WSTS. The technology eases the efforts required to check
the potential of the WSTS analysis algorithms for practical
applications and to make what-if experiments on newly
developed formalisms.

The application of the tool is illustrated for the Petri nets and
Lossy Channel System formalisms. Also, there were given
results of the experiment on Petri nets modeling the dining
philosophers problem. The performance analysis of the Finite
Reachability Tree applied to this problem demonstrated the
expected exponential growth of execution time; and, it indicates
the need for further investigations of optimizations (e.g.
reduction rules) that can be applied to make the algorithm
effectively applicable in practice.

VII. ACKNOWLEDGEMENTS

This work is supported by the Basic Research Program at the

National Research University Higher School of Economics

and Russian Foundation for Basic Research, project No. 16-

01-00546.

REFERENCES

[1] J. Burch, E. Clarke, K. McMillan, D. Dill and L. Hwang, "Symbolic

model checking: 1020 States and beyond", Information and Computation,
vol. 98, no. 2, pp. 142-170, 1992.

[2] A. Finkel, “Well structured transition systems,” Univ. Paris-Sud, Orsay,
France, Res. Rep. 365, Aug. 1987.

[3] A. Finkel and P. Schnoebelen, "Well-structured transition systems
everywhere!", Theoretical Computer Science, vol. 256, no. 1-2, pp. 63-
92, 2001.

[4] P. Abdulla, K. Čerāns, B. Jonsson and Y. Tsay, "Algorithmic Analysis of
Programs with Well Quasi-ordered Domains", Information and
Computation, vol. 160, no. 1-2, pp. 109-127, 2000.

[5] R. Karp and R. Miller, "Parallel program schemata", Journal of Computer
and System Sciences, vol. 3, no. 2, pp. 147-195, 1969.

[6] E. Kouzmin and V. Sokolov, Well-Structured Labeled Transition
Systems, Moscow: Fizmatlit, 2005.

[7] J. Kruskal, "The theory of well-quasi-ordering: A frequently discovered
concept", Journal of Combinatorial Theory, Series A, vol. 13, no. 3, pp.
297-305, 1972.

[8] T. Parr, The definitive ANTLR 4 reference, Raleigh, NC and Dallas, TX:
The Pragmatic Bookshelf, 2013.

[9] L. Dickson, "Finiteness of the Odd Perfect and Primitive Abundant
Numbers with n Distinct Prime Factors", American Journal of
Mathematics, vol. 35, no. 4, pp. 413-422, 1913.

[10] E. Dijkstra, "Hierarchical ordering of sequential processes", Acta
Informatica, vol. 1, no. 2, pp. 115-138, 1971.

[11] Akshay S., Genest B., Hélouët L., Decidable Classes of Unbounded Petri
Nets with Time and Urgency. In: Kordon F., Moldt D. (eds) Application
and Theory of Petri Nets and Concurrency. PETRI NETS 2016. Lecture
Notes in Computer Science, vol 9698. Springer, Cham

[12] Dworzanski L. W. Consistent Timed Semantics for Nested Petri Nets with
Restricted Urgency, in: Formal Modeling and Analysis of Timed Systems
Vol. 9884. Switzerland : Springer International Publishing, 2016. doi Ch.
1. pp. 3-18.

56 из 190

Stochastic Methods for Analysis of Complex
Hardware-Software Systems

Aleksei Karnov
Institute for System Programming of

Russian Academy of Sciences
Moscow, Russia

Email: aakarnov@rambler.ru

Sergey Zelenov
Institute for System Programming of

Russian Academy of Sciences
Moscow, Russia

Email: zelenov@ispras.ru

Abstract—In this paper, we consider Markov analysis of com-
plex software and hardware systems. Despite of its advantages,
this method is barely used because of a large size of a model.
Another problem is to translate system’s architectural model to a
Markov chain. So, we suggest a Markov analysis tool, including
a translation algorithm, and some optional decisions to extremely
accelerate the algorithm.

I. INTRODUCTION

In this paper we consider a task related to verification of
models of software and hardware systems. Such systems can
be, for example, control systems for airplanes, ships, medical
equipment, etc. The price of error in these systems is very
high, but they are too complicated for ”manually” analysis.
Therefore such systems are modeled before implementation.
On the stages of design, development, and verification of the
models, it is necessary to constantly investigate system safety.

At present, three main methods of system safety assess-
ment [1] are widely used: fault tree analysis, dependency
diagram analysis, and Markov analysis. Each method has its
own advantages and disadvantages. In this paper, Markov
analysis is considered.

Markov analysis works with a Markov chain [2] - a stochas-
tic process, which can be represented as a directed graph with
weighted edges. Vertices of Markov chain represent different
states, and edges are labeled by probabilities of a transition be-
tween states. The main drawback of Markov analysis is a size
of Markov chains, which increases exponentially with number
of components in the system. In addition, it is necessary to
develop an algorithm, that takes system model and translate it
to the Markov chain. These problems make Markov analysis
not so popular as the other methods, and number of tools
that use Markov analysis for complex systems is relatively
small. However, such approach has its advantages: Markov
analysis allows to look at the entire system, to consider not
only causes and probabilities of certain single failure, but
also ivestigate how various failures affect the system in the
aggregate. Also Markov analysis, unlike the other approaches,
allows to analyze self-recovering systems, since return to
operational state is natural for Markov chains.

Thus, the task of development the Markov analysis tool
of complex hardware-software systems is quite important and
relevant.

II. CONTEXT

A. AADL and Error Model Annex

Architecture Analysis & Design Language (AADL) [3] is a
language, that widely used for describing models of real-time
hardware and software systems. Its features include description
of both hardware (so-called execution platform) and software
components of an analyzed system, and various connections
between them. The models, described in AADL, may be used
for documentation, for various kinds of analysis and for code
generation.

Error Model Annex [4] is an extension of AADL, that
allows to simulate appearance and propagation of errors in the
system. For each component, a modeller can add a description
of component’s behavior states, for example, operational and
failed. Transitions between system states are triggered by
randomly occured error events and internal errors propagated
from other components. An error propagation condition may
depend on certain behavior state of the component, some
error events, or error propagated from environment. Each
propagated error has its own type, that allows to control what
is exactly happened in the system. Also transitions between
states can be defined implicitly - a state of some component
may be a composite state of its subcomponents.

AADL and Error Model Annex together describe not only
an architecture, but also error behavior of systems. It becomes
possible to evaluate such properties of models as safety,
reliability, the availability of its various states and ability to
recover from them.

B. MASIW

MASIW [5] is an open-source framework for designing and
analyzing of integrated modular avionics systems, that use
AADL as a modelling language.

The project designed as plugins for Eclipse IDE, includes
a variety of tools for working with AADL and Error Model
Annex models. There is a big number of different analysis
tools, for example, a fault tree analysis tool, but there is no
Markov analysis tool.

C. Markov analysis

Any model subjected to Markov analysis must be repre-
sented as a Markov chain. A Markov chain can be represented

57 из 190

in the form of a directed graph with vertices containing system
states, and edges labeled with intensities of transitions between
corresponding states. A Markov chain has the property of
Markov process - a probability of a transition to any state
depends only on a current state and a moment in time, and
previous transitions are unimportant (can be characterized as
memorylessness).

Markov models can be divided into models with discrete
and continuous time, as well as time-homogeneous (also called
stationary) and time-inhomogeneous. In time-homogeneous
Markov chains, the intensities of transitions are constant,
while in time-inhomogeneous Markov chains they depend on
time. In time-homogeneous Markov chains, transitions occur
according to the binomial (or fixed) distribution for discrete-
time chains, and according to the Poisson distribution for
continuous-time chains.

To determine the behavior of an analyzing system, it is
necessary to specify a system of differential equations. The
equations follow from the Markov chain. For all Markov
processes (and a Markov chain, in particular) we have the
Kolmogorov-Chapman equation [6]:

P (t+dt)(Sj/Si) =

n∑
k=1

P (dt)(Sk/Si)P
(t)(Sj/Sk) (1)

This equation means that probability of a transition from state
Sj to state Si for some time t + dt is equal to a sum of
probabilities of passes into the target state Si through all of
intermediate states Sk.

Consider a time-homogeneous chain with an intensity of
the transition between states Si and Sj equal to λ(Si/Sj).
Then for continuous-time Markov chains, the Kolmogorov-
Chapman equation implies a system of differential equations

dP (t)(Sj/Si)

dt
=

= −
n∑

k=1

λ(Si/Sk)P (t)(Sj/Si)+
n∑

k=1

λ(Sk/Si)P
(t)(Sj/Sk)

(2)

And for discrete-time chains, a system of difference equations

P (t+∆t)(Sj/Si) − P (t)(Sj/Si)

∆t
=

= −
n∑

k=1

λ(Si/Sk)P (t)(Sj/Si)+
n∑

k=1

λ(Sk/Si)P
(t)(Sj/Sk)

(3)

Denote by S1 a certain initial state of the system, and consider
equations (2)-(3) in case when S1 = Sj . Denote by Pi(t) the
function P (t)(S1/Si). Then, the previous equations takes the
following form:

dPi(t)dt = −
n∑

k=1

λ(Si/Sk)Pi(t) +
n∑

k=1

λ(Sk/Si)Pk(t) (4)

Pi(t+ ∆t) − Pi(t)

∆t
=

= −
n∑

k=1

λ(Si/Sk)Pi(t) +
n∑

k=1

λ(Sk/Si)Pk(t) (5)

In addition, initial conditions appear

P1(0) = 1, Pi(0) = 0, i = 2, n (6)

Thus, we obtain the Cauchy problem [7]. The solution of this
problem is a set of probabilistic functions of being a system
in a definite state. This is the result of Markov analysis.

In this paper, we consider only the analysis of time-
homogeneous Markov chains and models, as the most com-
mon ones. However, all results can be applied to time-
inhomogeneous models, with the only difference being that
intensities of Markov chain transitions depend on time, and
they need to be stored as formulas, not as numbers.

III. PROBLEM

The goal of this work is a development and implementation
of a Markov analysis tool for complex hardware-software
systems models within the MASIW framework. The tool takes
input of some system model and a set of time points. At
the output, the analyzer provides the probabilities of being
the system in each of its possible states at moments of time,
defined by user.

The main problem is to create a Markov chain on the
basis of the original model. First, we need an algorithm that
creates a correct Markov chain corresponding to the input data.
Secondly, the result chain should be of acceptable size, so that
the program can work for acceptable time in limited memory.

After a construction of a Markov chain, further action
reduces to solving a Cauchy problem with a system of linear
differential equations. An analytical solution of the Cauchy
problem is too complicated, resource-intensive, and result is
difficult to comprehend, so we use numerical methods.

IV. SOLUTION

A. Markov chain

The primary task is to translate an AADL model into a
Markov chain. In particular, it is necessary to find out what to
regard as a chain node and what generates transitions between
system states.

Obviously, the node must contain the state of the system,
which is a combination of the states of all system components
(the states of the components are described in the model as
behavior states). However, if we take as a node any of all
possible combinations, then the number of nodes will be no
less than 2n, where n is the number of system components.
Real systems often contain more than 20 components, that, on
the one hand, are few, but on the other hand, results in size
of such Markov chain outside available memory.

We suggest the following solution of this problem. Let us
exclude from the chain all unreachable states of the system,
which, as practice shows, are the vast majority. First, some
states of the system are unreachable by definition of an

58 из 190

analyzing model. For example, the state of some component
may completely depend on the states of its subcomponents.
Accordingly, the component can not be in a failed state,
while all its subcomponents are in operational states. Second,
the failure of some components entails an almost immediate
failure of others - for example, a breakdown of a processor
entails a failure of all processes running on it. Thus, the state
in which the processor is broken, but the processes on it are
still working, though reachable in theory, at the very moment
of the failure, but instantly replaced by another state.

Thus, we suggest the following approach. We assume that
speed of error propagation between components is extremely
small in comparison with time of system operation (which, in
practice, is the case - for a unit of time measurement usually
takes hour and even a day). Let us define a stable state of the
sistem as a state, that does not change until new error events
occur in the system and its components. We consider as nodes
of designed Markov chain only the stable states of the system.
The sets of arising events generate transitions between nodes
of the chain.

For the sake of saving memory, we insert only reachable
states to the Markov chain, and build it dynamically, from the
initial state of the system, which is a combination of the initial
states of the components. In each new node it is necessary to
analyze transitions from the current state of the system. The
state can change for some event or combination of events. So,
we perform complete search for all possible sets of events -
either of them can initiate a new transition. The probability of
occurrence of each set of events is easily calculated, since each
event contains information about its probability distribution.
This is a multiplication product of probabilities of occurrence
or negation of occurrence of each of the events, since all events
are independent. The total probability of all sets of events,
according to the law of total probability, should be equal to 1.

The algorithm is completed when all nodes of Markov chain
are analyzed, starting from the node corresponding to the
initial state of the system:

markovChain.addNode(initialStateNode)
queue.add(initialStateNode)
while !queue.isEmpty() do

analyzeNode(queue.head())
queue.add(newNodes)

end while
The analysis of each node of Markov chain looks like this:
all possible sets of error events are searched, for each of them
we calculate a stable state of the system into which the given
set leads, and then a new transition (and, if necessary, a new
node) is added to the chain.

for each errorEventSet in possibleSets do
state = currentNode.getState()
repeat

watchedStates.add(state)
state = calculateState(state, errorEventSet)

until watchedStates.contains(state)
node = markovChain.addNode(state)

markovChain.addTransition(
currentNode, node, errorEventSet.getProbability())
watchedStates.clear()

end for
In the above algorithm, the state of the system is considered

stable if we have already reached it before. This correctly
handles the case when the state of the system has not changed
- we have reached the same state as in the previous step.
However, in theory, in a self-recovering systems, cycling may
occur if an event with a failure and an event with component
recovery occur simultaneously. With this condition, the loop
stops, but this situation is not handled correctly. One of the
main opportunities for further improvement of the algorithm
is to improve the condition for achieving a stable state of the
system.

B. Calculation of new states
In the previous paragraph, a general algorithm for construct-

ing a chain was described, omitting the details of calculating
new states of the system. To find out exactly how the system
has changed, it is enough to go through all its components,
and see what transitions between states are triggered for a
given set of events and the current state of the system. The
triggered transition is immediately applied to the system, and
the algorithm step is completed.

for each componentState in systemState do
for each compositeState in comp.getCompositeStates()
do

if checkStateExpression(compositeState.getExpression())
then

systemState.applyTransition(compositeState)
return

end if
end for
for each transition in comp.getTransitions() do

if transition.getSource() == compState
and checkErrorCondition(transition.getCondition())
then

systemState.applyTransition(transition)
return

end if
end for

end for
The checkStateExpression and checkErrorCondition functions
check whether the transition condition is met. Such conditions
can be interpreted as a logical formula, where variables
corresponding to components behavior states, error events, and
propagated errors, have value of true or false, depending on
whether the system is in this state, whether an error event
has occurred or whether an error of the specified type has
propagated.

As soon as some component of the system changes its state,
it means that we obtain a new state of the system, and the
step of the algorithm is completed. If none of the transitions
is triggered, then the system state has not changed, which is
noticed by the algorithm described in the previous section.

59 из 190

C. Construction and solution of the Cauchy problem

After construction of a Markov chain, the final stage of
the Markov analysis of the system is to construct a system of
equations and solve the Cauchy problem. As mentioned earlier,
each node of the Markov chain generates a differential equa-
tion (4) (or similar difference equation (5)). To save memory, it
is not necessary to store the system of equations - the equation
for any node can be easily constructed dynamically, passing
through all transitions entering into this node and outgoing
from it.

The resulting Cauchy problem can be solved by a numerical
method from the Runge-Kutta [8] family of methods. In the
analyzer, two methods are implemented: the Euler method,
for discrete-time Markov chains, and the fourth-order Runge-
Kutta method, for continuous-time Markov chains. The type
of the chain is determined in advance, according to probability
distributions of error events. An algorithm for calculating the
variation of the function Pi(t) on each time interval delta t,
taking into account the dynamic construction of the equation
(Euler’s method):

for each node in markovChain.getNodes() do
i = indexOf(node)
res = 0
for each transition in node.getInTransitions() do

k = indexOf(transition.getNode())
res += transition.getProbability() * pPrev[k]

end for
for each transition in node.getOurTransitions() do

res -= transition.getProbability() * pPrev[i]
end for
pCur[i] = pPrev[i] + delta t * res

end for
Also, the value of the vector of probability functions P (t)

is saved at every time point defined by user. As soon as values
at each necessary time point are calculated, the algorithm is
completed.

D. Getting Analysis Results

Since number of system states in Markov chain can be very
large, the result of analysis in the form of probabilities of
being the system in each of them is practically impossible for
reading. Considering that each system has its root component,
we group all system states according to the states of the root
component.

In this case, all the probability functions within the same
group are summed up:

for each node in chainNodes do
i = indexOf(node)
state = node.getSystemState().get(rootComp)
analysisResult.get(state) += p[i]

end for
After this, for each state of the root component, the proba-

bility of being the system in a this state at given time points
is obtained. This is the desired result of the Markov analysis
of the system.

E. Algorithm acceleration

Despite a partial solution of the problem of exponential
growth of Markov chain size, the running time of full version
of the algorithm still grows exponentially - due to a thorough
search of all possible combinations of error events. Thus,
we use some heuristics in the final program, accelerating the
algorithm.

First, we limit the search of combinations of events. Since
the probability of occurrence of one event is usually ex-
tremely small, the situation in which several events occur
simultaneously is practically impossible. Therefore, a very
small numerical parameter, limiting the probability of the
combination of events under consideration, was added to the
program. If the probability of occurrence of the set of events
is less than this parameter, then the effect of the set of events
on the system is not considered. This solution significantly
reduced the running time of the program, without much loss
of accuracy of the result.

The second solution relates to system’s ability to self-
recovery. In practice, there are few examples of self-recovering
systems, and, in most cases, even a short-term failure of the
system itself means fatal consequences. Accordingly, if the
analyzed system has come to failed state, its further changes
are not interesting to us - no matter what else can fail in the
already failed system. Therefore, we introduce a set of states
of the root component, that are considered as ”absolutely”
failed. If some node of Markov chain has failed state of the
root component, then we do not analyze transitions from it.
If analyzed system is not self-recovering, the result of the
program remains the same, but is obtained in much shorter
time.

Both modifications of the program are optional, as they
may change final result in some cases, but their application
reduces the operating time by several orders of magnitude.
For example, a complete analysis of a system containing 24
components revealed 919 states of the Markov chain and took
1 hour. Limiting the frequency of the events considered by
the number 10−30 gave a significant gain - the same set of
states of the Markov chain and the same result of the analysis
were obtained in 7 minutes. Since the system under test was
not self-recovering system, the analysis with the stop-on-failed
option was correct, and got the same result in 10 seconds.
Setting relevant parameters allows to significantly accelerate
work of the analyzer. One of the further options for improving
the tool can be automatic detection and selection of optimizing
parameters.

V. RELATED WORKS

Markov analysis of AADL and Error Model Annex models
is usually applied to systems consisting of only one compo-
nent. Such algorithms doesnt consider error propagation mech-
anism and composite states, and limited by root component.

The tool from OSATE [9] framework, created for export
AADL model into Markov chain model for PRISM [10]
toolset, which provide further steps of Markov analysis, sup-
ports only the first nesting level of the component hierarchy

60 из 190

and does not support different types of propagated errors.
In addition, there were some problems associated with the
syntactic correctness of the final PRISM model.

VI. CONCLUSION

In this paper we present a new Markov analysis tool, and
in particular, an algorithm for translating AADL and Error
Model Annex models into Markov chains. In addition, there
were added some improvement for accelerating the algorithm,
which make it possible to effectively use the tool in practice.

The presented tool can be further improved in various
ways: adding support for time-inhomogeneous Markov chains,
accelerating the work of the algorithm, changing some details
of algorithm.

REFERENCES

[1] “SAE ARP4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment,” War-
rendale, USA, Dec. 1996.

[2] A. N. Shiryaev, Probability (2Nd Ed.). Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1995.

[3] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,
1st ed. Addison-Wesley Professional, 2012.

[4] P. Feiler, “SAE AADL error model annex: An overview,”
Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, Tech. Rep., 2014. [Online]. Avail-
able: https://wiki.sei.cmu.edu/aadl/images/1/13/ErrorModelOverview-
Sept222011-phf.pdf

[5] “MASIW framework,” https://forge.ispras.ru/projects/masiw-oss/.
[6] S. Kuznetsov, “Matematicheskie modeli protsessov i sistem tekhnich-

eskoi ekspluatatsii avioniki kak markovskie i polumarkovskie protsessy,”
Nauchnyi Vestnik MGTU GA, no. 213, pp. 28–33, 2015.

[7] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differen-
tial Equations (Dover Phoenix Editions). Dover Publications, 2003.

[8] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations. SIAM:
Society for Industrial and Applied Mathematics, 1998.

[9] J. Delange, P. Feiler, D. Gluch, and J. Hudak, “AADL fault
modeling and analysis within an ARP4761 safety assessment,”
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU/SEI-2014-TR-020, 2014. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=311884

[10] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

61 из 190

Problems of Creation and Dynamic Analysis of

Heterogeneous Models of Hardware/Software systems

Kamila Agaeva

Institute for System Programming of the Russian Academy of Sciences, High School of Economics

Moscow, Russia

kshagaeva@edu.hse.ru

Modeling is widely used for reasoning about different aspects of

hardware/software systems. In this article the problem of analysis of

such systems is considered, as well as studying of methods of working

with tools of simulation of AADL models using MASIW toolset. A

model of coffee machine was taken as an example of

hardware/software system. Dynamic analysis using MASIW was

performed on this model. Various kinds and methods of defining

model components’ specification were considered. The sequence of

reasoning during formalization of model`s requirements was shown

in the paper. One method of modeling of environment checks and

specification of test scenarios was described. As a result, an

architecture model of a coffee machine extended with behavior

specifications on different levels of abstracts is presented.

Keywords — AADL models; dynamic analysis, behavior

specification

I. INTRODUCTION

Currently modeling is an integral part of the design process

of various systems. Thanks to modeling it is possible to

consider a projected system with various aspects, each with

only some fixed features and characteristics, that allows to

abstract from minor details. In this article the process of

modeling of software/hardware systems is considered. Such

systems are a bunch of several components that process and

interpret data.

A. Analysis of hardware/software systems

A constructed model of hardware/software systems can be

used to further analysis of the entire system`s characteristics or

behavior, based on the information from the operation of

components. This makes it possible to draw conclusions on

system effects. Such systems can be researched while using

static or dynamic analysis, as well as by analysing the structure

and behavior of the system`s functioning.

B. Types of model analysis

Static analysis considers a mathematical description of the

model`s components, which is compared to the formulated

requirements. Due to this comparison, it is possible to calculate

the characteristics of the components (for example, an

assessment of the mode of interaction with other components

or the time of the system’s response to external events). Such

attitude can help to draw conclusions about the correctness or

incorrectness of the analysed model in the future.

Carrying out the dynamic analysis requires making sure that

there are certain regularities involving the model changes. For

this purpose, the model components must have an executable

behavioral specification, and work correctly with time model.

In this case, the analysis provides data on new states of

components and new relationships of their interactions.

The analysis of behavior is based on the consideration of

characteristics that are manifested during the components`

interaction and the environment. These data are also associated

to the interaction of the component with the environment or

with its response to emerging events. Structural analysis, in its

turn, works with those characteristics that are associated with

the location of components, their connection and the method of

communication.

1) Specification of model components

The characteristics of the model components necessary for

the analysis are specified by their specification, which can be

conditionally divided depending on the properties they

express [1]. Thus, the properties can be divided into several

types:

• functional properties describing changes in states and

considering the relationship between input and output

data;

• temporal properties express indicators that can be

determined over several states of the system or can

provide a relationship between system events and state

transitions;

• resource properties, whereby there are restrictions on

such resources as time or space that can be used by the

operation or at the time of occurrence of events.

Such separation allows us to identify the specifications

expressing the functional, temporal and resource properties

respectively. Another classification is based on the separation

of specifications, depending on the described artifacts [1].

These can be specifications related to the requirements,

interface, analysis or architecture of the system.

C. Problems of developing of multicomponent systems

The recorded specification for each hardware/software

systems` component is a large amount of information.

62 из 190

However, human capabilities are not enough for analysis. One

way to solve this problem is to use automated support tools. For

example, it is possible to formalise information about the

system, by translating it into a unified machine-readable form,

which makes it possible to automate its processing.

D. The AADL language

At the moment, various design and analysis languages, such

as Marte [2], SysML [3], and architectural analysis and design

language (AADL) [4] are used to represent information about

the projected system in a machine-readable form. In this paper

we will focus on the usage of (AADL). It is used for modeling

hardware/software architecture of embedded real-time systems.

AADL allows to analyse computer systems on such aspects as

fault tolerance, security, security, performance, etc. [5]. The

architecture of the system is considered as a hierarchy of

interacting software and hardware components. In this case,

each component of the system can be expanded by adding the

user properties. In addition to the extensibility of this language,

the advantage of AADL is ability to work with different levels

of abstractions. Thus, the architecture of the system can be built

step by step. It can start with the most general view, gradually

lowering the level of abstraction, then refine the internal

organisation of components and introduce additional

properties. In this case, we get a correct and full-fledged model

from the point of view of AADL and from the point of view of

defining the architecture. This can help to design and analyse

the heterogeneous models that represent a complex set of

different components that can appear at different levels of

abstraction.

1) Instruments supporting the AADL language

The creation and analysis of models written in AADL can be

done using several tools. The most widely used examples are

presented below.

OSATE 2 is an open source platform supporting the AADL

language. It presents AADL text and graphics editors, as well

as sets of some analysis tools (for example, BLESS [6], Error

Annex V2 [7]). In addition, open source code allows developers

to add their own plug-ins.

Ocarina is toolset, written using Ada for managing AADL

models. Its capabilities can be described as:

• syntax analysis of AADL models;

• semantic analysis;

• code generation using Ada and C;

• checking for model compliance by comparing models

written in AADL with Petri nets;

• calculation of execution time in the worst case using

Bound-T [10];

• using REAL [11] to check the properties and metrics

of AADL models.

AADL-inspector is the environment for processing of AADL

models. Its goal is to provide an easy-to-use and extensible tool

for performing static and dynamic analysis of AADL

architectures and a simplified way to connect any AADL

compliance tool or code generator. Its main capabilities

include:

• an AADL syntactic analyzer;

• a set of static semantic rules checkers;

• schedulability analysis (using Cheddar [13]);

• virtual execution of AADL models based on Behavior

Annex (Marzhin [14]).

MASIW is open source integrated development environment

for design and analysis of AADL models. This toolkit was

developed by ISP RAS jointly with GosNIIAS within the state

development program of Integrated Modular Avionics. The

main features of this tool are presented below:

• creating and editing models in AADL using text and

graphic editors;

• model analysis

o analysis of the structure of the

hardware/software complex;

o checking the constraints using REAL,

PyCL [15];

o analysis of data transmission characteristics

in the AFDX network [16]; (2011 - 6)

o simulation of the model with supporting for

heterogeneous models [17];

o analysis of propagation of error and

probabilities with FTA and FMES;

• generating model data

o generation of processor scheduler;

o generation of configuration data;

• ability to reuse AADL-libraries of third-party

developers;

• use of the concept of representations, which allows to

adapt the created model of the system to a form

abstraction from the way of implementing this model,

but containing the most relevant data.

In the context of this work MASIW was chosen as the tool

working with the AADL language.

II. USING THE MASIW SIMULATOR

Among available tools of MASIW simulator [18]. It allows

to analyse the behavior of the system and its components was

considered.

A. Behavior specification in the MASIW simulator

The simulator provides support for standard ways of
specifying the behavior specification for model components
that are located below:

1) Behavior Annex

This approach is a standardised extension of AADL, which

allows to describe the behavior of components in terms of a

nondeterministic finite state machine. Each component has

several states and a set of actions. Also, there are transitions

between each state that have some condition. Such condition

helps to check on the performance of any inequality or

expecting an external event (for example, wait for an event

arriving at the input port of this component). Moreover, the

63 из 190

Behavior Annex allows you to define a response to an external

event and data sending.

2) Java classess

An executable model can be specified using Java code. For this

purpose, the MASIW simulator has Java-library, that provides

additional tools for creating of behavior specification of model.

Java-code allows to work with model time, as well as to react

to the external events. For example, you can consider a

component with a behavior specification and a system of the

surrounding world in which the component is placed. In the

absence of an external system, the component has a certain

algorithm of its behavior. But with the emergence of an

environment that can affect it, his behavior can change. Java-

modeled behavior specification also allows to handle such

situations.

3) ARINC-653

ARINC-653 [19] is the standard that represents a set of

services for the safe design of avionics application software.

This standard presupposes that the software system as a divided

into several parts the composition of applications or partitions.

Each partition is isolated in terms of time and space and works

as if it was running on the same processor. This technique is

necessary to process and isolate errors that occur in some

partitions. ARINC-653 partitions can be used in the MASIW

simulator as one of the options to specify the behavior of

components.

B. Tracing data in the MASIW simulator

The purpose of analysing the behavior of the model is to

keep track of the correct functioning. For convenient

observation, the MASIW simulator automatically traces the

data about the transmitted messages within the system. Tracing

data also provides the opportunity to use special systems, or

oracles, that help determine the expected results for comparison

with actual results. This feature provides information about the

time of sending such messages, data sources and, possibly, the

history of the messages. In addition, this approach allows

developers to monitor the internal state of the components.

For convenience of work with the received trace data, the

simulator of MASIW allows to aggregate the received

information into reports. Such reports allow to select from the

entire set of events only those that relate to checking of the

conditions for meeting the requirements. This report is also

used by the MASIW simulator to demonstrate:

• which validity conditions have been tested;

• which components have been checked for

correctness conditions;

• what is the status of the component check (which

components are found to violate the correctness

conditions and which ones are not);

• the cause of the violations that occurred.;

III. THE TARGET AND OBJECTIVES OF WORK

Within this work, the goal was to study the work with the

AADL modeling tools and analysis tools of the MASIW

simulator on the example of a model of a coffee machine. To

achieve this goal, it is necessary to perform several tasks:

▪ the formalization of requirements and test scenarios for

the coffee machine being modeled;

▪ construction of the architecture of a model of the coffee

machine, based on the formalized requirements using

the MASIW simulator;

▪ adding the behavioral component to the elements of

this model;

▪ use of model behavior specifications at different levels

of abstraction (Behavior Annex, java classes, ARINC-

653);

▪ analysis of the conducted experiments;

IV. DESCRIPTION OF SEQUENCE OF WORK

A. Formalization of requirements

B.

Even the simplest coffee machine includes many

components, such as pistons, pressure sensors or pumps. In this

work, a simplified version of the model of the coffee machine

was chosen at level of abstraction, which would allow one to

abstract from the complex architecture of the coffee machine

and include the main hardware components, the

implementation of which would allow accomplishing the set of

tasks. The same goes for the software part. There are many

algorithms in the real machine, but in the created model, for

simplicity, the processing of the order from the user and

notification of the user about the readiness of the drink are

considered. In addition, the created model contains the basic

requirement that determines its purpose, which is the

preparation of a drink: coffee or cocoa. Besides, additional

requirements have been formulated, which relate to a more

precise level of abstraction. (нужно подвести к требованиям)

a) The coffee machine must receive orders from the user,

issue the corresponding drink as the result and inform the

user about it.

b) The coffee machine must have a button for making orders

to the coffee machine.

c) The coffee machine must be in three modes: "cooking

coffee", "cooking cocoa" and "shutdown mode."

d) The user has the ability to only order coffee or cocoa.

e) The user has the ability to change the mode of the coffee

machine with the control knob. It allows the user to select

a drink that the coffee machine must cook, or turn coffee

machine off.

f) The coffee machine cannot change its own mode

g) The coffee machine must not prepare drinks without user

order.

h) If user want to make order, it is necessary to press the

button and the coffee machine must be in the "coffee

preparation" or "cocoa cooking" mode.

i) If user made an order, the result must be received 31

seconds made.

64 из 190

j) The coffee machine must be ready to accept the next order

only after the processing of the previous order is

completed.

k) Order processing must mean either the coffee machine

must issue an order or ignore it if the coffee machine is in

the “shutdown mode”.

l) If user makes several orders faster than once in 31 seconds,

the coffee machine will process each order made.

m) If user makes several orders within 31 seconds, the

coffee machine must execute only first order, ignoring all

the others.

B. Description of test situations

Test situations have been developed to consider tested system

in different situations, checking requirements. Test situations,

which are presented below:

a) Testing user’s nominal behavior, in which the user orders

one drink (coffee or cocoa). As a result, it is expected that

the coffee machine will give a signal of completion and

drink itself.

b) Testing the case in which the user makes several orders

during 31 second. It is expected to receive a response from

the system of the coffee machine about the readiness of

only one drink for 31 seconds, as well as getting the

finished result.

c) Simulation of the situation in which the user makes several

orders of coffee or cocoa once in 31 (or more) seconds. In

this case, the number of drinks and signals of completion

should be the same as the number of orders made by the

user. At this time from the acceptance of each of the orders

to the receipt of the result should not exceed 31 seconds.

d) Testing the situation in which the user does not perform

any actions. In this case, the coffee machine should not

notify and give out anything.

C. Basic concepts of AADL

The following basic concepts were used to design the

interface and system architecture using the AADL language.

In AADL, all the components you create can be divided into

several categories. Some of them, that have been used in this

work are bellow.

A system is a common container of software and hardware

components, as well as other related systems, with a fully or

partially known internal structure.

A device represented as an active hardware node with a

certain functionality, the internal structure of which is not

disclosed.

Data component that represents the abstraction of a

variable type in the program code. Some components (devices

and systems, for example) may require access to such

components. For this purpose, additional interface features that

explicitly require access are added to them. It is possible to set

the data access rights.

Processes in AADL denote a category of components that

corresponds to a separate virtual address space and can be a

complete program unit if it contains at least one control flow.

Thread are also a type of AADL component. They are an

executable instruction sequence, which, from the processor's

point of view, is provided as a single dispatch object.

The processor is represented in the form of the main

calculator, which deals with scheduling and executing of

program code.

In addition, ports provide support for communication

between components. They can be divided into several types:

event data port, event port, data port. The first type of ports

allows you to send or receive control and data, the second one

allows you to send only control, and the third allows you to

transfer only the data.

D. Designing the architecture of the system environment

The creation of the architecture of the coffee-machine

model began with the determination of the level of abstraction

of given system. This helps to identify which components will

be used to design and further analyse the interface of the model

of the coffee machine. We can distinguish some details from

requirements:

▪ availability of a way of interaction with the user

through the button;

▪ the coffee machine can prepare coffee and cocoa;

▪ the coffee machine informs you that the drink is ready.

These details were considered in building the environment of

the coffee machine by using the following components

(Figure 1) in the external system “environment_ext”.

 Figure 1 – external system envirnonment_ext

The system of the coffee machine, which at the initial stage of

building the interface was seen as a black box, capable only of

interacting with the outside world. It has an input event data

port, “run_the_process”, output event port “completion”, which

were modeled according to the requirements (Figure 2).

Figure 2 – system of coffee machine

The device “user_interface”, which is responsible for user

behavior; with the help of the output event data port

“push_the_button” it simulates pressing the button that sends

the order (the name of the desired drink is sent as the message:

coffee or cocoa).

The system “system_of_oracles” is one of way to formalize

requirements. It allows to verify the properties. It receives

65 из 190

information about the user’s choice through the event port

"user_inf" and information about the availability of the order

through the input event port "machine_inf". Such a connection

allows to track temporary information about the service of the

order;

Data component "inf_drink" (моделирует)simulating in the

given system a certain physical state, which gives information

on the amount of ingredients used in the process of preparation

of the drink. It is possible to change this state by the system of

the coffee machine.

It is worth notice that both the user and the system of the coffee

machine are modeling of real-life notions. If we talk about the

oracle system, this component is artificially added only to

ensure the possibility of checking certain properties. The same

applies to the formation of a physical state using the “inf_drink”

component.

Designing the interface of the coffee machine with the help of

the components listed above allows to proceed to build the

architecture of the external world of the coffee machine system.

E. Designing the architecture of the model of oracles

The modeled oracle system is a set of oracles, each of

which tests a given requirement (Figure 3). Use oracles allows

to formalise the requirements mentioned above. The oracles

are presented in the form of a device. Some of them receive

input from the user via the event port “user_inf”, data about

the completion of the coffee machine through the event port

“machine_inf” and some have access to reading data from the

inf_drink component.

Figure 3 – system of oracles

Using this type of ports allows to track the time intervals during
which the order was processed. Thus, with the help of these
oracle devices, the following properties were tested:

• if two orders are received, the coffee machine returns

two results;

• at least one order must be received before the result is

received;

• the situation in which the user will not be able to prepare

the coffee machine himself.

Thus, oracles allow to cover the verification of all the

requirements presented in the above.

F. Design the architecture of the model of user

The device simulating the user's behavior includes several of

its implementations, providing verification of the test

situations. The options are below:

• order two cocoa beverages with a time difference of

pressing the button in 2 seconds;

• order two cocoa drinks with a time difference of

pressing the button at 31 seconds;

• order three drinks ("cocoa", "coffee", "cocoa") with a

time difference of pressing the button at 1 and 2 seconds

respectively;

• order two "coffee" drinks with a time difference of

pressing the button for more than 31 seconds.

To verify compliance with requirements and perform

simulations using the MASIW simulator, the components of the

oracle and user system were given behavioral specifications. It

is worth notice that for this purpose the Behavior Annex was

chosen, which is due only to the convenience of representing

such behavior with the help of these means. (возможно было

использовать и другие, но используем это)

G. Behavior specification for components of the environment

of the coffee-machine

By using the Behavior Annex capabilities, behavioral

specifications have been modeled for the oracle system devices

and for the user.

User behavior was described by simulating the sending of a

different number of orders through the output port, as well as

the use of temporary delays between them to check

requirements that related to the need for time intervals

(requirements i, l and m).

Behavior specifications for oracles use the data trace

function. This provides a convenient way to get a response

about the feasibility of a given property by referring only to the

generated simulation report.

The modeled architecture and the behavior of the coffee

machine’s environment allow to proceed to a more complete

specification of the coffee machine’s system itself.

H. Building the architecture of the coffee machine system

The construction of the architecture of the model of the

coffee machine consisted in the addition of software

components (processes, flows, data) and components

responsible for the physical resources of the system

(processors, devices). The created architecture must be in

accord with the formalized requirements and the installed

interface. Therefore, there was considered the case in which the

model of the coffee machine was limited to the presence of only

three devices: milk dispensers and coffee, a water heater and a

valve. These elements represent the hardware of the coffee

machine. As a program part, processes and a processor are

presented that control the distribution of input and output data.

Moreover, processor that located in system of coffee

machine can manage processes. Also, there are devices whose

action on the outside world is modeled through data access.

66 из 190

The next stage in modeling the system of the coffee machine

was to add the behavioral component to some of its

components.

I. Using the Behavior Annex to specify the behavior of the

components of the coffee-machine

Due to the capabilities of the Behavior Annex, behavioral

specifications have been modeled for all devices entering the

system of the coffee machine, as well as for threads.

The coffee and milk dispensers, as well as the water heater

and its valve, have almost identical behavioral specifications.

They are triggered when an input message or event is received,

then they work out a certain amount of time (each device works

for a different period), and then send an event or message

through its output port.

If we talk about control flows, then the process of the

received message about the type of drink was included in the

specification of the behavior of the control flow

"data_processing". The result of this process determined the

data to be sent to the two dispensers of the coffee machine.

At the same time, the specification of the behavior of the

control flow "waiting_result" was based on the expectation of

receiving events about working out all devices for the model of

the coffee machine`s system, after which a signal was sent as a

result about the completion through the output port.

Simulations carried out with the help of specified behavioral

specifications for oracles, users and components of the coffee

machine made it possible to verify those requirements that were

formulated at the initial design stage, as well as to simulate all

test situations and obtain the result in the form of reports

generated by tracing. At the next stage of the work, another

level of abstraction was considered, in which the behavior

specification was also specified by the processor “cpu”. This

was implemented using the Java language.

J. Using the Java language as a way to specify a behavior

specification

The cpu processor created in the model is associated with the

operation of two processes: “data_processing” and

“waiting_result”. This processor should monitor the arrival of

the message in one of the process ports and give control to the

desired one. Behavior Annex doesn’t have tools that can

simulate such behavior. That’s why the Java language is used.

To simulate this behavior, a special library was developed in

the MASIW simulator. The basic ideas that make it possible to

generate a behavior specification for a component are presented

below. The SimulationManager interface can be referred to the

basics of this library. It provides access to the formation of

behavior that can be actively used in modeling. Thus, each

component has the ability to:

▪ sending messages between components using:

o asynchronous (non-blocking) messages; this

method does not return anything and provides

instant control return;

o synchronous (blocking) calls; in this case, the

call itself can cause the execution of additional

procedures and only after returning some result

and control;

▪ granular approach to processing incoming messages and

blocked calls; this method places the processing process

on several handlers, some of which can be added by the

developers themselves;

▪ setting the waiting time for the calling thread; This

feature is like using the computation () function in the

Behavior Annex;

If the component under consideration has managed

components, then there are several more possibilities for it:

▪ determine the desire or unwillingness to manage a

component;

▪ receive alerts that there will be something happening

with the managed components.

In situation with coffee-machine, an event handler was

added for this processor. It helped track the port in which the

event came. After that, thanks to the list of the binding

elements connected with the processor, it is possible to find

the necessary component and give it the right to work.

K. Using ARINC-653-partitions to specify a behavior

specification

When forming a component behavior specification, we can

consider the case in which the highest level of abstraction is

considered. At this level, the program, represented as ARINC-

653 partitions, itself becomes its own specification of behavior.

This approach could be used as one of the options for

compliance testing.

V. CONSLUSION

The work carried out on the construction and analysis of the

model of the coffee machine with the help of simulation tools

of the MASIW allowed to draw several conclusions:

▪ The process of forming of requirements for the developt

model depends on the level of abstraction on which this

model is considered. This affects what components will

be included in the system, their functionality and

possible behavior.

▪ For completeness of checking, the simulated external

environment should provide an opportunity to verify not

only nominal behavior that meets all the points of the

requirements, but possible inadequate options, in order

to confirm the correctness of processing such situations.

▪ Use and support of heterogeneous models allows to

consider systems in which components are at different

levels of abstraction: some of them are already fully

described, and some are at the initial stage of

development

REFERENCES

[1] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Muller,

Matthew Parkinson. Behavioral Interface Specification Languages. ACM
Computing Surveys. vol. 44, no. 3, article 16, June 2012

67 из 190

[2] Object Management Group (OMG). “UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded systems.” Version 1.1.

[3] Object Management Group (OMG). “Systems Modeling Language
SysML”, Version 1.3.

[4] SAE International. “Architecture Analysis & Design Language (AADL)”,
SAE International Standards document AS5506B, Nov 2004, Revised
Mar 2012.

[5] А.E. Platunov, N.P. Postnikov. Vysokourovnevoe proektirovanie
vstraivaemykh system. – Sant-Petersburg, IFMO, 2011, vol p.41-42 (in
Russian).

[6] Brian R. Larson, Patrice Chalin, and John Hatclif. BLESS: Formal
Specification and Verification of Behaviors for Embedded Systems with
Software», Kansas State University, USA.

[7] SAE International Standards Document A55506/1A Arhitecture Analysis
and Design Language (AADL): Error Model Annex, 2015.

[8] Jerome Hugues[electronic resource]. -PolyORB-HI/Ada runtime, Access
mode: https://github.com/OpenAADL/polyorb-hi-ada, free.

[9] Jerome Hugues[electronic resource]. -PolyORB-HI/C runtime, Access
mode: https://github.com/OpenAADL/polyorb-hi-c, free.

[10] Niklas Holsti, Sami Saarinen. Status of the Bound-T WCET Tool». Space
System Finland Ltd.

[11] O. Gilles, J. Hugues. Expressing and Enforcing User-Defined Constraints
of AADL Models, Engineering of Complex Computer Systems
(ICECCS), 2010.

[12] P. Dissaux, F. Singhoff. Stood and Cheddar: AADL as a Pivot Language
for Analysing Performances of Real Time Architectures, Proceedings of
4th International Congress ERTS-2008.

[13] Christophe Ponsard, Philippe Massonet, Gautier Dallons. From Rigorous
Requirements Engineering to Formal System Design of Safety-Critical
Systems. Safety-Critical Software, 2008.

[14] Pierre Dissaux, Olivier Marc. Executable AADL: Real-Time Simulation
of AADL Models, 2014.

[15] Alexey Khoroshilov, Eugene Kornykhin. PyCL – Python-based AADL
Constraint Language, - Madrid, Spain, 2015.

[16] O. Khorevsky, A. Khoroshilov, A. Ugnenko, S. Zelenov. Configurable
AFDX network simulation. In Proceedings of the International Space
System Engineering Conference DASIA-2011, pp. 31-34, San Anton,
Malta, May 17-20, 2011

[17] Denis Buzdalov. Simulation of AADL models with software-in-the-loop
execution, 2016.

[18] Buzdalov D.V., Zelenov S.V., Kornykhin E.V., Petrenko A.K., Strakh
A.V., Ugnenko A.A., Khoroshilov A.V Instrumental tools for the design
of integrated modular avionics, 2014.

[19] ARINC Specification 653P0-1. Part 0: Overview of ARINC 653, 2015.

68 из 190

https://github.com/OpenAADL/polyorb-hi-ada
https://github.com/OpenAADL/polyorb-hi-c

Predicate Abstractions Memory Modeling Method
with Separation into Disjoint Regions *

Anton Volkov
Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow, 119991, Russian Federation

Mikhail Mandrykin
Institute for System Programming, 25 Alexander Solzhenitsyn st., Moscow, 109004, Russian Federation

Abstract—Software verification is a type of activity focused on
software quality control and detection of errors in software. Static
verification is verification without the execution of the software
source code. Special software – tools for static verification – often
work with program’s source code. One of the tools that can
be used for static verification is a tool called CPAchecker. The
problem of the current memory model used by the tool is that
if a function returning a pointer to program’s memory lacks a
body, arbitrary assumptions can be made about this function
return value in the process of verification. Although possible, the
assumptions are often also practically very improbable. Their
usage may lead to a false alarm. In this paper we give an
overview of the approach capable of resolving this issue and
its formal specification in terms of path formulas based on the
uninterpreted functions used by the tool for memory modeling.
We also present results of benchmarking the corresponding
implementation against existing memory model.

Index Terms—memory model, predicate abstractions, static
verification

I. INTRODUCTION

Software verification is a type of activity focused on soft-
ware quality control and detection of errors in software [1].
Static verification is a verification without the execution of the
software source code.

Special software – tools for static verification – often work
with program’s source code. Depending on the tools used for
static verification it is possible to conduct analysis of the said
source code to search for errors in program’s behavior.

One of the tools that can be used for static verification is
a tool called CPAchecker. It takes program’s source code as
an input, creates a CFA (control-flow automaton) and uses
it to run the analysis. One of the analyses the instrument is
capable of is a reachability analysis. In this paper we consider
reachability properties that can be expressed as checking if the
call to an error function is reachable. Its strong side is that the
CPA (configurable program analysis) [2] concept allows to use
several analyses at the same time for program verification. The
tandem of Value Analysis and Predicate Analysis produces
good results in terms of verification precision / verification
time ratio.

II. DEFINITIONS AND NOTATIONS

We will call a model of program’s memory a strategy
of organization and representation of program’s memory. By
region we will refer to a set of lvalues with the following

* The research was supported by RFBR grant 15-01-03934

restriction: if two lvalues are taken from two different regions
they necessarily reference disjoint memory locations [3]. For
example, different regions may be safely assigned to the
lvalues referring distinct structure fields under the following
conditions:

∙ no address taking of the fields is present in the program’s
source code;

∙ the fields do not become targets of some pointers by the
usage of pointer type conversion or address arithmetic.

The situation when a program’s error state is reachable
because of the errors in verification tools is called false alarm.

III. TASK

Existing memory model employed by Predicate Analysis
of the CPAchecker tool uses uninterpreted functions. Each of
those functions has only a name and a number of arguments.
If 𝑓(𝑥) is an uninterpreted function, 𝑎 and 𝑏 are any of its
arguments for which 𝑎 = 𝑏 is true then 𝑓(𝑎) = 𝑓(𝑏) [4].
Uninterpreted functions in the CPAchecker tool are used to
establish a correspondence between a memory location and
the value stored at this memory location. Depending on the
type of the expression different uninterpreted functions should
be used.

Existing memory model of the CPAchecker tool uses typed
regions. This means that all lvalues of the same type exist in
the same region. However a large number of lvalues of the
same type is present in any big enough program written in
the C programming language. This leads to the addition of a
big number of logical constraints for each event of a pointer’s
memory update. The constraints express checks for potential
equality of the updated lvalue to each memory location in
the region. Those checks allow to determine precisely what
memory should also be updated but noticeably increase the
length of path formulas.

The problem of the current memory model used by the tool
is that if a function returning a pointer to program’s memory
lacks a body, arbitrary assumptions can be made about this
function return value in the process of verification. In other
words it is considered possible for this pointer to point at any
lvalue in the region. Although possible, it is also practically
very improbable. In those cases it is hard to determine if a
path leading to an error label really does or doesn’t exist.
One of the approaches capable of resolving this issue suggests

69 из 190

the introduction of smaller regions that divide a bigger typed
region.

IV. B&B MEMORY MODEL

A. Memory model overview

B&B memory model was proposed by Richard Bornat and
had been based on the work of Rod Burstall [5], [6]. It is used
in Frama-C verification tool in Jessie plugin which is capable
of performing verification of the C programs. In its foundation
are assumptions that can introduce regions of smaller sizes
instead of having very big one for a type. These assumptions
state that if struct data type fields never occur as arguments to
the address taking operator (&) in program’s source code then
those fields can be placed to separate regions. Otherwise they
must belong to the same region as the normal pointers of the
same type.

This memory model has some flaws. It does not take into
account that the struct fields can be accessed through address
arithmetic and pointer conversions. It also needs mentioning
that some overhead costs are required for region support.

Taking into account the pros and cons of the model it is
possible to say that the B&B memory model looks promising.

B. Formal specification

For ease of specification we will assume the following:
∙ variables can only be of struct s * types;
∙ struct s fields can only be of int type;
∙ struct s has 𝑛 fields: struct s { int 𝑓1, 𝑓2, ..., 𝑓𝑛; };
Program’s memory location can be represented by an lvalue

expression like pointer dereference. To model changes to
the program’s state when assignments to lvalues arise the
CPAchecker tool uses uninterpreted functions [4].

We assume absence of pointer arithmetic and restrict pointer
dereferences to the applications of the arrow operator (𝑝 → 𝑓𝑖,
where 𝑝 is a pointer to the struct type and 𝑓𝑖 is one of the
struct fields).

Let ϒ be a set of uninterpreted functions. Its elements are
uninterpreted function 𝐺 that is used for accessing a memory
location in global region, a finite number of uninterpreted
functions 𝐹𝑖, where each function 𝐹𝑖 represents the state of
the memory region corresponding to lvalues of the form 𝑏 →
𝑓𝑖, 𝑖 = 1, 𝑛 and the uninterpreted function 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 with
zero arity that models the usage of the program’s functions
returning an unknown pointer.

Let 𝐵(𝑒) be an uninterpreted function used for global
memory location modeling and 𝐵𝑖(𝑒), 𝑖 = 1, 𝑛 —a finite set
of uninterpreted functions used for memory location modeling
in regions corresponding to 𝐹 𝑖 uninterpreted functions. For
address representation it is suggested to use expressions like
𝑎, where 𝑎 is a variable. The axioms of the memory model
(positivity of addresses and their non-intersection within one
region) can be represented as follows:

∙ 𝑎 > 0;
∙ 𝐵(𝑎) = 𝑘, where 𝑘 is a unique number for each such

variable.

The tool uses SSA representation to model the varying
state of program variables and memory regions. In this rep-
resentation usage of a name splits into usages of its versions.
Each time an assignment happens to a program variable or a
memory region represented by the corresponding variable or
uninterpreted function in the path formula, the version number
(index) of that variable or uninterpreted function increases.

Let 𝐼𝑛𝑑𝑒𝑥 : ϒ → N be a mapping of a set of uninterpreted
functions ϒ to a numerical set of their indices.

Let 𝐴𝑙𝑙𝑜𝑐 : ϒ → 𝐴𝑑𝑑𝑟𝑠 be a mapping of a set of
uninterpreted functions ϒ to the set of subsets of memory
locations 𝐴𝑑𝑑𝑟: 𝐴𝑑𝑑𝑟𝑠 = 2𝐴𝑑𝑑𝑟.

We will use a supplementary function 𝑚𝑒𝑚 𝑢𝑝𝑑 :

𝑚𝑒𝑚 𝑢𝑝𝑑(𝑝, 𝑓,𝑚′,𝑚) =⋀︁
𝑎∈𝐴𝑙𝑙𝑜𝑐(𝑓)

(︀
(𝑝 = 𝑎) ∨ (𝑓𝑚′(𝑎) = 𝑓𝑚(𝑎))

)︀
that defines a check for address equality for all of the lvalues in
the same region as pointer 𝑝 (locations in the 𝐴𝑙𝑙𝑜𝑐(𝑓) region
are modeled by the uninterpreted function 𝑓 , 𝑚 = 𝐼𝑛𝑑𝑒𝑥(𝑓)
is a current version of 𝑓 and 𝑚′ = 𝑚+ 1 is a new version).

By 𝜔(𝑠, 𝑓𝑖) we will understand a constant offset of a field
𝑓𝑖 from the base address of struct type variable 𝑠. Because we
assume that there is only one structure type struct 𝑠 in our
programs, 𝜔(𝑠, 𝑓𝑖) can be made just 𝜔(𝑓𝑖).

In B&B memory model implemented on top of
CPAchecker’s existing memory model the operator of a
strongest post-condition is defined as 𝑆𝑃𝑜𝑝(𝜙) = 𝜙 ∧ Γ(𝑜𝑝),
where 𝜙 is a symbolic abstract state and constraints Γ(𝑜𝑝)
are defined by table I.

C. Example

The following program will be considered correct if we
use either of the memory models. Γ constraints in terms of
B&B memory model for the program are shown in table II.
Path formula can be made as conjunction of all formulas in
Γ column of the table II. It is unsat in terms of either of the
memory models. This means that the tool can not go by this
path (i.e. won’t consider it as a potential error trace candidate).
struct s { int f1, f2; };
struct s * p1;
struct s * p2;

p1 = alloc();
p2 = alloc();

p1 -> f1 = 6;
p2 -> f2 = 5;
assume(p1 -> f1 == p2 -> f2);

Why the conjunction is unsat?
1) In the existing memory model memory allocated for

pointers 𝑝1 and 𝑝2 cannot intersect because it was
allocated using 𝑎𝑙𝑙𝑜𝑐() function (the corresponding path
formula is not given).

2) In the given Γ constraints for this path (using the B&B
model) the following contradicting elements are present:

70 из 190

Table I
Γ CONSTRAINTS CREATION RULES

Operation (𝑜𝑝) 𝐼𝑛𝑑𝑒𝑥 𝐴𝑙𝑙𝑜𝑐 Base
address
index 𝑘′

Γ constraints

Variable
allocation
on stack
struct s * p;

No changes 𝐴′ - new variable;
𝐴𝑙𝑙𝑜𝑐′(𝐺) = {𝐴′} ∪
𝐴𝑙𝑙𝑜𝑐(𝐺)

𝑘′ - new in-
dex

p = 𝐴′ ∧ 𝐴′ > 0 ∧ 𝐵(𝐴′) = 𝑘′

Heap variable
allocation
p = alloc();

𝑙′ - new index for 𝐺, 𝑙 = 𝐼𝑛𝑑𝑒𝑥(𝐺),
𝐼𝑛𝑑𝑒𝑥′ = 𝐼𝑛𝑑𝑒𝑥 ∖ {𝐺 → 𝑙} ∪
{𝐺 → 𝑙′}

𝐴′, 𝐴′
𝑖 - new variables

𝐴𝑙𝑙𝑜𝑐′(𝐺) = {𝐴} ∪
𝐴𝑙𝑙𝑜𝑐(𝐺)
𝐴𝑙𝑙𝑜𝑐′(𝐹 𝑖) = {𝐴′

𝑖} ∪
𝐴𝑙𝑙𝑜𝑐(𝐹 𝑖), 𝑖 = 1, 𝑛

𝑘′, 𝑘′
𝑖 - new

indices, 𝑖 =
1, 𝑛

𝐺𝑙′ (𝑝) = 𝐴′ ∧ 𝐴′ > 0 ∧ 𝐵(𝐴′) = 𝑘′

∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝑝,𝐺, 𝑙′, 𝑙)⋀︁
𝑖=1,𝑛

(︁(︀
𝐺𝑙′ (𝑝) + 𝜔(𝑓𝑖)

)︀
= 𝐴′

𝑖

∧ 𝐴′
𝑖 > 0 ∧ 𝐵𝑖(𝐴′

𝑖) = 𝑘′
𝑖

)︁
p = 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟() 𝑙′ - new index for 𝐺, 𝑙 = 𝐼𝑛𝑑𝑒𝑥(𝐺),

𝑚’ - new index for 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟,
𝑚 = 𝐼𝑛𝑑𝑒𝑥(𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟),
𝐼𝑛𝑑𝑒𝑥′ = 𝐼𝑛𝑑𝑒𝑥 ∖

(︀
{𝐺 → 𝑙} ∪

{𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 𝑚}
)︀
∪{𝐺 → 𝑙′}∪

{𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 𝑚′}

No changes No changes 𝐺𝑙′ (𝑝) = 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟𝑚 ∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝑝,𝐺, 𝑙′, 𝑙)

p → 𝑓𝑖 = e 𝑚′ - new index for 𝐹 𝑖,
𝑚 = 𝐼𝑛𝑑𝑒𝑥(𝐹 𝑖),
𝐼𝑛𝑑𝑒𝑥′ = 𝐼𝑛𝑑𝑒𝑥 ∖ {𝐹 𝑖 → 𝑚} ∪
{𝐹 𝑖 → 𝑚′}

No changes No changes 𝐹 𝑖
𝑚′ (𝐺𝑙(𝑝) + 𝜔(𝑝, 𝑓𝑖)) = Γ(𝑒)

∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝐺𝑙(𝑝) + 𝜔(𝑓𝑖), 𝐹
𝑖,𝑚′,𝑚),

where 𝑙 = 𝐼𝑛𝑑𝑒𝑥(𝐺) and Γ(𝑒) can be computed using
the following rules:
Γ(𝑐𝑜𝑛𝑠𝑡) : 𝑐𝑜𝑛𝑠𝑡;
Γ(𝑝2 → 𝑓𝑗) : 𝐹 𝑗

𝑘 (𝐺𝑙(𝑝2) + 𝜔(𝑓𝑗)),
where 𝑘 = 𝐼𝑛𝑑𝑒𝑥(𝐹 𝑗), 𝑙 = 𝐼𝑛𝑑𝑒𝑥(𝐺)
Γ(𝑒1 𝑜𝑝 𝑒2), 𝑜𝑝 ∈ {′+′,′ −′,′ *′,′ /′} :
Γ(𝑒1) 𝑜𝑝 Γ(𝑒2).

assume(p) No changes No changes No changes Γ(𝑝) for predicate 𝑝 computes as following:
Γ(𝑐𝑜𝑛𝑠𝑡) : 𝑐𝑜𝑛𝑠𝑡;
Γ(𝑠) : 𝐺𝑙(𝑠), where 𝑙 = 𝐼𝑛𝑑𝑒𝑥(𝐺);
Γ(𝑠 → 𝑓𝑖) : 𝐹 𝑖

𝑚(𝐺𝑙(𝑠) + 𝜔(𝑓𝑖)), where
𝑚 = 𝐼𝑛𝑑𝑒𝑥(𝐹 𝑖), 𝑙 = 𝐼𝑛𝑑𝑒𝑥(𝐺);
Γ(𝑝1 == 𝑝2) : Γ(𝑝1) = Γ(𝑝2);
Γ(𝑝1 < 𝑝2) : Γ(𝑝1) < Γ(𝑝2);
Γ(𝑝1 <= 𝑝2) : Γ(𝑝1) ≤ Γ(𝑝2);
Γ(𝑝1||𝑝2) : Γ(𝑝1) ∨ Γ(𝑝2);
Γ(𝑝1&&𝑝2) : Γ(𝑝1) ∧ Γ(𝑝2);
Γ(!𝑝) : ¬Γ(𝑝).

∙ 𝐹 1
2 (𝐺3(𝑝1) + 𝜔(𝑓1)) = 𝐹 2

2 (𝐺3(𝑝2) + 𝜔(𝑓2));
∙ 𝐹 2

2 (𝐺3(𝑝2) + 𝜔(𝑓2)) = 5;
∙ 𝐹 1

2 (𝐺3(𝑝1) + 𝜔(𝑓1)) = 6.

Let’s take a look at the example program below. In the pro-
gram’s source code there are calls to the function 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟()
that returns an unknown pointer. The pointer 𝑝2 is initialized
using this function. Γ constraints in terms of B&B memory
model for the program are shown in table III. Path formula
can be made as conjunction of all formulas in Γ column of
the table III.
void * undef_ptr();

struct s { int f1, f2; };
struct s * p1;
struct s * p2;

p1 = alloc();
p2 = undef_ptr();

p1 -> f1 = 6;
p2 -> f2 = 5;
assume(p1 -> f1 == p2 -> f2);

In B&B memory model 𝑝1 → 𝑓1 and 𝑝2 → 𝑓2 exist in the
separate memory regions. In Γ constraints for this path the
same contradicting elements as for the previous example are
present. Thus the update of one of them wouldn’t affect the

other one. Because of that the result of verification would be
that the error state is unreachable (path formula is still unsat).

However, in the existing memory model fields 𝑓1 and 𝑓2 of
struct 𝑠 exist in the same memory region and it uses only one
uninterpreted function for them (see table 2 in [4]). Memory
for their base pointers 𝑝1 and 𝑝2 was allocated using known
𝑎𝑙𝑙𝑜𝑐() function and function 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟() returning unknown
pointer respectively. It cannot be confirmed that an update to
a field 𝑓2 of the 𝑝2 wouldn’t affect the access to the 𝑓1 struct
field of 𝑝1. In the formula the location for field 𝑓2 of the
𝑝2 is (𝐺3(𝑝2) + 𝜔(𝑓2)) which is 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟1 + 𝜔(𝑓2). The
locations (𝐺3(𝑝1)+𝜔(𝑓1)) and (𝐺3(𝑝2)+𝜔(𝑓2)) exist in the
same region and may be equal. Thus the formula is satisfiable.
It means that the result of verification with existing memory
model will be a reachable path to the program’s error state.

Usually such situations in practice are false alarms because
different fields of different structures do not normally intersect.
Thus the assumptions related to this behavior in the existing
memory model aren’t really incorrect but they are quite
improbable in practice. Usage of the B&B memory model
will be able to reduce the number of false alarms caused by
these assumptions (continued in section VI).

V. IMPLEMENTATION NOTES

The creation of memory regions is an automated process. In
CPAchecker verification tool CFA (control-flow automaton) is
used as an inner representation of the program. It is sufficient

71 из 190

Table II
EXAMPLE BUILD OF PATH FORMULA FOR THE CORRECT PROGRAM

Path instruction 𝐼𝑛𝑑𝑒𝑥 𝐴𝑙𝑙𝑜𝑐 k’ Γ

struct s * p1 {𝐺 → 1, 𝐹 1 → 1, 𝐹 2 → 1} 𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1} 1 𝑝1 = 𝐴1 ∧ 𝐴1 > 0 ∧ 𝐵(𝐴1) = 1

struct s * p2 {𝐺 → 1, 𝐹 1 → 1, 𝐹 2 → 1} 𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1, 𝐴2} 2 𝑝2 = 𝐴2 ∧ 𝐴2 > 0 ∧ 𝐵(𝐴2) = 2

p1 = 𝑎𝑙𝑙𝑜𝑐() {𝐺 → 2, 𝐹 1 → 1, 𝐹 2 → 1} 𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1, 𝐴2, 𝐴3};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5}.

3,
4,
5

𝐺2(𝑝1) = 𝐴3 ∧ 𝐴3 > 0 ∧ 𝐵(𝐴3) = 3
∧ (𝐺2(𝑝1) + 𝜔(𝑓1)) = 𝐴4

∧ 𝐴4 > 0 ∧ 𝐵1(𝐴4) = 4
∧ (𝐺2(𝑝1) + 𝜔(𝑓2)) = 𝐴5

∧ 𝐴5 > 0 ∧ 𝐵2(𝐴5) = 5
∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝑝1, 𝐺, 2, 1)

p2 = 𝑎𝑙𝑙𝑜𝑐() {𝐺 → 3, 𝐹 1 → 1, 𝐹 2 → 1} 𝐴𝑙𝑙𝑜𝑐(𝐺) =
{𝐴1, 𝐴2, 𝐴3, 𝐴6};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4, 𝐴7};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5, 𝐴8}.

6,
7,
8

𝐺3(𝑝2) = 𝐴6 ∧ 𝐴6 > 0 ∧ 𝐵(𝐴6) = 6
∧ (𝐺3(𝑝2) + 𝜔(𝑓1)) = 𝐴7

∧ 𝐴7 > 0 ∧ 𝐵1(𝐴7) = 7
∧ (𝐺3(𝑝2) + 𝜔(𝑓2)) = 𝐴8

∧ 𝐴8 > 0 ∧ 𝐵2(𝐴8) = 8
∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝑝2, 𝐺, 3, 2)

p1 → f1 = 6 {𝐺 → 3, 𝐹 1 → 2, 𝐹 2 → 1} 𝐴𝑙𝑙𝑜𝑐(𝐺) =
{𝐴1, 𝐴2, 𝐴3, 𝐴6};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4, 𝐴7};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5, 𝐴8}.

8 𝐹 1
2 (𝐺3(𝑝1) + 𝜔(𝑝1, 𝑓1)) = 6

∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝐺3(𝑝1) + 𝜔(𝑓1), 𝐹 1, 2, 1)

p2 → f2 = 5 {𝐺 → 3, 𝐹 1 → 2, 𝐹 2 → 2} 𝐴𝑙𝑙𝑜𝑐(𝐺) =
{𝐴1, 𝐴2, 𝐴3, 𝐴6};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4, 𝐴7};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5, 𝐴8}.

8 𝐹 2
2 (𝐺3(𝑝2) + 𝜔(𝑓2))) = 5

∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝐺3(𝑝2) + 𝜔(𝑓2), 𝐹 2, 2, 1)

assume(p1 → f1 == p2 → f2) {𝐺 → 3, 𝐹 1 → 2, 𝐹 2 → 2} 𝐴𝑙𝑙𝑜𝑐(𝐺) =
{𝐴1, 𝐴2, 𝐴3, 𝐴6};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4, 𝐴7};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5, 𝐴8}.

8 𝐹 1
2 (𝐺3(𝑝1) + 𝜔(𝑓1)) = 𝐹 2

2 (𝐺3(𝑝2) + 𝜔(𝑓2))

Table III
EXAMPLE BUILD OF PATH FORMULA FOR THE PROGRAM WITH UNKNOWN MEMORY FUNCTION

Path instruction 𝐼𝑛𝑑𝑒𝑥 𝐴𝑙𝑙𝑜𝑐 k’ Γ

struct s * p1 {𝐺 → 1, 𝐹 1 → 1, 𝐹 2 → 1,
𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 1}

𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1} 1 𝑝1 = 𝐴1 ∧ 𝐴1 > 0 ∧ 𝐵(𝐴1) = 1

struct s * p2 {𝐺 → 1, 𝐹 1 → 1, 𝐹 2 → 1,
𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 1}

𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1, 𝐴2} 2 𝑝2 = 𝐴2 ∧ 𝐴2 > 0 ∧ 𝐵(𝐴2) = 2

p1 = 𝑎𝑙𝑙𝑜𝑐() {𝐺 → 2, 𝐹 1 → 1, 𝐹 2 → 1,
𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 1}

𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1, 𝐴2, 𝐴3};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5}.

3,
4,
5

𝐺2(𝑝1) = 𝐴3 ∧ 𝐴3 > 0 ∧ 𝐵(𝐴3) = 3
∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝑝1, 𝐺, 2, 1)
∧ (𝐺2(𝑝1) + 𝜔(𝑝1, 𝑓1)) = 𝐴4

∧ 𝐴4 > 0 ∧ 𝐵1(𝐴4) = 4
∧ (𝐺2(𝑝1) + 𝜔(𝑓2)) = 𝐴5

∧ 𝐴5 > 0 ∧ 𝐵2(𝐴5) = 5

p2 = 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟() {𝐺 → 3, 𝐹 1 → 1, 𝐹 2 → 1,
𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 2}

𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1, 𝐴2, 𝐴3};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5}.

5 𝐺3(𝑝2) = 𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟1
∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝑝2, 𝐺, 3, 2)

p1 → f1 = 6 {𝐺 → 3, 𝐹 1 → 2, 𝐹 2 → 1,
𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 2}

𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1, 𝐴2, 𝐴3};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5}.

5 𝐹 1
4 (𝐺3(𝑝1) + 𝜔(𝑓1)) = 6

∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝐹 1
2 (𝐺3(𝑝1) + 𝜔(𝑓1)), 𝐹 1, 2, 1)

p2 → f2 = 5 {𝐺 → 3, 𝐹 1 → 2, 𝐹 2 → 2,
𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 2}

𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1, 𝐴2, 𝐴3};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5}.

5 𝐹 2
2 (𝐺3(𝑝2) + 𝜔(𝑓2)) = 5

∧ 𝑚𝑒𝑚 𝑢𝑝𝑑(𝐺3(𝑝2) + 𝜔(𝑓2), 𝐹 2, 2, 1)

assume(p1 → f1 == p2 → f2) {𝐺 → 3, 𝐹 1 → 2, 𝐹 2 → 2,
𝑢𝑛𝑑𝑒𝑓 𝑝𝑡𝑟 → 2}

𝐴𝑙𝑙𝑜𝑐(𝐺) = {𝐴1, 𝐴2, 𝐴3};
𝐴𝑙𝑙𝑜𝑐(𝐹 1) = {𝐴4};
𝐴𝑙𝑙𝑜𝑐(𝐹 2) = {𝐴5}.

