
SYRCoSE 2018

Editors:

Alexander S. Kamkin, Alexander K. Petrenko, and

Andrey N. Terekhov

Preliminary Proceedings of the 12th Spring/Summer

Young Researchers’ Colloquium on Software Engineering

Veliky Novgorod, May 30 – June 1, 2018

2018

Preliminary Proceedings of the 12th Spring/Summer Young Researchers’

Colloquium on Software Engineering (SYRCoSE 2018), May 30-June 1, 2018 –

Veliky Novgorod, Russian Federation.

The issue contains papers accepted for presentation at the 12th Spring/Summer

Young Researchers’ Colloquium on Software Engineering (SYRCoSE 2018) held in

Veliky Novgorod, Russian Federation on May 30-June 1, 2018.

The colloquium’s topics include programming languages and libraries, software

and hardware verification, automata and Petri nets, system programming, and others.

The authors of the selected papers will be invited to participate in a special issue of

‘The Proceedings of ISP RAS’ (http://www.ispras.ru/proceedings/), a peer-reviewed

journal included into the list of periodicals recommended for publishing doctoral

research results by the Higher Attestation Commission of the Ministry of Science and

Education of the Russian Federation.

The event is sponsored by Russian Foundation for Basic Research (Project №18-07-20034).

Contents

Foreword ∙∙5

Committees ∙∙6

Combining ACSL Specifications and Machine Code

P. Putro∙∙8

Registration Protocol Security Analysis of the Electronic Voting System Based on Blinded Intermediaries

using the Avispa Tool

I. Pisarev, L. Babenko∙∙14

Towards Formal Verification of Cyber Security Standards

T. Kulik, P.G. Larsen∙∙∙20

On the Model Checking of Finite State Transducers over Semigroups

A. Gnatenko, V. Zakharov∙∙26

Tolerant Parsing with a Special Kind of "Any" Symbol: The Algorithm and Practical Application

A. Goloveshkin, S. Mikhalkovich∙∙35

Heterogeneous Architectures Programming Library

G. Kirgizov, Ia. Kirilenko∙∙∙46

Applying Deep Learning to C# Call Sequence Synthesis

A. Chebykin, Ia. Kirilenko∙∙54

In-Kernel Memory-Mapped I/O Device Emulation

V. Cheptsov, A. Khoroshilov∙∙64

Asymmetric Multiprocessor Problems of Real-Time OS

A. Emelenko, A. Tsyvarev, N. Pakulin∙∙70

Building Modular Real-Time Software from Unified Components Model

K. Mallachiev, A. Khoroshilov∙∙∙74

Static Verification for Memory Safety of Linux Kernel Drivers

A. Vasilev∙∙80

Configurable System Call Tracer in Qemu Emulator

A. Ivanov∙∙87

Stealth Debugging of Programs in Qemu Emulator with WinDbg Debugger

M. Abakumov∙∙89

An Interactive Specializer Based on Partial Evaluation for a Java Subset

I. Adamovich, A. Klimov∙∙91

Static Dependency Analysis for Incremental Validation of Semantically Complex Data

D. Ilyin, N. Fokina, V. Semenov∙∙∙97

Source Code Augmentation for Supervised Learning

V. Savchenko, A. Volkov∙∙∙103

Buffer Overflow Detection via Static Analysis: Expectations vs. Reality

I. Dudina∙∙107

3

An Approach to Simulation-Based Verification of SoC Bus Controllers

M. Chupilko, E. Drozdova∙∙111

Verification of System on Chip Integrated Communication Controllers

M. Petrochenkov, R. Mushtakov, D. Shpagilev∙∙115

Construction of Validation Modules Based on Reference Functional Models in a Standalone Verification of

Communication Subsystem

D. Lebedev, I. Stotland∙∙∙120

Medical Images Segmentation Operations

S. Musatian, A. Lomakin, S. Sartasov, L. Popyvanov, I. Monakhov, A. Chizhova∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙125

Automatic Detection of Physiologically Singular Points of the Bony Orbit

M. Platonova, S. Sartasov, I. Monakhov∙∙130

The Variants of Chinese Postman Problems and Way of Solving through Transformation into Vehicle

Routing Problems

M. Gordenko, S. Avdoshin∙∙133

Applying the Methods of System Analysis to Teaching Assistants’ Evaluation

E. Beresneva, M. Gordenko∙∙∙138

Analysis of Mathematical Formulations of Capacitated Vehicle Routing Problem and Methods for their

Solution

E. Beresneva, S. Avdoshin∙∙147

Auto-Calibration and Sychronization of Camera and MEMS-Sensors

A. Polyakov, A. Kornilova, Ia. Kirilenko∙∙∙153

An Approach to a Software Implementation of Architectural Generative Design for BIM

M. Prokofyev, V. Kirillov∙∙∙159

Product Reviews Sentiment Analysis in Russian

S. Smetanin, M. Komarov∙∙∙164

On the Verification of Strictly Deterministic Behaviour of Timed Finite State Machines

E. Vinarskii, V. Zakharov∙∙∙169

Deriving Adaptive Distinguishing Sequences for Finite State Machines

A. Tvardovskii, N. Yevtushenko∙∙176

Prosega/CPN: An Extension of CPN Tools for Automata-based Analysis and System Verification

J.C. Carrasquel, M.E. Villapol, A. Morales∙∙∙182

Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of Agents

R. Nesterov, A. Mitsyuk, I. Lomazova∙∙192

Human Readable Extended Finite State Machine Format

A. Nikitin∙∙198

Criteria for Software to Safety-Critical Complex Certifiable Systems Development

N. Gorelits, A. Gukova, E. Peskov∙∙∙202

Formalizing Metamodel of Requirement Management System

D. Kildishev, A. Khoroshilov∙∙209

Extracting Architectural Information from Source Code of ARINC 653-Compatible Application Software

Using CEGAR-Based Approach

S. Lesovoy∙∙∙215

4

Foreword

Dear participants,

It is our pleasure to meet you at the 12th Spring/Summer Young Researchers’ Colloquium on

Software Engineering (SYRCoSE). This year’s colloquium is hosted by Yaroslav-the-Wise

Novgorod State University (NovSU), the largest higher education institution in the Novgorod

region. The event is organized by Ivannikov Institute for System Programming of the Russian

Academy of Sciences (ISP RAS), Saint-Petersburg State University (SPbSU), and NovSU.

SYRCoSE 2018’s Program Committee (consisting of more than 50 members from more than 25

organizations) has selected 36 papers. Each submitted paper has been reviewed independently by

two-three referees. The authors and speakers represent well-known universities, research institutes

and companies including Aarhus University, Auckland University of Technology, Baumann

Moscow State Technical University, Central University of Venezuela, EC-leasing, GosNIIAS,

Higher School of Economics, ISP RAS, KCD LLC, Keldysh Institute of Applied Mathematics of

RAS, Lomonosov Moscow State University, MCST, NovSU, Perm State University, Program

Systems Institute of RAS, Sapienza University of Rome, Southern Federal University, SPbSU,

Tomsk State University, Università degli Studi di Milano-Bicocca, and Université de Bretagne

Occidentale (6 countries, 14 cities, and 23 organizations).

We would like to thank all of the participants of SYRCoSE 2018 and their advisors for interesting

papers. We are also very grateful to the PC members and the external referees for their hard work

on reviewing the papers and selecting the program. Our thanks go to the invited speakers, Frank

Singhoff (Université de Bretagne Occidentale) and Boris Pozin (EC-leasing, Higher School of

Economics). We would also like to thank our sponsors: Russian Foundation for Basic Research

(Project №18-07-20034) and Exactpro Systems. Our special thanks go to the local organizers,

Alexander Cherepitsa, Vladimir Makarov, and Galina Voloshina, for their invaluable help in

organizing the colloquium in Veliky Novgorod.

Sincerely yours,

Alexander S. Kamkin

Alexander K. Petrenko

Andrey N. Terekhov

May 2018

5

Committees

Program Committee Chairs
Alexander K. Petrenko – Russia
Ivannikov Institute for System Programming of RAS

Andrey N. Terekhov – Russia
Saint-Petersburg State University

Program Committee

Elena Yu. Avdieva – Russia
Omsk State Technical University

Manuel Mazzara – Russia
Innopolis University

Sergey M. Avdoshin – Russia
Higher School of Economics

Alexander S. Mikhaylov – Russia
RN-Inform

Nadezhda F. Bahareva – Russia
Povolzhskiy State University of Telecommunications and Informatics

Igor A. Minakov – Russia
Institute for the Control of Complex Systems of RAS

Andrey A. Belevantsev – Russia
Ivannikov Institute for System Programming of RAS

Alexey M. Namestnikov – Russia
Ulyanovsk State Technical University

Svetlana I. Chuprina – Russia
Perm State National Research University

Yaroslav R. Nedumov – Russia
Ivannikov Institute for System Programming of RAS

Pavel D. Drobintsev – Russia
Saint-Petersburg State Polytechnic University

Valery A. Nepomniaschy – Russia
Ershov Institute of Informatics Systems of SB of RAS

Liliya Yu. Emaletdinova – Russia
Kazan National Research Technical University

Mykola S. Nikitchenko – Ukraine
Kyiv National Taras Shevchenko University

Victor P. Gergel – Russia
Lobachevsky State University of Nizhny Novgorod

Sergey P. Orlov – Russia
Samara State Technical University

Susanne Graf – France
VERIMAG Laboratory

Elena A. Pavlova – Russia
Microsoft

Efim M. Grinkrug – Russia
Higher School of Economics

Ivan I. Piletski – Belorussia
Belarusian State University of Informatics and Radioelectronics

Maxim L. Gromov – Russia
Tomsk State University

Vladimir Yu. Popov – Russia
Ural Federal University

Vladimir I. Hahanov – Ukraine
Kharkov National University of Radioelectronics

Yury I. Rogozov – Russia
Taganrog Institute of Technology, Southern Federal University

Shihong Huang – USA
Florida Atlantic University

Rustam A. Sabitov – Russia
Kazan National Research Technical University

Iosif L. Itkin – Russia
Exactpro Systems

Nikolay V. Shilov – Russia
A.P. Ershov Institute of Informatics Systems of RAS

Alexander S. Kamkin – Russia
Ivannikov Institute for System Programming of RAS

Alberto Sillitti – Russia
Innopolis University

Andrei V. Klimov – Russia
Keldysh Institute of Applied Mathematics of RAS

Ruslan L. Smelyansky – Russia
Moscow State University

Vsevolod P. Kotlyarov – Russia
Saint-Petersburg State Polytechnic University

Valeriy A. Sokolov – Russia
Yaroslavl Demidov State University

Alexander N. Kovartsev – Russia
Samara State Aerospace University

Petr I. Sosnin – Russia
Ulyanovsk State Technical University

Vladimir P. Kozyrev – Russia
National Research Nuclear University “MEPhI”

Veniamin N. Tarasov – Russia
Povolzhskiy State University of Telecommunications and Informatics

Daniel S. Kurushin – Russia
State National Research Polytechnic University of Perm

Andrei N. Tiugashev – Russia
Samara State Aerospace University

Peter G. Larsen – Denmark
Aarhus University

Sergey M. Ustinov – Russia
Saint-Petersburg State Polytechnic University

Roustam H. Latypov – Russia
Kazan Federal University

Vladimir V. Voevodin – Russia
Research Computing Center of Moscow State University

Alexander A. Letichevsky – Ukraine
Glushkov Institute of Cybernetics, NAS

Dmitry Yu. Volkanov – Russia
Moscow State University

Nataliya I. Limanova – Russia
Povolzhskiy State University of Telecommunications and Informatics

Mikhail V. Volkov – Russia
Ural Federal University

Alexander V. Lipanov – Ukraine
Kharkov National University of Radioelectronics

Nadezhda G. Yarushkina – Russia
Ulyanovsk State Technical University

Irina A. Lomazova – Russia
Higher School of Economics

Rostislav Yavorsky – Russia
Higher School of Economics

Lyudmila N. Lyadova – Russia
Higher School of Economics

Nina V. Yevtushenko – Russia
Ivannikov Institute for System Programming of RAS

Vladimir A. Makarov – Russia
Yaroslav-the-Wise Novgorod State University

Vladimir A. Zakharov – Russia
Moscow State University

Victor М. Malyshko – Russia
Moscow State University

Sergey S. Zaydullin – Russia
Kazan National Research Technical University

Tiziana Margaria – Ireland
Lero – The Irish Software Research Centre

6

Organizing Committee

Alexander O. Cherepitsa
Yaroslav-the-Wise Novgorod State University

Alexander K. Petrenko
Ivannikov Institute for System Programming of RAS

Alexander S. Kamkin
Ivannikov Institute for System Programming of RAS

Galina V. Voloshina
Yaroslav-the-Wise Novgorod State University

Vladimir A. Makarov
Yaroslav-the-Wise Novgorod State University

Referees

Alhejab Alhazmi Manuel Mazzara

Ivan Andrianov Alexander Mikhaylov

Nadezhda Bahareva Yaroslav Nedumov

Andrey Belevantsev Valery Nepomniaschy

Mikhail Chupilko Mykola Nikitchenko

Misha Drobyshevskii Sergey Orlov

Natalia Garanina Alexander Petrenko

Victor Gergel Nikolay Shilov

Aritra Ghosh Alberto Sillitti

Andrey Gomzin Sergey Smolov

Susanne Graf Valeriy Sokolov

Efim Grinkrug Petr Sosnin

Maxim Gromov Andrei Tatarnikov

Alexander Kamkin Andrey Terekhov

Andrei Klimov Andrei Tyugashev

Vladimir Kozyrev Andrey Ustyuzhanin

Mikhail Lebedev Dmitry Volkanov

Irina Lomazova Mikhail Volkov

Vladimir Makarov Nina Yevtushenko

Victor Malyshko Vladimir Zakharov

7

Combining ACSL Specifications and Machine Code
Pavel Putro

Software Engineering Department
Ivannikov Institute for System Programming of the RAS

Moscow, Russia
pavel.putro@ispras.ru

Abstract—When developing programs in high-level languages,
developers have to make assumptions about the correctness of
the compiler. However, this may be unacceptable for critical
systems. As long as there are no full-fledged formally verified
compilers, the author proposes to solve this problem by proving
the correctness of the generated machine code by deductive
verification. To achieve this goal, it is required to combine the pre-
and postcondition specifications with the machine code behavior
model. The paper presents an approach how to combine them
for the case of C functions without loops.

Index Terms—deductive verification, formal methods, machine
code, ACSL

I. INTRODUCTION

The paper presents a step forward towards the creation of a
tool capable of proving the correctness of machine code based
on the formal specification of a function for a high-level lan-
guage [1]. Such a tool will allow to avoid the assumption about
the correctness of the compiler by verification of the generated
code regarding specification of source code functionality. The
only way in which the correctness analysis of machine code is
not necessary is to create a fully formally verified compiler [2].
However, the existing developments in the field of formally
verified compilers [3], at the moment do not allow using all
the possibilities of existing unverified analogs, for example,
GCC [4]. This work is necessary for the implementation of
an alternative approach deductive verification [5] of compiler
products, the correctness of which has not been proven. Using
this approach will allow you to safely use the already created
software. Different approaches to formal specification and
building a model of machine code behavior were proposed in
different machine code verification projects. Here, the formal
specification of a function or a sequence of machine code
instructions shows the pre- and postconditions for a function
and the behavior model describes mathematical and logical
state change formulas. The paper discusses an approach to
combining ACSL [6] specifications of the C language with the
machine code of the PowerPC e500mc processor obtained by
compiling these functions. The choice of the target language is
caused by the fact that most high-critical system software like
operating system kernels is written in C. While the very high-
level languages support a variety of protective mechanisms
such as the prohibition of pointers or checks when casting, the
C language is designed for maximum performance by allowing
the programmer to interact directly with the memory. Proof of
critical code sections by deductive verification methods can

improve the reliability of such systems. In the pursuit of per-
formance, compilers try to make the most of the capabilities of
the target processor. Machine code produced by compilers can
be extremely difficult for manual verification and specification
because the compilation disappears all the information about
the names of variables and even the order of execution of
commands may be different than in the original program. Only
the pre- and postconditions for a particular function remain
unchanged. Automatic combination of C-level specifications
with the logical model of machine code will allow you to
check its correctness in a fully automatic mode.

II. MACHINE CODE REPRESENTATION

The specification of machine code instructions in logical
languages is a complex and lengthy process. Often, the ap-
pearance of the function behavior model specification in this
language is very different from that provided in the processor
specification. In addition, the lack of special tools makes it
difficult to debug such models. To solve these problems, the
author proposes to use the NML language, together with the
MicroTESK tool [7]. The NML language contains special
structures and data types to simplify the modeling of the hard-
ware. The MicroTESK toolset includes universal disassembler
of the machine code by the NML language and the NML to
SMT-LIB [8] translator. “Fig. 1” shows the cmpl operation
specification from the official documentation for PowerPC
e500 core family [9] processors and “Fig. 2” shows its NML
version. From here, you can see that the NML language allows
you to fully describe processor instructions, including their
representation in Assembly language and machine code. In
addition, the use of the NML language as the basis for the
representation of machine code will allow to reuse all NML
models, developed by the MicroTESK development team for
the purposes of testing of microprocessors.

III. ACSL SPECIFICATIONS REPRESENTATION

A. ACSL specifications translation

As a logical language in which ACSL specifications will
be translated, the author suggests using the WhyML language
[10]. The Why3 tool, designed to analyze this language, allows
you to apply many useful transformations and optimizations.
It also allows you to translate WhyML code into logical code
for many different provers. In addition, the task of translating
ACSL specifications into WhyML code has already been
solved by the Jessie plugin [11] for Frama-C [12]. In the

8

Fig. 1. CMPL official specification.

Fig. 2. CMPL NML specification.

course of research [1], it was established that the use of the
plugin Jessie directly, not suitable for the tasks of machine
code analysis. Jessie plugin makes a number of simplifying
assumptions that do not take into account the peculiarities
of machine code. Instead, it was decided to take as a basis
the unfinished code of jessie3 project [13] part of the Why3
project. The Jessie3 code has been modified and extended
to take into account the peculiarities of machine code. In
particular, the language WhyML has been described the type

of processor registers. In addition, the algorithm of generating
targets for the proof was changed for the subsequent fusion
pre- and postconditions were separated from the function
behavior model.

B. Using register type for compatibility with machine code

Processor registers can be represented by a limited integer
type with an extended set of operations. Operations include
signed and unsigned arithmetic, bitwise operations, and mem-
ory read operations at the address specified in the register and

9

by offset. To describe all such operations high-level languages,
use a variety of different types, as well as a cast operation.
However, using different data types will complicate the proof
of correctness problem for SMT-solvers. This is especially no-
ticeable in the case of bitwise operations, which are available
only for bitvectors in SMT-LIB. Bitvectors cast operations to
an integer type are not supported by the latest SMT-LIB [14]
standard, and various SMT-solvers offer their own version of
the implementation of this operation. The BitVec type from
SMT-LIB is well-suited for describing the type of registers
because it contains all the necessary arithmetic and logical sign
and unsigned operations. However, the theory of bitvectors at
the why3 level does not support all the necessary operations
and is built as an unsigned type. Based on the standard theory
of bitvectors, the author developed a theory to support the
type of processor registers. The theory supports both signed
and unsigned integer types and there is ongoing work to add
support for pointer arithmetics and memory dereferencing. The
driver for CVC4 SMT-solver [15] was updated for translation
of the register type to the type BitVec with corresponding
mapping of operations.

C. Splitting specification and behavior model

To merge machine code, you must separate the pre - and
post-conditions from the behavior of the high-level function,
which will then be replaced by the behavior of the machine
code. To implement this approach, the author uses abstract
logical predicates of pre- and postconditions checking. These
predicates take as input the parameters of the verification
function, and the predicate of the postcondition is also taking
its result. Further, by means of axioms predicates are defined
by a logical expression in accordance with ACSL specifica-
tions. In “Fig. 3” you can see the predicates for pre- and
postconditions are generated based on the ACSL specifications
of absolute value function (“Fig. 4”), where usabs pre the
predicate of a precondition, and usabs post is a predicate of
the postcondition.

D. Replacing proof goal

To facilitate the subsequent merging, the proof goal is
substituted during translation of WhyML to SMT-LIB. A
new goal for the proof can be described as follows: If the
precondition of a function with its arguments is satisfied then
the postcondition with the arguments of the function and its
result is not satisfied. The negation is used because the SMT-
solvers operation specifics searching for example variable
values that will satisfy all restrictions described in SMT-LIB
model. If such an example could not be found, then the
assumption is incorrect and the predicate of the postcondition
is always executed. Therefore, the Expected verdict of the
SMT-solver unsat. It is important to note here that arguments
and the result of the function execution are not associated
with machine code at this stage the merge module solves the
problem of their binding. “Fig. 5” shows SMT-LIB code of
goal to prove the correctness of the absolute value function.

IV. MERGING HIGH- AND LOW-LEVEL SPECIFICATIONS

If you perform all the steps described in the previous
sections of this paper, namely, creating an NML model of
the machine code and an ACSL to the WhyML translation
module, you can perform a merge in two different ways. The
first method is the merging at the level of WhyML, and the
subsequent translation to SMT-LIB by means of Why3. This
approach has a number of advantages, mainly related to Why3
capabilities for WhyML code analysis. It is worth noting that
Why3 IDE (“Fig. 6”), can be used for interactive proof and
manual simplifications of verification goals. At the moment the
MicroTESK team, with the support of the author, is developing
an NML to WhyML translation module. The second approach,
as well as the only one implemented at the moment, is merging
at the SMT-LIB level. The main advantage of this approach is
that the MicroTESK tool has already been implemented NML
to SMT-LIB translation module. In addition, the vast majority
of operations and data types available in NML have analogs
in SMT-LIB. For example, a set of General-purpose registers
is modeled in the NML of the PowerPC processor model as
an array of 32-bit registers with a 5-bit index. There is no
predefined 5-bit unsigned type in Why3, let alone an array with
such an index. However, in SMT-LIB, as in NML, you can
manually set the length of BitVec constants. In addition, the
translation directly to SMT-LIB allows to avoid unnecessary
abstractions that Why3 algorithm for WhyML to SMT-LIB
translation can add. The task of the merge module is to bind
together the function arguments and the result of function of
high-level language with registers and memory of the model of
machine code, and set the environment. Here, the environment
refers to machine-specific things, such as the initial value
of the stack register or instruction counter. To do this, it is
necessary to take into account the specificity of generation
SMT-LIB behaviors of the machine code and the specification
for the function and specificity of the ABI of architecture.
Next, in “Fig. 7” we can see binding of the arguments of
instructions with the registers for the PowerPC architecture.
Developed by the MicroTESK team, generation SMT-LIB by
the NML model produces thousands of lines of code. This
code can be divided into two main parts: The declaration of
all the logical constants needed to describe the behavior model
and the description of the state transformation formulas by
means of using one assert per machine code instruction and
one for every of machine instruction argument.

V. EVALUATION

The developed approach was successfully used to verify the
machine code of the absolute value function on the basis of
bitwise operations (“Fig. 8”), for which a verdict was obtained,
clearly indicating correctness of the function. Tests were also
developed to verify the correctness of the implementation of
translation of mathematical and logical operations of the ACSL
language. Testing of the NML model was done by means of
MicroTESK tool.

10

Fig. 3. WhyML abs specification.

Fig. 4. ACSL abs specification.

Fig. 5. Proof goal template.

VI. RELATED WORKS

In the why3-avr [16] [17] project, the deductive verification
approach is used to prove the correctness of non-loop pro-
grams in the assembly language of the AVR microcontroller.
The AVR microcontroller used in this study has a fairly simple
instruction set that allows you to manually specify the behavior
model for each command in the WhyML language, which
does not have special means to describe such structures. Also,
the model code is described in such a way that allows the
programmer to simply copy the function code in the AVR
assembly language and add to it a formal specification to get
WhyML code for checking the correctness of the function.
This approach is especially useful for direct development in a
low-level language because the Why3 tool has rich capabilities
for transformation and analysis of Why3 code. Also, the use
of Why3 allows converting the WhyML code for proving
by various SMT solvers. However, the program in assembly

language is different from compiled machine code that in
machine code is a sequence of bytes where there is no all
information associated with label names and variables, as well
as the formal specification. In addition, machine code does
not allow you to abstract from your environment as much
as assembly language code. For example, in machine code,
indicators such as the address of a function in memory and the
value of the stack register at the time of entering the function
are important. Also, a high-level formal language specification,
such as C, uses various abstractions, such as parameter names
and variables, that become unavailable after they are translated
into assembly language or machine code. The approaches
proposed by the author differ from those described in this
project in that they allow using the specification of the high-
level language function for analyzing machine code, as well
as scaling the supported command system with the help of a
specialized modeling language hardware NML.

11

Fig. 6. Why3 IDE.

Fig. 7. Binding function argument and result.

Fig. 8. Absolute value function.

In the Technical report published by the University of Cam-
bridge Computer Laboratory [18] the HOL4 proof assistant
[19] is used for Formal verification of machine-code programs.
The paper describes a tool able to verify the machine code
for subsets of instructions for popular architectures ARMV4,
PowerPC, x86. Behavior model for these instructions was
developed by independent developers, so models for both
ARM and x86 was designed for HOL4 language [20] [21],
and the PowerPC model [22] were manually translated from
the Coq language [23] to HOL4. Here it is worth noting
the similarity with the project why3-avr because instructions
behavior models were specified manually on unspecialized for
such a purpose language. The report terminology uses four
levels of abstraction to describe the logical implementation

and specification of functions. To obtain a low-level function
model (level 2) automatic decompiler translates the machine
code (level 1) into recursive functions on the HOL4 language,
and also generates their specifications. The use of recursion,
in this case, avoids the need to define loop invariants. The
user can then focus on interactively proving the properties
of the generated function using the HOL4 proof assistant.
For verification, the user also needs to describe the high-level
model of the function (level 3), as well as the specification of
the function for (level 4). Further, by using relations between
levels, user proves that the machine code model complies with
the functional specification. In contrast to the interactive HOL4
approach, the approach used in the author’s study allows the
presence of ACSL specifications to carry out all stages in

12

automatic mode. Also in the author’s approach to proving the
correctness of machine code is not necessary to have a logical
model of the behavior of the function in a high-level language.
This degree of automation is achieved including the use of
automatic SMT-solvers, in contrast to the interactive proof
assistant HOL4. Particularly worth noting is the approach to
the translation of programs into recursive functions. The use of
high-level language loop invariants at the machine code level
is extremely difficult due to the influence of various compiler
optimizations. The recursive functions may help to solve this
problems.

A number of papers also describe the use of model checking
[24] approach for formal verification of machine code. There-
fore, in the paper [25] for verification of machine code of the
microcontroller Motorola M68hc11 is used Bogor framework
[26]. This approach does not imply the presence of function
contracts but is based on the use of formally specified behavior
models of the system as a whole. As a result, it can be said
that the scope of the requirements to be tested varies with the
use of deductive verification and model checking.

VII. CONCLUSION

Most of the work that is reviewed specifies the behavior of
machine code instructions manually in the logical language.
However, in order to simplify and improve the reliability of
processor models, the author proposed to describe them in
the NML language, designed specifically for such purposes,
with the subsequent automatic translation of the model into
logical languages. The use of this approach is also facilitated
by the presence of a large set of tools in the MicroTESK
tool to work with NML, including the NML to SMT-LIB
translator. The particularity of ACSL specifications translation
to WhyML code, for the case of verification of machine
code, such as the need to separate the specification from the
behavior model, as well as the importance of the introduction
and implementation of the register type. The observance of
such rules and guidelines will allow for automatic merging
of function specification and machine code behavior model
and thus avoid the need for manual specifying machine code
behavior model on the logical language, as required in the
project why3-avr. There were proposed two approaches to
merge of code specifications and behavior models: at the
level of WhyML, and at the level of the SMT-LIB. The first
approach allows to use SMT-LIB code generated directly from
NML model that help us to avoid extra complexity coming
from double translation NML to WhyML and then WhyML to
SMT-LIB. The second approach allows to use all the features
of the Why3 tool, such as interactive transformations and
support of various provers and solvers.

The use of the methods and approaches described in this
paper will allow you to fully automate deductive verification of
machine code without loops for compliance with the contract
specification in ACSL language.

REFERENCES

[1] Putro P. An Investigation into the Possibility of Analyzing Binary Code
with SMT Solvers. HSE Moscow 2017

[2] Leroy, Xavier (2009-12-01). A Formally Verified Compiler Back-end.
Journal of Automated Reasoning. 43 (4): 363. doi:10.1007/s10817-009-
9155-4. ISSN 0168-7433.

[3] ”CompCert - The CompCert C compiler”. compcert.inria.fr. Retrieved
2018-13-02.

[4] ”GCC Releases”. http://www.gnu.org/software/gcc/releases.html GNU
Project. Retrieved 2018-13-02.

[5] Butterfield A., Ngondi G., Kerr A. ”A Dictionary of Computer Science”
(ed. 7)

[6] ”ACSL specification”. http://frama-c.com/acsl.html Retrieved 2018-13-
02

[7] Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable
Test Program Generator for Microprocessors. Proceedings of the 6th
Spring/Summer Young Researchers Colloquium on Software Engineer-
ing (SYRCoSE).

[8] C Barrett, R Sebastiani, S Seshia, and C Tinelli, Satisfiability Modulo
Theories. In Handbook of Satisfiability, vol. 185 of Frontiers in Artificial
Intelligence and Applications, (A Biere, M J H Heule, H van Maaren,
and T Walsh, eds.), IOS Press, Feb. 2009, pp. 825885.

[9] EREF: A Programmers Reference Manual for Freescale Power Archi-
tecture Processors, Rev. 1 (EIS 2.1)

[10] Fillitre JC., Paskevich A. (2013) Why3 Where Programs Meet Provers.
In: Felleisen M., Gardner P. (eds) Programming Languages and Systems.
ESOP 2013. Lecture Notes in Computer Science, vol 7792. Springer,
Berlin, Heidelberg.

[11] M. Mandrykin, A. Khoroshilov ”A Memory Model for Deductively Ver-
ifying Linux Kernel Modules”. In Lecture Notes in Computer Sciences
#10742 ”Perspectives of System Informatics: 11th International Andrei
P. Ershov Informatics Conference”, pp. 256-275, Springer International
Publishing. DOI: 10.1007/978-3-319-74313-4 19

[12] Frama-c: A Software Analysis Perspective /Pascal Cuoq, Florent Kirch-
ner, Nikolai Kosmatov et al. // Proceedings of the 10th Interna-
tional Conference on Software Engineering and Formal Methods.
SEFM12. Berlin, Heidelberg: Springer-Verlag, 2012. Pp. 233247.
http://dx.doi.org/10.1007/978-3-642-33826-7 16.

[13] Jessie3 at Why3 source repository.
https://gitlab.inria.fr/why3/why3/tree/master/src/jessie

[14] arrett C., Fontaine P., Tinelli C. The SMT-LIB Standard Version 2.6.
2017-07-18

[15] Barrett C. et al. (2011) CVC4. In: Gopalakrishnan G., Qadeer S. (eds)
Computer Aided Verification. CAV 2011. Lecture Notes in Computer
Science, vol 6806. Springer, Berlin, Heidelberg

[16] Marc Schoolderman Verifying Branch-Free Assembly Code in Why3.
[17] ”Why3-avr project repository” https://gitlab.science.ru.nl/sovereign/why3-

avr
[18] Magnus O. Myreen. Formal verification of machine-code programs.

University of Cambridge Computer Laboratory 2009
[19] Konrad Slind and Michael Norrish. A brief overview of HOL4. In

Theorem Proving in Higher Order Logics (TPHOLs). Springer, 2008.
[20] Anthony Fox. Formal specification and verification of ARM6. In David

Basin and Burkhart Wolff, editors, Theorem Proving in Higher Order
Logics (TPHOLs). Springer, 2003.

[21] Karl Crary and Susmit Sarkar. Foundational certified code in a meta-
logical framework. Technical Report CMU-CS-03-108, Carnegie Mellon
University, 2003.

[22] Xavier Leroy. Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant. In Principles of Programming
Languages (POPL). ACM, 2006.

[23] Yves Bertot. A short presentation of Coq. In Theorem Proving in Higher
Order Logics (TPHOLs). Springer, 2008.

[24] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. Schnoebelen ”Systems and Software Verification: Model-Checking
Techniques and Tools”

[25] Joseph R. Edelman Machine Code Verification Using The Bogor Frame-
work

[26] ”Bogor framework homepage” http://bogor.projects.cs.ksu.edu Retrieved
2018-13-02. 2018-13-02.

13

Registration protocol security analysis of the

electronic voting system based on blinded

intermediaries using the Avispa tool

1st Ilya Pisarev

Information security departmen

Southern Federal University

Taganrog, Russian Federation

ilua.pisar@gmail.com

2nd Liudmila Babenko

Information security departmen

Southern Federal University

Taganrog, Russian Federation

lkbabenko@sfedu.ru

Abstract—Electronic voting systems are a future alternative to

traditional methods of voting. It is important to verify the main

algorithms on which system security is based. This paper

analyzes the security of the cryptographic protocol at the

registration stage, which is used in the electronic voting system

based on blind intermediaries created by the authors. The

registration protocol is described, the messages transmitted

between the parties are shown and their content is explained. The

Dolev-Yao threat model is used during protocols modeling. The

Avispa tool is used for analyzing the security of the selected

protocol. The protocol is described in CAS+ and subsequently

translated into the HLPSL (High-Level Protocol Specification

Language) special language with which Avispa work. The

description of the protocol includes roles, data, encryption keys,

the order of transmitted messages between parties, parties’

knowledge include attacker, the purpose of verification. The

verification goals of the cryptographic protocol for resistance to

attacks on authentication, secrecy and replay attacks are set. The

data that a potential attacker may possess is detected. The

security analysis of the registration protocol was made. The

analysis showed that the objectives of the audit were put forward.

A detailed diagram of the messages transmission and their

contents is displayed in the presence of an attacker who performs

a MITM-attack (Man in the middle). The effectiveness of

protocol protection from the attacker actions is shown.

Keywords—e-voting, cryptographic protocols, cryptographic

security, cryptographic protocols security verification.

I. INTRODUCTION

The creation of e-voting systems is a serious problem.
There are a number of ready-made systems [1,2] that are used
in practice, but they are far from a sufficient level of reliability
and the presence of necessary mechanisms, such as complete
anonymity of the voter or vote checking opportunity after
counting stage. There are also a lot of works in which
perspective methods of conducting electronic voting are
considered, based on such principles as homomorphic
encryption, including threshold schemes, mix-net, secret
sharing schemes and others [3-16]. However, in most cases, the
authors of such works show theoretical calculations, from
which the basic structural unit of interaction between parties
does not follow, namely, cryptographic protocol. Any method
on which electronic voting is based, no matter how good it is,
loses its security if there are any flaws in the structure of

cryptographic protocol that lead to various attacks by the
intruder. Thus, the goal of this paper is to test the cryptographic
protocol in the important registration stage from various
attacks, such as: attack on parties’ authentication, data privacy
and replay-attacks using the Avispa tool [17].

II. AVISPA TOOL

Avispa is a tool for automated security analysis of
cryptographic protocols [17]. With the help of Avispa, in the
context of the developed protocols, it is possible to verify: the
parties’ authentication, the secrecy of data and protection
against replay-attacks. It is impossible to perform integrity
checks, in particular, used in protocol CMAC mode (Cipher-
based message authentication code) using the Avispa tool. The
protocol does not imply the use of timestamps in their classic
implementation as a part of message. Instead, the developed
system uses a temporary session control by server, in which
long live sessions are broke down.

In the paper registration stage is analyzed. Three sides are
modeled: user, server-intermediary and main server. The
protocol will be analyzed after the phase of common session
key distribution between the parties. The protocol will be
described in CAS+ [18] language, then translated using the
Avispa translator into HLPSL [19]. The check will be carried
out using the On-the-Fly Model Checking (OFMC) module,
where the verification goals are the transmitted data
confidentiality and parties’ authentication.

For verification, it is necessary to describe the protocol in
one of the formal languages: CAS+ or HLPSL. The first
language is simpler in syntax and allows you to quickly
describe the protocol. An example of syntax is shown below:

protocol NeedhamSchroederPublicKey;

identifiers

A,B : user;

Na,Nb : number;

KPa,KPb : public_key;

messages

1. A -> B : {Na, A}KPb

2. B -> A : {Na, Nb}KPa

3. A -> B : {Nb}KPb

knowledge

A : A,B,KPa,KPb;

14

B : A,B,KPa,KPb;

session_instances

 [A:alice,B:bob,KPa:ka,KPb:kb];

The second language HLPSL is the language with which
Avispa works directly. An example of syntax is shown below:

role Alice (A, B: agent,

 KPa, KPb: public_key,

 SND, RCV: channel (dy))

 played_by A def=

 transition

 0. State = 0 /\ RCV(start) =|>

 State':= 2 /\ Na' := new() /\

SND({Na'.A}_KPb)

 ...

 role Bob(A, B: agent,

 KPa, KPb: public_key,

 SND, RCV: channel (dy))

 ...

The syntax of this language is more difficult and the best
way to describe the protocol is to describe it in CAS+, and then
use Avispa to convert it to HLPSL. It is worth to say that if the
more complex and larger your protocol, then there is greater
chance of errors occurring during translation, so after that you
need manually to fix some fragments in HLPSL. It's also worth
to say that you should not describe the goals of checking in
CAS +, but rather add them directly in HLPSL.

During protocols describing, the following entities are used:
roles, data, message order, sessions and verification purposes.
After the description of the protocol, including the indication of
verification objectives, it is possible to analyze protocol
security against attacks. For analyzing, you can use different
modes, but the most effective is the OFMC mode (see Figure
1).

Figure 1 – UI

It requires an additional specification for all data involved
in the verification, as well as the message area where
verification is required for party authentication. As a result of
verification, the corresponding result will be issued. In case of
attacks detection, the type of attack and its progress will appear
in the form of corresponding changes in messages by the
intruder, as in Figure 2.

Figure 2 – Founded attack trace

If there are no attacks, then the program output will contain
a corresponding message that protocol is safe (see Figure 3).

Figure 3 – Result after verification of safe protocol

Using the "Protocol simulation" button, you can see the
interaction scheme of the parties in your protocol. With the

15

help of the button "Intruder simulation" such a scheme will
appear, only with the participation of the intruders’ side, in
which the data intercepted by him will appear. With the help of
the button "Attack simulation" you can see the scheme of the
attack with intruder, provided that there is an attack in your
protocol.

III. E-VOTING SYSTEM DESCRIPTION

A. System arcitecture

The system architecture is based on the use of the following
components: client application for voter - V, 3 server
applications that will be located on different physical machines:
AS (authentication server), PS (processing server), VS (voting
server), encryption application for the passport database and
ballots DBE (database encryptor). The general scheme of the
interaction of components is shown in Figure 4.

Figure 4 – System architecture

The basic principle on which the system protocols are based
- blinded intermediaries (see Figure 5).

Figure 5 – Blinded intermediaries principle

There are 3 interacting sides A, B, C. Using the protocol for
generating a common secret key, the session key AB, BC, AC
are generated. A encrypts some information info on the AC
key, appends an id to it, encrypts it on the AB key and sends
this message to B. B in this case is a blinded intermediary,
because it can decrypt only the first part of the message with id,
and the remainder with info can not. It accepts the message,
decrypts and checks if id is in the database and, then redirects
the remainder of the message encrypted again on the BC key to
the C side. C receives the message, decrypts info, encrypts the
answer response on the AC key and sends it to A. This
principle ensures that: info will be accepted only if id is in the
database and that it is impossible to correlate id with info.

B. Stages description

Stages of electronic voting in the context of the system:

1. Preparation. At this stage, a database of voters and a
ballot are created. This data is encrypted, and officials deliver
this data to the appropriate server components of the system.

2. Registration. At this stage, users log in to the system
using their identification data, at the moment - using passport
data, and they get their anonymous identifier. It should be
noted that by using the previously described principle of blind
intermediaries, it is impossible to correlate open passport data
with an anonymous identifier, which ensures the requirement of
anonymity.

3. Voting. Users receive a ballot, make their choice and
send filled ballot with their anonymous identifier to the server.
If such an identifier is present, the vote is accepted, and the
verification identifier is sent to user, with which he or she can
check vote after counting stage. It is worth noting that it is very
important that the user can check his vote after the counting.

4. Counting results and votes checking. At the last stage, the
votes are counted, the results are published in the public
domain, and any voted user can check his or her vote with a
verification identifier.

IV. REGISTRATION STAGE

The electronic voting system based on blind intermediaries,
includes a registration stage in which the voter is given
anonymous identifier after presenting his passport data. A
simplified scheme of the registration stage is shown in Figure
6.

Figure 6 – Simplified scheme of registration stage.

Secret keys V, VAS, VPS are generated using the protocol
for generating a common session key. The server parties
generate random numbers and send messages (1), (2), (3) to
their recipients. They will be used for parties’ authentication. V
generates Nv. Next, it generates a message (4) with the
passport data, which is a hash from a set of document fields,
encrypted random numbers on the shared secret key VPS,
calculates the CMAC, encrypts all this data on VAS key,
calculates the CMAC and sends to AS. AS in this case is a
blinded intermediary. It checks the message integrity by
CMAC checking, searches PassportData in the database and, if
successful, redirects another part of the message (5) to side PS.
PS checks integrity, if successful, generates userid, adds it to
database and sends to V as a message (6). The voter decrypts
the message, checks integrity and values of random numbers,
and remembers his anonymous unique identifier userid, with
which the user can vote.

16

ECDHE (V, AS) – vas
ECDHE (V, PS) – vps

ECDHE (PS, AS) – psas
V: generates

(1) AS -> V: ()

PS: generates

(2) PS -> V: ()

PS: generates

(3) PS -> AS: ()

V: generates .

(4) V -> AS: (, PassportData, (, ,),CMAC1),CMAC2

AS -> V: “Success”
(5) AS -> PS: (, (,),CMAC1), CMAC3

PS: generates userid
(6) PS -> V: (, , userid), CMAC4

ECDHE is a Diffie-Hellman protocol on elliptical curves
using ephemeral keys. In our case, we use a modified version
of ECDHE-RSA, where authentication is done using a
signature RSA and a server certificate which help to prevent
MIMT (man in the middle) attacks. The protocol description is
as follows.

ECDHE:

(1) V -> S: “Hello”
(2) S -> V: DHs, (DHs),Certificate

(3) S: Checks Certificate and (DHs)

(4) V -> S: DHv
(5) Both sides generate a common session key K for further

interaction with a symmetric cipher.

Here V is the client, S is the trusted server that has the
certificate, DHs is the server secret part, DHv is the client
secret part, , (DHs) is the signature with the server's private
key SKs, Certificate is the server certificate.

When servers generate common secret key, the same
protocol is used, except that both parties exchange certificates
and if they are valid, a common session key is generated. The
security verification of the registration protocol will be carried
out after this stage.

V. SECURITY ANALYSIS OF REGISTRATION PROTOCOL USING

AVISPA TOOL

Consider the description of the protocol in CAS + at the
registration stage.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

protocol EVotingRegistration;

identifiers

V,AS,PS: user;

Nas,Nps,Npsas,Nv,PassportData,Userid : number;

Kvas,Kvps,Kpsas: symmetric_key;

messages

1. PS -> V : {Nps}Kvps

2. PS -> AS : {Npsas}Kpsas

3. AS -> V : {Nas}Kvas

4. V -> AS : {Nas,PassportData,{Nps,Nv}Kvps}Kvas

5. AS -> PS : {Npsas,{Nps,Nv}Kvps}Kpsas

6. PS -> V : {Nps,Nv,Userid}Kvps

knowledge

V:V,AS,PS,Nas,Nps,Nv,PassportData,Userid,Kvas,Kvps

PS:V,AS,PS,Nps,Npsas,PassportData,Kvas,Kpsas

VS:V,AS,PS,Npsas,Nps,Nv,Userid,Kvps,Kpsas

session_instances

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

[V:v,AS:as,VS:ps,Kvas:kvas,Kvps:kvps,Kpsas:kpsas]

[V:v,AS:as,VS:ps,Kvas:kvas,Kvps:kvps,Kpsas:kpsas];

intruder_knowledge

 v,as,ps;

goal

 secrecy_of Nps [V,PS];

 secrecy_of Npsas [AS,PS];

 secrecy_of Nas [V,AS];

 secrecy_of Nv [V,PS];

 secrecy_of PassportData [V,AS];

 secrecy_of Userid [V,PS];

 AS authenticates V on Nas;

 PS authenticates AS on Npsas;

 PS authenticates V on Nps;

 V authenticates PS on Nv;

Three interacting parties are described as roles: V, AS, PS
(lines 2-3). The identifiers section describes the objects
participating in the protocol: interacting parties (line 3), random
numbers for authentication, identifiers (line 4). Symmetric keys
are specified that will be used for message encryption (line 5).
The messages section (lines 7-13) describes the transfer of
messages between roles, which data is transmitted, and on
which key it encrypted. The knowledge section (lines 15-18)
describes roles’ data knowledge during the execution of the
protocol. In the session_instances section (lines 20-22),
sessions are described. Among the simulated sessions, 2 are
allocated, which allow simulating interaction of two clients
with the system. This will detect possible attacks on the parties’
authentication and replay-attacks. The intruder_knowledge
section (lines 24-25) specifies the original knowledge of the
intruder. In the goal section (lines 27-37) the secrecy of
important values is indicated and the authentication according
to the request-response scheme with the transfer of random
numbers between the participants. For secrecy of the value, it is
necessary that this variable is encrypted and that the encryption
key does not come to intruder. In order for one party to
authenticate another using the request-response mechanism, it
is required that the party wanting to authenticate send a random
number to the other party, and that other party in the response
message returns this random number. In this protocol there are
4 such actions:

1. AS authenticates V by Nas

2. PS authenticates AS by Npsas

3. PS authenticates V by Nps

4. V authenticates the PS to Nv

As for replay-attacks, protection against them is possible

due to the presence of a random number at the beginning of
each message, which each side checks when message is
received. The results of the check using the OFMC module are
shown in Figure 7.

17

Figure 7 – Registration protocol verification using OFMC mode.

Figure 8 shows the scheme of interaction between the
parties at the stage of registration by steps. Figure 9 shows the
interaction scheme in the presence of an intruder (Intruder_
side, highlighted in red). This scheme is a visual
implementation of the attack man in the middle. When
transmitting messages during execution, a transition is made
from the "Incoming events" area to "Past events", and the
format is the direction of message transfer (from whom and to
whom) and the message itself.