5 𝐹 1
2 (𝐺3(𝑝1) + 𝜔(𝑓1)) = 𝐹 2

2 (𝐺3(𝑝2) + 𝜔(𝑓2))

to go through it and find in it all of the struct field accesses.
This allows to distinguish those fields that don’t have their
address taken somewhere in the program.

In the implementation we do not take into consideration
the possibility of field accesses through pointer arithmetic and
through the usage of pointer conversions because of the high
improbability of such field accesses in program’s source code.

VI. EXPERIMENTS

To determine the efficiency of B&B memory model im-
plementation in comparison to existing memory model of
the CPAchecker tool a number of launches were performed
on the predefined sets of Linux kernel modules. To use the
implemented memory model one must have:

1) CPAchecker verification tool with revision number
23271 or higher from the branch trunk;

2) option cpa.predicate.useMemoryRegions should be set
to ’true’.

A. False alarm set

Several of those were found during the verification of Linux
kernel 3.14. The review of error traces allowed to determine
situations when reachability of error state was present due
to updates to same-typed pointers’ memory. Those 26 kernel
modules that caused false alarms due to pointer updates are
included in this set. The goal of this experiment was to find
out what effect the usage of B&B memory model will produce
on the tools precision. Tables IV and V hold information about
changes of the tool’s verdicts.

72 из 190

Table IV
B&B APPLICABILITY

B&B could help B&B couldn’t help
B&B helped 10 0
B&B didn’t help 0 16

Table V
VERDICT CHANGES

False alarm →
Safe

False alarm →
Unknown

False alarm → False alarm*

3 5 2
* - different error trace and cause of unsafe
B. Linux 4.2-rc1 kernel modules

A set of Linux kernel drives (version 4.2-rc1) was selected
to study the efficiency of B&B memory model implemen-
tation in comparison to the existing memory model of the
CPAchecker tool.

The launch was performed for rule that checks correctness
of functions working with usb get * and usb put * functions
of usb-system. Launch results can be found in tables VI, VII.
Launch configuration:

∙ time limit – 15 minutes;
∙ memory limit – 15 Gb;
∙ number of CPU cores – 4;
The differences in the regions the models have lead to the

difference in program’s paths that are covered by the tool.
This explains Unsafe → Unknown, Unknown → Safe and Un-
known → Unsafe transitions, where Safe means that program’s
error state is unreachable, Unsafe – error state is reachable,
Unknown - timeout or runtime error. This experiment’s results
show that the improvement to the tool’s precision is present
while the verification speed is competitive.

Table VI
LINUX 4.2-RC1 STATISTICS

Existing model B&B
Verification time 35.8 hours 35.3 hours
Safe 4245 4241
Unsafe 69 68
Unknown 161 166

Table VII
TRANSITIONS

hhhhhhhhhhhExisting model
B&B Safe Unsafe Unknown

Safe 4240 0 5
Unsafe 0 67 2
Unknown 1 1 159

C. SV-COMP’17 DeviceDrivers64

This set contains files from the DeviceDrivers64 set of
the international competition on software verification SV-
COMP’17. It consists of 2795 modules of different Linux
kernel versions. Launch configuration:

∙ time limit – 15 minutes;
∙ memory limit – 15 Gb;
∙ number of CPU cores – 4;

Several of the transitions from the incorrect results can be
explained by the difference in models choice of pointer’s may-
aliases. The same modules were present in earlier mentioned
False alarm set. Several transitions to Unknown can be ex-
plained by the addition of overhead costs required for B&B

usage to the verification tasks on the verge of timeout. It is
worth mentioning that usage of B&B memory model reduced
time for SMT-solver by roughly 8% for the correct results.

Table VIII
DEVICEDRIVERS64 STATISTICS

Memory models Existing B&B
Total number of files 2795 2795

Correct results 1791 1780
Error state unreachable 1524 1522
Error state reachable 267 258

Incorrect results 7 5
Missed errors 4 4
False alarm 3 1

Unknown 1004 1015

Table IX
TIME FOR DEVICEDRIVERS64 SET

Memory models Existing B&B
Total time 143.6 hours 143.1 hours
Time for correct results 14.9 hours 14.1 hours
SMT solver time 10500 sec

(2.9 hours)
12400 sec
(3.4 hours)

SMT solver time for correct results 660 sec 605 sec

Table X
VERDICT CHANGES

Transitions from Existing model (EM) to B&B model Quantity
Correct result (EM) → Incorrect result 0
Correct result (EM) → Unknown 16
Incorrect result (EM) → Correct result 2
Incorrect result (EM) → Unknown 0
Unknown (EM) → Correct result 3
Unknown (EM) → Incorrect result 0

VII. CONCLUSION

This paper proposes the specification of B&B memory
model and its region-based reasoning in terms of uninterpreted
functions. Its implementation on top of existing memory model
of the CPAchecker verification tool provides better verification
precision while the verification speed remains competitive. The
implementation was included in the official repository of the
CPAchecker static verification tool.

REFERENCES

[1] V. Kuliamin, “Metody verifikatsii programmnogo obespecheniya [Soft-
ware verification methods],” Vserossiiskii konkursnyi otbor obzorno-
analiticheskikh statei po prioritetnomu napravleniyu ”Informatsionno-
telekommunikatsionnye sistemy” [Russian national competitive selection
of review and analytical articles in priority direction ”Information and
telecommunication systems”], p. 117, 2008 (in Russian).

[2] D. Beyer, T. A. Henzinger, and G. Theoduloz, “Configurable Software
Verification: Concretizing the Convergence of Model Checking and
Program Analysis,” in Computer Aided Verification, ser. Lecture Notes in
Computer Science, W. Damm and H. Hermanns, Eds., vol. 4590. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 504–518.

[3] M. Mandrykin and A. Khoroshilov, “A memory model for deductively
verifying Linux kernel modules,” A.P. Ershov Informatics Conference,
the PSI Conference Series, 11th edition, 2017 (to appear).

[4] M. Mandrykin and V. Mutilin, “Modelirovanie pamyati s ispol’zovaniem
neinterpretiruemykh funktsii v predikatnykh abstraktsiyakh [Modeling
Memory with Uninterpreted Functions for Predicate Abstractions],” Trudy
ISP RAN [Proceedings of the Institute for System Programming], vol. 27,
pp. 117–142, 2015 (in Russian).

[5] R. Bornat, “Proving pointer programs in Hoare Logic,” in Mathematics
of Program Construction: 5th International Conference, MPC 2000, ser.
Lecture Notes in Computer Science, R. Backhouse and J. N. Oliveira,
Eds., vol. 1837. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 102–126.

[6] R. Burstall, “Some techniques for proving correctness of programs which
alter data structures,” Machine Intelligence, vol. 7, pp. 23–50, 1972.

73 из 190

Static Verification of Linux Kernel
Configurations​(1)
 Svyatoslav Kozin​#1 ​Vadim Mutilin​#2

#1​Software Engineering Department, HSE
Russia, Moscow, Myasnitskaya 20, 101000

1​kozyyy@yandex.ru

#2​ISP RAS
Russia, Moscow, Alexander Solzhenitsyn st., 25, 109004

2​mutilin@ispras.ru

Abstract​— The Linux kernel is often used as a real world case
study to demonstrate novel software product line engineering
research methods. To provide the most safe experience of
building of Linux product line variants it is necessary to
analyse Kconfig file as well as source code. Tens of thousands
of variable statements and options even by the standards of
modern software development. Verification researchers
offered lots of solutions for this problem. Standard
procedures of code verification are not acceptable here due to
time of execution and coverage of all configurations, so it was
offered to check the operating system with special wrapper
for tools analyzing built code and configuration file. Such a
bundle is able to provide efficient tool for calculating all valid
configurations for predetermined set of code and Kconfig.
These analyses can be used for improving existing analysis
tools as well as decision of choice the right configuration. Our
main goal is to contribute to a better understanding of
possible defects and offer fast and safe solution to improve the
validity of evaluations based on Linux.

Keywords​— Software Product Lines, Linux,
Kconfig, Preprocessor.

I. INTRODUCTION

Nowadays, software is used to solve
increasingly important and complex tasks, due to
this fact the complexity of software architectures
is also constantly growing. With the increasing
complexity of programs, the complexity of
development, analysis and maintenance arises.
There are many methods that allow you to reduce
the costs of supporting the software life cycle.
One such method is the creation of variable
systems (or family of systems, software product
families, software product lines) [1-4]. The
superiority over the usual development method is
that systems are manufactured with the condition
of multiple elements used for several systems
with a similar set of functions, taking into

account a specific target audience of users. At the
same time, a complex and widely known
representative of variable software is the Linux
operating system.

In the development of variable systems, a
variability model and a variation mechanism
play a fundamental role. The variability model
specifies the space of possible variants of this
family of systems. Usually it is determined by a
set of features or configuration parameters, by the
sets of their possible values ​​and constraints on
possible combinations of these values, each
variant of the system corresponds to a certain set
of values ​​of all features. The variation
mechanism provides the ability to build all
possible system variants from a limited set of
created and followed artifacts. In Linux, the
variability model and its relationship to the
variation mechanism is built on the basis of
Kconfig files, Makefile files and additional
scripts. Kconfig describes all possible features, as
well as their relationship with each other in a
special language. Then on the basis of Kconfig,
the configuration file .config is defined, which
describes the version of the system. It consists of
a set of configuration variables described in
Kconfig and values that satisfy the constraints of
Kconfig. During kernel assembly, the values ​​of
variables specified in .config are passed to the
code as constants for the preprocessor and to
Makefiles, which will be used in the variation
mechanism [5].

In the field of operating systems (hereinafter
the operating system we mean the kernel and the

(1) Supported by grant RFBR 16-01-00352 A

74 из 190

underlying OS libraries, providing the interfaces
for work with computing resources and
hardware), a mechanism of conditional
compilation of C / C ++ languages ​​is widely used
as a mechanism for variability of the mixed type
(based on macros #ifdef, #else). It allows you to
compose code at the build stage that combines
various variables specified by a set of
characteristic values ​​that are conditional
compilation parameters in this case (defined by
the #define and #undef macros, as well as
preprocessor setup parameters).

The complexity of variability models for
modern operating systems is very high, for
example, the Linux kernel version 2.6.32 has
6319 characteristics, more than 10,000
constraints that can be used up to 22 individual
characteristics, with the majority of
characteristics depending on at least 4 others, and
the maximum depth of the dependency tree is 8
[6]. This complexity causes a large number of
errors, primarily due to the difficulty of taking
into account all the factors that a developer of a
separate code element should do. To identify and
cope with these errors, it is necessary to use
specialized techniques of analysis and
verification. Complexity of analysis that is
typical for systems with such a variability
mechanism arise because of the huge size of the
possible variants space (which makes it
completely unrealistic to check them all). Due to
using of conditional compilation, each fragment
does not have to be a separate component with a
certain behavior that can be analyzed separately
from the rest of the code, usually such fragments
are just insertions into the common code, and can
only be checked in certain combinations with
each other. The need to solve these problems
imposes special requirements on the tools and
analysis methods used for complex variable
operating systems and system software in
general. These requirements are specific for
analysis and verification - the methods used to
create such systems, by themselves, do not
facilitate their analysis [7,8]. The main goal of
this work is to propose a methodcapable of
coping with the verification of the Linux OS
taking into account the variability, to give

acceptable accuracy of verification and speed of
execution comparable to the verification of
common programs.

An errors analysis of such complex systems as
Linux can be done with a lot of different tools.
The most convenient of them are static analyzers
and static verifiers. Static code analysis is the
analysis of software produced (as opposed to
dynamic analysis) without real execution of the
programs under investigation. Existing static
analyzers (such as Coverity[9] or Svace[10]) and
static verifiers (such as BLAST[11],
CPAchecker[11]) are only designed to work with
the code already compiled. Accurate analysis
requires pre-assembling of a specific
configuration, and only after that start of the
actual analysis. As a result, the total inspection
time becomes unacceptably large. There is a
class of tools that are focused on analysis of a set
of possible configurations, they do not split the
phase of building configurations and code
analysis. As the example of such tools we can
take a look at TypeChef and Undertaker. These
tools are designed to solve special problems in
the sphere of variability. Undertaker is looking
for a "dead code" - such a problems when
different configurations give the same product,
besides it has a lot of built-in helper modules to
provide main task, and one more function -
assembling the minimal Linux kernels for
individual use cases. TypeChef is looking for
linking and compile errors with a
variability-aware method. It is important to say,
that TypeChef can not find difficult problems in
code like complex static analysers. Suggested in
this paper tool should analyze code deeply like
BLAST or CPAchecker and, on the other hand,
should do it in variability-aware way without
all-configuration brute forcing. For this task we
suggest to use CPAchecker due to its outstanding
abilities in the error findings, despite
CPAchecker’s expenditure of time[11]. The
maximum reduction in verification time should
be achieved through the optimal selection of
configurations that will be directed to the input
of the static analyzer.

II. CONFIGURATION SET SELECTION

75 из 190

The problem of selecting configurations can be
considered as a splitting of the configuration
space into equivalence classes. Each of the
selected configurations will belong to one of the
classes. To split the configuration space into
classes, it is suggested to use the MC/DC test
coverage criterion. The advantage of this choice
is that it allows you to significantly reduce the
number of classes, even for large software
systems. In addition, logic of
analysis/construction of configurations in
Kconfig representation is similar to logic of
control flow graph analysis of common
programs, where the MC/DC criterion has
proven itself well.

A set is considered to reach 100% coverage by
this metric, if:

- Each entry and exit point is invoked
- Each decision takes every possible

outcome
- Each condition in a decision takes every

possible outcome
- Each condition in a decision is shown to

independently affect the outcome of the
decision.

In other words, in the full test, in accordance
with the MC/DC coverage criterion, it should be
demonstrated that every elementary condition
that can influence the resulting value of the
branching condition that includes it actually
changes its value regardless of the other
elementary conditions.

Example:

Our program has next 2 conditions of
branching: ​(x > 0) && (y > 0) || (x == 0) && (z
!= null) and (a > 0) && (z == null) || (z != null)
&& (z == IS_EMPTY) where ‘x’, ‘y’, ‘z’, ‘a’ are
some config variables, IS_EMPTY - is a macros
(hereinafter will be z.isEmpty() for the
convenient perception). Also as example,
suppose ‘a = !x’ in the model of Kconfig file. So
we can transform this formula in ​(x > 0) && (y
> 0) || (x == 0) && (z != null) and (x < 0) &&
(z == null) || (z != null) && z.isEmpty()​. We
have just got rid from the ‘a’ variable, replacing
it with equivalent ‘x’ expression.

Let’s construct table (Picture 1) for all
available combinations of elementary conditions,
keeping in mind that z.isEmpty() is defined if
only z!=null is true.

Pic. 1

Next table represent only those combinations,

that are essential for the first branching. Next, we
will find all those pairs, where only one
elementary condition is changed and all
condition result is changed too (Picture 2).

Pic. 2

Relevant combinations are marked in last 4

columns of the table. Two rows are marked with
one letter, if they form a pair of combinations.
This letter is placed in a column according to
elementary condition, that affected on a result.
To provide full coverage with MC/DC for this
branching we have to select pairs of
combinations, matching at least one letter in each
of the last four columns. It is enough to select
combinations marked as A, D, E, H (5
combinations) or B, C, F, G (6 combinations).

There is a similar table for the second branch
condition below (Picture 3). Conditions (z ==
null) and (z! = Null) uniquely determine the

76 из 190

values of each other, so you can consider only
one of them. In addition, you can not change the
value (z == null) and do not change the values of
z.isEmpty () - this condition is computable only
for one (z==null) result.

Pic. 3

In this way, it is possible to select set of

combinations marked as A,B,D (4
combinations).

Final set of combinations for MC/DC metric
marked with ‘***’ in a table below (Picture 4).

Pic. 4

We can notice that from 18 possible

combinations, we can use only 8 to get full
coverage according to MC/DC method.

In general, the MC / DC metric allows 2n
different situations to be used instead of 2n
condition combinations.

III. KERNEL CHECK STAGES

For each of the found configurations, you
should run a kernel verification. The program
will scan the kernel in 6 stages: configuration,
search for a "dead code", preprocessing,
compiling, linking, searching for run-time errors.
It is also worth noting that we will look for not
only errors, but also configuration defects.
Defects - is a broader concept, and it includes not
only system errors, but also possible errors of the

kernel without processing the interrupt.
Description of the stages:

A. Configurations.
At the time of build, Linux itself checks
the configuration file, but it's worth
checking it for recursive dependencies
and non-existent variables in the code,
but existing in Kconfig (and vice versa).

B. Search for a “dead code”.
A "dead" code is such a code in which
control is not transferred under any
circumstances. This code contributes to a
common configuration error when two
different configurations produce the same
product at the output. This problem can
be solved using the built-in tools of the
Undertaker.

C. Preprocessing.
Preprocessing is performed just before
compilation and at this stage we will get
the code that will be compiled into the
final version of the program. Most errors
at this stage can find a preprocessor. It
remains for us to inform the user of a
possible conflict of names if we see
duplicate names of preprocessor variables
and their redefinition, because they have
one nominal space and the developer may
not notice the problem of overriding.

D. Compilation.
Compilation is complete on the compiler
side. Here there are such errors as:
detection of an undeclared variable /
function, missing punctuation in the code,
etc.

E. Linking.
As well as compilation is completely
redirected to the linker. The linker finds
errors in missing libraries or files.

F. Execution Errors.
The most difficult part of the test is using
the LDV and CPAchecker tools. LDV
assigns labels to the code of the program
according to the preset rules, while
CPAchecker searches for them and builds
accessibility graphs to them so we can see
how a label is achieved.

77 из 190

Picture below is a visual representation of

the program:

CONCLUSION

This article describes the method, which

allows you to check the Linux operating system
for errors without being depended on the
configuration. This approach provides high code
coverage and an improved speed of verification
comparing to brute force method. This software
product can be used in the production of
distributions, as well as for verification of
existing ones.

REFERENCES

[1] Jacobson I., Griss M., Jonsson P. Software Reuse,
Architecture, Process and Organization for Business
Success. Addison-Wesley, 1997. ISBN-13:
978-0201924763.

[2] Bosch J. Design and Use of Software Architectures:
Adopting and Evolving a Product Line Approach. Pearson
Education, 2000. ISBN-13: 978-0201674941.

[3] Clements P., Northrop L. Software Product Lines: Practices
and Patterns. SEI Series in Software Engineering,
Addison-Wesley, 2001. ISBN-13: 978-0201703320.

[4] Pohl K., Böckle G., van der Linden F. J. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag, 2005. DOI: 10.1007/3-540-28901-1.

78 из 190

[5] Kuliamin V.V., Lavrischeva E.M., Mutilin V.S., Petrenko A.K.
“Верификация и анализ вариабельных операционных систем”
Труды Института системного программирования РАН, vol 28,
2016, pp. 189-208.

[6] Lotufo R., She S., Berger T., Czarnecki K., Wąsowski A.
Evolution of the Linux kernel variability model. Proc. of
SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

[7] Lavrischeva Е. М., Koval G.I., Slabospickaya О.O.,
Kolesnik A.L. Особенности процессов управления при
создании семейств программных систем. Проблемы
программирования, (3):40-49, 2009.

[8] Lavrischeva Е. М., Koval G.I., Slabospickaya О.O.,
Kolesnik A.L. Теоретические аспекты управления
вариабельностью в семействах программных систем.
Весник КНУ, серия физ.–мат. наук, (1):151-158, 2011.

[9] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan
Fulton, Seth Hallem, Charles Henri-Gros, Asya Kamsky,
Scott McPeak, Dawson Engler, A “Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real
World”, Communications of the ACM, Vol. 53 No. 2, pp.
66-75

[10] Borodin A.E., Belevancev A.A, “Статический анализатор
Svace как коллекция анализаторов разных уровней
сложности” Труды ИСП РАН, vol 27, No. 6, 2015., pp.
111-134

[11] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, Rupak
Majumdar, “The software model checker BLAST”, Int J
Softw Tools Technol Transfer (2007) 9:505–525,
Springer-Verlag 2007

[12]

79 из 190

A Technique for Parameterized Verification of
Cache Coherence Protocols

V.S. Burenkov1
1JSC MCST, burenkov_v@mcst.ru

Abstract—This paper introduces a technique for scalable func-

tional verification of cache coherence protocols that is based on the
verification method, which was previously developed by the author.
Scalability means that verification efforts do not depend on the model
size (i.e. the number of processors in the system under verification).
The article presents an approach to the development of formal Pro-
mela models of cache coherence protocols and shows examples taken
from the Elbrus-4C protocol model. The resulting formal models con-
sist of language constructs that directly reflect the way protocol de-
signers describe their developments. The paper describes the develop-
ment of the tool, which is written in the C++ language with the
Boost.Spirit library as parser generator and automatically performs
the syntactical transformations of Promela models. These transfor-
mations are part of the verification method. The procedure for refine-
ment of the transformed models is presented. Finally, the overall ver-
ification technique is described. The technique has been successfully
applied to verification of the MOSI protocol implemented in the El-
brus computer systems. Experimental results show that computer
memory requirements for parameterized verification are negligible
and the amount of manual work needed is acceptable.

Keywords—multicore microprocessors, shared memory multiproces-
sors, cache coherence protocols, model checking, Spin, Promela.

I. INTRODUCTION
Shared memory multiprocessors constitute one of the most

common classes of high-performance computer systems. In par-
ticular, multicore microprocessors, which combine several pro-
cessors (cores) on a chip, are widely used [1]. The number of
cores is constantly increasing. The presence of cache memories
that are local to each core determines the need for ensuring co-
herent memory state. To satisfy the need, microprocessor devel-
opers design and implement in hardware cache coherence pro-
tocols [2].

Cache coherence mechanisms are extremely complex.
Therefore, both the design and their implementation are error-
prone. Being especially critical, protocol bugs should be re-
vealed before implementing the hardware. The widely recog-
nized method for protocol verification is model checking [3]. It
is fully automated, but suffers from a principal drawback – it is
not scalable due to the state space explosion problem. Verifica-
tion of a cache coherence protocol for five or more processors
is impossible (at least, highly problematic) with the traditional
methods [4].

To overcome the problem and develop scalable verification
technologies, researchers focus mostly on verification of pa-
rameterized designs [3]. Previous articles of the author [5–8]
presented a method for parameterized verification of cache co-
herence protocols. The author successfully applied the method

to verification of the cache coherence protocol of the Elbrus-4C
computing system. This paper presents an approach to the de-
velopment of formal Promela models that can be analyzed by
the verification method, describes the development of the tool
that performs transformations of Promela models according to
the method and presents the overall verification technique.

The paper is structured as follows. Section 2 takes a brief
look at related work and provide the necessary links. Section 3
considers the question development of Promela models of cache
coherence protocols. In Section 4, we describe how to perform
parameterized verification of the Promela models in a semi-au-
tomatic way. We examine the development of the tool that au-
tomates parts of the verification method used. We present a
technique for cache coherence protocols verification. Section 5
provides experimental results on using the technique for verify-
ing the Elbrus-4C protocol. Section 6 summarizes the work and
defines further research directions.

II. RELATED WORK
This work extends the previous works [5–8] by dealing with

the question of practical application of the method for parame-
terized verification of cache coherence protocols presented in
those works.

Article [5] presents a review of related work and gives the
motivation for development of a new method. The developed
method is based upon works [9–13] that present a method of
compositional model checking, which is based on syntactical
transformations of models written in the Mur𝜑𝜑 language and
counterexample-guided abstraction refinement.

The method [5–8] is used in the context of the following
verification process:

1. Development of formal models of cache coherence pro-
tocols.

2. Parameterized verification by means of the method.

III. DEVELOPMENT OF FORMAL MODELS
It is highly desirable to have a modeling language that al-

lows us to conveniently describe cache coherence protocols. To
choose or develop such a language, we need to define a mathe-
matical model of cache coherence protocols.

In accordance with the microprocessor system model that is
used in work [2] for representation and analysis of cache coher-
ence protocols, I chose to model cache coherence protocols as
a set of communicating finite-state machines.

80 из 190

An element of this set may be either a cache controller or
the system commutator. Let us define these notions. Each
memory device of the microprocessor is operated by a coher-
ence controller, which is a finite-state machine. Coherence con-
trollers are coordinated by a special device – the system com-
mutator – that is also a finite-state machine. A set of these ma-
chines constitutes a distributed system, in which the machines
communicate by message passing in order to maintain cache co-
herence.

Each coherence controller connected with cache memory
logically implements a set of independent and identical finite-
state machines, one for each cache line. These machines are
called cache controllers. Due to the independence and identity
of cache controllers, it is customary to reflect only one cache
line in the models of cache coherence protocols.

The states of cache controllers are divided into two classes:
Stable states and transient states. Stable states of cache control-
lers are often the subset of the common set Modified, Owned,
Exclusive, Shared, Invalid [2]. Transitions between these states
are not atomic and occur through transient states. Transient
states are specific to each microprocessor and their presence is
one of the factors that determine high verification complexity.

Conditions that define correctness of cache coherence pro-
tocols are formulated as statements about stable states, for ex-
ample: “Cache line can never be in Modified state in two caches
simultaneously” [5]. Such statements belong to the class of in-
variant properties [14].

Usage of a set of communicating finite-state machines as
the model of cache coherence protocols and invariant properties
for specification defined the choice of the Promela language for
modeling cache coherence protocols:

• In contrast to other languages (for example, Mur𝜑𝜑 and
NuSMV), Promela provides process types and the means of
synchronous and asynchronous interprocess communication
(channels).

• Promela provides convenient specification language,
which is Linear Temporal Logic (LTL).

• Spin – the system that implements Promela – provides
different verification algorithms and optimizations, and is a
modern and constantly developing tool.

The question of development of formal models of cache co-
herence protocols is insufficiently covered in the literature.
Here, I present an approach to the construction of such models.
According to the approach, a formal model of a cache coherence
protocol of a system with 𝑛𝑛 cores consists of 𝑛𝑛 Promela pro-
cesses for cache controllers and one Promela process for the
system commutator.

For the considered cache coherence protocols, the following
property holds: Only one initial request may be in process at a
given point in time. System commutator performs a sequence
of steps during the request processing, for example, the recep-
tion of the initial request and its analysis, sending of snoop- and
other requests according to the results of the analysis, reception

of the answers to these requests. Initial requests correspond to
the memory access instructions that the processor core is exe-
cuting. Reception of messages from other devices can only oc-
cur at particular steps. Thus, it is convenient to represent the
system commutator as a Promela process whose body simply
consists of operators that follow each other (Figure 1).

proctype system_commutator() {
again:
<receive initial request>
<analyze the initial request>
<send coherent requests>
 <receive answers to coherent requests or the

request completion message>
<finalize the request processing>
goto again }

Figure 1 – Structure of the System Commutator Process

Cache controllers operate differently. On the one hand, we
still may identify a number of steps, for example, sending an
initial request, changing state from stable to transient, receiving
snoop-requests. On the other hand, the relative order of these
steps is often unspecified, and the same messages from other
devices may be processed in different states of a cache control-
ler. Thus, it is convenient to represent processes of this kind as
infinite do-cycles consisting of the guarded commands (Figure
2).

proctype cache_controller() {
do
:: <send initial request from main states>
:: <receive and process snoop-requests>
:: <receive answers to coherent requests>
:: <send the completion message>
od }

Figure 2 – Structure of Cache Controller Processes

See papers [5, 6, 8] for more details on how to organize pro-
cesses and their communication.

For example, modeling of a situation in which cache con-
troller sends an initial request and the system commutator re-
ceives it, may be performed as follows:

mtype cache[N] = I; // states of cache line
proctype cache_controller(byte i) {
do
:: atomic {cache[i] == I –>
// send initial request and change state
if :: ini_req_chan ! R, i; cache[i] = WR;
 :: ini_req_chan ! RI, i; cache[i] = WRI;

...
fi }
...
od }

81 из 190

proctype system_commutator(byte i) {
message_t message;
again:
// receive initial request
atomic {ini_req_chan ? message;

 curr_command = message.opcode;
 curr_client = message.requester;

}
if :: atomic {
// send snoop-request as a response
// to the initial request
curr_command == R –>

coh_req_chan[0] ! snR, curr_client; ...
}
...
// receive acknowledgement
final_ack_chan ? message;
goto again; }

As another example, reception of a snoop-request by cache
controller and generation of the response can be modeled as fol-
lows:

proctype cache_controller(byte i) {
do
...
:: atomic {nempty(coh_req_chan[i]) ->
 // receive snoop-request

coh_req_chan[i] ? message;
if ...
 // analyze state...
:: cache[i] == WI_O
 // ... and the snoop-request type
 && message.opcode == snI ->
 // send corresponding answer

coh_ans_chan ! ack, i;
cache[i] = WRI;

... fi }

... od
}

Developers of cache coherence protocols describe and rea-
son about their protocols in terms of message passing, and, as
these examples show, their reasoning can be directly expressed
in Promela. Moreover, the proposed organization of Promela
processes allows verification engineers to perform quick
changes that are needed to reflect the modifications of the cache
coherence protocol under verification that occur in the course
of its development.

IV. PARAMETERIZED VERIFICATION OF CACHE COHERENCE
PROTOCOLS

The method for parameterized verification of cache coher-
ence protocols presented in works [5, 6, 8] consists of two
stages:

1. Performing the syntactical transformations of Promela
models.

2. Refining the obtained model in accordance with the pro-
posed procedure.

Model transformations have the following effect:

1. Reduction of the number of processes from 𝑛𝑛 + 1 (𝑛𝑛
cache controller processes and one system commutator process)

to 4: two fully functioning cache controller processes, one ab-
stract cache controller process that models the environment of
the two processes, and the system commutator process. This
transformation is possible due to the symmetry inherent in mod-
els of cache coherent protocols (all cache controller processes
are identical and interchangeable, they do not have behaviors
that depend on a particular process index value) and because the
specification of cache coherence protocols only contains prop-
erties that regard the state of cache line in two caches.

2. Syntactical transformations of Promela operators consti-
tuting the model.

These transformations preserve invariant properties. This
means that if such a property is true for the reduced model, then
it is true for the initial model. A mathematical proof of the cor-
responding theorem is presented in articles [5, 6, 8].

A. Performing the Syntactical Transformations
The syntactical transformations presented in [5, 6, 8] may

be performed manually. However, manual model modification
is a very tedious, laborious and error-prone process. Moreover,
some of the errors made may go undetected, as they will only
lead to incorrect state space reduction and not to counterexam-
ples. Therefore, it is highly desirable to perform the transfor-
mations automatically. To achieve that, I have developed a ded-
icated tool. With this tool, the verification engineer simply pro-
vides their Promela model as input to the tool, and the tool gen-
erates the transformed Promela model.

To automate the syntactical transformations, I have used a
widespread approach to this kind of problems, according to
which a tool builds the abstract syntax tree that represents the
syntactical structure of the source code and then performs the
transformations upon the tree traversal (Figure 3).

Internal
representation

Concrete
Promela model

Modified
internal

representation
Abstract

Promela model

Promela translator and model
transformations subsystem

Figure 3 – Scheme of Automated Model Transformation

Abstract syntax trees are usually constructed by parsers.
There are two ways of parser implementation: manual and by
means of a parser generator tool (for example, Bison, ANTLR,
Boost.Spirit). Due to the unnecessary complexity of the first ap-
proach, I have chosen the second one.

The Boost.Spirit library was chosen as the parser generator,
because:

• Boost.Spirit promotes modern usage of the C++ lan-
guage that allows us to work with abstractions, which are suita-
ble for a given domain, without performance loss.

• Boost.Spirit eliminates the need for additional tools like
Bison or ANTLR: The only tools needed are a C++ compiler
and the Boost library.

82 из 190

• The grammars that Boost.Spirit accepts are attributed,
which results in a very convenient way of abstract syntax tree
generation.

• Boost.Spirit contains a number of built-in parsers.

• The generated parsers are very efficient [15].

The mechanism of synthesized and inherited attributes al-
lows us to simplify the task of abstract syntax tree generation
by dividing it into two sequentially performed subtasks:

1. Development of the grammar, testing and debugging of
the grammar. During this step, we only need to focus on the
question of whether the grammar can correctly determine the
syntactical correctness of a Promela model.

2. Development of data structures for the nodes of the ab-
stract syntax tree and definition of the types of attributes of the
grammar rules. The attribute mechanism allows Boost.Spirit to
generate abstract syntax trees automatically, without any need
for the addition of node construction operators to the grammar.

Usage of the abstract syntax tree generated by Boost.Spirit
as an intermediate representation of Promela models allowed us
to divide the task of performing the syntactical transformations
automatically into three subtasks:

1. Development of Promela grammar in the C++ language
by means of Boost.Spirit.

2. Development of data structures for abstract syntax tree
representation.

3. Development of algorithms for abstract syntax tree tra-
versal and abstract model generation.

Promela grammar is presented in [16]. Its implementation
in C++ using Boost.Spirit looks similarly to that description.
However, as Boost.Spirit generates recursive descent parsers, I
have eliminated left recursion from the grammar.

Data structures for the nodes of abstract syntax tree are de-
veloped according to the information that we want the nodes to
represent and attribute propagation rules defined in
Boost.Spirit’s documentation. In the developed tool, data struc-
tures that correspond to the synthesized attributes of the Pro-
mela grammar rules, contain information about nonterminals
that are part of the rules. This is a very straightforward and con-
venient way of implementation of these data structures. For ex-
ample, the following rule that describes the nonterminal “mod-
ule” of the Promela grammar

qi::rule<Iter, module(), Skipper> module;
module =

proctype
| init
| ltl
| utype
| mtype
| decl_lst
| ';' ;

has a synthesized attribute of type module, which is imple-
mented as follows:

using module = boost::variant<

proctype,
init,
ltl,
utype,
mtype,
decl_lst
>;

All the other nonterminals mentioned in this example have
synthesized attributes of types implemented in a similar way.

The abstract syntax tree, which is generated automatically
by Boost.Spirit based on the grammar and the attribute mecha-
nism, consists of nodes of different types. Traversal of such tree
is performed uniformly by means of visitors, as advocated by
the Boost.Spirit documentation.

The syntactical transformations are performed during the
abstract syntax tree traversal. I classified the transformations,
most of which turned out to be in one of the three categories
(transformations of assignments, transformations of expres-
sions, transformations of communication actions), and precisely
described them. To automatically carry them out, I have devel-
oped a number of abstract syntax tree modification algorithms
and implemented them as part of the visitation mechanism.
Printing out the modified syntax tree gives us the abstract Pro-
mela model.

For example, when generating the code for the abstract pro-
cess, the following piece of Promela code

proctype cache_controller(byte i) {
do
...
:: (cache[i] == M_MAU || cache[i] == M_MAU_I)
&& (message.opcode == wb_ready) ->

final_ack_chan ! data, i;
cache[i] = I

is transformed into
proctype cache_controller_abs(byte i) {
do
...
:: true ->

final_ack_chan ! data, i;

This example demonstrates the transformations of expres-
sions and the assignment operator.

B. Abstraction Refinement
Execution of each type of initial requests consists of a par-

ticular sequence of events presented in the cache coherence pro-
tocol documentation. Considerations about the ordering of the
events inspired the following refinement procedure:

1. For each type of initial requests define (according to the
documentation) a partially ordered set (𝐴𝐴,≺) of events (≺ is a
strict partial order):

∀𝑎𝑎1, 𝑎𝑎2 ∈ 𝐴𝐴: 𝑎𝑎1 ≺ 𝑎𝑎2, if action 𝑎𝑎1 occurs earlier than action
𝑎𝑎2.

2. While there are false counterexamples:

2.1. Find action 𝑎𝑎 that lead to the appearance of the
counterexample. Find set 𝐴𝐴 that contains action 𝑎𝑎: 𝑎𝑎 ∈ 𝐴𝐴. In set

83 из 190

𝐴𝐴 find action 𝑏𝑏 such that 𝑏𝑏 ≺ 𝑎𝑎.

2.2. Introduce a logical variable 𝑎𝑎𝑎𝑎𝑥𝑥𝑏𝑏 with the initial
value 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓. In the model, replace 𝑏𝑏 with the atomic sequence
𝑏𝑏; 𝑎𝑎𝑎𝑎𝑥𝑥𝑏𝑏 ≔ 𝑡𝑡𝑡𝑡𝑎𝑎𝑓𝑓.

3. By means of the logical AND, add 𝑎𝑎𝑎𝑎𝑥𝑥𝑏𝑏 to the guard of
the command that contains action 𝑎𝑎. Replace 𝑎𝑎 with the atomic
sequence 𝑎𝑎; 𝑎𝑎𝑎𝑎𝑥𝑥𝑏𝑏 ≔ 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓.

For example, for one type of initial requests defined for the
Elbrus-4C microprocessor, the set (𝐴𝐴,≺) is as follows. Here,
𝑐𝑐𝑐𝑐𝑖𝑖 denotes the 𝑖𝑖th cache controller.

{𝑎𝑎0 = processing of the previous request from process
𝑐𝑐𝑐𝑐𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 is finished,

𝑎𝑎1 = requester 𝑐𝑐𝑐𝑐𝑖𝑖 sends an initial request,
𝑎𝑎2 = 𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑠𝑠_𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡 receives the initial request,
𝑎𝑎3 = 𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑠𝑠_𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡 sends snoop-requests to all

𝑐𝑐𝑐𝑐𝑗𝑗 , 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 𝑗𝑗 ≠ 𝑖𝑖,
𝑎𝑎4 = 𝑐𝑐𝑐𝑐𝑗𝑗 receives a snoop-request, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 𝑗𝑗 ≠ 𝑖𝑖,
𝑎𝑎5 = 𝑐𝑐𝑐𝑐𝑗𝑗 sends an answer to the snoop-request to the re-

quester,
𝑎𝑎6 = the requester receives the coherent answer from 𝑐𝑐𝑐𝑐𝑗𝑗,
𝑎𝑎7 = the requester sends the operation completion message

to 𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑠𝑠_𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡,
𝑎𝑎8 = 𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑠𝑠_𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡 receives the operation com-

pletion message}.

The relation ≺ is defined as follows: ∀𝑖𝑖, 𝑗𝑗 = 0, … , |𝐴𝐴| −
1: 𝑖𝑖 < 𝑗𝑗 ⇒ 𝑎𝑎𝑖𝑖 ≺ 𝑎𝑎𝑗𝑗. We identify the auxiliary variables with the
elements of the set 𝐴𝐴.

Refinement of the abstract model of the Elbrus-4C cache
coherence protocol required us to introduce two auxiliary vari-
ables, because there were two spurious counterexamples. Let us
examine the introduction of the first variable.

The analysis of the first counterexample showed that the ab-
stract process had sent the operation completion message to
𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑠𝑠_𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡 before 𝑓𝑓𝑠𝑠𝑓𝑓𝑡𝑡𝑓𝑓𝑠𝑠_𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡 received
a coherent answer. Examination of the set 𝐴𝐴 allows us to con-
clude that action 𝑎𝑎7 happening at the wrong time led to the
counterexample. According to the refinement procedure, in the
set 𝐴𝐴 we find action 𝑎𝑎6 and introduce an auxiliary variable
ack_received with the initial value 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓. Then we replace
the operator that corresponds to 𝑎𝑎6 with the atomic sequence
consisting of this operator and the operator that assigns 𝑡𝑡𝑡𝑡𝑎𝑎𝑓𝑓 to
ack_received. After this, we add ack_received to the
guard of the command of the abstract process that contains 𝑎𝑎7
and replace the operator that corresponds to 𝑎𝑎7 with the atomic
sequence consisting of this operator and the operator that as-
signs 𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓 to ack_received. Thus, we guarantee that the be-
havior of the abstract process that led the false counterexample
will no longer be exhibited.

C. Verification Technique
According to the results obtained by the author in this and

the previous works, the proposed verification technique consists
of the following steps (Figure 4):

1. Development of a concrete Promela model of the cache
coherence protocol under verification. Using the proposed ap-
proach to model description, verification engineer develops
Promela processes that model cache controllers and the system
commutator and the necessary infrastructure elements (channel
definitions, process creation). Specific actions performed by the
processes correspond to the cache coherence protocol documen-
tation.

2. Development of the abstract Promela model of the cache
coherence protocol under verification. This step is performed
automatically by the developed tool.

3. Verification of the abstract model. This step is the usual
verification process of Promela models using the Spin model
checker [17].

4. Analysis of the verification report generated by Spin. If
there are no errors, then the verification process is finished with
the conclusion that the cache coherence protocol is correct. If
the report states the presence of an error, then the verification
engineer should analyze the corresponding counterexample. If
the engineer concludes that the counterexample is spurious be-
cause the corresponding sequence of steps is impossible in a real
system, then the engineer refines the model in accordance with
the proposed procedure and goes to step 3. Otherwise, if the
counterexample represents an actual error in the cache coher-
ence protocol, then the error is reported. When the protocol de-
velopers fix the error, the verification engineer incorporates the
changes into the model and starts the verification process again
(goes to step 1).

This sequence of steps is repeated until there are no coun-
terexamples.

Initial Promela
model

Internal
representation - AST

Transformed AST

Spin
model checker

Verification
report

Human verifier

False
counterexample:

Refine the
abstract model

Error in the protocol:
1. Report it to the

developers
2. Fix the initial model

No errors:
Verification
Complete

System for the
abstract model
construction

Abstract
Promela model

Figure 4 – Scheme of the Verification Process

V. EXPERIMENTAL RESULTS
The proposed method was used to verify the MOSI family

cache coherence protocol implemented in the Elbrus-4C com-
puter system. The abstraction refinement step was completed
after the introduction of two auxiliary variables.

Table 1 and Table 2 show resources consumed for checking
the property

𝐆𝐆{¬(𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝑓𝑓[1] = 𝑀𝑀 ∧ 𝑐𝑐𝑎𝑎𝑐𝑐ℎ𝑓𝑓[2] = 𝑀𝑀)},

84 из 190

respectively, on the original and the refined abstract model.
Spin’s optimization COLLAPSE was used. The experiments
were performed on an Intel Xeon E5-2697 machine with a clock
rate of 2.6 GHz and 264 Gb of RAM.

Table 1. Required resources — original model

Number of
cores

State space
size

Memory
consumption

Verification
time

3 5.1 × 106 328 Mb 15 s
4 1.3 × 109 81 Gb 1.5 h

Table 2. Required resources — abstract model

Number of
cores

State space
size

Memory
consumption

Verification
time

any > 2 2.2 × 106 108 Mb 6.2 s

The tables show that even for 𝑛𝑛 = 3 there is a gain in state
space size and memory consumption. The needed amount of
manual work is acceptable. Meanwhile, verification of the con-
structed abstract model means verification of the protocol for
any 𝑛𝑛 ≥ 3. The task has been reduced to checking of ~106
states, which consumes ~100 Mb of memory.

VI. CONCLUSION
Many high-performance computers and most multicore mi-

croprocessors use shared memory and utilize complicated cach-
ing mechanisms. To ensure that multiple copies of data are kept
up-to-date, cache coherence protocols are employed. Errors in
the protocols and their implementations may cause serious con-
sequences such as data corruption and system hanging. This ex-
plains the urgency of the corresponding verification methods.

The main problem when verifying cache coherence proto-
cols (and other systems with a large number of components) by
a fully automated method of model checking is state explosion.
The article proposes a technique to overcome the problem for
cache coherence protocols and make verification scalable. The
price paid for scalability is acceptable, because the main ingre-
dient – the verification method – is highly automated by the de-
veloped tool. Part of the method that requires manual work,
namely, model refinement, can be done with a reasonable
amount of effort, as shown by means of the Elbrus-4C protocol
verification example. An approach to describing protocol mod-
els in Promela, a widely spread language in the verification
community, is proposed. This approach lets us reflect the way
protocol designers talk about protocols by representing proto-
cols as a set of communicating finite-state machines.

The technique was successfully applied to the verification
of the MOSI family cache coherence protocols implemented in
the Elbrus-4C computer system.

Directions for future research include:

1. Development of methods and tools for verification of
cache coherence protocols that are implemented by multiple
levels of cache. The newest microprocessors (for example, El-
brus-8C, which employs the second- and third-level caches to

implement cache coherence) define the need for such methods
and tools.

2. Development of methods and tools for verification of
hardware implementations of cache coherence protocols. In this
direction, I have developed a tool that generates assembly code
based on Promela models of cache coherence protocols. With
this tool, I have found several dozen errors in the implementa-
tion of cache coherence in Elbrus microprocessors. Still, further
research is needed to increase the level of confidence in design
correctness.

REFERENCES
[1] Patterson D.A., Hennessy J.L. Computer Organization and

Design: The Hardware/Software Interface. Morgan Kaufmann,
2013. 800 p.

[2] Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory
Consistency and Cache Coherence. Morgan and Claypool, 2011.
195 p.

[3] Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT
Press, 1999. 314 p.

[4] Burenkov V.S. Analiz primenimosti instrumenta SPIN k
verifikacii protokolov kogerentnosti pamyati (An analysis of the
SPIN model checker applicability to cache coherence protocols
verification) // Voprosy radioehlektroniki. Ser. EVT. 2014.
Vyp. 3. P. 126-134.

[5] Burenkov V.S., Kamkin A.S. Checking Parameterized
PROMELA Models of Cache Coherence Protocols // Proc. of the
Institute for System Programming. 2016. Vol. 28, Issue 4. P. 57-
76.

[6] Burenkov V.S., Kamkin A.S. Metod masshtabiruemoi verifikacii
PROMELA-modelei protocolov kogerentnosti kesh-pamyati (A
Method for Scalable Verification of PROMELA Models of Cache
Coherence Protocols) // Sb. trudov VII Vserossiiskoi nauchno-
technicheskoi konferencii “Problemi razrabotki perspectivnih
micro- i nanoelektronnih sistem”. 2016. Chast II. P. 54-60.

[7] Burenkov V.S., Kamkin A.S. Applying Parameterized Model
Checking to Real-Life Cache Coherence Protocols // Proc. of
IEEE East-West Design & Test Symposium. 2016. P. 1-4.

[8] Burenkov V.S., Ivanov S.R. Metod postroeniya abstraktnih
modelei, ispolzuemih dlya verifikacii protocolov kogerentnosti
kesh-pamyati (A Method for Construction of Abstract Models
Used for Verification of Cache Coherence Protocols) // Vestnik
MGTU im N.E. Baumana. 2017. Vipusk 1. P. 49-66.

[9] McMillan K. Parameterized Verification of the FLASH Cache
Coherence Protocol by Compositional Model Checking //
Conference on Correct Hardware Design and Verification
Methods, 2001. P. 179-195.

[10] Chou C.-T., Mannava P.K., Park S. A Simple Method for
Parameterized Verification of Cache Coherence Protocols //
Formal Methods in Computer-Aided Design, 2004. LNCS,
Vol. 3312, P. 382-398.

[11] Krstic S. Parameterized System Verification with Guard
Strengthening and Parameter Abstraction // International
Workshop on Automated Verification of Infinite-State Systems,
2005.

[12] Talupur M., Tuttle M.R. Going with the Flow: Parameterized
Verification Using Message Flows // Formal Methods in
Computer-Aided Design, 2008. P. 1-8.

[13] O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using
Flows: An Industrial Experience // Formal Methods in Computer-
Aided Design, 2009. P. 172-179.

[14] Baier C., Katoen J.-P. Principles of Model Checking. The MIT
Press. 2008. 984 p.

85 из 190

[15] de Guzman, J. Fastest numeric parsers in the world! http://boost-
spirit.com/home/2014/09/03/fastest-numeric-parsers-in-the-
world/.

[16] Spin Version 6 – Promela Grammar.
http://spinroot.com/spin/Man/grammar.html.

[17] Holzmann, G. The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley. 2004. 608 p.

86 из 190

High Level Model-Based Test Generation for
Digital Hardware

Mikhail Chupilko∗, Alexander Kamkin∗†‡, Mikhail Lebedev∗, Sergey Smolov∗
∗Institute for System Programming of the Russian Academy of Sciences (ISP RAS)

25 Alexander Solzhenitsyn st., Moscow, 109004, Russian Federation
Email: {chupilko, kamkin, lebedev, smolov}@ispras.ru

†Lomonosov Moscow State University (MSU)
GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation
‡Moscow Institute of Physics and Technology (MIPT)

9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russian Federation

Abstract—The paper presents a new method for automated
test generation for digital hardware descriptions. Test goals are
stuck-at fault detection and a high level of design’s source code
coverage achievement. The method is based on model checking
and data flow analysis. Extended finite state machines and high-
level decision diagrams are used for modeling of hardware de-
scriptions. Both categories of models are automatically extracted
from the source code.

I. INTRODUCTION

Functional verification and testing are resource- and time-
consuming activities of the digital hardware design process
[1]. To increase automation, models of hardware designs are
frequently used. The models are mathematical abstractions that
describe the target system’s structure and behavior. There is a
huge variety of verification-related problems that can be solved
with the help of models: checking for the system’s functional
correctness [2], directed test generation [3], etc.

Today hardware design process consists of the following
stages: 1) architecture design; 2) detailed design; 3) logic syn-
thesis; 4) physical synthesis. The first stage includes require-
ment collecting and analysis. Requirements describe common
structure of the system under development and formats of data
exchanges between separate sub-components. At the second
stage, the structure and cycle-accurate detailed description
of the system behavior at the register transfer level (RTL)
are described. This stage results in a digital hardware repre-
sentation written in a hardware description language (HDL),
like VHDL or Verilog [4]. The syntax of these languages is
close to such traditional programming languages, like C or
Ada. The third stage consists of a translation of the HDL
description into a logic circuit format, for example, BLIF
[5]. It represents a hardware design as a network of logical
components called gates that are connected to each other.
Each gate implements a Boolean function. The last stage is
usually performed automatically by the modern CAD tools
and results in a silicon chip layout. Due to the modern chips’
increasing complexity, reduction of testing-related expenses
(both in generation and in simulation) and early test generation
tend to be challenging and most-wanted tasks.

The paper considers models that are automatically extracted
from the source code of the target HDL design. Model-based
tests show high level of source code coverage along with
relatively short lengths in terms of simulation ticks [6]. But
when applied during one of the abovementioned stages of
the design process, like logic synthesis, they can decrease its
effectiveness [7]. This results from the fact that high-level tests
do not take into account the low-level fault models.

This paper continues the research that was initiated in
[7]. Several test generation methods have been applied to
detect so-called mutants - modifications of the target hardware
description with injected errors. The error is considered to be
detected by a test, when the mutant and the target descriptions
have returned different output values for the same input test
sequence. The method’s error detection efficiency is calculated
as the amount of mutants that have been detected.

The rest of the paper is organized as follows. Section 2
describes high-level models that are used in the proposed
test generation method and gives a brief description of the
fault model. Section 3 summarizes related works about the
applying of model-based tests to low-level fault detection.
Section 4 describes the proposed approach. Section 5 reports
experimental results. Section 6 gives an idea of possible
enhancement of the approach. Section 7 discusses the results
of the work and concludes the paper.

II. PRELIMINARIES

Let V be a finite state of variables. A valuation is a function
that associates a variable v ∈ V with a value [v] from the
corresponding domain. Let DomV be a set of all valuations
of V . A guard is a Boolean function defined on valuations
(DomV → {true, false}). An action is a transformation
of valuations: DomV → DomV . A pair γ → δ, where γ
is a guard and δ is an action, is called a guarded action.
It is implied that there is a description of every function in
some HDL-like language (thus, we can reason about not only
semantics, but syntax).

An extended finite state machine (EFSM) is a tuple M =
〈SM , VM , TM 〉, where SM is a set of states, VM = (IM ∪
OM ∪ RM) is a set of variables, consisting of inputs (IM),

87 из 190

outputs (OM) and registers (RM), and TM is a set of tran-
sitions (all sets are supposed to be finite). Each transition
t ∈ TM is a tuple (st, γt → δt, s

′
t), where st and s′t are

respectively the initial and the final state of t, whereas γt
and δt are respectively the guard and the action of t. A
valuation ν ∈ DV M is referred to as a context, while a pair
(s, ν) ∈ SM ×DV M is called a configuration. A transition t
is said to be enabled for a configuration (s,ν), if st = s and
γt(ν) = true.

Given a clock C (a periodic event generator) and an initial
configuration (s0,ν0), the EFSM operates as follows. In the
beginning, it resets the configuration: (s, ν) → (s0, ν0). On
every tick of C it computes the set of enabled transitions:
TE ← {t ∈ TM | st = s ∩ γt(ν) = true}. A single transition
t ∈ TE (chosen nondeterministically) is enabled; the EFSM
changes the configuration (updates the context and moves from
the current state to the final one): (s, ν)← (s′t, δt(ν)).

A logic circuit is a tuple L = 〈GL, VL, EL〉, where GL is
a set of gates, VL is a set of variables, and EL is a set of
edges between gates. Each gate g ∈ GL is a tuple (Ig, og, fg),
where Ig ⊆ IL is a set of gate inputs, og ∈ OL is a gate
output, fg : DomIg → {true, false} is a Boolean function
implemented by the gate g. Each edge e ∈ EL is a tuple
(ge, ve, g′e). where ge and g′e are respectively the initial and
the final gates of e, whereas ve is a variable which value is
transmitted through the edge: ve ∈ (Ig′

e
∩ {oge}).

For test generation method comparison a well-known fault
model, called stuck-at fault model, is used. The idea is to
corrupt Boolean functions of some gates in such a way, that
they will return either true (stuck-at-1) or false (stuck-at-
0) for all possible combinations of gate inputs. This model
is frequently used for modeling manufacturing flaws at the
physical synthesis stage.

III. RELATED WORK

This chapter gives an overview of model-based test gen-
eration methods that are aimed at stuck-at fault coverage.
[8] proposes an approach to functional test generation for
VHDL designs. The method consists of the following stages:
1) automated translation of a HDL description into the binary
decision diagram form; 2) stuck-at fault insertion into the
BDD; 3) distinguishing test generation for a XOR composition
of a fault-free BDD and a fault-containing BDD; 4) additional
constraint generation for test application at the multi-module
design level. For HDL-to-BDD translation, the approach uses
the [9] method, that has some limitations in supported HDL
coding style. In [10] a combined approach is proposed. It
uses two kinds of models: a high-level decision diagram
(HLDD) and an EFSM. An HLDD is a generalization of
BDD; non-terminal nodes of the diagram could be marked
not only by Boolean but arbitrary expressions. In the proposed
approach an HLDD model is automatically extracted from an
HDL description and a test is generated that covers all the
diagram branches (for every HDL variable a separate diagram
is extracted). Generated tests are passed to the next component,
that simulates their execution on an EFSM model that is also

extracted from the HDL code. For EFSM transitions that were
not covered by the HLDD-based tests a backjumping technique
is used to cover them too. The paper [6] proposes another
EFSM-based approach that fixes several issues of [10] at test
generation phase and uses another EFSM extraction approach.
The experiments have shown that the new tests are shorter
than the tests generated by [10], keeping the same HDL code
coverage level. In [7] the method [6] has been experimentally
evaluated along with another one, that uses ABC [11] equiva-
lence checker for distinguishing sequences generation at BLIF
level. The EFSM-based method demonstrates the higher HDL
coverage level and shorter tests than ABC-based one, but lower
levels of stuck-at fault coverage.

IV. PROPOSED APPROACH

This paper is dedicated to the model-checking based ap-
proach [12] of the functional test generation for HDL de-
scriptions and enhancements aimed at the increasing of stuck-
at fault coverage level. The method flow is shown on the
Figure 1.

Fig. 1. Model checking-based method of test generation for HDL descriptions

The method uses two kinds of models that are extracted
from the HDL code. The first one is a system model that is
based on an HLDD formalism. The second one is a coverage
model that is built from the EFSM. Both HLDD and EFSM
models are automatically extracted from the HDL code. Some
preliminary transformations are performed: the common inner
representation, based on the control flow graph model, is
built (see [12] and [13] for more details). The system model
is a set of HLDDs related to every inner variable of the
target HDL design. The coverage model is a set of conditions
(specifications) extracted from the EFSM model. The EFSM
model consists of the EFSMs that are extracted from every
process of HDL description. The EFSM states contain Boolean
expressions that are dependent on the state-like registers
(SLR). The SLR are chosen with the help of dataflow-based
heuristics, but can also be user-defined. The EFSM transitions
are extracted from execution paths of the HDL description. All
the EFSMs are deterministic – SLR-using expressions that are
related to different states, are mutually incompatible.

EFSM-based specifications represent reachability conditions
for EFSM transitions. The linear temporal logic (LTL) is used
to describe them. Let s ∈ SM is a state of an EFSM M , c(s)
is a related SLR-using Boolean expression and t ∈ TM is an
outgoing transition (st = s). In terms of LTL the reachability
condition is as follows: ¬F(c(s) ∧ γt)), where F(x) means
that the x condition will become true in a ”future” moment.

88 из 190

Following the steps of the method [12], the system model
and the coverage model are automatically translated into an
input format of a model checker tool. The tool generates a
number of counterexamples – sequences of input signals, that
prove the contradiction between the specifications and the
model. Since the specifications are formulated as negations,
the counterexamples contain sequences of stimuli that reach
the related EFSM transitions. Counterexamples can be easily
translated into the HDL testbench form and can be executed
by an HDL simulator.

The method is aimed at EFSM transition (and, again,
HDL execution path) coverage. Another key feature of the
method is flexibility in terms of specifications. Having another
specifications, new kinds of errors can be covered by tests. So,
the only thing to be changed to increase stuck-at fault coverage
is the coverage model.

V. EXPERIMENTS

The described model checking based method was im-
plemented in Java programming language as a part of the
Retrascope 0.2.1 software tool [15]. Fortress [16] formulae
manipulation library and nuXmv [17] model checker were
used. A subset of ITC’99 benchmark [18] was chosen for
testing.

Three test generation methods have been compared: the
described one (called ”SMV”), the EFSM-based one (called
”RETGA”) [6], and the equivalence-checking based one
(called ”ABC”) [7]. The last method generates distinguishing
sequences for the mutants represented in BLIF format; the
ABC [11] tool is used by this method.

Two metrics have been used for test comparison: the length
in ticks and the fraction of detected mutants. A tool prototype
called DTESK has been implemented for mutant generation.
Taking the specified fault model type and the input HDL
design, the tool generates a set of mutants along with simple
testbenches. Every testbench contains one instance of the
original design and one instance of the corresponding mutant.
The testbench takes input values from the text file, passes
them both to the mutant and the original design and then
compares their outputs with XOR composition. If at some tick
the comparison result is true, then the mutant is treated to be
detected by the test.

Table I contains information about the ITC’99 designs
that were used for test generation: the source code size, the
corresponding formal model size (without specifications), the
number of stuck-at fault mutants.

Table II contains the test-related information: the length in
ticks and the percentage of mutants that were detected. Gen-
erated tests were simulated by the QuestaSim HDL simulator
[19].

The experimental comparison results are as follows. For
some designs (B02, B07) all the methods give 0% coverage
of stuck-at fault errors. Such designs belong to the category
of untestable [20] – their outputs are calculated in such a way,
that the most part of the internal stuck-at faults cannot affect
them. For several designs the described method reaches the

TABLE I
ITC’99 HDL DESCRIPTIONS

Design HDL SMV Number of mutants
B01 102 207 88
B02 70 143 48
B04 101 809 1342
B06 127 442 94
B07 92 370 784
B08 88 315 324
B09 100 263 284

same or close stuck-at fault coverage level (B01, B04, B06)
as the leading one. Note, that in such cases model checking-
based tests are frequently shorter than based on other methods.
Finally, there are some designs (B08, B09), where the both
HDL-based test generation methods reach lower levels of
stuck-at fault coverage, than the ABC-based one. Additional
efforts are needed to be done to cope with such effects. One
possible improvement is described below.

VI. FUTURE IMPROVEMENTS

Since the proposed method uses the EFSM model, the
stuck-at fault concept should be reformulated in these terms.
According to the traditional methodology [14], let an EFSM
model M of an HDL description contains a stuck-at fault,
when for some transition t ∈ TM an assignment a ∈ δt, that
looks like v := h(v̄), is substituted by v := c, where c is a
constant. To make the difference between the error-containing
and error-free EFSMs to be observable, the test should not only
cover the corrupted transition, but transmit erroneous values to
model outputs. So the EFSM transition reachability conditions
should be substituted by propagation trees of erroneous values.

To give necessary formal definitions, data flow dependencies
should be introduced. Let x and y be EFSM transitions (x, y ∈
TM) and v is a variable (v ∈ VM). The variable v is defined
in x (v ∈ Defx), when δx contains an assignment to v. The
variable v is used in y (v ∈ Usey), when v appears either in γy
or on the right-hand side of some assignment(s) from δy . The
transition y depends on the transition x (y ∈ DEP (x)), when
Defx∩Usey 6= ∅. Depending on the way the variable is used
– in the guard or in the action – the control (y ∈ DEPc(x))
and the data (y ∈ DEPd(x)) dependencies are determined.
Self dependencies are also acceptable.

A propagation tree Pt for the transition t ∈ TM is a
directed acyclic graph 〈T ′, D〉. Graph nodes are EFSM model
transitions from the set T ′ ⊆ TM . Graph edges d ∈ D are pairs
of transitions (td, t′d). The transition t′d is a final node of the
edge d, if and only if Deftd ∩ OM 6= ∅ or t′d ∈ DEPd(td).
The specified conditions mean: the tree transition either defines
an output variable of the EFSM model, or is data-dependent on
the parent transition. The propagation tree construction method
is straightforward, for example, a breadth-first search can be
used.

LTL logic can also be used to represent the propagation tree
formalism in the proposed test generation method. The path
from the tree root to one of the leaf nodes is as follows: φ =

89 из 190

TABLE II
TEST GENERATION METHOD COMPARISON

Design ABC (ticks) RETGA (ticks) SMV (ticks) ABC (%) RETGA (%) SMV (%)
B01 227 49 37 90.91 98.86 90.9
B02 86 33 28 0 0 0
B04 − 36 56 − 99.93 99.93
B06 100 76 63 100 100 100
B07 133 166 162 0 0 0
B08 2745 52 31 98.77 79.94 44.44
B09 777 231 55 97.18 0 0

F((c(s0)∧ γ0)∧F((c(s1)∧ γ1)∧ ...F(c(sn)∧ γn)...)), where
n is a number of path nodes. The propagation tree can contain
more than one path, so the following specification should be
used to check all the paths: ¬F(φ0 ∧ φ1 ∧ ... ∧ φm), where
m is a number of paths. Additional experiments are needed to
estimate the effectiveness of this modification.

VII. CONCLUSION

The functional test generation method that is based on an
automated extraction of formal models and checking them is
described in this paper. The main advantage of this method is
the testing purpose flexibility. Any other specifications can be
formulated and checked to generate a test aimed at covering
the corresponding property of a model.

The contribution of this paper is in applying the described
method to stuck-at fault detection. The idea was to reuse tests
generated for HDL designs in low-level hardware description,
such as logic circuits (BLIF), and in testing.

The presented implementation of the method tends to pro-
duce shorter tests than existing approaches on the chosen
hardware design set. Unfortunately, for some categories of de-
signs, it shows small stuck-at fault coverage level. Additional
improvements can be helpful, the one of them is described in
the paper.

Future research directions include the method’s application
to more complex hardware designs. For such designs the
problem of test compaction [21] becomes more and more
important. The described approach uses a simple compaction
technique, that is based on EFSM transition coverage estima-
tion. An experimental comparison with existing methods in
this field ([22]) should also be done.

VIII. ACKNOWLEDGMENT

Authors would like to thank Russian Foundation for Ba-
sic Research (RFBR). The reported study was supported by
RFBR, the research project number is 15-07-03834.

REFERENCES

[1] J. Bergeron. Writing Testbenches: Functional Verification of HDL Models.
Springer, 2003. 478 p.

[2] V.P. Ivannikov, A.S. Kamkin, A.S. Kossatchev, V.V. Kuliamin, A.K. Pe-
trenko. The Use of Contract Specifications for Representing Requirements
and for Functional Testing of Hardware Models. Programming and
Computer Software, 33(5), 2007. 272-282 pp.

[3] P. Mishra, N. Dutt. Specification-Driven Directed Test Generation for
Validation of Pipelined Processors. ACM Transactions on Design. Au-
tomation of Electronic Systems, 13(3), 2008. 1-36 pp.

[4] N.M. Botros. HDL Programming Fundamentals: VHDL and Verilog.
Charles River Media, 2005. 506 p.

[5] Berkeley logic interchange format (BLIF). Berkeley, U.C., Oct Tools
Distribution 2, 1992, 197-247 pp.

[6] I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State
Machine-Based Approach to Code Coverage-Directed Test Generation for
Hardware Designs. Proceedings of ISP RAS, 2015, 27(3), 161-182 pp.

[7] S. Smolov, J. Lopez, N. Kushik, N. Yevtushenko, M. Chupilko,
A. Kamkin. Testing Logic Circuits at Different Abstraction Levels: An
Experimental Evaluation. Proceedings of IEEE East-West Design Test
Symposium (EWDTS), 2016. 189-192 pp.

[8] F. Ferrandi, F. Fummi, L. Gerli, D. Sciuto. Symbolic Functional Vector
Generation for VHDL Specifications. Proceedings of Design, Automation
and Test in Europe Conference and Exhibition, 1999. 442-446 pp.

[9] S. Minato. Generation of BDDs from Hardware Algorithm Descrip-
tions. Proceedings of the 1996 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 1996. 644-649 pp.

[10] G.D Guglielmo, F. Fummi, M. Jenihhin, G. Pravadelli, J. Raik, R. Ubar.
On the Combined Use of HLDDs and EFSMs for Functional ATPG.
Proceedings of IEEE East-West Design and Test Symposium (EWDTS),
2007. 503-508 pp.

[11] R. Brayton, A. Mishchenko. ABC: An Academic Industrial-Strength
Verification Tool. Proceedings of the Computer Aided Verification Con-
ference (CAV), 2010. 24-40 pp.

[12] A. Kamkin, M. Lebedev, S. Smolov. An EFSM-Driven and Model
Checking-Based Approach to Functional Test Generation for Hardware
Designs. Proceedings of IEEE East-West Design and Test Symposium
(EWDTS), 2016. 60-63 pp.

[13] S. Smolov, A. Kamkin. A Method of Extended Finite State Machines
Construction From HDL Descriptions Based on Static Analysis of Source
Code. St. Petersburg State Polytechnical University Journal. Computer
Science, Telecommunications, No.1(212), 2015. 60-73 pp.

[14] T. Chakraborty, S. Ghosh. On Behavior Fault Modeling for Combi-
national Digital Designs. Proceedings of International Test Conference,
1988. 593-600 pp.

[15] Retrascope site – http://forge.ispras.ru/projects/retrascope
[16] Fortress site – http://forge.ispras.ru/projects/fortress
[17] D. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,

S. Mover, M. Roveri, S. Tonetta, The nuXmv symbolic model checker.
Proceedings of the 16th International Conference on Computer Aided
Verification (CAV), No.8559, 2014, 334-342 pp.

[18] ITC’99 benchmark site – http://www.cad.polito.it/tools/itc99.html
[19] QuestaSim site – http://www.mentor.com/products/fv/questa
[20] X. Liu, M.S. Hsiao. On Identifying Functionally Untestable Transition

Faults. Proceedings of the Ninth IEEE International High-Level Design
Validation and Test Workshop, 2004, 121-126 pp.

[21] J.M. Vanfickell. Stuck-at-fault Test Set Compaction. Texas A&M Uni-
versity Undergraduate Research Fellows Thesis, 2004, 29 p.

[22] S. Eggersglüß, R. Wille, R. Drechsler. Improved SAT-based ATPG:
More Constraints, Better Compaction. 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2013, 85-90 pp.

90 из 190

Verification of 10 Gigabit Ethernet controllers

Mikhail Petrochenkov1, Ruslan Mushtakov2, Irina Stotland3
Department of Verification and Modeling

MCST
Moscow, Russia

petroch_m@mcst.ru1, mushtakov_r@mcst.ru3, stotl_i@mcst.ru3

Abstract —This article proposes approaches used to verify 10
Gigabit Ethernet controllers developed by MCST. We present
principles of the device operation and their characteristics. We
describe a set of approaches used to verify such devices and
provide the motivation for the chosen approach. The structure of
the test systems that we used to verify devices and their
components are presented and a set of test scenarios used to verify
the device is described. Special importance in the process
verification is the examination of network characteristics. Some
approaches and techniques for throughput measuring are
described. We provide list of found errors and their distribution
by different types of functionality they affected.

Keywords—10 Gigabit Ethernet, network interface controller,
verification, throughput, UVM, test system.

I. INTRODUCTION

Development of modern computer networks provides the
demand for high speed communication without sacrificing
reliability. The evolution of Ethernet standard (IEEE 802.3 [1])
is an example of ever-rising demand for higher speed networks.
Network interface controller (NIC) is the device that connects
the computer to the network. Reliability and performance of the
controller is very important for organization of modern
networks. Network performance and accuracy of its work as a
whole depends on the quality of implementation of NICs. To
ensure that the controller satisfies all requirements for
performance and reliability, it should be thoroughly verified.

 Various methods of verification are used at all phases of
NIC design flow. Common approaches for the device
verification are physical prototype verification, system
verification and stand-alone verification.

Process of physical prototype verification uses the device
implemented in FPGA as a NIC in a “real” machine.
Characteristics of the approach:

• Test stimuli are generated using operating system
network drivers and signals from physical network (in
our case - third-party 10 Gigabit Ethernet controllers).

• The fastest approach by a wide margin.

• Ability to execute “real life” scenarios and gather
information to improve the device performance for most
important use cases.

• Ability to debug network drivers.

• Difficulty in localization of detected errors.

• Slow iteration cycle due to slow recompilation to FPGA
process.

In the system verification approach a NIC is simulated as a
part of whole System on a Chip (SoC). NIC is configured
according to required settings and then it executes network
transactions. Characteristics of the system verification approach
for the Ethernet controller:

• Test stimuli are memory access operation to the device
registers and received Ethernet packets - very similar to
typical mode of device operation.

• Simpler localization of detected errors and better error
detection tools than using physical prototyping.

• Ability to implement directed scenarios from a physical
prototype.

• Difficult and time consuming to cover all possible
situations, especially for complex internal components.

• Requires all device components to be in working state.

In stand-alone verification a single device component is
simulated, typically it is used for components with (1) high
internal complexity and (2) which reliability is crucial for the
device [2]. Properties of this approach:

• Test stimuli are transactions on the external interfaces
of the component.