Figure 8 – Registration protocol in “Protocol simulation” mode.

We can see from the simulation results in the field of
intercepted data "Intruder knowledge", all transmitted messages
are encrypted on keys which intruder doesn’t know, and it
excludes the possibility in any way to get important
information, such as the user's passport data or unique
identifier. The record "nonce-N" means some data that is not
readable. As a result of the analysis, it was revealed that the
registration protocol is safe, ensures the fulfillment of the
security objectives (properties) set in the protocol analysis:
securing data, authentication of the parties, protection against
replay-attacks.

Figure 9 – Registration protocol verification using OFMC mode.

VI. CONCLUSION

The automated security verification tool Avispa was used
for security verification of the registration protocol in electronic
voting system based on blind intermediaries, in this paper. The
protocol was described in the formal languages CAS+ and
HLPSL. The secrecy properties of the transmitted data between
the interacting parties were analyzed. It was shown that set
security objectives: parties’ authentication, verification of data
privacy and protection from replay attacks were achieved. The
scheme of parties’ interaction with the help of tools’ graphical
functional was considered. An analysis of messages that an
intruder can intercept was carried out. Based on the graphical
representation it was revealed that all transmitted data is secure,
because all messages are encrypted on unknown for intruder
keys.

ACKNOWLEDGMENT

The work was supported by the Ministry of Education and
Science of the Russian Federation grant № 2.6264.2017/8.9.

REFERENCES

[1] Overview of e-voting systems, NICK Estonia. - Estonian National
Electoral Commission. Tallinn 2005.

[2] Dossogne J., Lafitte F. Blinded additively homomorphic encryption
schemes for self-tallying voting //Journal of Information Security and
Applications. - 2015.

[3] Izabachene M. A Homomorphic LWE Based E-voting Scheme //Post-
Quantum Cryptography: 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016

[4] Hirt M., Sako K. Efficient receipt-free voting based on homomorphic
encryption //International Conference on the Theory and Applications of
Cryptographic Techniques. – Springer Berlin Heidelberg, 2000. – С.
539-556.

[5] Rivest L. R. et al. Lecture notes 15: Voting, homomorphic encryption. –
2002.

[6] Ben Adida, Mixnets in Electronic Voting, Cambridge University (2005)

[7] Electronic elections: fear of falsification of the results. - Kazakhstan
today 2004

[8] Lipen VY, Voronetsky MA, Lipen DV technology and results of testing
electronic voting systems. - United Institute of Informatics Problems
NASB 2002.

18

[9] David L Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24 (2): 84-90, 1981

[10] Ali S. T., Murray J. An Overview of End-to-End Verifiable Voting
Systems // arXiv preprint arXiv: 1605.08554. - 2016.

[11] Smart M., Ritter E. True trustworthy elections: remote electronic voting
using trusted computing //International Conference on Autonomic and
Trusted Computing. - Springer Berlin Heidelberg, 2011. - S.187-202.

[12] Bruck S., Jefferson D., Rivest R. L. A modular voting architecture (
"frog voting") // Toward strustworthy elections. - Springer Berlin
Heidelberg, 2010.

[13] Jonker H., Mauw S., Pang J. Privacy and verifiability in voting systems:
Methods, developments and trends // Computer Science Review. - 2013.

[14] Shubhangi S. Shinde, Sonali Shukla, Prof. D. K. Chitre, Secure E-voting
Using Homomorphic Technology, International Journal of Emerging
Technology and Advanced Engineering (2013)

[15] Neumann S., Volkamer M. Civitas and the real world: problems and
solutions from a practical point of view // Availability, Reliability and
Security (ARES), 2012 Seventh International Conference on. - IEEE,
2012. - S. 180-185.

[16] Yi X., Okamoto E. Practical remote end-to-end voting scheme //
International Conference on Electronic Government and the Information
Systems Perspective. - Springer Berlin Heidelberg, 2011. - S. 386-400.

[17] The AVISPA team, The High Level Protocol Specification Language,
http://www.avispa-project.org/ , (2006)

[18] Ronan Saillard, Thomas Genet, CAS+, March 21, 2011

[19] D. Basin, S. M¨odersheim, and L. Vigan`o. OFMC: A Symbolic Model-
Checker for Security Protocols. International Journal of Information
Security, 2004.

[20] L.K. Babenko, I.A. Pisarev, O.B. Makarevich. Secure electronic voting
using blinded intermediaries. - Journal “Isvestiya SFedU”. Technical
sciences, - Taganrog: Publishing house of ITA SFedU, No. 5, 2017. - p.
6-15.

19

Towards Formal Verification of Cyber Security
Standards

Tomas Kulik
Aarhus University, Denmark

tomaskulik@eng.au.dk

Peter Gorm Larsen
Aarhus University, Denmark

pgl@eng.au.dk

Abstract—Cyber security standards are often used to ensure
the security of industrial control systems. Nowadays, these
systems are becoming more decentralised, making them more
vulnerable to cyber attacks. One of the challenges of implement-
ing cyber security standards for industrial control systems is the
inability to verify early that they comply with the standards. In
this paper, we propose an approach that uses formal analysis
to achieve this. Our approach can be used at an early design
stage, where problems are less expensive to correct, to ensure that
the system has the desired security properties. We evaluate our
approach based on its flexibility to handle and combine different
aspects of the cyber security standards.

Index Terms—cyber security, formal analysis, cyber security
standards

I. INTRODUCTION

In an industrial setting there is an increasing use of wireless
technology because many components becomes Internet of
Things (IoT) enabled. Rather than having to investing in a con-
tinuation of wired connections the balance between cost and
agility many companies moves to such IoT solutions. However,
this move towards wireless technologies gives new security
challenges that must be taken serious in order to protect both
the data and algorithms owned by the companies. In order
to ensure this different security standards have emerged and
here the IAS/IEC-62443 is a promising candidate that deserves
special examination [1].

In order to master the increase of complexity caused by
the increased wireless connections the architectures of the
distributed systems needs thorough analysis. Here model
checking is a promising candidate to provide such an analysis.
This has an appropriate balance between the time and cost
spent on the analysis and the exhaustiveness favourable. In
this paper we demonstrate how this can be achieved defining
possible attacks and the corresponding mitigations using a
formal approach. The main result is an illustration of how
this kind of framework can be deployed to illustrate how a
specific architecture and its chosen mitigations can be proven
that the different cyber-attacks cannot be realised.

The remainder of this paper is structured as follows: Sec-
tion II introduces the essential parts of the ISA/IEC-62443
standard and this is followed in Section III defining the ar-
chitecture of considered system. The main result of this paper
is presented in Section IV defining extended formal framework
for cyber attacks and possible mitigations for these. Section
V explains about how formal analysis can be conducted using

the Alloy Analyzer [2]. This is followed by Section VI, which
considers related work for formal analysis of cyber security
standards. Finally, Section VII provide concluding remarks
also indicating the future directions planned for this work.

II. THE CHOSEN CYBER SECURITY STANDARD

Within this paper we consider security of an industrial
control systems based on IoT environment. This is further
considered in terms of applying a cyber security standards that
are used to ensure industrial automation and control system
security, specifically the ISA/IEC-62443 series of standards.

The series is split into 4 distinct groups where each group
considers different perspective of cyber security of the indus-
trial automation control system (IACS). Each of the groups
contain documents, where each document is understood as a
single standard. This leads to name designation of specific
standards based on the format: ISA/IEC-62443-X-Y where X
is the designation of the group and Y is the designation of the
specific document.

The first group, ISA/IEC-62443-1, General, considers the
general aspects of the standard and cyber security. Concepts
and metrics defined within this group are present throughout
the other groups of the standard as shown in Fig. 1. The
second group, ISA/IEC-62443-2, Policies and procedures,
focuses on organizational aspects of cyber security. The main
consideration of this group is providing the requirements that
the organization has to fulfill in order to manage their cyber
security program. The third group, ISA/IEC-62443-3, System,
addresses the security on a system level. The security require-
ments for the system is defined here as well as guidance on
implementation of these and fulfillment of these requirements.
The final group, ISA/IEC-62443-4, Component, contains
documents defining detailed requirements for cyber security
on the component level.

A. The standard under consideration

The standard that we consider for formal verification is
ISA/IEC-62443-3-3, System security requirements and secu-
rity levels. This standard has been selected as it provides
requirements that are applicable on system level and are
verifiable by technical means. The intended audience for this
standard are asset owners, system integrators and service
suppliers and the purpose of this standard is to use the defined
requirements to evaluate the system under consideration and

20

ISA/IEC-
62443-1
General

ISA/IEC-62443-2
Policies and
procedures

ISA/IEC-62443-3
System

ISA/IEC-62443-4
Component

Fig. 1. Overview of ISA/IEC-62443 series structure.

determine if this system is capable of reaching a specific
security level (SL). The standard defines 4 SLs:
• SL 1: The lowest SL aimed to prevent unauthorized

disclosure of information via eavesdropping or casual
exposure.

• SL 2: Aimed to prevent unauthorized disclosure of
information to an entity actively searching for it using
simple means with low resources, generic skills and low
motivation.

• SL 3: Aimed to prevent unauthorized disclosure of
information to an entity actively searching for it using
sophisticated means with moderate resources, IACS spe-
cific skills and moderate motivation.

• SL 4: The highest SL aimed to prevent unauthorized
disclosure of information to an entity actively searching
for it using sophisticated means with extended resources,
IACS specific skills and high motivation.

Within the standard the security requirements on the system
level are considered as system requirements (SRs) where each
SR can define 0 to 3 requirement enhancements (REs). SL of
the aspect of the system is measured as a compliance with
SRs and REs for this aspect, shown in (Table I).

TABLE I
MAPPING BETWEEN COMPLIANCE WITH SRS, RES AND CORRESPONDING

SLS

SR RE(s) SL
SR 1 none SL 1
SR 1 RE 1 SL 2
SR 1 RE 1 + RE 2 SL 3
SR 1 RE 1 + RE 2 + RE 3 SL 4

In case that no SR is defined for the given aspect of the
system, the standard implicitly defines SL 0 as an SL for this
aspect of the system.

III. SYSTEM ARCHITECTURE

The system under consideration extends a generic control
systems architecture and capabilities defined in the frame-
work for Threat-driven Cyber Security Verification of IoT

Systems (FCSVIoT) [3]. This architecture consists of subsys-
tems equipped with sensors and actuators shown on Fig. 2.
Each subsystem is a microcontroller capable of computation
and communication. Communication between the subsystems
creates a distributed control system, which provides data to
and accepts commands from a central engineering terminal.
In this paper we extend the architecture with the notion of
router, a special type of subsystem that enables data exchange
among other subsystems and extends the capabilities of the
system by defining user actions on the engineering terminal.
We further consider that communication channels must exist
between subsystems in order to exchange data.

...

Subsystem 1 Subsystem 2
Subsystem n

Sensor/actuator
package

Sensor/actuator
package

Sensor/actuator
package

Router

Engineering
terminal

Fig. 2. Architecture of the system under consideration

We let our subsystems be governed by a set of atomic
actions forming a basic alphabet for each subsystem Si as
SA = {generate, send, acquire, accept, discard, connect,
disconnect, recover, compromise} and each subsystem has a
finite set of states S. Actions cause transitions between states
of the subsystem such as:

s
action(param)−−−→ s′ where s, s′ ∈ S

We further define a predicate on communication channels
secure(c) stating that the communication channel is secured.
The generate action represents generation of data by the
subsystem, send action represents sending the data on a com-
munication channel, acquire represents acquiring data from the
communication channel, accept defines accepting the acquired
data, discard defines discarding the acquired data. The connect
and disconnect action represent a subsystem connecting to and
disconnecting from a communication channel. The compro-
mise action moves the subsystem to a compromised mode
of operation, compromised(Si), where we consider that the
subsystem has malicious intent. Recover action moves the
subsystem from compromised to normal mode of operation,
normal(Si).

We extend the actions in the FCSVIoT by considering the
engineering terminal E as an user interaction part of the system
by defining its own alphabet of actions EA = {allow, forbid},

21

where allow represents allowing and forbid represents disal-
lowing interaction with an user by the engineering terminal.
We also consider that the system holds a set of user accounts
allowing users access to the Engineering terminal, Ac where
a single account is denoted as a. Each account has exactly
one credential cr, hence the system also holds a set of valid
credentials Cr. We further define the routerR as with alphabet
RA = SA\ {generate} as the router is not equipped with
sensors to generate its own data. This leads to creation of
system alphabet A = SA ∪ EA.

IV. ATTACKS AND MITIGATIONS

We define cyber attacks as sequences of events leading
to potential harm to the system under attack. Within this
paper we consider two cyber attacks, specifically data packet
tampering and brute force attack against an user account
[4]. These attacks have been purposefully selected as the
selected cyber security standard addresses them and specifies
requirements for mitigations aimed to increase cost of these
attacks. We provide a formal description of the attack sequence
and mitigation for both of the attacks under consideration.

1) Data packet tampering attack: Packet tampering is the
act of a compromised subsystem, specifically a router chang-
ing values in a data packet, causing the intended receiving
subsystem to receive different values from those sent by
the transmitting subsystem. This has then the potential to
cause unsafe behavior of the system. In order to describe
an instance of this attack, consider two subsystems S0 and
S1 operating in normal mode, which we show formally as
normal(S0) ∧ normal(S1) and a router R used to enable
data exchange between the two subsystems. The router op-
erates in a compromised mode compromised(R), meaning
that some malicious actor has access to and control over this
router.

The subsystems S0 and S1 are always connected
to the router, meaning that at any time they can
exchange data with the router using communication
channels c0 and c1. We use the FCSVIoT predicate
always connected as always connected(S0,R0, c0) ∧
always connected(S1,R0, c1), specifying that there is al-
ways possibility of communication between S0 and S1 via
R0.

Now we consider that S0 is sending a unit of data d to
S1. The data d is first obtained by R0, which modifies the
data d, represented by a new modify action added to the
alphabet of the router in order to represent software installed
by malicious actor, and then sends it further to S1. The attack
hence combines actions into a pattern by following a specific
sequence:
1. S0.generate(d)
2. S0.send(c0, d)
3. R0.acquire(c0, d)
4. R0.modify(d)
5. R0.send(c1, d)
6. S1.acquire(c1, d)
7. S1.accept(d)

Main act of the attack happens at the R0.modify(d) event.
Here the data d becomes malicious as malicious(d). In case
of non-existent mitigations within the system, the subsystem
S1 simply accepts the data and becomes itself compromised,
hence the attack is successful.

In order to mitigate this attack, we consider security re-
quirements from the ISA/IEC-62443-3-3 security standard,
covering the communication integrity, namely SR 3.1 stating
that The control system shall provide the capability to protect
the integrity of transmitted information.

The requirement itself does not provide the necessary
guidance on what method to use to protect the data, hence
we consider the SR 3.1 RE 1 specifying the cryptographic
integrity protection as The control system shall provide the
capability to employ cryptographic mechanisms to recognize
changes to information during communication. To mitigate the
attack from a general perspective we consider that the data
has to contain a cryptographic signature derived from the data
content and a secret known to subsystems, but not routers.
This introduces a concept of signed data, which we do by
extending the alphabet of the subsystem by adding an atomic
sign event as sign(d). We further define a predicate for signed
data stating that the data is considered signed only if signed
by a subsystem operating in a normal mode:

signed(d) = ∃ s : s sign(d)−−−→i s
′ ∧ s ∈ SN

We then consider applying the signing event as a mitigation
by specifying that the subsystem discards the signed data if
it has been modified, with indices added to the state notation,
describing the order of state transitions:

∀ s1 : s1
discard(d)−−−→ i s2 if

always connected(Si,Rj , ck)

and ∃ s0 : s0
acquire(d,ck)−−−→ i s1

and ∃ s : smodify(d)−−−→ j s
′

and signed(d)

Applying this mitigation by adding S0.sign(d) after the
S0.generate(d) event causes the final event in the chain to
be S1.discard(d) since R0.modify(d) is present. This means
that the subsystem S1 does not enter compromised mode and
the cyber attack is unsuccessful.

2) Brute force attack against an user account: Brute force
attack against an user account uses computational power to
try to guess user sign in credentials by randomly generating
passwords and user names and providing them to the system
for verification. The attack can be streamlined if the user name
and length of the password is known, decreasing the ”guess
space”, which in turn leads to less time required to guess
the correct credentials. If the user account can be breached
this gives the malicious actor control over the system in
terms that the breached account allows, potentially allowing
the malicious actor submission of malicious commands to

22

the system. To formally describe the attack we consider a
single engineering terminal E0 operating in a normal mode,
normal(E0). We further define a check function on an
engineering terminal, responsible for raising the allow or
forbid event:

check(cr) =

{
allow, if cr ∈ Cr

forbid, otherwise

We formulate the attack as a recursive crack(cr) function
that generates new cr for every attempt used to find a cr such
that cr ∈ Cr:

crack(check(cr)) =

{
true, if allow
crack(check(new(cr))), if forbid

Once the function returns true the malicious actor has
obtained access to the engineering terminal, causing the en-
gineering terminal to operate in a compromised mode of
operation, as compromised(E0) and the attack is considered
successful.

In order to mitigate the attack we consider the requirement
SR 1.11 defined in ISA/IEC-62443-3-3, stating, The control
system shall provide the capability to enforce a limit of a
configurable number of consecutive invalid access attempts
by any user (human, software process or device) during a
configurable time period. The control system shall provide
the capability to deny access for a specified period of time
or until unlocked by an administrator when this limit has
been exceeded. To enforce this we define a locked predicate
acting on specific account mapped via its valid credential
where mapping between account ac and credential cr is one
to one and hence for simplicity we omit cr and consider ac
as belonging to a specific cr as:

locked(ac) = ¬∃ s : s allow()−−−→ s′ : ac ∈ Ac

We then need to consider the amount of allowed invalid
access attempts. In order to abstract away from details of
password complexity, we present an assumption stating that
the successful brute force attack against an system that allows
reasonable small amount (in general we would consider this
less than 10 for practical reasons) invalid access attempts is so
unlikely that we consider it impossible. Using this assumption
as a mitigation we can guarantee that the user account cannot
be breached by brute force attack. We also abstract away
from notion of time intervals as we consider that the brute
force attack is happening rapidly and would always exceed the
amount of tries within a specific time interval. We formally
show this mitigation by first defining a global variable for ac
holding the current attempt as attempt(ac) for its credential
cr:

attempt(ac) =

{
attempt(ac) + 1, if check(cr) = forbid

0, otherwise

We then use the variable in adding an attempt limit on
using a credential to sign in to an user account such that the

account becomes locked if the maximum amount of attempts
is reached:

limited(cr,max att) = locked(ac) if attempt ≥ max att

By applying the limited predicate to the credentials we
cause the account to become locked as a result of the crack
function. Since a locked account cannot be used to gain
access to the engineering terminal, the cyber attack fails and
the engineering terminal continues in the normal mode of
operation, normal(E0). It is important to note that in general
the max attempt has to be set in such a way that does
not hinder usability of the system, while providing assurance
of sufficient security. This mitigation strategy has therefore a
limitation in case the max attempt is set unreasonably large.

V. FORMAL ANALYSIS

In this section we shortly present the extensions made to
the FCSVIoT and show how the mitigations for data packet
tampering and brute force against user account attacks have
been verified when considered within the architecture defined
in Section III. This is achieved by expressing the aforemen-
tioned attacks and mitigations using FCSVIoT with extensions
introduced in this paper and verifying these scenarios using the
Alloy Analyzer.

1) Short introduction to Alloy Analyzer: Alloy is a formal
specification language, based on first order logic, used for
expressing structural constraints in software systems. Alloy
allows for modeling at different levels of abstraction, where
at the highest level it provides object oriented interpretation,
at second level it uses the set theory and at the lowest
level atoms and relations are used. Within our model we are
using the set theory, atoms and relations to model the types
using the sig keyword. Subtyping is supported in Alloy by
usage of extends keyword. We model relations between
objects by specifying mappings between sets, for example
has:set EngTerminal one->some Account, where
has is the relation stating that the one, meaning exactly one
engineering terminal has some, meaning at least one account
associated with it. The scope of the model is specified after
the run block, by quantifying how many atoms do we want
to include in the model by using the exactly keyword.
Properties of the Alloy model can be verified by usage of
the Alloy Analyzer software tool [5], which checks properties
of the model by generating counterexamples.

2) Overview of extensions to FCSVIoT: Among the first
extensions is addition of new data types Router corre-
sponding to the router, EngTerminal corresponding to the
engineering terminal, Account corresponding to user account
and Credential corresponding to credential for specific
account as specified in Section III. Using Alloy Analyzer, we
define these datatypes using set definitions, represented by the
sig keyword. We further extend the State definition with
number of new relations. We further define the router as an
extenstion of Device type and also adapt Subsystem to be
extension of Device, as shown in Listing 1.

23

Listing 1. Extensions and changes to the modeling framework
open util/ordering[State]
sig Data {}
sig Device {}
sig Subsystem extends Device{}
sig Router extends Device{}
sig Channel {}
sig EngTerminal {}
sig Credential{}
sig Account{}
sig State {
...
compromised: set Device,
can_authorise: set Subsystem,
malicious: set Data,
signed: set Data,
accepted: set Device -> set Data,
secure:set Channel,
attempts_exceeded: set Account,
limited: set Account,
cracked: set Account,
large: set Credential,
locked: set Account,
has:set EngTerminal one->some Account,
hasCred:set Account one->one Credential
...

}{ /* Facts belonging to State */ ... }

The Device type is used as a base type since Router
and Subsystem share most of the actions. The only dif-
ference is that we consider that the router is not capable of
generating data. The relations within State now also use
Device in order to model relation that cover both Router
and Subsystem. For example, the compromised relation
shown in Listing 1 shows that a state can contain any number
of compromised devices. Another relation recorded in each
state is for example accepted which maps devices to data.

The different types discussed above are governed by several
facts, which are understood as constraints on the model. One
of these is the consideration that the data is either signed or not
and this does not change as the system progresses in its state
transitions. This is shown in Listing 2. In this constraint s’ is
the state following the s state, hence the constraint guarantees
that the data remains signed in all states.

Listing 2. Global constraint governing signed data
fact{

...
all s:State, s’:s.next |
s.signed = s’.signed

}

3) Verification of data tampering mitigation strategy: Here
we demonstrate the mitigation strategy applied to a scenario
discussed in IV-1. The simplest model to demonstrate data
tampering mitigation strategy in fact only requires one sub-
system and a router as it is the router that is responisble for

the attack. This is shown in Listing 3. The listing showns
the constraint for mitigation and the setup of the model. The
complete extended FCSVIoT can be found via [6].

Listing 3. Verifying the data tampering mitigation strategy using Alloy
run {

...
// mitigation signed data
all s:State | all d:Data | d in s.signed
//test the condition
some malicious
...

} for
exactly 5 State
, exactly 1 Subsystem
, exactly 1 Data
, exactly 1 Channel
, exactly 1 Router
, exactly 2 Device
, exactly 0 EngTerminal
...

The run commands checks that the data is signed in five
states, required to exectute the whole scenario. The result of
this execution is: No instance found. This means that
the Alloy Analyzer could not find a counter-example within
the requested scope and the mitigation strategy is proven to
work.