• Could be start as soon as only RTL-model of device
component is ready (not the whole device).

• Faster simulation for smaller device subset.

• It is easier to create specific test cases and more
complex test scenarios for component under test.

• Information about internal interfaces of the device is
required.

• Can not eliminate the need of system verification
completely and thus always requires extra labour and
other resources.

In our previous projects we use only physical prototyping
and system verification to verify NICs. However there are some
types of errors that are hard to find using only these approaches.
In this regard all aforementioned methods we used during
verification process of 10 Gigabit Ethernet controllers. Physical
prototype verification approach was used by separate team, and
further discussion of it is beyond the scope of this article.

91 из 190

In this paper we present a case study for functional
verification of 10 Gigabit Ethernet controllers developed by
MCST. The paper addresses the problem and methods of stand-
alone verification of 10 Gigabit Ethernet controllers.

The rest of the paper is organized as follows. In the
Section 2 we describe the devices under test: RTL-models of
the 10 Gigabit Ethernet controllers, their features and intended
methods of implementation. Section 3 presents different test
systems developed for components of the controller and the
complete controller. In Section 4 we give further insight into the
process of examination of the device network properties - most
importantly its throughput. Section 5 presents the results of
verification and plans of future work.

II. DEVICE UNDER TEST FOR DIFFERENT 10 GIGABIT ETHERNET

CONTROLLER IMPLEMENTATION

Model of the 10 Gigabit Ethernet Controller is implemented

using Verilog Hardware Description Language (HDL). It is
RTL (register transfer level) description that is used in different
implementation (Device Under Test, DUT):

• FPGA-based network controller (based on Altera
Cyclone V [3]). This FPGA provides a set of
components that were used in the device: PCI Express
Hardware IP module that implements physical and data
link layer of the protocol, and a set of configuration
space registers, and XAUI Hardware IP module to
transform 10 Gigabit Media Independent Interface
(XGMII) signals. It is connected to the other parts of the
system using standard interface Avalon [4].

• ASIC-based network controller - a part of a currently
developed Elbrus-16C System on Chip (SOC).
Controller is connected to the rest of the system using in-
house interface (SLink) to transfer packets based on PCI
Express transaction layer packets.

General schemes of both DUT are presented in figure 1.
Both types of the DUT share the Ethernet Control Module and
implement same programming interface. This interface is
typical for PCI and PCI-Express devices. A set of memory-
mapped registers are used to control device behavior. Those
registers can be separated into four groups:

1) PCI Express registers - common set of registers of PCI
Express devices. They are used to control access to internal
memory of the devices and from the device to system memory.
It also implements basic interrupt control.

2) Media Access Control (MAC) registers allow to control
the Ethernet physical layer. They are used to control pause
frames, control sum (CRC) calculation, non standard-
compliant frames and limit the speed of packet transmission.

3) Transceiver (TX) registers control the transmission of
packets from the system to the network, calculation of CRCs
for higher level protocols supported by the controller (IPv4 and
IPv6, TCP and UDP).

4) Receiver (RX) registers control the reception of packets
from the network, packet filtering and control sum checking
for IP, TCP/IP and UDP/IP packets.

Fig. 1. Devices under test for FPGA and ASIC-based in SoC implementation.

To allow multiple processes to work in parallel with a single
controller TX and RX registers contain several identical groups
of registers (descriptor queues).

Ethernet Control module uses universal packet bus interface.
This interface provides convenient access to large continuous
areas of memory where Ethernet packet data are stored. Altera
PCI Express and SLink interfaces work with packets of size up
to 64 bytes. To increase the rate of data transmission and
reduce the CPU involvement into device operation it used direct
memory access (DMA). Devices use different modules to
connect packet bus to Avalon and SLink interfaces. Internal
names of those connector modules are av2e (avalon to
everything) and sl2e (SLink to everything). Those connectors
implement DMA by splitting packet bus transactions and
transforming them into memory access operations.

III. TEST SYSTEMS FOR 10 GIGABIT ETHERNET CONTROLLER

VERIFICATION

As stand-alone verification could be started as soon as RTL-
model of device component is ready, without waiting RTL-
model of the whole device. So verification of the 10 Gigabit

92 из 190

Ethernet Controller process was started at the same time as the
development of the FPGA-based controller and SoC. This
approach allowed identifying errors earlier, and reducing total
development time of the device. To check correctness of the CC
it is included in a test system — a program that generates test
stimuli, checks validity of reactions and determines verification
quality.

There are several verification methodologies in order to
develop constraint-random coverage-driven verification test
systems. A verification methodology provides guidelines, class
libraries and macros libraries. The Universal Verification
Methodology (UVM) [5] is currently the most widespread
verification methodology. UVM allows automating test system
design process and makes it easier to add new components and
collecting the functional coverage [6]. In paper [7] the approach
to UVM test system developing for Gigabit Ethernet is
presented. However Gigabit Ethernet has some differences in
protocol and interfaces from 10 Gigabit Ethernet. Moreover in
our case we have to verify in-house Slink interface
communication.

For stand-alone verification of the 10 Gigabit Ethernet
Controller we developed two stand-alone UVM test systems
based on two different DUTs for FPGA and ASIC-based
implementation. The structures of the test systems and
approaches used to process verification both of DUTs are
presented below.

A. Test Systems for FPGA-based 10 Gigibit Ethernet
Controller Verification

The top level module of the 10 Gigabit Ethernet Controller
is called XGBE (10 GigaBit Ethernet). The structure of the test
system for XGBE stand-alone verification is provided in figure
2.

In the controller, packet is represented as one or multiple
(split) descriptors and a payload stored in the system memory.
Each transmit and receive descriptor queue in the device works
with continuous area of memory where descriptors are stored.
The controller implements head and tail pointer registers used to
determine descriptors currently in use. Each descriptor contains
a payload pointer. XGBE driver transforms Ethernet packet
between representation used by the controller and representation
in the test system - UVM-base transaction class.

Algorithm for packet transmission:

1) Allocate memory for payload.
2) Form corresponding packet descriptor.
3) Write descriptor(s) to first free memory location in a

queue.
4) Change queue head pointer value.
5) Wait until tail value becomes equal to head.
6) Collect packet transmission information and free used

memory resources.

Packet reception algorithm works in a similar way, but
because we do not have an information on expected packets
sizes, algorithm works in two threads: descriptor preparation
and packet reception. Descriptor preparation works as follows:

1) Wait when test system requests additional space for
packet reception (conditions of this request are generally test-
specific and determined by test system settings).

2) Allocate memory for the number of descriptors and fill
corresponding descriptor memory.

3) Increase RX queue head value.

Fig 2. Structure of XGBE test system.

Packet reception algorithm:

1) Wait for change of RX queue tail value.
2) Collect received packet data from descriptor and

payload.
3) Free resources used allocated in descriptor preparation

routine.
To simplify access to device registers and abstract away

details of register access operations, UVM register model
(XGBE Register Model) of the controller was developed. This
model uses a bus adapter to transform generic register access
operations to the required bus format (in our case - transactions
for PCIE agent). Other features of PCIE agent used by device
driver are direct access to system memory and interrupt
notifications.

Test system was used to verify the device on various test
sequences, directed at different device functions. Test can be
separated into four large groups: data flow tests, filtering tests,
packet parsing tests and throughput tests. The general goal of
the first group is to ensure that data processed by the controller
will stay correct. At first, maximum possible packet flow
through the device was tested. Later we started introducing
different bottlenecks (by means of Ethernet Pause frames, PCI
Express credits, limiting the size of transmission and reception
buffers, available amount of receive descriptors etc...) to

93 из 190

achieve different events in the internal components of the
controller. The goal of the second group is to ensure correctness
of filtering capabilities of device. A set of packets are generated
in a way to be test all available packet filters. For the third
group, higher-level protocol packets are encapsulated in the
basic Ethernet frame and the ability of the device to handle
them correctly (packet type detection, automatic checksum
calculation etc.) was tested. Throughput tests will be discussed
separately later in the article.

It also was decided that the stand-alone verification was
necessary for a single type of module in the device - connector
between multiple internal packet buses and the external PCI
Express like interface (Altera Avalon Interface of PCI Express
module), due to several reasons:

• These modules are relatively independent from the rest
of the system, its early completion allowed for early
verification start.

• High complexity of this module is due to complex rules
of transaction splitting.

• Different interactions between all packet bus requesters
are difficult to achieve in a complete system.

Its structure is provided in a figure 3. Connector module
communicates through Altera PCIE module with the memory
inside the PCI Express agent. Information about Ethernet
packets is stored in this memory. These data can be separated
into two groups: packet descriptors (which are used by the
controller to facilitate data transfer) and payload of packets
themselves. Connector module solves several problems. First, it
transforms requests from packet bus to PCIE memory access
transactions. Second, it transforms the responses to those
requests, to format convenient for the rest of the devices. It was
decided to include third party PCIE module that (we presume)
is well-tested and bug-free because we have access to PCI
Express agent, but do not have one for the Avalon interface.
Additional performance gained through exclusion of this
module is compensated by time and other resources needed for
development of Avalon agent.

Fig 3. Structure of av2e module test system.

To verify av2e module (connector to Avalon interface) as a
part of 10 Gigabit Ethernet controller the test system was
designed. The test system is also designed using UVM and
consists of the set of components, which are inherited from
standard classes of UVM library.

The exchange between these components is carried out by
transactions that facilitates scaling and configurability of
system. Developed components could be adapted for use in
system for verification of a whole controller to speed up its
development.

B. Test System for ASIC-based 10 Gigibit Ethernet Controller
Verification

Test system for connector between packet buses and system
SLink interface module (sl2e) is similar to one used for
verification of av2e module. PCI Express agent and (and Altera
PCI Express module) were replaced with SLink agent which
provides similar interface for other parts of test system:

• Transformation of transaction-level PCI Express
operations into interface signals.

• Access to internal memory of the agent.

• Automatic generation of the completions for upstream
requests.

• Notification mechanism for special requests.

The test system for ASIC-based 10 Gigabit Ethernet
controller was developed by replacing PCIE Agent with SLink
agent.

Usage of various test system components by different test
systems is summarized in table 1. Only limited part of device
register model (PCI Express Configuration space registers) was
actively used in av2e and sl2e test systems.

TABLE I. TEST SYSTEM COMPONENTS REUSE

 FPGA
XGBE av2e ASIC

XBBE sl2e

Bus Agent - + - +

PCIE Agent + + - -

Slink Agent - - + +

Register
Model + +/- + +/-

XGBE Driver + - + -

IV. THROUGHPUT ANALYZING

Throughput is one of the most important characteristics of
any network controller. In our case the controller should support
throughput of 10 Gigabit per second for packet transmission
and reception. Therefore, tests system must support the
development of special scenarios for throughput testing. It is

94 из 190

implemented in the test system by limiting the test system and
device configuration in a way that it will not introduce new
“bottleneck”.

To achieve necessary controller throughput it is essential to
ensure that every component satisfy the requirement. In the
controller PCI Express Gen2 x4 bus was used as a connection to
the system. Maximum possible value of throughput for this bus
is 16 Gigabit per second. Thus, this bus satisfies the
requirements. Throughput of av2e module was measured after
its verification was complete. To do that, the throughput
analyzer was developed. It executes all necessary calculations
using the information about the start time of first packet`s data
transmission and the end time of the last one. Initial value of
av2e module was ~11.2 Git/s in both directions. This value is
higher than maximum packet flow from the network, so this
module will not serve as a “bottleneck”.

Measurements of throughput of whole controller started
after the verification of single packet transfer. Separate packet
analyzers were designed for transmission to network and
reception from it. Principle of measurement is similar to the one
described above: analyzer collects the information on
transmission start time, end time and size of transferred data. A
set of tests were developed to determine throughput for different
packet flows: (1) transmission, (2) reception, (3) mixed and
(4) loopback. In addition, for each of these tests it is possible to
select mode of operation: either raw Ethernet packets of mixed
UDP/TCP flow to ensure that packet parsing will not slow
down the device.

The first measured value of throughput was 0.36 Gbit/s in
loopback mode. This, of course, does not satisfy the
requirements. After multiple performance improvements the
goal to achieve maximum possible throughput for separate
transmission and reception packet flow was achieved. At this
moment, throughput value for mixed mode 10Gbit/s for
reception and 4Gbit/s for transmission and 7 GBit/s for both
values in loopback mode. Work to further improve the
performance is ongoing.

V. RESULTS

To verify the 10 Gigabit Ethernet Controllers four separate
test systems were designed using a set of components. Test
sequences were developed to test the correctness of the device
for each test system.

A total of 49 test scenarios were used to verify all functions
of av2e module: read and write operations with different
parameters, sequentially and in parallel. Total number of bugs
detected by the av2e test system is 14. Found errors are the
corruption of transmitted or received data and complete loss of
packets by the components.

Number of test for the whole 10 Gigabit Ethernet controller
is 31.They thoroughly check that the device works as described
in the specification. Different test scenarios check different
modes of operation: transmission of packets from system to
network, reception of packets from network, mixed flow and
loopback mode. The check proper handling of different types of
payload (Raw Ethernet, or encapsulated IPv4, IPv6, UDP, TCP,

Runt Frames, PTP packets), working with packets with different
priorities, working with packets with vlan tags, pause frames,
checking of packet filtering capabilities and automatic
calculation of checksums. Different ways of interaction with the
system are also checked: correctness of interrupts and mirroring
of certain device registers in memory.

As a result of verification of the controller 74 errors were
discovered and corrected. Those can be divided into 3 groups:

• Errors in data transmission is the biggest group of 49
errors. Those errors caused the transmission of incorrect
data in packets by the controller. This group includes
such errors as: partial loss of data, duplication of
received data, “merging” of different packets into one
and incorrect calculation of checksum.

• Number of errors in packets parsing and filtering is 9.
They caused incorrect detection of types of packets,
incorrect placement of CRCs in packet and incorrect
filtering of received packets.

• Group of 16 miscellaneous errors have not caused
errors in packet transfer. Those errors appeared during
accessing internal registers of the device or inter and
caused suboptimal utilization of the device resources.

All above-mentioned errors were corrected. ASIC-based
version of the device and its test system are currently under
active development. Our future works is aimed at further
verification of ASIC-based version of the 10 Gigabit Ethernet
Controller, developing UVM-based reusable components
(UVC) for PCIE, Avalon, Slink interfaces for using in test
system for other network controllers.

REFERENCES
[1] IEEE Standard for Ethernet. IEEE Std 802.3-2012. 1983 p.

[2] Petrochenkov M., Stotland I., Mushtakov R. Approaches to Stand-alone
Verification of Multicore Microprocessor Caches. Trudy ISP RAN, vol.
28, 3, pp. 161-172.

[3] Cyclon V – Overview. URL:
https://www.altera.com/products/fpga/cyclone-series/cyclone-
v/overview.html (09.04.2017).

[4] Avalon Interface Specification. Altera. MNL-AVABUSREF. 2015.12.10.
101 Innovation Drive. San Jose, CA 95134. URL:
https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf
(09.04.2017).

[5] Standard Universal Verification Methodology. URL:
http://accellera.org/downloads/standards/uvm (09.04.2017).

[6] Stotland I., Shpagilev D., Petrochenkov M. Osobennosti funkcional'noj
verifikacii kontrollerov vysokoskorostnyh kanalov obmena
mikroprocessornyh sistem semejstva "Elbrus" [Features of High Speed
Communication Controllers Standalone Verification of “Elbrus”
Microprocessor Systems]. Voprosy radioelektroniki, seriya EVT, 2017, 3,
pp. 69-75.

[7] S. Chitti, P. Chandrasekhar, M. Asha Rani. “Gigabit Ethernet
Verification using Efficient Verification Methodology”. Proc. of
International Conference on Industrial Instruments and Control (ICIC),
College of Enginnering Pune, India. May 28-30, 2015, pp.1231-1235.

95 из 190

Creating Test Data for Market Surveillance Systems
with Embedded Machine Learning Algorithms

Olga Moskaleva
Exactpro, LSEG, Russia,

Email: olga.moskaleva@exactprosystems.com
http://www.exactprosystems.com/

Anna Gromova
Exactpro, LSEG, Russia,

Email: anna.gromova@exactprosystems.com
http://www.exactprosystems.com/

Abstract—Market surveillance systems, used for monitoring
and analysis of all transactions in the financial market, have
gained importance since the latest financial crisis. Such systems
are designed to detect market abuse behavior and prevent it.
The latest approach to the development of such systems is to use
machine learning methods. The approach presents a challenge
from the standpoint of quality assurance and the standard
testing methods. We propose several types of test cases which
are based on the equivalence classes methodology. The division
into equivalence classes is performed after the analysis of the
real data used by real surveillance systems. This paper describes
our findings from using this method to test a market surveillance
system that is based on machine learning techniques.

Keywords—test data, equivalence classes, market surveillance
systems, machine learning.

I. INTRODUCTION

A. Market surveillance systems

Electronic trading platforms have become an increasingly
important part of the financial market in recent years. They are
obligated to take legal responsibilities [1], [2] and correspond
to the law and the regulatory requirements. Therefore, all
market events in the contemporary electronic trading platforms
are monitored and analysed by market surveillance systems.

Such systems are designed to detect market abuse behavior
and prevent it. Their main goals are detection and prevention
of such market abuse cases as insider trading, intentional and
aggressive price positioning, creation of fictitious liquidity,
money laundering, marking the close, etc. [3]. Different data
mining methods are used for improving the quality of the
surveillance systems work [4], [5], [6], [7], [8], [9].

B. Quality assurance for market surveillance systems

The standard quality assurance (QA) methods and tech-
nologies seem to be powerless in regard to machine learning
(ML) applications. C. Murphy, G. Kaiser, M. Arias even
introduced a concept of ”non-testable” applications [10]. From
the QA perspective, we do not have to test whether an ML
algorithm is learning well, but to ensure that the application
uses the algorithm correctly, implements the specification and
meets the users expectations. In this paper, we employ the term
testing in accordance with the QA theory.

It is clear that a sufficient input data set is needed for
high-quality testing coverage. Furthermore, the testing data set
should be as close as possible to the real data or should even

be real. So, which approach should be used for creating data
to verify the implementation of an ML-algorithm more fully?

We can test a market surveillance system in the following
ways:

1) By creating test cases which are based on the knowl-
edge of the business rules from the specification. Such
test data are similar to the real users behaviour.

2) By generating various datasets which contain differ-
ent combinations of variables.

Both variants are suitable for the surveillance systems
that use standard control flows, like loops or choices. For
standard systems, there is a set of rules, which allows getting
a clear output result for specific input data. When it comes
to intelligence systems, it is not normally obvious what will
happen as a result of certain input because an ML algorithm
builds its own dependencies between the variables and human
interpretation of such dependencies is impossible. Because of
this, it is important to be able to create a set of test cases
that will generate obvious and predictable output. Therefore,
the second approach to generating the test data allows for the
creation of output that is easily interpretable.

C. Contribution

This paper introduces the following contribution:

1) Creating a model for lassifying the transactions. This
model can be used for the detection of market ma-
nipulations.

2) Test cases generation for defining the weaknesses of
the created model. The test cases are based on the
equivalence classes.

3) Testing the prototype based on the created model and
the analysis of the received results.

II. RELATED WORK

A. Ongoing problems in the quality assurance of the modern
surveillance systems

It is known that the system containing ML algorithms
should learn using a dataset that is real or close to real.
Obviously, for testing purposes, it is necessary to use a dataset
with a similar structure.

Moreover, during the creation of this dataset, it will be
helpful to emphasize the variability of values of the attributes

96 из 190

included in the sampling. By generating a variety of combi-
nations with different values, we will create test cases to find
out the weaknesses in the ML algorithm, which are related to
the separation of classes.

B. Existing approaches

C. Murphy, G. Kaiser, M. Arias proposed to divide the data
into equivalence classes to generate test cases for testing the
”non-testable” software [10]. It should be noted that forming
equivalence classes is a standard approach in quality assurance
[11].

However, C. Murphy, G. Kaiser, M. Arias suggest to follow
three steps in testing this kind of software. Firstly, the data
should be divided into several classes, taking into account the
size of the dataset, the potential ranges of the attributes and
the label values, etc. Then, the test cases, that are based on the
investigation of the ML algorithm used in this system, should
be created. At last, several testing datasets should be generated.

Supposing that a dataset for QA purposes has been defined,
based on the knowledge of the method used in the machine
learning system. For solving the problem of the dataset suffi-
ciency, C. Murphy, G. Kaiser, M. Arias propose a parameter-
ized random data generation methodology. This methodology
enables us to generate large datasets and randomly control
them [12], [13], [14].

In their paper, J. Zhang et al. suggest to use predictive mu-
tation testing, as it allows to make decisions without executing
the costly mutation testing [15].

Thus, it becomes clear that new methodologies for testing
ML applications are being developed. However, the contem-
porary market surveillance systems impose additional require-
ments on them. These systems should be able to self-detect the
incorrect behavior and classify alerts, and further point at the
initiator of this behavior. This should always be noted during
the process of creation of test scenarios.

III. DEFINITIONS AND ASSUMPTIONS

A. Structure of the transaction log

A transaction is an event that happens on the financial
market and changes any financial instrument, for example:

• submitting a buy-order for security S with price P
and volume V ;

• cancelling an order with id I;

• trading on security S at price P with volume V , etc.

Transaction logs are the data that are used by the ML
surveillance system. Each transaction is stored as an object
and has a set of input parameters (transaction characteristics)
and one output parameter (presence or absence of the alert):

I = {i1, i2, ..., ij , ..., in}, where i = 1, n;

ij = {TID,B, IID, Side, CP,ExP,ExS, TV, S, TInt, Alert}.

Where:

TID ∈ N ,

B = {Broker1, Broker2, ..., Brokerk}, where k is the
number of brokers that are available in the configuration file,

IID = {Instrument1, Instrument2, ..., Instrumentm},
where m is the number of instruments that are available in
the configuration file,

Side = {Buy, Sell},
CP ∈ Q,

ExP ∈ Q and ExP ≥ 0,

ExS ∈ Z,

TV ∈ Z,

S = {OAC,RT,CAC,ReOAC,ResumeAC,Halt},
TInt ∈ N ,

Alert = {0, 1}M .

For more attribute details, please refer to Table 1.

TABLE I.

Parameter Type Comment
Transaction ID numerical Unique identifier of transaction
Broker categorical Company to which the trader belongs
Instrument ID categorical Identifier of the instrument to be traded
Side categorical Side of the order
Change Price numerical ChP=LastTradedPrice-CurrentPrice
Executed Price numerical Price of the trade
Executed Size numerical Volume of the Trade
Total Volume numerical Total volume traded on the instrument
Session categorical Current session on the instrument
Time Interval interval Time interval between transactions
Alert boolean The output: 0 - regular transaction,1 - suspi-

cious transaction

Each transaction can cause several different alerts, that is
why every alert should be classified. This type of classification
is called a classification with overlapping classes.

B. Market abuse alert

The following type of behavior can be considered as
abusive: a broker tries to raise or bring down the price on
several trades. The alert will be triggered if the price deviation
and the traded volume reach the threshold values. If the price
goes up, the buy-orders should be checked, if the price goes
down – the sell ones.

IV. BACKGROUND

As each transaction is stored as an object and has a set of
independent variables and one dependent variable, for testing
purposes, these data should be divided into several equivalence
classes. All the objects in one equivalence class have the same
characteristics of certain attributes [11] and trigger the same
system behavior.

It is important to analyze the transactions, the system
behavior and the meaningful parameters before forming the
classes. We can use the following types of test cases which are
based on equivalence classes. These classes are defined after
the analysis of real data used by the surveillance systems:

1) Consistency checks with consideration of categorical
transaction attributes (Firm, Session, Action, etc.):

97 из 190

a) Let a = a1 and class = 1, and a = a2 and
class = 0. The categorical attribute gets a
concrete value for several test cases, but the
other transaction attributes have different val-
ues. For such combinations, the class value
is set to 1. This is a check for how strongly
the class value correlates with the concrete
value of the I-th attribute.

b) Let a categorical attribute get any values, al-
ways leaving the class set to 1. Let attribute
b = b1 OR b = b2 OR b = b3, class = 1. It
checks that the system can assume that this
attribute is inessential.

c) Let 0 ≤ c ≤ 10, class = 1. The same as for
(b), but for numeric variables.

d) Let c ≥ 0, class = 1. The same as for (b),
but for numeric variables.

2) Checks for empty values. Due to the fact that a
surveillance system analyses all the transactions on
the financial market and that the considered trans-
action can be different for each type of alert, it is
possible that some values will be empty.

3) Checks for the presence of noise. We perform
checks for the presence of noise using the equiva-
lence classes for numeric transaction attributes. Some
attributes can have values in the concrete range, but
mostly they take the average value. For example, the
price percentage variable takes the values from 0 to
100 with the mean of 50 and has a low variance. Even
if the border values (0 and 100) are included in the
acceptable range, they appear so rarely that we treat
them as frequency emissions.

V. APPROACH

A. Classification model of market abuse

To prove that the proposed methodology is effective, we
have created a model which allows to classify the transactions
by one type of abusive behavior. It should be noted that we
have to deal with rather specific data, i.e. financial transactions.

It is important to make a thorough analysis of the data
related to the business logic, the system requirements and the
structure of transaction logs, to be able to define the attributes
and their particular qualities. The correct outcomes can only
be provided when considering all these factors. Thus, this
particular dataset structure, as it is presented in Table 1, was
selected for this type of abusive behavior.

We extracted 639 transactions from the messages of one of
the electronic trading protocols and manually classified them,
using these data to build the classifier. We used a decision tree
algorithm for our research. After that, the classifier was trained
on a set and its performance was evaluated.

Precision, recall, and F-measure are the evaluation metrics
that we used for our calculations. Values of these metrics that
we received are represented in Table 2.

B. Prototype Testing

To test our prototype, we have created a dataset with
the same structure as the training dataset and performed all

TABLE II.

Precision Recall F-measure
0.615 0.678 0.645

the validations described in Section 4. For each type of the
validation, we created the test cases based on the equivalence
classes. Please refer to Table 3 for detailed examples.

Figure 1 illustrates the proposed approach. Test Data is the
whole set of data that will be used to test ML-based surveil-
lance system. Then these data are divided into equivalence
classes, as proposed in Section 4. The generated test cases are
used for testing Market Surveillance Systems based on ML.

Fig. 1. Prototype Testing

VI. RESULTS

After testing our prototype, we received the values of the
evaluation metrics that are presented in Table 4.

After a detailed analysis of the instances where the model
detected an error, it was observed that errors occurred in:

• different Firms - Scenario 2: Consistency checks.

• empty values - Scenario 5: Checks for empty values.

• border values - Scenario 6: Checks for the presence
of noise.

Thus, the test that we performed revealed some weaknesses
in the ML algorithm:

1) An error occurred in one of the categorical attributes
during the consistency checks. It may indicate that
the model does not take into account the categorical
attribute in the algorithm.

2) Classification errors occurred in empty values, so the
algorithm may miss some abnormal behavior when
encountering them. For example, all manipulations at
the start of the day may be missed by the surveillance
system.

3) Some errors were detected in the border values used
for the Executed Size variable. According to the
general quality assurance theory, we should validate
the border values for numeric variables. But in our
experiment, unlike what was expected, we saw that
the algorithm failed to validate such test cases. The
reason is possibly linked with the distribution of the
training sample.

4) Errors in the tests took place due to thoughtless
randomization. After analyzing the results, we can
conclude that it is crucial to randomise the dataset
with the business logic in mind.

98 из 190

TABLE III.

Scenario 1: Consistency checks 1.a. Instrument
Test case 1 Test case 2 Test case 3
B = Broker1
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker2
IID = Instrument1
Side = Sell
CP = CP1 − 1
ExP = P2

ExS = S2

TV = TV2

S = RT
TInt = TI2
Alert = 1

B = Broker3
IID = Instrument1
Side = Sell
CP = CP + 2
ExP = P3

ExS = S3

TV = TV3

S = RT
TInt = TI3
Alert = 1

Scenario 2: Consistency checks 1.b Firm
Test case 1 Test case 2 Test case 3
B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker3
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker1
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

Scenario 3: Consistency checks 1.c ExPrice
Test case 1 Test case 2 Test case 3
B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P2

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P3

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

Scenario 4: Consistency checks 1.d. TV
Test case 1 Test case 2 Test case 3
B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV2

S = RT
TInt = TI1
Alert = 1

B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV3

S = RT
TInt = TI1
Alert = 1

Scenario 5: Checks for empty values. ExP
Test case 1 Test case 2 Test case 3
B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = empty
ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker3
IID = Instrument2
Side = Sell
CP = CP1

ExP = empty
ExS = S2

TV = TV2

S = RT
TInt = TI1
Alert = 1

B = Broker1
IID = Instrument3
Side = Buy
CP = CP1

ExP = empty
ExS = S3

TV = TV4

S = RT
TInt = TI1
Alert = 1

Scenario 6: Checks for the presence of noise. ExS.
Test case 1 Test case 2 Test case 3
B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S1

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S2

TV = TV1

S = RT
TInt = TI1
Alert = 1

B = Broker2
IID = Instrument1
Side = Buy
CP = CP1

ExP = P1

ExS = S3

TV = TV1

S = RT
TInt = TI1
Alert = 1

According to these results, it is clear that some details of
the dataset and the model need to be considered in the future
work.

TABLE IV.

Precision Recall F-measure
1.000 0.662 0.797

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the following conclusions:

1) The analysis of transactions extracted from an elec-
tronic trading protocol allowed us to successfully
create a model for the classification of market abuse
behavior.

2) The proposed scenarios allowed to test the model
more thoroughly. The following checks were in-
cluded: consistency checks, checks for border values,
checks for empty values, etc.

3) The prototype testing revealed some weaknesses that
manifested themselves through unexpected behavior
in the case of empty values, in the case of border
values (for some of the attributes) and also in the
case of different values for one of the categorical
attributes.

As focus of our future research, we propose to generate
the test cases using the equivalence classes methodology. We
advise that the equivalence classes be set according to the types
of data (categorical, numeric, etc.) and their border values.
Such an approach enables us to parametrise the equivalence
classes and to further develop an automatic tool that generates
the test data.

REFERENCES

[1] FCA (financial conduct authority): Available at:
https://handbook.fca.org.uk/

[2] SEC (Securities and Exchange Commission): Available at:
https://www.sec.gov/

[3] FINMAR Financial Stability and Market Confidence Source-
book:Available at: https://handbook.fca.org.uk/handbook/FINMAR/

[4] Cao L., Ou Y., Yu P.: Detecting Abnormal Coupled Sequences and
Sequence Changes in Group-based Manipulative Trading Behaviors. In
Proc. of KDD10, Washington, DC, USA, July 2528, 2010, 85–93

[5] Donoho S.: Early Detection of Insider Trading in Option Markets In
Proc. of KDD04, Seattle, Washington, USA, August 2225, 2004, 420–
429

[6] Luo C., Zhao Y., Cao L., Ou Y., Zhang C.:Exception Mining on Multiple
Time Series in Stock Market.In Proc. of International Conference on
Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM,
2008, 690–693

[7] Nasdaq and Digital Reasoning Establish Exclusive Alliance to
Deliver Holistic Next Generation Surveillance and Monitoring
Technology:Available at: http://www.digitalreasoning.com/buzz/nasdaq-
and-digital-reasoning-establish-exclusive-alliance-to-deliver-holistic-
next-generation-surveillance-and-monitoring-technology.1884035

[8] Ou Y., Cao L., Luo C., Liu L.:Mining Exceptional Activity Patterns
in Microstructure Data.In Proc. of International Conference on Web
Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM, 2008,
884-887

[9] Ou Y., Cao L., Yu T., Zhang C.:Detecting Turning Points of Trading
Price and Return Volatility for Market Surveillance Agents.In Proc. of
International Conferences on Web Intelligence and Intelligent Agent
Technology - Workshops, IEEE/WIC/ACM, 2007, 491–494

[10] Murphy C., Kaiser G., Arias M.:An Approach to Software Testing of
Machine Learning Applications.Proc of the 19th International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE),
Boston MA, Jul 2007, 167–172

99 из 190

[11] Nautiyal L, Preeti:A Novel Approach of Equivalence Class Partition-
ing for Numerical Input.ACM SIGSOFT Software Engineering Notes.
Volume 41 Issue 1, 2016, 1–5

[12] Murphy C., Kaiser G., Arias M.:Parameterizing Random Test Data Ac-
cording to Equivalence Classes.Proc of the 2nd International Workshop
on Random Testing (RT’07), Atlanta GA, Nov 2007, 38–41

[13] Murphy C., Kaiser G., Arias M.:A Framework for Quality Assurance of
Machine Learning Applications.Columbia University Computer Science
Technical Reports, New York, 2006

[14] Murphy C., Kaiser G., Hu L., Wu L.:Properties of Machine Learning
Applications for Use in Metamorphic Testing.Proc of the 20th Interna-
tional Conference on Software Engineering and Knowledge Engineering
(SEKE), Redwood City CA, Jul 2008, 867-872.

[15] Zhang J., Wang Z., Zhang L., Hao D., Zang L., Cheng S., Zhang
Lu.:Predictive Mutation Testing.In Proc. of ISSTA16, Saarbrcken, Ger-
many, July 1820, 2016, 342–353

100 из 190

Initial steps towards assessing
the usability of a verification tool

Mansur Khazeev∗, Victor Rivera† and Manuel Mazzara‡
Innopolis University, Software Engineering Lab.

Innopolis, Russia
Email: ∗m.khazeev@innopolis.ru, †v.rivera@innopolis.ru, ‡m.mazzara@innopolis.ru

Abstract—In this paper we report the experience of using
AutoProof to statically verify a small object oriented program.
We identified the problems that emerged by this activity and
we classified them according to their nature. In particular, we
distinguish between tool-related and methodology-related issues,
and propose necessary changes to simplify both tool and method.

I. INTRODUCTION

Formal proof of correctness of the software is still not usual
thing nowadays, even though the hardware and the software
technologies for verification has significantly improved since
it was first mentioned about verifying compiler - a cipher for
an integrated set of tools checking correctness in a very broad
sense [1]. In ideal world, verifying software would need only
pushing a button, though this kind of provers exist, but they
can verify only simple or implicit properties such as absence
of invalid pointer dereference [2]. However to be able to fully
verify a software, a specification, like contracts in design by
contract methodology, should be provided against which it
will be verified. The term was introduced in connection with
design of the Eiffel programming language, but nowadays
it is adopted for many other popular languages. There is a
prover for functional correctness of programs written in Eiffel
language called AutoProof. Having a powerful methodology
for framing and class invariants, it fully supports advanced
object-oriented features [2]. In order to test the usability and
the ability of the tool to be applied in general practice, a series
of case studies are being conducted, verification of ordinary
class, a subset of classes of Tokeneer system [3] and Tokeneer
system entirely by non-expert in the field. This paper describes
the results of the first step - verification of class MY SET,
that implements classic sets from set theory, and its classical
operations.

The challenge of this exercise is mainly related to difficulties
of the tool usage. There is no explicit documentation available
for the users: only the website as a main source, and several
papers from the authors of the the tool. However the notation
was evolving and in some cases these papers are not up
relevant. As it was previously said verification with AutoProof
often requires additional annotation that help the tool to derive
the more complex properties from trivial ones. However, for
someone who does not know how the tool works and what is
going on under the hood, the feedback from the tool would not
always be helpful. Of course, for some specific tool, which is

to be used by a narrow group of scientists this is excusable, but
since the main purpose is to make the tool for static verification
applicable in industrial practice - complete documentation
should be developed in the meanwhile minimizing the need
of additional assertions. It is essential because the tool still
requires a knowledge of underneath mechanisms and a number
of extra annotations.

II. AUTOPROOF

AutoProof is a static verifier for programs written in Eiffel,
which is a real complex object oriented programming language
that natively supports Design-by-Contract methodology [4].
Users can specify the behavior of Eiffel classes by equipping
them with contracts: pre- and post-conditions and class in-
variants, that are represented as assertions [3]. This allows to
minimize amount of specification and effort needed to reason
about programs properties. AutoProof follows the auto-active
paradigm where verification is done completely automated,
similar to model checking [5], but users are expected to feed
the classes providing additional information in the form of
annotations to help the proof. The tool is capable to identify
software issues without executing the code, therefore opening
a new frontier for “static debugging”, software verification and
reliability, and in general for software quality.

AutoProof verifies the functional correctness of the code
written in Eiffel language equipping with contracts. The
tool checks that routines satisfy pre- and post-conditions,
maintenance of class invariants, loops and recursive calls
termination, integer overflow and non Void (null in other
programming languages) references calls. For that AutoProof
uses an intermediate verification language Boogie: it translates
the Eiffel code into a file and feeds it to a tool called Boogie
[6] as well. The Boogie tool generates verification conditions
(logic formulas whose validity entails correctness of the input
programs) that are then passed to an SMT solver Z3. Finally,
the answer retrieved back to Eiffel.

The tool supports most of the Eiffel language constructs: in-
lined assertions such as check (assert in other programming
languages), types, multi-inheritance, polymorphism.

By default AutoProof only verifies user-written classes
when a program is verified, referenced libraries should be
verified separately or should be based on preverified library
base eve. [7]. This preverified library has most of abstract

101 из 190

classes, the naming starts with prefix V meaning that it is
verified [3].

III. CASE STUDY EXPERIENCE

This case study is a small exercise which was to implement
in Eiffel programming language a generic class MY SET
using V LINKED LIST class and equipping it with contracts.
On the next step this class had to be proved for correctness
adding all needed annotations.

Basically, the exercise was about expressing some properties
of the set as invariants:

• No duplicating elements
• Order of elements in the set does not matter
• Cardinality is always bigger or equal to 0

And implementing some basic operations:

• is empty - set with no elements in it
• cardinality - number of elements in the set
• has - if the set contains some specific element
• is strict subset, is subset - if the set is subset of other

set
• union/intersection/difference - functions returning new set

from two other

During the process of verification, it turned out, that for non-
expert users working with V classes was too complicated,
therefore the decision was done to ease the example replacing
V LINKED LIST with SIMPLE LIST.

IV. PROBLEMS TAXONOMY

Despite the class under study was rather simple, it resulted
in facing many different problems because of lack of experi-
ence with the AutoProof tool before. Beginning with issues of
the tool installation and kept up till checking the verified class
with tests. While analyzing the results, all those problems were
divided into two main categories: problems with the tool and
with the approaches or methodologies used in the tool. The
first category includes rather minor problems and bugs, mostly
related to the particular implementation in the tool and means
that those require local fixes. However, the second category
require improving the methodology or replacing them with
the alternative ones.

A. Problems with the tool

The challenge of this exercise was mainly related the the
fact that it had to be done by a person who has no previous
experience with AutoProof, nor any other similar tools. The
difficulty is not in some sophisticated user interface (UI) of the
tool, which is by the way, rather simple - a ”Verify” button and
a table (see figure 1), where the results are being displayed.
The main obstacle is in the fact that, the tool expects an input
in terms of assertions, and it is not always clear what the real
effect of each input is.

Fig. 1. UI of AutoProof

1) Lack of documentation: As it was previously said the
tool requires additional annotations that lead the verification
and help to derive one property from another. Although
AutoProof uses the syntax of Eiffel language, there are many
new things has been introduced by the developers of the tool.
Most of this briefly described in an on-line manual which is
available on the web-site of EVE1. In addition there is an on-
line tutorial which are useful for quick acquaintance with the
tool. However, this is surely not enough for using it as an
reference while working with the tool.

Overall, there is not much of documentation available in
the Internet: the website, and several papers from the authors
of the AutoProof tool, however the notation is some of
these papers are not relevant anymore. Of course, for some
specific tool, which is to be used by a narrow group of
scientists this is excusable, but if we are talking about applying
verification in industrial practice - the documentation would be
essential because the tool still requires quite a bit of additional
annotations and knowledge of underneath mechanisms.

2) Feedback from the tool: The process verification (or
static debugging) starts with pushing a ”Verify” button and
when the tool returns some feedback (error and failure mes-
sages) - fixing them by adding required assertions and repeat-
ing the procedure until everything is ”successful”. A failure
message is a message that describes the property that can not
be satisfied. The error messages returned by the tool are infor-
mation on some issue with the input. AutoProof implements
a collection of heuristics known as two-step verification that
helps discern whether failed verification is due to real errors
or just to insufficiently detailed annotations [2]. The failure
messages usually informative, they describe the property and
sometimes may describe what can be the reason. However,
the error messages usually do not tell more that that the tool
could not proceed with input it has received. It occurs due to
problems in ”translation”.

If there is a failure during translations between AutoProof
and Boogie the verification process stops and the AutoProof
returns an error message about ”internal failure” in some cases
with no additional information. Usually this can be resolved
only if the error was caused by newly entered assertion,
because otherwise it is not possible to learn what exactly
causes this error. This may become an issue while verifying
a class with all features implemented and contracts stated
because it is not possible to determine the source of the the

1EVE (Eiffel Verification Environment) - is a development environment
integrating formal verification with the standard tools

102 из 190

error. The solution might be to add features one by one,
verifying each one separately.

3) Redundancy in notations: AutoProof supports most of
the Eiffel language as used in practice [2], as well as introduces
some new notations to support the methodologies used for
verification. Usually those notations are useful for decreasing
amount of assertion by skipping repetitions, for manipulating
the defaults of semantic collaboration in the feature or the
class (will be discussed in IV-B1).

However, some of these additional notations introduce
redundancy. For example, the Eiffel class, containing one
or more creation procedures should have these procedures
explicitly listed under keyword create. In figure 2 make is
defined as creation procedure. However, the verifier expects
additional note clause with status: creator in order to treat it
as creation procedure.

create
make

feature
make

note
status : creator

do
...

Fig. 2. Denoting a procedure make as creation

Another example is depicted in the figure 3 were the status
of the function has to be defined with impure keyword, mean-
ing that it modifies the state of the object, and then, modify
clause with empty squire brackets that stands from function
purity. This is done just to be able to use wrap/unwrap in the
function.

4) Misleading notations: AutoProof support inline asser-
tions and assumptions, which can be expressed using check
clause. Checks are intermediate assertions that are used during
the debugging process to check if you have the same under-
standing of the state at a program point as the verifier [8].
However, removing an intermediate check clause from suc-
cessfully verified feature might fail later verification, because
check assertions guide the verifier towards the successful
verification. Perhaps the developers of the tool made the
decision not to add new keyword and to use check clause
from Eiffel in order to keep thing simpler. However, this might
convey users to a wrong understanding of the impact of the
clause.

5) Order of assertions: The check clauses might be useful
because the verifier not just checks the property enclosed, but
also uses it in further derivations, in case it was proven correct.
Same applies to invariants, and that makes order of properties
substantial for the tool. Basically, this means that properties
are joint not by and operator but and then instead, which
may lead to verification failures even if all needed properties
are stated but in improper order.

6) Limitations of the tool: Currently, AutoProof has some
limitation on usage of the verified library eve-base. Even
though, this library is fully verified, it can only be used
when the void-safety property of the tool is disabled. The
latest works demonstrate that this library was checked for void
safety, however this versions are not available yet.

7) UI bug: The tool lacks of support which can be observed
in some rare bugs. For example it can skip some of the features
of the class or verify only one of the feature instead of whole
class. Even though, the tool never returned improper successful
verification results, this kind of bugs might be annoying.

8) Compilation from the sources: The tool is still raw and it
is better not to use the latest versions. The repository requires
some clean up, because currently, if one try to build the verifier
from some last sources, it just will not compile.

B. Methodology: Problems with Semantic collaboration

AutoProof supports advanced object-oriented features and a
powerful methodology for framing and class invariants, which
make it applicable in practice to idiomatic object-oriented
patterns [2]. But this power comes with price of simplicity -
the tool requires understating of all these methodologies under
the hood. This makes the tool available for the expert users
only by over complicating the verification of even a relatively
simple classes.

1) Semantic collaboration: AutoProof supports semantic
collaboration, a full-fledged framing methodology that was
designed to reason about class invariants of structures made
of collaborating objects [2]. This methodology introduces
own annotations which does not existed in Eiffel language.
Annotations are used to equip features and classes entirely
with additional information which proceeded by the verifier.
These include many ”ghost” attribute 2 which are quite useful
when maintenance of global consistency is required as in
subject/observer or iterator pattern examples [9].

Meanwhile, all these ghost attributes and default assertions
that are added into pre- and post-conditions unreasonably over-
complicate verification process of rather simple classes.

In the earlier stages of verification quite a bit of time
was spent trying to understand the failure message that de-
fault is closed may be violated on calling some feature” of
some private attribute data. Basically, the tool was expecting
owns = [data] in the invariants of the class which is not
obvious without understanding the methodology. Moreover,
for this specific example the property could be derived from
exportation status of the attribute. The verifier ignores this
useful informations and requires the properties stated explic-
itly. Eiffel language supports the notion of ”selective export”,
which exports the features that follow to the specific classes
and their descendants [10]. Considering this information might
narrow the need for using semantic collaboration [11].

2) Framing: The framing model is used in AutoProof
in order to help reason about objects that are allowed/not
allowed to be updated. There are different ways to specify

2class members used only in specifications

103 из 190

this by adding modifies clauses in preconditions: one can
specify one or more model fields, attributes of the class or
list of objects which may be updated. This is rather intuitive
and straightforward, though seems to be more relevant to
postcondition clauses. There are default clauses included into
each routine, so it should be used only if behavior of the
routines are different from default. In MY SET example all
the routines had to be pure and because of that modify clause
had to be specified in each of them. Even in a function,
which is pure by default, if one wishes to use ”is wrapped”
clause, that function needs to be specied as impure and in a
meanwhile, that it does not modify anything (see figure 3);
which looks confusing.

feature−− Queries
union(other : likeCurrent) : likeCurrent
−− New set of values contained in ‘Current’ or ‘other’

note
status : impure

require
modify nothing : modify([])
...

Fig. 3. Pure function has specified as impure

V. RELATED WORK

Formal notations to specify and verify software systems
have existed for long. A survey of the major approaches can
be found in [12], while [13] discusses the most common
methodological issues of such approaches.

Design-by-contract [14] combined with static verification
technologies could offer wide applicability in practice. Nowa-
days, many popular programming languages support this
methodology using embedded contract languages [15], and
some are expected to support it on a language level soon.

In [16] the authors present an extensive survey of algorithms
for automatic static analysis of software. The discussed tech-
niques (static analysis with abstract domains, model checking,
and bounded model checking) are different, but complemen-
tary, to the one discussed in this paper, and they are also able
to detect programming errors or prove their absence.

The importance of focusing on usability requirements for
verification tools has been identified in [17]. In particular, the
non-expert usage of AutoProof has been studied in [18] where
programmers with little formal methods experience have been
exposed to the tool.

VI. CONCLUSION

AutoProof is not trivial in usage and needs detailed knowl-
edge of what is going on behind the scenes. The tool requires
a number of additional assertions in pre- and post-conditions,
as well as in invariants for successful verification, ignoring
some information that has been already provided. To be used
in practice the usability of the tools should be significantly
improved making verification simple enough to be used by
ordinary programmers. By simple we mean, that it should:

• require less additional annotations by: automatically de-
riving properties from information which currently is
neglected; removing redundant clauses and reworking
some of ghost class members;

• provide clearer feedback in case some property can not
be satisfied, offering hints and possible solution;

In addition, it is important to:
• develop a documentation describing all used methodolo-

gies, including detailed information about notations with
examples

• clean up and rebuild the tool from latest sourced that are
available in EVE repository, fixing all the bugs that we
identified;

REFERENCES

[1] J. Woodcock, E. G. Aydal, and R. Chapman, The Tokeneer Experiments,
pp. 405–430. London: Springer London, 2010.

[2] J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof:
Auto-active functional verification of object-oriented programs,” CoRR,
vol. abs/1501.03063, 2015.

[3] M. Khazeev, V. Rivera, M. Mazzara, and A. Tchitchigin, “Usability of
autoproof: a case study of software verification,” in Proceedings of the
Institute for System Programming, vol. 28, issue 2, pp. 111–126, 2016.

[4] J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof:
Auto-active functional verification of object-oriented programs,” in 21st
International Conference, TACAS 2015, London, UK, April 11-18, 2015.
Proceedings, pp. 566–580, 2015.

[5] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[6] K. R. M. Leino, “This is boogie 2,” tech. rep., June 2008.
[7] “Autoproof manual.” [Online] http://se.inf.ethz.ch/research/autoproof/manual/

(Date last accessed: 2016-03-15).
[8] E. Z. Chair of Software Engineering, “Autoproof tutorial,”
[9] C. A. F. Nadia Polikarpova, Julian Tschannen and B. Meyer, Flexible In-

variants through Semantic Collaboration, pp. 514–530. Cham: Springer
International Publishing, 2014.

[10] B. Meyer, Touch of Class: Learning to Program Well with Objects and
Contracts. Springer Publishing Company, Incorporated, 1 ed., 2009.

[11] D. de Carvalho, “Modularly reasoning in object-oriented programming
using export status.” unpublished, 2017.

[12] M. Mazzara and A. Bhattacharyya, “On modelling and analysis of
dynamic reconfiguration of dependable real-time systems,” in 2010 Third
International Conference on Dependability, pp. 173–181, 2010.

[13] M. Mazzara, “Deriving specifications of dependable systems: toward a
method,” in Proceedings of the 12th European Workshop on Dependable
Computing, EWDC, 2009.

[14] B. Meyer, Object-oriented software construction, ch. 11: Design by
Contract: building reliable software. Prentice Hall PTR, 1997.

[15] M. Fähndrich, M. Barnett, and F. Logozzo, “Embedded contract lan-
guages,” in Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, (New York, NY, USA), pp. 2103–2110, ACM,
2010.

[16] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Trans. on CAD of
Integrated Circuits and Systems, no. 7, pp. 1165–1178.

[17] R. Razali and P. Garratt, “Usability requirements of formal verification
tools: A survey,” Journal of Computer Science, no. 6, pp. 1189–1198.

[18] C. A. Furia, C. M. Poskitt, and J. Tschannen, “The AutoProof verifier:
Usability by non-experts and on standard code,” in Proceedings of
the 2nd Workshop on Formal Integrated Development Environment (F-
IDE) (C. Dubois, P. Masci, and D. Mery, eds.), vol. 187 of Electronic
Proceedings in Theoretical Computer Science, pp. 42–55, EPTCS, June
2015. Workshop co-located with FM 2015.

104 из 190

The Study into Cross-Site Request Forgery Attacks

within the Framework of Analysis of Software

Vulnerabilities

Alexander Barabanov

Testing Department

NPO Echelon

Moscow, Russia

ab@cnpo.ru

Artem Lavrov

Testing Department

NPO Echelon

Moscow, Russia

mail@cnpo.ru

Alexey Markov

Information Security Department

Bauman MSTU

Moscow, Russia

a.markov@bmstu.ru

Ivan Polotnyanschikov

Testing Department

NPO Echelon

Moscow, Russia

mail@npo-echelon.ru

Valentin Tsirlov

Information Security Department

Bauman MSTU

Moscow, Russia

v.tsirlov@bmstu.ru

Abstract— This work presents a study into security of web-

applications, which are the targets of evaluation within the

framework of certification as to information security

requirements, against cross-site request forgery attacks. It

specifies results of classification and summary of information

about similar attacks and different types of defense against them.

It specifies results of the study, which demonstrate distribution of

identified vulnerabilities as per the developer type, distribution of

the protective measures used in web-applications, distribution of

the identified vulnerabilities as per the programming languages,

data on the number of protective measures that are used in the

studied web-applications. The results of the study showed that in

the majority of cases the developers of web-applications does not

pay due attention to protection against cross-site request forgery

attacks. The work gives recommendations to the developers that

are planning to undergo certification process for their software.

Keywords— information security; software security; analysis of

vulnerabilities; web-application; CSRF-attack

I. INTRODUCTION

Software created with the use of web-technologies is
currently one of the main components in automated control
system (ACS) design. The designed ACS are, as a rule, multi-
user and can be found on public domain networks (for instance,
Internet), which increases the risk of their successful attack.
Various procedures (such as certification, independent security
audit) are currently used to lower probability of successful
attack. They are aimed at identifying vulnerabilities in the
software used to design ACS [1, 2].

Software vulnerabilities are analyzed during certification
for compliance with the requirements to the protection profiles
approved by FSTEC of Russia (Federal Service for Technology
and Export Control), which clearly includes requirements of
AVA_VAN assurance family “Vulnerability analysis”, and
during testing for compliance with the requirements of the
technical specifications and classic governing documents of
FSTEC of Russia. The procedure for vulnerability analysis
recommended by FSTEC of Russia consists in the joint use of
approaches specified in the Common Methodology for
Information Technology Security Evaluation and ISO/IEC TR
20004 [3]. It should be noted that more specific instructions for
the test laboratories (for instance, standard penetration tests)
have not yet been developed, which makes this procedure non-
determined [4].

The experience of analysis into vulnerabilities of web-
applications within the framework of the accredited test
laboratory showed that Сross-Site Request Forgery attack,
hereinafter – CSRF-attack is currently the most successful
attack against targets of evaluation. The main attention of the
developers of web-applications, as a rule, is concentrated on
implementing measures protecting against attacks like SQL-
injections or Cross-site scripting. The situation is aggravated by
the fact that measures protecting against CSRF-attacks are still
being actively studied, and best practices have not been rigidly
registered yet [2, 6].

The goal of this work consisted in developing guidelines
for the developers of web-applications, who are planning to
certify their solutions as to the information security
requirements. The work solves the following tasks to achieve
the set goal:

105 из 190

а) Classification and summary of information about CSRF-
attacks and measures of protection against them;

b) Consolidation of information about vulnerabilities of
web-applications identified within the framework of work of
the accredited test laboratories.

II. THE RESULTS OF CLASSIFICATION AND SUMMARY OF

INFORMATION ABOUT CSRF-ATTACKS AND RELEVANT

SECURITY MEASURES

A hacker performing a CSRF-attack makes the web-
browser used by the legal user, who has been authenticated in
"security measures against " the attacked web-application, send
HTTP-request, which is going to be identified by the
application as a request received from a legal user, to the web-
application.

A possible consequence from a successful CSRF-attack
implementation is running of an arbitrary code in the web-
application in the name of authenticated user. Thus, the main
causes of CSRF-attacks are vulnerabilities in web-applications
related to wrong implementation of algorithm of HTTP-request
authorization. Success of CSRF-attack is determined by the
following factors [7, 8]:

 The browser automatically applies authentication data
of the user (for instance, session cookie-files), when
sending HTTP-request to the web-application;

 Web-application uses the obtained authentication data
to authorize the action required for performance by
HTTP-request.

It should be noted that despite difficulties in
implementation, there are cases of successful CSRF-attacks of
‘Login’ and ‘Logout’ type on web-applications [1, 9, 10]. The
probability of successful ‘stored’ CSRF-attack is higher,
because a malicious code is stored on the side of the attacked
web-application, and the hacker does not have to make the user
(for instance, using methods of social engineering) go to a
special resource with a malicious code.

Implementation of the security measures on the client’s side
[11-16], represented by plugins/extensions of the browser or
additional software (proxy), has significant drawbacks [8] and
is currently only of academic interest.

There are suggestion on implementing security measures
directly with the browser source code, for instance, using
‘samesite’ properties of the cookie-files, but currently these
measures are experimental and are implemented only in certain
browsers. Integrated measures (measures implemented jointly
by the software code on the client- and the server-sides), as a
rule, implement a certain information control policy [6, 17],
which contain critical information (for instance, authentication
data), between the browser and the web-server. It should be
noted that effective implementation of this type of security
measures is possible by making changes in the browser source
code. Moreover, essential limitations of these security
measures are well-known, which does not allow their use as a
sole measure of protection.

The most popular security measures against CSRF-attacks
are tokens (synchronic tokens or generated using HMAC
cryptographic function) that are generated and checked on the
web-application side. This security measure is implemented, as
a rule, by the web-application itself or the framework. It should
be noted that the majority of the most popular frameworks
(such as, Ruby on Rails, ASP.NET, Django) implement this
measure, which somewhat decreases the workload for the
developer of a certain web-application and reduces the number
of errors related to implementation of the security algorithm by
the developer of the web-application.

The main distinctive feature of the token-based security
measures is in the token storage method:

 Generated token may be stored on the web-application
side (it is associated with the user session) and it shall
be compared with the token received from the web-
browser;

 Generated token may be stored on the web-browser
side (for instance, in the cookie); when the web-
application receives a request from the web-browser,
the web-application compares the values of tokens in
the cookie and the HTTP-request body.

It should be noted that this measure of the web-application
security is used correctly, if it is designed and implemented in a
way that HTTP-requests of GET type do not change the server
state, and are used only for request of the necessary
information. AJAX-requests may be protected with tokens
inserted in HTTP-header, or custom HTTP-headers (during
implementation of this security measure the web-application
only checks availability of the heading in the received request).

The leading specialists in the web-application security
recommend using the defense in depth principle, when
implementing security measures. Thus, specialists of OWASP
community recommend implementing security of the web-
application by combining two types of the security measures –
HTTP-headers verification and tokens.

In some cases, the developers use three or more security
measures for critical information systems (for instance, online
banking systems). For example, it can be a combination of
tokens, verification of HTTP-header and security measures that
require actions from the end user, who performs a critical
operation (entry of one-time code/ password).

III. METHODS AND RESULTS OF THE STUDY

The study into the security level of the web-application was
carried out in the accredited test laboratory of NPO Echelon
(study period: January – November 2016). Brief information
about the web-applications that participate in the study is
represented in Table 1.

106 из 190

TABLE I. BRIEF INFORMATION ABOUT THE STUDY OBJECTS

Software

identifier

Programming

language

Type of

developer

Level of

measures for

secure software

development

implementation

(maturity level)

Software No. 1 PHP Russian 2

Software No. 2 Java Foreign 5

Software No. 3 PHP Russian 1

Software No. 4 Java Foreign 5

Software No. 5 С# Russian 4

Software No. 6 Java Russian 1

Software No. 7 C# Russian 1

Software No. 8 PHP Russian 1

Software No. 9 Ruby Russian 3

Software No. 10 Ruby Russian 3

Level of measures for secure software development
implementation (maturity level) was assessed by the expert
method with account of the scope of measures implemented by
the developer of measures from the basic set of measures for
developing secure software suggested in the National Standard
GOST R 56939-2016 Information Protection. Secure Software
Development. General Requirements. [4, 18]: 1 - not one
measure is implemented, 2 - less than 20% of measures is
implemented, 3 – from 20% to 40% of measures is
implemented, 4 - from 40% to 60% of measures is
implemented, 5 - from 60% to 80% of measures is
implemented, 6 - over 80% of measures is implemented.

Vulnerabilities were analysed using standard tests
developed with account of recommendations and CAPEC
resource. Below is the general sequence of the performed tests:

1) Analysis of parts of web-applications (pages), which

allow changing the state of the web-application (creating/

changing/ deleting user accounts, protected information, other

information etc.).

2) Study of the requests to the identified parts of web-

applications: transmission of the requests from the web-

browser to the web-application with further interception and

analysis of the request structure. The expert analyses the

intercepted request and defines the type of security measure

against CSRF-attack on a specific page.

3) Generating a mock HTTP-request, which is saved as an

HTML-file on the local computer and is opened in the web-

browser, provided that there is a session authenticated by the

target of evaluation (web-application).

4) If the analysis of intercepted request (cl. 2) revealed

security measures against CSRF-attacks, the following actions

shall be additionally taken:

а) When tokens are used as a security measure:

 Analysis of URL for a presence of token in a plain
text;

 Sending a request without a token;

 Sending a request with an altered token;

 Sending a request using one token for various user
accounts;

 An attempt to guess /select a token;

b) When using verification of the HTTP-headers as a
security measure:

 Sending a request with altered HTTP Referer
(originally a misspelling of «referrer»)/Origin fields;

 Sending a request without HTTP Referrer/Origin
fields.

The tests were performed using the following software:
BurpSuite software, Scaner-VS software. The average time
spent on testing of one web-application by one expert of the
test laboratory is 8 hours.

The results of the study are specified below.

1) CSRF-attacks were successful in 70% of cases – 7 out

of 10 analysed web-applications turned out to be vulnerable.

2) The majority of CSRF-attacks were successful in

relation to web-applications developed in Russia. It should be

noted that the only CSRF-attack that was successful in relation

to the foreign web-application was that of “Logout” type, and

the experts of the test laboratory failed to develop an attack

vector that implements information security threat. Only one

web-application initially did not have any security measures

against CSRF-attacks. The other vulnerable web-applications

had security measures based on verification of HTTP-headers

or token (Figure 1).

Fig. 1. Distribution of protection measures used in vulnerable web-

applications

3) It has been established that web-applications written in

PHP have a few more vulnerabilities that results in successful

CSRF-attacks (Figure 2) [20].

4) The developers upgraded vulnerable web-applications

using security measures based on tokens in all cases.

107 из 190

5) In the majority of cases the upgraded web-application

and web-applications, where the vulnerability has not been

identified, used a combination of several security measures

against CSRF-attacks.

Fig. 2. Distribution of identified vulnerabilities as to the programming

language

6) The average time required for the web-application

developer to correct vulnerability is 3 weeks.

7) One of the results of the study was a deduced empirical

rule, in accordance with which the number of vulnerabilities

identified in the software is in inverse proportion to the

maturity level of the secure software development processes

implemented by the developer.

IV. RECOMMENDATIONS TO DEVELOPERS ON INCREASING THE

SECURITY LEVEL OF WEB-APPLICATIONS

Based on the results of the study the following
recommendations were provided for the developers of web-
applications that are planning to hold certification tests as to
information safety requirements.

1) It is advisable that the developers implement measures

for secure software development in the software lifecycle

processes. At the very least, it is recommended to implement

measures related to testing penetration of web-application

prior to their submission to the test laboratory. To minimize

time for such testing, the developers should generate sets of

standard tests, which may be developed with account of

guidelines represented in the works [17, 19]. The developers

are advised against limiting their tests to the standard test only,

and are recommended to run additional tests aimed at

performing CSRF-attacks, like ‘Login’ and ‘Logout’, and

verify that the selected security measure is correctly

implemented.

2) The developers are recommended using the defense in

depth principle – combine two or more security measures (as a

rule, verification of token and HTTP-headers), when

implementing security measures against CSRF-attacks in the

web-application.

3) When implementing security measures against CSRF-

attacks in the web-application, the developers are first of all

recommended to use security measures that are already

implemented in the operational environment, for instance,

frameworks.

V. CONCLUSIONS

This work consisted in the study into security of web-
applications, which are the test targets within the framework of
certification as to information security requirements, against
cross-site request forgery attacks. The result showed that the
majority of the developers (around 70%) do not pay due
attention to implementing security measures against such
attacks. Resulting from the study, we defined recommendations
for the developers, the main of them being recommendations
on the use of defense in depth principle and the use of token-
based security measures that had already been implemented by
the framework developers. We deduced empirical rule, in
accordance with which the number of vulnerabilities identified
in the software is in inverse proportion to the maturity level of
the secure software development processes implemented by the
developer. Further studies are intended into the issues of the
web-application protection against SQL-injection attacks and
cross-site scripting attack and defining general guidelines for
the developers of web-applications, who are planning
certification.

REFERENCES

[1] H. Selim, S. Tayeb, Y. Kim, J. Zhan, and M. Pirouz. “Vulnerability

Analysis of Iframe Attacks on Websites,” In Proceedings of the The 3rd
Multidisciplinary International Social Networks Conference on
SocialInformatics 2016, Data Science 2016 (MISNC, SI, DS 2016).
ACM, New York, NY, USA, Article 45 , pp. 1-6, August 2016. DOI:
10.1145/2955129.2955180.

[2] W. Du, K. Jayaraman, X. Tan, T. Luo, and S. Chapin. “Position paper:
why are there so many vulnerabilities in web applications?” In
Proceedings of the 2011 New Security Paradigms Workshop (NSPW
'11). ACM, New York, NY, USA, pp. 83-94. 2011. DOI:
10.1145/2073276.2073285.

[3] A. Barabanov, A. Markov, A. Fadin, V. Tsirlov, I. Shakhalov.
“Synthesis of Secure Software Development Controls,” In Proceedings
of the 8th International Conference on Security of Information and
Networks (Sochi, Russia, September 8-10, 2015). SIN '15. ACM, New
York, NY, USA, pp. 93-97. 2015. DOI: 10.1145/2799979.2799998.

[4] A.V. Barabanov, A.S. Markov, V.L. Tsirlov. “Methodological
Framework for Analysis and Synthesis of a Set of Secure Software
Development Controls,” Journal of Theoretical and Applied Information
Technology. 2016. V. 88. No 1, pp. 77-88.

[5] N. Jovanovic, E. Kirda, and C. Kruegel. “Preventing cross site request
forgery attacks,” In the IEEE International Conference on Security and
Privacy for Emerging Areas in Communication Networks (Securecomm)
, pp. 1–10, September 2006.

[6] A. Czeskis, A. Moshchuk, T. Kohno, and H.J. Wang. “Lightweight
server support for browser-based CSRF protection,” In Proceedings of
the 22nd international conference on World Wide Web (WWW '13).
ACM, New York, NY, USA, 2013, pp. 273-284. DOI:
10.1145/2488388.2488413.

[7] K. Jayaraman, P. G. Talaga, G. Lewandowski, S.J. Chapin, and M.
Hafiz. “Modeling user interactions for (fun and) profit: preventing
request forgery attacks on web applications,” In Proceedings of the 16th

108 из 190

Conference on Pattern Languages of Programs (PLoP '09). ACM, New
York, NY, USA, , Article 16 , pp. 1-9. August 2009. DOI:
10.1145/1943226.1943246.

[8] A. Barth, C. Jackson, and J.C. Mitchell. “Robust defenses for cross-site
request forgery,” In Proceedings of the 15th ACM conference on
Computer and communications security (CCS '08). ACM, New York,
NY, USA, pp. 75-88. October 2008. DOI: 10.1145/1455770.1455782.

[9] M. Zhou, P. Bisht, and V.N. Venkatakrishnan. “Strengthening XSRF
defenses for legacy web applications using whitebox analysis and
transformation,” In Proceedings of the 6th international conference on
Information systems security (ICISS'10), Somesh Jha and Anish
Mathuria (Eds.). Springer-Verlag, Berlin, Heidelberg, pp. 96-110. 2010.

[10] E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler. “More
Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant
OAuth 2.0 Implementations,” In Proceedings of the 12th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9148 (DIMVA 2015), Magnus Almgren,
Vincenzo Gulisano, and Federico Maggi (Eds.), Vol. 9148. Springer-
Verlag New York, Inc., New York, NY, USA, pp. 239-260. June 2015.
DOI: 10.1007/978-3-319-20550-2_13.

[11] H. Shahriar and M. Zulkernine. “Client-Side Detection of Cross-Site
Request Forgery Attacks,” In Proceedings of the 2010 IEEE 21st
International Symposium on Software Reliability Engineering (ISSRE
'10). IEEE Computer Society, Washington, DC, USA, pp. 358-367.
November 2010. DOI : 10.1109/ISSRE.2010.12.

[12] P.D. Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen. “CsFire:
transparent client-side mitigation of malicious cross-domain requests,”
In Proceedings of the Second international conference on Engineering
Secure Software and Systems (ESSoS'10), Fabio Massacci, Dan
Wallach, and Nicola Zannone (Eds.). Springer-Verlag, Berlin,
Heidelberg, pp. 18-34. 2010. DOI: 10.1007/978-3-642-11747-3_2.

[13] R. Pelizzi and R. Sekar. “A server- and browser-transparent CSRF
defense for web 2.0 applications,” In Proceedings of the 27th Annual
Computer Security Applications Conference (ACSAC '11). ACM, New

York, NY, USA, pp. 257-266. December 2011. DOI:
10.1145/2076732.2076768.

[14] L. Xing, Y. Zhang, and S. Chen. “A client-based and server-enhanced
defense mechanism for cross-site request forgery,” In Proceedings of the
13th international conference on Recent advances in intrusion detection
(RAID'10), Somesh Jha, Robin Sommer, and Christian Kreibich (Eds.).
Springer-Verlag, Berlin, Heidelberg, pp. 484-485. 2010.

[15] N. Gelernter and A. Herzberg. “Cross-Site Search Attacks,” In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS '15). ACM, New York, NY, USA, pp.
1394-1405. October 2015. DOI: 10.1145/2810103.2813688.

[16] E. Z. Yang, D. Stefan, J. Mitchell, D.Mazières, P.Marchenko, and B.
Karp. “Toward principled browser security,” In Proceedings of the 14th
USENIX conference on Hot Topics in Operating Systems (HotOS'13).
USENIX Association, Berkeley, CA, USA, pp. 17-17. 2013.

[17] W. Maes, T. Heyman, L. Desmet, and W. Joosen. “Browser protection
against cross-site request forgery,” In Proceedings of the first ACM
workshop on Secure execution of untrusted code (SecuCode '09). ACM,
New York, NY, USA, pp. 3-10. November 2009. DOI:
10.1145/1655077.1655081.

[18] A. Barabanov, A. Markov, V. Tsirlov. “Procedure for substantiated
development of measures to design secure software for automated
process control systems,” In Proceedings of the International Siberian
Conference on Control and Communications, SIBCON 2016, IEEE, 1-4.
June 2016. DOI: 10.1109/SIBCON.2016.7491660.

[19] X. Li and Y.Xue. “A survey on server-side approaches to securing web
applications,” ACM Comput. Surv. 46, 4, Article 54 (March 2014), 29
pages. April 2014. DOI: 10.1145/2541315

[20] A.S. Markov, V.L. Tsirlov. “Opyt vyyavleniya uyazvimostey v
zarubezhnykh programmnykh produktakh”, Voprosy kiberbezopasnosti
[Cybersecurity Issues]. 2013. No 1(1), pp. 42-48. (In Russ.).

109 из 190

Dataflow Analysis for the Search of the Code

Security Defects

 Sergei Borzykh

Development Department

NPO Echelon

Moscow, Russia

mail@cnpo.ru

Alexey Markov

Information Security Department

Bauman MSTU

Moscow, Russia

a.markov@bmstu.ru

Andrei Fadin

Development Department

NPO Echelon

Moscow, Russia

af@cnpo.ru

Valentin Tsirlov

Information Security Department

Bauman MSTU

Moscow, Russia

v.tsirlov@bmstu.ru

Pavel Gusev

Development Department

NPO Echelon

Moscow, Russia

mail@npo-echelon.ru

Abstract—This paper is devoted to the static analysis of the

source code security and use of the dataflow analysis algorithms

for effective identification of code defects (errors made during

development), and intentional backdoors. The paper discusses

implementation of this algorithm and shows how it can be used

for identification of potentially harmful structures in the source

code.

Keywords— information security; software security; static

analysis; heuristic analysis; vulnerabilities; defects; production

models; data-flow analysis

I. INTRODUCTION

IT-based solutions are currently used everywhere, and
significant problems are represented by both internal software
errors of the information systems, and malicious source code
implemented in the information system software. The
consequences of both problems lead to violation of access,
integrity and confidentiality of the processed information,
which can result in financial and reputational losses of the
business. This is a reason of growing financial losses over the
last few years. High quality and failure-free operation of the
source code is a burning issue of the software industry. Ever
growing complexity of the software complexes, their use in
the management and control systems of the government and
the industrial production require continuous upgrading of the
software testing and control methods [1-9].

II. STATIC AND DYNAMIC METHODS OF THE CODE

ANALYSIS

Upon the whole, the testing methods used in the audit of
the software systems security may be divided into two groups:
static methods (structural testing) and dynamic methods
(functional testing).

Static methods of the code analysis, which do not require
running of the analysed code for its operation, allow for full or
partial automation [10, 11]. Such methods are most frequently
used in case of full access to the software system and its
source texts, which is called “a white-box technique”. It
employs source and loading modules of the program and its
component. The benefit of the static code analysis is that it
does not require multiple program runs under various
operational conditions (condition of the environment and input
data) and possibility to achieve a greater degree of automation
of the tests for the program defects based on their design
features. When developing software for special-purpose
informational systems, these methods are used to search for
random code defects, and hidden software functionality
(backdoors) [12, 13].

Dynamic software analysis is a method of analysis that
stipulates program running on real or virtual processor [14].
Functional testing is most in demand during the study of the
programs by black box method, when there is access to only
external software interfaces without account of their structure,
back-end interfaces or status. The approach is used to study
accuracy and stability of the software operation within the
framework of the key jobs of the test engineers, however, the
method is not always effective for searching of errors related
to combinations of rarely used input data, and for identifying
intentional backdoors there.

Static analysis of the software source texts is closely
related to development of compilation systems, and many
approaches of static analysis use elements of the compiler
theory, namely, the code view models [15, 16].

III. SIGNATURE ANALYSIS AS THE MAIN METHOD

The approach that is called signature analysis implies the
search for software defects in the software code by comparing

110 из 190

code fragments with the samples from the database of
templates (signatures) of the security defects. Depending on
the method for correlating fragments of the code to the
template, and the intermediate representation in use, there may
be algorithms of searching for a substring in the string, and
query language for structured information (for instance,
XQuery for XML), or specially designed methods of
correlation, but in each case each of the signatures represents
the decision procedure, which employs various presence bits
of potentially harmful structure. [16] provides examples of the
rules for generating error signatures, which correspond to the
CWE standard. We can see here that the signature methods are
not limited to the types of defects and are preferable, when
dealing with the backdoors.

Improvement of the operational qualities of the static code
analysis is mainly related to minimizing the number of “false
positives” while preserving maximum fullness of the list of the
types of potentially harmful structures [17]. Therefore, the
instruments describing signatures of the code defects shall
ensure maximum flexibility in defining a defect with account
of diversity in the syntax of the programming language under
study.

The field for designing means of static analysis is now
actively developing: new directions of analysis do not force
out the reputable approaches, on the contrary, they
complement them by integrating the advantages of the
predecessors. For instance, such approach as dataflow analysis
may compensate for the drawbacks of the template-based code
defect search, which does not allow for high quality of
identification of SQL-, Path-, XSS-injections, and other types
of code injections, however, it will require large RAM and
computing resources of the processor [18, 19, 20].

An interesting manifestation of symbiosis of the analysis
methods is when potentially harmful structures, which have
been initially identified by the customary signature method is
supported by the automated method using highly-specialized,
costly, but efficient procedures [21-23].

IV. DATAFLOW ANALYSIS

The dataflow analysis can be described as a process of
gathering information about the use, defining and dependency
of data in the analysed program [24, 25]. The dataflow
analysis uses command flow graph generated based on the
code tree. This graph represents all possible paths for running
this program: the nodes stand for ‘linear’, consecutive
fragments of the code without any transitions, and the edges
stand for potential transfer of control between these fragments.

Syntactic analysis allows for identifying control structures,
such as procedure, function or method calls, which, in their
turn, allow building call graphs, control flow graphs, and
identifying assignation and the others that allow building
dataflow graphs [15, 16, 26]. Control and dataflow graphs are
used for analysis of the local program blocks (mainly, the
content of the functions, procedures and methods - local
analysis). Control flow graphs allow analysing program
behaviour on a more general level (on the level of the file,
module or the entire program - global analysis).

The dataflow analysis can be used for proper detection of
certain types of defects (as a rule, in operation) with a
minimum number of false positives: SQL-, command-, XSS-
injections, other types of code injections and setting directly in
the code of the authentication data. It should be noted that
despite the differences in these defects, most of them
implement the following defect use pattern.

1. Data is received from the user (consequently,
untrusted data).

2. Data propagates through the program depending on
the conditions and cycles.

3. Data is transformed, or filtered, or remains
unchanged.

4. Finally, untrusted data gets access to the vulnerable
function (buffer management, SQL query running
etc.).

There is a mechanism for dataflow analysis called “taint
propagation”, which allows for identifying the defect, but also
shows the data propagation path, starting from the entry point
(user input), through the program and to the function
vulnerability [27]. An interesting instance of such mechanism
of dataflow analysis is “constant propagation” - search for
authentication data (login, password, IP-address) directly in
the software source code. Let us review a code fragment:

String login = "Some Constant";

Such code fragment can be sought using signature analysis
(search as per templates). It only requires representation rule:

VARIABLE (“login” OR “password”)

OPERATOR (“=”) CONSTANT(*);

However, these code fragments can show that such code
was written for debugging and remained in the final software
version by accident, or was added intentionally, provided there
was assurance that the code would not be inspected. If a
malicious developer wants to hide the imbedded defect from
the person, who inspects the code, but also from the means of
static analysis, the code may be written, for instance, this way:

String label = "somewhere".substring(0,4);

String summ =

LogConstant.class().getClassName().toLowerCase()

;

String upd_time = summ.substring(3,

summ.lenght()-3);

Char ascii_conv = 95;

String login = label + ascii_conv + upd_time;

If we break down parts of code fragment into various
modules and files of source texts, it will be next to impossible
to identify the defect using manual analysis, as well as many
known automated methods.

The “constant propagation” mechanism of the dataflow
analysis may define the values of the variables, their
concatenation and transfer into other variables, and final
values of the variables. As a result, the defect may be
identified and, consequently, unauthorized access to the
functional capabilities of the software may be prevented.

111 из 190

V. OPERATING PRINCIPLES AND APPLICATION OF THE

DATAFLOW ANALYSIS

Previous sections show the importance of static analysis
and general issues. Following sections describe the main
approach for dataflow analysis implementation and results of
its implementation in static analyzer AppChecker developed
by NPO Echelon. Let us introduce a set of definitions for a
future shorter description of the principles and algorithms of
this method operation:

• Point — a node in the control flow graph;

• Touch points (TP) (sink or critical points) — nodes in
the control flow graph, which are used for calling important
functionality (in the context of the identified defect);

• Entry point - nodes in the control flow graph, where
new data is received from interfaces outside the analysed
code;

• Untrusted data - data received from interfaces outside
the analysed code and trusted zone (allied agents, users);

• Critical flow - flow from the entry point to the touch
point.

Let us define the general procedure for the search for
undocumented features using dataflow analysis:

1. Prepare source texts and configurations of the
analysed software.

2. Use of the static analysis tools (that implement
dataflow analysis) to sourced texts and configurations
prepared in step 1.

3. Processing of the results of analysis:

• Selecting suspicious dataflow paths,

• Analysing entry points and points of untrusted
data propagation,

• Filtering false positives.

4. Drawing up the final report.

Dataflow analysis is divided into two stages. The first
stage of analysis requires engineering of critical control and
dataflows in the analysed software. Below is the sequence of
the algorithm actions.

1. Search for the entry points of the untrusted data in the
analyzed software (template-based search). This step
requires a base of entry points templates formed by
inspections of standard libraries and popular
frameworks.

2. Search for the points that contain potentially
vulnerable functions (template-based search as well).

3. For each entry point of the untrusted data, add
function, method and procedure calls that are
happening in this point to the control flow tree.

4. Repeat clause 3 until you reach one of the final points
specified in clause 2, or until you reach a point that

does not transition into other functions, procedures or
methods.

5. Once control flow trees are built, identify flows that
have reached potentially vulnerable functions.
Consider these flows critical.

At the second stage, analyse critical control flows, their
separate points (functions, procedures and methods) and
identify the fact of untrusted data propagation from the entry
point to the potentially vulnerable function. Below is the
sequence of the algorithm actions:

1. Obtain entry point (function, procedure or method),
engineer all dataflows that affect the data received
from untrusted source.

2. If untrusted data after interaction with other dataflows
has not changed its status, proceed to clause 3.
Otherwise, complete analysis of the current critical
control flow.

3. If untrusted data were transmitted at the following
point of the critical control flow, proceed to clause 4.
Otherwise, complete analysis of the current critical
control flow.

4. If the current point is the endpoint, proceed to clause
5. Otherwise, proceed to clause 2 with a new point
and new input data. Continue, until analysis of all
points in the critical control flow is complete.

5. If the current point is the endpoint, and untrusted data
were transmitted to the potentially vulnerable
function from the first point, enter the critical control
flow on the positive triggering list. Otherwise,
finalize analysis of the current critical control flow.

The list obtained at the entry to the second stage of
analysis is transferred to the entry of the report generator,
which control interface is also present within the graphical
user interface; after that the report generator based on the
transferred list and database of the defect types draws up a
report on the performed static analysis.

VI. LOCAL ANALYSIS

The following description refers to dataflow
implementation in static analyzer AppChecker developed by
NPO Echelon. The local analysis is normally performed for a
certain block of the code (which coincides with the visibility
scope depending on the programming language). The local
analysis assumes obtaining information about the conditions
of the program in all points of the program, i.e.:

• On creating data;

• On saving data;

• On destruction of data.

The diagram of the local analysis algorithm can be seen in
Figure 1.

You can optionally store, for instance, data on the value
constancy (for the “constant propagation” tool), data assurance

112 из 190

flag (for “taint propagation”), and information about the
condition of the variable.

Fig. 1. Diagram of the Local Analysis Algorithm.

Information can be obtained from the local block in two
opposite ways listed below:

1. From bottom to top: from the point susceptible to the
defect make assumptions about the properties of the
data transmitted into it, go up the code to the point of
entry in the local area (function, procedure or
method). The approach requires consideration of all
options of the program run (for each branch and
iteration of the cycles), which leads to “combinatorial
explosion” of the information quantity, which shall
be stored during analysis.

2. From top to bottom — from the point of entry of
untrusted data into the program, down along the code,
with available information about all of the above
points of the program. This approach allows making
assumptions about running separate branches of the
program and engineer sequential analysis. The
drawback of this approach is difficulty in obtaining
the path from the entry point to the exit point,
because the only known fact is that the path exists.

VII. GLOBAL ANALYSIS

Information that is available within one function
(procedure, method), as a rule, is insufficient for high quality
search for the defects, because many defects propagate
throughout the project, or, at least one file. Global analysis is
used to link data received from different functions. The global

analysis engages call graphs. To ensure operation of this
analysis it is sufficient to obtain certain confirmation or
assumption about the properties of input and output data of
separate functions in the call graph. It is important to obtain
such data in the context of the functions, which are outside of
the path from the point of the data entry to the point
susceptible to the defects, and which analysis is necessary
because the call of such functions may change the arguments
or return values, which properties may depend on the
properties of the input data (for instance, the substring get
function, which accepts data input by the user returns taint
data, although formally it is not included in the call graph).

The diagram of the global analysis algorithm can be seen
in Figure 2.

Fig. 2. Diagram of the Global Analysis Algorithm.

VIII. MATHEMATICAL DESCRIPTION OF THE DATAFLOW

ANALYSIS

The ideal solution of the dataflow analysis task from the
theoretical point of view consists in the search for all possible
paths. Let us introduce certain symbols: B — data block for
analysis, which consists from elementary subblocks B1, …, Bn.
It is a known fact, that the dataflow values before the
statement and after it are limited by the semantics of the
instruction. The correlation between the dataflow values
before and after the assignment statement is characterized by
the transfer function. fi shall stand for a transfer function of
block Bi, which characterizes transformation of data in this
block. The values of the dataflow before and after subblock Bi
shall be represented as IN[Bi] (OUT[Bi] accordingly).

Suppose P is a possible execution path in the flow graph:

P= Input → B1 → … → Bk.

In this case, the transfer function fP for path P will be
represented by a composition of the transfer functions
fk−1•…•f1. However, it should be noted that fk is not a part of
the composition, which shows that the path reached the start of
subblock Bk, but not its end. Let us consider that any flow
graph consists of two empty subblocks - input block, which is
a start point of the graph, and output block, which is passed by
all exits from the graph. The transfer functions of input and
output blocks are represented by constant values.

113 из 190

Thus, taking into account the foregoing, the ideal solution
is the array:

𝐼𝐷𝐸𝐴𝐿(𝐵) = ⋃ 𝑓𝑃(𝑣𝑖𝑛𝑝𝑢𝑡)𝑃 ,
where 𝑣𝑖𝑛𝑝𝑢𝑡 is the result of the constant transfer function,

which is represented by the starting input node.

It may seem that the task of the search for the ideal
solution is reduced to analysis of the transfer functions fP for
all paths P in the flow graph. However, it was noted by
Ullmann [15, page 724], the task of the search for the ideal
solution is generally unsolvable. If block B has branches,
cycles and recursions, array IDEAL[B] maybe unlimited. The
assistance comes from the solution of path-based gathering
[15, page 757], which is similar to the path search algorithm in
the graph, so called ‘breadth first search’. This algorithm
allows achieving such final number of P, that an array of all fP
covers all unique transformations of fB.

Let us write down an iterative solution to the generalized
task for the dataflow. There are two versions of such
algorithm - direct and reverse. The first version proceeds from
input blocks to the output, the second - goes in the reverse.
The basis is Ullmann’s algorithm [15, page 754].

Direct version of the algorithm:

OUT[INPUT] = 𝑣𝑖𝑛𝑝𝑢𝑡;

For (each base block B, which differs from input)

 OUT[B] = InitDataConst;

while (changes are entered in OUT)

 for (each basic block B, which differs from

input) {

 IN[B] = ⋃ OUT[P]P-predecessor ;

 OUT[B] = fB (IN[B]);

 }

Reverse version of the algorithm:

IN[INPUT] = voutput;

for(each basic block B, which differs from output)

 IN[B] = InitDataConst;

while (changes are entered in IN)

 for(each basic block B, which differs from

output) {

 OUT[B] = ⋃ IN[P]P-predecessor B ;

 IN[B] = fB (OUT[B]);

 }

Subject to [15], if algorithm converges, its result is the
solution to the dataflow problem. The obtained solution turns
out to be a so called maximum fixed point, which has the
property that in any other solution IN[B] and OUT[B] are
already present in this solution. If in this case the analysed
block is final, the convergence of the algorithm is guaranteed.
These statements are proved by Jeffrey Ullmann in [15, pages
754-755].

It should be noted that in practice it is inadvisable to
analyse all data used by the program. For example, if we
consider unfiltered user input as input data vinput, we are
going to be interested in B, where OUT[B] are entered in the
database or output in HTML-context. Block B may also be
represented by the function of the input information filtering,
thus finalizing the path and marking it as safe.

IX. EXAMPLES AND RESULTS

Dataflow analysis is widely spread in compilers [15] and
some sort of program analysis tools in order to find mistakes,
typos and other accidentally inserted source code errors or
weaknesses. This paper is dedicated to the implementation and
usage of well known analysis approach for detecting
potentially harmful code areas deliberately inserted into source
code. The paper subject novelty is in joint usage dataflow and
signature template-based analysis for detection both embedded
malicious code (backdoors, trapdoors, hard-code credentials)
and weaknesses caused by accidental developer's mistakes.

Below are the examples of potentially harmful structures
detected by the method described here using AppChecker
software. These examples are real but quite simple because we
think it is unacceptable to provide big and complex examples
in this article.

1. Potential SQL-injection is identified in Dolibarr
project, in htdocs/admin/menus/edit.php file:

B284 = «$sql = "SELECT m.rowid, m.mainmenu, m.level,
m.langs FROM ".MAIN_DB_PREFIX."menu as m WHERE

m.rowid = ".$_GET[’menuId’];»

B285 = «$res = $db->query($sql);»

Data received from the user is entered in $sql variable, and
the value of the variable without filtration is entered in SQL-
request, which may lead to running of random SQL code. The
critical point is string B285; constant string is concatenated with
taint data, and as a result the part of the string to the right of
concatenation becomes taint.

2. The use of passwords set directly in the software
code is identified in AWCM project, in connect.php file:

B3 = «$db_hostname = "localhost";»

B4 = «$db_username = "root";»

B5 = «$db_userpass = "123456";»

B6 = «$db_database = "awcm";»

B24 = «@mysql_connect($db_hostname, $db_username,
$db_userpass);»

Parameters, including the password, set directly in the
code, are used to connect to the database. The critical point is
string B24; in string B5 the right part of the expression is a
constant; in practice, the string is allocation of constant value
to the variable used further to set the password.

Nowadays AppChecker, which implements algorithms of
signature analysis using flow analysis, contains the total of
253 rules for the search of defects in the software code in four
programming languages: С/С++, Java, PHP, C#; the rules
allow identifying 113 types of defects [26, 28]. AppChecker
was tested in 90 projects with open source codes.

114 из 190

X. CONCLUSION

The following conclusions can came from the results of the
study:

1. Based on well-reputed signature analysis approach,
the suggested method of the dataflow analysis can minimize
the number of false positives and simplify the development of
signatures for an analyser production model.

2. The suggested method and tools will be useful for the
accredited testing laboratories as well as developers of safe
software tools. Secure software development practices (we
would, first of all, like to mention a recently approved national
standard in this field [29]), are being implemented at a
growing rate nowadays, therefore integration of the structured
testing procedure in the process of the automated system
development based on static signature analysis is a high-
priority task.

REFERENCES

[1] D.Yu. Volkanov, V.A. Zakharov, D.A. Zorin, V.V. Podymov, I.V.
Konnov, “A Combined Toolset for the Verification of Real-Time
Distributed Systems,” Program. Comput. Softw., vol. 41, no. 6, pp.
325-335, November 2015. DOI:10.1134/S0361768815060080.

[2] I. S. Zakharov, M. U. Mandrykin, V. S. Mutilin, E. M. Novikov, A. K.
Petrenko, and A. V. Khoroshilov, “Configurable toolset for static
verification of operating systems kernel modules,” Program. Comput.
Softw., vol. 41, no. 1, pp. 49-64, January 2015. DOI:
10.1134/S0361768815010065.

[3] I. S. Anureev, I.V Maryasov, and V.A. Nepomniaschy, “C-programs
verification based on mixed axiomatic semantics,” Autom. Control
Comput. Sci., vol. 45, no. 7, pp. 485-500, 2011. January 2012.

[4] P. N. Devyanin, A. V Khoroshilov, V. V Kuliamin, A. K. Petrenko, and
I. V Shchepetkov, “Formal Verification of OS Security Model with
Alloy and Event-B BT - Abstract State Machines, Alloy, B, TLA,
VDM, and Z: 4th International Conference, ABZ 2014, Toulouse,
France, June 2-6, 2014. Proceedings,” Y. Ait Ameur and K.-D. Schewe,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 309-313.

[5] D. Beyer and A. K. Petrenko, “Linux Driver Verification BT -
Leveraging Applications of Formal Methods, Verification and
Validation. Applications and Case Studies: 5th International
Symposium, ISoLA 2012, Heraklion, Crete, Greece, October 15-18,
2012, Proceedings, Part II,” T. Margaria and B. Steffen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 1-6.

[6] E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, and J.
Vlasenko, “Pair Programming and Software Defects--A Large, Industrial
Case Study,” IEEE Transactions on Software Engineering, vol. 39, no.
7. pp. 930-953, Jul. 2013.

[7] S. M. Avdoshin and E. Y. Pesotskaya, “Software risk management,”
2011 7th Central and Eastern European Software Engineering
Conference (CEE-SECR). pp. 1-6, 2011.

[8] A. S. Kamkin and M. M. Chupilko, “Survey of modern technologies of
simulation-based verification of hardware,” Program. Comput. Softw.,
vol. 37, no. 3, pp. 147-152. May 2011.

[9] G. Reber, K. Malmquist, A. Shcherbakov. “Mapping the application
security terrain,” Voprosy kiberbezopasnosti [Cybersecurity Issues], No
1, pp. 36—39. January 2014. (In Russ).

[10] A. Cox, B.-Y.E. Chang X. Rival. "Automatic Analysis of Open Objects
in Dynamic Language Programs," International Static Analysis
Symposium, Static Analysis, pp. 134-150, September 2014. DOI:
10.1007/978-3-319-10936-7_9.

[11] G. Balatsouras, Y. Smaragdakis. "Structure-Sensitive Points-To
Analysis for C and C++", International Static Analysis Symposium,
Static Analysis, pp. 84-104, September 2016. DOI: 10.1007/978-3-662-
53413-7_5.

[12] F. Zhu, J. Wei. “Static analysis based invariant detection for commodity
operating systems,” Computers and Security, vol. 43, pp. 49-63,
June 2014. DOI: 10.1016/j.cose.2014.02.00.

[13] M. Bradley, F. Cassez, A. Fehnker, T. Given-Wilson, R. Huuck. “High
performance Static Analysis for Industry,” Electronic Notes it
Theoretical Computer Science, vol. 289, pp. 3-14, December 2012. DOI:
10.1016/j.entcs.2012.11.002.

[14] P. Gonzalez-de-Aledo, P. Sanchez, R. Huuck. "An Approach to Static-
Dynamic Software Analysis," Proceedings of International Workshop on
Formal Techniques for Safety-Critical Systems, pp. 225-240, November,
2015. DOI: 10.1007/978-3-319-29510-7_13.

[15] A.V. Aho, M.S. Lam, R. Sethi J.D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley; 2nd edition
(September 10, 2006).

[16] A.S. Markov, A.A. Fadin, V.L. Tsirlov. “Multilevel Metamodel for
Heuristic Search of Vulnerabilities in the Software Source Code,”
International Journal of Control Theory and Applications. V. 9. N 30, pp
313-320, December 2016.

[17] M. Junker, R. Huuck, A. Fehnker, A. Knapp. “SMT-based false positive
elimination in static program analysis,” Proceedings of 14th
International Conference on Formal Engineering Methods, Japan,
Volume 7635 of LNCS. Springer, pp. 316-331, November 2012. DOI:
10.1007/978-3-642-34281-3_23.

[18] W. Choi, S. Chandra, G. Necula, K. Sen. "SJS: A Type System for
JavaScript with Fixed Object Layout," International Static Analysis
Symposium, Static Analysis, pp. 181-198, September 2015. DOI:
10.1007/978-3-662-48288-9_11.

[19] Z. Luo, T. Rezk, M. Serrano. “Automated code injection prevention for
web applications,” Proceedings of the 2011 international conference
on Theory of Security and Applications, pp. 186-204, March 2011.
DOI: 10.1007/978-3-642-27375-9_11.

[20] D. Ray, J. Ligatti. “Defining code-injection attacks,” Proceeding of the
39th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 179-190, January 2012. DOI:
10.1145/2103656.2103678.

[21] S. Seo, A. Gupta, A. Sallam, E. Bertino, K. Yim. “Detecting mobile
malware threats to homeland security through static analysis,” Journal of
Network and Computer Applications, vol: 38 (1) pp. 43-53,
February 2014. DOI: 10.1016/j.jnca.2013.05.008.

[22] W. Lee, H. Oh, K. Yi. "A Progress Bar for Static Analyzers,"
International Static Analysis Symposium, Static Analysis, pp. 184-200,
September 2014, DOI: 10.1007/978-3-319-10936-7_12.

[23] E. Goubault, S. Putot, F. Vedrine. "Modular static analysis with
zonotopes," International Static Analysis Symposium, Static Analysis,
pp. 24-40, September 2012. DOI: 10.1007/978-3-642-33125-1_5.

[24] P. Calvert, A. Mycroft. "Control Flow Analysis for the Join Calculus,"
International Static Analysis Symposium, Static Analysis, pp. 181-197,
September 2012. DOI 10.1007/978-3-642-33125-1_14.

[25] M. Madsen, A. Moller. "Sparse Dataflow Analysis with Pointers and
Reachability," International Static Analysis Symposium, Static Analysis,
pp. 201-218, September 2014. DOI: 10.1007/978-3-319-10936-7_13

[26] A. Markov, A. Fadin, A. Shvets, V. Tsirlov. “The experience of
comparison of static security code analyzers,” International Journal of
Advanced Studies, vol. 5. № 3. pp. 55-63, September 2015. DOI:
10.1109/MS.2008.130.

[27] D. Zhu, J. Jung, D. Song, T. Kohno, D. Wetherall “TaintEraser:
protecting sensitive data leaks using application-level taint tracking,”
Newsletter ACM SIGOPS Operating Systems Review archive, January
2011, Volume 45, Issue 1, pp. 142-154. DOI: 0.1145/1945023.1945039.

[28] A.S. Markov, V.L. Tsirlov. “Opyt vyyavleniya uyazvimostey v
zarubezhnykh programmnykh produktakh”, Voprosy kiberbezopasnosti
[Cybersecurity Issues]. 2013. No 1(1), pp. 42-48. (In Russ.).

[29] A.V. Barabanov, A.S. Markov, V.L. Tsirlov. “Methodological
Framework for Analysis and Synthesis of a Set of Secure Software
Development Controls,” Journal of Theoretical and Applied Information
Technology. V. 88. No 1, pp. 77-88, June 2016.

115 из 190

Debugger for Real-Time OS: Challenges of

Multiplatform Support

Alexander Emelenko

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

emelenko@ispras.ru

Kurban Mallachiev

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

mallachiev@ispras.ru

Nikolay Pakulin

Institute for System Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

npak@ispras.ru

Abstract—Debugger for a real-time OS is an important tool in

software development process. However, debugger's code has to

be developed for each platform. We faced the problem of porting

our debugger to different architecture without developing it from

scratch. In this paper, we present the architecture of the

debugger for JetOS real-time operating system and discuss the

challenges imposed by multiplatform support in the OS.

Keywords— debugger, operating systems, multiplatform

I. INTRODUCTION

Application debugger is an indispensable tool in
developer’s hands. But debugger in a real-time operating
system is more than just plain debugger. In this paper we
present an on-going project on debugger development for
JetOS, a real-time multiplatform operating system that is being
developed in the Institute for System Programming of the
Russian Academy of Sciences.

JetOS is a prototype operating system for civil airborne
avionics. It is designed to work within Integrated Modular
Avionics (IMA) architecture and implements ARINC-653 API
specification, the de-facto architecture for applied (functional)
software.

The primary objectives of ARINC 653 are deterministic
behavior and reliable execution of the functional software. To
achieve this ARINC-653 imposes strict requirements on time
and space partitioning. For instance, all memory allocations
and execution schedules are pre-defined statically.

The unit of partitioning in ARINC-653 is called partition.
Every partition has its own memory space and is executed in
user mode. Partitions consist of one or more processes,
operating concurrently, that share the same address space.
Processes have data and stack areas and they resemble well-
known concept of threads.

Embedded applications might be run in two different
environments: in an emulator and on the target hardware. In
our project we use QEMU system emulator. Although QEMU
has its own debugger support, its functionality proved to be
insufficient for debugging embedded applications. Therefore
we implemented a debugger not only for the target hardware,
but for the emulator as well.

II. SPECIFIC FEATURES OF DEBUGGER FOR RTOS

Developing a debugger for a real-time OS is not a simple
task. During developing, we faced many challenges of the
debugger for RTOS compared to typical debuggers used by
desktop developers.

Firstly, an embedded solution might contain a number of
interacting processes, which need to be debugged
simultaneously. Therefore, our debugger must support
capability to switch between them. Moreover, it needs to
support work with overlapping virtual addresses space.

Secondly, it is impossible to run the debugger on the same
target system, where the system runs, because of the lack of
on-board resources and lack of interactive facilities. That’s why
the debugger must be remote.

Thirdly, we must support debugging not only for
application developers but also for system software developers,
such as drivers or kernel developers. As a consequence, the
debugger should work with both a privileged kernel and low-
privilege application code.

Also, the debugger must support debugging on both target
hardware and emulators, because it can expand developers’
capabilities and increase their efficiency.

Moreover, JetOS runs on different CPU families: it
supports PowerPC, x86 and MIPS architectures. Consequently,
the debugger has to run on these platforms too. Thus, the
debugger must consider all features of all platforms and
emulators, and provide full functionality and correct execution
of applications.

We base our debugger on GDB (GNU debugger)
architecture. It includes uniform CPU-independent user
interface on the developer’s workstation and target-specific
remote stub that implements the GDB protocol to receive
commands from the user interface and provide it back with
registry data, memory contents and status updates.

In this paper we present the experience gained in GDB stub
debugger and discuss the ways to respond to the identified
challenges.

116 из 190

mailto:emelenko@ispras.ru
mailto:mallachiev@ispras.ru
mailto:npak@ispras.ru

III. RELATED WORKS

We are not the first to consider the problem of debugging
multiplatform RTOS. There are many types of debuggers:
some of them utilize pure hardware facilities without any code
injected into the target system, such as CodeWarrior, others use
remote debugging, for example, the debugger for Pistachio
microkernel; besides, there is RTOS debugger for VxWorks
that supports both scenarios.

Here we briefly consider a number of debuggers for
embedded OSes and their primary features.

A. CodeWarrior

CodeWarrior [3] is an IDE (integrated development
environment) published by Freescale Semiconductor. It is
designed to edit, compile and debug software for several
microcontrollers and microprocessors (Freescale ColdFire,
ColdFire+, Kinetis, Qorivva, PX, Freescale RS08, Freescale
S08, and S12Z) and digital signal controllers (DSC
MC56F80X and MC5680XX) used in embedded systems. It
uses JTAG or BDM interface to control the target system.

CodeWarrior enables the user to debug real-time embedded
applications, as well as manipulate the source code to display
and change the contents of variables, arrays, and data
structures. The developer can also use the debugger to work at
the hardware level if necessary.

Via CodeWarrior user can:

 View and change memory, registers and variables.

 Set watchpoints.

 Set breakpoints and conditional breakpoints.

 Break on exceptions.

 Track variables

The core of the CodeWarrior debugger is a dedicated iMX-
6 based microcomputer, that connects with one end to JTAG
plug on the target and with the other end – to the developer’s
workstation. The microcomputer interprets the JTAG signals in
the real time to track execution: reading/writing of CPU
registers, memory mapped registers, block reading/writing of
memories, single step debugging, setting software and
hardware breakpoints, and monitoring target system status.

CodeWarrior provides GDB interface to the target system
without injecting any code to the embedded software, but it
works for Freescale (now NXP) boards only and requires
accesible JTAG connector.

B. VxWorks

VxWorks [5] is a real-time operating system (RTOS)
developed as proprietary software by Wind River of Alameda,
California, US. It supports Intel (x86, including the new Intel
Quark SoC and x86-64), MIPS, PowerPC, SH-4, and ARM
architectures.

The debugger for WindRiver Workbench provides a rich
set of features. It implements various transport channels
between the target system and the workstation. It support

debugging in emulators, remote debugging using on-board
software agents and by means of JTAG probes.

The debugger provides a general interface called On-Chip
Debugger API so that third party IDE or developer scripts can
automate debugging tasks.

Here is an incomplete list of features that the debugger for
VxWorks implements :

─ Task Stack Coverage

─ Task Related Breakpoints

─ Task Context Display

─ Debugging Modules (for example, Kernel module)

─ Debugging Real-Time Processes

─ Debugging Protection Domains

─ Collecting statistics for function and tasks

The debugger can control all system states, tasks, message
queues, memory partitioning, modules and etc. in real time.

C. L4Ka::Pistachio

L4Ka::Pistachio [4] is an L4 microkernel developed by the
System Architecture Group at the University of Karlsruhe. It is
the first available kernel implementation of the L4 Version 4
kernel API, which provides support for both 32-bit and 64-bit
architectures, multicore, and superfast local IPC. The current
release supports x86-x64 (AMD64/ EM64T, K9 / P4 and
higher), x86-x32 (IA32, Pentium and higher), PowerPC 32bit
(IBM 440, AMCC Ebony / Blue Gene P).

Pistachio kernel uses kdbg debugger. The debugger directs
its I/O via the serial line or the keyboard/screen. It is a local
debugger and does not support remote debugging mode,
therefore it has a very limited amount of functions.

Debugger for Pistachio can:

 Set breakpoints

 Single step

 Dump memory

 Read registers

Debugger for L4Ka::Pistachio supports two platforms, x86
and PowerPC. It is implemented by dividing debugger's code
into platform specific and independent parts.

Architecture dependent part of the debugger includes:

 Registers printing

 Single step support

 Memory writing

 TLB printing

 Breakpoints setting

IV. DEBUGGER ARCHITECTURE FOR MULTIPLATFORM SUPPORT

Our debugger consists of two parts – server and client. We
don’t support JTAG probes for now.

117 из 190

We use GDB for the client part of our debugger and it has
the biggest part of architecture independent code. For example,
the client part has such operations as disassembly, messaging
mechanism, user interface, etc.

In general, messaging mechanism between client and server
doesn't depend on the CPU family of the target – user
communicates with the client, the client sends a special-type
packet to the server and waits for the server's answer. The
server receives this message, checks control sum, which was
sent in this packet, and if it matches the message contents,
informs the client that the message was accepted for
processing. Then the server performs the action described in
the packet and sends its own packet to the client.
Understanding of what the client wants from the server is a part
of architecture independent code in OS because almost all
client requests are standardized, but their execution depends on
current hardware.

Fig. 1. Debugger communication

We can divide our server part of the debugger into 2 parts as
shown in Fig.1:

A. Frontend

This part parses packets, checks control sum, calls the
needed function and sends a reply.

Although almost all client-server packets are architecture
independent, such requests as registers read/write depend on
the target hardware. Therefore, our parser must know not only
which architecture is used, but also know the type of packet the
client wants to receive: for example, if the client wants to read
all registers, the server must send 70 registers on PowerPC and
72 on MIPS.

B. Backend

This part of the debugger considers all platform capabilities
and uses all available resources.

The largest part of target specific code is responsible for
setting breakpoints, watchpoints, single step and read/write in
memory. To implement such features not only we do need
specialized code in server part, but we must also change
exception handler so that it could distinguish between debugger
and regular interrupts.

For example, the single step function is implemented in
PowerPC architecture via special debug register, used only in
this processor. Moreover, breakpoint function needs to set trap
instruction where the user wants: for x86 architecture, this is
‘int3’ instruction, for MIPS – ‘break’ instruction.

The option to debug applications not only on actual
hardware metal but also in emulators, such as QEMU, is
another our goal. Due to partial implementation of hardware
features in QEMU the GDB stubs designed for the target
hardware just don’t work in QEMU. For example, there are no
debug registers in QEMU for PowerPC architecture, which is
used for single step realization on bare metal. Consequently,
for each hardware target we provide two GDB server
implementations – one for bare metal and another one for
QEMU.

V. DEBUGGER’S CAPABILITIES

As mentioned above, all debugger's capabilities are
available for all supported platforms – x86, PowerPC and
MIPS.

A. Setting Breakpoints in Partitions and Kernel

Control execution of partitions and kernel is a key feature
of debugging. It provides capabilities to more adapted
debugger control mechanisms. Moreover, our system supports
work with overlapping virtual address spaces, which means
that debugger must correctly translate it into physical address.

B. Execute the Application Step-by-Step

Run application step by step is a convenient way to control
system state and finding bugs. However, next instruction in
code might not be the next executable instruction, for example,
because of interrupt. Therefore, user can choose to stop on next
instruction in code via disabling interrupts or on next
executable instruction via platform capabilities.

C. Inspect the Application State

In each moment of time, user might want to inspect system
state, i.e. memory, registers, stack trace, and threads state.

D. Setting Watchpoints

Watchpoints provide a great opportunity to control system
state. The developer can use watchpoints to stop execution
whenever the value of an expression changes, without having
to predict a particular place where this may happen.

VI. DEBUGGER’S PORTABILITY

As already mentioned, JetOS is being developed now, so
we don’t know the final set of platforms which our system will
have to support.

To port our debugger on a new platform, we need only to
change the CPU-specific part of the frontend and create the
backend part. All other frontend parts are the same for all
CPUs and platforms.

It is easy to predict the amount of effort needed to port the
debugger to a new platform with the help of these values:

118 из 190

In PowerPC server part consists of over 2000 lines of code:

─ Over 1700 loc – frontend part, of which

 1600 – architecture independent part

 100 – platform specific part

─ Over 300 – backend part

This separation provides capabilities for porting our
debugger to a new platform in little to no time.

VII. CONCLUSION

The paper presents a multiplatform debugger for JetOS real
time operating system. It is based on GDB client-server
architecture with most of the CPU-specific code located in the
server (on-board) part. Due to careful design the on-board part
of the debugger clearly separates platform-independent code of
the protocol processor and general debug control algorithms
from platform-specific operations such as reading the registers,
setting breakpoints and performing single-step instructions.

The amount of platform-specific code in the on-board part
of the debugger comprises 25% of the overall debugger server,
thus making porting of the debugger to another platform
relatively simple task.

REFERENCES

[1] Lauterbach GmbH, “RTOS debugger for VxWorks”, November 2015
http://www2.lauterbach.com/doc/rtosvxworks.pdf

[2] Lauterbach GmbH, “RTOS-VxWorks”, 18 August 2014
http://www2.lauterbach.com/pdf/rtos_vxworks.pdf

[3] Freescale Semiconductor, Inc. CodeWarrior Debugger, December 2,
2004 http://www.nxp.com/assets/documents/data/en/reference-
manuals/Engine_PPCRM.pdf

[4] System Architecture Group University of Karlsruhe. “The
L4Ka::Pistachio Microkernel”. May 1, 2003
http://www.l4ka.org/l4ka/pistachio-whitepaper.pdf

[5] Wind River Systems, Inc “VxWorks Product Overview”, March 2016
http://www.windriver.com/products/product-overviews/VxWorks-
Product-Overview-Update.pdf

[6] Free Software Foundation, Inc. “Debugging with gdb: the gnu Source-
Level Debugger”, The Tenth Edition

119 из 190

Using modularization in embedded OS

K. Mallachiev, N. Pakulin, A. Khoroshilov, D. Buzdalov,

Institute for System Programming of the RAS,

25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia.

Abstract— Modern embedded OS are designed to be used in

control solutions in various hardware contexts. Control

computers may differ in the architecture of the CPU, the

structure of communication channels, supported communication

protocols, etc. Therefore, RTOS should support modularity and

component assembly in order to allow customers to create

minimal solutions that are optimally adapted to the particular

task and hardware platform. Furthermore customers may be

interested in adding their own low level components without OS

modification.

In this article, we present an approach to building modular

embedded solutions from heterogeneous components based on

the RTOS JetOS. The mechanism of components binding

developed by us allows uniting heterogeneous components from

different manufacturers within the same section of the address

space.

Keywords— embedded systems, components, RTOS

I. INTRODUCTION

Embedded operating systems are built to provide specific
functionality on specific hardware. Development of a new OS
from scratch for every task and hardware is unwise and
operating systems are designed to support several CPU
architectures and a lot of peripheral devices in a single
distribution. Therefore OS distribution contains many drivers
to support a large number of different hardware. Most of the
drivers are not needed for correct OS execution on a specific
board. Moreover many embedded systems are aimed to run in
restricted environment, for example with limited memory.

Static OS configuration is used in cases when it is known in
advance on which hardware the OS image is going to be
executed. OS configuration is commonly performed by the
system integrator. They choose OS features suitable for OS
task and drivers for hardware. Only chosen parts will get into
final OS image. System integrator doesn’t change OS source
code. Static configuration allows keeping final image small.

Safety-critical systems must be certified. For airborne
systems there is a standard for certification called DO-178C
[1], where OS kernel must be certified by highest level of
reliability. Certification is complex and lengthy process. Small
change in one part of system leads to recertification of the
whole system.

We develop an open-source real-time operating system for
civil aircraft airborne computers called JetOS. JetOS is
ARINC-653 [2] compliant, supports static configuration and
aimed to DO-178 certification.

ARINC-653 specifies interfaces that RTOS (real-time
operating system) should provide to avionics software, also the

standard specifies some design constrains to the OS. The most
pertinent constraint is that application code is executed inside
partitions that are isolated from each other by resources and in
time.

To simplify and minimize OS kernel and therefore to
simplify OS certification process we moved drivers and some
services from kernel to special ARINC-653 partitions, called
system partitions [3]. Besides drivers system partition contains
services such as network stacks, file systems, logging, etc.

System partitions should be certified as well as the kernel.
Certification for highly-critical software requires absence of
unreachable code. Usage of static configuration of the system
partition allows to static selection of required drivers and
services, and therefore getting rid of unused code.

It is common that there are many vendors involved in
building a specific embedded solution: OS vendor, BSP
vendor, device driver developers, system integrator, etc. When
services or drivers they are developing are strongly coupled,
developers have to interact a lot.

Therefore splitting system partition to independent isolated
components seems to be suitable solution. Each driver and
service will be in dedicated component. Each component
would have a single developer.

Component should interact with each other. Appearance of
fixed interface between components would make component
development easer. Moreover fixed interface can make system
flexible. Statically configured component-based system (in our
case system partition) can be flexible in several aspects:

 When there are several components implementing the
same interface (e.g. several file systems) and system
integrator can choose which component will get into
final image.

 When there are several components implementing the
same interface, and they all can get into final image.
System integrator configure on static, which
components interact. For example, if there are two file
systems, some component would work with one file
system and others with the second one.

 When system integrator can add new component
between two interacting, if the new component has a
suitable interface. This is useful and can be used, for
example, to insert traffic analyzer between protocol
stack and network card driver.

Another use-case is to reuse a device driver in an
applications stack, such as network card driver in the network
stack. Isolated into component the same driver code might

120 из 190

serve multiple device instances due to different sets of internal
states and configuration parameters. All copies of the
component share same driver code, so that each component
copy would work with assigned device, would make system
scalable and flexible.

Certification of system includes, among others, unit and
integration tests. Splitting system partition to components
makes certification easier. Component-level tests can be run by
component developer. And system integrator doesn’t need to
rerun unit tests, he only needs to run integration tests.

II. RELATED WORKS

Classical distributed components models like Enterprise
JavaBeans, CORBA, Corba Component Model and DCOM
[4,5,6] define components and interfaces between them.
Models allow substituting one component with the other one
with the same interfaces. Components configuration
dynamically configured by brokers. This approach is not
suitable for embedded systems with static configuration.

Ideas to separate OS appeared long ago in microkernels.
Microkernel architecture’s [7,8,9] primary goal is to separates
OS into independent servers that could be isolated from each
other. Servers interact through inter-process communication
(IPC). IPC calls are typed and servers with the same interface
can substitute one another. But there cannot be two servers
with the same interface; therefore this model is not suitable for
our tasks too.

VxWorks is a popular embedded operating system.
VxWorks board support package (BSP) is divided into
components. Components interface is declared in component
description language (CDL). BSP developer can construct BSP
from existing component and can add their own components.
But this system is not flexible; for example, each component
has hardcoded in it a list of names of components it interact
with, therefore one component cannot be easily substituted in a
configuration with another one with the same interfaces.

We are not aware of any component based model with the
following set of features:

 Static configuration,

 Low overhead,

 Flexible configuration (in all aspects from introduction),

 Low mishit probability, when component interact with
component it not designed to (runtime addressing
checks)

III. BASIC CAPABILITES OF COMPONENT-BASED MODEL

Our model aimed to have small overhead, so it can be
suitable for RTOS. In its raw form, our model assumes that
there is a lot of similar code written by component developers
in C language. To reduce the amount of hand work we generate
helper code, based on configuration files. Language, which is
used to write configuration files, can be any declarative
language; we use YAML for these purposes.

A. Component developer view

Model defines component types and component instances.
Each component has a unique component type and assigned
implementation and any number of instances. Component type
is similar to term “class” from object oriented languages and
component instance is similar to “class objects”. Component
instances share code, but sharing does not apply to some
private data, called instance state.

 Components interact. The ability of one component to use
services of the others is achieved through typed ports. There
are two kinds of component ports:

 Input ports, which show that the component provides
some functionality. Input ports have assigned handlers
implemented by the component, which will be called
when some other component calls the interface of the
component.

 Output ports, which are used by a component when
invokes behavior of another component. The
component calls others indirectly, through output ports.

Ports are typed, input port of one component and output of
the other one can be connected only if they have the same port
type. Port type is called interface. Interface is the set of
functions, which input port provides or output port require.
Since interface can have several functions, then output port that
implements this interface has several assigned handlers, one for
each function in interface.

Interface declares as the set of triple of function names,
signature, and return types. Example of simple interface
declaration can be seen at fig.1.

Component type declaration contains component name,

component instance state structure, and component ports.
Output ports are declared as pair of port name and port
interface. Input ports are declared as triple (n, I, m): port name
n, port interface I, and m a list of pairs of interface function and
assigned implementation specified by components function
name.

You can see example of component type configuration at
fig. 2.

- name: data_sender

 functions:

 - name: send

 return_type: ret_t

 args_type: [int]

Fig. 1. Data_sender interface with one function ret_t send(int)

121 из 190

During system build configuration files are parsed and
corresponding C code is generated:

 C-structure describing component, with name identical
to component name. (e.g. structure Filter for
component Filter)

 Declaration of functions specified in input ports (e.g.
declaration of function filter_send for component
Filter). This declaration enforces naming convention.

 Special function for calling output ports.

Component developers should use only ports to
communicate with other components. Direct call of another
component might work but is not guaranteed. The component
developer is guaranteed only the interfaces. The developer
chooses names for ports. Input ports is an entry point to
component. Names on input ports are not used by component
developer. Output ports are used when component should use
service of another component. To call the output port a
developer should specify output port name, output port
function name, and function arguments. Developer should not
assume what real function of which component will be called.
You can see an example of calling function from output port at
fig. 3

B. System integrator view

System integrator decides how many instances of each
component should be created, and how they are connected. For
each component they choose unique name, and how to
initialize its state. System integrator uses instance names and
names of their ports to link ports of different instances. All of
this information integrator specifies in configuration file.
Graphical view of example configuration use can see at fig. 4.

IV. ADVANCED CAPABILITIES OF COMPONENT BASED MODEL

A. Init function

Instances can have init function: component developers
should declare init function name in configuration. At system
partition start all init functions of all instances are called
sequentially. There is no way to specify dependencies on init
(i.e. init of open component should be called before init of the
other one) because we assume that components are
independent and should not have any dependency.

B. Active and reactive components

All components with input ports are reactive, i.e. get
control by call from other component. Some components are
active, i.e. the component gets control from OS by some
regularities (periodically or by event). Component can be
active and reactive at the same time.

There are two types of active components in our model:

 Components which have a special entry point – activity.
This type of active components is useful when
component instances should do some simple work from
time to time (for example, checking whether there are
any new networks packets). Component developer
declares activity name in configuration. All activities
are called sequentially. This type of active components
has a big disadvantage: if some instance will freeze in
its activity then all instances of this type in the system
are going to freeze, so component developer should not
use any wait objects in activity.

 Components, which instances create their own threads
inside init function. In this case freezing of the instance,
which is running in the dedicated thread, will not cause
freezing other instances.

C. Array of ports

Sometimes component developers need to create
configurable number of ports of the same type. We support
array of ports, but only for output ports. For calling function of
output port array developers should specify index in the array
besides port name, function name and function arguments.

Arrays of ports are useful in components like router (at the
fig. 5). Router sends data to configurable of instances.
Integrator in the configuration specifies number of elements in
port array and their linkage with instances.

Fig. 4. Example linkage configuration. Sensor_1 and Sensor_2 are instances

of Sensor component type. Filter_1 and Filter_2 are instance of Filter

component type. Sensor_1 ouput port connect to Filter_1 input port. Filter_1
input port connected to Printer. Same for Sensor_2 and Filter_2

ret_t filter_send(Filter *self, int data)

{

 ...

 res = Filter_call_out_send(self, data);

 ...

}

Fig. 3. Call of function send of port out.

name: Filter

state_struct:

 edge: int

input_ports:

 - name: in

 type: data_sender

 implementation:

 send: filter_send

output_ports:

 - name: out

 type: data_sender

Fig. 2. Component type Filter. Component state contains one field edge.

Componet type has single input port called in, port interface is data_sender,

fucntion send of data_sender interface is implemented by filter_send function.

122 из 190

D. Memory blocks

Component instances in our system cannot use system
heap, because there can be heap underflow with many
instances and not enough heap size.

Access to heap and physical (for drivers) memory is done
through ARINC-653 memory blocks. For each memory block
component developer specifies:

 memory block name suffix

 memory size

 memory alignment

 flag, that shows if this memory block used by single
instance or shared between instances.

 physical address for drivers working with memory
mapped devices. Memory blocks with fixed physical
address must be shared.

Name of shared memory blocks is identical to name suffix
from configuration. Name of non-shared memory block is
concatenation of instance name and memory block name
suffix. Instances can access memory blocks by ARINC-653
API specifying memory block name.

E. Memory ownership

This part of the paper doesn’t describe a feature of our
approach. Here is some consideration on memory ownership.

Let’s consider a component based system partition, which
implement networking. There can be a track of components:
Message_sender UDP_IP_sender  Eth_sender
Network_card_driver. Message sender sends pointer message
to UDP_IP_sender; UDP_IP_sender prepends message with
UPD and IP header and sends message to Eth_sender;
Eth_sender prepends message with Ethernet header and sends
to Network_card_driver. Should be specified how own
memory and responsible for memory allocations.

If UDP_IP_sender and Eth_sender components would
allocate buffers in their own memory, then this would greatly
complicate their code, as they should also free buffers. Our real
time C library doesn’t support memory freeing because
memory freeing can make indeterminate amount of time.

To simplify implementation and reduce overhead we used
an approach when Message_sender allocates enough memory
for all headers (component gets this value from configuration),
copies message at the needed offset and pass to next layer
pointer to message, message size, prepend and append values.
Prepend describes how many bytes before message are

allocated. Append describes how many bytes after message are
allocated.

UDP_IP_sender to add header moves pointer it gets from
Message_sender and decreases prepend value to header size.

V. FUTURE WORK

We are going to work on supporting component
distribution by binary images. This can be used to protect
intellectual property of component developer, who doesn’t
want to share component source code.

Currently system integrator should specify component
instances and their linkage in YAML language. We are going
to support AADL language, which allows system integrator to
graphically create and link instances. To work with AADL we
are going to use MASIW framework. MASIW [10,11]
(MASIW – Modular Avionics System Integrator Workplace) is
s an open source Eclipse-based IDE for development and
analysis of AADL models.

Also we are going to research possibility of using dataflow
language to specify component, so that there will be no need to
write component implementation in C language

VI. CONCSLUSION

In the paper we presented a component based approach that
was created for JetOS, but can be used in other systems. The
approach turned out to be efficient; it has low overhead and
make system flexible and scalable while statically configured.

REFERENCES

[1] DO-178C, Software Considerations in Airborne Systems and Equipment
Certification, January 5, 2012

[2] Avionics application software standard interface part 1 – required
services, ARINC specification 653P1-3, November 15, 2010

[3] Mallachiev K.M., Pakulin N.V., Khoroshilov A.V. Design and
architecture of real-time operating system. Trudy ISP RAN/Proc. ISP
RAS, vol. 28, issue 2, 2016, pp. 181- 192. DOI: 10.15514/ISPRAS-
2016-28(2)-12

[4] J. Siegel, Corba 3 fundamentals and programming, John Wiley & Sons,
2000

[5] Nanbor Wang, Douglas C. Schmidt, and Carlos O'Ryan. 2001. Overview
of the CORBA component model. In Component-based software
engineering, George T. Heineman and William T. Councill (Eds.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA 557-
571.

[6] Distributed Component Object Model (DCOM) Remote Protocol
Specification (online)

[7] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen Liedtke, Kevin J.
Elphinstone, Volkmar Uhlig, Jonathon E. Tidswell, Luke Deller, and
Lars Reuther. 2000. The SawMill multiserver approach. In Proceedings
of the 9th workshop on ACM SIGOPS European workshop: beyond the
PC: new challenges for the operating system (EW 9). ACM, New York,
NY, USA, 109-114. DOI=http://dx.doi.org/10.1145/566726.566751

[8] J. Liedtke. 1995. On micro-kernel construction. In Proceedings of the
fifteenth ACM symposium on Operating systems principles (SOSP '95),
Michael B. Jones (Ed.). ACM, New York, NY, USA, 237-250. DOI:
http://dx.doi.org/10.1145/224056.224075

[9] Boule I, Gien M, Guillemont M. CHORUS Distributed Operating
Systems, Computing Systems, Vol. I No. 4 Fall 1988

[10] D. V. Buzdalov, S. V. Zelenov, E. V. Kornykhin, A. K. Petrenko, A. V.
Strakh, A. A. Ugnenko, and A. V. Khoroshilov. Tools for system design
of integrated modular avionics. In Proceedings of the Institute for
System Programming of RAS, volume 26, pages 201–230, 2014.

Fig. 5. Router has an array of out port which are connected to instances

handler_1, handler_2 and handler_3

123 из 190

http://dx.doi.org/10.1145/224056.224075

[11] Alexey Khoroshilov, Dmitry Albitskiy, Igor Koverninskiy, Mikhail
Olshanskiy, Alexander Petrenko, and Alexander Ugnenko. AADL-based

toolset for IMA system design and integration. SAE Int. J. Aerosp.,
5:294–299, 10 2012.

124 из 190

Detecting and Tracking Near Duplicates
in Software Documentation

Dmitry V. Luciv
Saint-Petersburg State University

Saint-Petersburg, Russia
Email: d.lutsiv@spbu.ru

Abstract—Modern software documentation is complicated as
software itself. During authoring and maintenance, it gets a lot
of “near duplicate” text fragments, which obstruct working with
documentation and lower its quality.

Here we present an algorithm for near duplicate detection
which is based on exact software clone detection algorithm,
but allows looking for repetitions with variations. This reflects
common nature of repetitions in documents with high amount of
copy-pasted text.

An algorithm is implemented by the tool which allows to
search for near duplicates, track and manipulate them. Using this
tool, algorithm evaluation is carried out, including comparison
to earlier results.

Keywords—software documentation, near duplicates, docu-
mentation reuse, adaptive reuse

I. INTRODUCTION

Like software itself, modern software documentation is
often large and complicated. Being maintained and authored
during software life cycle, it contains a lot of duplicates.
After being copied, documentation fragments are corrected
in different ways so that different copies of initially similar
text fragments become “near duplicates”. Text duplicates in
software documentation, both exact and near ones, are studied
actively [1], [2], [3], [4]. Different kinds of documentation
are discussed in [5]. For different documents, duplicates can
be either desired or not, but in any case duplicates increase
documentation complexity and thus maintenance and author-
ing cost is increased too.

To simplify documentation maintenance and authoring, an
approach was proposed in [6], [7], allowing to search for
near duplicates in documents and then apply reuse techniques
described in [3], [4], [8].

In this paper an algorithm for near duplicate search is
presented. This algorithm generalizes one from [6], [7]. Just as
before, it uses Clone Miner [9] software clone detection tool
to get an information on exact duplicates (clones), and then
combines them. The key difference between two algorithms
is that algorithm from [6], [7] only detects near duplicates
with single difference (it only combines two exact duplicates
with varying text between them), while proposed algorithm
detects near duplicates with arbitrary number of varying text
fragments (it combines many exact duplicates at once). To
speedup proposed algorithm, an interval tree [10] is used.

Presented algorithm is implemented in Documentation Refac-
toring Toolkit [11], which is part of DocLine project [3].
Documentation Refactoring Toolkit allows searching for near
duplicate text in documentation and executing a subset of
refactoring operations described in [12] basing on search
results. In this paper, an evaluation of proposed algorithm
is also presented, using documentation of four open source
projects as objects of evaluation: Linux Kernel [13], Zend
Framework [14], DocBook [15], Subversion [16].

II. BACKGROUND

A. Exact duplicate detection and Clone Miner

Not only documentation, but also software itself is often
developed with a lot of copy-pasted information. To coup with
duplicates in source code, software clone detection methods
and tools are used. This area is quite mature; systematic review
of clone detection methods and tools can be found in [17].

In this paper, Clone Miner [9] software clone detection tool
is used to detect exact duplicates in documentation. Clone
Miner is a token-based source code clone detector. It considers
an input text as a collection of lexical tokens and applies
enhanced suffix array based string matching algorithms [18]
to find the repeated parts (clones) of this text as clone groups.

Clone Miner is chosen here for its simplicity and ability
to be easily integrated with other tools using command line
interface.

B. Interval Tree

Interval tree [10] is the data structure, allowing to speed
up searching the set of intervals for intersecting ones. Each
node of interval tree may be either empty (𝜀) or not. Node is
defined as 𝑇 = 𝜀 or ⟨𝑐, 𝐶, 𝐿,𝑅⟩, where 𝑐 is center point, 𝐶
is a collection of intervals, 𝐿 and 𝑅 are references to left and
right subtrees, which are also interval trees. Non-empty nodes
satisfy following conditions:

1) ∀𝑖 ∈ 𝐶, 𝑐 ∈ 𝑖
2) ∀𝑙 = [𝑎, 𝑏] ∈ 𝐿, 𝑏 < 𝑐
3) ∀𝑟 = [𝑎, 𝑏] ∈ 𝑅, 𝑎 > 𝑐

Interval tree implementations balance trees to keep numbers
of intervals in left and right subtrees of each non-empty node
as close to each other, as possible. The same condition is met
for heights of left and right subtrees of each non-empty node.

125 из 190

When expanding intervals on both ends before using them
to construct a tree, resulting tree also not only allows searching
for intersecting intervals, but also for nearby ones. This
approach is used in proposed algorithm.

Documentation Refactoring Toolkit is developed in Python
and uses “intervaltree” Python library [19] as interval tree
implementation.

III. NEAR DUPLICATE DETECTION ALGORITHM

A. Definitions
Let us define some terms necessary for describing proposed

algorithm below.
Exact duplicate group 𝐺𝑖 represents a set of similar text

fragments. Those fragments are denoted as exact duplicates,
which are intervals in document text: 𝑔𝑘𝑖 = [𝑎𝑘𝑖 , 𝑏

𝑘
𝑖] ∈ 𝐺𝑖,

where 𝑎𝑘𝑖 and 𝑏𝑘𝑖 are offsets from beginning of the document
given in symbols.

In this paper we consider near duplicate groups which
consist of near duplicates — fragments of texts, having much
in common. Near duplicates can be defined and detected
in different ways. Here near duplicate groups are combined
from collections of exact duplicate groups, when they meet
additional conditions, which are described below.

Having exact duplicate groups 𝐺1, . . . 𝐺𝑁 , we say that they
form variational group 𝑉 𝐺 = ⟨𝐺1, . . . 𝐺𝑁 ⟩, when following
conditions are satisfied:

1) 𝐺1, . . . 𝐺𝑁 groups have the same number of exact
duplicates: #𝐺1 = . . . = #𝐺𝑁 .

2) Corresponding exact duplicates of all participating
groups do not intersect: ∀𝑛,𝑚 ∈ [1, 𝑁], ∀𝑘 ∈ [1,#𝐺1]
𝑔𝑘𝑛 ∩ 𝑔𝑘𝑚 = ∅.

3) Exact duplicates of all groups appear in the same
order in the text: ∀𝑛,𝑚 ∈ [1, 𝑁], ∀𝑘1, 𝑘2 ∈
[1,#𝐺1] 𝑛 < 𝑚 =⇒ 𝐵𝑒𝑓𝑜𝑟𝑒(𝑔𝑘2

𝑛 , 𝑔𝑘2
𝑚), where

𝐵𝑒𝑓𝑜𝑟𝑒([𝑎1, 𝑏1], [𝑎2, 𝑏2]) means that 𝑏1 < 𝑎2.
For genericity and simplicity, here and below, when needed,

we can implicitly consider exact duplicate groups 𝐺𝑖 as
variational ones, formed by those exact duplicate groups:
𝑉 𝐺 = ⟨𝐺𝑖⟩.

When we choose a exact duplicate or variational group, it
should be possible to compare a distances from this group to
other groups and select the closest one to form new variational
group of them two. Let us define the distance between exact
duplicates 𝑔𝑘1 ∈ 𝐺1 and 𝑔𝑘2 ∈ 𝐺2 as follows. When 𝑔𝑘1∩𝑔𝑘2 ̸= ∅
(they intersect), we assume 𝑑𝑖𝑠𝑡(𝑔𝑘1 , 𝑔

𝑘
2) = 0. Otherwise, when

𝐵𝑒𝑓𝑜𝑟𝑒(𝑔𝑘1 , 𝑔
𝑘
2) and 𝑔𝑘1 = [𝑎1, 𝑏1], 𝑔𝑘2 = [𝑎2, 𝑏2], distance is

computed as 𝑑𝑖𝑠𝑡(𝑔𝑘1 , 𝑔
𝑘
2) = 𝑎2 − 𝑏1.

The distance between 𝐺1 and 𝐺2 is defined as
𝑑𝑖𝑠𝑡(𝐺1, 𝐺2) = max𝑘∈[1,#𝐺](𝑑𝑖𝑠𝑡(𝑔

𝑘
1 , 𝑔

𝑘
2)). For both ex-

act duplicate and variational groups, we define distance as
𝑑𝑖𝑠𝑡(𝑉 𝐺1, 𝑉 𝐺2) = max𝐺1∈𝑉 𝐺1,𝐺2∈𝑉 𝐺2 𝑑𝑖𝑠𝑡(𝐺1, 𝐺2).

For each exact duplicate or variational group we define
its 𝑙𝑒𝑛𝑔𝑡ℎ as a number of symbols covered by its du-
plicates: 𝑙𝑒𝑛𝑔𝑡ℎ(⟨𝐺1, . . . 𝐺𝑁 ⟩) =

∑︀𝑁
𝑛=1 𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑛), and

𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑖) =
∑︀#𝐺𝑖

𝑘=1 |𝑔𝑘𝑖 |, where 𝑔𝑘𝑖 = [𝑎𝑘𝑖 , 𝑏
𝑘
𝑖] and thus

|𝑔𝑘𝑖 | = |[𝑎𝑘𝑖 , 𝑏𝑘𝑖]| = 𝑏𝑘𝑖 − 𝑎𝑘𝑖 .

We define near duplicate group as variational group
⟨𝐺1, . . . 𝐺𝑁 ⟩ in which the distances between exact duplicate
groups satisfy the following conditions:

1) For each 𝑛 ∈ [1, 𝑁 − 1], ∀𝑘, 𝑑𝑖𝑠𝑡(𝑔𝑘𝑛, 𝑔𝑘𝑛+1) ≤
𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑘𝑛) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑔𝑘𝑛+1).

2) For each 𝑛 ∈ [1, 𝑁 − 1], for {𝑑𝑖𝑠𝑡(𝑔𝑘𝑛, 𝑔𝑘𝑛+1)|𝑘 ∈
[1,#𝐺1]}, coefficient of variation 𝜈 does not exceed
40%, where 𝜈 = 𝜎

𝜇 , 𝜎2 is variance and 𝜇 is mean [20].
First condition limits variational part size (in symbols) to

the whole near duplicate size ratio for any near duplicate of
the group. It is easy to prove that for any 𝑁 , according to this
condition, total size of variational parts will not exceed 2

3 of
the whole near duplicate size. This condition is inspired by
analogous adaptive reuse condition from [21], [22], but here
it is weakened for algorithm clarity and simplicity.

Second condition requires that variation of distances (in
symbols) between exact duplicates of 𝐺𝑛 and 𝐺𝑛+1 for ∀𝑘
is not too high. For example, when 𝑑𝑖𝑠𝑡(𝑔1𝑛, 𝑔

1
𝑛+1) = 1, and

𝑑𝑖𝑠𝑡(𝑔2𝑛, 𝑔
2
𝑛+1) = 10000, we will get 𝜈 ≈ 141%, showing that

there is likely no chance for these pairs to be semantically
connected, and it would not be sensible to consider variational
group ⟨𝐺1, . . . 𝐺𝑁 ⟩ as near duplicate group. The threshold
value of 40% was chosen as the most suitable during our
experiments.

For near duplicate group ⟨𝐺1, 𝐺2⟩, all of its near duplicates
are represented by text of 𝑔𝑘1 = [𝑎𝑘1 , 𝑏

𝑘
1], text of 𝑔𝑘2 = [𝑎𝑘2 , 𝑏

𝑘
2]

and some variable text between them, which depends on 𝑘 and
which is placed in [𝑏𝑘1 +1, 𝑎𝑘2 − 1]. We say, that ⟨𝐺1, 𝐺2⟩ has
single extension point, and values of above variable text are
extension point values. In general case, near duplicate group
⟨𝐺1, . . . 𝐺𝑁 ⟩ has 𝑁 − 1 extension points, and each of them
has #𝐺1 values.

B. Algorithm description

Let us overview an algorithm that constructs near duplicate
groups from exact duplicate groups found by Clone Miner.
First, we construct an interval tree from exact duplicates, that
allows us, having an exact duplicate of some group, to find
all exact duplicates (and their groups) which are located close
to given one (step 1). After that, we enumerate all groups
and their exact duplicates, and, with help of interval tree,
find all corresponding groups such that we can combine pairs
of groups them into variational groups. Looking at distances’
values and variations, we select best pairs possible, producing
new near duplicate groups and leaving some groups alone
(step 2). Then we update references in interval tree so that they
point to newly created near duplicate groups where needed
(step 3). Next we try to combine near duplicate groups with
both near and remaining exact duplicate groups to expand and
join near duplicate groups where available, and also update
references in interval tree to keep it up to date (step 4).
We try to combine/join near duplicate groups until, after
some iteration, we fail to change anything. Then we say that
everything possible is done and stop (step 5). As a result,
we have the sets of newly constructed near duplicate and
remaining exact duplicate groups.

126 из 190

Figure 1. Near duplicate browser of Documentation Refactoring Toolkit

An algorithm is described below in details. It takes exact
duplicate group set, denoted as 𝑆𝑒𝑡𝐺, from Clone Miner as
input. It removes some groups from 𝑆𝑒𝑡𝐺 to produce near
duplicate groups from them, and returns newly produced near
duplicate groups as 𝑆𝑒𝑡𝑉 𝐺.

Step 1. All exact duplicates are used to construct an interval
tree, such that keys in this tree are intervals in document
text, covered by exact duplicates, and values are groups, to
which those duplicates belong. Interval tree is used here to
search for nearby intervals, not intersecting ones. Following
first condition of near duplicate definition, “nearby” means that
distance between two exact duplicates should not be greater
than sum of their lengths. To detect nearby intervals with
interval tree, we expand all intervals on their lower and upper
boundaries before using them as tree keys, allowing nearby
intervals to become intersecting ones.

Intervals are expanded by duplicate length at both the begin-
ning and end: for duplicate 𝑔𝑘𝑛 = [𝑏, 𝑒], we use [𝑏−|[𝑏, 𝑒]|, 𝑒+
|[𝑏, 𝑒]|] interval as tree key. Let us make sure that suggested
expansion is enough. Imagine that we have exact duplicates
𝑔𝑘1 = [𝑏1, 𝑒1], 𝑔𝑘2 = [𝑏2, 𝑒2], 𝐵𝑒𝑓𝑜𝑟𝑒(𝑔𝑘1 , 𝑔

𝑘
2), and they are

placed nearby each other: 𝑏2−𝑒1 ≤ |[𝑏1, 𝑒1]|+ |[𝑏2, 𝑒2]|. Then,
after expanding them to [𝑏′𝑖, 𝑒

′
𝑖] = [𝑏𝑖 − |[𝑏𝑖, 𝑒𝑖]|, 𝑒𝑖 + |[𝑏𝑖, 𝑒𝑖]|],

we can easily prove that 𝑒′1 ≥ 𝑏′2, which guarantees [𝑏′1, 𝑒
′
1] ∩

[𝑏′2, 𝑒
′
2] ̸= ∅. Therefore, using expanded [𝑏′

𝑘
𝑖 , 𝑒

′𝑘
𝑖] intervals to

construct interval tree as shown above, allows us to detect
initial nearby intervals [𝑏𝑘𝑖 , 𝑒

𝑘
𝑖] with it.

Step 2. For each 𝐺𝑖 ∈ 𝑆𝑒𝑡𝐺 we do following:

1) We consider all its exact duplicates 𝑔𝑘𝑖 and, using interval
tree, find all exact duplicate groups {𝐺𝑗}, having their

duplicates 𝑔𝑘𝑗 placed nearby 𝑔𝑘𝑖 .
2) We do not consider all 𝐺𝑗 , which do not correspond to

𝐺𝑖 in sense of forming near duplicate by checking near
duplicate group conditions defined in (III-A).

3) Then we find closest group 𝐺𝑚 ∈ {𝐺𝑗}: 𝑚 =
argmin𝑗 𝑑𝑖𝑠𝑡(𝐺𝑖, 𝐺𝑗).

4) After all, we remove both 𝐺𝑖 and 𝐺𝑚 from 𝑆𝑒𝑡𝐺
and add ⟨𝐺𝑖, 𝐺𝑚⟩ (or ⟨𝐺𝑚, 𝐺𝑖⟩, depending on their
duplicates placement) to 𝑆𝑒𝑡𝑉 𝐺.

Due to interval tree, for N total exact duplicates in all
groups, when any of them can be combined with at most 𝑀
another groups, this step takes 𝒪(𝑁(log𝑁 + 𝑀)) time in
average. In [6], [7] this was the only step of algorithm and,
having no interval tree, it took 𝒪(𝑁2) time to complete.

Step 3. We update references to groups in interval tree so
they point to newly created near duplicate groups for expanded
intervals of their exact duplicates.