4) Verification of brute force attack: We will show how
the mitigation strategy for brute force attack can be modeled
by considering a scenario described in Section IV-2. The run
command for the model we use consists of one engineering
terminal with one user account, with its associated credentials
and omits subsystems as shown in Listing 4. The mitigation
used in this scenario states that all accounts within all states
of the system are always considered limited (i.e. they consider
limit on the number of unsuccessfull login attempts).

Listing 4. Verifying the brute force attack mitigation strategy using Alloy
run {

...
// mitigation account has limited tries
all s:State | all a:Account |
a in s.limited

//test the condition
some cracked

//start with no cracked account
no first.cracked

...
}for
exactly 3 State
, exactly 1 EngTerminal
, exactly 1 Account
, exactly 1 Credential
, exactly 0 Subsystem
...

24

This scenario considers three states, creating the smallest
scope necessary for its execution. Once the run command is
executed the Alloy Analyzer returns No instance found,
confirming that the mitigation strategy prevents the user ac-
count from being cracked.

VI. RELATED WORK

As cyber security is becoming very important topic in the
industry, mainly in advent of digitalization and trends such as
industry 4.0 [7], research is being carried out within the area of
using formal methods in order to provide proofs that systems
meet cyber security requirements [8]–[10]. The benefits of
using model based verification are its applicability at an early
stage of system development in order to help avoid exposure
to attacks as well as provide mitigations for attacks that are
not easily avoidable [11], [12]. This approach consists of
formal description of the behavior of a system and formal
description of cyber attacks and mitigations. The complete
model is then formally analysed in order to verify that the
mitigation strategies prevent the cyber attacks from causing
potentially harmful behavior of the system. Sometimes specific
cyber security standards are considered as criteria for these
mitigations strategies [13].

In order to provide assurance that an industrial control
system meets criteria specified in a cyber security standard,
authors of [14] have investigated the ISA-99.01-01 standard by
considering the requirements and metrics specified within the
standard. While the authors have described part of the standard
formally, their goal was not to conduct formal analysis to
ensure the satisfiability of the security requirements by a
given architecture but rather to provide recommendations to
the operators of industrial control systems to not blindly trust
standards but verify their security impact on the system.

The authors of [15] have proposed a formalization and
verification technique for ISO/IEC-15408 standard known as
Common Criteria using Z notation. In their technique they
consider the natural language definitions within the standard
and create formal templates based on these. The authors sug-
gest usage of the templates against the formalized specification
of the target system, which is left to the party verifying the
system against the instantiated templates. The authors provide
an example of this verification using the Z/EVES theorem
prover. Our approach differs by providing formal building
blocks for the system from the start, hence formalization of the
system can be done by selecting from these building blocks.

VII. CONCLUSIONS AND FUTURE WORK

So far this research has demonstrated that the chosen
approach is quite extensible where this paper has demonstrated
how the models made in Alloy can be extended in a conser-
vative manner with additional threats. It is expected that we in
the future in this context is furthering the formal definitions
to encompass more of aspects of the security standard and
to verify these against larger variety of cyber attacks. We
further consider switching to TLA+ [16] in order to show the
applicability of our framework using different formalism.

VIII. ACKNOWLEDGMENTS

This work is partially supported by the Manufacturing
Academy of Denmark (MADE) Digital project. For more
information see http://www.made.dk/.

REFERENCES

[1] International Society of Automation, “The 62443 Series of Standards,”
http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf,
accessed on 13/3/18.

[2] D. Jackson, Software Abstractions: Logic, Language, and Analysis.
Heyward Street, Cambridge, MA02142, USA: MIT Press, April 2006,
iSBN-10: 0-262-10114-9.

[3] Tomas Kulik and Peter W. V. Tran-Jørgensen and Jalil Boudjadar and
Carl Schultz, “A framework for threat-driven cyber security verification
of iot systems,” april 2018, First International Workshop on Verification
and Validation of Internet of Things, Västerås, Sweden, In print.

[4] C. Bekara, “Security issues and challenges for the iot-based
smart grid,” Procedia Computer Science, vol. 34, pp. 532 – 537,
2014, the 9th International Conference on Future Networks and
Communications (FNC’14)/The 11th International Conference on
Mobile Systems and Pervasive Computing (MobiSPC’14)/Affiliated
Workshops. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1877050914009193

[5] “The Alloy Analyzer Modelling website,” http://alloy.mit.edu/alloy/,
2018.

[6] Tomas Kulik and Peter Gorm Larsen, “Extensions to formal security
modeling framework,” https://github.com/kuliktomas/FCSVIoT/commit/
189c7962f7f0870fa5315c31a71a6b35e896e47d, 2018.

[7] N. Jazdi, “Cyber physical systems in the context of industry 4.0,” in 2014
IEEE International Conference on Automation, Quality and Testing,
Robotics, May 2014, pp. 1–4.

[8] M. Ge and D. S. Kim, “A framework for modeling and assessing security
of the internet of things,” in 2015 IEEE 21st International Conference
on Parallel and Distributed Systems (ICPADS), 2015, pp. 776–781.

[9] C. Heitmeyer, M. Archer, E. Leonard, and J. McLean, “Applying
Formal Methods to a Certifiably Secure Software System,” Software
Engineering, IEEE Transactions on, vol. 34, no. 1, pp. 82 –98, jan.-feb.
2008.

[10] A. N. Haidar and A. E. Abdallah, “Formal modelling of pki based
authentication,” Electronic Notes in Theoretical Computer Science,
vol. 235, pp. 55 – 70, 2009, proceedings of the 4th International
Workshop on Automated Specification and Verification of Web
Systems (WWV 2008). [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S157106610900084X

[11] D. C. Wardell, R. F. Mills, G. L. Peterson, and M. E. Oxley,
“A method for revealing and addressing security vulnerabilities in
cyber-physical systems by modeling malicious agent interactions
with formal verification,” Procedia Computer Science, vol. 95, no.
Supplement C, pp. 24 – 31, 2016, complex Adaptive Systems
Los Angeles, CA November 2-4, 2016. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1877050916324619

[12] F. A. Teixeira, F. M. Pereira, H.-C. Wong, J. M. Nogueira,
and L. B. Oliveira, “Siot: Securing internet of things through
distributed systems analysis,” Future Generation Computer Systems,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X17304235

[13] J. Woodcock, S. Stepney, D. Cooper, J. A. Clark, and J. Jacob, “The
Certification of the Mondex Electronic Purse to ITSEC Level E6,”
Formal Aspects of Computing, vol. 20, no. 1, pp. 5–19, 2008.

[14] D. K. Holstein and K. Stouffer, “Trust but verify critical infrastructure
cyber security solutions,” in 2010 43rd Hawaii International Conference
on System Sciences, Jan 2010, pp. 1–8.

[15] S. Morimoto, S. Shigematsu, Y. Goto, and J. Cheng, “Formal verification
of security specifications with common criteria,” in Proceedings of the
2007 ACM Symposium on Applied Computing, ser. SAC ’07. New
York, NY, USA: ACM, 2007, pp. 1506–1512. [Online]. Available:
http://doi.acm.org/10.1145/1244002.1244325

[16] L. Lamport, Specifying systems: the TLA+ language and tools for hard-
ware and software engineers. Addison-Wesley Longman Publishing
Co., Inc., 2002.

25

http://www.made.dk/
http://isa99.isa.org/Public/Information/The-62443-Series-Overview.pdf
http://www.sciencedirect.com/science/article/pii/S1877050914009193
http://www.sciencedirect.com/science/article/pii/S1877050914009193
http://alloy.mit.edu/alloy/
https://github.com/kuliktomas/FCSVIoT/commit/189c7962f7f0870fa5315c31a71a6b35e896e47d
https://github.com/kuliktomas/FCSVIoT/commit/189c7962f7f0870fa5315c31a71a6b35e896e47d
http://www.sciencedirect.com/science/article/pii/S157106610900084X
http://www.sciencedirect.com/science/article/pii/S157106610900084X
http://www.sciencedirect.com/science/article/pii/S1877050916324619
http://www.sciencedirect.com/science/article/pii/S1877050916324619
http://www.sciencedirect.com/science/article/pii/S0167739X17304235
http://www.sciencedirect.com/science/article/pii/S0167739X17304235
http://doi.acm.org/10.1145/1244002.1244325

On the model checking of finite state transducers
over semigroups

Anton Gnatenko
Lomonosov Moscow State University

Moscow, Russia
gnatenko.cmc@gmail.com

Vladimir Zakharov
National Research University Higher School of Economics

Moscow, Russia
zakh@cs.msu.su

Abstract—Sequential reactive systems represent programs that
interact with the environment by receiving signals or requests and
react to these requests by performing operations with data. Such
systems simulate various software like computer drivers, real-
time systems, control procedures, online protocols, etc. In this
paper we study the verification problem for the programs of this
kind. We use finite state transducers over semigroups as formal
models of reactive systems. We introduce a new specification
language LP-CTL* to describe the behavior of transducers. This
language is based on the well-known temporal logic CTL* and
has two distinguished features: 1) each temporal operator is
parametrized with a regular expression over input alphabet of
the transducer, and 2) each atomic proposition is specified by a
regular expression over the output alphabet of the transducer.
We develop a tabular algorithm for model checking of finite state
transducers over semigroups against LP-CTL* formulae, prove
its correctness, and estimate its complexity. We also consider
particular fragments of LP-CTL* language, where temporal
operators are parametrized with regular expressions over special
alphabets, and show that these fragments may be used to specify
usual Kripke structures, while they are more expressive than
usual CTL*.

I. INTRODUCTION

Finite state machines are widely used in the field of
computer science and formal methods for various purposes.
While finite automata represent regular sets, transducers stand
for regular (or, rational) relations and, therefore, can serve
as models of programs and algorithms that operate with
input and output data. For example, transducers are used as
formal models in software engineering to represent numerous
algorithms, protocols and drivers that manipulate with strings,
dataflows, etc [1], [15], [25].

By extending the concept of ordinary transducers we build
a new formal model for sequential reactive systems. These
systems are software programs or hardware devices that re-
ceive requests (control signals, commands) from the environ-
ment and perform in response some manipulations (actions,
transformations) with data, interactions with the environment,
mechanical movements, etc. While the flow of requests can
be represented by finite or infinite words in some fixed
alphabet, the sequence of actions of the system needs a
more sophisticated interpretation. The key point here is that
different sequences of actions may bring a computing system
to the same result. To capture this effect the collection of
actions performed by a reactive system can be viewed as a

generating set of some algebraic structure (e.g. semigroup,
group, ring, etc.) and particular algebraic properties of basic
actions should be taken into account when choosing adequate
formal models for this class of information processing systems.
Let us illustrate this consideration by several examples.

• A network switch with several input and output ports. A
switch is a device which receives data packets on its input
port, modifies their heads and commutes them to one of
the output ports. Once received a special control signal,
this switch changes its packet forwarding table and, thus,
its behaviour. Since packets from different flows may be
processed in any order, the switch can be modeled by a
transducer which operates over a free partially commu-
tative semigroup, or a trace monoid. Trace monoids are
commonly used as an algebraic foundation of concurrent
computations and process calculi (see, e.g., [9]).

• A real-time device that control the operation of some
industrial equipment (say, a boiling system). Such device
receives data from temperature and pressure sensors
and switches some processes on and off according to
its instructions and the current state of the system. It
seems reasonable that for some actions the order of their
implementation is not important (routine actions), while
others must follow in a strictly specified order (e. g.
an execution of some complex operation). Moreover,
there are also actions which bring system to certain
predefined operation mode (set-up actions). These actions
are implemented in the emergency situations. A partially
commutative semigroup with right-zero elements 0 which
satisfy the equalities x0 = 0 for every element x provides
an adequate interpretation for such operations.

• A system supervisor that maintains a log-file. For each
entry its date and time is recorded in the file and there is
no way to delete entries from the log — only to append it.
Thus, for any two basic actions (record operations to the
log-file) it is crucial in which order they are performed
and such a supervisor can be modeled by a transducer
over a free semigroup. Verification techniques for such
reactive systems are considered in [17]; this is the main
topic of this paper as well.

• A radio-controlled robot that moves on the earth or moon
surface. It can make one step moves in any of direction.

26

When it receives a control signal in a state q′ it must
choose and carry out a sequence of steps and enter to
the next state q′′. At some distinguished state qf the
robot reports its current location. Movements of the robot
may be regarded as basic actions, and the most simple
model of computation which is suitable for analyzing a
behaviour of this robot is a nondeterministic finite state
transducer operating on a free Abelian group of rank 2.

To construct a reliable system or network it is crucial for
its components to have a correct behaviour. For example, a
network switch must process received data packets within a
specified number of execution steps and the boiling system
should never be overheated, that is, will never remain for
a long time in a particular condition without appropriate
responses from the control device. By using finite state
transducers as formal models of reactive systems one can
develop verification algorithms for these models to solve such
problems as equivalence checking, deductive verification or
model checking.

The study of the equivalence checking problem for classical
transducers began in the early 60s. It was established that the
equivalence checking problem for non-deterministic transduc-
ers is undecidable [13] even over 1-letter input alphabet [16].
However, the undecidability displays itself only in the case
of unbounded transductions when an input word may have
arbitrary many images. The equivalence checking problem
was shown to be decidable for deterministic [4], functional
(singlevalued) [5], [19], and k-valued transducers [6], [26].
In a series of papers [20], [21], [22] techniques for checking
bounded valuedness, k-valuedness and equivalence of finite
state transducers over words were developed. Recently in [29]
equivalence checking problem was shown to be decidable
for finite state transducers that operate over finitely generated
semigroups embeddable in decidable groups.

There are also papers where equivalence checking problem
for transducers is studied in the framework of program verifi-
cation. The authors of [23] proposed models of communication
protocols as finite state transducers operating on bit strings.
They set up the verification problem as equivalence checking
between the protocol transducer and the specification trans-
ducer. The authors of [25] extended finite state transducers
with symbolic alphabets which are represented as parametric
theories. They showed that a number of classical problems for
extended transducers, including equivalence checking prob-
lem, are decidable modulo underlying theories. In [1] a model
of streaming transducers was proposed for programs that
access and modify sequences of data items in a single pass.
It was shown that a number of verification problems such
as equivalence checking, assertion checking, and checking
correctness with respect to pre/post conditions, are decidable
for this program model.

Meanwhile, very few papers on the model checking prob-
lem for transducers are known. Transducers can be conve-
niently used as auxiliary means in regular model checking
of parameterized distributed systems where configurations are
represented as words over a finite alphabet. In such models

a transition relation on these configurations may be regarded
as a rational relation and, thus, it may be specified by finite
state transducers (see [7], [28]). In these papers finite state
transducers just play the role of verification instrument, but
not an object of verification. But, as far as we know, a deeper
investigation of the model checking problem for the reactive
systems represented by transducers has not yet been carried
out. We think that this is due the following main reason. A
transducer is a model of computation which, given a word in
an input alphabet, computes a word in an output alphabet.
The letters of input and output alphabets can be regarded
as valuations (tuples of truth values) of some set of basic
predicates. Therefore, a transducer can be viewed as some
special representation of a labeled transition system (Kripke
structure) (see [2]). From this viewpoint model checking
problem for finite state transducers conforms well to standard
model checking scheme for finite structures, and, hence, it is
not worthy of any particular treatment.

But our viewpoint is quite different. Transducer is a more
complex model of computation than a finite state automaton
(transition systems). Its behaviour is characterized by the
correspondence between input and output words. A typical
property of such behaviour to be checked is whether for
every (some) input word from a given pattern a transducer
outputs a word from another given pattern. Therefore, when
formally expressing the requirements of this kind one needs
not only temporal operators to specify an order in which
events occur but also some means to refer to such patterns.
Conventional Temporal Logics like LTL or CTL are not
sufficient in this case; they should be modified in such a way
as to acquire an ability to express correspondences between
the sets (languages) of input words and the sets (languages) of
output words. This could be achieved by supplying temporal
operators with patterns as parameters. Every such pattern is a
formal description of a language L over an input alphabet C;
automata, formal grammars, regular expressions, language
equations are suitable for this purpose. The basic properties
of output words can be also represented by languages over an
output alphabet. Then, for instance, an expression GLP can
be understood as the requirement that for every input word w
from the language L the output word h of a transducer belongs
to the language P .

The advantages of this approach are twofold. On the one
hand, such extensions of Temporal Logics make it possible
to express explicitly relationships between input and output
words and specify thus desirable behaviours of transducers.
On the other hand, it can be hoped that such extensions could
rather easily assimilate some well-known model checking
techniques (see [8], [3]) developed for conventional Temporal
Logics. The first attempt to implement this approach was
made in [17]. The authors of this paper introduced an LP-
LTL specification language based on LTL temporal logic
and developed a checking procedure for transducers over free
monoids against specifications from LP-LTL. It was shown
that this procedure has double exponential time complexity.

In this paper we continue this line of research and ”raise”

27

the specification language introduced in [17] to the level of
LP-CTL∗. We will focus only on one task related to the use
of new logic for the verification of reactive systems, namely,
the development of a general model checking algorithm for
finite state transducers against specifications in LP-CTL∗.
Such issues as expressive power of LP-CTL∗, complexity
of model checking and satisfiability checking problems, the
influence of types of languages used as parameters and basic
predicates in LP-CTL∗ on decidability and complexity of
model checking problem remain topic of our further research
and will be covered in our subsequent works. We also leave
beyond this work a number of applied questions, which are
worthy of consideration in a separate paper. For example, it is
important to understand to what extent the already developed
model checking tools can be adapted to the new temporal
logic. And, of course, in the future we will have a well-chosen
series of examples that illustrate the new possibilities of using
LP-CTL∗ to describe the behavior of reactive systems.

The paper is organized as follows. In Section II we define
the concept of finite state transducer over semigroup as a
formal model of sequential reactive systems (see [29]) and
in Section III we describe the syntax and the semantics
of LP-CTL∗ as a formal language for specifying behaviour
of sequential reactive systems. In Section III we also set up
formally model checking problem for finite state transducers
against LP-CTL∗ formulae. In Section IV we present an LP-
CTL∗ model checking algorithm for the case when param-
eters of temporal operators and basic predicates are regular
languages represented by finite state automata. The model
checking algorithm we designed has time complexity which
is linear of the size of a transducer but exponential of the
size of LP-CTL∗ formula. This complexity estimate is in
contrast to the case of conventional CTL model checking: its
time complexity is linear of both the size of a model and the
size of a CTL formula. To explain this effect in Section V
we show how LP-CTL∗ formulae can be also checked on
the conventional Kripke structures. Finally, we compare LP-
CTL∗ with some other known extensions of Temporal Logics
and discuss some topics for further research.

II. FINITE STATE TRANSDUCERS AS MODELS OF REACTIVE
SYSTEMS

In this section we introduce a Finite State Transducer as a
formal model of a reactive computing system which receives
control signals from the environment and reacts to these
signals by performing operations with data.

Let C be a finite set of signals. Finite words over C are
called signal flows; the set of all signal flows is denoted by C∗.
Given a pair of signal flows u and v we write uv for their
concatenation, and denote by ε the empty flow.

Let A = {a1, . . . , an} be a finite set of elements called
basic actions; these actions stand for the elementary operations
performed by a reactive system. Finite words over A are
called compound actions; they denote sequential compositions
of basic actions. Since different sequences of basic actions
could produce the same result, one may interpret compound

actions over a semigroup (S, e, ◦) generated by a set of basic
actions A. The elements of S are called data states. Every
compound action h = ai1ai2 . . . aik is evaluated by the data
state [h] = ai1 ◦ ai2 ◦ · · · ◦ aik . For example, if a reactive
system just keeps a track of input requests by adding certain
records to a log-file then a free semigroup will be suitable for
interpretation of these operations. But when a robot moves on a
2-dimensional surface then the actions (movements) performed
by this robot may be regarded as generating elements of
Abelian group G of rank 2, and the positions on the surface
occupied by this robot can be specified by the elements from
G. In this paper we restrict ourselves to the consideration of
free semigroups when [h] = h holds for every compound
action h, and ◦ is the word concatenation operation.

Let C be a set of signals and A be a set of basic actions
that are interpreted over a semigroup (S, e, ◦). Then a Finite
State Transducer (in what follows, FST) is a quintuple Π =
(Q, C,A, qinit, T), where
• Q is a finite set of control states;
• qinit ∈ Q is an initial control state;
• T ⊆ Q× C ×Q×A∗ is a finite transition relation.

Each tuple (q′, c, q′′, h) in T is called a transition: when a
transducer is in a control state q′ and receives a signal c, it
changes its state to q′′ and performs a compound action h. We
denote such transition by q′

c, h−−→ q′′. A run of a FST Π is any
finite sequence of transitions

q1
c1, h1−−−→ q2

c2, h2−−−→ · · · cn, hn−−−−→ qn+1;

this run transduces a signal flow w = c1c2 . . . cn into a data
state [h1h2 . . . hn].

The behaviour of a FST Π = (Q, C,A, qinit, T) over a
semigroup (data space) (S, e, ◦) is presented formally by a
transition system TS(Π, S) = (D, C, dinit, T), where
• D = Q× S is (in general case, infinite) set of states of

computation,
• dinit = (qinit, e) is the initial state, and
• T ⊆ D×C×D is a transition relation such that for every

states of computation d′ = (q′, s′), d′′ = (q′′, s′′) and
every signal c ∈ C the relationship

(d′, c, d′′) ∈ T ⇐⇒ ∃h ∈ A∗ : (q′, c, q′′, h) ∈ T
and s′′ = s′ ◦ [h]

holds.
As usual, a transition (d′, c, d′′) ∈ T is denoted by d′ c−−→ d′′.

A trajectory in a transition system TS(Π, S) is a pair tr =
(d0, α), where d0 ∈ D and

α = (c1, d1), (c2, d2), . . . , (ci, di), . . .

is a sequence of pairs (ci, di) such that di−1
ci−−→ di

holds for every i, i > 1. A trajectory represents a possible
scenario of a behaviour of a sequential reactive system:
when receiving a signal flow c1, c2, . . . , ci, . . . the reactive
system performs a sequence of basic actions h and follows
sequentially via the states of computation d1, d2, . . . , di,
By tr|i we mean the trajectory (di, α|i), where α|i =
(ci+1, di+1), (ci+2, di+2), . . . is a suffix of α.

28

III. LP -CTL∗ SPECIFICATION LANGUAGE

When designing sequential reactive systems one should be
provided with a suitable formalism to specify the requirements
for their desirable behaviour. For example, one may expect that

• a mobile robot, receiving an equal number of control
signals ”go left” and ”go right”, will always return to
its original position,

• a network switch will never commute data packets from
different packet flows into the same output buffer,

• it is not possible for the interrupt service routine to
complete the processing of one interrupt before it receives
a request to handle another.

These and many other requirements which refer to the cor-
respondences between control flows and compound actions in
the course of FST runs can be specified by means of Temporal
Logics. When choosing a suitable temporal logic as a formal
specification language of FST behaviours one should take into
account two principal features of our model of sequential
reactive systems:

1) since a FST operates over a data space which is semi-
group, the basic predicates must be interpreted over
semigroups as well, and

2) since a behaviour of a FST depends not on the time
flow itself but on a signal flow which it receives as
an input, temporal operators must be parameterized by
certain descriptions of admissible signal flows.

To adapt traditional temporal logic formalism to these spe-
cific features of FST behaviours the authors of [17] introduced
a new variant of Linear Temporal Logic (LTL). We assume
that in general case one may be interested in checking the
correctness of FST’s responses to arbitrary set of signal flows.
Every sets of control flows may be regarded as a language over
the alphabet C of signals. Therefore, it is reasonable to supply
temporal operators (”globally” G, ”eventually” F , etc.) with
certain descriptions of such languages as parameters. In more
specific cases we may confine ourselves with considering only
a certain family of languages (finite, regular, context-free, etc.)
L used as parameters of temporal operators. These languages
will be called environment behaviour patterns.

A reactive system performs finite sequences of basic actions
in response to control signals from the environment and thus
follows in the course of its run via a sequence of data states
which are elements of a semigroup (S, e, ◦). Therefore, basic
predicates used in LTL formulae may be viewed as some sets
of data states S′, S′ ⊆ S. These sets can be also specified in
language-theoretic fashion. Any language P over the alphabet
of basic actions A corresponds to a predicate (set of data
states) SP = {[h] | h ∈ P}. As in the case of environment
behaviour patterns we may distinguish a certain class P of
languages and use them as specifications of basic predicates.
When these languages are used as parameters in temporal
formulae then it will be assumed that they are defined con-
structively by means of automata, grammars, Turing machines,
etc.

Thus, we arrive at the concept of LP-variants of Temporal
Logics. In [17] the syntax and semantics of LP-LTL was
studied in some details in the case when both environment
behaviour patterns and basic predicates are regular languages
presented by finite automata. In this paper we make one step
further and extend the concept of LP-variants of Temporal
Logics to CTL∗. Select an arbitrary family of environment
behaviour patterns L and a family of basic predicates P . The
set of LP-CTL∗ formulae consists of state formulae and
trajectory formulae which are defined as follows:

1) each basic predicate P ∈ P is a state formula;
2) if ϕ1, ϕ2 are state formulae then ¬ϕ1 and ϕ1 ∧ ϕ2 are

state formulae;
3) if ψ is a trajectory formula then Aψ and Eψ are state

formulae;
4) if ϕ is a state formula then ϕ is a trajectory formula;
5) if ψ1, ψ2 are trajectory formulae then ¬ψ1 and ψ1 ∧ψ2

are trajectory formulae;
6) if ϕ,ϕ1, ϕ2 is a state formula, c ∈ C, and L ∈ L then

Xcϕ, Ycϕ, FLϕ, GLϕ, and ϕ1 ULϕ2 are trajectory
formulae.

The specification language LP-CTL∗ is the set of all state
formulae constructed as defined above.

Now we introduce the semantics of LP-CTL∗ formulae.
These formulae are interpreted over transition systems. Let
M = TS(Π, S) be a transition system, d be a state of
computation in this system, and tr be a trajectory in M . Then
for every state formula ϕ we write M,d |= ϕ to denote the
fact that the assertion ϕ is true in the state d of M , and for
every trajectory formula ψ we write M, tr |= ψ to denote the
fact that the assertion ψ holds for the trajectory tr in M .

In the definition below it is assumed that M is a tran-
sition system, d = (q, s) is a state of computation in M ,
and tr = (d0, α) is a trajectory in M such that α =
(c1, d1), (c2, d2), . . . , (ci, di), We define the satisfiability
relation |= by induction on the height of formulae:

1) M,d |= P ⇐⇒ s ∈ P ;
2) M,d |= ¬ϕ⇐⇒ it is not true that M,d |= ϕ;
3) M,d |= ϕ1 ∧ ϕ2 ⇐⇒M,d |= ϕ1 and M,d |= ϕ2;
4) M,d |= Eϕ ⇐⇒ there exists a trajectory tr′ = (d, α′)

in M such that M, tr′ |= ϕ;
5) M,d |= Aϕ ⇐⇒ for any trajectory tr′ = (d, α′) in M

it is true that M, tr′ |= ϕ;
6) if ϕ is a state formula then M, tr |= ϕ⇐⇒M,d0 |= ϕ;
7) M, tr |= ¬ψ ⇐⇒ it is not true that M, tr |= ψ;
8) M, tr |= ψ1 ∧ ψ2 ⇐⇒M, tr |= ψ1 and M, tr |= ψ2;
9) M, tr |= Xcϕ⇐⇒ c = c1 and M,d1 |= ϕ;

10) M, tr |= Ycϕ ⇐⇒ either c 6= c1, or M,d1 |= ϕ;
11) M, tr |= FLϕ ⇐⇒ ∃i > 0: c1c2 . . . ci ∈ L and

M, tr|i |= ϕ;
12) M, tr |= GLϕ ⇐⇒ ∀i > 0: if c1c2 . . . ci ∈ L then

M, tr|i |= ϕ;
13) M, tr |= ϕULψ ⇐⇒ ∃i > 0: c1c2 . . . ci ∈ L such

that M, tr|i |= ψ and ∀j, 0 6 j < i, if c1c2 . . . ci ∈ L
then M, tr|j |= ϕ.

29

Observe, that operators Xc and Yc, as well as FL and GL,
are dual to each other:

Proposition 1. For any LP-CTL∗ formula ϕ, any c ∈ C and
any L ∈ L, and for an arbitrary trajectory tr in M

1) tr |= Xcϕ ⇐⇒ tr |= ¬Yc¬ϕ,
2) tr |= FLϕ ⇐⇒ tr |= ¬GL¬ϕ.

As usual, other Boolean connectives like ∨,→,≡ may be
defined by means of ¬ and ∧. Some other CTL∗ operators
like, for example, R (release) or W (weak until) may be
parametrized by environmental behaviour patterns in the same
fashion.

The model checking problem we deal with is that of
checking, given a finite state transducer Π operating over a
semigroup (S, ◦, e), and an LP-CTL∗ formula ϕ, whether
TS(Π, S), dinit |= ϕ holds. When a semigroup is fixed then
we use a brief notation Π |= ϕ.

IV. MODEL CHECKING AGAINST LP -CTL∗

SPECIFICATIONS

In this paper we discuss only the most simple case of
model checking problem for finite state transducers against
LP-CTL∗ formulae when
• the semigroup (S, ◦, e) the transducers operate over is

a free monoid, which means that S is the set of all
finite words in the alphabet A, the binary operation ◦
is concatenation of words, and the neutral element e is
the empty word ε;

• the family of environment behaviour patterns P is the
family of regular languages in the alphabet C;

• all basic predicates in P are specified by regular lan-
guages in the alphabet A.

All regular languages used as environment behaviour patterns
and basic predicate specifications are defined by means of
deterministic finite state automata (DFAs). Therefore, the size
of a LP-CTL∗ formula is the number of Boolean connectives
and temporal operators occurred in ϕ plus the total size of
automata used in ϕ to specify environment behaviour patterns
and basic predicates.

Let us first describe a model checking algorithm for
LP-CTL fragment of LP-CTL∗, which consists of all
LP-CTL∗ formulae such that every temporal operator
Xc, Yc, FL, GL UL is immediately preceded by a trajec-
tory quantifier E or A. In our algorithm we involve an explicit
iterative model checking techniques for the ordinary CTL (see
[10], [8]). Following this approach satisfiability checking of a
formula ϕ in a state d of a model M is reduced to satisfiability
checking of the largest subformulae of ϕ in the state d and in
the neighboring states of M . In other words, a model checking
procedure incrementally labels all states of a model by those
subformulae of ϕ which are satisfied in these states.

Let Π = (Q, C,A, qinit, T) be a finite state transducer
over the free semigroup (A∗, ·, ε) and let ϕ be an LP-CTL
formula. There are five pairs of coupled LP-CTL temporal
operators: AXc and EXc, AYc and EYc, AFL and EFL,

AGL and EGL, AUL and EUL. As in the case of “ordinary”
CTL (see [10]), each of these couple can be expressed in
terms of four main coupled operators EXc, EYc, EGL and
EUL:

Proposition 2. For every formula ϕ the following equalities
hold

1) |= AXcϕ ≡ ¬EYc ¬ϕ,
2) |= AYcϕ ≡ ¬EXc ¬ϕ,
3) |= AFLϕ ≡ ¬EGL ¬ϕ,
4) |= EFLϕ ≡ E[trueULϕ],
5) |= AGLϕ ≡ ¬EFL ¬ϕ,
6) |= A[ϕULψ] ≡ ¬E[¬ψUL (¬ϕ∧¬ψ)] ∧ ¬EGL ¬ψ.

Certainly, some other relationships like fixed-point identities
are also valid in LP-CTL∗ (see [17]) but they will not be
involved in this paper for model checking purpose.

We can now bound our consideration with those
LP-CTL formulae which are constructed using only
¬, ∧, EXc, EYc, EGL and EUL. Let M be a transition
system TS(Π, A∗) = (D, C, dinit, T) of Π over A∗. It
should be noticed that M is, in general, infinite. So, in order
to obtain an effective model checking procedure we need a
construction that will model the behaviour of M with respect
to a target formula ϕ.

For every basic predicate P ∈ P let AP =
(QP ,A, initP , δP , FP) be a minimal DFA recognizing this
language. Here QP is a finite set of states, initP is an initial
state, FP is a set of accepting states and δP : QP ×A → QP
is a transition function. The latter can be extended to the set
A∗ in the usual fashion:

δP (qP , ε) = qP and δP (qP , γa) = δP (δP (qP , γ), a).

Let P1, P2, . . . , Pk be all basic predicates occurred in the
formula ϕ. Given a transducer Π = (Q, C,A, qinit, T) and
a formula ϕ, we build a checking machine — a trans-
ducer M = (Q̂, C,A, q̂init, T̂), where
• Q̂ = Q × QP1

× . . . × QPk
is a set of states (to avoid

misunderstanding we will call them metastates);
• q̂init = (qinit, initP1 , . . . , initPk

) is an initial metastate;
• T̂ ⊆ Q̂× C × Q̂×A∗ is a transition relation, such that:

(q̂′, c, q̂′′, h) ∈ T̂ ⇔


(q′π, c, q

′′
π, h) ∈ T and

δPj
(q′Pj

, h) = q′′Pj

for all j, 1 ≤ j ≤ k.
.

Thus, every metastate is a tuple q̂ = (q0, q1, . . . , qk) such
that q0 ∈ Q and qj ∈ QPj for every j, 1 ≤ j ≤ k, and
the transition relation T̂ synchronizes transitions of Π and the
automata AP1 , . . . , APk

in response to every signal c. Recall
that the elements of the free monoid are words s from A∗.
The checking machine M induces a binary relation ∼ on the
set D: for an arbitrary pair d′ = (q′, s′) and d′′ = (q′′, s′′) of
states of computation of Π over A∗

d′ ∼ d′′ ⇔

{
q′ = q′′ and
δPj

(initPj
, s′) = δPj

(initPj
, s′′) for all j.

30

The relation ∼ is clearly an equivalence relation of finite
index, and every equivalence class of states of computation in
M corresponds to a metastate of the checking machine M.
As it can be seen from the definition of ∼, if two states of
computation d′ and d′′ are equivalent and there is a trajectory
tr′ = (d′, α′) in M , where α′ = (c1, d

′
1), (c2, d

′
2), . . . , from

one of these states, then there is also a corresponding trajectory
tr′′ = (d′′, α′′), where α′′ = (c1, d

′′
1), (c2, d

′′
2), . . . from the

other state, such that d′i ∼ d′′i holds for every i, i ≥ 1. Actually,
this means that ∼ is a bisimulation relation on the state space
of the transition system M . It is well known (see [3], [8])
that bisimulation preserves the satisfiability of CTL formulae.
The Proposition below shows that the same is true for LP-
CTL. This means that the checking machine provides a finite
contraction of the infinite transition system M = TS(Π,A∗)
w.r.t. satisfiability of LP-CTL formulae.

Proposition 3. Suppose that d′ and d′′ are two states of
computation in M such that d′ ∼ d′′. Then M,d′ |= ϕ ⇐⇒
M,d′′ |= ϕ.

Proof. It is carried out by induction on the nesting depth of ϕ.
When ϕ is a basic predicate the assertion obviously follows
from the definition of ∼. Equally obvious are the cases when
ϕ = ¬ψ and ϕ = ψ1 ∧ ψ2. We focus only on the case of
ϕ = E[ψULχ]; the other cases when ϕ is of the form EXcψ,
EYcψ, or EGLψ can be treated similarly.

Suppose that M,d′ |= E[ψULχ]. Then, by the definition
of LP-CTL semantics, there exists a trajectory tr′ = (d′, α′),
such that M, tr′ |= ψULχ and α′ = (c1, d

′
1), (c2, d

′
2), As

it was noticed above, there is also a corresponding trajectory
tr′′ = (d′′, α′′) in M , where α′′ = (c1, d

′′
1), (c2, d

′′
2), . . . , such

that d′i ∼ d′′i holds for every i, i ≥ 1. Then, by induction
hypotheses, M,d′i |= ψ ⇐⇒M,d′′i |= ψ and M,d′i |= χ⇐⇒
M,d′′i |= χ hold for for every i, i ≥ 1.

Since M, tr′ |= ψULχ, there exists i such that
1) c1c2 . . . ci ∈ L and M, tr′|i |= χ;
2) for all j < i if c1c2 . . . cj ∈ L then M, tr′|j |= ψ.

But, taking into account the fact that ψ and χ are state
formulas, we must recognize that M, tr′′|i |= χ and that
M, tr′′|j |= ψ every time when M, tr′|j |= ψ. Thus, we
arrive at the conclusion that M, tr′′ |= ψULχ and, hence,
M,d′′ |= E[ψULχ].

Each metastate q̂ = (q0, q1, . . . , qk) of the checking machine
M represents an equivalence class Dq̂ which includes all
states d = (q, h) ∈ D such that q = q0 and δPj

(initPj
, h) =

qj for all j, 1 ≤ j ≤ k. Taking into account Proposition 3, we
can correctly introduce a new satisfiability relation |=0 on the
metastates of the checking machine:

q̂ |=0 ϕ ⇐⇒ for some d ∈ Dq̂ : M,d |= ϕ .

Not only the states of the transition system M = TS(Π, S)
correspond to the metastates of the checking machine M, but
also there is a relationship between the trajectories in M and
the traces in M (they can be quite naturally called metatra-
jectories). More formally, every trajectory tr = (d0, α) in M

with α = (c1, d1)(c2, d2) . . . , corresponds to a metatrajectory
t̂r = (q̂0, α̂), where α̂ = (c1, q̂1)(c2, q̂2) . . . is such that for
all i > 0: di ∈ Dq̂i . It is easy to see that every metatrajectory
t̂r = (q̂0, α̂) corresponds to the only trajectory tr = (d0, α)
which originates in a given state d0 from Dq̂0 .

The well-known labeling algorithm for conventional CTL
and ordinary Kripke structures can be now adapted in such a
way as to cope with model checking problem for LP-CTL.
The algorithm operates as follows. For every metastate q̂ ∈ Q̂
of the checking machine M it computes a set label(q̂) of all
subformulae of ϕ which are satisfied in q̂. More formally, let
Sub(ϕ) be the minimal set of LP-CTL formulae such that:

1) ϕ ∈ Sub(ϕ);
2) if ¬ψ ∈ Sub(ϕ) then ψ ∈ Sub(ϕ);
3) if ψ ∧ χ ∈ Sub(ϕ) then ψ, χ ∈ Sub(ϕ);
4) if EXcψ ∈ Sub(ϕ), EYcψ ∈ Sub(ϕ) or

EGLψ ∈ Sub(ϕ) then ψ ∈ Sub(ϕ);
5) if E[ψULχ] ∈ Sub(ϕ) then ψ, χ ∈ Sub(ϕ).

The algorithm builds incrementally the sets label(q̂) of
all those ψ ∈ Sub(ϕ) for which q̂ |=0 ψ holds. At the
first step every label(q̂) contains only basic predicates, i. e.
label(q̂) ⊆ Sub(ϕ) ∩ P . Then, at step i the algorithm
processes those subformulae ψ whose nesting depth is i− 1.
Every time when the algorithm adds a subformula ψ to
label(q̂) it thus detects that q̂ |=0 ψ.

All we need now is to describe how the algorithm should
process formulae of 7 types: basic predicate P , ¬ψ, ψ1 ∧ψ2,
EXcψ, EYcψ, EGLψ and E[ψULχ].

• A basic predicate Pi is added to label(q̂) iff
q̂ = (q0, q1, . . . , qi, . . . , qk) and q̂i ∈ FPi

, i > 1;
• A subformula ¬ψ is added to label(q̂) iff ψ /∈ label(q̂);
• A subformula ψ1 ∧ ψ2 is added to label(q̂) iff both
ψ1, ψ2 ∈ label(q̂);

• A subformula EXcψ is added to label(q̂) iff there exists
a transition q̂

c, h−−→ q̂′ such that ψ ∈ label(q̂′);
• A subformula EYcψ is added to label(q̂) iff there exists

a transition q̂
c, h−−→ q̂′ such that ψ ∈ label(q̂′) or there

exists a transition q̂
c′, h−−→ q̂′ such that c′ 6= c;

• To handle a subformula E[ψULχ] we construct a
directed labeled graph (DLG) ΓU (M, L) as follows.
Let AL = (QL, C, initL, δL, FL) be a minimal DFA that
recognizes the language L. Then the nodes of ΓU (M, L)
are all pairs (q̂, qL) ∈ Q̂×QL. This DLG has an arc of the
form (q̂′, q′L)

c, h−−→ (q̂′′, q′′L) iff q̂′
c, h−−→ q̂′′ is a transition

of M and δL(q′L, c) = q′′L.
We then delete all those nodes (q̂, qL) of ΓU (M, L) for
which the relations ψ /∈ label(q̂), χ /∈ label(q̂) and qL ∈
FL hold simultaneously and discard all arcs that income
to or outcome from such nodes. A DLG thus reduced is
denoted by Γ′U (M, L).
A subformula E[ψULχ] is added to the set label(q̂) iff
Γ′U (M, L) includes the node (q̂, initL) and there exists
a directed path in this graph from this node to some node
(q̂′, q′L) such that χ ∈ label(q̂′) and q′L ∈ FL.

31

• For a subformula EGLψ we construct a DLG ΓG(M, L)
in the same fashion and delete all the nodes (q̂, qL) for
which the relations ψ /∈ label(q̂) and qL ∈ FL hold
simultaneously. As the result we obtain the reduced DLG
Γ′G(M, L).
The subformula EGLψ is added to the set label(q̂) iff
Γ′G(M, L) includes the node (q̂, initL) and there exists
a directed path in this graph from this node to some
nontrivial strongly connected component (SCC), that is,
to a subgraph, every node of which is reachable from
itself by some non-empty path.

As soon as all the subformulae from Sub(ϕ) (including the
formula ϕ) are processed we obtain the result of the model
checking as

Π |= ϕ ⇐⇒ ϕ ∈ label(q̂init).

The correctness of this assertion is based on the following
relationship: q̂ |=0 ϕ ⇐⇒ ϕ ∈ label(q̂). It can be proved by
applying induction on the nesting depth of formulae with the
help of Proposition 3. We also need Propositions 4 and 5 to
justify the induction step for formulae of the form E[ψULχ]
and EGLψ.

Suppose, that for every metastate q̂ ∈ Q̂ it is true that
q̂ |=0 ψ ⇔ ψ ∈ label(q̂) and q̂ |=0 χ⇔ χ ∈ label(q̂). This
statement is used as an inductive hypothesis.

Proposition 4. Let q̂0 ∈ Q̂ be an arbitrary metastate in
M. Then q̂0 |=0 E[ψULχ] iff some node (q̂′, q′L) in DLG
Γ′U (M, L) such that q̂′ |=0 χ and q′L ∈ FL is reachable from
the node (q̂0, initL) by a directed path.

Proposition 5. Let q̂0 ∈ Q̂ be an arbitrary metastate in M.
Then q̂ |=0 EGLψ iff some nontrivial strongly connected
component is reachable from the node (q̂0, initL) in DLG
Γ′G(M, L) by a directed path.

The proofs of these Propositions are straightforward adap-
tations of the correctness proof of the tabular model checking
algorithm for CTL which is discussed in much details in [8].
However, for completeness of the exposition we give here a
proof of Proposition 5. The proof of Proposition 4 follows the
similar line of reasoning.

Proof of Proposition 5. (Sketch)
(⇒) Suppose, that q̂0 |=0 EGLψ. Consider an arbitrary state
d0 ∈ Dq̂0 . Then, by definition of |=0 and by Proposition 3,
it is true that M,d0 |= EGLψ. This means that there is a
trajectory tr = (d0, α), where α = (c1, d1), (c2, d2), . . . , such
that M, tr |= GLψ. By the semantics of LP-CTL∗, M,di |=
ψ holds for every i such that c1c2 . . . ci ∈ L.

Consider now the corresponding metatrajectory t̂r = (q̂0, α̂)
in the checking machine, where α̂ = (c1, q̂1), (c2, q̂2), . . . , and
let

π = (q̂0, initL)
c1, h1−−−→ (q̂1, q1L)

c2, h2−−−→ (q̂2, q2L)
c3, h3−−−→ · · · ,

be the respective path in the DLG ΓG(M, L) which originates
in the node (q̂0, initL). Relying on Proposition 3 and taking

into account the fact that qiL = δL(initL, c1c2 . . . ci) for every
i, i ≥ 0, we may conclude that q̂i |=0 ψ holds for every i such
that qiL ∈ F . By induction hypothesis, q̂i |=0 ψ is equivalent
to ψ ∈ label(q̂i). Therefore, by definition of DLG ΓG(M, L)
the path π is the infinite path which is entirely contained in
the Γ′G(M, L). Due to the finiteness of Γ′G(M, L), this path
may be represented as a concatenation π = π1π2, where π1
is a finite path, and π2 is an infinite path passing through
each of its nodes infinitely often. It is clear that the set V (π2)
of all nodes of π2 is included in some strongly connected
component. Thus, a nontrivial strongly connected component
is reachable from the node (q̂0, initL) in DLG Γ′G(M, L).

(⇐) Suppose, that a nontrivial strongly connected component
is reachable from the node (q̂0, initL) in DLG Γ′G(M, L).
Then there exists an infinite path

π = (q̂0, initL)
c1, h1−−−→ (q̂1, q1L)

c2, h2−−−→ (q̂2, q2L)
c3, h3−−−→ · · ·

in Γ′G(M, L) from the node (q̂0, initL) Consider now the se-
quence of the first components q̂i of all nodes (q̂i, qiL), i ≥ 0,
occurred in this path. By the definition of the DLG Γ′G(M, L),

1) this sequence is a metatrajectory t̂r in the checking
machine M,

2) ψ ∈ label(q̂i) holds for every node (q̂i, qiL) such that
qiL ∈ FL.

By the induction hypothesis, the latter implies q̂i |=0 ψ for
every metastate q̂i in this trajectory such that c1c2 . . . ci ∈
L. Consider an arbitrary state d0 ∈ Dq̂0 and a trajectory
tr = (d0, α) in M , where α = (c1, d1), (c2, d2), . . . , which
corresponds to t̂r. By definition of |=0 and Proposition 3,
M,di |= ψ holds for every i such that c1c2 . . . ci ∈ L. Then,
according to the semantics of LP-CTL∗, M, tr |= GLψ,
and, hence, M,d0 |= EGLψ. Thus, by referring once again
to definition of |=0, we arrive at the conclusion that q̂0 |=0

EGLψ.