Step 4. Then we try to expand and join near duplicate
groups their selves. For each near duplicate group in 𝑆𝑒𝑡𝑉 𝐺,
we perform the same procedure as described in steps 2 and 3,
except:

1) We take 𝐺𝑗 from 𝑆𝑒𝑡𝐺 ∪ 𝑆𝑒𝑡𝑉 𝐺.
2) We add (prepend or append) new exact and near dupli-

cate groups to existing near duplicate ones instead of
constructing new near duplicate groups. Then obsolete
exact and near duplicate groups are removed from 𝑆𝑒𝑡𝐺
and 𝑆𝑒𝑡𝑉 𝐺 respectively.

Step 5. We repeat Step 4, until at some iteration no changes
happen to 𝑆𝑒𝑡𝐺. Then 𝑆𝑒𝑡𝑉 𝐺 construction is finished. Fi-

127 из 190

Table I
EVALUATION RESULTS

T
im

e
,

s
.

N
e

a
r

d
u

p
.

g
rp

s

fo
u
n
d

E
x
a

c
t

d
u

p
.

g
rp

s

in
v
o

lv
e

d

T
im

e
,

s
.

N
e

a
r

d
u

p
.

g
rp

s

fo
u
n
d

E
x
a

c
t

d
u

p
.

g
rp

s

in
v
o

lv
e

d

A
v
e

ra
g

e

e
x
t

p
ts

.

M
a
x

e
x
t

p
ts

.

LKD 13881 705 242 484 408 308 682 1.21 5

Zend 36841 4981 1035 2070 2824 1067 2550 1.39 10

DocBook 8951 293 174 348 137 210 480 1.28 19

SVN 29603 3184 442 884 961 471 1085 1.28 10

D
o

c
u

m
e

n
-

ta
ti
o

n

Proposed algorithm

S
o

u
rc

e

e
x
a

c
t

d
u

p
.

g
rp

s

Algorithm from [6],[7]

nally, algorithm results in modified 𝑆𝑒𝑡𝐺 and newly built
𝑆𝑒𝑡𝑉 𝐺 as its results.

IV. THE TOOL

Above algorithm is implemented by Documentation Refac-
toring Toolkit [11]. This tool can operate as both standalone
one and an integrated part of DocLine environment.

After being given input document, it produces the report
as shown on Fig. 1. Report contains both exact and near
duplicates, detected in the document. When shown to user,
they are sorted by their lengths decreasing. User can browse
duplicates found. When (s)he clicks on extension point value
or duplicate number, document source pane at the bottom
selects corresponding text fragment. Generated report can be
exported to standalone HTML file using File menu. In addition
to detection and browsing of near duplicates, Documentation
Refactoring Toolkit also provides refactoring facilities, which
are already described in [6], [7] and which are not affected by
proposed algorithm.

V. EVALUATION

Let us characterize the way of assessment in out experi-
ments with two questions:

∙ Question 1: How many near duplicate groups with single
and multiple extension points can be found in real life
documents?

∙ Question 2: How do results and performance differ from
results and performance of algorithm described in [6],
[7]?

To assess above questions, the both proposed and described
in [6], [7] algorithm implementations were evaluated against
four open source projects’ documentation:

∙ Linux Kernel documentation (acronym: LKD), 892 KB
in total [13];

∙ Zend Framework documentation (acronym: Zend),
2924 KB in total [14];

∙ DocBook 4 Definitive Guide (acronym: DocBook),
686 KB in total [15];

∙ Version Control with Subversion (acroym: SVN),
1810 KB in total [16].

Evaluation results for each document are presented in
Table I. Documentation column contains evaluation objects’
acronyms. Source exact dup. grps shows us, how many exact
duplicate groups were found by Clone Miner for particular

documents. The rest presents results for algorithm from [6],
[7] and proposed one. For both algorithms, column Time, s.
shows time, in seconds, spent to detect near duplicates (the
same computer was used for all experiments); Near dup. grps
found column shows, how many near duplicate groups were
detected; Exact dup. grps involved column contains number
of exact duplicate groups involved in near duplicate groups
construction. Then, only for proposed algorithm, Average ext
pts. column shows, how many extension points do resulting
near duplicates have in average; the last Max ext pts. column
presents maximal number of extension points found.

To answer question 1, we can compare numbers of exact
duplicate groups found by Clone Miner and numbers of near
duplicate groups found by proposed algorithm. The most of
exact duplicate groups remain so, but there are also consider-
able amount of near duplicate groups built from them, having
1.2 to 1.4 extension points in average for different documents.

To answer question 2, we can compare total counts of
near duplicate groups produced by algorithm from [6], [7]
and proposed algorithm. Proposed one constructs 9% more
near duplicate groups and involves 27% more exact duplicate
groups for it. Thus we can say that it joins exact duplicate
groups and constructs near duplicate ones more effectively.
When comparing time spent to process real documents, pro-
posed algorithm shows itself being 2.24 times faster in aver-
age, having maximum speedup of 3.3 times over one from [6],
[7].

VI. CONCLUSION

Following evaluation results, we see that proposed algorithm
offers notifiable improvements over algorithm described in [6],
[7]. The main improvement is that it detects near duplicates
with arbitrary number of extension points. It is essential,
because real life documents contain considerable amounts of
such near duplicates.

However we should also mention that proposed algorithm
has some limitations. First, it only searches for near duplicates
with extension points placed between exact duplicates. It does
not perform any semantic analysis of processed text, thus
having only first and last exact duplicates as boundaries for
constructed near duplicate. Next, in [6], [7], near duplicates
followed the rule, saying that average size of variational part
of near duplicate should be at most 1

2 of total near duplicate
size. The idea of limiting variational part size to the total

128 из 190

near duplicate size ratio comes from [21], [22]. Proposed
algorithm also forces 1

2 constraint for near duplicates with
single extension point, but when having multiple extension
points, variational part size can reach up to 2

3 of total near
duplicate size.

After looking through particular near duplicates in evalu-
ation results, we can say that first limitation appears to be
more significant. Following this, in the future we plan to
extend proposed approach with some heuristic text analysis
and natural language processing, thus improving near duplicate
boundaries detection.

ACKNOWLEDGMENT

This work is partially supported by RFBR grant No 16-01-
00304.

REFERENCES

[1] E. Juergens et al. Can clone detection support quality assessments of
requirements specifications? In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering, vol. 2., 2010, pp.
79–88

[2] M. Nosáľ, J. Porubän. Preliminary report on empirical study of repeated
fragments in internal documentation. In Proceedings of the Federated
Conference on Computer Science and Information Systems, 2016.

[3] D. Koznov, K. Romanovsky. DocLine: A Method for Software Product
Lines Documentation Development. In Programming and Computer
Software, 34(4), 2008, pp. 216–224

[4] K. Romanovsky, D. Koznov, L. Minchin. Refactoring the Documentation
of Software Product Lines. CEE-SET 2008, Brno (Czech Republic),
October 13–15, 2008. In LNCS, vol. 4980, Springer 2011, pp. 158–170

[5] D. L. Parnas. Precise Documentation: The Key To Better Software. In
S. Nanz, editor, The Future of Software Engineering, Springer, 2011

[6] D. Koznov et al. Clone detection in reuse of software technical docu-
mentation. In: Mazzara, M., Voronkov, A. editors, International Andrei
Ershov Memorial Conference on Perspectives of System Informatics,
2015, Lecture Notes in Computer Science, vol. 9609, 2016, pp. 170–
185

[7] D. Luciv, D. Koznov, H. A. Basit, A. N. Terekhov. On fuzzy repeti-
tions detection in documentation reuse. In Programming and Computer
Software 42(4), 2016, pp. 216–224

[8] K. Romanovsky, D. Koznov. DRL: a Language for Software Product
Line Documentation Design and Development In Vestnik Of Saint Pe-
tersburg University, series 10: Applied Mathematics. Computer Science.
Control Processes. Issue 4, pp. 110–122, 2007 (in Russian)

[9] H. A. Basit et al. Efficient Token Based Clone Detection with Flexible
Tokenization. In Proceedings of ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering, 2007, pp. 513–516

[10] Mark de Berg et al. Computational Geometry, Second Revised Edition.
Springer-Verlag 2000. Section 10.1: Interval Trees, pp. 212–217.

[11] Document Refactoring Toolkit,
http://www.math.spbu.ru/user/kromanovsky/docline/index en.html

[12] D. Koznov, K. Romanovsky. Automated Refactoring of Software Prod-
uct Line Documentation In System Programming, vol. 4, pp. 128–150,
2009 (in Russian)

[13] Linux Kernel Documentation, snapshot on Dec 11, 2013,
https://github.com/torvalds/linux/tree/master/Documentation/DocBook/

[14] Zend PHP Framework documentation, snapshot on Apr 24, 2015,
https://github.com/zendframework/zf1/tree/master/documentation

[15] DocBook Definitive Guide, snapshot on Apr 24, 2015,
http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/

[16] SVN Book, snapshot on Apr 24, 2015,
http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/

[17] D. Rattan, R. K. Bhatia, M. Singh: Software Clone Detection: A
Systematic Review. Information & Software Technology (INFSOF),
55(7), pp. 1165–1199 (2013)

[18] M. I. Abouelhoda, S. Kurtz, E. Ohlebusch. Replacing suffix trees with
enhanced suffix arrays. In Journal of Discrete Algorithms, 2(1), 2004,
pp. 53–86

[19] A mutable, self-balancing interval tree for Python 2 and 3. https://github.
com/chaimleib/intervaltree

[20] B. Everitt. The Cambridge Dictionary of Statistics. Cambridge, UK New
York: Cambridge University Press, 1998

[21] P. G. Bassett. Framing Software Reuse: Lessons from the Real World.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996

[22] P. G. Bassett. The Theory and Practice of Adaptive Reuse. In SIGSOFT
Software Engineering Notes, 22(3), 1997, pp. 2–9

129 из 190

http://www.math.spbu.ru/user/kromanovsky/docline/index_en.html
https://github.com/torvalds/linux/tree/master/Documentation/DocBook/
https://github.com/zendframework/zf1/tree/master/documentation
http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/
http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/
https://github.com/chaimleib/intervaltree
https://github.com/chaimleib/intervaltree

Discovering Near Duplicate Text
in Software Documentation

Leonid D. Kanteev
Saint-Petersburg State University

Saint-Petersburg, Russia
Email: lkolt2@mail.ru

Yuri O. Kostyukov
Saint-Petersburg State University

Saint-Petersburg, Russia
Email: taxixx@inbox.ru

Dmitry V. Luciv
Saint-Petersburg State University

Saint-Petersburg, Russia
Email: d.lutsiv@spbu.ru

Abstract—Authoring and maintaining software documentation
often involves copy-pasting text and editing it afterwards, which
produces a lot of near duplicate text. Such duplicates make it
difficult and expensive to work with documentation, especially
because modern software documentation is often complicated and
has long lifecycle, as software itself. Usually, there are no special
efforts to track those duplicates.

In this article, we present an algorithm, aiming to detect near
duplicates in software documentation. An algorithm relies on
natural language processing techniques, its implementation uses
Natural Language Toolkit software library for text analysis.

Algorithm implementation is evaluated, using documentation
of several open source projects as evaluation objects.

Keywords—software documentation, near duplicates, natural
language processing

I. INTRODUCTION

Todays technical writers, software engineers, architects and
managers often deal with large and complicated software
documentation. When being authored or maintained, this doc-
umentation gets a lot of copy-pasted text, which is often not
tracked properly. In general, the topic of documentation reuse
in software engineering is studied actively [1], [2], [3], [4].

According to software documentation classification
from [5], there are different kinds of documents. For some
of them, duplicate text is undesired, while other ones should
contain exact or near duplicate text, but in the case of near
duplicates in the document, those near duplicates should
still remain as uniform as possible. Basing on text fragment
reuse, Nosál et al. [6] and Horie et al. [7] offer to solve the
problem of API documentation unification, Romanovsky et
al. [4] suggest refactoring XML-documents. But the problem
of effective duplicates search is still open, because we need
to get not exact, but near duplicates [8]. There are some case
studies [6], [9] and approaches [1], [8], [10], [11], but all
of them apply clone detection technique to documentation
duplicate search. Koznov et al. [8], [10] use exact duplicates
which are found by means of clone detection to organize
near duplicate search. But this approach leads to processing a
lot of false positive information [9], and it is hard to provide
proper accuracy of the final results.

In this paper we suggest finding near duplicates in software
documentation without clone detection technique and omitting
intermediate phases of exact duplicate search. Doing that
we aim search accuracy increasing by providing filtering

of false positive data on the “low level”. We use Natural
Language Toolkit [12] (NLTK), and present an algorithm for
searching near duplicates, which consist of one sentence. We
have implemented this algorithm and evaluated the results on
evaluation objects used earlier in [8], [10].

II. BACKGROUND

Modern natural language processing and computer linguis-
tics employ a lot of different standard algorithms and ap-
proaches to transform, normalize and analyze texts. Proposed
approach and algorithm require raw input document to be
preprocessed: text should be divided into sentences, sentences
should be divided into words, words should be grouped to n-
grams. Here 𝑛-grams, also known as shingles, are overlapping
sequences of 𝑛 words, starting from each word of the text [13].

Sometimes, those operations are more complicated than they
appear at first glance, because of language-specific idioms and
abbreviations. For such text manipulations, Natural Language
Toolkit [12] (NLTK) is popular choice. NLTK is a collection
of software libraries for natural language processing and text
analysis. It is suitable for our needs because it already con-
tains implementations of many standard linguistic operations,
including those described above, for many natural languages
and also because it is implemented in Python, making itself
easy to integrate into Documentation Refactoring Toolkit [14].

III. AN ALGORITHM FOR SENTENCE GROUPING

Here we propose an algorithm that groups document sen-
tences, which contain near duplicate text and were likely
derived from similar text fragments.

First, we execute preliminary text processing with NLTK
to extract sentences and 3-grams (𝑛-grams of three words)
from it. All sentences are represented by their bindings to
source document and sets of 3-grams, extracted from their
texts. Sentence group is represented by its sentences and set
of all 3-grams of those sentences. For each sentence, algorithm
scans existing groups and selects best one, which aready
contains the largest number of sentence 3-grams. Then, if
the best group already contains at least one half of sentence
3-grams, sentence is added to this group, and group’s 3-
grams set is complemented with sentence’s 3-grams. When
no groups containing half of sentence 3-grams are found, new
group, containing all sentence’s 3-grams, is introduced. Last,

130 из 190

algorithm outputs sentences of all groups, which contain two
or more entences, as near duplicates.

Let us present Algorithm 1 pseudocode. We use following
conventions there:

∙ intersect(A, B) function returns element, which exist in
the both A and B arrays

∙ size(A) function returns number of elements in array A
∙ sent is an array of sentences in document text

– sent[i].nGrams is an array of 3-grams of i-th sen-
tence

∙ groups is an array of near duplicate groups
– groups[i].nGrams is an array of 3-grams of i-th

group
– groups[i].sent is an array of sentences of i-th group

Algorithm 1 Near duiplicate group detection
1: for i = 1 to size(sent) do
2: curSent = sent[i]
3: bestOverlap = 0
4: bestGroup = NULL
5: for j = 1 to size(groups) do
6: curGroup = groups[j]
7: curIntersect =

→˓ intersect(curSent.nGrams, curGroup.nGrams)
8: curOverlap = size(curIntersect) / size(curSent.nGrams)
9: if curOverlap > bestOverlap then

10: bestOverlap = curOverlap
11: bestGroup = curGroup
12: end if
13: end for
14: if bestOverlap < 0.5 then
15: create new group newGroup
16: newGroup.nGrams += curSent.nGrams
17: newGroup.sent += curSent
18: else
19: bestGroup.nGrams += curSent.nGrams
20: bestGroup.sent += curSent
21: end if
22: end for
23: for all G in groups such that size(G) = 1, groups -= G
24: return groups

Details of proposed algorithm are described below:
1) Lines 1–22: main cycle, which iterates over all sen-

tences of the document.
2) Lines 5–13: the cycle of the best group selection. For

each of existing groups:
a) Line 7: we calculate the intersection of its 3-grams

set with the set of current sentence 3-grams.
b) Line 8: we calculate this intersection size to total

sentence 3-grams set size ratio.
c) Lines 9–12: if current group is the best of pro-

cessed ones, we remember it.
3) Line 14: we check if above ratio is less than 0.5, and:

a) Lines 15–17: when it is less than 0.5, we create
new group and put sentence into it.

b) Lines 19, 20: otherwise, we put the sentence into
the best group found.

4) Line 23: groups with single sentence are not near du-
plicate groups, therefore we remove them.

5) Line 24: we return all sentence groups, containing two
or more sentences.

IV. EVALUATION

Following GQM approach [15], we characterize the way of
the assessment in our experiments with two questions:

∙ Question 1: How many incorrect, irrelevant and mean-
ingful near duplicates are found?

∙ Question 2: What reuse amount do those meaningful
duplicates provide?

∙ Question 3: How are algorithm evaluation results com-
pared to manual document analysis results?

We use the term reuse amount from [16], which means total
number of symbols, covered by duplicates to total document
length in symbols ratio. In [1] the same metric is named clone
coverage.

To assess above questions, algorithm implementation was
evaluated against four open source and one commercial
projects’ documentation:

∙ Linux Kernel dokumentation (acronym: LKD), 892 KB
in total [17];

∙ Zend Framework dokumentation (acronym: Zend),
2924 KB in total [18];

∙ DocBook 4 Definitive Guide (acronym: DocBook),
686 KB in total [19];

∙ Version Control with Subversion (acroym: SVN),
1810 KB in total [20];

∙ Commercial project user guide (acronym: CProj), 164 KB
in total.

Results are presented in table I, which is organized as fol-
lows: Acronym column contains evaluation objects’ acronyms
listed above. Then the group of five columns (Proposed
algorithm) represent results on near duplicate groups found
by proposed algorithm: Total column shows total numbers
of groups found; Markup-only column contains numbers
of groups without human-readable text (they only contain
markup); Irrelevant column contains numbers of false-positive
groups, which were detected by human during manual revi-
sion; Total meaningful column shows number of meaningful
duplicates; Meaningful reuse amount column presents reuse
amount, provided by those duplicates. Last column group
(Manual analysis) contains results of manual text analysis:
Total meaningful column shows total numbers of meaningful
near-duplicate groups found by human; Meaningful reuse
amount column contains reuse amount, provided by above near
duplicates.

To answer question 1, we compare numbers in Total,
Markup-only, Irrelevant and Total meaningful columns of
table I for proposed algorithm. 14.4% of groups contain no

131 из 190

Table I
NEAR-DUPLICATE GROUPS DETECTED

T
o

ta
l

M
a
rk

u
p
-

o
n
ly

Ir
re

le
v
a

n
t

T
o

ta
l

m
e
a

n
in

g
fu

l

M
e
a

n
in

g
fu

l

re
u
s
e

a
m

o
u
n
t

T
o

ta
l

m
e
a

n
in

g
fu

l

M
e
a

n
in

g
fu

l

re
u
s
e

a
m

o
u
n
t

LKD 189 38 25 126 7.7% 15 5.1%

Zend 601 62 159 380 8.6% 27 2.1%

DocBook 73 10 24 39 3.2% 12 1.7%

SVN 349 97 75 177 5.0% 16 2.3%

CProj 72 0 21 51 29.5% 9 14.1%

10.8% 5.0%

Acronym

Proposed algorithm Manual analysis

Average reuse amount

human-readable text, but only markup, 24.6% of groups con-
tain text which is similar enough, but this formal similarity is
irrelevant, and duplicates of those groups are not semantically
connected. Remaining 61% of groups are meaningful duplicate
groups. For documents of different sizes their count varies
from few dozens to several hundreds depending on the size
and nature of document, therefore we can say that proposed
algorithm detects considerable amount of near duplicates, and
most of them are meaningful.

Assessing question 2, we calculate average reuse amount
(table I, Meaningfull reuse amount column for proposed
algorithm) provided by above meaningful duplicates and see
that it is 10.8%.

Last, we answer question 3 by comparing meaningful near
duplicate groups’ numbers and meaningful reuse amounts,
given by proposed algorithm and obtained from manual anal-
ysis results. Information is presented in Total meaningful
and Meaningful reuse amount columns of table I. Proposed
algorithm detects 8.5 times more groups in average for all
documents, and total provided reuse amount is 2.14 times
higher than for manual analysis. Large number of near-
duplicate groups detected is caused by algorithm limitation:
it only searches for single sentence near duplicates, thus
detecting many separate groups of small text fragments. Ad-
ditional review of resulting near duplicate groups shows that
significant difference in reuse amounts was caused by different
people making their consequences on near duplicate groups’
meaningfulness, thus using different subjective criteria for it.

V. CONCLUSION

Here we presented and evaluated an algorithm for detection
of near duplicates in software documentation. Proposed algo-
rithm is close to naive voting clustering algorithm [21], using
similarity measure resembling Jaccard index [22]. Compared
to [8], [10] it is much simpler, and it also makes use of those
techniques and apparatus, which are conventionally used for
text analysis.

At present, our algorithm has an important limitation: it only
suggests single sentences as near duplicates. Our primary goal
for future research is overcoming this limitation to handle not
only single sentence near duplicates, but also arbitrary self-
sufficient text fragments.

Continuing our research, we can also name other important
future directions for it:

1) Improvement of experiment design, aided to eliminate or
estimate subjectivity as possible. Juergens et al. applied
a lot of effort to obtain objective results [1]. Significant
difference in reuse amounts (question 3, section IV,
Evaluation) shows that we definitely should pay more
attention to experiment accuracy and reliability in our
future research.

2) Additional semantical classification of near duplicate
groups. Meaningful near duplicates usually describe
entities of the same nature (function descriptions, com-
mand line parameters, data type specifications, etc.)
Knowing the nature of particular duplicate groups, we
can perform more detailed analysis of their duplicates
and draw more conclusions from it.

3) Explicit retrieval of common text parts of near dupli-
cates. Not only it is interesting to detect near duplicate
text groups in the document, but also to reestablish their
structures from similar and different parts of their near
duplicates. Such a facility should provide an assistance
in the both document understanding and proper reuse
organization [23], which can be done by implementing
refactoring operations described in [4], [24].

ACKNOWLEDGMENT

This work is partially supported by RFBR grant No 16-01-
00304.

REFERENCES

[1] E. Juergens et al. Can clone detection support quality assessments of
requirements specifications? In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering, vol. 2., 2010, pp.
79–88

[2] M. Nosál, J. Porubän. Preliminary report on empirical study of repeated
fragments in internal documentation. In Proceedings of the 2016 Feder-
ated Conference on Computer Science and Information Systems, 2016.

[3] D. Koznov, K. Romanovsky. DocLine: A Method for Software Product
Lines Documentation Development. In Programming and Computer
Software, 34(4), 2008, pp. 216–224

[4] K. Romanovsky, D. Koznov, L. Minchin. Refactoring the Documentation
of Software Product Lines. CEE-SET 2008, Brno (Czech Republic),
October 13–15, 2008. In LNCS, vol. 4980, Springer 2011, pp. 158–170

[5] D. L. Parnas. Precise Documentation: The Key To Better Software. In
S. Nanz, editor, The Future of Software Engineering, Springer, 2011

132 из 190

[6] M. Nosál, J. Porubän. Reusable software documentation with phrase
annotations. Central European Journal of Computer Science. 4(4), 2014,
pp. 242–258

[7] Horie, M., Chiba, S. Tool support for crosscutting concerns of API
documentation. In Proceedings of 9th International Conference on
Aspect-Oriented Software Development, 2010, pp. 97–108

[8] D. Koznov et al. Clone detection in reuse of software technical docu-
mentation. In: Mazzara, M., Voronkov, A. editors, International Andrei
Ershov Memorial Conference on Perspectives of System Informatics,
2015, Lecture Notes in Computer Science, vol. 9609, 2016, pp. 170–
185

[9] E. Juergens, et al. Can clone detection support quality assessments of
requirements specifications? April 2010 ICSE ’10: In Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering, vol
2, pp. 79–88

[10] D. Luciv, D. Koznov, H. A. Basit, A. N. Terekhov. On fuzzy repeti-
tions detection in documentation reuse. In Programming and Computer
Software 42(4), 2016, pp. 216–224

[11] D. Lutsiv et al. An approach for clone detection in documentation
reuse. In Scientific and Technical Journal of Information Technologies,
Mechanics and Optics 4(92), 2014, pp. 106–114 (in Russian)

[12] Natural Language Toolkit, http://nltk.org/
[13] A.Z. Broder et al. Syntactic clustering of the web. Computer Networks

and ISDN Systems. 29 (8), 1997, pp. 1157–1166
[14] Document Refactoring Toolkit,

http://www.math.spbu.ru/user/kromanovsky/docline/index_en.html
[15] V. Basili, G. Caldiera, H. Rombach. The Goal Question Metric Ap-

proach. Encyclopedia of Software Engineering, Wiley, 1994
[16] W. Frakes, C. Terry. Software reuse: metrics and models. In ACM

Comput. Surv, 28(2), 1996, pp. 415–435
[17] Linux Kernel Documentation, snapshot on Dec 11, 2013,

https://github.com/torvalds/linux/tree/master/Documentation/DocBook/
[18] Zend PHP Framework documentation, snapshot on Apr 24, 2015,

https://github.com/zendframework/zf1/tree/master/documentation
[19] DocBook Definitive Guide, snapshot on Apr 24, 2015,

http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/
[20] SVN Book, snapshot on Apr 24, 2015,

http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/
[21] Ronald K. Braun and Ryan Kaneshiro. 2003. Exploiting topic pragmatics

for new event detection. Technical report. In National Institute of
Standards and Technology, Topic Detection and Tracking Workshop,
2004

[22] P. Jaccard. Distribution de la flore alpine dans le Bassin des Dranses
et dans quelques regions voisines. In Bull. Soc. Vaudoise sci. Natur
37(140), 1901, pp. 241–272 (in French)

[23] K. Romanovsky, D. Koznov. DRL: a Language for Software Product
Line Documentation Design and Development In Vestnik Of Saint Pe-
tersburg University, series 10: Applied Mathematics. Computer Science.
Control Processes. Issue 4, pp. 110–122, 2007 (in Russian)

[24] D. Koznov, K. Romanovsky. Automated Refactoring of Software Prod-
uct Line Documentation In System Programming, vol. 4, pp. 128–150,
2009 (in Russian)

133 из 190

http://nltk.org/
http://www.math.spbu.ru/user/kromanovsky/docline/index_en.html
https://github.com/torvalds/linux/tree/master/Documentation/DocBook/
https://github.com/zendframework/zf1/tree/master/documentation
http://sourceforge.net/p/docbook/code/HEAD/tree/trunk/defguide/en/
http://sourceforge.net/p/svnbook/source/HEAD/tree/trunk/en/book/

The Program for Public Mood Monitoring through
Twitter Content in Russian

Sergey Smetanin
Faculty of Business and Management

National Research University Higher School of Economics
Moscow, Russia

sismetanin@gmail.com

Abstract — With the popularization of social media, a vast
amount of textual content with additional geo-located and time-
stamped information is directly generated by human every day.
This paper aims at describing the development of the program for
public mood monitoring based on sentiment analysis of Twitter
content in Russian. Machine learning and natural language
processing techniques were used for the program implementation.
As a result, the client-server program was implemented, where the
server-side application collects and analyses tweets, and the client-
side web application visualizes the public mood. The mood
visualization consists of the Russian mood geo chart, the mood
changes plot through the day, and the mood changes plot through
the week.

Keywords — sentiment analysis; public mood; mood patterns;
twitter; social media.

I. INTRODUCTION
With the popularization of social media, particularly the

micro-blogging website Twitter, a vast amount of content is
directly generated by people every day. In addition to textual
information, which seems to have affective component, Twitter
messages are also time-stamped and geo-located. Consequently,
both tweets meaning and extended information about a message
can be analyzed in a purpose of scientific studies in general and
in the exploration of public mood variations particularly.

In data mining, the usage of social media to analyze and
predict political events is becoming more popular in recent
times. During the Brexit referendum in the United Kingdom, the
researchers consider changes to the public mood within the
contents of Twitter [13]. They measure the appearance of
positive and negative affect in various geographic regions of the
United Kingdom, at hourly intervals. According to the results,
there are three key times in the period leading up to and
including the EU referendum, each of which was characterized
by an increase in negative affect with a corresponding loss of
positive affect.

The paper [12] describes an empirical study of Relationship
between Twitter mood and stock market from an Indian context.
Using Twitter as a source of the news, the authors have extracted
the polarity of messages and have found a significant correlation
with stock market movement measured in the major stock
indices of India. In addition, the correlation of the sentiment with

other macroeconomic factors like Gas and Oil Price was
established.

Academics from the University of Bristol have published
two papers with analysis of periodic patterns in daily media
content and consumption under the ThinkBIG project [17]. The
first paper [6] was focused on the scrutiny of 87 years of the
United States and United Kingdom newspapers between 1836
and 1922. Studies have found people’s behavior were strongly
correlated with the weather and seasons. In the second paper [7],
presented at 2016 IEEE International Conference on Data
Mining, the authors pay their attention to discovering mental
health changes. The team analyzed Twitter content in the United
Kingdom and Wikipedia access over four years using data
mining and sentiment analysis techniques. They found that
negative sentiment tends to be overexpressed in the winter with
the peak value in November, while more aggressive emotions
like anxiety and anger seem to be overexpressed between
September and April. To conclude, both papers states that
people’s collective behavior follows strong periodic patterns.

This paper describes the development of the program for
monitoring peoples’ mood through Twitter content in Russian.
This paper aims at implementing the software product for
exploring the temporal and geographical mood patterns in
Russia using machine learning techniques. In contrast with
issues mentioned above, this program is designed to process
Twitter data in the online mode, i.e. to receive data directly from
Twitter API in real time, rather than analyze the pre-collected
messages corpus.

The paper is organized as follows. In section 2 the program
implementation, methodology, and data collection are
described. Section 3 is focused on results and further ways of
research. The limitations of this paper are provided in section 4.

II. IMPLEMENTATION, DATA, AND METHODOLOGY
The client-server model was implemented for this project,

where the server-side application collects and analyzes Twitter
content, and the client-side web application visualizes results.
Python was selected as a preferred programming language
because of its cross-platform operability, open source code and
a vast number of third-party libraries. The Google App
Engine [9] cloud platform was used to run and host this project
on Google’s infrastructure in Python runtime environment. The

134 из 190

applications data is stored in Google App Engine Cloud
Datastore [4], that is, a high-performance NoSQL document
database.

Fig. 1 illustrates the process of public mood monitoring; it’s
clear that it can be divided into several parts. Firstly, messages
obtained via Twitter API [19] using Python-based client library.
Secondly, the identification of a federal subject for each
obtained message is performed. Thirdly, sentiment analysis is
executed. Fourthly, the information of emotional polarity of
messages is stored in the database. At the last step, the client-
side application visualizes results. Details for these parts are
given in the following sections.

Fig. 1. The program architecture

A. Twitter messages collection
Twitting with a location is the geotagging feature in the

Twitter platform. On the one hand, this feature helps to provide
more meaningful experience for users by making messages
more contextual. On the other hand, it makes possible for
researchers to analyze Twitter content from the location-based
point of view. In order to use the Tweeting with location feature
users must opt-in, i.e. turn location “on”. The location will be
displayed with users Tweets only in case if they give explicit
permission for location extraction. Twitter tracks their location
via mobile geo-services or IP.

It’s common for IT companies to release its API to the public
so that other software developers can design products that are
powered by its service. To access Twitter content
programmatically it’s necessary to register the developer
application in Twitter Developers Console. Using credentials
from the registered application it’s possible to interact with
Twitter API from the code of the program. The open-sourced
library Tweepy [18] was used in this project to communicate
with the Twitter platform and use its’ API. The cron job, that is,
time-based job scheduler in Unix-like computer OS, is searching
and collecting new tweets in Russian with geotagging
information via Tweepy every minute. In other words, the

information about newly published messages is updated in the
program every minute.

B. Federal subject identification by message coordinates
For each message collected at the previous step the

administrative-territorial entity should be defined according to
ISO 3166-2:RU standard, that is, part of ISO 3166 standard
published by the International Organization for Standardization,
which describes the principal subdivisions of all countries coded
in ISO 3166-1.

Due to high implementation complexity, it was decided to
use existing geographical services to identify federal subjects’
codes. The GeoNames [8] worldwide geographical database was
selected for identification of the federal subject code by message
latitude and longitude values. This service provides developers
with HTTP REST API, which includes identification of the
country ISO code and the administrative subdivision of any
given point. According to GeoNames terms and conditions of
use, there are 30000 requests daily limit and 2000 hourly limit
for the code identification functional.

C. Sentiment Analysis
The sentiment analysis process can be divided into three

steps. At the first step, text preprocessing for collected messages
is executed to prepare textual information for sentiment analysis.
At the second step, classification features are extracted from
prepared messages. At the last step, sentiment classification for
each message is performed. The detail description of the steps is
as follows.

1) Text preprocessing
Texts generated by humans in social media sites contain lots

of noise that can significantly affect the results of the sentiment
classification process. Moreover, depending on the features
generation approach, every new word seems to add at least one
new dimensional, that makes the representation of texts is sparse
and high-dimensional, consequently, the task of the classifier
has become more complex. According to [10], text
preprocessing has been found crucial on the sentiment
classification performance.

To prepare messages, such text preprocessing techniques as
reverting repeated letters, removing URLs, removing numbers,
converting to lowercase, word normalization and stemming
were used in this program. Removing and replacing tasks was
performed using regular expressions. The morphological
analyzer PyMorphy2 [11]was used for words normalization.
Stemming of normalized words was performed using NLTK
Python library [16].

2) Features extraction
A basic step for a static natural language processing task

tends to be the conversion of raw text into features, which
provides a machine learning model with a simpler, more
comprehensible view of the text. The bag-of-words model was
used to calculate texts embedding using unigrams and bigrams.

3) Sentiment classification

135 из 190

 In this project, the multinomial Naïve Bayes classification
algorithm for binary sentiment analysis task was used because
of its tendency to perform significantly well in the texts
classification task and wide usage [20], [2], [14]. The basic idea
of Naïve Bayes technique is to find the probabilities of classes
assigned to texts by using the joint probabilities of words and
classes [5]. Consider the given data point x and class cÎC. The
starting point is Bayes’ theorem for conditional probability
which estimates as follows:

 𝑃 𝑐 𝑥 = % 𝑥 𝑐
%(')

 (1)

 𝑃 𝑥 𝑐 =)*+,- ',)
)*+,-)

 (2)

Where count(x, c) is the count of word x in class c; count(c) is
a count of all words in class c. For texts with unknown words,
the estimation (2) might be problematic because it would give
zero probability. The usage of Laplace smoothing is a common
way to solve this problem (3).

 𝑃 𝑥 𝑐 =)*+,- ',) /0
)*+,-) / 1 /0

 (3)

Where |V| is the length of vocabulary in training set.

 From the assumption of word independence, it appears that
for data point x = {x1, x2, ..., xi} the probability of each of its
features to occur in the given class is independent. Thus, the
estimation of this probability can be calculated as follows:

 𝑃 𝑐 𝑥 = 𝑃(𝑐) 𝑃(𝑥2|𝐶) (4)

 In this context, that means the final equation for the class
chosen by a naive Bayes classifier is (5).

 𝑐,5 = argmax
)∈<

𝑃(𝑐) 𝑃(𝑥2|𝑐) (5)

 To avoid underflow and increase speed, the Naive Bayes
calculations are performed in the log space (6).

 𝑐,5 = argmax
)∈<

(log	P(c)	 + log 𝑃(𝑥2|𝑐))	 (6)

 The Naive Bayes classifier was trained on the corpus of short
texts in Russian based on Twitter messages [3], which consists
of 114991 positive and 111923 negative tweets. The 10-fold
cross-validation shows accuracy up to 83%.

D. Storing results
Every time the cron job have been executed, the new

information about publication time, the amount of positive and
negative messages for each federal subject is stored in the
database.

E. Visualization
To explore temporal public mood variations and location

based mood values the website was implemented. Both types of
graphics were developed with the framework Google

Charts [1], which provides developers with the tool for
constructing interactive charts for browsers and mobile devices.
There are three graphics displayed at the website. The first one
is the Russia mood geo chart, where the current mood state for
each federal subject is visualized. The second one and the third
one are temporal mood changes plots through the day and
through the week respectively.

1) Mood variations
 The information about the time of the day and day of the
week is extracted from messages to calculate temporal mood
changes. Next, the public mood changes are calculated using the
following equitation:

 𝑚𝑜𝑜𝑑- =
F*GH

F*GH/,IJH
 (7)

Where, post is the number of positive messages in the specific
period t; negt is the number of negative messages in the specific
period t. The temporal mood changes chart through the day and
through the week are plotted in the program. These charts are
constructed over all data that have been processed by the
program already, so the level of its accuracy and reliability
increases with the number of analyzed tweets.

2) Mood geo chart
To plot the mood geo chart, for each federal subject the

mood values are calculated using (7) for the last hour. Next, the
federal subjects in the geo chart are marked with colors from
green to red, where green color means the predominance of
positive tweets; yellow color means the balance between the
amount of positive and negative messages; red color means the
predominance of negative tweets. Fig. 2 illustrates the example
of the public mood geo chart for Russia.

Fig. 2. Example of the public mood geo chart for Russia

III. RESULTS
As a result, the program for public mood monitoring through

Twitter content in Russian is implemented as web-service,
which can be found by the URL
http://twittermood-ru.appspot.com/. The program collects new
messages, which are published on Twitter, in real time mode,
performs sentiment analysis, process the data obtained at the
previous step, and visualizes the results. The mood geo chart
provides with an opportunity for monitoring mood values in
different regions of Russia for the last hour. The other plots offer

136 из 190

valuable insights about temporal public mood changes based on
all collected data.

The further research will be focused on extending of
analyzed feelings, that means, monitoring not only positive or
negative sentiment expressions, but also the expression of fear,
sadness, joy, and anger. In addition, the multiclass sentiment
classification can be implemented to enhance the quality of
public mood calculations.

IV. LIMITATIONS
Despite a wide range of Twitter content analysis benefits, it

also has some drawbacks. Technically, Twitter users are not
representative of the public, consequently, tweets are not
representative of the public opinion [15]. Findings in this article
apply only to the population of Twitter users geo-located in the
Russia. In this work, it’s possible to make claims only about the
population of Russia Twitter users and not the general
population.

REFERENCES
[1] “Charts | Google Developers,” Google Developers. [Online]. Available:

https://developers.google.com/chart/. [Accessed: 18-Mar-2017].
[2] R. Collins, D. May, N. Weinthal, and R. Wicentowski, “SWAT-CMW:

Classification of Twitter Emotional Polarity using a Multiple-Classifier
Decision Schema and Enhanced Emotion Tagging,” Proceedings of the
9th International Workshop on Semantic Evaluation (SemEval 2015),
2015.

[3] “Corpus of short texts in Russian,” Julia Rubtsova. [Online]. Available:
http://study.mokoron.com/. [Accessed: 18-Mar-2017].

[4] “Datastore - NoSQL Schemaless Database | Google Cloud
Platform,” Google Cloud Platform. [Online]. Available:
https://cloud.google.com/datastore/. [Accessed: 18-Mar-2017].

[5] L. Dey, S. Chakraborty, A. Biswas, B. Bose, and S. Tiwari, “Sentiment
Analysis of Review Datasets Using Naïve Bayes‘ and K-NN
Classifier,” International Journal of Information Engineering and
Electronic Business, vol. 8, no. 4, pp. 54–62, Aug. 2016.

[6] F. Dzogang, T. Lansdall-Welfare, and N. Cristianini, “Discovering
Periodic Patterns in Historical News,” Plos One, vol. 11, no. 11, 2016.

[7] F. Dzogang, T. Lansdall-Welfare, and N. Cristianini, “Seasonal
Fluctuations in Collective Mood Revealed by Wikipedia Searches and

Twitter Posts,” 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW), 2016.

[8] “GeoNames,” GeoNames. [Online]. Available:
http://www.geonames.org/. [Accessed: 18-Mar-2017].

[9] “Google App Engine Documentation | App Engine
Documentation | Google Cloud Platform,” Google Cloud Platform.
[Online]. Available: https://cloud.google.com/appengine/docs/.
[Accessed: 18-Mar-2017].

[10] E. Haddi, “Sentiment analysis: text, pre-processing, reader views and
cross domains,” dissertation, 2015.

[11] M. Korobov, “Morphological Analyzer and Generator for Russian and
Ukrainian Languages,” Communications in Computer and Information
Science Analysis of Images, Social Networks and Texts, pp. 320–332,
2015.

[12] S. Kumar, S. Maskara, N. Chandak, and S. Goswami, “Empirical Study
of Relationship between Twitter Mood and Stock Market from an Indian
Context,” International Journal of Applied Information Systems, vol. 8,
no. 7, pp. 33–37, 2015.

[13] T. Lansdall-Welfare, F. Dzogang, and N. Cristianini, “Change-Point
Analysis of the Public Mood in UK Twitter during the Brexit
Referendum,” 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW), 2016.

[14] B. Le and H. Nguyen, “Twitter Sentiment Analysis Using Machine
Learning Techniques,” Advanced Computational Methods for Knowledge
Engineering Advances in Intelligent Systems and Computing, pp. 279–
289, 2015.

[15] A. Mitchell and P. Hitlin, “Twitter reaction to events often at odds with
overall public opinion,” Pew Research Center, vol. 4, 2013.

[16] “Natural Language Toolkit,” Natural Language Toolkit — NLTK 3.0
documentation. [Online]. Available: http://www.nltk.org/. [Accessed: 18-
Mar-2017].

[17] “thinkBIG – Patterns in Big Data: Methods, Applications and
Implications,” thinkBIG. [Online]. Available:
http://thinkbig.enm.bris.ac.uk/. [Accessed: 18-Mar-2017].

[18] “Tweepy,” Tweepy. [Online]. Available: http://www.tweepy.org/.
[Accessed: 18-Mar-2017].

[19] “Twitter Developer Documentation — Twitter Developers,” Twitter.
[Online]. Available: https://dev.twitter.com/docs. [Accessed: 18-Mar-
2017].

[20] Y. Wan and Q. Gao, “An Ensemble Sentiment Classification System of
Twitter Data for Airline Services Analysis,” 2015 IEEE International
Conference on Data Mining Workshop (ICDMW), 2015.

137 из 190

Narrabat — a Prototype Service for Stylish
News Retelling

Irina Dolgaleva, Ilya Gorshkov, Rostislav Yavorskiy
Faculty of Computer Science, Higher School of Economics

Myasnitskaya 20, Moscow, Russia, 101000
E-mail: iidolgaleva@edu.hse.ru, iagorshkov@edu.hse.ru, ryavorsky@hse.ru

Abstract—Nowadays, news portals are forced to seek new
methods of engaging the audience due to the increasing com-
petition in today’s mass media. The growth in loyalty of news
service consumers may further a rise of popularity and, as a
result, additional advertising revenue. Therefore, we propose the
tool that is intended for stylish presenting of facts from a news
feed. The basic idea is to use a collection of classical literature
or poetry as a dictionary of style. The facts are extracted from
news texts through Tomita Parser and then presented in the
form similar to a sample from the collection. In this framework,
we present the current state of Narrabat, a prototype system
rephrasing news we are currently working on.

Keywords: natural language processing, information extrac-
tion, natural language generation, tomita parser, neural net-
works.

I. INTRODUCTION

A. The main idea

In the era of information explosion demand for news ag-
gregation services is always high. Classical news services like
Yandex News or Google News are on the market for a long
time, but their format is too restricted to satisfy all potential
audiences. The motivation for Narrabat, a new news service,
is to retell news in a stylish way similar to the writings of
great writers and poets so as to promote consumers loyalty
and to increase revenue of news portals, for instance, from
contextual advertising.

The goal of the study is to develop a methodology of
rewriting news texts in a specified style and to implement it
as a service.

To provide a new insight into retelling news, we build an
architecture of Narrabat that is rather straightforward: retrieve
news from the providers, extract facts, reproduce the facts in a
new form. The realization of the proposed architecture might
require to handle two important issues. Firstly, it is necessary
to process the news and extract the main information from it.
At this point it is essential to realize what kind of unstructured
data will be marked as key information. Secondly, we need to
generate text in a predefined style considering extracted key
words.

To make precise the scope of the study, we explore the
methods of retelling the news texts in more capturing manner
and build a system that today has no parallel in the integrated
marketing communications in news sphere.

The paper presents the current state of the retelling service
implementation we are still working on. A well-established

result is that we have constructed a prototype system that is
capable of producing the poem from the news text. It is to be
hoped that in the not too distant future, the findings of current
research will be applied to real regularly updated news feed
as a service, possibly, as a chat-bot.

The plan of the paper is the following: in section II we
present an algorithm of producing poems from the news. In
section III the current results are presented. Finally, section IV
describes the work still to be done.

B. Related work

Recent years have seen the rapid growth in the number
of studies devoted to extraction of information and natural
language generation. Insofar as retelling news is concerned to
these two subject areas, it would be wise to cover both of them
in the paper.

Nowadays, state-of-the-art approaches of fact extraction
go far beyond the earliest systems, where the patterns are
found referring to rules of grammar [3], [18]. However, an
involvement of highly qualified experts in the field or linguists
is believed to be a significant drawback of these approaches.
Some of them are briefly recalled in the next few paragraphs.

The next coherent idea about highlighting the facts from the
text was to propose an algorithm that was able to be trained
independently or ”almost independently”, namely, using active
learning techniques [13], [9].

As the task of the researches became more complicated,
and the need to distinguish an implicitly expressed meaning
occurred, the aforementioned approaches lose its efficiency.
And the researches shifted their attention to generative models
[25] and conditional models [23].

Shedding light on the text generation approaches, the first
things that arises is that text in natural language may be
generated via predetermined rules [8], [20], when a set of
templates is composed to map semantics to utterance. This
approach is supposed to be conventional one. These systems
are believed to be simple and easy to control, however, at the
same time, no scalable due to limited number of rules, and,
consequently, output texts.

Furthermore, utilization of statistical approaches in sen-
tence planning are still based on hand-written text generators,
whether choosing the most frequent derivation in context-
free grammar [5] or maximising the reward in reinforcement
learning [28]. By the way, further researches are aimed at

138 из 190

minimising human participation and rely on learning sentence
planning rules from labelled corpus of utterances [26], which
also require a huge markup by linguists.

The next set of approaches in natural language generation is
based on corpus-driven dependences. The systems in this di-
rection imply the construction of class-based n-gram language
model [24] or phrase-based language model [14]. Moreover,
a significant number of researchers utilize active learning in
order to generate texts [2], [11].

The use of neural network-based approaches in natural
language generation is still relatively unexplored. Although,
there are studies that present the high-quality recurrent neural
network-based language models [17], [16] that are able to
model arbitrarily long dependencies. In addition, it is worth
emphasising that the usage of Long Short-term Memory
(LSTM) network may try to solve the the vanishing gradient
problem [6] such as in [28].

II. DATA AND METHOD

A. The news sources

In this framework, we utilize short news texts that were
extracted from Russian-language informational portal ”Yan-
dex.News”. The collection of news consists of 330 texts on
different topics, for instance, society, economy, policy, to name
but a few (ultimately, 22 topics). This collection of news texts
was composed of texts on diverse topics wilfully so as to con-
sider all lexical, syntactic and morphological particularlities of
each of the themes in order to create universal system of text
processign and generation.

Every text in the collection comprises no more than three
sentences except a title. It is worth emphasizing that the format
of short texts leads itself well with highlighting the main
information from the text. It follows from the fact that every
sentence is quite informative to extract key knowledge by
means of rule-based approach.

B. Fact extraction

To provide basic information from the news, we propose to
extract a kind of extended grammatical basis of the sentences.
To that end, we use Tomita-parser [12] that allows to extract
structured data (facts) from text in natural language. The tool is
much more flexible and effective in key information detection
and extraction than, for example, metric tf-idf since it allows
to retrieve finite chains of words from all the positions in the
sentence, not only successive words.

Open-source Tomita-parser, in contrast to similar non-
commercial fact extraction software, accounts for specificity
of work with the Russian language and has more or less
detailed documentation. The tool was implemented by de-
velopers of Yandex on the basis of GLP-parser [27], which
utilizes context-free grammars, dictionaries of keywords and
interpretator.

To get a new insight into extracting the meaning of the
texts, a dictionary (gazetteer) and grammar was compiled.
As mentioned before, we suggest that the main idea of the
sentence is fixed in common basis of the sentence, a kind of

analogue of the grammatical basis. Given the opportunity to
construct Russian-language sentences with the inversion, the
grammar consists of the two main rules:

S → Subject Predicate | Predicate Subject

Every nonterminal derives a string of words dependent on the
root words, namely, for Subject it may be adjective and for
Predicate it may be addition or adverb.

After the required string of words is found, Tomita-Parser
transforms it into fact and represents it in the result collection
of labelled texts, which, in turn, is prepared for text retelling.

C. Poems collection

To teach our system the poetry style we have used writings
of Alexander Blok [7] and Nikolay Nekrasov [19] retrieved
from Maksim Moshkov on-line library Lib.Ru [1]. We have
chosen to utilize particularly these poets as their poems possess
artistic and rhythmic harmony, and clearly traceable metrical
feet. In further work we plan to expand the collection of poetry
by Agniya Barto, Athanasius Fet and Fedor Tyutchev.

D. Learn and produce methods

Besides the method that is described below, we tested
another ways of generating word sequences, such as neural
networks. For example, we trained a network with LSTM-
layer which was expected to generate poems, using a huge
dataset of Pushkin’s poems from [22]. (LSTM for generating
poems was successfully applied in [21], [29], [15]). The result
we got was a bit insufficient due to low computational power
of our computer and small network size. Further implementa-
tions with additional layers increased the quality of generated
poems, but it is still being trained, so we are not ready yet to
present its results.

Table I presents the example of quatrain generated by the
first version of our neural networks:

Narrabat
output

v.00

Ко в жаме стрьк иреланье,
И сталили пореланье
И по почаль в сореннем
По сеанно переланий.

Table I
THE POEM PRODUCED BY NEURAL NETWORKS

On the Table I it could be seen that although the poem
consists of non-existent Russian-language words, the strings
of characters in words virtually resemble real words in their
structure. The second thing to sharpen the issue addressing
the table is that three out of four strings in the quatrain have
the same number of syllables (while the fourth line has only
one syllable less). The makings of the rhythms, as well, are
evident. Given all the above, we treat the neural networks as
a paramount direction for our further research.

E. Current version of the algorithm

Apart from training neural networks to generate poems, we
are so far to seek the most conspicuously well-turned poem
generator. To that end, we use template-base method described
below.

139 из 190

First, in order to break words into syllables, we utilize an
improved version of an algorithm of P. Hristov in the modi-
fication of Dymchenko and Varsanofiev [4] that comprises a
set of syllabication rules that are applied sequentially.

Then syllables of potentially matching subjects and predi-
cates are compared using the following heuristic:

• The number of syllables must coincide.
• Vowels inside syllables have priority over consonants.
• The last syllable has priority over the other.
Search for the similar sentences returns pieces of classical

writings, which are used then as templates for the resulting
text generation. The output poems ought to be sought in the
Section 3.

III. RESULTS

Below is an example produced by current release (v.01) of
our Narrabat system. We start from a news description and
extract subject and predicate, see Table II.

Source Общегородской субботник пройдет в следующую
субботу, 15 апреля.

Extracted
basis

Subject = общегородской субботник
Predicate = пройдет

Table II
ORIGINAL NEWS

The same is done for all sentences in the collection, see
example in Table III.

Source

А виноградные пустыни,
Дома и люди — всё гроба.
Лишь медь торжественной латыни
Поет на плитах, как труба.

Extracted
basis

Subject = медь торжественной латыни
Predicate = поет

Table III
ORIGINAL PIECE FROM THE COLLECTIONS

The implemented similarity measure allows us to figure out
that the subjects and the predicates are quite similar, see Table
IV. Notice the same number of syllables and almost identical
endings.

Subjects Predicates
медь тор-жест-вен-ной ла-ты-ни по-ет
об-ще-го-род-ской суб-бот-ник прой-дет

Table IV
EXAMPLE OF A SIMILAR PAIRS MATCH

Now we can replace the matching pairs, see Table V for an
example of the resulting poem.

Narrabat
output

v.01

А виноградные пустыни,
Дома и люди — всё гроба.
Лишь общегородской субботник
Пройдёт на плитах, как труба.

Table V
THE FINAL RESULT OF THE ALGORITHM

One can see that the resulting text keeps subject and
predicate from the original fact and at the same time the

inserted fragment smoothly fits the style of the poem and do
not destroy its structure.

All readers are able to have a closer look at the details of
implementation of our Narrabat system and access the source
code that is open and available on GitHub [10].

IV. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In the paper we have proposed a prototype of system that
is capable of retelling the news as poems that resembles style
of great writers.

In the course of the work we discovered that the collection
of poems have to be drastically enlarged in order to generate
high-quality poems. Given the exploration, Nikolay Nekrasov
has demonstrated more mapping potential in our tasks as he
wrote more common sentences than Alexander Blok.

Moreover, the aforementioned metrics of mapping the sub-
jects and predicates from news and poems does not cover all
cases to be universal, for instance, in further releases it may
take into account rhyme explicitly.

Although the first results presented above are somehow
promising, still a lot is on the to do list:

• Improve the quality fact extraction by extending the
parsing rules.

• Use available dictionaries of accentuation to take into
account the rhythmic structure of a sentence.

• Apply machine learning techniques to better grasp the
style of a sample writing.

• Extend the algorithm to cover other parts of sentences,
namely, objects and complements.

REFERENCES

[1] Lib.ru: Library of maksim moshkov. http://lib.ru/. Accessed: 2017-04-
10.

[2] Gabor Angeli, Percy Liang, and Dan Klein. A simple domain-
independent probabilistic approach to generation. In Proceedings of
the 2010 Conference on Empirical Methods in Natural Language
Processing, pages 502–512. Association for Computational Linguistics,
2010.

[3] Douglas E Appelt, Jerry R Hobbs, John Bear, David Israel, and Mabry
Tyson. Fastus: A finite-state processor for information extraction from
real-world text. In IJCAI, volume 93, pages 1172–1178, 1993.

[4] Yura Batora. Algorithm for splitting words into syllables.
https://sites.google.com/site/foliantapp/project-updates/hyphenation. Ac-
cessed: 2017-04-10.

[5] Anja Belz. Automatic generation of weather forecast texts using
comprehensive probabilistic generation-space models. Natural Language
Engineering, 14(04):431–455, 2008.

[6] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on
neural networks, 5(2):157–166, 1994.

[7] Aleksandr Blok. Sobranie sochinenij v 8 tomah (in Russian). Go-
sudarstvennoe izdatel’stvo hudozhestvennoj literatury, Moscow, 1960-
1963.

[8] Adam Cheyer and Didier Guzzoni. Method and apparatus for building
an intelligent automated assistant, March 18 2014. US Patent 8,677,377.

[9] Aidan Finn and Nicolas Kushmerick. Active learning selection strategies
for information extraction. In Proceedings of the International Workshop
on Adaptive Text Extraction and Mining (ATEM-03), pages 18–25, 2003.

[10] Rostislav Yavorskiy Irina Dolgaleva, Ilya Gorshkov. Narrabat. https:
//github.com/onobot/allbots/tree/master/Ono11 Poems, 2017. Accessed:
2017-05-14.

[11] Ravi Kondadadi, Blake Howald, and Frank Schilder. A statistical nlg
framework for aggregated planning and realization. In ACL (1), pages
1406–1415, 2013.

140 из 190

[12] Yandex LLC. Tomita-parser tool to extract structured data from texts.
https://tech.yandex.ru/tomita/. Accessed: 2017-04-10.

[13] François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon Keizer, Blaise
Thomson, Kai Yu, and Steve Young. Phrase-based statistical language
generation using graphical models and active learning. In Proceedings
of the 48th Annual Meeting of the Association for Computational Lin-
guistics, pages 1552–1561. Association for Computational Linguistics,
2010.

[14] François Mairesse and Steve Young. Stochastic language generation in
dialogue using factored language models. Computational Linguistics,
2014.

[15] Yejin Choi Marjan Ghazvininejad, Xing Shi and Kevin Knight. Generat-
ing topical poetry. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1183–1191, 2016.

[16] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and
Sanjeev Khudanpur. Recurrent neural network based language model.
In Interspeech, volume 2, page 3, 2010.

[17] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and
Sanjeev Khudanpur. Extensions of recurrent neural network language
model. In Acoustics, Speech and Signal Processing (ICASSP), 2011
IEEE International Conference on, pages 5528–5531. IEEE, 2011.

[18] R Mooney. Relational learning of pattern-match rules for information
extraction. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence, volume 328, page 334, 1999.

[19] Nikolaj Nekrasov. Polnoe sobranie stihotvorenij N. A. Nekrasova v 2
tomah (in Russian). Tipografija A. S. Suvorina, Sankt-Peterburg, 1899.

[20] Hugo Gonçalo Oliveira and Amı́lcar Cardoso. Poetry generation with
poetryme. In Computational Creativity Research: Towards Creative
Machines, pages 243–266. Springer, 2015.

[21] Anna Rumshisky Peter Potash, Alexey Romanov. Ghostwriter: Using
an lstm for automatic rap lyric generation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
pages 1919–1924, 2015.

[22] Aleksandr Pushkin. Sobranie sochinenij v desyati tomah. Tom vtoroj.
Stihotvoreniya 1823-1836 (in Russian). 1823-1836.

[23] Adwait Ratnaparkhi. Learning to parse natural language with maximum
entropy models. Machine learning, 34(1-3):151–175, 1999.

[24] Adwait Ratnaparkhi. Trainable approaches to surface natural language
generation and their application to conversational dialog systems. Com-
puter Speech & Language, 16(3):435–455, 2002.

[25] Kristie Seymore, Andrew McCallum, and Roni Rosenfeld. Learning
hidden markov model structure for information extraction. In AAAI-99
workshop on machine learning for information extraction, pages 37–42,
1999.

[26] Amanda Stent and Martin Molina. Evaluating automatic extraction of
rules for sentence plan construction. In Proceedings of the SIGDIAL
2009 Conference: The 10th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 290–297. Association for
Computational Linguistics, 2009.

[27] Masaru Tomita. Lr parsers for natural languages. In Proceedings of the
10th International Conference on Computational Linguistics and 22nd
annual meeting on Association for Computational Linguistics, pages
354–357. Association for Computational Linguistics, 1984.

[28] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David
Vandyke, and Steve Young. Semantically conditioned lstm-based natural
language generation for spoken dialogue systems. arXiv preprint
arXiv:1508.01745, 2015.

[29] Rui Yan. i, poet: Automatic poetry composition through recurrent neural
networks with iterative polishing schema. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence (IJCAI-
16), pages 2238–2244, 2016.

141 из 190

The Program of Syntax-Based Sentiment Analysis

Sergey Smetanin
Faculty of Computer Science

National Research University Higher School of Economics
Moscow, Russia

sismetanin@gmail.com

Abstract — The popularization of Web 2.0 significantly
increased online communications. As a consequence, it
provoked the rapid development research in the field of
natural language processing in general and sentiment
analysis in particular. Information overload and the
growing volume of reviews and messages facilitated the
need for high-performance automatic processing methods.
This paper aims to explore the opinion mining approach,
which is based on syntactic dependencies between
semantic units as one of the key features of the sentiment
classification. Machine learning techniques are widely
used in the proposed approach at each step. As a result, a
prototype of the program is expected to be implemented.
In future work, aspect-based analysis might be considered.

Keywords—sentiment analysis; machine learning;
natural language processing; syntax.

I. INTRODUCTION
Proliferation of the Internet, the increased level of online

communication facilitated the rapid development of natural
language processing research in general and sentiment analysis
in particular. One of the main reasons for this appears to be the
popularization of web 2.0 sites, especially social media
networks and microblogging services, e.g. Facebook, Twitter,
LinkedIn. While using the above-mentioned online social
media, users frequently share their emotional states and
opinions on a variety of topics. Due to the vast amount of text
information, such as reviews, ratings, and messages, human
processing has become a challenge, hence a need for
automated processing methods emerged.

Automated opinion mining is widely used to determine user
attitude to the subject of study, calculate the potential products
and services [2], determine the possible future value of stock
market objects, and even predict election results. For example,
researchers from Northeastern University and Harvard
University, studying the characteristics and dynamics of
Twitter, have observed a multiple number of trends related to
the emotional state in the processed data [3].

Depending on the specifics of the analyzed data, different
approaches to the opinion mining may be used. For example,
texts from social networks tend to contain spelling and
punctuation errors, misspellings, slang, and emoticons. In this
case, the algorithm should be resistant to the peculiarities of
writing and to using those features for classification, which will
help to overcome this problem. Thus, considering the specific

characteristics of the data and the usage of efficient features,
the high accuracy of analysis can be achieved.

This paper aims to present the proposed approach of
opinion mining based on syntactic dependencies between
semantic units (e.g. words and phrases) as one of the key
features of sentiment analysis. The training data for the
classifier were collected from the open-source online resource
KinoPoisk [1] with the embedded spelling and punctuation
moderation in order to avoid the incorrect semantic patterns
extraction. As a result, the program of a high accuracy
sentiment analysis based on syntactic dependencies trees will
be designed.

The rest of the article is organized as follows. Section 2
makes emphasis on the overview of the related work. Section 3
describes the proposed approach in a context of a phased
solution of the opinion mining key tasks in details. By the end,
the expected results are mentioned and perspectives of the
future research are discussed.

II. RELATED WORK
Opinion mining tends to be an efficient tool not only in the

business sector but also in social studies. As a consequence,
there are many services that have the various power and
functionality. The detailed description of the most similar
projects is following.

The first one is Bluemix by IBM company. This is a cloud
platform aimed to develop, launch and administrate cloud web
applications. One of the key features of this platform is Twitter
messages sentiment analysis, which provides 4 class (i.e.
positive, negative, neutral, and ambivalent) classification in
English, Spanish, German, and French languages. According to
the terms of use [5], it is free for platform users to analyze up
to 5 million of tweets per month, and if the limit is exceeded,
they ought to separately pay for each additional million of
processed messages.

It is clear that the language support is critical for the natural
language processing, therefore, Bluemix is not suitable for the
Russian texts because of the lack of the analyzed language
support. In addition, the restriction on the source of processing
messages (only from Twitter) makes the service extremely
limited in functionality and capabilities. In contrast, the
program proposed in this paper is concentrated at Russian
language linguistic features in order to achieve high-quality
results; consequently, it has a competitive advantage.

142 из 190

The next one is Fact Factor SDK by RCO company. This is
a program library that provides a high-quality sentiment
analysis on Russian including part of speech tagging, syntactic
relation extraction and linguistic style identification [6]. The
versatile analysis of the text makes it a powerful tool not only
in the field of opinion mining but also in other applications of
natural language processing. The SDK is distributed as paid
software in three possible assemblings with different
functionality. However, a trial version can be obtained after a
license agreement conclusion.

The main disadvantage of this solution seems to be the
absence of a graphical interface that makes the product is
available for use only for software developers. In this case, the
proposed approach has an essential advantage, namely user-
friendly web-interface.

The last one is Eureka Engine, a highly-optimized service
of linguistic analysis, which allows to identify the tonality of
the opinion, extract facts and pieces of knowledge from raw
data. It consists of 6 modules that solve tasks from subjects
extraction to parts of speech tagging. It was developed by
PalitrumLab, one of the most sought companies at the data
mining market in Russia. According to the price list [7], it
offers services for a monthly paid subscription, but a free trial
version for 2 months can be requested. However, even with the
good quality of provided functionality, this service seems to be
available for companies primarily because of high costs on
usage.

III. METHODOLOGY
The program structure is designed as a combination of the 3

extensive subtasks. To start with, segmentation of a text into
sentences is performed. Next, a tree of syntactic dependencies
is extracted from sentences obtained in the previous step. At
the last stage, the program provides a binary (i.e. ‘positive’ and
‘negative’ labels) classification of the tonality based on the
extracted features vector with additional syntactic features. The
detailed description of the approach to each is the following.

A. Sentence boundary disambiguation
According to punctuations rules in the Russian language,

the terminal marks (i.e. dot, question mark and exclamation
mark) do not always indicate the end of the sentence. For
example, the point is usually used in URL-links, after the
initials, in the notation of date and time, and in reductions.
Moreover, a considerable emphasis should be taken on the
indirect speech punctuation rules, where an indication of the
sentence ending in some cases may present a challenge even
for a native speaker. Further, as was mentioned above,
punctuation errors in texts, which are typical for social
networks, complicate the task of sentence boundary
disambiguation.

 It is important to consider the structural features of NLP.
Therefore, scientific researches were purposefully developed
for Russian languages and reviewed at the first order. The
approach described in [8] was selected as the most suitable for
the implementation complexity and accuracy. In general terms,
the method proposed in that article consists of free steps.
Firstly, each termination mark is signed as a potential ending of

the sentence. Secondly, the features vector is extracted from
the context of each potential sentence ending. Lastly, the
classifier resolve disambiguates in borders of the sentence. As
a base classifier algorithms Decision Tree or SVM-light could
be used. The last one is able to provide accuracy up to 99.6%
mark [8], which is acceptable for the further processing.

B. Synctactic dependencies extraction
It should be noted that the word order in the Russian

language significantly influences and defines the meaning and
the emotional level of the sentence or phrase. Thus, the use of
syntactic dependencies as features allows constructing a more
accurate and sensitive to the language system. The syntax
structure is based on the concept of phrase, that is, an
association of independent words on the basis of subordination
syntactic dependency. The words in the phrase are generally
linked to the meaning and grammatically. Phrases are not
independent syntactic units in speech because they do not
convey a complete thought. Therefore, phrases are combined
into a sentence via various types of linguistic references
thereby forming a complete thought.

In order to remedy the problem of a syntactic
dependencies extraction, machine learning methods are
frequently used. Firstly, each word in the sentence is
determined by the part of speech. If one word corresponds to
multiple parts of speech labels, the disambiguation is removed
using the algorithm described in [9]. Secondly, feature vectors
are extracted from the context of the analyzed text for the
further classification. Finally, classifier determines the most
probable syntactic connections, thereby identifying the
linguistic structure of the sentence. According to [10],
accuracy up to 97.18% can be achieved by using such
methodology.

C. Sentiment classification
In general, there are three main approaches to the opinion

mining problem. The first one called rule-based processes the
text according to a set of rules and identifies the opinion.
However, this approach is not acceptable, within the scope of
this study due to lack of linguistic rules and as a consequence,
inability to achieve high-quality results. The next algorithm
uses tonal dictionaries. In this case, every word in the text is
assigned the value from the dictionary, and then the aggregate
function is executed to compute the emotion label. This
approach handles the text as an incoherent collection of words
and is not sensitive to syntactic structures, which makes it
unsuitable for the future use. The last approach is a statistical
method based on machine learning technique. This method will
be discussed hereinafter.

The result of machine learning methods usage practically
depends on the document submission for the classifier, that is,
a set of attributes, which are used for the construction of the
feature vector. As a rule, the model using bag-of-words and N-
grams are used to work with the natural language processing.
However, such features as parts of speech, punctuation,
syntactic dependencies, and emoticons could significantly
improve the outcome score in some cases. In this paper, the
architecture of the classifier will be based on the model

143 из 190

described in [11], but with additional observing syntactic
relations in sentences. Thus, the program obtains the input text,
splits it into the sentences, defines the syntax for each sentence
and determines the sentiment type.

As a form of interaction with the user, the web-interface
will be designed. In the first version, it will contain the text
box, as well as a button. When the user will click on the last
one, the analysis will take place and the result of processing
will be displayed under the text form.

IV. CONCLUSION
As a result of this research, the prototype of the program of

texts sentiment analysis based on syntactic dependencies trees
is expected to be implemented. The described structure of the
program provides both high-quality classification by using
syntactic features and fast performance by implementing the
engineered architecture. The output result is represented to the
user in a simple and comprehensible form in order to be
available for understanding to non-expert users.

The further research will be focused on the user interface
improvement and expanding the functionality of the program,
some of the key potential features are mentioned below. To
start with, aspect-based sentiment analysis, that is, the
combination of the both the determination of the opinion
relative to the monitored object and identifying its
characteristics, can significantly enhance the possible practical
applications. For example, this feature affords not only to
determine the attitude of customers to the product through the
processing of their reviews from social networks, but also to
identify the strong and weak properties of monitored product.
Next, the subjectivity classification, which the main goal is
concentrated on establishing whenever the text is subjective or
objective makes, could be added. In this case, a 3-way
classification can be achieved because objectivity reviews
contain only a description of the facts and can be marked as

neutral. As for the design, a user-friendly interface with the
ability of the multiple number texts processing at the one time
will be implemented. Thus, the complex upgrade of the
program will be achieved.

REFERENCES
[1] Kinopoisk [Online]. Available: https://www.kinopoisk.ru/. [Accessed:

30- Jan- 2016].
[2] K. Bauman, B. Liu and A. Tuzhilin, "Recommending Items with

Conditions Enhancing User Experiences Based on Sentiment Analysis
of Reviews", Proceeding of CBRecSys, 2016, p. 19.

[3] T. Nguyen, K. Shirai and J. Velcin, "Sentiment Analysis on Social
Media for Stock Movement Prediction", Expert Systems with
Applications, vol. 42, no. 24, pp. 9603-9611, 2015.

[4] Northeastern University, "Pulse of the Nation: U.S. Mood Throughout
the Day inferred from Twitter", 2011. [Online]. Available:
http://www.ccs.neu.edu/home/amislove/twittermood/. [Accessed: 29-
Jan- 2016].

[5] IBM - United States, "Insights for Twitter - IBM Bluemix". [Online].
Available: https://console.ng.bluemix.net/catalog/services/insights-for-
twitter/. [Accessed: 29- Jan- 2016].

[6] RCO, "RCO Fact Extractor SDK | RCO". [Online]. Available:
http://www.rco.ru/?page_id=3554. [Accessed: 30- Jan- 2016].

[7] Eurekaengine, "Eureka Engine". [Online]. Available:
http://eurekaengine.ru/price. [Accessed: 30- Jan- 2016].

[8] O. Yrupina, "Detecting Sentence Boundaries in Russian",
Computational Linguistics and Intellectual Technologies, vol. 7, no. 14,
pp. 539-544, 2008.