Now we estimate the complexity of the model check-
ing algorithm for LP-CTL described above. By the size
of a transducer Π = (Q, C,A, qinit, T) we will mean
the sum ‖Π‖ = |Q| + |T |. The size of a formula ϕ is
defined as follows. Suppose that basic predicates {Pi}ki=1

occurred in ϕ are recognized by minimal DFAs {APi =
(QPi

,A, initPi
, δPi

, FPi
)}ki=1. Suppose also that environment

patterns {Li}si=1 used in ϕ are recognized by minimal DFAs
{ALi

= (QLi
,A, initLi

, δLi
, FLi

)}si=1. Then the size of ϕ is
the sum ‖ϕ‖ = |Sub(ϕ)|+

∑k
i=1 |QPi |+

∑s
i=1 |QLi |.

As it can be seen from the description of our model check-
ing algorithm, the size of auxiliary graphs Γ′U (M, L) and
Γ′G(M, L) used in this algorithm does not exceed the value
‖Π‖ ·

(∏k
i=0 |QPi

|
)
·max(|QLi

| : 1 ≤ i ≤ s). These graphs
are processed in no more than |Sub(ϕ)| steps. So, the total
time complexity of our model checking algorithm does not
exceed the value ‖Π‖ · |Sub(ϕ)|

(∏k
i=0 |QPi

|
)
·max(|QLi

| :
1 ≤ i ≤ s) which is O

(
‖Π‖ · 2‖ϕ‖

)
.

As a result of these considerations, we get the following

32

Theorem 1. Model checking of a finite state transducer Π
operating over a free monoid against a formula ϕ ∈ LP-
CTL can be performed in time O

(
‖Π‖ · 2‖ϕ‖

)
.

When a more general case of model checking problem of
FSTs against LP-CTL∗ formulae is concerned we can rely
on the well-known combining approach which is based on
the interleaving application of model checking algorithms for
CTL and LTL. The details can be found in [8]. The similar
procedure for LP-CTL∗ can be obtained in the same fashion
by means of LP-CTL model checking algorithm described
above and LP-LTL model checking algorithm developed in
[17]. Since this approach does not take into account any
specific features of LP-CTL∗ formulae, we will not give a
complete description of it.

V. LP -CTL∗ AND ORDINARY KRIPKE STRUCTURES

In this section we consider the model checking problem for
two subfamilies of LP-CTL∗ whose semantics can be defined
on ordinary Kripke structures.

Recall, that a Kripke structure over a finite set AP of atomic
propositions is a quadruple M = (Q, qinit, R, ρ), where Q
is a finite set of states which includes an initial state qinit,
R ⊆ Q × Q is a transition relation and ρ : Q → 2AP is a
labeling function which for each state q gives a matching set
ρ(q) ⊆ AP of all atomic propositions that are evaluated to
true in this state. As usual, the size of M is the sum ‖M‖ =
|Q|+ |R|. Below we present two modifications of LP-CTL∗

that are well suited for model checking of Kripke structures.
Given a Kripke structure M = (Q, qinit, R, L), consider a

set of LP-CTL∗ formulae where L is a family of regular
languages over one-letter alphabet {c} and P = AP (we
denote this formulae by LP-1-CTL∗) and a transition sys-
tem Mc = (Q, {c}, qinit, Rc, L) where (q′, c, q′′) ∈ Rc iff
(q′, q′′) ∈ R. Then for q ∈ Q the relation q |= P holds iff
P ∈ ρ(q). The semantics of more complex formulae is defined
exactly as in Section III.

Some LP-1-CTL∗ formulae have an ability to keep track
of the number of steps of the run. For example, an LP-1-
LTL formula AGL ϕ, where L = {c2n} is a regular language
which contains all 1-letter words of even length, expresses the
assertion that ϕ holds at every even step of a run. By using the
techniques of Ehrenfeucht-Fraisse games for Temporal Logics
developed and studied in [11] one can prove that this property
can not be specified by means of usual LTL. This certifies that
LP-1-CTL∗ is more expressive than CTL∗ and justifies its
use as a new specification language for finite state transducers
and Kripke structures.

Observe, that given a set AP of all atomic propositions used
in formulae we can use the Mc directly as a checking machine
M for the algorithm described in Section IV. Suppose that
formula ϕ refers to 1-letter regular languages L1, L2, . . . , Ls
as the parameters of temporal operators, and every language
Li, 1 6 i 6 s, is recognized by a DFA with a set of states
QLi

. Then the size of the graphs used in this algorithm does
not exceed the value ‖M‖ ·max(|QLi | : 1 ≤ i ≤ s) which is
O(‖M‖ · ‖ϕ‖), where ‖ϕ‖ = |Sub(ϕ)|+

∑s
i=0 |QLi

|.

Another modification of the Kripke structure M allows to
encode more detailed information of the computation flow.
Consider the alphabet Σ = 2AP . For each state q in M
there exists a letter σρ(q) ∈ Σ corresponding to the label ρ(q)
assigned to this state.

Let MAP = (Q ∪ {err}, qinit, RAP , ρAP) be a transition
system for M , where for every q ∈ Q the following equal-
ities hold: ρAP (q) = ρ(q), ρAP (err) = {err} and
RAP ⊂ Q × 2AP × Q is a minimal transition relation
such that:
• for each transition (q′, q′′) of the Kripke structure M

there exists a fair transition (q′, σρ(q′′), q
′′) and erroneous

transitions (q′, σ, err) for each σ 6= σρ(q′′);
• (err, σ, err) ∈ RAP holds for each σ ∈ Σ and

(err, σ, q) /∈ RAP holds for each q 6= err.
Then consider a specification language LP-n-CTL∗ which

is a set of all such formulae where L is a family of regular
languages over Σ and P = AP . To model check a transition
system MAP against these formulae one needs to process only
the states in Q and only the fair transitions. To do so, we
replace all state formulae of type Aϕ with A(G¬err −→ ϕ)
and all state formulae of type Eϕ with E(G¬err ∧ ϕ). The
transition system MAP thus obtained may as well be used as a
checking machine for the model checking algorithm described
in Section IV.

Thereby, the following theorem holds.

Theorem 2.
1) There exists an algorithm for model checking of a Kripke

structure M against a formula ϕ ∈ LP-1-CTL with
time complexity O

(
‖M‖ · ‖ϕ‖2

)
.

2) There exists an algorithm for model checking of a Kripke
structure M against a formula ϕ ∈ LP-n-CTL with
time complexity O

(
‖M‖ · ‖ϕ‖2 · 2|AP |

)
.

As it can be seen from this theorem, the exponential com-
plexity of model checking procedure described in Section IV
is due to the language-theoretic nature of basic predicates used
in LP-CTL∗.

VI. RELATED PAPERS AND CONCLUSION

Actually, the idea of providing parametrization of temporal
operators is not new. In [27] right-linear grammar patterns
were offered to define new temporal operators. The same kind
of temporal patterns but specified by means of finite state
automata were introduced in [18], [24]. For these extensions it
was proved that they have the same expressiveness as S1S and
that satisfiability checking problem in these logics is PSPACE-
complete. We did not pursue a goal of merely expanding
the expressive possibilities of CTL∗; our aim was to make
CTL∗ more adequate for describing the behaviour of reactive
systems. Almost the same kind of parametrization is used in
Dynamic LTL [14]. But our extension of CTL∗ differs from
that which was developed in [14], since in our logic basic
predicates are also parameterized.

The LP-CTL∗ formulae allows one to specify and verify
the behaviour of finite state transducers that operate over

33

semigroups as well as classical Kripke structures. Moreover,
when Kripke structures are concerned LP-CTL∗ has more
expressive power than conventional temporal logics. But the
place of LP-CTL∗ in the expressive hierarchy of specification
languages, such as S1S, PDL or µ-calculus, has not yet been
established and remains a matter for our further research.

The results of this paper combined with the results of [17]
provide positive solution to model checking for transducers
over free semigroups. Free semigroups is the most simple
algebraic structure which can be used for interpretation of
basic actions performed by transducers when they are regarded
as formal models of sequential reactive systems. Next we are
going to find out whether model checking algorithms could be
built for transducers operating over more specific semigroups.
Some preliminary results showed that this is not an easy
problem. In [12] we proved that it is undecidable for the
case of Abelean groups and free commutative semigroups.
There still remains a bunch of other interesting semigroups
classes (for example, different kinds of partially commutative
semigroups) for which this problem remains open.

It is also interesting how much the complexity of model
checking algorithms for LP-CTL∗ depends on languages that
are used as parameters of temporal operators. We assume that
model checking problem becomes undecidable when context-
free languages are allowed for this purpose.

The complexity issues of model checking for regular variant
of LP-CTL∗ also need further research. We assume that even
for regular LP-CTL this problem is PSPACE-complete.

As for practical application of the results obtained in this
article, the most important of them is the question of how
easily it is possible to adapt the existing means of working
with finite automata to widely known model checking tools
(like SPIN, ν-SMV, etc.) in order to be able to effectively
implement the proposed model checking algorithms for LP-
CTL∗.

The authors of the article thank the anonymous reviewers for
their valuable comments and advice on improving the article.

This work was supported by the Russian Foundation for
Basic Research, Grant N 18-01-00854.

REFERENCES

[1] R. Alur, P. Cerny. Streaming transducers for algorithmic verification
of single-pass list-processing programs. Proceedings of 38-th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, p. 599-610, 2011.

[2] Alur R., Moarref S., and Topcu U.: Pattern-based refinement of assume-
guarantee specifications in reactive synthesis. Proc. of 21-st International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, 2015.

[3] Baier C., Katoen J. Principles of Model Checking, 2008, MIT Press,
[4] M. Blattner, T. Head. The decidability of equivalence for deterministic

finite transducers. Journal of Computer and System Sciences, v. 1, p.
45-49, 1979.

[5] M. Blattner, T. Head. Single-valued a-transducers. Journal of Computer
and System Sciences, v. 15, p. 310-327, 1977.

[6] K. Culik, J. Karhumaki. The equivalence of finite-valued transducers
(on HDTOL languages) is decidable. Theoretical Computer Science, v.
47, p. 71-84, 1986.

[7] Bouajjani A., Jonsson B., Nilsson M., Touili T.: Regular Model Check-
ing. Proc. of 12-th International Conference on Computer Aided Verifi-
cation, LNCS 1855 (2000), p. 403-418.

[8] E. M. Clarke, Jr., O. Gramberg, D. A. Peled. Model Checking. MIT
Press, 1999.

[9] V. Diekert, G. Rozenberg eds. The Book of Traces, 1995, World
Scientific, Singapore.

[10] E.A. Emerson, J.Y. Halpern. Decision procedures and expressiveness in
the temporal logic of branching time. Journal of Computer and System
Sciences, 1985, v. 30, N 1, p. 124.

[11] K. Etessami, T. Wilke. An Until Hierarchy and Other Applications
of an Ehrenfeucht-Fraisse Game for Temporal Logic. Information and
Computation, v. 160, p. 88-108. Elsevier, 2000.

[12] A. Gnatenko, V. A. Zakharov. On the complexity of verification of finite
state machines over commutative semigroups. Proceedings of the 18-th
International Conference ”Problems of Theoretical Cybernetics” (Penza,
June 20-24, 2017), p. 68-70.

[13] T. Griffiths. The unsolvability of the equivalence problem for free
nondeterministic generalized machines. Journal of the ACM 15, p. 409-
413, 1968.

[14] J.G. Henriksen, P.S. Thiagarajan. Dynamic linear time temporal logic.
Annals of Pure and Applied Logic, 1999, v. 96, p. 187-207

[15] Hu Q., D’Antoni L. Automatic Program Inversion using Symbolic
Transducers. Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2017, p. 376-389.

[16] O. Ibarra The unsolvability of the equivalence problem for Efree NGSMs
with unary input (output) alphabet and applications. SIAM Journal on
Computing, v. 4, 1978.

[17] D. G. Kozlova, V. A. Zakharov. On the model checking of sequential
reactive systems. Proceedings of the 25th International Workshop on
Concurrency, Specification and Programming (CS&P 2016), CEUR
Workshop Proceedings, vol. 1698, p. 233-244. Humboldt Universitet
Zu Berlin, 2016.

[18] O. Kupferman, N. Piterman, M.Y. Vardi. Extended Temporal Logic Re-
visited. Proceedings of 12-th International Conference on Concurrency
Theory, 2001, p. 519-535.

[19] M. P. Schutzenberger. Sur les relations rationnelles. Proceedings of
Conference on Automata Theory and Formal Languages, p. 209-213,
1975.

[20] J. Sakarovitch, R. de Souza. On the decomposition of k-valued rational
relations. Proceedings of 25-th International Symposium on Theoretical
Aspects of Computer Science, p.621-632, 2008.

[21] J. Sakarovitch, R. de Souza. On the decidability of bounded valuedness
for transducers. Proceedings of the 33-rd International Symposium on
MFCS, p. 588-600, 2008.

[22] R. de Souza. On the decidability of the equivalence for k-valued trans-
ducers. Proceedings of 12-th International Conference on Developments
in Language Theory, p. 252-263, 2008.

[23] J. Thakkar, A. Kanade, R. Alur. A transducer-based algorithmic verifica-
tion of retransmission protocols over noisy channels. Proceedings of IFIP
Joint International Conference on Formal Techniques for Distributed
Systems, p. 209-224, LNCS 7892, 2013.

[24] M.Y. Vardi, P. Wolper. Yet Another Process Logic (Preliminary Version).
Logic of Programs, 1983, p. 501-512.

[25] M. Veanes, P. Hooimeijer, B. Livshits et al. Symbolic finite state
transducers: algorithms and applications. Proceedings of the 39-th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ACM SIGPLAN Notices, v. 147, p. 137-150, 2012.

[26] A. Weber. Decomposing finite-valued transducers and deciding their
equivalence. SIAM Journal on Computing. v. 22, p. 175-202, 1993.

[27] P. Wolper. Temporal Logic Can Be More Expressive. Information and
Control, 1983, v. 56, N 1/2, p. 72-99.

[28] Wolper P., Boigelot B. Verifying systems with infinite but regular
state spaces. Proceedings of the 10-th Int. Conf. on Computer Aided
Verification (CAV-1998). LNCS. 1427 (1998), p. 88-97.

[29] V. A. Zakharov. Equivalence checking problem for finite state transduc-
ers over semigroups. Proceedings of the 6-th International Conference
on Algebraic Informatics (CAI-2015), p. 208-221, LNCS 9270, 2015.

34

Tolerant parsing with a special kind of ”Any”
symbol: the algorithm and practical application

Alexey Goloveshkin
I. I. Vorovich Institute for Mathematics,

Mechanics and Computer Science
Southern Federal University

Milchakova str. 8a, 344090, Rostov-on-Don, Russia
Email: alexeyvale@gmail.com

Stanislav Mikhalkovich
I. I. Vorovich Institute for Mathematics,

Mechanics and Computer Science
Southern Federal University

Milchakova str. 8a, 344090, Rostov-on-Don, Russia
Email: miks@sfedu.ru

Abstract—Tolerant parsing is a form of syntax analysis aimed
at capturing the structure of certain points of interest presented
in a source code. While these points should be well-described in
the corresponding language grammar, other parts of the program
are allowed to be not presented in the grammar or to be described
coarse-grained, thereby parser remains tolerant to the possible
inconsistencies in the irrelevant area. Island grammars are one
of the basic tolerant parsing techniques. ”Island” is used as the
relevant code alias, while the irrelevant code is called ”water”.

In the paper, a modified LL(1) parsing algorithm with built-
in ”Any” symbol processing is described. The ”Any” symbol
matches implicitly defined token sequences. The use of the
algorithm for island grammars allows one to reduce irrelevant
code description as well as to simplify patterns for relevant
code matching. Our ”Any” implementation is more accurate
and less restrictive in comparison with the closest analogues
implemented in Coco/R and LightParse parser generators. It also
has potentially lower overhead than the ”bounded seas” concept
implemented in PetitParser. As shown in the experimental section,
the tolerant parser generated by the C# island grammar is proven
to be applicable for large-scale software projects analysis.

Index Terms—tolerant parsing, robust parsing, lightweight
parsing, partial parsing, island grammar, parser generation

I. INTRODUCTION

Tolerant parsing is a parsing technique differing from the
detailed whole-language (so-called baseline) parsing needed
to build a full-featured compiler for a certain programming
language. The main feature of the approach is the ability to
capture points of interest inside the program, while all the
code that doesn’t contain such points can be skipped with no
or minimal analysis performed. From developer’s perspective,
this feature allows her to focus on the structure of the points of
interest, providing a minimal description of the irrelevant area.
Tolerant parsing is usually called lightweight because tolerant
grammar tends to be much shorter than the baseline one.

There are several reasons for the tolerant parsing to be the
most suitable option for the program analysis:
• Language embedding: Some program artifacts assume

the usage of multiple languages in one source file. In
yacc-like grammars describing the syntax-directed trans-
lation, actions performed on a parsing step are expressed
in terms of a certain general-purpose language. This
means that the parser developed to capture the grammar

structure must be tolerant to all the possible variations
of these language snippets. A possible application of a
tolerant grammar parser is described in [1]. A detailed
description of the embedded language tolerant parsing is
given in [2].

• Full grammar inaccessibility: Tolerant grammar im-
prints the developer’s notion of what places inside the
program are the most important in the context of the
current task. Its structure and the mapping between the
grammar entities and the language constructs are trans-
parent to the programmer from the very beginning and
can be further refined in accordance with the in-the-wild
testing results. On the contrary, the baseline grammar
usage requires a prior exploration and comprehension.
This process is proved to be time-consuming [3] and
can be impossible due to proprietary issues or manual
baseline parser writing [4].

• Domain-specific idioms: In a certain project, some local
domain-specific patterns can be applied [4]. They repre-
sent a high-level abstraction layer which is not presented
in the language syntax and obviously is out of scope of
the whole-language parser. Nevertheless, tolerant parsers
can be strictly focused at these patterns, ignoring the
underlying structure, that allows one, in particular, to
perform the impact analysis [5].

• Incorrect program processing: Syntax errors can be
handled by the whole-language parser with some sophis-
ticated error recovery mechanisms [6]–[8]. These mecha-
nisms are heuristic by the nature and do not guarantee the
successful parsing resumption, as well as the preservation
of the built parts of the parse tree. Tolerant parser is able
to skip irrelevant error-containing areas. At the same time,
tolerant parsing can be broken by the mismatch of the
elements structuring the program (e.g. by the absence of
a block closing bracket in C#). Specific error handling
techniques allowing recovering from this category of
errors are described for the bridge grammars [9], [10], a
special kind of the island grammars.

The contributions of this paper are: 1) a modification of the
standard LL(1) parsing algorithm aimed at island grammars

35

tolerant parsing paradigm and designed to simplify irrelevant
code skipping by means of a special Any symbol, this symbol
is used in a tolerant grammar to mark an irrelevant code
without specifying its structure; 2) a compiler generator with a
built-in tolerant grammar description language containing Any
as a part of the standard syntax; 3) a lightweight grammar
of the C# programming language for this generator; 4) an
experimental evidence of the applicability of the generated
tolerant C# parser for large-scale software projects analysis.

The remainder of the paper is organized as follows: a
brief overview of the existing tolerant parsing techniques
is provided in Section II, in Section III the main goals of
the current research are listed, in Section IV we discuss
related work and outline limitations of the closest analogues
of our approach, in Section V the modification of the standard
LL(1) parsing algorithm aimed at Any symbol processing is
introduced. The tolerant grammar for the C# programming
language is presented in Section VI, this section also includes
a sufficient volume of experimental data obtained by applying
the generated tolerant parser to a real-world software source
code. In Section VII a brief summary of the theoretical and
practical contribution of the paper is provided.

II. TOLERANT PARSING TECHNIQUES

Three basic tolerant parsing techniques considered in [2],
[4], [5], [11]–[14] are fuzzy parsing, island grammars and
skeleton grammars.

Fuzzy parsing is based on the notion of anchors, specific
tokens that mark the beginning of the constructs of interest.
The formal definition of a fuzzy parser is provided in [11],
[12]. The grammar used by the fuzzy parser actually consists
of a number of smaller grammars. Each of them has its own
start symbol with a production rule starting with the anchor.
The main concern of the fuzzy parsing technique is that
parsing process is tightly coupled with anchor tokens and can
be error-prone in case these tokens appear outside of the points
of interest.

Skeleton grammar construction is described in [13]. The
skeleton grammar partially shares its structure with the base-
line grammar. Rules describing points of interest are comple-
mented with baseline grammar rules needed to derive those
points from the start symbol (this process is called root com-
pletion). After the root completion, special default productions
are formulated for all the undefined nonterminal symbols
appearing in the rules added. The key precondition making
this process possible is the baseline grammar accessibility. As
noticed in Section I, most often this is not the case, besides,
baseline grammar comprehension is quite time-consuming and
requires some additional effort.

Island grammars technique is in the focus of our research.
We believe that the concept of an island grammar is not well-
known, so we provide its formal definition in accordance to
[4], [5], despite the fact that this definition is not further
referenced:

Definition 1: Given a context-free grammar G =
(N,T, P, S), where N is a set of nonterminal symbols, T is a

set of terminal symbols, P is a set of production rules, S ∈ N
is a specified start symbol, and a set of constructs of interest
I ⊂ T ∗ such that ∀i ∈ I, ∃ω1, ω2 ∈ T ∗ : ω1iω2 ∈ L(G),
where L(G) denotes the language generated by G. An island
grammar GI = (N ′, T ′, P ′, S′) for L(G) has the following
properties:

1) L(G) ⊂ L(GI);
2) ∀i ∈ I, ∃n ∈ N ′ : n ∗

=⇒ i and ∃ω1, ω2 ∈ T ∗ : ω1iω2 /∈
L(G) ∧ ω1iω2 ∈ L(GI);

3) K(G) > K(GI).
The first property means that GI generates an extension of

L(G), the second means that syntax analyser for GI recognises
constructs of interest from I in at least one sentence that is not
recognized by the parser for G. The third property introduces
the function K(G) denoting the grammar complexity [15].
Informally speaking, island grammar consists of detailed pro-
ductions describing certain constructs of interest (the islands)
and liberal productions that catch the remainder (the water).

Island productions form a set of patterns to be matched by
the points of interest. However, patterns are not enough to
overcome two important island grammars side effects called
false positives and false negatives [12]. In case relevant code
snippets look similar to the irrelevant ones, they can be
confused by the parser, as a result, the irrelevant code will
be recognized as the point of interest and some points will
be missed. To minimize this mismatch, iterative refinement is
needed for patterns description as well as for anti-patterns
matching irrelevant code. Besides, indeterministic parsing
techniques are used to resolve the ambiguities. GLR [16] and
GLL [17] parsers are capable to apply multiple parse actions
for the same token in case of a deterministic parsing conflict
and continue parsing the program in both ways. They also pro-
vides additional options to more accurately specify the parser
behaviour. For instance, ASF+SDF Meta Environment IDE
used in [4], [5] is capable to generate GLR parsers taking into
account {avoid} and {prefer} constructs, which specify
derivation preferences, and {reject} construct denoting
water rules [18]. However, indeterministic parsing algorithms
have a number of disadvantages: they are hard to trace, may
return multiple parse trees that need some extra processing,
and in case the islands look very similar to the water, a parsing
result can be extremely unpredictable even after the iterative
grammar refinement.

III. PROBLEM STATEMENT

The key assumption of the current research is that tolerant
parsing can be performed with a deterministic algorithm, while
patterns and anti-patterns forming the tolerant grammar can be
simplified and partially eliminated by making the algorithm
capable to match and skip some token sequences which have
no explicit definition in the grammar.

The key goals of the current research are:
1) to design an LL(1) parsing algorithm with built-in notion

of a special Any grammar symbol that provides skipping
of the token sequences that are not explicitly described
in the grammar;

36

2) to develop a compiler generator with an integrated
language for LL(1) grammars writing, supporting Any
symbol usage and automatic syntax tree construction;

3) to implement a tolerant island grammar for the C#
programming language in the format supported by the
generator below; the grammar is supposed to contain
water anti-patterns simplified with Any symbol;

4) to test parser’s applicability to the analysis of large-scale
software projects.

The developed tool is planned to be used for lightweight
parsing of software projects and their further sustainable
concern-based markup.

IV. RELATED WORK

A. Coco/R
The first tool with embedded capability to match tokens

from sets which are not directly specified in grammar is
the Coco/R recursive-descent parsers generator. According to
the documentation [19, p. 14], a special symbol ANY, which
denotes any token that is not an alternative to that ANY symbol
in the current production, is predefined in generated parsers.
There is no formal description of this symbol processing,
nevertheless, from the Coco/R open source code it is clear
that for a given grammar an individual set of admissible
tokens is connected with each ANY entry. Initially all the sets
consist of all the tokens defined in grammar, then at the parser
generation stage the alternatives of ANY symbols are removed
from the corresponding sets to make the situation when parser
has to make a choice between ANY and explicitly specified
token unambiguously solvable in favour of the explicit option.
Further we will call these alternatives rivals, in order to avoid
terminological confusion with the alternatives of the rule.

The major shortcoming of ANY implementation in Coco/R
is that the latter principle (the principle of priority of the
explicitly specified token) is both incomplete and excessively
restrictive. As a result, there are grammars for which parsers
generated by Coco/R do not parse some programs valid from
the developer’s point of view. Some examples of such Coco/R
grammars are shown in Figure 1. Lower case is used for
terminal symbols, {} denotes zero or more repetitions of
bracketed elements.

Excessive restrictiveness manifests itself for the iteration
{ANY}, for which the same set defines admissible tokens
both for the first position in the sequence corresponding to
the {ANY} and for the rest positions. For the grammar in
Figure 1a, the set {b, c} corresponds to ANY. The token a
is excluded from this set, that makes all the strings starting
from a being matched by the first alternative with explicitly
written a token in the beginning. However, this also leads to
the fact that the string bad$ is not recognized by the parser.
Note that the first token of the input — token b — is enough to
choose the right production for A nonterminal, and the next a
token can not be treated as the beginning of the first alternative.
Therefore, a could be added to the set of admissible tokens
for the second and subsequent positions, and this does not lead
to ambiguity.

A = a B c | b B d ;

B = e {ANY} ;

A = B c | d e ;

B = {ANY} a ;

A = a b c | {ANY} d ;

(b) (c)(a)

Fig. 1: The grammars illustrating ANY implementation short-
comings in Coco/R

The lack of outer context analysis for nonterminal symbols
leads to incompleteness of the constraints that are imposed on
the ANY admissible tokens set. In Figure 1b, ANY has no rivals
within the rule, so the set of admissible elements consists of
all the tokens defined in the grammar. As a result, there is no
string that the parser is capable to recognize. Once the {ANY}
processing starts, the parser reaches the end of the input stream
treating each token as a part of the sequence corresponding to
{ANY}. Outer context analysis for nonterminal B shows that
tokens c and d may appear after ANY iteration, hence they
must be deleted from admissible tokens set and be matched
explicitly. In Figure 1c, only a token is not valid at ANY
position according to the Coco/R algorithm, as a result, all
the strings starting from d provoke an error due to ambiguity.
At the same time, looking at the rule for A one can reveal that
token d is the rival for ANY, as it is explicitly declared as the
beginning of the second alternative.

Note that static analysis of the external context can lead to
the construction of an excessively restrictive set of admissible
tokens. For the grammar in Figure 1b, the set built with regard
to the B outer context is {a, b, e}. Terminals c and d are
not valid at ANY position, since they are in FOLLOW(B)
and the optional ANY is at the end of the alternative for
this nonterminal symbol. At the same time, after choosing an
alternative for A, the more precise information about what can
follow {ANY} is already available. When the first alternative
is selected, d may be returned to the admissible tokens set. In
case the second alternative is chosen, token c is admissible.
That is, with dynamic decision making at the parsing stage, the
set of programs recognizable by the parser can be extended.

In the current paper, the symbol Any is described. Unlike
the ANY symbol in Coco/R, it corresponds to the sequence of
zero or more tokens, not a single token. In its implementation,
all the shortcomings listed above are eliminated and the deci-
sion about the current token’s admissibility at Any position is
made at the parsing stage.

B. LightParse

The tool for lightweight LALR(1) parsers development
called LightParse [20] also supports the use of Coco/R-like
Any symbol. LightParse application is similar to what we
plan to do: generated lightweight parsers are used for concern-
oriented source code markup [21]. LightParse performs static
construction of the sets of tokens allowed at Any position
and inherits all the Coco/R ANY implementation limitations.
Besides, LightParse grammar is not directly used to generate
the parser. Instead, it is translated to the YACC-like format
supported by the standard LALR(1) parser generator GPPG,
then GPPG produces the parser. In the translated grammar,

37

every entry of Any symbol is presented as a nonterminal sym-
bol with single-element alternatives, by an alternative for each
of the admissible terminal symbols. To get the valid YACC-
like grammar without the nonterminal outer context analysis,
LightParse imposes additional restrictions on Any usage: this
symbol is not permitted to be in the end of the alternative,
except for the start symbol productions. The presence of the
intermediate grammar processing stage leads to inconsistency
between the source grammar vocabulary, which is used by the
grammar developer too, and the terms used in messages issued
by the GPPG generator when some parser generation errors
appear. Our Any implementation does not assume additional
grammar adaptations for making the grammar suitable for
the standard parsing algorithm. Instead, the standard LL(1)
algorithm is modified to integrate the notion of Any and
make it possible to define admissible tokens dynamically at
the parsing stage. This eliminates the limitations of LightParse
Any symbol.

C. Bounded seas

In [22], an extension of the regular parsing algorithm
for parsing expression grammars (PEG) is described. It
is intended to automatically deduce anti-patterns for water
which is supposed to be context-aware, i.e., specific for
each particular island in the input. This approach named
bounded seas is integrated in PetitParser framework which
allows one to implement PEG-based parsers in Smalltalk.
Bounded seas are intended to completely eliminate the need
for water rules explicit description in island grammars. A
rule element of the form ∼island∼ is treated as a triple
before-water island after-water. The key prop-
erty of water is that it never consumes any input from the
right context of the bounded sea [22]. The right context
can be derived statically from the grammar or dynamically
from the parser state. To make the latter possible, a stack of
invoked expressions is added to the original PEG definition.
For the after-water entity, right context is set with an
expression consisting of all the possible expressions that can
directly follow after-water, separated with the ordered
choice operator. Right context for the before-water con-
sists of the island expression itself and the corresponding
after-water boundary expression which both are ordered
choice operands. Water expression succeeds when the corre-
sponding right boundary expression succeeds.

Checking all the possible right expressions assumes back-
tracking, which leads to a sufficient time overhead. Since
backtracking is a basic technique for PEG due to ordered
choice operator presence, it is usually optimised with packrat
parsing [23], which makes parsing time linearly dependent
on the length of the program. However, this results in a
significant increase in the amount of memory used. Despite
the right context exploration complexity, bounded seas are
not able to make a globally correct decision on when water
skipping should be ended. It is outlined in [22] that expressions
forming the sea boundary actually recognize only prefixes

of the possible boundaries, and boundaries form an LL(k)
language where k depends on the particular situation.

The approach presented in the current paper has less over-
head because it does not use backtracking at all. It performs
a linear input processing and use the modified FIRST set
building algorithm to find a boundary for Any. Though in
[22] standard FIRST and FOLLOW sets from LL(1) parsing
theory are named insufficient to recognize the boundary, it is
demonstrated in Section VI that with proper formulation of
anti-patterns, the use of a modified FIRST set is enough to
successfully analyse large-scale software project sources. Any
symbol is used instead of explicit description of some parts
of patterns and anti-patterns, that makes the island grammar
significantly shorter and simplifies the grammar development
process.

V. ”ANY” SYMBOL IMPLEMENTATION

We are mainly focused not on the individual islands captur-
ing but on the extraction of the program hierarchical structure
up to a certain level and tend to name the relevant code not
islands but land, so the developed parser generator was named
LanD1 (by coincidence, it is also an acronym of ”language
description”). Table-driven predictive LL(1) parsing algorithm
[8, pp. 220–228] was selected as the simplest and most suitable
for debugging option for water skipping integration

A. Formal definition of a simplified grammar

We introduce into the grammar the special terminal symbol
Any to mark places where zero or more tokens from the
irrelevant area can be matched. We denote by lhs(p) and
rhs(p), respectively, the left and the right part of the pro-
duction p. Notation x ∈ rhs(p) for x ∈ N ∪ T means that
rhs(p) = α1xα2, where α1 ∈ (N ∪ T)∗, α2 ∈ (N ∪ T)∗.
SYMBOLS(γ) is used for the set of terminal symbols needed
to compose all the ω : γ ∗=⇒ ω, γ ∈ (N∪T)∗, ω ∈ T ∗. Through
the symbol Any, we formulate the concept of a simplified
grammar.

Definition 2: Let G = (N,T, P, S) be a context-free
grammar, Any /∈ T . Simplified with respect to G is the
grammar Gs = (Ns, Ts, Ps, Ss) defined as follows:

1) Ss = S;
2) Ps = {p ∈ f(P) | lhs(p) = Ss ∨ ∃p′ ∈ Ps : lhs(p) ∈

rhs(p′)}, where
f : P → {p = A→ α | A ∈ N,α ∈ (N∪T∪{Any})∗}
is the mapping that satisfies the following criteria:

a) ∃P ′ ⊆ P : P ′ = {p ∈ P | f(p) 6= p}, P ′ 6= ∅,
b) ∀p ∈ P \ P ′, f(p) = p,
c) ∀p ∈ P ′, ∃n ∈ N : p is representable

in the form A → α1γ1β1α2γ2β2...αnγnβn
and f(p) is representable in the form A →
α1Anyβ1α2Anyβ2...αnAnyβn, where ∀i ∈
[1..n], αiγiβi ∈ (N ∪ T)∗, and ∀i ∈
[1..n], ∀a ∈ FOLLOW(A), SYMBOLS(γi) ∩
FIRST(βiαi+1γi+1βi+1...αnγnβna) = ∅;

1https://github.com/alexeyvale/SYRCoSE-2018

38

3) Ns = {A ∈ N | ∃p ∈ Ps : lhs(p) = A};
4) Ts = {a ∈ T | ∃p ∈ Ps : a ∈ rhs(p)} ∪ {Any}.
Intuitively, Ps contains productions for the start symbol

of Gs and productions for all the nonterminals which are
reachable from the start symbol. Note that, according to items
3 and 4, ∀p ∈ Ps, lhs(p) ∈ Ns, rhs(p) ∈ (Ns ∪ Ts)∗, i.e. Ps

really satisfies the production set definition for a context-free
grammar.

The definition of the mapping f means that some of
the strings generated by G contain substrings which can be
replaced with Any, then we obtain strings generated by Gs.
In the absence of grammar simplification options developer
has to work with grammar G, which can correspond to the
baseline language grammar, as well as be a specially written
more tolerant version of the baseline grammar, containing
all the anti-paterns described explicitly. If Any symbol is
supported by the grammar and the corresponding generator,
anti-patterns forming a set P ′ can be substantially simplified.
Symbol Any can be written instead of the parts denoted by γi
in production’s right hand side in case these parts satisfy the
criterion 2c of the definition 2. Verification of this criterion
is possible only when solving a direct problem: when the
grammar Gs is generated based on the existing G. In a real
situation, there is no grammar G and the developer has to
solve the inverse problem: she manually writes a simplified
grammar Gs, assuming that her knowledge of the particular
island patterns and the general structure of the program is close
to the ground truth — the structure of the baseline grammar
G — and also considering parts denoted by Any satisfy the
criterion. When this is not the case, unparsed or incorrectly
parsed programs appear at the testing phase, this means that
the grammar should be refined. This process usually takes
several iterations.

Notice that despite the parser is built according to grammar
Gs, a program from L(G) is needed to be parsed. The
modified LL(1) algorithm uses the criterion 2c to translate
the program to the language L(Gs).

B. Parsing algorithm modification

In Figure 2a the modified LL(1) parsing algorithm is
presented. The highlighted lines distinguish it from the stan-
dard algorithm. In the given pseudo-code parsing stack is
accessed through the Stack variable, input buffer is accessed
through the lexical analyser object Lexer with methods
NextToken returning the next token from the input stream
and CurrentToken returning the last token that was read.
The variable t corresponds to an additional buffer for the
current token, M denotes the parsing table. The grammar
Gs is a regular LL(1) grammar where Any is a regular
token, therefore parsing table construction algorithm remains
unmodified and the construction itself is carried out in the
standard way. Modification of the parsing algorithm is caused
by the fact that parser do a more complicated job than checking
if the program is valid with respect to Gs. While parser is
generated by the simplified with respect to some G grammar
Gs, the program derived by G comes as the input. As tokens

are received from the input stream, the modified parser should
translate the program from L(G) to L(Gs), then it can check
the syntactic correctness of the translated part.

When the terminal symbol on the top of the parsing stack
does not match the current token in t or when a nonterminal
symbol X is on top of the stack and there is no record in
the cell M[X,t], the standard LL(1) algorithm reports an
error because there is no explicit option available to continue
parsing, and possibly starts an error recovery routine. For the
modified algorithm, this situation is normal because, as it was
said, the program does not belong to the language the parser
is generated for. In case Any is on the top of the stack or the
M[X, Any] cell is not empty, the modified algorithm tries
to replace with Any some sequence of tokens from the input
stream, making the transition from the text from L(Gs) to the
text from L(Gs). Replacement is based on the criterion 2c: the
set of tokens forming the replaced sequence must not intersect
with the set of tokens which are possible Any successors
in accordance with the parsing stack state. The successors
set is called FIRST’, it is build by the modified version of
the standard FIRST algorithm. This modification is discussed
in Section V-C. Obviously, L(G) ⊆ L(Gs), because at the
Any position not only valid L(G) program subsequence can
be replaced, but also an arbitrary sequence of tokens from
the complement of a successors set. This makes parser less
sensitive to possible errors in water regions.

It is possible to draw some parallels between the modifi-
cation given and well-known error recovery algorithms: Any
symbol looks similar to the error token denoting place in the
grammar where recovered parsing can be resumed, FIRST’
set seems like the set of synchronisation tokens. There are
grounds for such an analogy. The program parsed is really
erroneous in terms of Gs. Replacing tokens with Any, the
parser looks for a place from which the program satisfies
the grammar again. However, behind a skin-deep similarity,
there is a fundamental difference in goals, implementation and
results obtaining by the algorithms. Standard error recovery
is performed when a program processed is clearly incorrect.
The main goal of the recovery is to resume parsing at any
cost. Some significant results of the previous analysis can be
discarded, and a significant part of the input stream, possibly
containing some points of interest, is discarded. In addition,
recovery is not guaranteed to be successful. According to
Section V-A, the goal of Any processing is the translation
of a presumably valid L(G) program to L(Gs). The premise
that the program under consideration is correct with respect
to G in conjunction with the observance of the criterion 2c
makes input tokens discarding totally predictable. One can
be sure that the parts of the input stream replaced with Any
belongs to the water and can be skipped without loss of the
land. Furthermore, as it was previously noted, predictable and
correct replacement with Any is possible in some cases even
for programs that are incorrect with respect to G.

Further, speaking of the fact that Any successfully replaces
a sequence of tokens of the input program, we will simply say
in some cases that Any matches this sequence. Keep in mind,

39

Stack.Push($);

Stack.Push(S);

X := Stack.Peek();

t := Lexer.NextToken();

while (X � $) do

 if (X = t) then

 if (t = Any) then (1)

 Stack.Pop();

 t := Lexer.CurrentToken();

 while (t ∉ FIRST'(Stack) and t � $) do

 t := Lexer.NextToken();

 end while;

 if (t = $ and $ ∉ FIRST'(Stack)) then

 error();

 end if;

 else (2)

 Stack.Pop();

 t := Lexer.NextToken();

 end if;

 elif (M[X,t] = X � Y1Y2...Yk) then

 Stack.Pop();

 for (i from k to 1) do

 Stack.Push(Yi);

 end for;

 elif (t = Any) then (4)

 error();

 else (5)

 t := Any;

 end if;

 X := Stack.Peek();

end while;

if (t = $) then (6)

 accept();

else

 error();

end if;

(3)

(a)

(b)

(c)

BuildFirst'():

 foreach (A ∈ N) do

 MemorizedFirst'[A] := ∅

 end foreach;

 changed := true;

 while (changed) do

 changed := false;

 foreach (A � � ∈ P) do

 MemorizedFirst'[A] ∪= FIRST'(�);

 if (MemorizedFirst'[A] is changed) then

 changed := true;

 end if;

 end foreach;

 end while;

FIRST'(� = Y1Y2...Yk):

 first := ∅;

 for (i from 1 to k) do

 if (Yi∈ T\{Any}) then

 first ∪= {Yi};

 break;

 elif (Yi∈ N) then

 first ∪= MemorizedFirst'[Yi]\{ε};

 if (ε ∉ MemorizedFirst'[Yi]) then

 break;

 end if;

 end if;

 end for;

 if (∀i ∈ [1..k]: ε ∈ MemorizedFirst'[Yi]

 or Yi = Any) then

 first ∪= {ε};

 end if;

 return first;

Fig. 2: Modified algorithms: (a) LL(1) parsing algorithm, (b) FIRST set memorization algorithm, (c) FIRST set building
algorithm

that, as shown below, this process is more complex than the
standard token matching.

C. The problem of consecutive ”Any”

To get tokens denoting the end of the sequence that cor-
responds to Any, the first intention is to build the standard
FIRST set for a parsing stack, treating the symbols on the
stack as a string starting from its top. Unfortunately, there is
a case when the standard FIRST algorithm is not enough.
Sometimes two or more Any tokens can follow each other at
the beginning of the sentences which can be derived from the
stack. For a grammar

A = Any B C; B = a | ; C = Any c ;

the FIRST(Stack) set built when the first Any is processed
equals to {a, Any}. The Any token is never returned by
the lexical analyser, so, there is no chance that parser will
recognize a string with no a tokens. As a result, a part of L(G)
remains uncovered by the parser, and the valid with respect

to Gs program Any Any c will never be recognized, cause
there is no input program that can be transformed to it. For
the example input bbbc$, Any processing starts at the first
b and fails at the endmarker symbol $.

To make the parser capable to cope with a simplified gram-
mar that allows consequent Any symbols in some derivations,
it is needed to modify the standard FIRST algorithm on the
basis of the definition 2. According to it, Any denotes the place
where the matched sequence from an input program may be
empty. In the example above, the c terminal which is explicitly
presented in the grammar can be treated as the end of the
sequence to replace, if we assume that the sequence matched
by the second Any is empty. Acting under this assumption,
the modified algorithm should expand the FIRST set with
the tokens that may follow the last of the subsequent Any
symbols. This turns the standard FIRST set into the FIRST’
used in Figure 2a.

In Figure 2b and Figure 2c, modified algorithms for
FIRST’ construction are presented. In Figure 2b, there is

40

TABLE I: Parsing table for the model example

a b c Any $

A A → BAny C A → BAny C

B B → a B → Any c

C C → c C → Any b

an adopted version of the algorithm from [24, pp. 239–240].
It performs non-recursive construction of FIRST’ sets for
all the nonterminals in the grammar. The sets constructed
are memorized in the MemorizedFirst’ dictionary. The
original algorithm is proven to be finite, the same proof is
valid for the adopted version. FIRST’ itself is presented in
Figure 2c. Note that Any is not placed in the FIRST’ set.

As shown in Section VI-A, when to match a sequence of
Any is the only available option for processing some part of
the input, FIRST’ helps to find the actual input subsequence
corresponding to the whole sequence of Any symbols. Tech-
nically, in this case input subsequence is matched by the first
Any, the following Any symbols match empty sequences. This
is the only possible solution for a simplified grammar, because
to say for sure how to precisely establish a pairwise match
between the parts of the input subsequence and consequtive
Any symbols, we need more information about the original
G grammar. A similar problem called overlapping seas is
discussed in [22]: when one sea may follow another, it is
impossible to distinguish between the after-water of the
first sea and the before-water of the second, so the second
water is believed to be empty.

The suggested FIRST’ modification is proven to be enough
to develop a working tolerant grammar for the real program-
ming language.

VI. EXPERIMENTS

A. Model example

Consider the following grammar:

A = B Any C; B = a | Any c; C = Any b | c;

The corresponding parsing table is presented in Table I.
The rows correspond to the nonterminal symbols defined in
the grammar, the columns correspond to the tokens that may
appear in the buffer t. Each cell contains the alternative
that should be applied when the row nonterminal is on the
top of the parsing stack and the column terminal is the
lookahead token. The work of the modified parsing algorithm
for a given input string is described in Table II. Each row
corresponds to the iteration of the outer while cycle in
Figure 2a, the last row corresponds to the action that takes
place right after exiting the cycle. The numbers in the Action
column correspond to the conditions numbered in Figure 2a,
the number of the true condition for the current iteration is
placed in the table cell together with a short description of the
action performed.

This example illustrates some of the advantages of our Any
implementation, that were declared earlier. In contrast to the
situation discussed for the Coco/R parser generator and the

grammar in Figure 1a, at the 4th iteration, the first a token
in the input is included in the sequence being matched by
Any, because the Any symbol is really rivalled by a only
at the 1st iteration where the choice between B → a and
B → Any c productions has to be made. The 7th iteration
reveals the situation specified in V-C: there is a derivation
where two Any follow each other. Searching for all the tokens
that may appear after Any in A → BAny C in accordance
to the parsing stack, the FIRST’ algorithm looks beyond the
Any, which is in the beginning of C → Any b, and considers
b as the possible successor of the sequence that should be
matched by the current Any. As mentioned earlier, in case Any
is immediately followed by other Any symbols, a sequence
of input tokens of the maximum possible length is replaced
with the first Any, and subsequent Any symbols correspond
to zero-length subsequences of the input.

Dynamically performed computation of the set of symbols
that may follow Any takes into account the actual outer
context for the alternatives that are matched (this context is
formed by the elements that are lower on the stack, than the
current alternative), rather than all the possible outer contexts
which can arise according to the grammar.

B. Real-world repositories analysis

To test the algorithm on real source code repositories,
the island grammar for the C# programming language was
developed. The generated parser was applied to the reposito-
ries of three industrial projects ranked from the smallest to
the largest by the number of files with a source code: the
LanD project itself (93 files), PascalABC.NET2 (2725 files),
and Roslyn3 (8027 files). PascalABC.NET is a programming
language which combines Pascal syntax with .NET framework
functionality. The corresponding project consists of compiler
and IDE sources. Roslyn is a pair of open-source compilers
for C# and Visual Basic. Roslyn project includes compiler
sources and lots ot test files capturing different complex
and uncommon variants of a C# program. The number of
files in the corresponding repositories relevant at the time of
experiment conducting is given in brackets.