[9] A. Sokirko and S. Toldova, "Сomparing a Stochastic Tagger Based on
Hidden Markov Model with a Rule-Based Tagger for Russian", Ural
Federal University, 2005. [Online]. Available:
http://elar.urfu.ru/bitstream/10995/1391/1/IMAT_2005_05.pdf.
[Accessed: 30- Jan- 2016].

[10] A. Antonova and A. Misyurev, "Russian Dependency Parser SyntAutom
at the Dialoge 2012 Parser Evaluation Task", Computational Linguistics
and Intellectual Technologies, vol. 11, no. 2, pp. 104-118, 2012.

[11] Y. Adaskina, P. Panicheva and A. Popov, "Syntax-based Sentiment
Analysis of Tweets in Russian", Computational Linguistics and
Intellectual Technologies, vol. 14, no. 2, pp. 1-11, 2015.

144 из 190

Fast L1 Gauss 2D Image Transforms

Dina Bashkirova1,2∗, Shin Yoshizawa1§, Rustam Latypov2†, Hideo Yokota1¶

1Image Processing Research Team
RIKEN Center for Advanced Photonics, RIKEN
2-1, Hirosawa, Wako, Saitama, 351-0198, Japan

Email: {∗dina.bashkirova,§shin,¶hyokota}@riken.jp

2Institute of Computational Mathematics and Information Technologies
Kazan Federal University

420008, Kazan, 35 Kremlyovskaya
Email: †roustam.latypov@kpfu.ru

Abstract—Gaussian convolution has many science and engi-
neering applications, and is widely applied to computer vision
and image processing tasks. Due to its computational expense and
rapid spreading of high quality data (bit depth/dynamic range),
accurate approximation has become important in practice com-
pared with conventional fast methods. In this paper we propose
a novel approximation method for fast Gaussian convolution of
2D images. Our method employs L1 distance metric to achieve
fast computations while preserving high accuracy. Our numerical
experiments show the advantages over conventional methods in
terms of speed and precision.

Keywords—Gaussian Smoothing, Laplace Distribution, Fast
Approximation Algorithms.

I. INTRODUCTION

Gaussian convolution is a core tool in mathematics and
many related research areas, such as probability theory,
physics, and signal processing. Gauss transform is a discrete
analogue to the Gaussian convolution, and has been widely
used for many applications including kernel density estimation
[1] and image filtering [2]. Despite its reliable performance and
solid theoretical foundations, Gauss transform in its exact form
along with other kernel-based methods has a drawback – it is
very computationally expensive (has quadratic computational
complexity w.r.t. the number of points) and hard to scale
to higher dimensions. Which is why there have been many
attempts to overcome these problems by creating approxi-
mation algorithms, such as fast Gauss transform [3], dual-
tree fast Gauss transforms [4], fast KDE [5], and Gaussian
kd-trees [6]. Also, box kernel averaging [7] and recursive
filtering [8] have been popular in computer graphics and image
processing because of their simplicity, see the surveys [9], [10]
for numerical comparisons of these approximation methods.

Since high bit depth (also dynamic range) images have
become popular in both digital entertainment and scien-
tific/engineering applications, it is very important to acquire
high approximation precision and to reduce artifacts cased
by drastic truncation employed in many conventional methods
focused on computational speed. One of the highly accurate
methods is called fast L1 Gauss transform approximation
[11] based on using L1 distance instead of conventional
L2 Euclidean metric. This L1 metric preserves most of the
properties of the L2 Gaussian, and is separable, hence it allows
to perform computations along each dimension separately,
which is very beneficial in terms of computational complexity.
Also, L1 Gaussian has only one peak in Fourier domain at

the coordinate origin, and therefore its convolution does not
have some undesirable artifacts that box kernels and truncation
methods usually have. However, this algorithm works only
on one-dimensional (1D) point sets, although it can be ex-
tended to uniformly distributed points in higher dimensions
by performing it separately in each dimension. In order to be
able to acquire Gauss transform for non-uniformly distributed
two-dimensional points and to further generalize it to higher
dimensional cases, we need to extend existing method [11] to
the 2D uniform case.

In this paper we propose a novel approximation method
for fast Gauss two-dimensional (2D) image transform. Our
method is based on extending the fast L1 Gauss transform
approximation on uniformly distributed 2D points that allows
to perform Gaussian convolution quickly while preserving
high accuracy. We demonstrate that efficiency of the proposed
method in terms of computational complexity, numerical tim-
ing, and approximation precision.

II. FAST L1 GAUSS TRANSFORM

In this section, we briefly describe the 1D domain splitting
algorithm [11] employed for fast L1 Gauss transforms.

Consider the ordered point set X = {xi}Ni=1, xi ∈ R, xi ≥
xi−1, ∀i = 2, N . Each point xi has a corresponding value
Ii ∈ R, e.g. pixel intensity in case of images. The L1 Gauss
transform for each point in set X is given by

J(xj) =
N∑
i=1

G(xj − xi)Ii, G(x) = exp(−|x|
σ
), (1)

where G(x), x ∈ R, is a L1 Gaussian function (also called
Laplace distribution in statistics) with its standard deviation σ.
It is convenient to decompose L1 norm by splitting its domain
by using the point x1 such that

|xj − xi| =
{
|xj − x1| − |xi − x1| if x1 ≤ xi ≤ xj ,
|xi − x1| − |xj − x1| if x1 ≤ xj ≤ xi.

(2)

Thus, Gauss transform (1) using the equation (2) becomes

J(xj) = Ii +G(xj − x1)
j−1∑
i=1

Ii
G(xi − x1)

+

+
1

G(xj − x1)

N∑
i=j+1

G(xi − x1)Ii.
(3)

145 из 190

Such representation (3) allows to reduce the amount of com-
putational operations, since values G(xj − x1), 1

G(xj−x1)
,

and the sums
∑j−1
i=1

Ii
G(xi−x1)

and
∑N
j+1 IiG(xi − x1) can

be precomputed in linear time. However, using the equation
(3) may imply some numerical issues, such as overflow, if
the distance between x1 and xl, l ∈ {i, j} is relatively
large. To avoid such issues, this algorithm introduced certain
representative points (poles) {αk ∈ R} instead of using the
single point x1, where the distance between αk and xl is
smaller than the length that causes the numerical instability.
Hence the equation (3) becomes more complex form, a highly
accurate truncation can be applied where G(αk −xj) is equal
to numerically zero, see [11] for further technical details.

Although this algorithm can be used in case of multidimen-
sional images by applying it separately in each dimension, this
separable implementation approach is not applicable to non-
uniformly distributed high-dimensional point sets. Therefore
we present a novel and natural extension of the domain split-
ting concept on 2D cases (images) in the following sections.

III. TWO-DIMENSIONAL ALGORITHM

For a given 2D point set X = {xi}Ni=1, xi = (xi, yi) ∈ R2,
L1 distance between two points in R2 is given by |xj −xi| =
|xj−xi|+|yj−yi|, thus the Gauss transform (1) is represented
by the formula:

J(xj) =
N∑
i=1

exp(−|xj − xi|+ |yj − yi|
σ

)Ii.

Domain splitting (2) for 2D points is given by

|xj − xi|+ |yj − yi| =
|xj − x1| − |xi − x1|+ |yj − y1| − |yi − y1| if xi ∈ D1

|xi − x1| − |xj − x1|+ |yj − y1| − |yi − y1| if xi ∈ D2

|xj − x1| − |xi − x1|+ |yi − y1| − |yj − y1| if xi ∈ D3

|xi − x1| − |xj − x1|+ |yi − y1| − |yj − y1| if xi ∈ D4,

D1 = {xi|x1 ≤ xi ≤ xj , y1 ≤ yi ≤ yj},
D2 = {xi|x1 ≤ xj ≤ xi, y1 ≤ yi ≤ yj},
D3 = {xi|x1 ≤ xi ≤ xj , y1 ≤ yj ≤ yi},
D4 = {xi|x1 ≤ xj ≤ xi, y1 ≤ yj ≤ yi},

see Fig. 1a for geometric illustration of the domains.

(a) Single pole x1 case (b) Multipole {αk} case

Fig. 1: Illustration of 2D domain splliting.

Using the above decomposition, Gauss transform is repre-
sented similar to (3):

J(xj) = I(xj) + F (xj)F (yj)
∑

xi∈D1(j)

1

F (xi)F (yi)
I(xi)+

+
F (xj)

F (yj)

∑
xi∈D2(j)

F (yi)

F (xi)
I(xi) +

F (yj)

F (xj)

∑
xi∈D3(j)

F (xi)

F (yi)
I(xi)+

+
1

F (xj)F (yj)

∑
xi∈D4(j)

F (xi)F (yi)I(xi),

(4)

where F (xj) ≡ G(xj − x1) and F (yj) ≡ G(yj − y1).

Precomputation and storage of values F (xj)F (yj),
F (xj)
F (yj)

,
1

F (xj)F (yj)
, and F (yj)

F (xj)
require O(4N) operations and O(4N)

space, and all the subsequent sums can be iteratively computed
in O(N) operations. Gauss transform for all points using the
formula (4) requires O(10N) as opposed to employing the sep-
arable implementation of equation (3) for O(6N) operations.
Since computing the Gauss transform using the equation (4) is
numerically troublesome, it is reasonable to divide the space
into smaller groups and perform computations separately, as it
was proposed in [11]. Let us introduce a novel 2D multipole
approach for solving this problem.

Consider a set of poles {αk}Mk=1, αk = (ak, bk) ∈ R2.
The distance between points in X using poles αk is given by
|xi − xj | =

|xi − ak| − |xj − ak|+ |yi − bk| − |yj − bk| if xi ∈ D1

|xj − ak| − |xi − ak|+ |yi − bk| − |yj − bk| if xi ∈ D2

|xi − ak|+ |xj − ak|+ |yi − bk| − |yj − bk| if xi ∈ D3

|xi − ak| − |xj − ak|+ |yj − bk| − |yi − bk| if xi ∈ D4

|xj − ak| − |xi − ak|+ |yj − bk| − |yi − bk| if xi ∈ D5

|xi − ak|+ |xj − ak|+ |yj − bk| − |yi − bk| if xi ∈ D6

|xi − ak| − |xj − ak|+ |yi − bk|+ |yj − bk| if xi ∈ D7

|xj − ak| − |xi − ak|+ |yi − bk|+ |yj − bk| if xi ∈ D8

|xi − ak|+ |xj − ak|+ |yi − bk|+ |yj − bk| if xi ∈ D9,

where

D1 = {xi|xi ∈ Dx
1 , yi ∈ D

y
1}, D2 = {xi|xi ∈ Dx

2 , yi ∈ D
y
1},

D3 = {xi|xi ∈ Dx
3 , yi ∈ D

y
1}, D4 = {xi|xi ∈ Dx

1 , yi ∈ D
y
2},

D5 = {xi|xi ∈ Dx
2 , yi ∈ D

y
2}, D6 = {xi|xi ∈ Dx

3 , yi ∈ D
y
2},

D7 = {xi|xi ∈ Dx
1 , yi ∈ D

y
3}, D8 = {xi|xi ∈ Dx

2 , yi ∈ D
y
3},

D9 = {xi|xi ∈ Dx
3 , yi ∈ D

y
3},

Dx
1 = {xi|ak ≤ xi ≤ xj or xj ≤ xi ≤ ak},

Dx
2 = {xi|ak ≤ xj ≤ xi or xi ≤ xj ≤ ak},

Dx
3 = {xi|xi ≤ ak ≤ xj or xj ≤ ak ≤ xi},

Dy
1 = {yi|bk ≤ yi ≤ yj or yj ≤ yi ≤ bk},

Dy
2 = {yi|bk ≤ yj ≤ yi or yi ≤ yj ≤ bk},

Dy
3 = {yi|yi ≤ bk ≤ yj or yj ≤ bk ≤ yi},

146 из 190

J(xj) = Ij + G(xj)G(yj)
∑

xi∈D1

Ii
G(xi)G(yi)

+
1

G(xj)G(yj)
∑

xi∈D5

G(xi)G(yi)Ii +
G(yj)
G(xj)

∑
xi∈D2

G(xi)
G(yi)

Ii +
G(xj)
G(yj)

∑
xi∈D4

G(yi)
G(xi)

Ii+

+
∑

αk∈D9

Ajk +
∑

αk∈D7

Bj
k +

∑
αk∈D8

Cjk +
∑

αk∈D3

Dj
k +

∑
αk∈D6

Ej
k, (5)

Ajk = G(xj)G(yj)
λ(k+1)−1∑
xi=λ(k)

G(xi)G(yi)Ii, Bj
k = G(xj)G(yj)

λ(k+1)−1∑
xi=λ(k)

G(yi)
G(xi)

Ii, Cjk =
G(yj)
G(xj)

λ(k+1)−1∑
xi=λ(k)

G(xi)G(yi)Ii,

Dj
k = G(xj)G(yj)

λ(k+1)−1∑
xi=λ(k)

G(xi)
G(yi)

Ii, Ej
k =

G(xj)
G(yj)

λ(k+1)−1∑
xi=λ(k)

G(xi)G(yi)Ii.

see Fig. 1b for geometric illustration of the domains with their
poles. The point xj is assigned for one representative pole
defined by

αk(xj) = max
k
{αk|ak ≤ xj , bk ≤ yj},

which is the closest pole to xj that has absolute values of
coordinate smaller than xj .

For each point xj , the multipole L1 Gauss transform is
given by the equation (5) where G(xj) ≡ G(xj−ak), G(yj) ≡
G(yj − bk), and λ(·) is an index function defined by

λ(k) = min
1≤j≤N

(xj |ak ≤ xj < ak+1 and bk ≤ yj < bk+1).

For the sake of simplicity, we assume that the numbers of
poles in 2D are same M . Following [11], M and the poles
{αk} are given by

{ak} = {bk} =
{0, 1, 2, ..., (M − 1)}w

M
, (6)

w = max(|x1 − xN |, |y1 − yN |), M = [
w

ϕσ log(MAX)
],

where [·] is the ceiling function, MAX is the maximum value
of precision (e.g., double floating point: DBL MAX in C
programming language), and ϕ is a user-specified parameter
(0.5 is employed in our numerical experiments). The above
pole selection scheme leads to max(G(ak+1 − ak), G(bk+1 −
bk)) < MAX which theoritically guarantees numerical stability
in our method.

If the distance between poles is determined by the equation
(6) and G(αk − xj) becomes numerically zero if |αk − xj | >
w
ϕM , we can efficiently truncate Gauss transform by approx-
imating the values:∑
αk∈D9

Ajk ≈
∑

αk∈µ(D9)

Ajk,
∑

αk∈D7

Bjk ≈
∑

αk∈µ(D7)

Bjk,∑
αk∈D8

Cjk ≈
∑

αk∈µ(D8)

Cjk,
∑

αk∈D3

Dj
k ≈

∑
αk∈µ(D3)

Dj
k,

∑
αk∈D6

Ejk ≈
∑

αk∈µ(D6)

Ejk,

where µ(D∗) = {xi ∈ D∗ | |αk(xj) − αk(xi)| ≤ w
ϕM }. In

other words, instead of computing terms Ajk, B
j
k, C

j
k, D

j
k, E

j
k

across all the corresponding point sets, we take into account
only the neighbouring points, which allows to avoid nested
loop structure in our implementation and speed up the com-
putational process.

As in the 1D algorithm [11], the terms can be iteratively
computed in linear time. Assume that an image consists
of
√
N ×

√
N pixels and the number of poles along each

dimension is equal to M , total complexity of our method is
equal to O(16N+2

√
N
M +4 N

M2), which is a little bit slower than
the separable implementation employed in [11] that requires
O(12N + 2

√
N +M) operations.

IV. NUMERICAL EXPERIMENTS

We held all the experiments on Intel Core i7-6600U 2.60
GHz dual core computer with 16GB RAM and a 64-bit
operating system. We compared the multipole version of our
algorithm with box kernel (Box) using moving average method
[7], the 1D domain splitting (YY14) with separable implemen-
tations [11], and Fast Discrete Cosine Transform (FDCT) via
the FFT package [12] well-known for its efficiency.

(a) Input image 1 (b) Input image 2

Fig. 2: Input images.

To evaluate the performance of the methods mentioned
above we used randomly generated 2D point sets with 10
different sizes from 1282 to 51202 and 10 various values of
σ = 5, 10, ..., 50. The radius for the Box method was chosen
equal to σ. The timing results (see Fig. 5) show that our method
is slightly slower than the 1D domain splitting (YY14) despite
its theoretical complexity is much larger. It is worth noticing

147 из 190

(a) Exact (b) Our (c) Box (d) FDCT

Fig. 3: Results of smoothing (σ = 20).

(a) Exact (b) Our (c) Box (d) FDCT

(e) Exact (f) Our (g) Box (h) FDCT

Fig. 4: Visualisation of |∇I| for comparison of artifacts (σ = 20).

Fig. 5: Timing with respect to image size (averaged by σ).

that the implementation of our method can be further improved
by using GPU-based or parallel computing techniques.

However, accuracy evaluation results (see Table I) show
that our method achieves best approximation quality among the
discussed methods. We evaluate the precision using Emax and
PSNR measures. Consider Ie is the exact L1 Gauss transform
result, Ia is the approximation achieved by a given algorithm,
and di = |Iei − Iai |, Emax is calculated using formula Emax =
max

1≤i≤N
di. We also use peak signal-to-noise ratio (PSNR) [2]

to measure the performance of our algorithm according to the
equation

PSNR = −10 log(
N∑
i=1

(
di

max(Iei , I
a
i)

)2).

We performed linear image smoothing by the following
normalized convolutions for each color channel:∫

G(x− y)I(y)dy∫
G(x− y)dy

→ J(xj)∑N
i G(xj − xi)

148 из 190

TABLE I: Precision and speed evaluation results (speed mea-
sured in Mpix/sec).

Our YY14 FDCT Box
Emax 1.8× 10−11 3.8× 10−10 0.44 3.73
PSNR 291.05 281.81 58.98 41.45
Speed 7.19 9.76 3.37 8.58

(a) Exact (b) Our (c) FDCT

(d) Exact (e) Our (f) FDCT

Fig. 6: Visualisation of |∇I| for comparison of artifacts of
FDCT (σ = 20).

where the denominator is also obtained by our method con-
volving L1 Gaussian with the image whose intensity is equal
to one everywhere.

Fig. 3 illustrates the smoothing results using naive im-
plementation (Exact), our method, Box kernel, and FDCT
algorithms. The gradient magnitude |∇I| of smoothed images
on Fig. 4 and 6 show that, in contrast to FDCT and Box kernel,
our method does not produce some undesirable artifacts and
is extremely close to the exact implementation.

V. CONCLUSION

In this paper we presented a novel and fast approximation
method for L1 Gauss 2D image transforms. Series of numerical
experiments have shown that our method is generally more
accurate than the conventional methods and faster than the
widely used FFT. We also demonstrated capability of the
proposed method in image smoothing application where the
conventional box kernel averaging and FFT both suffer from
undesirable artifacts. Despite our method is slightly slower
than the separable implementations of 1D algorithm [11], this
approach can be efficiently used for non-uniformly distributed
points.

Our method is applicable only to uniformly distributed
structures, such as images. Hence our future work includes
extending the proposed method to higher-dimensional non-
uniform cases which can be done for example by using tree-
like structures. We also would like to investigate possible ap-
plications of the proposed method to various machine learning

and image processing tasks, such as regression, segmentation,
and registration.

Acknowledgements

This work was supported in part by Grants-in-Aid for
Scientific Research of Japan (15H05954 and 16K15019).

REFERENCES

[1] A. Elgammal, R. Duraiswami, and L. Davis, “Efficient kernel density
estimation using the fast Gauss transform with applications to color
modeling and tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), vol. 25, no. 11, pp. 1499–1504, 2003.

[2] S. Paris and F. Durand, “A fast approximation of the bilateral filter
using a signal processing approach,” in Proc. of European Conference
on Computer Vision (ECCV). Springer, 2006, pp. 568–580.

[3] L. Greengard and J. Strain, “The fast Gauss transform,” SIAM Journal
on Scientific and Statistical Computing, vol. 12, no. 1, pp. 79–94, 1991.

[4] D. Lee, A. Gray, and A. Moore, “Dual-tree fast Gauss transforms,”
Advances in Neural Information Processing Systems (NIPS), vol. 18,
pp. 747–754, 2006.

[5] C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis, “Improved fast
Gauss transform and efficient kernel density estimation.” in Proc. of
International Conference on Computer Vision (ICCV), vol. 1, 2003, pp.
464–471.

[6] A. Adams, N. Gelfand, J. Dolson, and M. Levoy, “Gaussian kd-trees
for fast high-dimensional filtering,” in ACM Transactions on Graphics
(TOG), vol. 28, no. 3. ACM, 2009, p. 21.

[7] E. Dougherty, Digital Image Processing Methods. CRC Press, 1994.
[8] R. Deriche, “Fast algorithms for low-level vision,” IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), vol. 12, no. 1,
pp. 78–87, 1990.

[9] D. Lang, M. Klaas, and N. de Freitas, “Empirical testing of fast
kernel density estimation algorithms,” University of British Columbia,
Technical Report UBC TR-2005-03, 2005.

[10] P. Getreuer, “A survey of Gaussian convolution algorithms,” Image
Process. On Line, vol. 3, pp. 276–300, 2013.

[11] S. Yoshizawa and H. Yokota, “Fast L1 Gaussian convolution via
domain splitting,” in Proc. of IEEE International Conference on Image
Processing (ICIP). IEEE, 2014, pp. 2908–2912.

[12] T. Ooura, General Purpose FFT (Fast Fourier/Cosine/Sine Transform)
Package. www.kurims.kyoto-u.ac.jp/∼ooura/fft.html, 2006.

149 из 190

Real-time Video Stabilization using MEMS-sensors
Anastasiya Kornilova

Saint Petersburg
State University

kornilova.anastasiia@gmail.com

Iakov Kirilenko
Saint Petersburg
State University

y.kirilenko@spbu.ru

Natalia Zabelina
Saint Petersburg
State University

zabelina.nattaly@gmail.com

Abstract—This article describes our ongoing research on real-
time digital video stabilization. It also explains and analyzes
existing approaches to stabilization that use data from MEMS
motion sensors. Authors propose to use the described methods
for stabilizing the video that is transmitted to the mobile robot
operator who controls the vehicle remotely, as well as increasing
the precision of video-based navigation for subminiature au-
tonomous models. This article also considers the main problems
that came up during the experiments that were not resolved in
the previous research papers. Authors offer possible solutions to
these problems that would help improve quality of the work of
existing algorithms.

I. INTRODUCTION

Modern cameras’ matrices allow to take high-quality pic-
tures that are comparable to professional photographs. How-
ever, the quality of video that they are able to record leaves
much to be desired and lately it has grown into a problem
that needs to be resolved. If modern devices could improve
quality of video recording in real time it would not only
enable owners of smartphones and action cameras to stream
more beautiful and visually appealing video, but would also
solve more significant problems. For instance, in case of re-
motely controlled mobile robots and drones (quadcopters) that
perform area monitoring, the low quality of video drastically
decreases the precision of control and also leads to greater
fatigue of the vehicle operator.

In most cases, you need to get rid of camera shake to solve
the problem of poor video quality. It can be achieved either
by fixing camera in one place (alternatively, by cancelling
out its movement using specially designed mechanisms) or
by transforming the frames digitally in such a way so that the
video becomes jitterless.

If you choose the first option, you will need special external
devices, such as SteadyCam, GyroStick, gimbal (for drones),
or specially designed lenses and matrices similar to those
available in professional cameras. This approach is not only
extremely costly, but also not always applicable. For example,
it is impossible to install an external stabilizer on smaller flying
vehicles.

If you opt for the second way, or digital stabilization,
you will face the challenge of camera motion estimation and
image warping (Fig. 1). Video editing software developers
have already advanced significantly in this area. Products like

Adobe Premiere1, Deshaker2, Movavi3 are all already able to
stabilize videos digitally. Similar functionality is also available
on YouTube that uses the algorithm proposed in the work
[1]. The main disadvantage of these algorithms [2], [3], [4],
[5], [6] is the amount of calculations needed to determine the
camera motion. This makes this method inapplicable for real-
time video stabilization. Besides that, these algorithms only
use the data available in the images themselves, which makes
them unreliable in case the shot has poor lighting or features
large moving objects.

Figure 1. Image transformation for trajectory smoothing

Alternatively, you can estimate the camera motion during
the recording by using the information from MEMS (Micro-
ElectroMechanical Systems) motion sensors4, including angu-
lar rate sensors (gyroscope), accelerometer and magnetometer.
This method requires less processing power to determine cam-
era positioning and, consequently, is more energy-efficient,
which makes it suitable for real-time video stabilization. For
instance, a common gyroscope consumes only 2-5 mW of
power. At the same time, the CPU consumes several hundreds
of milliwatts while analyzing frames.

This approach is applied more and more in recent years,
as MEMS sensors are becoming widespread on different
platforms, especially on smartphones. For instance, Google

1http://www.adobe.com/products/premiere.html
2http://www.guthspot.se/video/deshaker.html
3https://www.movavi.ru/
4https://en.wikipedia.org/wiki/Microelectromechanical_systems

150 из 190

Pixel, introduced in October 2016, completely lacks mechani-
cal stabilization and uses only gyroscope-based stabilization
algorithm. IPhone 7 also uses MEMS sensors for video
stabilization but employs camera lenses and matrices for this
purpose at the same time.

Mobile applications that offer similar functionality are just
now coming up on the market and they are only able to per-
form video stabilization during post-processing. Some of the
most prominent ones are: Instagram Hyperlapse5, Microsoft
Hyperlapse6. Gallus7 is especially noteworthy, because, unlike
others, it utilizes data from MEMS sensors.

This article considers different methods of real-time digital
video stabilization that utilize MEMS sensors. Given that this
research area is located at the junction of computer vision
and digital signal processing, a lot of additional tasks arise,
that are worth researching both separately and altogether. The
main difficulties, when it comes to creating an application that
allows to stabilize videos in real time, are the synchronization
of frames and sensor data and the creation of a lightweight
stabilization algorithm.

Authors review different existing algorithms and approaches
as well as describe the problems that surfaced when these
methods were implemented. During this research, we have en-
countered the following challenges: synchronization of frames
and sensor reading, efficient frame transformation and increas-
ing the accuracy of camera positioning. This article solves
the found problems and offers more stable and universal
implementation of the described algorithm.

In the second section of the article, we review the existing
approaches to digital video stabilization that utilize MEMS-
sensors, analyze whether these algorithms are suitable for use
in real time and also list the mathematical models. In the
third section, we describe the methods that improve position-
ing accuracy by using filters and combining readings from
different sensors. In the fourth section, we analyze how to
efficiently transform frames during camera rotation. In the fifth
section, we consider the problem of synchronizing frames and
sensor readings and use Android OS as an example. There we
also review existing methods of automatic camera and sensor
parameters calibration. In the sixth section, we list the main
results of the ongoing research.

II. V IDEO STABILIZATION

Video stabilization process can be divided into 3 indepen-
dent stages:

1) estimating camera motion using MEMS sensors;
2) calculating the desired camera motion in accordance to

some logic (for instance, trajectory smoothing);
3) transforming the frame to match camera motion to the

desired one.

5https://hyperlapse.instagram.com/
6https://www.microsoft.com/en-us/store/p/hyperlapse-mobile/

9wzdncrd1prw
7https://www.yafla.com/gallus/

In order to perform video stabilization in real time, we need
to find a solution to each of the above listed tasks that would
be satisfactory in terms of quality and performance.

The second stage is the most crucial. When smoothing
trajectory, it’s important to not only consider jitter as noise, but
also to take into account that camera needs to move similarly
to the way eye moves naturally. In the beginning of this
section, we list the mathematical models and terms that are
used and describe the existing algorithms. Then we analyze
their advantages and disadvantages, and also propose various
improvements.

Authors pay special attention to the two remaining stages,
that can be improved significantly, yet still were not touched
on in previous papers.

In this section, we suppose that all camera and sensor
parameters are known, as well as that sensor readings and
camera shots are synchronized in time. The abovementioned
problems will be thoroughly discussed in the section dedicated
to the parametrization of the stabilization system.

A. Mathematical models
Let’s take a look at how frame is transformed when camera

is rotated. We’ll assume that x is the coordinates of a point on
a projective plane, and X is the coordinates of a point in space
(Fig. 2). Also, for each particular camera, let’s assume that it
has the matrix K with the following parameters: (ox, oy) is
the optical center of the camera and f is its focal length. We’ll
get the following formulas for the projective transformation[7]:

Figure 2. Projective transformation

x = KX

K−1 =

 1 0 −ox
0 1 −oy
0 0 f


Let’s fix the global coordinate system and assume, that in

moment t the camera is rotated against it, using the rotation
matrix R(t)8 (Fig. 3). Then projective transformation will look
this way:

x = KR(t)X

8https://en.wikipedia.org/wiki/Rotation_group_SO(3)

151 из 190

Let’s assume, that xi и xj are both projections of the
same point X in space, but they are located in frames i и
j respectively, meaning:

Figure 3. Location of a point in frames during camera rotation

xi = KR(ti)X

xj = KR(tj)X

By transforming these expressions, we establish the fol-
lowing connection between projections of the same point in
different moments of time:

xj = KR(tj)R
T (ti)K

−1xi

Thus, let’s define the matrix of image transformation be-
tween moments in time t1 и t2 as:

W (t1, t2) = KR(t1)R
T (t2)K

−1

xj =W (tj , ti)xi

We want to include an additional parameter to the above-
described mathematical model of camera and its rotations.
It’s defined by the camera shutter and solves the problem of
blurring when recording fast moving objects. Rolling shutter9

is a visual distortion that happens, because when the shutter is
released, each row of the frame is shot at a different moment
in time (Fig. 4-5)10.

Figure 4. Object movement

9https://en.wikipedia.org/wiki/Rolling_shutter
10Images are taken from the website http://www.red.com/learn/red-101/

global-rolling-shutter

Figure 5. Rolling-shutter effect during capturing the moving object

When shutter scans the scene vertically, the moment in time
at which each point of frame is shot, is directly dependent on
the row it is located in. Thus, if we assume that i is the number
of the frame and y is the row of that frame, then the moment
at which it was shot can be calculated this way:

t(i, y) = ti + ts
y

h

where ti is the moment when frame number i was shot, ts
is the time it takes to shot a single frame, h is the height of
the frame. This can be used to make the general model more
precise, when calculating the image transformation matrix.

B. Stabilization algorithms
Among the solutions discussed in the scientific society, two

are especially worth noting, and we will describe them in this
section.

1) Algorithm with Gaussian filter
Algorithm described in the article [8] in 2011, is based on

Gaussian filter11. Camera positioning is calculated by integrat-
ing the readings of a MEMS gyroscope for each frame. Then
the sequence of camera movements is smoothed by utilizing
the Gaussian filter (Fig. 6), and the frames are sequenced using
the new motion model. Gaussian filter can be customized by
changing the window size (how many discrete points it effects)
and the size of the core (how strong the smoothing is). By
altering these parameters one can either get rid of local jitter
or significant movements.

The use of Gaussian filter is very effective during post-
processing, but is not always applicable for real-time stabi-
lization. During post-processing movement can be analyzed
completely from start to finish, which allows to increase
the size of the window of the filter and smooth the move-
ment stronger. During real-time stabilization, processing buffer
needs to include 10-15 frames, which results in a significant
delay of 0,3-0,5 seconds.

The source code of the prototype was presented in Matlab,
but the article states that algorithm was tested on an IPhone
4. During open realization, the algorithm features narrowed
camera rotation parameters. Namely, only horizontal camera
rotation is taken into account, which does not always reflect
the movement of a shaking camera.

11https://en.wikipedia.org/wiki/Gaussian_filter

152 из 190

Figure 6. Trajectory smoothing using the Gaussian filter

2) Algorithm utilizing nonlinear filter
Algorithm described in the article [9] in 2014 utilizes a

more complex nonlinear filter to smooth camera movement.
In the offered method, the definition of a virtual camera is

given. Two concentric zones are selected on the frame – the
inner region and the outer region (Fig. 7)12. Then the rectangle
zone is selected in the inner region. Positioning of a virtual
camera is determined by the position of this rectangle.

Figure 7. Inner and outer stabilization zones

For each new frame, a new position of the abovementioned
rectangle is calculated. If it lies within the inner zone, the cam-
era orientation remains the same. If any part of the rectangle
lies outside the inner region then the virtual camera’s angular
velocity is updated by using spherical linear interpolation –
slerp13(spherical linear interpolation) to bring it closer the
physical camera’s velocity. Authors note that this algorithm
works rather well, but when rectangle hits the edge of the
inner zone sudden changes can be expected.

The article offers a way how to make this method suitable
for real time video stabilization. If a buffer has k frames, than
the camera is supposed to move during these frames with
the same velocity it did before. If the rectangle crosses the
inner zone, then the spherical interpolation is used to bring the
virtual camera velocity closer to the velocity of the physical
camera.

12Imageistakenfromthearticle\cite{nvidiaStab}
13https://en.wikipedia.org/wiki/Slerp

Besides significantly decreasing the buffer size, this method
has one more advantage. It does not take into account the
absolute positioning of the camera, as it only uses the velocity
of the camera. Therefore, due to the absence of integration,
the error is not accumulated.

Sadly, the authors of the article did not offer a repository
with source code of the program, realizing this algorithm.
Therefore, it was impossible to repeat the experiment at the
time. We plan to realize this approach in the nearest future.

III. DETERMINING THE POSITIONING

When we were constructing the above-described model,
it was assumed that the sensor readings are continuous and
accurate. In reality, however, as in all physical devices, MEMS
sensors have noise. If the algorithm requires integrating the
gyroscope readings, the error caused by the noise will only in-
crease. To solve this problem we will combine the readings of
two or more different MEMS sensors, for instance gyroscope
and accelerometer. This will allow to eliminate significant
errors. The following filters offer similar functionality:

1) Complementary filter14;
2) Madgwick filter[10] – filter that utilizes the gradient

descent and allows the use of magnetometer;
3) Mahony filter[11];
4) Extended Kalman filter – the most successful realization

is presented in the work [12].
It is important to mention that the processing complexity

of the offered algorithms needs to be minimized for real-
time video stabilization. The algorithms are listed in the
increasing order of complexity. It is worth noting, that the
use of quaternions for estimating positioning and integrating
is significantly less complex than other positioning methods
like Euler angles or rotation matrices[13].

IV. FRAME TRANSFOMATION

After it was determined how much the frame positioning
should change, projective transformation should be performed.
Realization of the OpenCV library15 offers this functionality
via warpTransoform and perspectiveTransform functions. The
first option performs projective transformation for the whole
image, while the second one allows to determine the position
of particular points on the frame after transformation.

Using the second function allows us to realize the following
algorithm. We choose several points on the frame, a 10x10
grid, for instance. After that a projective transformation is per-
formed for each point, and their new positions are calculated
(Fig. 8). The values in the other spots are calculated using
interpolation.

By varying the size of the grid, it is possible to find the
balance between quality of the image after the rotation and
speed of processing of the new frame. While experimenting
with 1920x1080 frames, it was determined that the best results
are achieved with 10x10 grids.

14https://en.wikipedia.org/wiki/Alpha_beta_filter
15http://docs.opencv.org/2.4/modules/imgproc/doc/geometric_

transformations.html

153 из 190

Figure 8. Image warping

V. CAMERA CALIBRATIONS AND
SYNCHRONIZATION

Camera model and the stabilization algorithms, described
above, are based on certain assumptions that are not always
true in reality. First, it is assumed that sensor readings are
a continuous function and are synchronized with frames.
Second, we assume that all the necessary parameters for the
mathematical model, such as: optical center, focal length and
shutter release time are known.

In this section we describe these issues in more detail and
offer different solution to the problems.

A. Calibrating the unknown camera and sensor parameters
In order for stabilization algorithms to work correctly, we

need to have detailed information about camera’s and MEMS
sensors’ parameters. Namely, the optical center, focal length,
location of the MEMS sensor coordinate axes in relation to
the camera’s coordinate axes and shutter release time (rolling
shutter). Assuming all pixels are square, we’ll set the optical
center at (0, 0).

In case of all sensors, a gyroscope in particular, the main
unknown parameter is the bias16 – almost constant skew of an-
gular velocities against the exact measurements. Smartphones
sensors are calibrated automatically, while in case of some
embedded systems, you need to monitor this parameter closely,
as the bias can result in error during integration. To determine
the bias, we need to find the mean deviation of angular
velocities against the null, when the camera is stable.

The calibration and synchronization problems are solved
in the article [14], where the process of online calibration
using the extended Kalman filter is described in full detail.
Also, in the article [15] the minimization method including
determining of the cost function is offered to calibrate the
parameters listed above. The full review of camera parameters
calibration methods is available in the article[16].

Currently, authors select camera parameters manually for the
models used to test algorithms. Automatic calibrations will be
realized only after successful experiments with the algorithms.

B. Synchronization of a camera and sensors
First, it is important to understand that MEMS sensor read-

ings are discrete. Therefore, even if you know the exact time
each frame was taken, it would be impossible to determine

16http://www.vectornav.com/support/library/gyroscope

the current positioning of the camera. However, since signal’s
frequency of the MEMS sensor is between 100 and 200 Hz
and the frame rate is 30 fps, we can use simple interpolation
to get a relatively accurate estimation.

Unlike embedded systems, that offer hardware synchroniza-
tion of frames and MEMS sensor reading, operating systems of
smartphones sometimes do not offer this functionality. Authors
encountered this problem on Android when prototyping the
application for simultaneous recording of video and data from
sensors.

It turned out, that the main API of the camera17, available on
each phone does not provide the event scheme for processing
single frames. Therefore it was impossible to use software to
determine the place of each frame in the time series of sensor
readings (Fig. 8)18. The possible solution to this problem is
using the mathematical methods to match two time series with
different degrees of discretization: frequent – sensor reading
and rare – video frames. The use of displacement of features19

as metric is suggested.

Figure 9. Matching the time series of frames and gyroscope

Starting with level 21 Android API, a new API for Cam-
era220 was introduced. It features the event driven program-
ming that would allow to determine the taking of a frame
by using the event handler OnImageAvailableListener21. Even
if this improvement can’t be used to determine the exact
timestamp of a frame, it will help to estimate the place of
the frame on the time series of sensor readings. Therefore,
this approximation can be used for realizing the mathematical
method for matching series.

VI. CURRENT RESULTS

Currently, authors have implemented the prototype of the
algorithm utilizing the Gaussian filter on Python, that cover
the model of 3-dimensional camera rotation. Provided the
synchronized sensor readings and frames, as well as intrinsic
camera parameters, this algorithm shows great results during
post-processing.

Synchronization of sensor readings and camera is performed
by an application, described in the corresponding section.
Based on this, we plan to execute this algorithm in real-time

17https://developer.android.com/reference/android/hardware/Camera.html
18Image taken from the article [14]
19https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
20https://developer.android.com/reference/android/hardware/camera2/

package-summary.html
21https://developer.android.com/reference/android/media/ImageReader.

html

154 из 190

mode in the nearest future. To decrease latency we will use
the optimal filters, that are described in the section dedicated
to them, as well as piece-by-piece frame transformation.

To make the software video stabilization module cross-
platform, we plan to test the suggested methods of real-
time calibration of intrinsic camera parameters and implement
them.

CONCLUSION
At this moment, there are many different approaches to

digital video stabilization, but not all of them require too
much processing power to be used in real time use. Methods
utilizing MEMS sensors are worth noting as they allow to
save processing resources. Scientific community offers several
stabilization algorithms utilizing these sensors. They show
great results during post-processing and several prototypes for
real-time processing are available.

Despite the possibilities and the need for real-time digital
stabilization, its implementation is hard from a technical
standpoint, because the video sensor and MEMS sensors need
to be coordinated. Besides that, a lot of work still needs to be
done to optimize these algorithms for work in real-time.

Many additional challenges and problems described by the
authors, show that there is a lot of room for improvement in
existing solutions, namely in the way algorithms work. All
algorithms that we studied employ a quite primitive mathe-
matical model, which makes it viable to continue research
in this area using more advanced mathematics. Authors set
their next goal as using the work they have already done to
build a full-fledged software module for real-time digital video
stabilization and increase its ability to function on different
platforms.

VII. ACKNOWLEDGMENT
Funding for this work was provided by JetBrains Research.

References
[1] M. Grundmann, V. Kwatra, and I. Essa, Auto-Directed

Video Stabilization with Robust L1 Optimal Camera
Paths. 2011.

[2] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H. Shum,
Full-frame video stabilization with motion inpainting.
2006.

[3] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala,
Subspace video stabilization. 2011.

[4] M. Grundmann, V. Kwatra, and I. Essa, Auto-directed
video stabilization with robust l1 optimal camera paths.
In: Proceedings of CVPR. 2011.

[5] Y. Wang, F. Liu, P. Hsu, and T. Lee, Spatially and
temporally optimized video stabilization. 2012.

[6] S. Liu, L. Yuan, P. Tan, and J. Sun, Bundled camera
paths for video stabilization. 2013.

[7] R. Szeliski, Computer Vision: Algorithms and Applica-
tions. 2010.

[8] A. Karpenko, D. Jacobs, and J. Baek, Digital Video
Stabilization and Rolling Shutter Correction using Gy-
roscopes. 2011.

[9] S. Bell, A. Troccoli, and K. Pulli, A Non-Linear Filter
for Gyroscope-Based Video Stabilization. 2014.

[10] S. O. Madgwicḱ, An efficient orientation filter for iner-
tial and inertial/magnetic sensor arrays. 2010.

[11] R. Mahony, T. Hamel, and J.-M. Pflimliń, Comple-
mentary filter design on the special orthogonal group
SO(3). 2005.

[12] R. Zhua, D. Sunb, Z. Zhoua, and D. Wangá, A linear
fusion algorithm for attitude determination using low
cost MEMS-based sensors. 2007.

[13] J. Diebel, Representing Attitude: Euler Angles, Unit
Quaternions, and Rotation Vectors. 2006.

[14] C. Jia and B. L. Evans, Online Calibration and Synchro-
nization of Cellphone Camera and Gyroscope. 2013.

[15] H. Ovren and P.-E. Forsseń, Gyroscope-based Video
Stabilisation With Auto-Calibration. 2013.

[16] W. Qi, F. Li, and L. Zhenzhong, Review on Camera
Calibration. 2010.

[17] J. Howse, S. Puttemans, Q. Hua, and U. Sinha, OpenCV
3 Blueprints. 2016.

[18] Invensense, MPU-6000 and MPU-6050 Product Speci-
fication. 2012.

155 из 190

Type-2 Fuzzy Rule-Based Model of Urban

Metro Positioning Service

Albina R. Gimaletdinova, Konstantin Y. Degtiarev (IEEE Member)

School of Software Engineering

Faculty of Computer Science

National Research University Higher School of Economics

3 Kochnovsky Proezd, 125319, Moscow, Russian Federation

argimaletdinova@edu.hse.ru, kdegtiarev@hse.ru

Abstract — Despite the large body of existing knowledge on

navigational services, there has been an important issue relative
to positioning accuracy. The paper discusses a possible solution to
comparison problem, which is linked to the determination of the

closeness to destination metro station through finding a difference
between user’s current coordinates and fixed point coordinates.
With this end in view, fuzzy logic approach is used to develop
Routes Recommender System that utilizes linguistic variables to
express the vague and uncertain term ‘closeness to…’. The paper
provides detailed explanation of each variable considered in fuzzy
inference system (FIS), set of fuzzy rules in line with graphical
representation of system’s output. Based on Mamdani model, we
propose test cases to check maintainability of the model.

Keywords — positioning service; mobile applications; fuzzy

modeling; GPS; WiFi; Cellular Networks; public transport; interval

type-2 fuzzy sets (IT2FS); fuzzy inference system; fuzzy matching of

coordinates; uncertainty.

I. INTRODUCTION

Over the past decade positioning techniques have become
common in almost all branches of industry. In particular,
nowadays vast majority of phone models are provided with
GPS-module that can be enabled in different cases. Positioning

feature is rather common to mobile applications supporting

navigational services, and the latter can be used by people in
urban transport. The purpose of the paper is to exploit the
potentialities of fuzzy logic regarding recommender system
with the navigational service. Such service may solve the
problem of frequently encountered disorientation of passengers
in unfamiliar terrain and allow to pave routes between stations

of interest (case of urban transportation system). The potential

application may notify a passenger about forthcoming arrival,
when he/she is situated closely to the end station. The main
purpose in the present context is to determine a deviation
between current and end points (stations). Consequently, it
leads to the serious problem, since we cannot precisely assert
whether a user is close to the end station or not. It occurs
because there is a need to estimate the smallest difference
(delta) between current and end-point coordinates and then set
rule(-s) to classify user`s location.

The issue of applying fuzzy logic to positioning, tracking
and transportation attracts attention of researchers. Selected

publications have focused on indoor positioning. For example,
Chen C.-Y., Yung J., et al. [1] studied indoor positioning
technique based on received signal strength and fuzzy
approach; they showed experimentally that such method has
better performance as compared to geometric triangulation
method [2] – actually, the same objective was pursued in the
research by Teuber A. and Eisfelller B. [2]. The fuzzy system
to control train automatic stop, with the emphasis on stop
accuracy, was developed by Yasunobu S., Miyamoto S. and
Ihara H. in [3]. It is evident that the practical application of
fuzzy logic to positioning or transportation subject matter
cannot be considered as exclusive one, however, the issue of
positioning in metro should be studied in details.

As it was mentioned above, the study is devoted to indoor
positioning within the metro transportation system. We make
an attempt to develop a fuzzy model of metro stops allowing to
send timely destination notifications to passenger. It is clear
that we do not know exact minimum and maximum distances
between stations or the moment when the application should

send a reminder. Uncertainty has many faces and forms of
manifestation. As stated by George J. Klir and Mark Wierman,
“uncertainty involved in any problem-solving situation is a
result of some information deficiency; … information may be
incomplete, fragmentary, not fully reliable, vague,
contradictory, or deficient in some other way” [4]. Hence,
when we do not know or cannot obtain exact values/parameters
of some phenomena (e.g. distances between points, the location
of some moment on a time scale), we need to deviate from
type-1 fuzzy sets as a general framework to handle vagueness
(for more information see seminal papers “Fuzzy Sets” (1965)
and “The Concept of a Linguistic Variable and Its Application
to Approximate Reasoning – I” (1975) by L. Zadeh) to more
general type-2 fuzzy sets that allow to reflect the uncertainty in
adequate, more thorough manner, or, put it precisely, to model
it. In the work interval type-2 fuzzy sets (IT2FS) are used; to
ensure computational efficiency, the preference is given mainly
to piecewise linear functions (trapezoidal shape) as upper and
lower membership functions of IT2FS.

The rest of the paper is organized as follows: the second
section explains the main problem that the paper is devoted to.
Section 3 provides definition of linguistic variable (LV) and

describes those variables and their linguistic values represented

156 из 190

mailto:argimaletdinova@edu.hse.ru
mailto:kdegtiarev@hse.ru

in the form of type-2 membership functions that are used in the
inference process (Mamdani's fuzzy model); explanations on
domains (universal sets) for each variable are also adduced in
this section. The following section 4 makes emphasis on fuzzy
rules that serve as a basis for fuzzy system (model developed),
covers short comments on type-reduction defuzzification
methods used in the study; results of experiments with the
system under different values of input variables are presented
in both tabular and graphical forms. Section V of the paper
concludes explicitly mentioning the ways of further elaborating
upon the subject.

II. PROBLEM DEFINITION AND GENERAL COMMENTS

One of the main issues we have to deal with is to find a
user’s position. Current position obtained should be compared
with fixed station’s coordinates (e.g. end-point of the route or
interchange point to other line) – it will allow to say where is a
user now. If he/she is close to one of the points, the application
should signal to him about it, thus the understanding and
definition of the word “close” becomes essential. The factor of
closeness is treated unequally by different people, and a nearby
object for one person can be far away for another one. It means
that estimation of closeness relates to certain difficulties and, as
a consequence, we cannot associate crisp numbers as a basis
for possible values of the variable “close”. Therefore, the only
way to describe closeness at a first approximation is to set a
numerical interval of its possible values and to use it at further
processing steps.

We may assume that in the beginning the application gets
start and end points of the route (input data), then it ensures
passenger tracking using one of the positioning technologies
(GPS, WiFi, Cellular Networks) and compares his/her current
location with the one of key points. According to [5] and
practical everyday experience, GPS has poor accuracy indoors,
including metro, therefore, we do not consider GPS positioning
accuracy to calculations shown in Table 1. As already
mentioned before, we will use numeric interval to represent
difference between fixed and current coordinates.

TABLE I. APPROXIMATE ACCURACY FOR DIFFERENT POSITIONAL
TECHNIQUES ([6, 7])

№ Technique

Min

accuracy

(m)

Medium

accuracy (m)

Maximum

accuracy (m)

1 GPS 2 11 20

2 WiFi 10 80 150

3 Cellular 100 800 1500

 Average 37.3 297 557

Average for

№2 and №3*
55 440 825

 * The last row is calculated without GPS characteristics (signal in metro is bad)

Received data concerning current position can be
inaccurate, because positioning techniques used in the phone

do not guarantee ideal precision of geographical coordinates
supplied because of various objective reasons (e.g. tracking

indoors or underground, bad quality of signal from provider,
etc.). Thus, it makes sense to emphasize another overt source of
fuzziness, which relates to fuzzy (vague) matching of

coordinates – latitude and longitude indicators will be analyzed
separately.

III. FUZZY LOGIC MODEL: DEFINITION OF LINGUSTIC

VARIABLES AND THEIR VALUES

Firstly, we should select input-output variables for fuzzy
system and provide necessary explanations. All significant
internal and external factors, in which uncertainty shows itself,
must be analyzed; this is an important stage in development of
the model. Internal factors signify that certain issues depend
solely on application itself (its realization), and some tuning
steps can lead to better results. On the contrary, external factors
indicate that there is obvious reality that is not dependent on
realization per se – these are the factors that most of people are
familiar with, viz. bad quality of signal from provider, poor
WiFi coverage, etc.

In order to explain internal factors it is necessary to detect
variables at the level of passenger’s tracking; the central
operation here is obtaining a current position. Once it is done
the difference between fixed point coordinates and current
point must be determined – we call this difference (i.e. variable)
“Difference between fixed and current points (delta)”.

Fig. 1. Fuzzy model with names of linguistic variables in use

If we use WiFi and Cellular Networks, it means that the

application is going to get coordinates with different accuracy,
even at the same place without any movements. We have to
admit that the factor of fuzziness definitely becomes apparent
in the problem of coordinate matching, and the accuracy will
depend on chosen positioning method (see Table 1). We will
combine two techniques mentioned above, and because of that
Table 1 contains cells with calculated average accuracy. In the
paper we take into account possible accuracy of latitude and
longitude – let’s name these variables as “Latitude accuracy”

and “Longitude accuracy”. The output of fuzzy system will
represent position respective to metro station. All these
variables as inputs and output of rule-based system to be used
are shown in Fig. 1.

Variables mentioned above in the text are linguistic
variables, i.e. their values are words (or, phrases) of natural
language; formally, these values are fuzzy sets, and they are
represented by membership functions. In general, a linguistic

variable is defined as a tuple v v,T(),U,G,ML L , where Lv is

the name of the variable (e.g. v " "L Latitude accuracy),

vT()L is the set of labels of variable’s Lv linguistic values

1 n,..,l l (term-set of Lv ; e.g. i 'insignificant 'l  , etc.). The names

(labels) are generated using syntactic rule G , the meaning

157 из 190

iM()l is associated with each value il , i 1,n , from ()LvT ;

iM()l is a fuzzy set (respective membership function) defined

on a universe of discourse (domain) U . The latter must be

defined for all input and output variables introduced earlier.
Thus, every variable is characterized by its own set of
acceptable values and membership functions for each such

value il , i 1,n .

A. Linguistic variable delta and its values (terms)

Earlier we were talking about the difference between fixed

and current points (so-called delta). What does it really mean?
The value that expresses the difference falls into the interval

 0,a , where real-valued 0a  (deviation is analyzed in

absolute magnitude); its left bound (0) means that passenger’s
coordinates are similar (better to say, close) to some fixed point.
We assume that the application should notify a passenger
outright before a given destination, when he/she is at the station

that precedes terminal station of the route, or at some later
moment. Consequently, we consider the average distance
between two stations, and a passenger should have enough time
to alight from the railway (metro) carriage without effort.

To calculate the biggest difference between coordinates, we
should estimate the average distance between any two stations
in the metro and double it, because at this moment it will be not
an urgent question to notify a passenger about the arrival as

he/she still has to go two or more stations more. Following [8,
9], the mean distance between stations in Moscow metro is
equal approximately to 1,780 meters. Hence, a value signifies
the biggest possible difference, i.e. 40,075,000 meters (the
length of Earth’s equator) = 360

ᴼ
 (circle grade measure)


1,780 2 360

1,780 2 0.032
40,075,000

 
        

Therefore, values of delta are limited to the interval

 0,0.032 (in degrees) that relates to domain (universal set) U,

over which linguistic variable
(1)
v " "L delta is defined. Yet,

why do we talk about linguistic variable in that case? In the
everyday life people prefer to use words or phrases of the
natural language as a habitual terms (values) for description of
phenomena they are dealing with in their diverse activities. In

case of delta variable such attached to it terms as 'big', 'small',
etc., on one hand, form a solid ground for communication
within the professional medium allowing almost uniform

apprehension of the meaning of these values. On the other hand,
their inherent uncertainty has to be adequately modeled when

used in computational methods. In particular, we may introduce

2 linguistic terms 'small' and 'bigger' (difference between
coordinates) as applied to the variable delta. Since type-1
membership functions (T1MF) are precise, i.e. the degree of

belongingness μ(x) of each generic element x to corresponding

fuzzy set is a crisp number, T1MF cannot represent the typical

uncertainty intrinsic to estimates μ(x) (tilde sign emphasizes

the fact that these degrees are not reducible to ordinary
numbers). Linguistic values can be represented in the form of
interval type-2 fuzzy sets (IT2FS); the latter are characterized

by Lower (L) and Upper (U) membership functions that bound
the area called footprint of uncertainty (FOU). The shape of this

region allows to express the uncertainty in μ(x) estimates

obtained, providing “additional degrees of freedom … to handle

MF uncertainties” [10]. For each x U , where U is a universe

of discourse under consideration, all points in the range

(L) (U)μ (x),μ (x) 
  may have equal unitary weights, i.e.

secondary membership function defined on this interval is

constant one. For practical reasons, such IT2FS seem to be

convenient enough, accurate from the standpoint of giving

proper weigh to uncertainty represented and most easily
understood by stakeholders. Henceforth, just this kind of T2FS

is used in the model with the direction of attention toward
piecewise-linear type (trapezoidal case) of L and U
membership functions.

Firstly, it is needed to define trapezoidal MF in terms of L
and U functions’ parameters for each linguistic value (term) –
all calculations are done in accordance with (1). We assume

that

(1)
v " "L delta is associated with the term-set

 (1)
v 1 2T() ,L l l = 'small difference ', 'bigger difference ' with 2

elements (Fig.2). The upper function (U) for the term 'small
difference' of the variable delta can be characterized by
parameter’s set A(0,0), B(0,1), C(0.008,1) and D(0.016,0); the
x-coordinate of the point C is the average of x-coordinates of

parameters B (xB) and D (xD), the latter is the distance

between any 2 stations. In much the same way, for the lower
function (L) corresponding parameters are A(0,0), B(0,1),
C(0.004,1), D(0.008,0).

Fig. 2. Difference between fixed and current points (values of ″delta″)

The 4-tuple of the upper function (U) that represents the
linguistic term 'bigger difference' of delta is A(0.012,0),
B(0.022,1), C(0.032,1) and D(0.032,0), where

 (L'small ') (U'small ')
x x xA D D 2 0.012   , both x-coordinate xC

and xD are set to maximum difference 0.032 (1), the value of

xB is calculated as a mean of two neighboring points

 x xA C 2 0.022  . It’s worth noting that not-yet-application

will receive latitude and longitude coordinates as input data, so
values are bound to degrees, but not meters. For the lower
function (L) set of its parameters takes the form A(0.024,0),
B(0.028,1), C(0.032,1), D(0.032,0); again, the value that relates

to maximum difference appears here, the xB value is obtained

much as shown above, and xA equals to the sum of
(U'bigger ')
xA

158 из 190

and the width of the left tail constituting an approximate half of
the distance between stations (890 m) converted to degrees.

B. Linguistic variable latitude/longitude accuracy and
its values (terms)

(2)
v " "L latitude/longitude accuracy is the next variable to

consider. As the telephone receives positioning information due

to a correction to be made for the accuracy, it must be taken into

account in calculation of difference between fixed and current

points. The variable
(2)
vL is defined on the interval  0,b , where

0b  is the maximum of average accuracy as shown in the last

row of Table 1. The not-yet-application doesn’t allow to use
GPS in metro, so we consider combined usage of WiFi and
Cellular Networks. All calculations shown below are based on
values summarized in Table 1, and they are performed in line
with (1), i.e.

 440 m 0.00395 ; 825 m 0.007  

55 m 0.00049 ; mean of min and medium

(55 440 m) 0.00444



 
 (2)

Fig. 3. Values of variables ″latitude/longitude accuracy″ (same graph)

Fig. 4. Two values of the linguistic variable ″location″

Thus, the universe, on which variable
(2)
vL is defined, results

in  U 0,0.007 (2). The upper function (U) for the term

'insignificant difference' of the variable
(2)
vL can be

characterized by parameter’s set A(0,0), B(0,1), C(0.00245,1)

and D(0.0049,0); xC is calculated as the arithmetic mean of xB

and xD , which is the minimal average accuracy shown in Table

1. As for the lower function (same linguistic term is

considered), the values of its parameters are A(0,0), B(0,0),
C(0.00222,1) and D(0.00444,0). First two parameters reflect

perfect accuracy at the position; xC is obtained as before, while

xD value corresponds to (2). Linguistic values 'close to

latitude/longitude' should be viewed separately, because for
each component of coordinate’s pair factor of inaccuracy (its
measurement) sounds alike, but still differently. Their presence

leads to more stable model (Fig. 1) and helps to improve the
results attained. The upper function (U) is determined by
parameters A(0.00467,0), B(0.00548,1), C(0.007,1) and

D(0.007,0);  (L'insig.diff ') (U'insig.diff ')
x x xA D D 2 0.00467   , xB

is an arithmetic mean of xA and xC . For the lower function (L)

parameters are specified as follows: A(0.00584,0),
B(0.00642,1), C(0.007,1) and D(0.007,0);

 (U'close to latitude')
x xA A 0.007 2 0.00584    , xB is calculated

much as it is done in the case of upper function (U), both xC and

xD are equated with the value of 0.007

 that stands for

minimum accuracy (or, maximum inaccuracy) – corresponding

values are shown in Fig. 3. In the case concerned, only non-
negative values of accuracy are considered; if calculations lead
to negative result, we use its modulus.

C. Linguistic variable location and its values (terms)

The variable
(3)
v " "L location is the next matter under

discussion – actually, it expresses the location, as it arises from

variable’s name, of a passenger due to indications related to
previously mentioned variables. The variable is represented
graphically in Fig. 4. We introduce two values (fuzzy sets) of

(3)
vL , namely, they are 'at station', i.e. main region that must be

reached to notify a user about the arrival, and 'near the station'.
The standard length of Moscow metro’ platform is appr. 155
meters (8 train carriages), the longest station is “Vorobyovy
Gory” – its length is about 282 meters [11]. The universe of

discourse U the variable

(3)
vL is defined on can be denoted as

 0,c , where the right bound c equals to the double length of

the longest platform in the metro. For the upper function (U) as
a constituent of IT2MF representing value 'at station', we set
the following parameters: A(0,0), B(0,0), C(141,1) and

D(282,0), where xC is a half of the longest station (282 m) in

the Moscow’s metro. The parameters of the lower function (L)

of IT2MF are A(0,0), B(0,0), C(77.5,1) and D(155,0) with xC

calculated as the arithmetic mean of xB and xD coordinates. We

suggest to model the linguistic value 'near the station' with the

IT2MF, whose upper function (U) is characterized by
A(218.5,0), B(391.25,1), C(564,1) and D(564,0); the value of

xA is obtained as  (L'at station ') (U'at station ')
x xD D 2 218.5   (in

meters), xB is the mean of xA and xC x-coordinates, both xC

and xD are equal to 564 meters (double length of the longest

platform). Similarly, parameters of the lower function (L) are

A(373.5,0), B(468.75,1), C(564,1) and D(564,0), where xA (x-

coordinate of the first parameter) equals to

(U'at station ')
xA 155 373.5   that takes into account the length of

the standard metro train, i.e. the latter will have direct influence
on the spread of the left tail of the membership function. As

159 из 190

before, coordinate xB is the average of xA and xC (468.75

meters), and non-negative values are considered.
Rather detailed description of linguistic variables and their

values is important for deeper understanding of fuzzy logic

system (its model), the use of interval type-2 membership

functions to represent uncertainty inherent in verbal values
introduced and with the regard for specific character of
possible implementation of the system in the code. To a large

extent, the definition of a very small number of linguistic

variables’ values pursues two plain objects – namely, (1) to
obtain the initial “non-overloaded” (in terms of number of
values and fuzzy rules) variant of the system to perform

experiments with and to lay a ground for further analysis,
tuning parameters and rule base, revealing drawbacks, etc., and
(2) to examine the general idea of using type-2 fuzzy sets in
recommendation services that are actively advancing as it
applies to enormous market of mobile devices.

IV. RULES OF THE FUZZY MODEL (INFERENCE SYSTEM)

AND EXPERIMENTS CONDUCTED

The core of the fuzzy inference system (FIS) as shown in
Fig. 1 is a set of linguistic values represented in the form of
fuzzy sets, If-Then rules having a generic form ″If
{antecedent} Then {consequent}″ and fuzzy reasoning scheme;
the latter just operate on a given rules along with specified
inputs to derive system’s outputs or conclusions. The experts’
understanding of the phenomenon under study and their
knowledge of the domain field provide a basis for formation of
the primary version of rule-base, in which linguistic variables

(1)
v " "L latitude/longitude accuracy and

(2)
v " "L delta are used

in antecedent part of fuzzy rules (input of the system), whereas

(3)
v " "L location operates as system’s output (its terms form

consequent part of rules). The evident transparency of the rule-
base in general is substantiated here by a specific fact of
simplicity and lucidity of both linguistic values submitted for
consideration and existing relations between them. To the
opinion of authors, such situation can be viewed as an
advantage in terms of efforts needed to design the rule-base.
However, it does not mean that the subsequent fine-tuning of
rules as well as values of variables will not be needed – most
likely, this stage is unavoidable in practice regardless of the
system at hand. At the moment, the rules can be represented in
the following form:

Rule 1

If delta is small difference and latitude

accuracy is insignificant difference and

longitude accuracy is insignificant

difference Then location is at station

Rule 2

If delta is small difference and latitude

accuracy is close to latitude and longitude

accuracy is insignificant difference Then

location is near the station

Rule 3

If delta is small difference and latitude

accuracy is insignificant difference and

longitude accuracy is close to longitude

Then location is near the station

Rule 4

If delta is small difference and latitude

accuracy is close to latitude and longitude

accuracy is close to longitude Then location

is near the station

Rule 5

If delta is bigger difference and latitude

accuracy is insignificant difference and

longitude accuracy is insignificant

difference Then location is near the station

Rule 6

If delta is bigger difference and latitude

accuracy is close to latitude and longitude

accuracy is insignificant difference Then

location is near the station

Rule 7

If delta is bigger difference and latitude

accuracy is insignificant difference and

longitude accuracy is close to longitude Then

location is near the station

Rule 8

If delta is bigger difference and latitude

accuracy is close to latitude and longitude

accuracy is close to longitude Then location

is near the station

A. Test 1 (difference between fixed and current points
(delta))

The first carried out experiment is related to checking the
difference between fixed and current points (i.e. linguistic

variable delta) under the constant latitude/longitude
accuracies equal to 0.00074 (step of delta’s change is taken as
0.0032, number of steps equals to 10). IT2MF is an assortment
of type-1 membership functions embedded between upper (U)
and lower (L) functions. Each of these embedded functions
(type-1) can be defuzzified, viz. converted to crisp number
that represents generically corresponding fuzzy set (its
membership function). The most commonly used method of
defuzzification is called centroid [10]. The processing of type-2

TABLE II. CENTROID TYPE REDUCTION DEFUZZIFICATION

№

Difference

between fixed

and current

points (delta)

Location

1 0.0032 84.398

2 0.0064 94.312

3 0.0096 139.576

4 0.0128 282.000

5 0.016 392.995

6 0.0192 392.995

7 0.0224 392.995

8 0.0256 448.347

9 0.0288 460.487

10 0.032 460.487

fuzzy systems provides for the use of type reduction procedure
(TRp) that can be seen as an expanded form of type-1
defuzzification resorting to Extension principle [12]. Each of

rules Rule i, i 1,8 , “fires” and leads to obtaining output type-2

160 из 190

fuzzy set under a given input data. The union of these output
sets and calculation of the centroid of resultant set is the essence
of the centroid type reduction. Both theoretical framework and
development of type reduction’s use in type-2 fuzzy systems
were presented in publications by Karnik N.N. and Mendel J.M.
[13, 14]. As applied to IT2FS (secondary membership function
in that case is constant), TRp becomes simpler in comparison
with generalized type-2 sets – the results of experiment (see the
data above) using centroid type reduction defuzzification as
summarized in Table II.

TABLE III. CENTER-OF-SETS TYPE REDUCTION DEFUZZIFICATION

№

Difference

between fixed

and current

points (delta)

Location

1 0.0032 84.398

2 0.0064 84.398

3 0.0096 84.398

4 0.0128 275.180

5 0.016 460.487

6 0.0192 460.487

7 0.0224 460.487

8 0.0256 460.487

9 0.0288 460.487

10 0.032 460.487

Fig. 5. Centroid type reduction method for “delta” variable

On the other hand, another TRp called center-of-sets type

reducing approach (there is a family of defuzzification methods
proposed up to now) can be used to substitute the consequent
parts of rule-base by singletons at the centroid of corresponding
fuzzy sets (Then-part of rules). Subsequent step is connected
with obtaining the centroid of type-1 fuzzy set constituted by
aforementioned singletons [10]. Calculated values that refer to
test data (section IV, item’s A preamble) are accumulated in
Table III.

It can be noticed that for a particular set of test data centroid
TRp demonstrates better (more smooth) approximation of the
moderately growing exponential trend. Relative angularity (in
Fig.5 it is not so strongly pronounced in comparison with
Fig.6 case) relates to the use of piecewise linear (trapezoidal)
functions representing fuzzy sets, certain (potential) drawbacks

ascribed to rule-base design issues and small number of
linguistic terms defined for each variable under consideration.
However, even under these circumstances, results of centroid

TRp indicate that it is more sensitive to accuracy changes
(fine-tuning) than the second TRp. The second graph (Fig.6)
visualizes marked broken line consisting of 2 constant levels,
and one of those is rather lengthy. To a variable degree, both
lines are increasing, and centroid TRp is preferable, since it
takes into account specificity of all functions’ values.

Fig. 6. Center-of-sets type reduction method for “delta” variable

B. Test 2 (latitude/longitude accuracy)

The second test relates to checking the latitude/longitude

accuracy under constant difference between fixed and current

points (delta) equals to 0.0032 (longitude accuracy is 0.00074

OR latitude accuracy is 0.00074, the number of steps is set to

10). Results are shown by Tables IV and V.

TABLE IV. CENTROID TYPE REDUCTION DEFUZZIFICATION

№

Latitude /

Longitude

accuracy

Location

1 0.00074 84.398

2 0.00148 84.398

3 0.00222 84.398

4 0.00296 90.831

5 0.0037 99.770

6 0.00444 139.576

7 0.00518 392.995

8 0.00592 438.650

9 0.00666 460.487

10 0.0074 460.487

TABLE V. CENTER-OF-SETS TYPE REDUCTION DEFUZZIFICATION

№

Latitude /

Longitude

accuracy

Location

1 0.00074 84.398

2 0.00148 84.398

3 0.00222 84.398

4 0.00296 84.398

5 0.0037 84.398

6 0.00444 84.398

7 0.00518 460.487

8 0.00592 460.487

9 0.00666 460.487

10 0.0074 460.487

161 из 190

Here, situation retains characteristic features observed in Fig.5
and 6, i.e. centroid TRp also demonstrates better “behavior”.
The line (Fig.7) grows monotonously being smooth enough,
except for x-coordinates falling into the real range [0.00518,
0.00666] (approx.). Lines shown in both graphs (Fig.7,8) follow

the exponential trend (the less latitude/longitude accuracy, the
less location accuracy observed).

Fig. 7. Centroid type reduction method for “latitude/

longitude accuracy” variables

Fig. 8. Center-of-sets type reduction method for “latitude/

longitude accuracy” variable

We have additionally tested rules using two defuzzification

methods already mentioned before, namely, (1) centroid TRp

and (2) center-of-sets TRp (approaches).

C. Test 3 (checking rules)

TABLE VI. CENTROID TYPE REDUCTION DEFUZZIFICATION

№ Rule

Difference

between

fixed and

current

points

(delta)

Latitude

accuracy

Longitude

accuracy
Location

1 1a 0.0032 0.00074 0.00444 139.576

2 1b 0.0064 0.00222 0.0037 99.770

3 1c 0.0096 0.00296 0.00296 139.576

4 1d 0.0128 0.0037 0.00222 282.0

5 1e 0.016 0.00444 0.00074 392.995

6 2a 0.0032 0.00518 0.00074 392.995

7 2b 0.0064 0.00444 0.00222 139.576

8-22 2c-5b 0.0096 0.00592 0.00296 392.995

23 5c 0.0256 0.00296 0.00296 446.153

24 5d 0.0288 0.0037 0.00222 441.641

25-29 5e-6d 0.032 0.00444 0.00074 392.995

30 6e 0.032 0.00666 0.00074 460.487

31-40 7a-8e 0.0192 0.00074 0.00666 392.995

Each rule was “fed” with 5 (five) test cases, thus each of

Tables VI and VII covers 40 8 5  cases in total. Tests per

rule are numbered in ascending order starting with [n]a and
ending with [n]d, where [n] is the rule’s number (index). For
example, Rule 3 corresponds to sequence of labelings 3a, 3b,
3c, 3d and 3e used in Tables VI and VII. Test data were
generated according to intervals of each variable’s domain

(the same approach as in tests 1 and 2). Step of delta
changes is 0.0032, while step for the latitude and longitude
variables equals to 0.00074. Input values are mixed to ensure
wider coverage and variety. The last column presents location
according to test values and calculation method (TRp)
selected. Last column’s cells with light-grey shading

determine At station (≤ 282 meters) value (set), while other

values show location near some station (linguistic value Near

the station). Both tables are wittingly shortened, because of
recurrent location results.

TABLE VII. CENTER-OF-SETS TYPE REDUCTION DEFUZZIFICATION

№ Rule

Difference

between

fixed and

current

points

(delta)

Latitude

accuracy

Longitude

accuracy
Location

1 1a 0.0032 0.00074 0.00444 84.398

2 1b 0.0064 0.00222 0.0037 84.398

3 1c 0.0096 0.00296 0.00296 84.398

4 1d 0.0128 0.0037 0.00222 275.180

5 1e 0.016 0.00444 0.00074 460.487

6 2a 0.0032 0.00518 0.00074 460.487

7 2b 0.0064 0.00444 0.00222 84.398

8-40 2c-8d 0.0096 0.00592 0.00296 460.487

A defuzzification method computes the range of possible

location values according to input data provided, and the last
column of tables shows a mean value of interval bounds, e.g.
139.576 is a mean of [0, 279.152] real-valued range obtained
through defuzzification procedure.

V. CONCLUSION

The paper examined potentials of the modeling approach
based on interval type-2 fuzzy sets (IT2FS) and conventional
Mamdani fuzzy inference system (MFIS) as applied to real and
topical problem related to passengers tracking in urban metro
(positioning service by the example of Moscow city). Appeal
and significance of developing and further analysis of such
models may be of a high demand for appropriate representation
of those factors that are inherently vague and uncertain. The
aspects that provide for eventuality to discuss models with
broad sections of stakeholders owing to model’s transparency,

162 из 190

abilities to tune their parameters and to carry out experiments
(test runs) play a sound role in theory and from practical
standpoint. Empirical studies had shown that design issues
concerned with linguistic variables and their labelled values (or,
terms) influence significantly fuzzy model’s output. Test cases
presented in the paper corroborate both the applicability and

relevance of fuzzy logic-based approach to various problems
emerging in the field of navigational services, passenger
tracking based on positional technologies. As it was mentioned
in section IV, the model that makes use of IT2FS and MFIS
leads at the end to resultant intervals that can be calculated in
genuine mobile applications without appreciable extra costs
with the object of determining the distance to notify users
about their arrival (approach) to station. Hence, the developed
fuzzy (prototype) model helps to estimate exemplary limits for
values of each variable examined. Due to promising test results
and its potential practical applicability, the model (Fig.1) will be

implemented in the Android-based mobile program aimed at
building routes and notifying users about their destination.

From the standpoint of further theoretical research and topic

evolvement, different types of membership functions together
with fine tuning of their parameters as well as alternative type
reduction defuzzification methods can be considered. Besides,
by way of illustration GPS technique may beat its own path in
IT2FS-based models as applied to ground transportation.

REFERENCES

[1] C-Y. Chen, J.-P. Yang, G.-J. Tseng, Y.-H. Wu and R.-C. Hwang. An
Indoor Positioning Technique Based on Fuzzy Logic, in Proc.
International Multi Conference of Engineers and Computer Scientists
(IMECS), 2010, pp. 854-857.

[2] A. Teuber and B. Eissfeller. WLAN Indoor Positioning Based on
Euclidean Distances and Fuzzy Logic, in Proc. Workshop on
Positioning, Navigation and Communication (WPNC), 2006, pp. 159-
168.

[3] S. Yasunobu, S. Miyamoto and H. Ihara, A Fuzzy Control for Train
Automatic Stop Control. Transactions of the Society of Instrument and
Control Engineers, vol. E-2(1), 2002, pp. 1-9.

[4] G.J. Klir and M. Wierman, Uncertainty Formalizations, in Uncertainty-
Based Information. Elements of Generalized Information Theory, ser.
Studies in Fuzziness and Soft Computing (#15), 2nd ed., Physica Verlag,
1999, 168 p.

[5] L. Arigela, P. Veerendra, S. Anvesh and K. Hanuman, Mobile Phone
Tracking & Positioning Techniques. International Journal of Innovative
Research in Science, Engineering and Technology, vol.2, pp. 906-913,
2012.

[6] Gps.gov, “Official U.S. Government Information About the GPS and
Related Topics, GPS Accuracy”, 2017. [Online]. Available:
http://www.gps.gov/systems/gps/performance/accuracy/ [Accessed 27-Feb-
2017].

[7] V. Zeimpekis, P. E. Kourouthanassis and G. M. Giaglis, Mobile and
Wireless Positioning Technologies, in UNESCO Encyclopedia of Life
Support Systems (EOLSS), vol. 6.108, EOLSS Publishers Co Ltd, 2007.

[8] Mosmetro.ru, “Metropoliten v tsifrakh”, 2017. [Online]. Available:
http://mosmetro.ru/press/metropoliten-v-tsifrakh/ [Accessed 28-Jan-2017] (in
Russian).

[9] Nashemetro.ru, “Metro v tsifrakh.”, 2017. [Online]. Available:
http://nashemetro.ru/facts.shtml [Accessed 13-Jan-2017] (in Russian).

[10] J.M. Mendel, H. Hagras, W.-W. Tan, et al. Introduction to Type-2 Fuzzy
Logic Control. Theory and Applications (IEEE Press Series on
Computational Intelligence), Wiley-IEEE Press, 2014, 376 p.

[11] En.wikipedia.org, “Moscow Metro”, 2017. [Online]. Available:
https://en.wikipedia.org/wiki/Moscow_Metro [Accessed 25-Jan-2017].

[12] J.M. Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions, New Jersey : Prentice Hall PTR, 2001, 576 p.

[13] N.N. Karnik, J.M. Mendel. Type-2 Fuzzy Logic Systems: Type-
Reduction, in Proc. IEEE Int. Conference on Systems, Man, and
Cybernetics, 1998, pp. 2046-2051.

[14] J.M. Mendel. Interval Type-2 Fuzzy Logic Systems and Perceptual
Computers: Their Similarities and Differences, in Advances in Type-2
Fuzzy Sets and Systems: Theory and Applications (ser. Studies in
Fuzziness and Soft Computing. A. Sadeghian, J. Mendel, H. Tahayori,
Ed. Berlin : Springer Science, 2013, pp. 3-18.

163 из 190

http://www.gps.gov/systems/gps/performance/accuracy/
http://mosmetro.ru/press/metropoliten-v-tsifrakh/
http://nashemetro.ru/facts.shtml
https://en.wikipedia.org/wiki/Moscow_Metro

A Modified Scrum Story Points Estimation
Method Based on Fuzzy Logic Approach

Sofia A. Semenkovich, Olga I. Kolekonova, Konstantin Y. Degtiarev

School of Software Engineering
National Research University Higher School of Economics

3 Kochnovsky Proezd, Moscow, 125319, Russian Federation
sofya-semenkovich@yandex.ru, okolekonova@gmail.com, kdegtiarev@hse.ru

Abstract — Several known methods allow to estimate the
overall effort(s) to be used up for the software development. The
approach based on story points is preferable and quite common
in the context of Sсrum agile development methodology.
However, it might be rather challenging for people, who are new
to this methodology or to a specific Scrum team to estimate the
amount of work with story points. The proposed approach
involves estimation of features on the basis of linguistic terms
that are both habitual and clear for everyone. The presented
fuzzy inference system (Mamdani’s model) makes it possible to
calculate story points – the study shows empirically that
beginners to Scrum methodology consider the proposed
approach to be more convenient and easier in use than the
‘plain’ story points estimation.

Keywords — fuzzy logic, Scrum, story points, expert estimations,
aggregation of opinions, fuzzy inference system, Likert scale

I. INTRODUCTION

Many software systems relate to large-scaled and rather
complex products that embrace, in particular, numerous
factors to monitor and control at the development stage.
Without a doubt, software development is a multifold process
that essentially depends on tangled human activities, thus
requiring effective management and planning [1]. Software
development effort estimation acts as a key constituent of

decision-making support during the process of such planning
and further management. In short, effort can be defined in the
context of combination «man-time» and expressed as the
time (number of units) needed for a man (team’s member) to
complete a given task [1, 2]. Nowadays, we may address a
relatively long list of recognized estimation methods aimed
at evaluating efforts needed to be spent in the software
development process. In fact, many efforts to categorize such
methods are originating from the publications by Barry
Boehm on software cost modeling and engineering
economics in the early eighties of the previous century. We
cannot talk about «the best» from all conceivable standpoints
classification, but in rough outline such methods can be
divided into three aggregative categories, namely: methods
based on expert subjective estimates and views (non-model
based methods), formal estimation methods that are grounded
on specific or generic models, and combined (or, composite)
methods built upon joint use of analysis and processing of

available from different sources data along with expert
estimates [3]. Amongst others, the first category takes in such
approaches as planning poker (also known as Scrum poker)
and Wideband Delphi, two similar methods where the
provided estimations are based on judgments and expressed
opinions of project’s stakeholders [1]. In formal estimation
models (e.g. Constructive Cost Model (COCOMO),
COCOMO II as a generalization of COCOMO, weighted
micro function points (WMFP), SLIM, use case modeling,
story points) formulas and/or results derived from earlier
implemented projects are used.

In the present paper, we consider the method of
estimation with story points in the context of Scrum, an agile
flexible framework to manage the process of software
development. The main goal of Scrum is to deliver new
software capability (features) every 1-2 weeks (the duration
can be extended), each new version includes the most
important features for Product Owner, thus allowing to
inspect and adapt product to current conditions. The main
Scrum characteristic of the estimation process is that Product
Owner defines priorities for the features because the product
should be maintained in a tested/integrated state every Sprint
(i.e. fixed number of days team works together to produce
beforehand coordinated changes in the product), so the work
should be broken down to pieces/stages [4]. In case of proper
compliance with other Agile principles, the release deadline
cannot be missed by the team; if the features were evaluated
incorrectly by some reasons, skipping over the less important
tasks can be the only noticeable disadvantage as compared to
waterfall or pseudo-Agile teams’ experience.

In contrast with other approaches, Scrum is concerned
with two main factors that are important in estimating
development efforts. Firstly, the responsibility for the
product falls on the shoulders of the whole team rather than
individuals. It means that there are no gradations like «my
work» and «your work». The framework attracts attention to
cumulative effort(s) per Product Backlog’ Item rather than
individual effort(s) per feature. Secondly, the tasks are
estimated in a relative manner, i.e. they are assessed
(compared to each other) in terms of relative units, but not
absolute ones. Thus, story points may be employed as such
units of measure to express an estimate of the overall effort
required to fully implement a product backlog item or any

164 из 190

other piece of work [5]. As it is noticed by Joshua Kerievsky
[6], “… Many say that story points make us better at
estimating because we’re estimating the size of work, rather
than the time it takes to complete it; … in 2005, one of our
customers found story points to be so confusing that he
renamed them NUTs (Nebulous Units of Time)”.

Such witty testimonial inherently expresses the attitude of
newcomers to Scrum development methodology towards
story points, their ‘fear’ of commonly used phrases and
statements: «number of points per sprint», or «the estimate in
story points is better than estimate in hours», etc. There are
many helpful and well-composed electronic and printed
sources dedicated to Scrum’s set of principles and practices
aimed at developing complex systems – books and articles by
J. Sutherland, C. Sims, A. Stellman, guides, reports, tutorials
on Scrum and other Agile methodologies by AgileRussia.ru,
Scrum Alliance®, training courses from ScrumTrek,
Scrum.org, LuxSoft, to name a few. Even cursory glance at
results of Google search gives cause for being not fully
confident indeed in the conception of various word-
combinations related to story points enquiries, e.g. «they are
cheaper than hours», «relative unit of measure», «estimate of
effort», and the like.

In brief, story points are founded on “a short description
of a set of features called user stories”; each such story will
have a set of story points [7]. When we estimate features with
story points, we assign a point value to each item. The raw
values we assign are unimportant (we can talk about unit of
measure that team’s members agreed on), what matters are
the relative values. A story that is assigned a value of 2 should
require twice as much effort as a story that is assigned a value
of 1, and it also constitutes two thirds of a story that is
estimated at the level of 3 story points. Because story points
represent the effort(s) to develop a story, a team’s estimate
must cover every aspect that can affect the effort. In general,
they bring together as a single whole the amount of work to
do, the complexity of the work, any risk or uncertainty in
doing the work.

Our research proposes to simplify the process of
estimating features with the help of story points. For most of
people it is rather confusing or even difficult to combine three
aforesaid components into one in their mind and give an
approximate resultant value. Instead of evaluating the
features with story points, we assume that each member of
the Scrum team (e.g. expert) provides his/her opinion
regarding two factors, namely, these are the amount of work
to do and its complexity. Besides, the experts should also
specify the level (or, degrees) of their confidence in both such
estimates. Experts operate with preset collection of linguistic
terms expressed as words or phrases of the natural language.
These verbal units are converted after that to proper fuzzy sets
used in further processing. The latter provides application of
fuzzy inference system (FIS) for each expert’s estimations
and aggregation of the results obtained into one outcome.
What are the reasons to resort to the help of fuzzy approach?
Well, we can partly refer to [8] saying that “many fuzzy
categories described linguistically appear to be more
informative than precise descriptions”.

On top of that, a short survey was also conducted with the
aim to figure out the opinions of four different groups of

people on proposed approach. The core of this activity is the
comparison of story points obtained in “experimental”
manner and regular story points estimation.

The rest of the paper is organized as follows: section II
presents basic definitions, terms (type-1 fuzzy set, linguistic
variable, inference system, defuzzification, aggregation of
estimates) that are used in the subsequent parts of the paper.
The proposed approach to obtain story point-based estimates
on the basis of defined input variables of Mamdani’s fuzzy
inference system is discussed and visualized in section III.
The results of conducted experiment (empirical study) with
several groups of people having different practical skills
relative to use of story points estimations are discussed in the
section IV. Concluding remarks are drawn in section V.

II. BASIC DEFINITIONS AND GENERAL COMMENTS

In clear majority of cases humans express their opinions
and judgments using statements of natural language; many
things that are thus heard or said are vague to a variable
degree. According to Stanford Encyclopedia of Philosophy,
a term «is vague to the extent that it has borderline cases»,
and the latter acquires special significance in relation to the
vagueness that has to be modeled in adequate way for the case
under consideration. In general, such task appears simple
enough only at the first glance, and one of practical
approaches, at least, from perception-based point of view,
relates to fuzzy logic (FL) methodology. It provides ample
means to model the perceived meaning of words/phrases
conveying the experts opinions (estimates) in a graded
fashion. Following seminal paper “Fuzzy Sets” by L.Zadeh
[9], the concept of fuzzy set constitutes a class of objects with
continuum membership grades.

Definition 1. Let U be a set of elements (objects) that are
denoted generically as x (U={x}); fuzzy set A U is a set of

ordered pairs  A(x,μ (x)) , where mapping Aμ : x [0,1] is

a (type-1) membership function of a fuzzy set A. Value

Aμ (x) is a degree (grade) of membership of x in the set A.

In many situations the shape of membership function can
be set by a specialist (expert, domain engineer); such manual
tuning of function’s parameters turns out to be sufficient at
the initial stages of model’s development and processing.
Thus, piecewise linear functions are often chosen due to their
usability, expressive power in grasping thoroughly both the
knowledge and human’s perception of situation, as well as
computational efficiency.

Definition 2. Trapezoidal membership function [10] is

defined by a 4-tuple  1 2 3 4, , ,a a a a of its parameters in the

following way:

 

 
 

1

1 2 1 1 2

1 2A

4 4 3 3 4

4

0, x (,)

(x) (), x ,

1, x ,μ (x)

(x) (), x ,

0, x (,)

 a

 a a a a a

 a a

 a a a a a

 a

 
   

 
   

  

 (1)

Normalized trapezoidal (and triangular with values 2 3a a)

165 из 190

functions having height Amax(μ (x)) 1,h   1x U    ,

often describe values in the form «close to b», «around b»,

where b is either a crisp real number
1b val , or the interval

(1) (2) 1,b b    val val .

Definition 3. A linguistic variable is characterized by a 5-

tuple v v syn sem,T(), U, R , RL L , where Lv is the name of the

variable (e.g. v "complexity of work"L), vT()L is the set

formed by labels of variable’s Lv linguistic values 1 n,..,l l

(term-set of Lv ; e.g. 'easy', 'normal', 'difficult', etc.). These

names are generated using syntactic rule synR , whereas the

meaning sem iR ()l is associated with each value il , i 1, n ,
from ()LvT by means of semantic rule semR ; sem iR ()l is a

fuzzy set (respective membership function) defined on a
universe of discourse U . Linguistic modifiers (or, so-called
hedges) 'very', 'more or less' and the like, together with
logical connectives 'and', 'or' and negation 'not' are treated as
special type operators that modify the primordial meaning of
primary values (terms) 1 n,..,l l . It results in altered shape of

membership functions representing
mod mod
1 n,..,l l [11].

Definition 4. The fuzzy inference is a process of deriving
conclusion from given premises and system’s inputs (or,
given fact), for which compositional rule of inference (CRI)
serves as a core. CRI can be viewed as a generalization of
modus ponens argument scheme (the mode that affirms). The
premises are represented as a set of If-Then rules forming

knowledge base Ω, e.g. If x is Ai Then y is Bi, i 1, m , as a

basic case (i iA B , i.e. iA implies iB) – potentially, such

rules may have more complex appearance. Mamdani-type
fuzzy inference system (FIS) proposed and evolved by E.H.

Mamdani and S. Assilian in 1975 owing to the examination
of fuzzy logic controller can be expressed as


1x U

B (y) A (x) R(x, y)' '


  , where relation
R(x, y) is

calculated as follows:


m

i i
i 1

R(x, y) A (x) B (y)


  , where iA

and iB are (type-1) fuzzy sets, i 1A U , i 2B U .

The knowledge base Ω represented as a set of If-Then
rules constitutes rather convenient and transparent form to
express individual expert conceptions of phenomenon under
study as well as perceptions of a group of specialists. On the
whole, model Ω is a handy tool to discuss hypotheses (under
potential tuning up rules and initially set parameters of fuzzy
sets, if needed) and to make final decisions.

The process of representing initial data (e.g. linguistic
values) as membership functions is called fuzzification; most
of applications require to perform at final stages the opposite
translation from fuzzy functional forms to crisp values; the
latter act as representatives of corresponding fuzzy sets. This
is achieved through defuzzification procedures, and one of
commonly utilized method is called Center Of Area (COA).

It stipulates calculation of the resultant value
*res by way of

 * U

U

x μ(x)dx
res

μ(x)dx






 (2)

The intersection (AND) and union (OR) operations that are
used in computational schemes with fuzzy sets are expressed
as functions called t-norms T(·) and s-norms S(·),
accordingly [12]. Different types of T(·) and S(·) are
presented and discussed at length in the literature (e.g. [13])

– without loss of generality, in the paper we use standard min
and max operators:

 A B A B A Bμ (x) T(μ (x),μ (x)) (μ (x),μ (x))min   (3)

 A B A B A Bμ (x) S(μ (x),μ (x)) (μ (x),μ (x))max   (4)

It is worth noting that story points are crisp numbers,

because they appear to be the most convenient and easy
“units” to compare and interpret by Scrum team members as
compared to, for instance, numeric intervals. Thus, crisp
numbers are associated with story points, which help to rank
features in compliance with efforts required to implement
them. As it was mentioned before, the valuable source of
information are expert judgments (estimations), and once all
such estimations are obtained, they should be aggregated to
form conjoint opinion. Such activity can be performed by a
dedicated person called analyst. With this aim in mind, two
methods of aggregation are used in the paper.

The first method of aggregation is applied when all
estimations elicited from Scrum team members (experts) are
different, with one minimum and one maximum denoting left
and rights extremities in the resultant sequence. For example,
if it is of a form 10, 25, 46, 34, 30, 47, 28, simple expression
allows to calculate the aggregated estimate:

    
min max

agr i min maxi i ,i
n 2


    ee e e e (5)

where agre is the aggregated estimate, mine and maxe are

minimum and maximum values among obtained estimations,
respectively, ne is the total number of values in the sequence,

summation goes over all estimations excluding mine and maxe .

The second aggregation method (weighted arithmetic
mean) can be used in situation of appearance of recurring
experts’ estimations as in the case of values 10, 25, 10, 34, 25,
47, 28; such outcomes (with repetitions) are rather
practicable, so they should be addressed reasonably enough.
If eR is the most recurring estimate (conditional mean)

observed in the numeric sequence, then agre can be obtained

as follows:

    agr i ii
n   e e ee R e R f (6)

where if is the frequency of ie occurrence in the row of

estimations provided.
All prepared comments allow to proceed to approach that

may assist people who are new to Scrum methodology (or,
they are newcomers to a specific Scrum team) and who do

166 из 190

not fully understand how they can estimate the amount of
work to do on the base of story points. The central idea of
such approach relates to a natural course, i.e. story points
seem brittle and a bit confusing – fine, try in that case to
estimate how much certain part of work will take making
good use of terms you are familiar with. The aforesaid
definitions simplify the perception of the following material,
and they should not be considered as an extra “difficulty” to
tackle on top of Scrum methodology itself; «such overload is
a bit too thick!» – the reader may exclaim. We think, in no
way, as long as all necessary (not very complex) calculations
can be done by analysts; in other respects, interviewing and
grasping the verbal statements expressing the results (what is
said) in pretty understandable form are natural and plain day-
to-day human activities.

III. EXPERT OPINIONS AND LEVELS OF CONFIDENCE –
 MODIFIED LIKERT SCALE AND FUZZY APPROACH

Suppose that through talks and consultations with experts,
the analyst collected the opinions (estimations) of several
experts on certain feature expressing how much work,
reasoning from their understanding and perception, they’ll
have to do to implement this feature, complexity of the work
and their level of confidence about each of these estimations.
After fuzzification of verbal data obtained and applying fuzzy
rules, the aggregated result is converted to story points; the
latter can be used at subsequent stages in any project
management system.

As it was already mentioned earlier, the expert puts
his/her opinion concerning complexity, amount of work as
well as degree of confidence in estimation expressed in
linguistic forms (statements) [14]. For example, the expert
may say the following: «I’m quite sure that this feature will
be difficult to implement, besides I must do a large amount of
work to implement this feature, however, I’m not very sure
about it». From this sentence, we can pick out the following
pairs of linguistic terms, namely: 'difficult' → 'quite sure' and
'large' → 'not very sure'. With such estimations in mind (and
their formal representation by way of fuzzy sets), we’ll be
able to proceed to the construction of corresponding fuzzy
rules [15].

TABLE I. PARAMETERS OF TRAPEZOIDAL MEMBERSHIP FUNCTIONS
REPRESENTING VALUES OF TERM-SETS

The amount of
work (set T(A))

The complexity of
work (set T(C))

The overall effort
(set T(E))

value 'very small'
(1,1,5,20)

value 'very easy'
(1,1,5,20)

value 'tiny'
(1,1,5,20)

value 'small'
(5,15,30,40)

value 'easy'
(5,15,30,40)

value 'little'
(5,15,30,40)

value 'medium'
(25,40,60,75)

value 'normal'
(25,40,60,75)

value 'average'
(25,40,60,75)

value 'large'
(60,70,85,95)

value 'difficult'
(60,70,85,95)

value 'big'
(60,70,85,95)

value 'very large'
(80,95,100,100)

value 'very difficult'
(80,95,100,100)

value 'huge'
(80,95,100,100)

It is commonly advised to use the interval [1,100] to

represent story points estimations, so we direct our attention
to the same extreme points 1 and 100 to define the universe U

to specify fuzzy sets [4]. The amount of work to do, the
complexity of the work and the degrees of confidence are
considered as system’s input variables, whereas the overall
(combined) effort is taken as an output variable. Thus, the

following linguistic variables
()L i
v denoted as A, C and E and

their values (labels of linguistic terms) are considered [11]:
(1)
v "amount of work to do"L =A  ,
(2)
v "complexity of work"L =C  (Fig. 1),
(3)
v "the overall (combined) effort"L =E  (Fig. 2), where

T(A) = { 'very small', 'small', 'medium', 'large', 'very large' },
T(C) = { 'very easy', 'easy', 'normal', 'difficult', 'very difficult' },
T(E) = { 'tiny', 'little', 'average', 'big', 'huge' }.

Fig. 1. Linguistic variable C = complexity of work

Fig. 2. Linguistic variable E = the overall (combined) effort

TABLE II. CORRESPONDENCE BETWEEN LEVELS OF CONFIDENCE
AND THEIR VALUES

Level of confidence (linguistic term) Value

'not sure at all' 0.05
'almost not sure' 0.15
'not very sure' 0.35

'more or less sure' 0.5
'sure' 0.65

'quite sure' 0.8
'definitely sure' 0.95
'extremely sure' 1

After consultations with experts, the analyst (and his group)
defines the parameters of trapezoidal membership functions
(1) to represent formally values of term-sets T(A), T(C) and
T(E) fuzzy sets as shown in Table I. For example, if expert
says something like «… this feature is hard to implement, but
I must do small amount of work», we select primary linguistic
values 'small' from the set T(A) and 'difficult' – from T(C).

167 из 190

The parameters of membership functions (Table I) were
chosen empirically, although slight alterations of values

within certain bounds (ε i , i 1, k , k is the number of

deliberate assortments of such deviations on all terms of sets
T()) turn out to be allowable. Such “mobility” of value
ranges may bring to the advisability to consider further on
type-2 interval fuzzy sets – unlike type-1 sets, they enable to
express the uncertainty about the membership grades of
elements on the domain considered.

Fig. 3. The distribution of confidence levels (fuzzification stage)

TABLE III. THE ACCORDANCE OF THE AMOUNT OF WORK AND THE

COMPLEXITY OF WORK TO OVERALL EFFORT

A \ C
very
easy

easy normal difficult
very

difficult

very
small

tiny tiny little average average

small tiny little little average average

medium little little average big big

large average average big big huge

very
large

average average big huge huge

The next step is to relate the level of confidence to fuzzy

set being thought about. The ideas and views concerning
Likert scale (psychometric response scale suggested by
American sociologist Rensis Likert in 1932) allow to come
out with relatively simple scheme to use in aforesaid task.
Following Qing Li, the level of agreement (LA) as an estimate
within the range [0,1] can be associated with the membership
degree (as an option, terms 'strongly agree', 'agree', 'neither
agree, nor disagree', 'disagree' and 'strongly disagree' can be
in use) [16]. The sum of LA for all options is equal to 1. In the
case considered, the option provided by an expert and the
level of agreement is experts’ levels of confidence are shown
in Table II. However, if expert’s level of confidence is not
'extremely sure', we are facing with the excess of LA. Thus,
it can be suggested to distribute emergent excess between the
nearest neighbors of the option selected by the expert. If there
are two nearest neighbors, they both will get half of the excess
observed; if there is only one nearest neighbor, it will get the
whole amount of excess. In the paper, we use crisp numbers

to represent level of confidence’ values as the starting point
of our approach. These values are based on the results of
survey – opinions of approximately 50 people concerning the
correspondence between linguistic values (labels) of
confidence level and their actual mapped numbers were first

For example, if expert says that his/her level of
confidence can be expressed as 'quite sure' (i.e. expert
explains that «… I’m quite sure that…»), and the feature under
consideration is very easy to implement, we choose fuzzy
number representing term 'very easy' and define degree of
membership as being equal to 0.8 – it is the value of choice.
Thus, the excess level of confidence comes to 0.2, and it is
handed over to the nearest neighbor of the term 'very easy',
which is 'easy'. This distribution of confidence levels is
shown graphically in Figure 3.

Based on the information and knowledge elicited from
experts, we may design a set of fuzzy rules (fuzzy rule-base).
The amount of work to be done and the complexity of work
act as input variables, and their combination result in the
value of the overall effort. In general, these rules reflect the
perceptions of experts, their feelings and conclusions drawn
regarding situation given. For instance, a “typical” question
may look as follows: «How much will it take in the sense of
overall effort to accomplish a ′very easy′ task that needs just
′medium′ amount of work to be done». The short version of
the rule-base is represented in Table III, whereas the full set

is provided below (rules Ri, i 1,5). From the very outset,
there were 25 rules (one rule for each combination of the

amount of work (A) and the complexity of work (C)). Later,
they were combined on the base of resulting value of overall
effort, and only five rules R1,…,R5 were retained.

- rule R1:
IF amount is 'very small' AND complexity is 'very easy' OR
amount is 'very small' AND complexity is 'easy' OR
amount is 'small' AND complexity is 'very easy',
THEN effort is 'tiny'

- rule R2:
IF amount is 'very small' AND complexity is 'normal' OR
amount is 'small' AND complexity is 'easy' OR
amount is 'small' AND complexity is 'normal' OR
amount is 'medium' AND complexity is 'very easy' OR
amount is 'medium' AND complexity is 'easy',
THEN effort is 'little'

- rule R3:
IF amount is 'very small' AND complexity is 'difficult' OR
amount is 'very small' AND complexity is 'very difficult' OR
amount is 'small' AND complexity is 'difficult' OR
amount is 'small' AND complexity is 'very difficult' OR
amount is 'medium' AND complexity is 'normal' OR
amount is 'large' AND complexity is 'very easy' OR
amount is 'large' AND complexity is 'easy' OR
amount is 'very large' AND complexity is 'very easy' OR
amount is 'very large' AND complexity is 'easy',
THEN effort is 'average'

- rule R4:
IF amount is 'medium' AND complexity is 'difficult' OR
amount is 'medium' AND complexity is 'very difficult' OR

168 из 190

amount is 'large' AND complexity is 'normal' OR
amount is 'large' AND complexity is 'difficult' OR
amount is 'very large' AND complexity is 'normal',
THEN effort is 'big'

- rule R5:
IF amount is 'large' AND complexity is 'very difficult' OR
amount is 'very large' AND complexity is 'difficult' OR
amount is 'very large' AND complexity is 'very difficult',
THEN effort is 'huge'.

Let’s consider the following expert’s verdict: «Well, I am
quite sure that this {feature} is easy to implement; to tell the
truth, I’m also more or less sure that it requires a large
amount of work to do». From this statement, we can extract
the following pairs of linguistic terms: 'easy'  'quite sure'
and 'large'  'more or less sure'. Membership degrees in use
are summarized in Tables IV and V (elements of T(A) and
T(C) – five terms in each case):

TABLE IV. MEMBERSHIP DEGREES OF THE COMPLEXITY (EXAMPLE)

The complexity of work (set T(C)) Membership
degree

value 'very easy' 0.1
value 'easy' 0.8

value 'normal' 0.1
value 'difficult' 0

value 'very difficult' 0

TABLE V. MEMBERSHIP DEGREES OF THE AMOUNT OF WORK (EXAMPLE)

The amount of work (set T(A)) Membership
degree

value 'very small' 0
value 'small' 0

value 'medium' 0.25
value 'large' 0.5

value 'very large' 0.25

In this case, fuzzy rules R2, R3 and R4 will give non-zero
resultant value. As already stated above, Mamdani inference
system (FIS) is used in the experiments – it allows to obtain
an output in the form of fuzzy set. Rules R2, R3 and R4 “fire”,
thus ensuring non-zero results; in compliance with (3) and (4),
we arrive at the following:

R2:  (0.1,0.25), (0.8,0.25)max min min = 0.25 – membership

degree that corresponds to the term 'little' (element of T(E)),

R3: max = 0.5 – membership degree that corresponds to the
term 'average' (element of T(E)),

R4:  (0.1,0.5), (0.1,0.25)max min min = 0.1 (label of the term

'big' as the element of T(E)).
COA (Center Of Area) method (2) is applied to obtain crisp
result. According to equation (2), the output value equals to
approx. 45 story points as shown in Fig. 4.

In Scrum story points estimation’ approach the experts
often aggregate their opinions using the method of planning
poker. It relies on collective judgments (several rounds may

become necessary until experts make an agreement) and tries
to avoid “pointless haggling over small differences” by
compelling to use estimation value from a set of sharply
defined distinct values [17]. All participants (they can also be
called estimators) secretly write down their estimations in
story points on preprepared cards, and then all cards are laid
on the table at one time. If all participants select the same
value, this value becomes the feature estimation. If not, each
expert one after another explains his/her reasons in showing
preference for specific value provided, especially when the
choice is fixed upon the highest and the lowest estimators in
the set. Afterwards, the process is reiterated, i.e. experts vote
again, planning poker goes on. It continues until estimators
arrive at the agreement.

Fig. 4. The result of defuzzification (COA, approx. 45 points)

As regards the aggregation procedure, two approaches
mentioned earlier are used. The exact way to calculate the
aggregated opinion based on estimations expressed is chosen
according to simple rule: if some of them (estimations) are
repeated, the equation (6) is used; otherwise, the equation (5)
is preferred.

IV. RESULTS OF EXPERIMENT – DIFFERENT GROUPS
 OF POTENTIAL USERS. DOES THE PROPOSED

 METHOD WORK?

For the sake of completeness, we have asked several
groups of people about their views regarding proposed
method (its details were discussed with persons concerned in
advance). Group 1 consisted of those people who have
worked with story points for a long time. Those delegates
who worked with story points before for relatively short-term
period formed group 2, while those who know what story
points are, but have never used them earlier found themselves
in the 3rd group. Finally, people who never even heard of
story points fell into group 4. As a result, opinions stated
below were emphasized (single form of statements are cited
for convenience):

(1) group 1: «… I personally consider story points to be
the most effective and quite fast way of evaluating
features. I make almost no mistakes in estimating
features now, and I can adapt myself in new projects
in a short time. Your approach is not useful for me
now, though I think it might be helpful at the beginning
of (my) career»,

(2) group 2: «… As for me, it took about two months to
fully understood the concept of story points, but even
now I sometimes make mistakes while estimating

169 из 190

features in terms of story points. Today I believe that
estimating in story points is more convenient than
estimating in hours or some other units. I’m quite
experienced member of the currently ongoing project,
and I don’t need your approach now, though I could
still use it, if I have to get the feel of some new project
later on»,

(3) group 3: «… I have heard that story points exist, and
that they are used in project estimation, though I have
no experience of participating in real projects, where
story points were adopted. I think that your approach
is better for me right now than story points in their
“pure” appearance as I understand it more clearly as
compared to story points per se»,

(4) group 4: «… Oh, I have no idea what are these “story
points” are, so obviously, I better prefer to give my
opinion on how much work I will have to do to
implement the feature, or how difficult this work seems
to me».

Afterwards, we gave people a description of the project
(Android App “VR Quest in city” and its features planned for
implementation) was introduced to people who took part in
the interview session. They were asked to estimate these
features both (A) in terms of “plain” story points and (B)
using proposed approach.

TABLE VI. THE RESULTS OF THE CONDUCTED EXPERIMENT

Feature
name

 gr. 1 gr. 2 gr. 3 gr. 4

Create a
login form

story points 30 28 40 45
our approach 35 37 30 28

Find a quest
with specific
parameters

story points 27 30 55 60
our approach 29 24 27 30

Save/load a
quest

story points 20 25 35 45
our approach 18 22 20 19

Begin a quest
walkthrough

story points 15 18 25 40
our approach 16 14 15 17

Buy quests in
local

currency

story points 50 48 75 85

our approach 52 55 50 45

Fig. 5. The results of the conducted experiment as applied to group 1

As shown in Table VI and Fig. 5-6 (data obtained for

groups 1 and 4 only are visualized), the results of basic story
points estimation for the group 1 (participants in this group

know how to estimate features in story points), differ not
appreciably from the results revealed by proposed approach.
It can be treated as initial piece of empirical evidence of the
fact that our method is relevant enough and can be used for
feature estimation and further elaboration. Moreover, results
in both groups 3 and 4 (members of these groups have never
used story points before) are substantially different in case of
our method as compared with basic story points estimation’
approach. This can be attributed to the marked fact that
people do not really understand what story points are in the
context of non-using them earlier. This is an extra argument
in favor of potential utility of the proposed method for those
people who are new to Scrum.

Fig. 6. The results of the conducted experiment as applied to group 4

Taking story points estimates as landmarks, the Root

Mean Square Error is growing steadily from 2.76 for group 1
to 28.26 for group 4 (for groups 3 and 4 the error values are
equal to 6.18 and 19.15, correspondingly). The MAD
measure, i.e. the size of deviation in units of landmarks from
values calculated with the help of proposed approach ((A)
and (B) estimates, Table VI), is progressing from 2.4 (group
1) to 27.2 (group 4), while values of 5.8 and 17.6 stand for
groups 3 and 4, accordingly. These error values show certain
tendency of drawing groups 1 and 2 together along with more
perceptible isolation (or, distancing) of «groups 3 and 4»
bundle from the practical standpoint of both perception and
acceptance of story point-based estimation approach.
However, even against a background of such observation,
group 3 reveals some positive “detachment” toward group 4.
In aggregate, we may conclude that the proposed method has
rather tangible effect (in decreasing sequence) on group 1,
group 2 and group 3 just “touching” the latter in passing. To
the opinion of authors, it can be treated as encouraging sign
that is incentive to continue research in this direction.

V. CONCLUSION

A novel approach that relates to feature estimation in
terms of story points was presented in the paper. The natural
idea behind the approach reflects the fact that people may
estimate their perception (ideas) concerning the complexity of
implementation of certain product’s feature to be and the
amount of work to be done to develop this feature. Besides,
they can also specify the level of their confidence (or,
confidence degree) in evaluation provided. Fuzzy inference
scheme lays both solid and transparent groundwork for
converting aforesaid input information (data) to the number
of story points that can be utilized in the software project

170 из 190

management (SPM) at a later stage.
To the opinion of authors, this approach allows people to

adapt to Scrum more smoothly, with better understanding of
what is implied by story points, grasping the general idea and
learning faster their use in practice. The experimental study
of the proposed method has shown results approaching the
estimations provided by Scrum experts who have been
working in real projects and making use of story points for
several years. According to survey conducted, such approach
can be successfully applied by Scrum newbies, since it is
more convenient for people who just make up with story
points estimations.

It must be noted that full awareness of strong and weak
points of the proposed approach reasoning from one example
(project) cannot be realized entirely. Therefore, a sequel of
empirical studies and active cooperation with Scrum teams
may result in enhancement of the approach. One thing is just
to mention that the method seems both promising and handy,
but it’s quite another matter to make it applicable in practice
because of convenience and clearness, at least, as a part of
induction stage of the “immersion” to Scrum. Transparent
ideas of fuzzy logic are very much to the point here.

Further steps can be associated with intensive studies of
more complicated methods of aggregation of the experts’
opinions – in particular, they may consider the level (or,
weight) of professional qualification of domain experts
drawn into project activity. Currently a program’s prototype
to support (implement) the approach discussed in the paper is
under development. The present-day agenda also covers the
development of plugin for JIRA tracking system. It is also
worth mentioning that certain refinements and changes of the
proposed approach can be done at the theoretical level either
– some of them are visible enough at present. For instance,
the confidence degree values can be represented as intervals,
i.e. a form of uncertainty/vagueness expression at the lowest
level of comprehension. Such intervals may come about as an
effect of possible discord concerning the choice of crisp
values shown in the Table II. For the time being, these values
may be treated as rough aggregated estimates underlying the
computational steps of the discussed approach. Besides, the
transition from intervals to type-1 fuzzy sets is also an
explicable option to consider. Fuzzy set can be decomposed
into a series of nested crisp intervals (so-called -cuts of a
fuzzy set), and this fact can be effectively used in algorithms.
Without confining ourselves to just modeling linguistic terms

that stand for confidence levels in use, type-2 fuzzy sets and
systems are also regarded as “right” candidates for expansion
research efforts in a given problem.

REFERENCES

[1] Trendowicz A., 2013. Software Cost Estimation, Benchmarking, and
Risk Assessment: The Software Decision-Makers’ Guide to Predictable
Software Development, Springer-Verlag
[2] Živadinović J., Medić Z., Maksimović D., et al., 2011. Methods of
Effort Estimation in Software Engineering // Proc. Int. Symposium
Engineering Management and Competitiveness (EMC), 417–422. [9]
Zadeh L.A., 1965. Fuzzy Sets, Information and Control, #8, 338–353.
[3] Briand L.C., Wieczorek I. Resource Estimation in Software Engineering
// Int. Software Engineering Research Network, TR ISERN 00-05, web-
resource:
https://pdfs.semanticscholar.org/943d/a2bb363c06319218ee204622bb10f816490f.

pdf (access date 24.02.2017)
[4] Shivangi S., Umesh K., 2016. Review of Various Software Cost
Estimation Techniques // International Journal of Computer Applications,
vol. 141, 31–34.
[5] Colomo-Palacios R. González-Carrasco I., et al., 2012. Resyster: A
Hybrid Recommender System for Scrum Team Roles based on Fuzzy and
Rough Sets // Int. Journal Appl. Math. Comput. Science, 2012, Vol. 22, No.
4, 801–816.
[6] Industrial Logic site: Stop Using Story Points, Kerievsky J. (blog),
2012, web-resource: https://www.industriallogic.com/blog/stop-using-story-

points/ (access date 24.02.2017)
[7] Pries K.H., Quigley J., 2010. Scrum Project Management, CRC Press
[8] Aliev R.A., Aliyev R.R., 2001. Soft Computing and Its Applications,
World Scientific
[10] Bingyi K., Daijun W., Li Y., Deng Y., 2012. A Method of Converting
Z-Number to Classical Fuzzy Number // Journal of Information &
Computational Science, 9, #3, 703–709.
[11] Zadeh L.A., 1975. The Concept of a Linguistic Variable and Its
Application to Approximate Reasoning - I // Information Sciences, vol. 8,
no. 3, 199–249.
[12] Fuzzy Logic Fundamentals, Pearson Education, 2001, Ch.3, 61–99,
web-resource:
http://ptgmedia.pearsoncmg.com/images/0135705991/samplechapter/0135705991

.pdf (access date 21.03.2017)
[13] Klir G.J., Bo Yuan., 1995. Fuzzy Sets and Fuzzy Logic: Theory and
Applications, 1st ed., Prentice Hall
[14] Zadeh L.A., 1996. Fuzzy logic = Computing with Words // IEEE
Trans. Fuzzy Systems, vol. 4, no. 2, 103–111.
[15] Zadeh L.A., 1992. Fuzzy Logic and the Calculus of Fuzzy If-Then
Rules // Proc. 22nd Intl. Symp. on Multiple-Valued Logic, Los Alamitos,
CA: IEEE Computer Society Press, 480–480.
[16] Quing L., 2013. A Novel Likert Scale Based on Fuzzy Sets Theory //
Expert Systems with Applications, vol. 40, #5, 1609–1618.
[17] Meyer B., 2014. Agile! The Good, the Hype and the Ugly, Springer
Int.

171 из 190

7KH�0L[HG�&KLQHVH�3RVWPDQ�3UREOHP�
�

0DULD�*RUGHQNR�
6RIWZDUH�(QJLQHHULQJ�6FKRRO�

1DWLRQDO�5HVHDUFK�8QLYHUVLW\�+LJKHU�6FKRRO�RI�(FRQRPLFV�
0RVFRZ��5XVVLD�

PNJRUGHQNR#HGX�KVH�UX�

6FLHQWLILF�$GYLVRU��3URI��6HUJH\�$YGRVKLQ�
6RIWZDUH�(QJLQHHULQJ�6FKRRO�

1DWLRQDO�5HVHDUFK�8QLYHUVLW\�+LJKHU�6FKRRO�RI�(FRQRPLFV�
0RVFRZ��5XVVLD�
VDYGRVKLQ#KVH�UX

�
�

$EVWUDFW � 7KH�0L[HG�&KLQHVH�3RVWPDQ�3UREOHP� �0&33�� LV�
WR� ILQG� D� PLQLPXP� VKRUWHVW� WRXU� WUDYHUVHG� HDFK� GLUHFWHG� DQG�
XQGLUHFWHG� HGJHV� DW� OHDVW� RQFH�� 7KH� SUREOHP� LV� 13�KDUG��
+RZHYHU�� WKH� PL[HG� FDVH� RI� WKH� SUREOHP� KDV� PDQ\� SRWHQWLDOO\�
XVHIXO�DSSOLFDWLRQV��7KLV�SDSHU� UHYLHZ�WKH�UHODWHG�ZRUNV�DV�ZHOO�
DV�PDWKHPDWLFDO�IRUPXODWLRQ�RI�WKH�SUREOHP��7KH�DOJRULWKPV�IRU�
WKH� 0&33� DUH� EDVHG� RQ� UHGXFWLRQ� WR� FODVVLFDO� $UF� 5RXWLQJ�
3UREOHPV� �$53�� DUH� SURYLGHG�� ([SHULPHQWDO� UHVXOWV� RI�

�DUH�DOVR�SRLQWHG�RXW���

.H\ZRUGV 0L[HG� &KLQLVH� 3RVWPDQ� 3UREOHP�� $UF� 5RXWLQJ�
3UREOHP��KHXULVWLF�DOJRULWKP��7UDYHOLQJ�6DOHVPDQ�3UREOHP�

,�� �,1752'8&7,21��
7KH� &KLQHVH� 3RVWPDQ� 3UREOHP� �&33�� ZDV� RULJLQDOO\�

VWXGLHG�E\� WKH�&KLQHVH�PDWKHPDWLFLDQ�.ZDQ�0HL�.R� LQ������
RQ�WKH�H[DPSOH�RI�WKH�UXUDO�SRVWPDQ�SUREOHP�>�@��$�SUREOHP�LV�
FDOOHG�WKH�&33�DIWHU�.ZDQ�0HL�.R�>�@��

,Q� WKH� PRGHUQ� ZRUOG�� WKH� QXPEHU� RI� FRPSDQLHV� DQG�
LQGXVWULHV� WKDW� DUH� LQWHUHVWHG� LQ� EXLOGLQJ� DQ� RSWLPDO� URXWH� RI�
SURGXFW� GHOLYHU\� LV� JURZLQJ��)RU� H[DPSOH�� WKH� SRVWPDQ�
GHOLYHULQJ� OHWWHUV� RU� OHDIOHWV�ZDQWV� WR� NQRZ� WKH� RSWLPDO� URXWH�
WKDW�WUDYHUVHV�HYHU\�VWUHHW�LQ�WKH�JLYHQ�DUHD��VWDUWLQJ�DQG�HQGLQJ�
DW�WKH�RIILFH�>�@���

$SDUW�IURP�WKH�WUDGLWLRQDO�DSSOLFDWLRQ�RI�WKH�&33�WR�VROYLQJ�
WKH� URXWLQJ� SUREOHPV� VXFK� DV� SDWK� SODQQLQJ� RI� VQRZSORZV� RU�
VHUYLQJ� WHDPV�� WKHUH� LV�D�ZLGH� UDQJH�RI�DSSOLFDWLRQV�LQFOXGLQJ�
URERW�H[SORUDWLRQ��WHVWLQJ�ZHE�VLWH�XVDELOLW\�DQG�ILQGLQJ�EURNHQ�
OLQNV�>�@��

7KHUH�DUH�YDULRXV�FODVVLILFDWLRQV�RI�WKH�&33��7KLV�SUREOHP�
FDQ�EH�DSSOLHG�IRU�D�GLUHFWHG��XQGLUHFWHG��PL[HG�JUDSK��RU�LQ�D�
PXOWLJUDSK� �D� JUDSK� ZLWK� SDUDOOHO� GLUHFWHG� DQG� XQGLUHFWHG�
HGJHV���7KH�&33�FDQ�DOVR�EH�FORVHG��WKH�SRVWPDQ�VKRXOG�UHWXUQ�
WR�WKH�VWDUWLQJ�SRLQW��RU�RSHQ��VWDUWLQJ�DQG�HQGLQJ�SRLQWV�FDQ�EH�
GLIIHUHQW��� 7KH� SUREOHP� LQ� GLUHFWHG� RU� XQGLUHFWHG� JUDSK� KDV�
H[DFW� DOJRULWKPV�DQG�PD\� EH� VROYHG� LQ� SRO\QRPLDO� WLPH��7KH�
PL[HG� FDVH� LV� 13�KDUG� DQG� WKHUH� DUH� QR� SRO\QRPLDO�WLPH�
DOJRULWKPV� IRU� VROYLQJ� WKH�&33� LQ�PL[HG�JUDSK�RU�PXOWLJUDSK�
H[DFWO\�>����@��

,Q� WKLV� SDSHU�� KHXULVWLF� DOJRULWKPV� IRU� WKH� PL[HG� FDVH� DUH�
GHVFULEHG�DQG�DVVHVVHG��7KH�PL[HG�&33� �0&33�� LV�D� VLPSO\�
VWDWHG�SUREOHP��ZKLFK�KDV�PDQ\�XVHIXO�DSSOLFDWLRQV��EXW�KDV�QR�
H[DFW�DOJRULWKPV�>�@���

7KH�REMHFWLYH�RI�WKH�UHVHDUFK�LV�LPSOHPHQWDWLRQ�DQG�TXDOLW\�
DVVHVVPHQW�RI�KHXULVWLF�DOJRULWKPV�IRU�WKH�0&33��

7KH�SDSHU�LV�RUJDQL]HG�DV� IROORZV��)LUVW�� WKH�PDWKHPDWLFDO�
IRUPXODWLRQ�RI� WKH�SUREOHP�LV�SRLQWHG�RXW��7KH�QH[W� VHFWLRQ� LV�
GHGLFDWHG�WR�UHODWHG�ZRUNV��,Q�WKH�QH[W�SDUW�D�EULHI�GHVFULSWLRQ�
RI� LPSOHPHQWHG� DOJRULWKPV� DQG� PHWKRGRORJ\� RI� WKH� UHVHDUFK�
DUH� SUHVHQWHG�� 7KHQ�� DOUHDG\� REWDLQHG� UHVXOWV� DUH� UHYHDOHG�� ,Q�
WKH� ILQDO� SDUW�� WKH� H[SHFWHG� UHVXOWV� DQG� IXWXUH� GLUHFWLRQV� RI�
UHVHDUFK�DUH�GHVFULEHG��

,Q� WKLV� DUWLFOH�� LQ� DFFRUGDQFH� ZLWK� JHQHUDOO\� DFFHSWHG�
GHILQLWLRQV�� XQGHU� WKH� XQGHUVWDQGLQJ� RI� DQ� XQGHUVWDQGLQJ�
GLUHFWHG�HGJH��XQGHU�WKH�HGJH�LV�DQ�XQGLUHFWHG�HGJH��

,,�� 0$7+(0$7,&$/�)2508/$7,21�2)�7+(�352%/(0�
7KH� ZHLJKW� VWURQJO\� FRQQHFWHG� PL[HG� PXOWLJUDSK��

� LV� JLYHQ�� ZKHUH� � LV� WKH� VHW� RI�
PXOWLJUDSK
V� YHUWLFHV�� � LV� WKH� PXOWLVHW� RI� HGJHV�� � LV� WKH�
PXOWLVHW� RI� DUFV�� �� � FRVW� IXQFWLRQ� JLYLQJ� QRQ�
QHJDWLYH�ZHLJKWV�RI�DUFV�DQG�HGJHV�EHWZHHQ�YHUWLFHV�>�@��
/HW� ��� ��
,QGH[DWLRQ� RQ� WKH� VHW� RI� YHUWLFHV� � LV� GHILQHG� DV��

�� � ���
�� 2Q� WKH�PXOWLVHW� � LQGH[DWLRQ� LV� GHILQHG� DV�

�
�� ��

5RXWH� �LV�D�VROXWLRQ�RI�WKH�0&33�WKDW�
VDWLVILHV�WKH�IROORZLQJ�SURSHUWLHV��

� �
�� ZKHUH� �

LV� WKH� VWDUW� YHUWH[� RI� DUF� RU� HGJH� �� � LV� WKH� HQG�
YHUWLFHV�RI�DUF�RU�HGJH ��

� ��
/HW� �LV�WKH�FRVW�RI�WKH�URXWH��
/HW� �EH�D�VHW�RI�VROXWLRQV�RI�WKH�0&33��,W�LV�QHFHVVDU\�WR�

ILQG�D�URXWH� �WKDW�VDWLVILHV�WKH�IROORZLQJ�SURSHUW\�
� � �RU� ���

,,,��5(/$7('�:25.6�
,Q� WKH� SDSHU� E\� *�� /DSRUWH� WKH� H[DFW� DOJRULWKP� IRU� DQ�

XQGLUHFWHG�DQG�GLUHFWHG�JUDSK�LV�FRYHUHG�DQG�WKH�IRUPXODWLRQ�RI�
WKH�SUREOHP�LQ� WKH�PL[HG�JUDSK�LV�VKRZQ�>�@��7KH�SRO\QRPLDO�
DOJRULWKP� DQG� H[HFXWDEOH� FRGH� RI� RSHQ� DQG� FORVHG� &33� LQ�
GLUHFWHG�JUDSK� LV�SUHVHQWHG� LQ� WKH�ZRUN�RI�+DUROG�7KLPEOHE\�
IURP� 8QLYHUVLW\� &ROOHJH� /RQGRQ� >�@�� 7KH� 7�� 5DOSK
V� SDSHU�

172 из 190

FRQWDLQV� IRUPXODWLRQ� RI� &33�RQ� WKH�PL[HG� JUDSK� LQ� WHUPV� RI�
LQWHJHU�OLQHDU�SURJUDPPLQJ��+RZHYHU��VROXWLRQ�RI�WKH�0&33�LV�
QRW�JLYHQ�>�@��

,W� ZDV� VKRZQ� WKDW� VHYHUDO� DUF� URXWLQJ� SUREOHPV� FDQ� EH�
FRQYHUWHG�LQWR�HTXLYDOHQW�$53�>�@��,W�RSHQV�XS� WKH�SRVVLELOLW\�
WR� VROYH� DUF� URXWLQJ� SUREOHPV�� LQFOXGLQJ� WKH� 0&33�� DV�
HTXLYDOHQW� RI� DQRWKHU� DUF� URXWLQJ� SUREOHP�� ,Q� SDUWLFXODU�� WKH�
SDSHU�JLYHV�JURXQGV�WR�DVVXPH�WKH�0&33�FDQ�EH�FRQYHUWHG�LQWR�
JHQHUDOL]HG� WUDYHOLQJ� VDOHVPDQ� SUREOHP� �*763��� .HOG�
+HOVJDXQ� SUHVHQW� WKH� KHXULVWLF� DOJRULWKP� */.+� IRU� VROYLQJ�
*763�>�����@��

7KHUH�DUH�QXPHURXV�SDSHUV�DQG�SXEOLFDWLRQV�RQ�WKH�LVVXH�RI�
WKH� &33�� EXW� QR� UHVHDUFK� RQ� WKH� LVVXH� RI� WKH� 0&33� LQ� WKH�
PXOWLJUDSK� KDV� EHHQ� IRXQG�� 7R� DFKLHYH� WKH� JRDO�� DOJRULWKPV�
DQG� RZQ� PHWKRGV� RI� VROYLQJ� WKH� 0&33� LQ� PXOWLJUDSK� ZHUH�
PRGLILHG� DQG� LQYHVWLJDWHG�� 7KH�PHWKRG�RI� WUDQVIRUPDWLRQ� WKH�
0&33�LQWR�*763�ZHUH�LPSOHPHQWHG�DQG�WHVWHG��

,9��7+(�,03/(0(17$7,21�2)�$/*25,7+06�

$�� 6ROYLQJ�0&33�EDVHG�RQ�VROYLQJ�GLUHFWHG�&33�
0HWKRGV� IRU� VROYLQJ� WKH�0&33� LQ�PXOWLJUDSK�DUH�EDVHG�

RQ� WKH� WUDQVIRUPDWLRQ�RI� WKH�&33� LQ� WKH�PL[HG�PXOWLJUDSK� WR�
WKH� &33� LQ� WKH� GLUHFWHG� PXOWLJUDSK�� 7KHQ� WKH� &33� LQ� WKH�
GLUHFWHG� PXOWLJUDSK� VKRXOG� EH� VROYHG� E\� WKH� DOJRULWKP��
DFFRUGLQJ�WR�7KLPEOHE\�>�@��

7KH�DOJRULWKP�ORRNV�DV�IROORZV��
� /HW� �WKH�DPRXQW�RI�DUF�LQFRPLQJ�LQ�YHUWH[�� �WKH�
DPRXQW�RI�DUF�RXW�FRPLQJ�IURP�YHUWH[���

� 'HILQH� WZR� VHWV� RI� YHUWLFHV� �
DQG� ���

� 7R�FRQVWUXFW�RSWLPDO�&33�VROXWLRQ�LQ�GLUHFWHG�FDVH�VKRXOG�
EDODQFH� HDFK� YHUWH[� �PDNH� �� EH� DGGLQJ�
H[WUD� SDWK� LQ� PXOWLJUDSK�� ZKLFK� FRQQHFW� YHUWH[� IURP�

�DQG�KDYH�WKH�ORZHVW�SRVVLEOH�FRVW���
� 7KHQ� VKRXOG� FRQVWUXFW� (XOHULDQ� FLUFXLW�� (XOHULDQ� F\FOH� LQ�
QHZ�PXOWLJUDSK�LV�D�VROXWLRQ�RI�&33��
)RU� VROYLQJ� WKH� 0&33� DV� WKH� &33� LQ� WKH� GLUHFWHG�

PXOWLJUDSK� WKUHH� WUDQVIRUPDWLRQ� PHWKRGV� IURP� PL[HG�
PXOWLJUDSK�WR�GLUHFWHG�ZHUH�LPSOHPHQWHG��

� 5HSODFHPHQW�(GJHV�DOJRULWKP���5HSODFH�HDFK�HGJH�ZLWK�
D�SDLU�RI�RSSRVLWHO\�GLUHFWHG�DUF���

� %DODQFHG� DOJRULWKP�� �)LQG� WKH� GHJUHHV� RI� YHUWLFHV��
7KHQ�ZH�PDNH�WKH�GHJUHHV�RI�DOO�YHUWLFHV�HYHQ��DGGLQJ�
WKH�VKRUWHVW�SDWKV�EHWZHHQ�RGG�YHUWLFHV��RULHQWHG�HGJHV��
LI� LW�SRVVLEOH��7KHQ�UHSODFH�UHPDLQLQJ�HGJH�ZLWK�D�SDLU�
RI�RSSRVLWHO\�GLUHFWHG�DUF���

� *UHHG\�DOJRULWKP���6RUW�WKH�OLVW�RI�HGJHV�LQ�GHVFHQGLQJ�
RUGHU�RI�WKHLU�FRVW��7KHQ�ILQG�WKH�GHJUHHV�RI�WKH�YHUWLFHV�
DQG�PDNH�WKH�GHJUHH�RI�HDFK�YHUWH[�HYHQ��RULHQWLQJ�WKH�
HGJHV�DV�PXFK�DV�SRVVLEOH��7KHQ�RULHQW�WKH�HGJHV�RI�WKH�
JUDSK�LQ�GHVFHQGLQJ�RUGHU�RI�WKHLU�FRVW��WDNLQJ�FDUH�WKDW�
WKH�JUDSK�UHPDLQV�VWURQJO\�FRQQHFWHG���

%�� 6ROYLQJ�0&33�EDVHG�RQ�VROYLQJ�*763�
$QRWKHU�ZD\� RI� VROYLQJ� WKH�0&33� LQ� WKH�PXOWLJUDSK� LV�

EDVHG�RQ�WKH�*/.+�DOJRULWKPV�>�@��

7KH�0&33� FDQ� EH� WUDQVIRUPV� LQWR� DQ� HTXLYDOHQW� $53��
:KHQ� SUREOHP� GHILQHG� LQ� GLUHFWHG� PXOWLJUDSK�� LW� FDQ� EH�
WUDQVIRUPHG� LQWR� DV\PPHWULF� 763��:KHQ�SUREOHP�GHILQHG� LQ�
PL[HG�RU�XQGLUHFWHG�PXOWLJUDSK��LW�FDQ�EH�WUDQVIRUPHG�LQWR�DQ�
DV\PPHWULF�*763��>�@�

7$%/(�,���)2508/$6�)25�&20387,1*�$5&�&2676�2)�
75$16)250('�*5$3+�

� � �� �� �� �� �� �� �� ��
� � � � � � � � � �
�� � ��

� � � � � � �
�� �

�
��

� � � � � �
�� �

� �
��

� � � � �
�� �

� � �
��

� � � �
�� �

� � � �
��

� � �
�� �

� � � � �
��

� �
�� �

� � � � � �
��

�
�� �

� � � � � � �
��

7$%/(�,,��� 7+(�&267�0$75,;�2)�75$16)250('�*5$3+�

� � �� �� �� �� �� �� �� ��

� �
� � � � � � � �

�

�� � �� �� �� �� �� �� �� ��

�� � �� �� ��� �� �� �� �� ��

�� � �� �� �� �� �� �� �� ��

�� � �� �� �� �� �� �� �� ��

�� � �� �� ��� �� �� �� �� ��

�� � �� �� ��� �� �� �� �� ��

�� � �� �� �� �� �� �� �� ��

�� � �� �� �� �� �� �� �� ��

�
7KH� SURFHVV� RI� WUDQVIRUPDWLRQ� WKH� 0&33� WR� *763� LV� WR�

WUDQVIRUP� WKH� RULJLQDO� JUDSK� � LQWR�
HTXLYDOHQW�SUREOHP�RQ�FRPSOHWH�JUDSK� ��
(DFK� DUF� � EHWZHHQ� WR� YHUWLFHV� � LV�

UHSUHVHQWHG� DV� YHUWH[� �� ZKLFK� PXVW� EH� XVHG� LQ� WKH�
VROXWLRQ�DW�OHDVW�RQFH��ZKHUH� �LV�WKH�VHULDO�QXPEHU�RI�SDUDOOHO�
DUF��
(DFK� HGJH� � EHWZHHQ� WR� � LV� UHSUHVHQWHG� DV�

WZR�YHUWLFHV� �� RQH�RI�ZKLFK�PXVW� EH�XVHG� LQ� WKH�
VROXWLRQ��DQRWKHU�PD\�QRW�EH�XVHG��ZKHUH� �LV�D�VHULDO�QXPEHU�
RI�SDUDOOHO�HGJH�� �DUH�WKH�VHULDO�QXPEHUV�RI�SDUDOOHO�DUFV�
EHWZHHQ�WZR�YHUWLFHV��
$IWHU�UHSODFLQJ�WKH�DUFV�DQG�HGJHV�LQ�YHUWLFHV��WKH�FRVW�IURP�

HDFK� SDLU� RI� YHUWH[� � LQ� JUDSK� � FRPSXWH�� DV��

173 из 190

�� ZKHUH� � LV� WKH� VKRUWHVW� GLVWDQFH� EHWZHHQ�
YHUWLFHV� �LQ�RULJLQDO�PXOWLJUDSK� ��

7KHQ��WKH�FRPSHWH�JUDSK� �LV�SDUWLWLRQHG�LQWR�FOXVWHUV�DV�
IROORZV�� HDFK� DUF� DQG� HDFK� HGJH� LV� VHSDUDWH� FOXVWHUV�� 7KH�
QXPEHU�RI�FOXVWHUV�LV�HTXDOV�WR� ��7KH�JUDSK�SDUWLWLRQHG�
LQWR� FOXVWHUV� EHFDXVH� HGJH� FDQ� EH� WUDYHUVH� LQ� WZR� ZD\V�� IRU�
VROYLQJ� WKH� 0&33� DQ\� ZD\� LV� DSSURSULDWH� DQG� WKH� SUREOHP�
WUDQVIRUPV�LQWR�DV\PPHWULF�*763��
7KH�*763�LV�D�YDULDWLRQ�RI�WKH�7UDYHOLQJ�6DOHVPDQ�3UREOHP�

LQ� ZKLFK� DOO� YHUWLFHV� DUH� GLYLGHG� LQWR� FOXVWHUV�� DQG� VROXWLRQ�
FRQVLVW�IURP�RQH�YHUWLFHV�IURP�HDFK�FOXVWHU�>�@��
7KH�H[DPSOH�RI�RULJLQDO�PXOWLJUDSK�LV�VKRZQ�RQ�)LJ�����(DFK�

DUF�DQG�HGJH�KDV�WKH�FRVW�RI�WUDYHUVH��(DFK�YHUWH[�KDV�D�VHULDO�
QXPEHU��

�
)LJ����� 2ULJLQDO�0&33�SUREOHP�

:H�UHSODFH�HDFK�HGJH�E\�D�SDLU�RI� WZR�RSSRVLWHO\�GLUHFWHG�
DUFV�DQG�VSHFLI\� WKH�QXPEHULQJ�RI�SDUDOOHO�DUFV�EHWZHHQ�HDFK�
SDLU�RI�YHUWLFHV��VHH�)LJ������,Q�PXOWLJUDSK�RQO\�RQH�DUF� �RU�

� LV� UHTXLUHG�� EHFDXVH� WKHVH� DUFV� UHSUHVHQW� RQH� HGJH�� 7KH�
VDPH�DSSOLHV�WR�DUF� �RU� ��

�
)LJ����� 7KH�UHVXOWV�RI�QXPEHULQJ�HDFK�SDUDOOHO�DUF�

$IWHU� WKDW�� VKRXOG�UHSODFH�HDFK�DUF�DQG�HGJH�DV�YHUWH[��:H�
UHFHLYHG�QHZ�JUDSK� �ZLWK� �YHUWHFHV��7KH� �FDQ�EH�FDOFXODWHV�
DV� ��
7KH� FRVW� IURP� HDFK� SDLU� RI� YHUWLFHV� LV� FDOFXODWHG� E\�

IRUPXODV��VHH�7DEOH����VHH�7DEOH�����7KH�YHUWLFHV�UHSUHVHQW�WKH�
HGJH�DUH�PDUNHG�ZLWK�D�FRORU�LQ�WKH�WDEOH��GLIIHUHQW�FRORUV�IRU�
GLIIHUHQW�HGJHV���

7KHQ� YHUWHFHV� IURP� � DUH� SDUWLWLRQHG� LQWR� FOXVWHUV��)LJ�� ��
GHSLFWV�WKH�YHUWLFHV�DQG�FOXVWHUV�RI�WUDQVIRUPHG�JUDSK��

�

)LJ����� 7KH�YHUWLFHV�DQG�FOXVWHUV�RI�WUDQVIRUPHG�SUREOHPV�

$IWHU� WUDQVIRUPDWLRQ� RI� RULJLQDO� SUREOHP� 0&33� LQWR�
*763�� WKH� VROXWLRQ� IRU� *763� FDQ� EH� DSSOLHG��)RU� VROYLQJ�
763� WKH�/.+�DOJRULWKP�ZDV�XVHG� >��� ��@��7KH� DOJRULWKP�
WUDQVIRUPV� WKH�*763�SUREOHP�LQWR�DV\PPHWULF�763�DQG�WKHQ�
VROYH�763� XVLQJ� WKH�/.+�DOJRULWKP� >��@�� ,W�ZDV� VKRZQ� WKDW�
*/.+
V� SHUIRUPDQFH� LV� JRRG�� $OO� LQVWDQFHV� RI� *763�
EHQFKPDUN� LQVWDQFHV� ZHUH� WHVWHG� >��@�� 7KH� PD[LPXP� HUURU�
UDWH�ZDV�QR�PRUH�WKDQ������

9�� (;3(5,0(17$/�5(6($5&+�
7KH� FRGH� IRU� JUDSK� WUDQVIRUPDWLRQ� DQG� */.+� DOJRULWKP�

�XVHG�.HOG�+HOVGJDXQ� OLEUDU\��ZDV�ZULWWHQ� LQ� &����7KH�FRGH�
IRU� %DODQFHG�� *UHHG\� DQG� 5HSODFHPHQW� (GJHV� WUDQVIRUPDWLRQ�
DOJRULWKPV�DOVR�ZHUH�ZULWWHQ�LQ�&����)RU�ZULWLQJ�DOJRULWKP�IRU�
VROYLQJ�&33�LQ�GLUHFWHG�PXOWLJUDSK�LQ�&���WKH�FRGH�ZULWWHQ�LQ�
-DYD�>�@�DQG�FRGH�ZULWWHQ�LQ�&��>��@�ZHUH�XVHG���

7R� PHDVXUH� WKH� WLPH� FKDUDFWHULVWLFV� DQG� HUURU� UDWH� RI� WKH�
DOJRULWKPV��HDFK�DOJRULWKP�ZDV�DVVHVVHG�DV�IROORZV��

� 7HVW�GDWD�ZHUH�ORDGHG�LQ�FRQVROH�SURJUDP��)RU�WHVWLQJ�HUURU�
UDWH� RI� VROXWLRQV� DQG� FRPSXWDWLRQDO� UHVXOWV�� WKH� ODUJH�
OLEUDU\� RI� WHVW� LQVWDQFHV� IRU�0&33� LQ� JUDSK� LV� XVHG�� 7KH�
OLEUDU\� FRQWDLQV� WHVW� GDWD� IRU� ����� ������ ������ ����� DQG�
����� YHUWLFHV��)RU� HDFK� YHUWLFHV� VL]H� ��� WHVW� ILOHV� DUH�
SUHVHQWHG��6RPH�WHVW�LQSXW�VHWV�QR�KDYH�H[DFW�VROXWLRQ��>��@�
)RU�PXOWLJUDSK��WKH�WHVW�GDWD�VHWV�ZHUH�QRW�IRXQG��+RZHYHU��
JUDSK�LV�D�VSHFLDO�FDVH�RI�PXOWLJUDSK��ZLWKRXW�SDUDOOHO�DUFV�
DQG�HGJHV��DQG�DOJRULWKP�FDQ�EH�WHVWHG�RQ�JUDSK�GDWD�VHWV���

� 7KH�PHDVXUHPHQWV�IRU�HDFK�LQSXW�GDWD�VHW�ZHUH�FDUULHG�RXW�
���WLPHV��7KH�UHVXOWV�RI�FRPSXWDWLRQDO�WLPH�ZHUH�REWDLQHG�
DV�WKH�DYHUDJH�RI����UXQV�RI�WKH�SURJUDP��

�

� � � �
� (UURU�UDWH�RI�WKH�DOJRULWKPV�ZDV�HYDOXDWHG�DFFRUGLQJ�WR�WKH�
IRUPXOD��
� � � �
ZKHUH� � LV� WKH� UHVXOWLQJ� OHQJWK� RI� WKH� URXWH� RI� WKH�
0&33� XVLQJ� GHYHORSHG� DOJRULWKP�� � LV� WKH� RSWLPXP�
OHQJWK�RI�WKH�URXWH�RI�WKH�0&33�JLYHQ�LQ�LQSXW�GDWD��

174 из 190

� $OO� WHVW� SURYLGHV� RQ�0DF�%RRN� 3UR� ��� UHWLQD� ����� �,QWHO�
&RUH�L�������*+]���
� 6LQFH� WKH� DOJRULWKP� */.+� LV� EDVHG� RQ� KHXULVWLF� IRU�
VROYLQJ�763�/.+��ZKLFK�KDV�D�ORW�RI�SDUDPHWHUV� IRU�VROXWLRQ�
SURFHVV��WKH�ILUVW�VWHS�RI�H[SHULPHQW�FRQVLVWV�RI�LGHQWLI\LQJ�WKH�
RSWLPDO�SDUDPHWHUV�IRU�VROYLQJ��

7$%/(�,,,��� 5(68/76�)25�*763�:,7+�9$5,(6�3$5$0(75(6�

�
$Y�� WLPH��
VHF�

$Y��
HUURU����

$&� �����,3� �����0&� �����07� ������RSW� ������� ������
$&� �����,3� �����0&� �����07� ������RSW� ������� ������
$&� �����,3� �����0&� �����07� ������RSW� ������� ������
$&� �����,3� �����0&� ����07� �������RSW� ������� ������
$&� �����,3� �����0&� ����07� �������RSW� ������� ������
$&� �����,3� �����0&� ����07� ��������RSW� ������� ������
$&� �����,3� �����0&� ����07� ��������RSW� ������� ������
$&� �����,3� �����0&� ����07� ��������RSW� ������� ������
$&� �����,3� �����0&� ����07� ��������RSW� ������� ������
$&� �����,3� �����0&� ����07� ���������RSW� ������� ������
$&� �����,3� �����0&� ����07� ���������RSW� ������� ������
$&� �����,3� �����0&� ����07� ���������RSW� ������� ������
$&� �����,3� �����0&� ����07� ���������RSW� ������� ������
� 7KH�IROORZLQJ�SDUDPHWHUV�ZHUH�DVVHVVHG�>������@��

� $6&(17B&$1','$7(� �$&��� 7KH� FRXQW� RI� HGJH�
FDQGLGDWH�� DVVRFLDWHG� ZLWK� HDFK� QRGH� GXULQJ� WKH�
DVFHQW�� 5HVXOWV� IRU� ���� ����� ���� FDQGLGDWHV� ZHUH�
FRPSXWH��

� ,1,7,$/B3(5,2'� �,3��� 7KH� OHQJWK� RI� ILUVW� DVFHQW��
5HVXOWV�IRU��������������������OHQJWK�ZHUH�FRPSXWH��

� 0$;B&$1','$7(6��0&���7KH�PD[LPXP�QXPEHU�
RI�HGJH�FDQGLGDWH�DVVRFLDWHG�ZLWK�HDFK�QRGH��5HVXOWV�
IRU����������FDQGLGDWHV�ZHUH�FRPSXWH��

� 0$;B75,$/6� �07��� 7KH� PD[LPXP� QXPEHU� RI�
WULDOV�� 5HVXOWV� IRU� ��� ���� ����� ����� WULDOV� ZHUH�
FRPSXWH��

� 029(B7<3(� �N�RSW��� $� YDOXH� � VLJQLILHV�
WKDW�D�VHTXHQWLDO� W�PRYH�LV�WR�EH�XVHG��5HVXOWV�
IRU������������ �ZHUH�FRPSXWH��

� 6TXHH]LQJ� UHVXOWV� IRU� ILUVW� VWHS� RI� H[SHULPHQW� DUH�
UHSUHVHQWLQJ�LQ�7DEOHV����

7$%/(�,9��� &20387$7,21$/�5(68/76�)25�*763�:,7+�&+26(1�
3$5$0(7(56�

$Y��WLPH��VHF� $Y��HUURU����
9 ���� �������� ������
9 ����� �������� ������
9 ����� �������� ������
9 ����� ��������� ������
9 ����� ��������� ������

$IWHU� DQDO\]LQJ� WKH� 7DEOH� ��� WKH� PRVW� DSSURSULDWH�
SDUDPHWHUV�ZHUH�FKRVHQ���

$6&(17B&$1','$7(6� �������
,1,7,$/B3(5,2'� ������
0$;B&$1','$7(6� ������
0$;B75,$/6� �����

029(B7<3(� ����
)RU� FKRVHQ� SDUDPHWHUV� DOO� WHVW� VHWV� �IURP� � WR�

���ZHUH�WHVWHG��VHH�7DEOH�����)RU�SUREOHP�0%�����
FKRVHQ� DOJRULWKP� LPSURYHG� WKH� H[LVWLQJ� VROXWLRQ�� 3UHYLRXV�
WRXU�OHQJWK�LV���������IRXQGHG�E\�PRGLILFDWLRQ�RI�DOJRULWKP�LV�
��������

$V�VHHQ�IURP�7DEOHV���DQG����FKRVHQ�SDUDPHWHUV�HQWDLO�D�
ORQJ�FRPSXWDWLRQDO�WLPH��ZKLFK�LV�QRW�DOZD\V�DSSURSULDWH����

7KH� VHFRQG� VWHS� RI� H[SHULPHQWV� LV� GHILQLWLRQ� RI� 3DUHWR�
RSWLPDO�DOJRULWKPV��FULWHULD��HUURU�DQG�FRPSXWDWLRQDO�WLPH��IRU�
VROYLQJ� 0&33�� HYDOXDWH� */.+� DOJRULWKP� ZLWK� YDULHV�
SDUDPHWHUV� IURP� ILUVW� VWHS� DQG� DOJRULWKPV� EDVHG� RQ� VROYLQJ�
GLUHFWHG�&33��

7$%/(�9��� &20387$7,21$/�5(68/76�)25�3$5(72�237,0$/�
$/*25,7+06�

� � $Y�� WLPH��
VHF�

$Y�� HUURU��
��

*/.+� ZLWK�
SDUDPHWHUV�$&� ������
,3� � ����� 0&� � ����
07� ��������RSW��

9 ���� �������� ������
9 ����� �������� ������
9 ����� �������� ������
9 ����� ��������� ������
9 ����� ��������� ������

*/.+� ZLWK�
SDUDPHWHUV� $&� � ����
,3� � ���� 0&� � ����
07� ������RSW��

9 ���� ������� ������
9 ����� ������� ������
9 ����� �������� ������
9 ����� �������� ������
9 ����� �������� ������

*/.+� ZLWK�
SDUDPHWHUV� $&� � ����
,3� � ���� 0&� � ����
07� ������RSW��

9 ���� ������� ������
9 ����� ������� ������
9 ����� �������� ������
9 ����� �������� ������
9 ����� �������� ������

%DODQFHG�� _9_ ���� ������ �������
9 ����� ������� �������
9 ����� ������� �������
9 ����� ������� �������
9 ����� ������� �������

(GJHV�5HSODFHPHQW� _9_ ���� ������ �������
9 ����� ������� �������
9 ����� ������� �������
9 ����� ������� �������
9 ����� ������� �������

7KH�)LJ����LV�UHSUHVHQWLQJ�WKH�3DUHWR�RSWLPDO�DOJRULWKPV��
$V� VKRZQ� LQ� GLDJUDP�� GHVSLWH� WKH� DOJRULWKP� 5HSODFHPHQW�
(GJHV� DQG� %DODQFHG� KDYH� KLJK� HUURU� UDWH�� WKH\� KDYH� ORZ�
FRPSXWDWLRQDO�WLPH�DQG�DUH�3DUHWR�RSWLPDO��

7KH�IROORZLQJ�DOJRULWKPV�DUH�3DUHWR�RSWLPDO��
� 7UDQVIRUPDWLRQ�0&33� LQWR�*763� DQG� XVLQJ�*/.+�

ZLWK�SDUDPHWHUV�$&� �����,3� �����0&� �����07� ����
��RSW��

� 7UDQVIRUPDWLRQ�0&33� LQWR�*763�DQG� XVLQJ�*/.+�
ZLWK�SDUDPHWHUV�$&� �����,3� �����0&� �����07� ����
��RSW��

175 из 190

� 7UDQVIRUPDWLRQ�0&33� LQWR�*763�DQG� XVLQJ�*/.+�
ZLWK�SDUDPHWHUV�$&� ������,3� ������0&� �����07� �
�������RSW��

� 7UDQVIRUPDWLRQ� 0&33� LQWR� GLUHFWHG� &33� E\�
%DODQFHG�DOJRULWKP��

� 7UDQVIRUPDWLRQ� 0&33� LQWR� GLUHFWHG� &33� E\� (GJHV�
5HSODFHPHQW�DOJRULWKP��

� ,Q� FRQWUDGLVWLQFWLRQ� WR� DOJRULWKP� EDVHG� RQ� WUDQVIRUPDWLRQ�
0&33� LQWR� *763� DQG� XVLQJ� */.+� ZLWK� SDUDPHWHUV� $&� �
����� ,3� ������0&� � ����07� ������ ��RSW� DOO� RWKHU� 3DUHWR�
2SWLPDO�DOJRULWKP�GRHV�QRW�LPSURYH�FXUUHQW�H[LVWLQJ�VROXWLRQ��
EXW�KDYH�DSSURSULDWH�HUURU�UDWH�DQG�IDVW�FRPSXWDWLRQ��VHH�7DEOH�
����

9,��6800$5<�
7KH� ZD\V� RI� VROYLQJ� 0&33� LQ� PXOWLJUDSK� ZHUH�

SURSRVHG��3UHYLRXVO\��WKH�0&33�ZHUH�VROYHG�RQO\�LQ�D�PL[HG�
JUDSK��

$V� D� UHVXOW� RI� WKH� UHVHDUFK�� WKUHH� PRGLILFDWLRQV� RI�
� >�@� IRU� VROYLQJ� WKH� 0&33� LQ� WKH�

PXOWLJUDSK� EDVHG� RQ� WUDQVIRUPDWLRQ� PL[HG� PXOWLJUDSK� LQWR�
GLUHFWHG�PXOWLJUDSK�ZHUH�LPSOHPHQWHG���

7KH�DOJRULWKP�IRU�WUDQVIRUPLQJ�0&33�LQ�PXOWLJUDSK�LQWR�
DQ�HTXLYDOHQW�DUF�URXWLQJ�SUREOHP�*763�ZDV�GHYHORSHG���

7KH� DOO� SUHVHQWHG� DOJRULWKPV� ZHUH� LPSOHPHQWHG� DQG�
HYDOXDWHG�LQ�WHVW�GDWD�VHWV��7KH�3DUHWR�RSWLPDO�DOJRULWKPV�ZHUH�
IRXQG��)RU� SUREOHP�0%����� WKH� VROXWLRQ� ZDV� LPSURYHG� E\�
������

�
)LJ����� 3DUHWR�RSWLPDOV�0&33�DOJRULWKPV�

,Q�RXU�IXWXUH�ZRUN��ZH�DUH�JRLQJ�WR�ILQH�WXQH�SDUDPHWHUV�
RI� */.+� PHWKRGV� XVLQJ� JHQHWLF� DOJRULWKPV� RI� VHDUFK�

RSWLPL]DWLRQ��)XUWKHU�� LW� LV�SRVVLEOH� WR� DSSO\� DQG� LQYHVWLJDWHG�
RWKHU� H[LVWLQJ� DOJRULWKPV� IRU� *763�� 1H[W�� ZH� DUH� JRLQJ� WR�
GHYHORS� �SUHSDUH�� WHVW� GDWD� IRU� D� PL[HG� PXOWLJUDSK� DQG� WR�
FRQGXFW�H[SHULPHQWV� WR�HQVXUH� WKDW�D�3DUHWR�RSWLPDO�JURXS� LV�
VXVWDLQDEOH��

5()(5(1&(6�

>�@�� 9��%��'DYLG��'HFLVLRQ�0DWKV����/RQGRQ��+HLQHPDQQ�
(GXFDWLRQDO�3XEOLVKHUV���������

>�@�� 3��(��9UHGD���&KLQHVH�SRVWPDQ�SUREOHP���LQ�'LFWLRQDU\�
RI�$OJRULWKPV�DQG�'DWD�6WUXFWXUHV��1DWLRQDO�,QVWLWXWH�RI�
6WDQGDUGV�DQG�7HFKQRORJ\���������

>�@�� +��7KLPEOHE\���7KH�GLUHFWHG�&KLQHVH�3RVWPDQ�3UREOHP���
6RIWZDUH�3UDFWLFH�DQG�([SHULHQFH��YRO������QR������SS��
������������������

>�@�� -��(GPRQGV���0DWFKLQJ��(XOHU�WRXUV�DQG�WKH�&KLQHVH�
SRVWPDQ���0DWKHPDWLFDO�3URJUDPPLQJ��YRO�����QR�����SS��
���������������

>�@�� 7��.��5DOSKV���2Q�WKH�0L[HG�&KLQHVH�3RVWPDQ�3UREOHP���
6FKRRO�RI�2SHUDWLRQV�5HVHDUFK�DQG�,QGXVWULDO�
(QJLQHHULQJ���SS������������������

>�@�� *��/DSRUWH���$UF�5RXWLQJ�3UREOHPV��3DUW�,��7KH�&KLQHVH�
3RVWPDQ�3UREOHP���2SHUDWLRQV�5HVHDUFK��YRO������SS��
����������������

>�@�� 7��.��5DOSKV���2Q�WKH�0L[HG�&KLQHVH�3RVWPDQ�3UREOHP���
6FKRRO�RI�2SHUDWLRQV�5HVHDUFK�DQG�,QGXVWULDO�
(QJLQHHULQJ��SS������������������

>�@�� *��%ODLV���([DFW�6ROXWLRQ�RI�WKH�*HQHUDOL]HG�5RXWLQJ�
3UREOHP�WKURXJK�*UDSK�7UDQVIRUPDWLRQV���2SHUDWLRQV�
5HVHDUFK��YRO������QR�����SS������������������

>�@�� .��+HOVJDXQ���6ROYLQJ�WKH�(TXDOLW\�*HQHUDOL]HG�
7UDYHOLQJ�6DOHVPDQ�3UREOHP�8VLQJ�WKH�/LQ�.HUQLJKDQ�
+HOVJDXQ�$OJRULWKP���5RVNLOGH�8QLYHUVLW\��������

>��@�.��+HOVJDXQ���6ROYLQJ�$UF�5RXWLQJ�3UREOHPV�8VLQJ�WKH�
/LQ�.HUQLJKDQ�+HOVJDXQ�$OJRULWKP���5RVNLOGH�
8QLYHUVLW\��������

>��@�
>2QOLQH@��$YDLODEOH��
KWWS���ZZZ�XY�HV�FRUEHUDQ�LQVWDQFLDV�KWP��>$FFHVVHG���
$SULO�����@��

>��@�0��*RUGHQNR�DQG�6��$YGRVKLQ��
�&ORVHG&33)RU'LUHFUHGQGQGLUHFWHG*UDSK���3DWHQW�
���������������2FWREHU�������

>��@�.��+HOVJDXQ���$Q�(IIHFWLYH�,PSOHPHQWDWLRQ�RI�WKH�/LQ�
.HUQLJKDQ�7UDYHOLQJ�6DOHVPDQ�+HXULVWLF���(XURSHDQ�
-RXUQDO�RI�2SHUDWLRQDO�5HVHDUFK��YRO�������QR�����SS��
����������������

>��@�.��+HOVJDXQ���/.+���>2QOLQH@��$YDLODEOH��
KWWS���DNLUD�UXF�GN�aNHOG�UHVHDUFK�/.+���>$FFHVVHG���
$SULO�����@��

�

176 из 190

Pareto-optimal Algorithms for Metric TSP

Ekaterina N. Beresneva (Chirkova)

Faculty of Computer Science

National Research University Higher School of Economics

Moscow, Russia

enchirkova@edu.hse.ru

Scientific Advisor: Prof. Sergey Avdoshin

Software Engineering School

National Research University Higher School of Economics

Moscow, Russia

savdoshin@hse.ru

Abstract— The Travelling Salesman Problem (TSP) is a

fundamental task in combinatorial optimization. A special case of

the TSP is Metric TSP, where the triangle inequality holds.

Solutions of the TSP are generally used for costs minimization,

such as finding the best tour for round-the-world trip or

construction of very large-scale integration schemes. Since the

TSP is NP-hard, heuristic algorithms providing near optimal

solutions will be considered. The objective of this article is to find

a group of Pareto optimal heuristic algorithms for Metric TSP

under criteria of run time efficiency and qualitative performance

as a part of the experimental study. Classification of algorithms

for Metric TSP is presented. Feasible heuristic algorithms and

their prior estimates are described. The details of the research

methodology are provided. Finally, results and prospective

research are discussed.

Keywords—travelling salesman problem, resource-efficient

algorithm, heuristic algorithm, posterior estimate, computational

experiment.

I. INTRODUCTION

The Travelling Salesman Problem (TSP) is one of the

most widely known questions in a class of combinatorial

optimization problems. Essentially, to meet a challenge of the

TSP is to find a Hamiltonian circuit of minimal length. A

subcase of the TSP is Metric TSP where all of the edge costs

are symmetric, and they satisfy the triangle inequality.

The methods for solving the TSP have been developed for

many years, and since the problem is NP-hard, it continues to

be topical. The TSP has seen applications in the areas of

logistics, genetics, manufacturing, telecommunications and

neuroscience [1]. The most common practical interpretation of

the TSP relates to the movement of people and vehicles

around tours, such as searching for the shortest tour through 𝑁

cities, school bus route planning, and postal delivery. In

addition, the TSP plays an important role in very large-scale

integration (VLSI) [2].

The purpose of this study is to determine the group of

Pareto-optimal heuristic algorithms for Metric TSP by criteria

of run time and qualitative performance as part of the

experimental investigation.

Clearly, a study of this type is inevitably restricted by

various constraints, in this research only heuristic algorithms

constructing near optimal solutions in polynomial time will be

considered instead of the exact ones.

The paper is structured as follows. First, the theoretical

basis is described. It presents the mathematical formulation of

Metric TSP, the specification of metric types and, at last,

definition of Pareto optimization. Next, a classification of

algorithms for Metric TSP is given, including a literature

review of popular heuristics. Then the description of methods

to be used is provided with their prior estimates. After that the

details of the research methodology and expected results are

mentioned.

II. THEORETICAL BASIS

A. Problem Formulation

In this paper, mathematical formulation of Metric TSP is

adopted as follows.

Given a complete weighted undirected graph 𝐺 = (𝑉, 𝑉2)

which contains 𝑁 = |𝑉| vertices. Graph vertices are indexed

as 𝑖𝑛𝑑𝑒𝑥 = 𝑉 → 𝐼, 𝐼 = {1, 2, … , 𝑁}, and (∀𝑣𝑖 ∈ 𝑉)(∀𝑣𝑗 ∈ 𝑉)

it is true that if 𝑣𝑖 ≠ 𝑣𝑗 then 𝑖 ≠ 𝑗, where 𝑖 = 𝑖𝑛𝑑𝑒𝑥(𝑣𝑖).

The distance between two vertices 𝑣𝑖 and 𝑣𝑗 is calculated by

distance function 𝑑(𝑣𝑖 , 𝑣𝑗). Here a real-valued function 𝑑(∙,∙)

on 𝑉 × 𝑉 satisfies [3]:

1. 𝑑(𝑣𝑖 , 𝑣𝑗) ≥ 0 (non-negativity axiom)

2. 𝑑(𝑣𝑖 , 𝑣𝑗) = 0 if and only if 𝑣𝑖 = 𝑣𝑗 (identity axiom)

3. 𝑑(𝑣𝑖 , 𝑣𝑗) = 𝑑(𝑣𝑗 , 𝑣𝑖) (symmetry axiom)

4. 𝑑(𝑣𝑖 , 𝑣𝑘) ≤ 𝑑(𝑣𝑖 , 𝑣𝑗) + 𝑑(𝑣𝑗 , 𝑣𝑘) (triangle inequality

axiom)

Let S be a set of all Hamiltonian cycles of 𝐺. It is defined

as 𝑆 = {𝑝: 𝑉 → 𝑉|(𝑝(1) = 1&(∀𝑖 ∈ 𝑉)(∀𝑗 ∈ 𝑉)
(𝑝(𝑖) = 𝑝(𝑗) => 𝑖 = 𝑗}. An example of a Hamiltonian circuit

𝑠 ∈ 𝑆 is (𝑝1 , 𝑝2, … , 𝑝𝑁), where 𝑝𝑖 is used as abbreviated

notation of 𝑝(𝑖).

Weight of a Hamiltonian cycle 𝑠 ∈ 𝑆 can be found

according to the formula (1):

 𝑓(𝑠) = 𝑑(𝑝1, 𝑝𝑁) + ∑ 𝑑(𝑝𝑖 , 𝑝𝑖+1)𝑁−1
𝑖=1  

The set of vertices 𝑉 is determined in Euclidean space

𝑅𝑛 by their coordinates. Under these circumstances, the

Minkowski distance of order 𝑝, where 𝑝 ≥ 1, between two

vertices 𝑣 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑤 = (𝑥1, 𝑥2, … , 𝑥𝑛) is

defined as (2):

 𝑑(𝑣, 𝑤) = √∑ |𝑥𝑖(𝑣) − 𝑥𝑖(𝑤)|𝑝𝑛
𝑖=1

𝑝
 

177 из 190

Three most used practical metrics are based on

Minkowski distance. The first one is the taxicab metric, which

is also known as the 𝐿1 distance or the Manhattan distance

(for 𝑝 = 1) (3). The second is the Euclidean metric or the 𝐿2

distance (for 𝑝 = 2) (4). The third metric is the Chebyshev

distance or the 𝐿∞ metric (for 𝑝 → ∞) (5).

 𝑑0(𝑣, 𝑤) = ∑ |𝑥𝑖(𝑣) − 𝑥𝑖(𝑤)|𝑛
𝑖=1  

 𝑑1(𝑣, 𝑤) = √∑ (𝑥𝑖(𝑣) − 𝑥𝑖(𝑤))
2𝑛

𝑖=1  

 𝑑2(𝑣, 𝑤) = max𝑖=1,…,𝑛|𝑥𝑖(𝑣) − 𝑥𝑖(𝑤)| 

The formulation for the metric travelling salesman

problem is to find such 𝑠0 that 𝑓(𝑠0) = min𝑠∈𝑆 𝑓(𝑠) for the

given metric 𝑑 ∈ {𝑑0, 𝑑1, 𝑑2}.

B. Resourse-efficient parameters

Let 𝑀 be a set of given heuristic algorithms for Metric

TSP. There are two parameters of resource-efficiency for

𝑚 ∈ 𝑀 for each 𝑁:

 𝑓𝜀(𝑚, 𝑁) – qualitative performance;

 𝑓𝑡(𝑚, 𝑁) – running time.

Qualitative performance can be calculated using (7):

 𝑓𝜀(𝑚, 𝑁) =
𝑓(𝑠)−𝑓(𝑠0)

𝑓(𝑠0)
∗ 100% 

where 𝑓(𝑠) is the obtained tour length and 𝑓(𝑠0) is the optimal
tour length.

C. Pareto-optimality

The algorithm 𝑚0 ∈ 𝑀 is Pareto optimal if (∀𝑚 ∈ 𝑀)

((𝑚 ≠ 𝑚0) ⇒ (𝑓𝜀(𝑚) > 𝑓𝜀(𝑚0)) ∨ (𝑓𝑡(𝑚) > 𝑓𝑡(𝑚0))).

III. LITERATURE REVIEW

Algorithms for solving the TSP may be divided into two

classes:

 Exact algorithms, and

 Heuristic (or approximate) algorithms.

Exact algorithms are aimed at finding optimal solutions.

Both widely known subtypes of exact methods – linear

programming and branch-and-bound techniques – are

described in details by Applegate [1]. However, a major

drawback is connected with their time efficiency. It is a

common knowledge that there are no exact algorithms running

in polynomial time. Thus, only small datasets can be solved in

reasonable time. For example, the 4410-vertex problem is

believed to be the largest Metric TSP ever solved with respect

to optimality [4].

In this paper, only a class of heuristic search algorithms

will be taken into account. They are designed to run quickly

and to get an approximate solution to a given problem.

Heuristic algorithms are subdivided into two groups.

The first group includes tour construction algorithms that

have one feature in common – the tour is built by adding a

new vertex at each step. The most common methods are

Nearest Neighbour, Double Nearest Neighbour, and Greedy

algorithms, that are represented in Flood’s article [5]. Other

constructive methods – insertion heuristics – are described by

Johnson and McGeoch [6]. Other well-known algorithms

based on minimum spanning tree are introduced by

Christofides [7] [8].

The second group consists of local-search algorithms that

have their roots in TSP papers from the 1950s [9] [10].

According to Applegate, ‘… These heuristics take as input an

approximate solution to a problem and attempt to iteratively

improve it by moving to new solutions that are close to the

original’ [1]. Most of these algorithms are described by Aarts

and Lenstra [11]. Currently, the main local-search heuristic

used in practice is 2-Opt heuristic [12]. It was introduced and

described by Flood [5], Croes [10] and Bock [9]. The later

algorithm of Lin and Kernighan [13] appeared on the basis of

k-Opt tour-finding approach.

IV. ALGORITHMS

In this paper, the following methods for solving Metric

TSP will be implemented and assessed through experiments.

1) Nearest Neighbour (NN).

The key to NN is to initially choose a random vertex and

to add repeatedly the nearest vertex to the last appended,

unless all vertices are used [5].

2) Double Ended Nearest Neighbour (DENN).

This algorithm is a modification of NN. Unlike NN, not

only the last appended vertex is taken into consideration, so

the closest vertex to both of endpoints in the tour is added [5].

3) Greedy (GRD).

The Greedy heuristic constructs a path by adding the

shortest edge to the tour until a cycle with 𝐴 edges, 𝐴 < 𝑁, is

created, or the degree of any vertex exceeds two [14].

4) Nearest Insertion (NI), Cheapest Insertion (CI),

Nearest Segment Insertion (NSI).

The fundamental idea of NI, CI and NSI is to start with an

initial subtour made of the shortest edge and to add repeatedly

other vertices using various rules. Depending on the algorithm

the vertex not yet in the cycle should be inserted so that:

a) In NI it is the closest to any node in the tour;

b) In CI its addition to the tour gives a minor

increment of its length;

c) In NSI distance between the node and any edge in

the tour is minimal.

The previous step should be repeated until all vertices are

added to the cycle [11].

178 из 190

5) Nearest Insertion Modified (NIM), Cheapest Insertion

Modified (CIM), Nearest Segment Insertion Modified (NSIM).

Algorithms NIM, CIM and NSIM are variations of NI, CI

and NSI respectively. The feature of modified methods is

additional computation that selects the best place for each

inserting node.

6) Double Minimum Spanning Tree (DMST).

DMST method is based on the construction of a minimal

spanning tree (MST) from the set of all vertices. After MST is

built, the edges are doubled in order to obtain an Eulerian

cycle, containing each vertex at least once. Finally, a

Hamiltonian circuit is made from an Eulerian circuit by

sequential (or greedy) removing occurrences of each node [8].

7) Double Minimum Spanning Tree Modified (DMST-M).

This algorithm is a modification of DMST. Unlike DMST,

it is necessary to remove duplicate nodes from Eulerian cycle

using triangle inequality instead of greedy method.

8) Christofides (CHR).

This method is a modification of DMST that was proposed

by Christofides [7]. The difference between CHR and DMST

is addition of minimum weight matching calculation to the

first algorithm.

9) Moore Curve (MC).

This is recursive geometric method. Vertices are sorted by

the order they are located on the plane. Only the two-

dimensional example of Moore curve is implemented. Figure

2 shows the order of the cells after one, two and three

subdivision steps respectively [15] .

Fig. 1. The order for the Moore curve after 1, 2 and 3 subdivision steps.

10) 2-Opt.

The main idea behind 2-Opt is to take a tour that has one

or more self-intersections and to remove them repeatedly. In

mathematical terms, edges 𝑎𝑏 and 𝑐𝑑 should be deleted and

new edges 𝑎𝑐 and 𝑏𝑑 should be inserted, if 𝑑(𝑎, 𝑏) +
𝑑(𝑐, 𝑑) > 𝑑(𝑎, 𝑐) + 𝑑(𝑏, 𝑑) (Fig. 1) [11].

Fig. 2. 2-Opt modification.

11) Lin and Kernighan Heuristic (LKH).

LKH uses the principle of 2-Opt algorithm and generalizes

it. In this heuristic, the 𝑘-Opt, where 𝑘 = 2. . √𝑁̅̅ ̅̅ ̅̅ ̅̅
, is applied,

so the switches of two or more edges are made in order to

improve the tour. This method is adaptive, so decision about

how many edges should be replaced is taken at each step [13].

Estimated upper bounds for the algorithms can be

calculated as are the ratio of
𝑓(𝑠)

𝑓(𝑠0)
 (see Table 1). According to

[16], for any 𝑘-Opt algorithm, where 𝑘 ≤ 𝑁/4, problems

may be constructed such that the error is almost 100%. So 2-

Opt and LKH algorithms have approximate upper bound 2.

TABLE I. UPPER-BOUND ESTIMATES OF ALGORITHMS

 # Algorithm Upper-bound estimate

1 NN

DENN
0.5⌈log2 𝑁 + 1⌉

2 GRD 0.5⌈log2 𝑁 + 1⌉
3 NI, CI, NSI

NIM, CIM, NSIM
2 −

2

𝑁

4 DMST, DMST-M
2 −

2

𝑁

5 CHR 3

2

6 2-Opt ≈ 2

7 LKH ≈ 2

8 ЬСп MC log 𝑁

Running time estimates of the algorithms are represented

in Table 2.

TABLE II. RUNNING TIME OF ALGORITHMS

 # Algorithm Running time

9 NN

DENN
𝑂(𝑁2)

10 GRD 𝑂(𝑁2 log 𝑁)

11 NI, CI, NSI
NIM, CIM, NSIM

𝑂(𝑁2)

12 DMST, DMST-M 𝑂(𝑁2)

13 CHR 𝑂(𝑁3)

14 2-Opt 𝑂(𝑁2)

15 LKH 𝑂(𝑁2,2)

16 ЬСп MC 𝑂(𝑁 log 𝑁)

V. EXPERIMENTAL RESEARCH

This section documents details of the research
methodology. The experiment is carried out on a 1.3 GHz Intel
Core i5 MacBook Air. It includes the qualitative performance
and the run time efficiency of the current implementations.

Heuristics are implemented in C++. VLSI data sets from an
open library TSPLIB [2] are selected as input data for
algorithms. There are 102 instances in the VLSI collection that
range in size from 131 vertices up to 744,710 vertices. There is
one data set for each number of vertices. The integer Euclidean
metric distance is used, so coordinates of nodes and distances
between them have integer values, thus without loss of
generality (4) is transformed into:

 𝑑1(𝑣, 𝑤) = ⌊√|𝑥(𝑣) − 𝑥(𝑤)|2 + |𝑦(𝑣) − 𝑦(𝑤)|2 + 0.5⌋

179 из 190

The computational experiment corresponds to the following

scenario:

for algorithm 𝑚 in range [1…9, 11] (see IV)
 for data set 𝑁 in range [1…102]
 for i in range [1…11]
 𝑓𝜀𝑖

(𝑚, 𝑁), 𝑓𝑡𝑖
(𝑚, 𝑁) are calculated

 if i > 1 then
 𝑓𝜀𝑚𝑖𝑛

(𝑚, 𝑁) is memorized

 𝑓𝑡𝑠𝑢𝑚
(𝑚, 𝑁) is calculated

 𝑓𝑡𝑎𝑣𝑔
(𝑚, 𝑁) =

𝑓𝑡𝑠𝑢𝑚
(𝑚,𝑁)

10

 // 2-Opt stage
 if 𝑚 ! = 11 (𝑚 is not LKH)

𝑓𝜀(𝑚 + 2⎼𝑂𝑝𝑡, 𝑁), 𝑓𝑡(𝑚 + 2⎼𝑂𝑝𝑡, 𝑁) are
calculated

𝐸 (𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁)) for all 𝑁 is calculated

𝜎 (𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁)) for all 𝑁 is calculated

𝑚𝑎𝑥 (𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁)) for all 𝑁 is calculated

𝑚𝑖𝑛 (𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁)) for all 𝑁 is calculated

Metrics used in scenario have following meanings:

 𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁) – best qualitative performance of 𝑚,

 𝑓𝑡𝑠𝑢𝑚
(𝑚, 𝑁) – accumulative running time of 𝑚 (sec),

 𝑓𝑡𝑎𝑣𝑔
(𝑚, 𝑁) – average running time of 𝑚 (sec),

 𝑓𝜀(𝑚 + 2⎼𝑂𝑝𝑡, 𝑁) – qualitative performance of

𝑚 + 2⎼𝑂𝑝𝑡,

 𝑓𝑡(𝑚 + 2⎼𝑂𝑝𝑡, 𝑁) – running time of 𝑚 + 2⎼𝑂𝑝𝑡,

 𝐸 (𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁)) – expected value of qualitative

performance of 𝑚 for all 𝑁,

 𝜎 (𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁)) – standard deviation of qualitative

performance of 𝑚 for all 𝑁,

 𝑚𝑎𝑥 (𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁)) – maximum value of qualitative

performance of 𝑚 for all 𝑁,

 𝑚𝑖𝑛 (𝑓𝜀𝑚𝑖𝑛
(𝑚, 𝑁)) – minimum value of qualitative

performance of 𝑚 for all 𝑁.

Qualitative performance metrics are represented in Table

3. Table color scheme varies from green (the best result in a

column) to red (the worst value in a column).

VI. PARETO-OPTIMAL ALGORITHMS

We decided to select six different data sets with 𝑁 =

{1084, 5087, 10150, 30440, 52057, 104814} to plot charts

that illustrate Pareto-optimal algorithms.

The chart with 𝑁 = 10150 is shown below (see Figure 3).

The horizontal axis represents the time performance of

methods in seconds. The vertical axis shows the gap between

optimal and obtained solutions, expressed in percent. Pareto-

optimal methods are highlighted in red. The points which are

represented by Pareto solutions are bigger than non-Pareto-

optimal solutions.

TABLE III. QUALITATIVE PERFORMANCE METRICS OF ALGORITHMS

Algorithm E(ɛ) σ(ɛ) max ɛ min ɛ

LKH 5/10 0,07% 0,05% 0,23% 0,00%

CHR + 2-Opt 5,77% 0,68% 11,02% 3,47%

GRD + 2-opt 6,22% 0,70% 9,89% 4,69%

DENN + 2-opt 10,95% 4,42% 23,51% 3,82%

NN + 2-opt 11,44% 1,87% 24,77% 4,26%

CHR 12,61% 1,08% 17,79% 9,31%

CIM + 2-opt 13,05% 2,29% 21,86% 6,74%

NIM + 2-opt 14,60% 5,53% 29,66% 5,86%

DMST-M + 2-opt 16,08% 8,39% 40,61% 4,80%

NSIM + 2-opt 17,63% 5,82% 33,65% 8,92%

GRD 18,12% 2,91% 31,34% 10,30%

DMST + 2-opt 19,08% 9,54% 39,12% 6,91%

CIM 20,31% 1,44% 27,54% 12,46%

DENN 23,28% 1,62% 32,53% 13,88%

NN 23,94% 1,64% 30,97% 12,94%

CI 26,25% 2,70% 33,05% 17,94%

NIM 27,98% 1,89% 35,29% 14,89%

DMST-M 32,41% 3,15% 41,68% 18,55%

MC + 2-opt 32,41% 22,54% 177,83% 6,21%

NSIM 36,23% 4,23% 48,17% 19,15%

DMST 40,09% 2,34% 48,88% 33,16%

NSI 43,55% 5,64% 55,61% 25,89%

NI 52,46% 3,19% 60,94% 36,77%

MC 63,93% 25,58% 242,41% 33,07%

Fig. 3. Pareto-optimal algorithms, 𝑁 = 10150.

Full results are presented in Table 4. Dash sign is used

because some methods have not tested on large 𝑁 yet. So we

cannot claim whether these algorithms are Pareto-optimal or

not. There are three heuristics included in each Pareto-optimal

group. They are CIM, NN and MC.

TABLE IV. PARETO-OPTIMAL ALGORITHMS FOR 6 GROUPS OF N

N = 1084 N = 5087 N = 10150 N = 30440 N = 52057 N = 104814
CI CI

CIM CIM CIM CIM CIM CIM

 CIM+2-Opt CIM+2-Opt

NN NN NN NN NN NN

 DENN DENN DENN DENN

 DENN+
2-Opt

 DENN+
2-Opt

 GRD
MC MC MC MC MC MC
CHR - -

LKH LKH LKH LKH - -

180 из 190

However, it should be noted that despite the lack of

information on LKH algorithm for 𝑁 = 52057 and 𝑁 =

104814, this method continues to be the most perspective

heuristic. As it can be seen from Table 3, expected value of

qualitative performance of LKH is 0.07%. From there, we

decided to add LKH to the group of Pareto-optimal

algorithms.

Overall, the final group of Pareto-optimal algorithms

consists of CIM, NN, MC and LKH heuristics.

VII. CONCLUSION

The presented study is undertaken to determine what
heuristics for Metric TSP should be used in specific
circumstances with limited resources.

This paper provides an overview of some heuristic

algorithms implemented in C++ and tested on the VLSI data

set. In the course of computational experiments, the

comparative figures are obtained and on their basis multi-

objective optimization is provided. Overall, the final group of

Pareto-optimal algorithms consists of CIM, NN, MC and LKH

heuristics.

In our future work, we are going to fine-tune parameters of
CHR and LKH methods using genetic algorithms of search
optimization. Further, it is possible to increase the number of
heuristic algorithms, to transit to other types of test data and to
conduct experiments using metrics 𝑑0, 𝑑2 in order to ensure
that a Pareto optimal group is sustainable.

The practical applicability of our findings is to present
Pareto optimal algorithms that lead to solutions with maximum
accuracy under the given resource limitations. The results can
be used for scientific purposes by other researchers and for cost
minimization tasks.

REFERENCES

[1] D. L. Applegate, The Traveling Salesman Problem, Princeton:

Princeton University Press, 2006.

[2] Heidelberg University, "TSPLIB," [Online]. Available:

https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
[Accessed 01 02 2017].

[3] Wikipedia, "Multi-objective optimization," [Online]. Available:

https://en.wikipedia.org/wiki/Multi-objective_optimization. [Accessed
03 02 2017].

[4] University of Waterloo, "Status of VLSI Data Sets," [Online].

Available: http://www.math.uwaterloo.ca/tsp/vlsi/summary.html.
[Accessed 08 02 2017].

[5] M. M. Flood, "The traveling-salesman problem," Operation research,

vol. 4, pp. 61-75, 1956.

[6] D. Johnson and L. McGeoch, "The Traveling Salesman Problem: A

Case Study," in Local Search in Combinatorial Optimization,

Chichester, 1997, pp. 215-310.

[7] N. Christofides, "Worst-case analysis of a new heuristic for the

travelling salesman problem," Graduate School of Industrial

Administration, CMU, 1976.

[8] N. Christofides, Graph theory - An Algorithmic Approach, New York:

Academic Press, 1974.

[9] F. Bock, "An algorithm for solving "traveling-salesman" and related
network optimization problems," in Unpublished manuscript a-

ssociated with talk presented at the 14th ORSA National Meeting, 1958.

[10] G. Croes, "A method for solving travelling salesman problems,"

Operation Resources, vol. 6, pp. 791-812, 1958.

[11] E. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization,
Princeton, New Jersey: Princeton University Press, 2003.

[12] G. Gutin and A. Punnen, The Traveling Salesman Problem and Its

Variations, vol. 12, Kluwer, Dordrecht: Springer US, 2002.

[13] K. Helsgaun, "An effective implementation of the Lin–Kernighan

traveling salesman heuristic," EJOR, vol. 12, pp. 106-130, 2000.

[14] W. J. Cook, Combinatorial optimization, New York: Wiley, 1998.

[15] K. Buchin, "Space-Filling Curves," in Organizing Points Sets: Space-

Filling Curves, Delaunay Tessellations of Random Point Sets, and Flow

Complexes, Berlin, Free University of Berlin, 2007, pp. 5-30.

[16] D. E. Rosenkrantz, R. E. Stearns and P. M. Lewis II, "An analysis of

several heuristics for the traveling salesman problem," SIAM J. Comput,

p. 563–581, 1977.

181 из 190

Rapid Prototyping of Smart Mirror

for Smart Home Environment

Sergey Smetanin

Faculty of Business and Management

National Research University Higher School of Economics

Moscow, Russia

sismetanin@gmail.com

Abstract— In the last few years, the Internet of Things (IoT)

tends to get a significant attention both from the academic and

the industrial spheres. Consequently, it provoked a rapid

development of various projects for home automation in general

and smart devices, particularly. This paper aims at discussing the

concept of the smart mirror prototype. The basic features are

proposed and described in details. As a result, the prototype of

the smart mirror is expected to be implemented in this research.

In further work, the additional augmentation functional might be

added.

Keywords—smart mirror; smart home, smart display.

I. INTRODUCTION

 In the last few years, the academic and the industrial
communities draw their attention to the Internet of Things
(IoT). Consequently, it provoked a rapid development of
various projects for home automation. Smart mirrors come
from the idea of bringing technology into everyday objects: the
traditional mirrors. A smart mirror is a device that functions as
a mirror with the additional capability of both displaying
multimedia data and interacting directly with the user.

This paper describes the functional and the structure of the
smart mirror prototype, which is powered by an Android
device. The aim of this paper is to specify the process of smart
mirror development and to propose the basic functional of the
smart mirror, which will be implemented in further work.

 The paper is organized as follows. In section 2 the review
of literature is provided. The prototype of the smart mirror is
described in section 3. Section 4 is focused on the key smart
mirror features. Section 5 states the results of the paper.

II. RELATED WORK

The smart environment systems are capable not only to
perform routine tasks but also to positive affect to the user’s
feelings. The FitMirror project [1] aims at helping people with
serious problems to get up after sleeping and to get motivated
through the day using activity tracking, emotions recognition,
and interactive games. This smart mirror consists of a monitor
with spy-foil, a Microsoft Kinect v2, and a Wii Balance Board.

 The Virtuoso project [10] tends to create a seamless
interactive support for fitness and wellness activities in
touristic resorts. The general idea is to evaluate the current
physical state of the user through an interactive mirror.

Considerable attention is paid to such physiological parameters
as fat and glossary balance, glucose metabolism, and
circulation of blood. In addition, the discussion of mirror setup
is provided to validate the Virtuoso results in a holiday resort
scenario.

The paper [13] propose a novel interface to support smart
home technologies. The smart mirror display is made by using
half mirror film attached to a general display like a monitor.
Speech recognition and face recognition are implemented to
operate the displayed content.

HomeMirror [8] is one of the most popular open-source
smart mirror project, which is designed as an Android
application powering the mirror. Using API services by Yahoo
Finance, Forecast.io, the BBC, and XKCD, it allows users to
obtain different kinds of information, e.g. calendar information,
weather forecast, news, and stock price swings. Similar open-
sourced projects [3], [9], and [11] also implement the basic
smart mirror functional.

Regardless of the rapid development in the academic and
the industrial communities, the features of these mirrors are
limited. Moreover, the embedded functions are significantly
vary depending on the applied sphere of smart mirror usage.
The basic features for the smart mirror are proposed in the next
section.

III. THE PROTOTYPE

 For this project a two-way mirror is required, that is, the
special panel, which allows the light to pass from the rear
outwards, and also reflect the light off the front, depending on
the light condition on the other side [4]. If the other side is
bright, the two-way mirror will be transparent like a normal
glass. Otherwise, only the reflected image will be shown. Thus,
if a screen will be put on the other side of the two-way mirror,
the reflected image will be shown in the dark parts of the
screen, while the bright parts of the screen will be overlaid to
the smart mirror. Covering the whole area of the mirror seems
to be an ideal option, because it will be possible to cover it all
with overlaid multimedia information. In the context of
prototyping, it was decided to use an Android tablet as a
hardware part of the smart mirror.

The software part of the smart mirror will be implemented
as a native Android application using Java programming
language and Android SDK. Android Studio was selected as

182 из 190

IDE because of providing high-quality tools for building
applications on every type of Android device.

This prototype could also be integrated into a real smart
home concept [2], [7], [12] by connecting the mirror with other
components. The basic features of the smart mirror are
proposed in the following section.

IV. FEATURES

The overall idea of the smart mirror is both to display
multimedia data and to interact directly with the user. Firstly, it
should provide with general information such as time, weather,
and news. Secondly, the user identification features should be
implemented to support multi-user interaction and personalized
content. Thirdly, the personal calendar data should be
displayed for each identified user. Fourthly, the intelligent
personal assistant should be integrated. By the end, a few
additional features related to food delivery services and
streaming services could be implemented. The detail
description of each feature is discussed below.

A. Information dashboard

The default smart mirror screen should display the
dashboard, which provides current time, news, and weather
information. News and weather forecast could be obtained via
public API of such services as Google News and Dark Sky
respectively.

B. User identification

User identification is the first step to multi-user interaction

and personalized content. A face recognition or voice

recognition based approaches could be used to identify users

and unlock their personal profiles to get access to private data

and applications.

C. Personal calendar

After the user recognition, the information from the online
time-management and the scheduling calendar service might be
presented at the mirror. The Google Calendar API provides
developers with an ability to find and view public calendar
events for unauthorized users and to access and modify private
calendars and events on those calendars for authorized users.

D. Intelligent Personal Assistant

Intelligent Personal Assistants (IPAs) such as Apple’s Siri,
Google’s Google Now, and Microsoft’s Cortana are emerging
as one of the fastest growing Internet services [5]. They have
an ability to access the date from a variety of sources and to
organize and maintain this information. In this project, personal
assistant reminders from Google Now will be displayed at the
mirror.

E. Additional functional

According to the online food ordering report [6] from the
Cornell University, well-designed self-service ordering systems
provide customers with substantial control over the pace of
their transaction and allow them to limit the amount of personal
interaction they experience [6], resulting in increased

satisfaction from the ordering process. The smart mirror could
be integrated with the international UberEATS service to allow
users to order food delivery.

The proliferation of the Internet, the increased speed of
Internet connections facilitated the rapid propagation of media
streaming services usage. Due to the presence of the screen, the
smart mirror could implement the media player's functions
based on content from streaming services, e.g. Netflix, Amazon
Video, HBO Now, etc.

V. RESULTS

As a result, the prototype of the Android powered smart
mirror for home automation is expected to be implemented.
The key features of the prototype were specified and described
in details. The future research will be focused on the
integration with smart home systems. Moreover, the additional
augmentation features could be implemented.

REFERENCES

[1] D. Besserer, J. Bäurle, A. Nikic, F. Honold, F. Schüssel, and M. Weber,
“Fitmirror: a smart mirror for positive affect in everyday user morning
routines,” Proceedings of the Workshop on Multimodal Analyses
enabling Artificial Agents in Human-Machine Interaction - MA3HMI
'16, 2016.

[2] G. Chong, L. Zhihao, and Y. Yifeng, “The research and implement of
smart home system based on Internet of Things,” 2011 International
Conference on Electronics, Communications and Control (ICECC),
2011.

[3] E. Cohen, “evancohen/smart-mirror,” GitHub, 06-Sep-2015. [Online].
Available: https://github.com/evancohen/smart-mirror. [Accessed: 28-
Mar-2017].

[4] D. B. S. Craftsman, “Mirror, Smart Mirror on the wall...,” The Labs |
Novoda, 12-Jul-2016. [Online]. Available:
https://www.novoda.com/blog/mirror-smart-mirror-on-the-wall/.
[Accessed: 29-Mar-2017].

[5] J. Hauswald, L. Tang, J. Mars, M. A. Laurenzano, Y. Zhang, C. Li, A.
Rovinski, A. Khurana, R. G. Dreslinski, T. Mudge, and V. Petrucci,
“Sirius: An Open End-to-End Voice and Vision Personal Assistant and
Its Implications for Future Warehouse Scale Computers,” Proceedings
of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems - ASPLOS '15, 2015.

[6] S. E. Kimes, “The Current State of Online Food Ordering in the U.S.
Restaurant Industry,” Cornell University, Ithaca, New York, rep., 2011.

[7] S. Kumar, “Ubiquitous Smart Home System Using Android
Application,” International journal of Computer Networks &
Communications, vol. 6, no. 1, pp. 33–43, 2014.

[8] H. M. Mittelstaedt, “HannahMitt/HomeMirror,” GitHub, 20-May-2016.
[Online]. Available: https://github.com/HannahMitt/HomeMirror.
[Accessed: 28-Mar-2017].

[9] S. Monnerat, “Shinao/SmartMirror,” GitHub, 21-Feb-2016. [Online].
Available: https://github.com/Shinao/SmartMirror. [Accessed: 28-Mar-
2017].

[10] M. Saba, R. Scateni, F. Sorrentino, L. D. Spano, S. Colantonio, D.
Giorgi, M. Magrini, O. Salvetti, N. Buonaccorsi, and I. Vitali, “Smart
Mirror Where I Stand, Who Is the Leanest in the Sand?,” Universal
Access in Human-Computer Interaction. Access to Learning, Health and
Well-Being Lecture Notes in Computer Science, pp. 364–373, 2015.

[11] M. M. Teeuw, “MichMich/MagicMirror,” GitHub, 16-Feb-2014.
[Online]. Available: https://github.com/MichMich/MagicMirror.
[Accessed: 28-Mar-2017].

[12] J. Wu, L. Huang, D. Wang, and F. Shen, “R-OSGi-based architecture of
distributed smart home system,” IEEE Transactions on Consumer
Electronics, vol. 54, no. 3, pp. 1166–1172, 2008.

183 из 190

[13] M.-C. Youn and S. Jeong, “Efficient Supporting Method Based on
Smart Mirror for Smart Home System,” Advanced Science and
Technology Letters, vol. 141, pp. 169–172, 2016.

184 из 190

Inverse kinematics in ultralight UAV control
problem with additional on-board microcomputer.

Vasiliy Kaliteevskiy
Saint-Petersburg State University

Email: vkalit@gmail.com

Konstantin Amelin
Saint-Petersburg State University

Email: konstantinamelin@gmail.com

Abstract—The possibility of using additional on-board micro-
computer for collaboration with autopilot to increase functional-
ity of UAV is considered. Using the microcomputer TRIK is pro-
posed. The dinamic and kinematic of flight process are described.
Several coordinate systems for describe the dynamic behaviors
of UAV are given. The architecture of the autopilot control unit
for the UAV is considered. The method of partly implement the
autopilot systems control modules to microcomputer is proposed.
Simulation results of motions model in Simulink are described.
Testing the proposed module on the real UAV is planned.

I. INTRODUCTION

Unmanned aerial vehicles play an increasingly prominent
role in military defensive purposes. UAV successfully solve
the problem of reconnaissance , surveillance, and communi-
cations, even being in extreme conditions and long flights.

Recently, UAVs have also been successfully used to solve
many civilian tasks, covering a wide range of possibilities,
such as the work of emergency services, border patrols,
monitoring of agricultural crops forestry and fisheries control,
also mapping, monitoring of green areas, monitoring of oil
and gas facilities and many others.

There are a lot of different UAVs in the world, differing in
their specifications and set of characteristics (purpose, weight,
size, flight duration and flight altitude, launch and landing
system, autopilot and navigation systems, aerial and video
format, etc.) [1].

For the successful implementation of the above tasks have
to choose the right components for the inner and outer stuffing
UAV, leaving without due attention to the software. Thus, it
is necessary to maximize the UAV’s own capabilities, which
includes both the selection of high-quality hardware solutions
designed for possible extreme conditions and increased loads,
and the software that provides stable uninterrupted control of
the UAV in conditions of noisy and delays from the sensors.
The control module should also be optimized in terms of
power consumption, since the UAVs have a limited supply
of energy due to the weight of the batteries, which affects the
flight performance [2].

The subject of this paper is the description and development
of the UAV control chain from receiving data from sensors to
setting a signal for control mechanisms in conditions of noisy
and delayed. It also requires the selection of hardware and the
practical implementation of such control [1].

The problem is that from the sensor readings to the decision
making by the UAV control unit, a large number of transforma-

tions and calculations must be performed, and in order for the
control unit to work effectively in real time, these calculations
must be carried out in an optimal way [2].

In the design of UAV flight physics, a number of problems
arise. First, the UAV model can and must be viewed in
different coordinate systems, which makes it necessary to
constantly use spatial mathematical transformations. Secondly,
the various forces and moments that act on the drone are also
described in the UAV system, but the sensors available to the
UAV only partially give evidence to this system. Thirdly, a
non-trivial task is to describe inverse kinematics of the flight
process. To describe the motion of a UAV with six degrees
of freedom, it will take 12 different variables describing the
coordinates, velocity, angles and angular moments of the UAV
in the framework of nonlinear differential equations describing
the physics of UAV flight.

It is also necessary to consider all the forces and moments
that act on the UAV at the time of movement. It should be
noted that this includes the wind, which plays a very important
role in the case of unmanned aerial vehicles. At what comes
here as a constant wind, available in some place for a while,
and some gusts of wind that need to be taken into account. It
is also worth noting that the forces and moments of the forces
acting on the UAV are highly dependent on the characteristics
of the UAV itself, which must also be taken into account. This
is both the surface area and shape of the wing, as well as the
fact of the presence or absence of the UAV plumage.

For the efficiency of the control module, the linearization of
the differential equations is performed. Thus, all the forces and
moments acting on the UAV will be considered as longitudinal
and lateral, which greatly simplifies the understanding of the
flight process, as well as interaction with it with the help of
an autopilot.

As the final part, we consider preparation the hardware
component, which was chosen as a microcontroller TRIK
together with the autopilot ArduPilot. But before we begin
implementation on a real microcontroller, the system must be
tested. For this purpose, the Simulink simulation environment
is used in the Matlab application package.

The aim of this work is to study the physics of the flight
process, to simulate the flight process and to get the software
and hardware solution for automatic piloting of the UAV.

185 из 190

II. ARDUPILOT FLIGHT CONTROLLER

The popular used solution for autopiloting the UAV is the
ArduPilot flight controller [3]. This product is a full-fledged
UAV solution that allows, in addition to radio-controlled
remote piloting, automatic control over a previously created
route, that is, flight by points, and also has a two-way transfer
of telemetry data from a board to a railway station. It is
developed by the DIY Drones community and is based on
the open source project Arduino .

Autopilot has good advantages [3]:
1) Low price.
2) Ability to set up to 166 flight points.
3) Editing a route in flight.
4) Wireless configuration settings.
5) Support for various frames and forms of the UAV.
6) Aircraft simulator support via Mission Planner software.

III. PROPOSED SOLUTION

A. Reference frames

It is proposed to implement its own autopilot in order to
obtain customizable, scalable software, through which it is
possible to further implement various innovative solutions, as
well as test various mathematical ideas and hypotheses.

Before embarking on the physics of flight, including the
basic set of forces and moments acting on the UAV, it is
necessary to specify various necessary frames of reference,
which will be used later in the calculation of the physics of
flight. This is due to a number of reasons:

1) The classical equation of Newton’s motion is described
in a fixed, inertial frame of reference. However, it is
easier to describe in the UAV reference system.

2) The aerodynamic forces and moments acting on the
UAV’s body are easier described in the reference system
of the UAV itself.

3) On-board sensors such as an accelerometer and a gy-
roscope give values relative to the position of the body
in space, that is, in the UAV reference system, then the
GPS / GLONASS sensors issue values in the Earth’s
coordinate system.

4) The flight path of the UAV, as well as the set of points to
follow, are also specified in the Earth reference system.

Main reference frames used: (fig. 1).
1) Basic inertial frame of reference. Earth reference system.

F i

2) The vehicle frame. F v. It is achieved by means of a
shift relative to F i.

3) The vehicle-1 frame. UAV reference system with a
deviation in the horizontal direction. F v1. It is achieved
by turning, with respect to F v by an angle ψ.

4) The vehicle-2 frame. UAV reference system with a
deviation in the horizontal and vertical direction. F v2.
Achieved by turning, with respect to F v1 by an angle
θ.

5) The body frame. UAV reference system with a deviation
in the horizontal, vertical direction, and also with the

Fig. 1. Different reference frames.

help of rotation relative to the guide axis. F b. Achieved
by turning, relative to F v2 by an angle ϕ.

6) The stability frame. The UAV reference system, rotated
by the angle of attack. F s. It is achieved by turning
relatively F b by an angle α.

7) The wind frame. The UAV reference system, rotated by
a drift angle by the wind. Fw. It is achieved by turning
relatively F s by an angle β.

Rotation matrix at angle ν in general form is as follows: cos(ν) sin(ν) 0
−sin(ν) cos(ν) 0

0 0 1


In order to make the transformations between the reference

frame of the Earth F i and the reference system of the UAV
F b, it is necessary to multiply all the intermediate matrices.
Thus, the translation matrix will look like this:

Rb
v(ϕ, θ, ψ) = Rb

v2(ϕ)R
v2
v1(θ)R

v1
v (ψ) = c(θ)c(ψ) c(θ)s(ψ) −s(θ)

s(ϕ)s(θ)c(ψ)− c(ϕ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) s(ϕ)c(θ)
c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ) c(ϕ)c(θ)

 ,

where c() = cos(), s() = sin().
One of the goals of the ready-made autopilot is that the

autopilot can bring the UAV to this point with the help of
appropriate controls (ailerons, rudders, etc.), that is, it could
correctly direct the velocity vector of the UAV [4]. Since the
coordinate of the point is indicated in the reference frame of
the earth. The first thing to do is to learn how to represent the
velocity vector of a UAV in a land reference system. [5]

Suppose the UAV moves in the reference system Fb relative
to the ground (reference frame F i)) as shown in fig. 2. In this
case, the velocity vector p is represented as [1]:

p = pxib + pyjb + pzkb

186 из 190

Fig. 2. The vector of forces in different projections.

That is, the motion in time can be given by formula [1]:

d

dtb
p = ṗxib + ṗyjb + ṗzkb

Then the displacement of the vector p in the frame of
reference Fb with respect to the reference system F i will
be given by the formula:

d

dti
p = ṗxib + ṗyjb + ṗzkb + px

d

dti
ib + py

d

dti
jb + pz

d

dti
kb

If we represent the rotation (angular velocity) of Fb with
respect to F i as ωb/i, then the increments of the vector in
each direction can be represented as:

i̇b = ωb/i × ib

j̇b = ωb/i × jb

k̇b = ωb/i × kb

And if substitute it in the previous equation, it will turn out:

px
b+py

b+pz
b = px(ωb/iib)+py(ωb/ijb)+pz(ωb/ikb) = ωb/i×p

And finally, if we sum up all of the foregoing under one
line, then we will get the instant UAV speed expressed through
the earth’s coordinate system:

d

dti
p =

d

dtb
p + ωb/i × p

B. Kinematics and dynamics

The movement of an unmanned aerial vehicle in a space
having 6 degrees of freedom is described using the twelve
variables shown in the table:

Name Description
pn The UAV’s coordinate axis to north in Fi

pe The UAV’s coordinate axis to east in Fi

pd Axis directed to the center of the Earth in Fi

u Speed along the axis ibinF b

v Speed along the axis jbinF b

w Speed along the axis kbinF b

ϕ The heeling angle given in Fv2

θ The pitch angle given in Fv1

ψ The yaw angle given in Fv

p Angular roll speed
q Angular velocity of pitch
r Angular speed of yaw

The formulas for the recalculation of these variables for a
flying UAV can be found in the following books on mechanics
[6], spatial dynamics [7], flight dynamics[8], robotics [9].ṗnṗe

ṗd

 =

c(θ)c(ψ) s(ϕ)s(θ)c(ψ)− s(ϕ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)
c(θ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ)
−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

×

×

u
v
w


u̇nv̇e
ẇd

 =

rv − qw
pw − ru
qu− pv

+
1

m

fxfy
fz


ϕ̇θ̇
ψ̇

 =

1 sin(ϕ)tan(θ) cos(ϕ)tan(θ)
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ)

cos(θ)
cos(ϕ)
cos(θ)

pq
r


ṗq̇
ṙ

 =

 Γ1pq − Γ2qr
Γ5pr − Γ6(p

2 − r2)
Γ7pq − Γ1qr

+

Γ3l + Γ4n
1
Jy
m

Γ4l + Γ8n


C. Forces and moments

At the time of flight, the UAV undergoes a non-trivial action
of various forces and moments of different natures, namely
gravitational (fg), aerodynamic(fa, ma) (fp, mp). Then the
total action of forces and moments on UAV can be described
by formulas [1]:

f = fg + fa + fp

187 из 190

m = ma +mp

The gravitational force in an inertial coordinate system is
described by a simple vector:

fvg =

 0
0
mg


In the UAV body coordinates system:

fvb =

 −mg ∗ sin(θ)
mg ∗ cos(θ)sin(ϕ)
mg ∗ cos(θ)cos(ϕ)


When an airplane is flying through the air, it generates its

own wings with a lift force and a braking force, as shown in
fig. 3. The force and pressure distribution acting on the aircraft
depends on the speed through the air, the air density, the
shape and position of the aircraft in the air. Thus, the dynamic
pressure is described by formula 1

2V
2
a , where - density of air,

and Va is the airspeed relative to air.

Fig. 3. Distribution of air density around the wing during flight.

The force of inhibition, the force of lifting, and the moment
of forces are usually described by the following formulas: [7]

Flift =
1

2
V 2
a SCL

Fdrag =
1

2
V 2
a SCD

m =
1

2
V 2
a ScCm,

where CL, CD, Cm - dimensionless quantities characteriz-
ing the aerodynamic coefficients, S - sing surface area, c -
value equal to half of the wing.

IV. IMPLEMENTATION

The implementation of the autopilot will be performed on
the TRIK platform, shown in fig. 4.

TRIK is a minicomputer compatible with a wide range
of peripheral devices, containing all the necessary equipment
for creating on its basis autonomous robotic systems. The
controller can control the motors of direct current and servo
drives, process information from both digital sensors and
analog, work with video modules and microphones, has Wi-
Fi interfaces, Bluetooth 4.0 (including LE), USB, Micro-SD
and ANT. The controller has built-in protection against over-
current and from deep battery discharge.[10]

TRIK is based on a processor OMAP-L138 C6-Integra DSP
+ ARM SoC [11] produced Texas Instruments. The processor
has a high-level architecture, shown in fig. 5. This processor
has two computational modules:

1) Control ARM core (ARM926EJ-S RISC MPU), which
provides the Linux operating system on the controller;

2) core DSP (C674x Fixed/Floating-Point VLIW DSP). It
is specially designed to handle a large amount of data
represented as vectors.

Fig. 4. Examples of TRIK boards.

Fig. 5. High-level processor architecture OMAP L138 (ARM+DSP)

V. CONTROL MODULE

The control module operates according to the principle
depicted in fig. 6. The Path Planner module specifies the
points through which the UAV is scheduled to fly. The Path
Manager module converts the sequence of these points into
a sequence of lines and arcs (arcs of Dubin), as part of the

188 из 190

trajectory over which the UAV is scheduled to fly. Next in
the path following, the autopilot itself tracks the passage of
the UAV along this path, making adjustments along the route
and transferring commands to all means available for route
maintenance such as engine, ailerons, rudders, etc.

Fig. 6. System architecture of the UAV control module.

There are two classes of problems for planning a path.
The first is point-to-point algorithms, the purpose of which
is to force the UAV to fly through all given points, bypassing
obstacles. The second class of problems are the algorithms for
covering a given region using a UAV. For example, for aerial
photography. We will focus only on the first class, considering
point-to-point algorithms.

Since the control module must take into account the errors
and errors that come with the sensor readings, there is a State
estimator module for this purpose, which estimates these errors
and makes corresponding corrections.

VI. TESTING AND ANALYSIS

Before implementing the proposed architecture on the UAV,
the UAV flight simulator was simulated in the Simulink envi-
ronment of the Matlab application package. Matlab/Simulink
is a graphical simulation environment that allows you to build
dynamic models, including discrete, continuous and hybrid,
non-linear and discontinuous systems, using block diagrams
in the form of directed graphs.

The environment is very convenient because it allows you
to program differential equations using the built-in S-functions
[12]. Draws the position of the UAV in real time, as shown in
fig. 7. During the course of the UAV to its Simulink route, it
displays all the parameters of all the given physical quantities
at any time, which is very convenient, and clearly allows you
to check the correctness of the work, as well as analyze the
physics of the UAV movement. This is shown in fig. 8. Allows
you to specify a complex interaction structure for modules.
The main block diagram, which is shown in fig. 9, also con-
tains modules: mavDynamics, responsible for the kinematics
and dynamics of the motion process, forcesMoments responsi-
ble for the recalculation of forces and moments, drawAircraft
- for mapping the UAV in a graphical environment.

Fig. 7. Displays the UAV model in real time.

VII. CONCLUSION

The architecture of the autopilot control unit for the UAV
was created. It is studied and realized with the help of
graphical simulation environment of the physics of the UAV
motion process. This includes the basic set of mathematical
transformations, which allows you consider the movement of
UAVs in different coordinate systems, as well as formulas and
accompanying explanations of the dynamics and kinematics of
the flight process. The formulas of the forces and the moments
operating on the UAV were studied and realized.

The resulting model of motion in the Simulink environment
is a good representation of the movement of a real UAV,
since it takes into account almost the entire set of forces and
moments that affect the UAV, including both constant wind
and gusts of wind, presented as white noise.

Further development of the work consists in porting the
resulting module to a real UAV, adding an apparatus for
estimating the noise of instrument measurements.

Also the received system is a good platform for testing
any ideas and hypotheses for UAV, modeling of mathematical
processes.

ACKNOWLEDGMENT

This work was supported by RFBR (project 15-08-02640).

REFERENCES

[1] R. Beard and T. McLain, Small unmanned aircraft: Theory and practice.,
2012.

[2] K. Amelin, The method of orienting an ultralight UAV with a rare update
of its location.

[3] ArduPilot. The site of the.
[4] R. Nelson, Flight Stability and Automatic Control. Boston, MA: Mc-

GrawHill, 2nd ed., 1998.

189 из 190

Fig. 8. Matlab/Simulink shows all the specified traffic parameters in real
time.

Fig. 9. The main (uppermost) component of the test module, which is a block
diagram in the form of directed graphs.

[5] J. Roskam, Flight Dynamics and Automatic Flight Controls, Parts I II,
1998.

[6] H. Goldstein, Classical Mechanics, 1951.
[7] W. W. E., Spaceflight Dynamics, 1997.
[8] M. Shuster, A survey of attitude representations, The Journal of the

Astronautical Sciences, vol. 41, pp. 439517, OctoberDecember, 1993.
[9] V. M. Spong, M.W., Robot Dynamics and Control, 1989.

[10] TRIK. The site of the company.
[11] T. Instruments. Section of the site of the company.
[12] Matlab. (2015) S-function documentation. [Online]. Available:

http://www.mathworks.com/help/simulink/matlab-s-functions-1.html

190 из 190

	01_title
	02_annotation
	03_content
	04_foreword
	05_committee
	01_SYRCoSE_2017_paper_30
	Overview and Main Results
	The Landing Gear System
	Stimulus-Response requirements
	Temporal interpretation of the requirements

	Translation of Stimulus-Response Requirements
	Maximal distance
	Exact distance
	Response stability

	Applying the Translation Scheme to the Landing Gear Example
	Translation of ASM specifications
	Assignment
	Do-in-parallel
	Conditional

	Ground model
	Requirements

	Related work
	Conclusions and future work

	02_SYRCoSE_2017_paper_39
	03_SYRCoSE_2017_paper_28
	04_SYRCoSE_2017_paper_19
	05_SYRCoSE_2017_paper_9
	06_SYRCoSE_2017_paper_14
	07_SYRCoSE_2017_paper_20
	Introduction
	Motivating example
	Related work

	Preliminaries
	Mining Hybrid UML Models
	Operation and workflow abstraction levels
	Interaction abstraction level
	Building process
	Mining UML sequence diagrams

	Tool overview
	Event log
	Tool implementation

	Conclusion

	08_SYRCoSE_2017_paper_37
	09_SYRCoSE_2017_paper_15
	10_SYRCoSE_2017_paper_18
	11_SYRCoSE_2017_paper_27
	12_SYRCoSE_2017_paper_41
	13_SYRCoSE_2017_paper_29
	I. Introduction
	II. Related Work
	III. Development of Formal Models
	IV. Parameterized Verification of Cache Coherence Protocols
	A. Performing the Syntactical Transformations
	B. Abstraction Refinement
	C. Verification Technique

	V. Experimental Results
	VI. Conclusion
	References

	14_SYRCoSE_2017_paper_24
	15_SYRCoSE_2017_paper_34
	16_SYRCoSE_2017_paper_5
	17_SYRCoSE_2017_paper_33
	18_SYRCoSE_2017_paper_2
	19_SYRCoSE_2017_paper_8
	20_SYRCoSE_2017_paper_10
	21_SYRCoSE_2017_paper_25
	22_SYRCoSE_2017_paper_4
	Introduction
	Background
	Exact duplicate detection and Clone Miner
	Interval Tree

	Near duplicate detection algorithm
	Definitions
	Algorithm description

	The Tool
	Evaluation
	Conclusion
	References

	23_SYRCoSE_2017_paper_11
	Introduction
	Background
	An algorithm for sentence grouping
	Evaluation
	Conclusion
	References

	24_SYRCoSE_2017_paper_3
	25_SYRCoSE_2017_paper_40
	26_SYRCoSE_2017_paper_1
	27_SYRCoSE_2017_paper_13
	28_SYRCoSE_2017_paper_21
	29_SYRCoSE_2017_paper_17
	30_SYRCoSE_2017_paper_6
	31_SYRCoSE_2017_paper_36
	32_SYRCoSE_2017_paper_35
	33_SYRCoSE_2017_paper_12
	I. Introduction
	II. Related work
	III. The prototype
	IV. Features
	A. Information dashboard
	B. User identification
	C. Personal calendar
	D. Intelligent Personal Assistant
	E. Additional functional

	V. Results
	References

	34_SYRCoSE_2017_paper_32