Rules from C# tolerant grammar are presented in Figure 3,
the complete grammar can be found in LanD project reposi-
tory4. Water rules are highlighted. Symbol * denotes zero or
more element repetitions, + denotes one or more repetitions,
? denotes an optional element, brackets () are used for
grouping. Quantifiers of a special kind, *! and ?!, are used
to set the non-empty alternative priority in case the ambiguity
is detected at the parsing table construction stage. With their
help, in particular, the dangling else problem is solved in the
Pascal language grammar:

if = ’if’ Any ’then’ operator
(’else’ operator)?!

2https://github.com/pascalabcnet/pascalabcnet
3https://github.com/dotnet/roslyn
4https://github.com/alexeyvale/SYRCoSE-2018/blob/master/LanD Specifi-

cations/sharp.land

41

TABLE II: Tracing table

Stack Input X t Action Remark

1 $ A bacaab$ A b (5) replace token
2 $ A bacaab$ A Any (3) apply A → BAny C

3 $ C Any B bacaab$ B Any (3) apply B → Any c

4 $ C Any c Any bacaab$ Any Any (1) match Any , find boundary FIRST′(cAny C) = {c}
5 $ C Any c caab$ c c (2) match c

6 $ C Any aab$ Any a (5) replace token
7 $ C Any aab$ Any Any (1) match Any , find boundary FIRST′(C) = {b, c}
8 $ C b$ C b (5) replace token
9 $ C b$ C Any (3) apply C → Any b

10 $ b Any b$ Any Any (1) match Any , find boundary FIRST′(b) = {b}
11 $ b b$ b b (2) match b

12 $ $ $ $ (6) accept

namespace_content = opening_directive*! (attribute|namespace|namespace_member)*

opening_directive = ('using'|'extern') Any ';'

namespace= 'namespace' name '{' namespace_content '}'

namespace_member = name? (enum|delegate|class_struct_interface)

enum = 'enum' name Any '{' Any '}' ';'?

delegate = 'delegate' name before_body? ';'

class_struct_interface = ('class'|'interface'|'struct') name Any '{' class_content_element* '}' ';'?

class_content_element = attribute | keyword_marked_entities

 | name (keyword_marked_entities | class_member_tail)

keyword_marked_entities = enum | delegate | class_struct_interface | operator | event

operator = 'operator' Any arguments class_member_tail

event = 'event' name class_member_tail

class_member_tail = before_body? (block init_value? | initializer | ';')

before_body = Any ':' (arguments|Any)*

initializer = init_expression | init_value

init_expression = '=>' (Any|block)* ';'

init_value = '=' (Any|block)* ';'

name = (ID|arguments|'extern') name_tail_element*

name_tail_element = ID|arguments|'extern'|'.'|'?'|'<' name_tail_element* '>'|'[' Any ']'|','|'::'

attribute = '[' (Any|attribute)* ']'

block = '{'(Any|block)* '}'

arguments = '(' (Any|arguments)* ')'

Fig. 3: Rules of the tolerant C# grammar for LanD parser generator

In the C# grammar, the *! construct is used to distinguish
between extern alias declaration and the header of a
method written in unmanaged code. Though these constructs
do not appear at the same nesting level in real programs, they
are allowed to do so according to the lightweight grammar.
This results in ambiguity that needs an additional priority
indication.

As it can be seen, Any is widely used for denoting places
which are insufficient for points of interest capturing. Such
irrelevant areas are inheritance specification and type re-
strictions in class definitions (before_block nonterminal),
field and property initializers (initializer nonterminal
and nonterminals which are directly derivable from it). The
largest parts that are matched by Any are blocks of code in
method bodies (block nonterminal). A detailed description
of these areas would make the grammar several times longer.
In the corresponding anti-pattern formulated with Any, only
a minimal structuring information should be placed: boundary
tokens { and } are specified and self-nesting is explicitly
allowed to ensure that boundaries will be matched pairwise.

TABLE III: Numbers of unparsed files per C# grammar
refinement iteration

LanD PascalABC.NET Roslyn

0 8 - -
1 0 39 -
2 0 0 209
3 0 0 31
4 0 0 2

This technique is also used for attribute and arguments
entities, so it can be said that it forms a sustainable grammar
writing pattern.
Any also appears in some patterns, such as enum,

class_struct_interface, operator, denoting lakes
among the land. Lakes can mark irrelevant places as well
as places for which we are interested only in the list of
matched tokens, not in the correct subtree specifying the
deeper structure.

In Table III, the quantitative data describing the grammar

42

refinement process is provided. The first column contains the
number of refinement iterations passed. In the table cells,
there are numbers of files from each project which still
cause parsing failure. Having started with the smallest project,
the LanD itself, we included the bigger ones to the testing
process as the grammar became refined enough to produce
parser capable to parse all the files under consideration. For
two refinement iterations, the number of errors for LanD
and PascalABC.NET was reduced to zero. Surprisingly, even
so we got a significant number of erroneously parsed and
unparsed files for Roslyn (209 files out of 8027). Analysing
them we found out that it was caused by tuple types and
tuple literals. It is one of the new features added to C# 7.0.
These constructs may look exactly like method arguments,
causing confusion during parsing. The problem was solved
by the less restrictive class member patterns description: the
entire header is matched by the name pattern which includes
the arguments pattern. The arguments pattern matches
method arguments as well as tuple types. A more accurate
division of the name into modifiers, type, entity name and
arguments was moved at the automatically built syntax tree
post-processing stage. Expression bodied properties became
another cause of errors. They are widely used in Roslyn but
are not presented in LanD and PascalABC.NET. To process
them as the water, the init_expression anti-pattern was
added and the init_value anti-pattern was refined.

At the last iteration of grammar testing and refinement, the
number of errors is still non-zero. However, on closer inspec-
tion it was proved to be not a consequence of inaccuracies
in the grammar structure. The first file5 is a test file for the
Roslyn compiler, it contains the text of the program in Shift-
JIS encoding, which is used for Japanese, moreover, the class
name is written in Japanese. The latter causes a lexical analysis
error. We consider the usage of national alphabets for entity
naming to be a rare case, but, if necessary, the ID token can
be adopted as needed. The second file6 also belongs to the
testing infrastructure, it contains a meta-information in a form
of invalid global code: there is a string field, declared directly
inside the namespace but outside of the class. In the third file7

a code containing using directives and a class definition is
placed after the namespace definition. This code is enclosed
in #if false preprocessor directive, so it is not compiled
after the preprocessing stage. Our tolerant parser works with
the pure sources and ignores the directives, so it justifiably
treat this program as incorrect.

The resulting C# grammar is aimed at all-encompassing
parsing of all the possible valid C# code variations from
three real-world software projects, at the same time it is both
tolerant with respect to code in places indicated with Any, and

5https://github.com/dotnet/roslyn/blob/master/src/Compilers/Test/
Resources/Core/Encoding/sjis.cs

6https://github.com/dotnet/roslyn/blob/master/src/Compilers/Test/
Resources/Core/SymbolsTests/Metadata/public-and-private.cs

7https://github.com/dotnet/roslyn/blob/master/src/Workspaces/Core/
Portable/Shared/Extensions/ObjectExtensions.cs

lightweight. For instance, the baseline C# parser description8

for the industrial compiler generator ANTLR, which uses an
extended LL(*) algorithm [25], contains 1159 lines, and lexical
analyser specification contains 1101 lines. The text of our
tolerant LL(1) C# grammar has (including token definitions
and different generator options) just 51 lines. Developing
a parser for a certain project, one can made the grammar
even more lightweight if some project-specific restrictions are
known. In case some coding conventions are applied, land and
water content become less variable. If a legacy code is parsed,
one can be sure that the latest language features are not in use
there, so the grammar is allowed not to contain patterns and
anti-patterns for them.

At the next stage of the experiment, the syntax trees
of the parsed files were used to calculate the numbers of
successfully discovered LanD entities that we are interested
in, solving the code markup task. As control numbers, the
results of counting the same entities using syntax trees built
by Roslyn were used. The entities were grouped into five
categories: enums, classes, fields, properties, methods. The
grouping is carried out in accordance with the hierarchy of
classes representing the nodes of a syntactic tree in Roslyn.
Entities which corresponds to Roslyn tree nodes of type
BaseFieldDeclarationSyntax are marked as fields.
These are fields themselves, as well as events described with-
out access methods. Elements corresponding to nodes of types
inherited from BasePropertyDeclarationSyntax are
treated as properties. In addition to properties them-
selves, these are indexers and events with explicitly spec-
ified add and remove accessors. Methods correspond to
BaseMethodDeclarationSyntax type: it is the parent
type for method, constructor, destructor, and operator nodes.

In the Table IV, the quantitative results are presented. For
all projects in all categories, LanD detects more entities than
Roslyn. The difference is caused by the conditional compi-
lation directive #if, which is actively used in the projects
under consideration. For example, in PascalABC.NET the
#if DEBUG construct is widely used to enable debug output
and additional information collecting, conditional compilation
is also presented in the sources of the syntax analysers, which
are generated with GPPG.

Roslyn parser has an integrated preprocessor which resolves
#if conditions and pass to the parsing stage only the ap-
propriate parts of the code. LanD is a language-independent
tool, so it does not have a built-in notion of directives. For a
lightweight parser, directives are defined as single-line lexemes
which are usually skipped. As a result, LanD statistics take into
account all the entities regardless of whether or not they are
enclosed in the #if directive with an undefined symbol. It
should be noted that C# preprocessing is a fairly simple task.
If necessary, the correct preprocessor can be easily written and
applied to the text passed to the LanD-generated C# parser.
However, this will lead to a loss of information about the areas
excluded by the preprocessor.

8https://github.com/antlr/grammars-v4/tree/master/csharp

43

TABLE IV: Number of entities found by Roslyn/LanD

Enums Classes Fields Properties Methods

LanD 13/14 94/95 390/390 248/253 431/436
PascalABC.NET 356/363 4611/4622 16720/16753 12326/12350 42248/42386
Roslyn 437/441 21583/21622 19606/19737 21886/21919 108040/108400

VII. CONCLUSION

In the present paper, the LL(1) parsing algorithm modifica-
tion is proposed. This modification is intended for performing
tolerant parsing based on the island grammars technique. The
special Any symbol is integrated into the algorithm to add a
capability to match token sequences which are not explicitly
described in the grammar. With regard to island grammar
development, the presence of Any simplifies the description of
water and partially eliminates the need to describe the structure
and variations of irrelevant areas. Besides, Any can be used for
relevant code description in case this code contains lakes —
areas for which we are interested only in pure token sequence,
not in the structural information. Our Any implementation
fixes the shortcomings of the closest analogues. It is more
accurate and less restrictive in comparison with Coco/R and
LightParse parser generators, it is also more simple than
bounded seas approach, and still powerful enough to parse
sources of large-scale software projects. It is experimentally
proved that the lightweight parser of the C# language with
built-in automatic construction of the syntax tree, which was
developed by the authors of the current paper, makes it
possible to successfully analyze the source codes of industrial
software products and provides one hundred percent finding
of points of interest. The developed generator of lightweight
parsers is planned to be used in solving the sustainable code
markup problems.

Tolerant grammar description and syntax tree post-
processing are supposed to be simplified by integrating the
Schrödinger’s token concept [14] into lexical and syntax
analysers. In particular, it can be useful for analyzing C#
language where, along with reserved keywords, there are
contextual keywords. Some of them (for example, words
where and partial) directly affect the separation of land
and water and the land structure analysis. Possible directions
for further research are also a more intelligent resolution of the
consecutive Any problem and integration of the Any symbol
into LR(1) parsing algorithm.

REFERENCES

[1] A. Goloveshkin, “Searching and analysing crosscutting concerns in
marked up programming language grammar,” University News. North-
Caucasian Region. Technical Sciences Series, no. 3, pp. 29–34, Sep.
2017.

[2] A. Afroozeh, J.-C. Bach, M. van den Brand, A. Johnstone, M. Manders,
P.-E. Moreau, and E. Scott, “Island grammar-based parsing using GLL
and Tom,” in Software Language Engineering: 5th International Con-
ference, SLE 2012, Dresden, Germany, September 26-28, 2012, Revised
Selected Papers, K. Czarnecki and G. Hedin, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 224–243.

[3] M. Van Den Brand, M. P. A. Sellink, and C. Verhoef, “Obtaining
a COBOL grammar from legacy code for reengineering purposes,”
in Proceedings of the 2Nd International Conference on Theory and
Practice of Algebraic Specifications, ser. Algebraic’97. Swindon, UK:
BCS Learning & Development Ltd., 1997, pp. 6–6.

[4] L. Moonen, “Generating robust parsers using island grammars,” in
Proceedings of the Eighth Working Conference on Reverse Engineering
(WCRE’01), ser. WCRE ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 13–22.

[5] ——, “Lightweight impact analysis using island grammars,” in Proceed-
ings of the 10th International Workshop on Program Comprehension
(IWPC). IEEE Computer Society, 2002, pp. 219–228.

[6] S. L. Graham, C. B. Haley, and W. N. Joy, “Practical LR error recovery,”
SIGPLAN Not., vol. 14, no. 8, pp. 168–175, Aug. 1979.

[7] M. G. Burke and G. A. Fisher, “A practical method for LR and LL
syntactic error diagnosis and recovery,” ACM Trans. Program. Lang.
Syst., vol. 9, no. 2, pp. 164–197, Mar. 1987.

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

[9] M. de Jonge, E. Nilsson-Nyman, L. C. L. Kats, and E. Visser, “Natural
and flexible error recovery for generated parsers,” in Software Language
Engineering: Second International Conference, SLE 2009, Denver, CO,
USA, October 5-6, 2009, Revised Selected Papers, M. van den Brand,
D. Gašević, and J. Gray, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 204–223.

[10] E. Nilsson-Nyman, T. Ekman, and G. Hedin, “Practical scope recovery
using bridge parsing,” in Software Language Engineering: First Interna-
tional Conference, SLE 2008, Toulouse, France, September 29-30, 2008.
Revised Selected Papers, D. Gašević, R. Lämmel, and E. Van Wyk, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 95–113.

[11] R. Koppler, “A systematic approach to fuzzy parsing,” Software: Practice
and Experience, vol. 26, pp. 637–649, 1997.

[12] P. Carvalho, N. Oliveira, and P. R. Henriques, “Unfuzzying fuzzy pars-
ing,” in 3rd Symposium on Languages, Applications and Technologies,
ser. OpenAccess Series in Informatics (OASIcs), M. J. V. Pereira, J. P.
Leal, and A. Simões, Eds., vol. 38, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. Bragança, Portugal: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, June 2014, pp. 101–108.

[13] S. Klusener and R. Lämmel, “Deriving tolerant grammars from a
base-line grammar,” in Proceedings of the International Conference on
Software Maintenance, ser. ICSM ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 179–188.

[14] J. Aycock and R. N. Horspool, “Schrödingers token,” Software: Practice
and Experience, vol. 31, pp. 803–814, 2001.

[15] J. Gruska, “Descriptional complexity of context-free languages,” in
Mathematical Foundations of Computer Science: Proceedings of Sympo-
sium and Summer School, Strbské Pleso, High Tatras, Czechoslovakia,
September 3-8, 1973, 1973, pp. 71–83.

[16] M. Tomita, Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems. Norwell, MA, USA: Kluwer Academic Publishers,
1985.

[17] E. Scott and A. Johnstone, “GLL parsing,” Electron. Notes Theor.
Comput. Sci., vol. 253, no. 7, pp. 177–189, Sep. 2010.

[18] M. Van Den Brand, P. Klint, and J. Vinju, “The
syntax definition formalism SDF.” [Online]. Available: https:
//homepages.cwi.nl/∼daybuild/daily-books/learning-about/sdf/sdf.pdf

[19] H. Mössenböck, “The compiler generator Coco/R,” 2014. [Online].
Available: http://ssw.jku.at/Coco/Doc/UserManual.pdf

[20] M. Malevannyy, “Legkovesnyi parsing i ego ispolzovanie dlya funktsii
sredy razrabotki [lightweight parsing and its application in development
environment],” Informatizatsiya i svyaz [Informatization and communi-
cation], vol. 3, pp. 89–94, 2015, (in Russian).

44

[21] M. Malevannyy and S. Mikhalkovich, “Context-based model for concern
markup of a source code,” Trudy ISP RAN [Proc. ISP RAS], vol. 28,
pp. 63–78, 2016.

[22] J. Kurš, M. Lungu, R. Iyadurai, and O. Nierstrasz, “Bounded seas,”
Comput. Lang. Syst. Struct., vol. 44, no. PA, pp. 114–140, Dec. 2015.

[23] B. Ford, “Packrat parsing: Simple, powerful, lazy, linear time,” in
Proceedings of the Seventh ACM SIGPLAN International Conference
on Functional Programming, ser. ICFP ’02. New York, NY, USA:
ACM, 2002, pp. 36–47.

[24] D. Grune and C. J. Jacobs, Parsing Techniques: A Practical Guide (2Nd
Edition). New York, USA: Springer-Verlag New York, 2008.

[25] T. Parr, S. Harwell, and K. Fisher, “Adaptive LL(*) parsing: The power
of dynamic analysis,” SIGPLAN Not., vol. 49, no. 10, pp. 579–598, Oct.
2014.

45

Heterogeneous Architectures Programming Library
Grigorii Kirgizov

Student
Software Engineering Department
Saint Petersburg State University

University Embankment, 7, 199034
Saint Petersburg, Russia

Email: gkirgizov@gmail.com

Iakov Kirilenko
Senior Lecturer

Software Engineering Department
Saint Petersburg State University

University Embankment, 7, 199034
Saint Petersburg, Russia

Email: y.kirilenko@spbu.ru

Abstract—Embedded platforms with heterogeneous architec-
ture consist of a primary and one or more secondary processors.
Development of software systems for these platforms poses
substantial difficulties, requiring a distinct set of tools for each
constituent of the heterogeneous system. It also makes achieving
high efficiency the more difficult task.

This paper presents a C-like metaprogramming DSL and
a library that provides a unified interface for programming
secondary processors of heterogeneous systems with this DSL.
Together they help to resolve aforementioned problems. The
approach behind the library is a dynamic code generation:
the DSL translates to LLVM IR and then compiles to native
executable code at runtime.

It opens a possibility of dynamic code optimizations, e.g.
runtime function specialization for specific parameters. Flexible
library architecture allows simple extensibility to any target
platform supported by LLVM. At the end of the paper system
aprobation on different platforms is presented.

Index Terms—metaprogramming, code generation, embedded
DSL, heterogeneous systems, embedded systems

I. INTRODUCTION

Embedded systems have been in a widespread use a long
time, and today they become even more relevant because of
the rapid development and adoption of new application fields,
for example, Internet-of-Things, ”smart houses” and robotics.

Many of the embedded systems used in these areas have het-
erogeneous architectures due to nature of their tasks. Typically,
they consist of one primary, more powerful processor which
executes the main program and performs common control, and
one or several secondary microcontrollers or processors that
provide read/write access to sensors and peripheral devices
or may perform some other special functions. Examples of
such systems may be: Raspberry Pi (main) + Arduino with
Atmel AVR (peripheral) and Odroid XU4 (main) + stm32f4
microcontroller (peripheral).

Heterogeneity of these systems causes noticeable overhead.
Traditional development workflow requires use of IDEs and
toolchains that are specific for each part of the system. This
need to develop each part of the system in a separate project
using a different set of platform-specific tools makes system
development processes more complex and expensive. The
amounts of resources required for support and changes also
grow.

The efficiency of the system suffers too. Due to specificities
of each microcontroller and their limited hardware capabilities
they often have only basic firmware, which only capabilities
are reading sensors, communicating results back to main
processor, receiving data and control commands from it and
writing the received data to special registers of peripheral
devices. All core program logic is contained on the primary
processor, and, as secondary processors/microcontrollers do
not contain even a part of this logic, constant communication
between them is unavoidable (because of the nature of control
cycle: request sensor data, wait for it to arrive, compute control
output, send it back to the secondary processors, repeat).

This work is based on preliminary results of [1] that showed
the viability of the idea of dynamic code generation. We
revise previous architectural choices, fully reimplement the
library because of shortcomings of existing implementation
and substantially extend it in terms of functionality and
possible applications/uses.

In particular, the new DSL is completely abstracted from
other parts of the library and can be used independently
in other projects based on the idea of metaprogramming.
Moreover, the new DSL implementation allows employing
various dynamic optimizations which are not possible in het-
erogeneous systems using traditional programming techniques.
The contribution of this work is twofold. We present:

• C++ embedded DSL for dynamic metaprogramming;
• a library that simplifies development of programs for

heterogeneous systems providing unified programming
interface; it also allows to achieve higher efficiency of
the system and implement better organizations of work
between its parts.

The library is based on the idea of a dynamic compilation of
programs for peripheral processors.

We also demonstrate system’s capabilities on a number of
examples that show important features of the new DSL and
some applications in embedded systems domain. Source code
with build instructions can be found in the project repository1.

Several possible use cases of this library can be imagined.
First use case is avoiding the overhead of constant com-
munication between processors. Of course, it’s possible to

1https://github.com/gkirgizov/hetarch

46

accomplish it without this library: move part of the program
logic to peripheral processors on top of their basic firmware.
But with usual tools, it incurs additional costs for development
and support because with this approach there is no more
single point of change in core logic of the system. There is
unavoidable need to support several projects and ensure proper
integration. Whereas presented library allows to avoid both
communication overhead and unnecessary complexity of the
development process.

The second use case is to allow dynamic specialization of
heterogeneous systems for their operating environment. Some
types of embedded heterogeneous systems can be deployed in
a wide range of environments with various conditions. When
their operation depends on these conditions, developers of
programs for such systems must anticipate in the code all
possible conditions. It may be implemented through constant
monitoring of the environment. Another alternative is on-place
configuration or tuning of each particular system. But it may
not be possible due to nature of the task or too often or rapid
(for manual operating) changes of the environment. Another
variation of dynamic specialization scenario is a runtime
configuration for specific peripheral devices (e.g. different
models of sensors and actuators).

Our library can help there in the case of sufficiently slowly
changing environment (relative to a number of control cycles,
when the time required for dynamic recompilation will pay
off). It can be better shown on the specific example of PID
controller tuning. Firstly, PID controller with tuning subpro-
gram is loaded on the peripheral microcontroller. Then, when
optimal parameters are found, microcontroller program can
be recompiled with these particular coefficients, thus yielding
system that is maximally suited for its operating conditions.
For the specific case of not changing environment this tuning
and dynamic recompilation can be executed only once on
deployment. This example is elaborated on in greater detail
in the section Demonstration.

The paper is organized as follows. The next section dis-
cusses similar works that are based on the similar ideas.
The third section describes main architectural decisions and
presents the architecture of the system. The fourth section is
devoted to the DSL and provides a reader with a number of
examples. The following section describes other parts of the
system and their functionality in greater detail. The Aprobation
section describes test setups and the Demonstration section
shows benefits of dynamic recompilation on a specific example
and discusses scope and applicability of the library. The paper
is closed with conclusion and discussion of possible directions
of further work.

II. SIMILAR WORK

The difficulties which heterogeneous systems cause are not
unique for the embedded software engineering. Programming
of heterogeneous systems is an old problem, and there’re
several conceptual approaches to aforementioned difficulties.

The most known area that faces it is programming with
graphical processors. In this case, heterogeneous system con-

sists of CPU and one or more GPUs. (The case of graphics
programming, i.e. using shaders and graphics pipelines, is
further from heterogeneous programming and is not con-
sidered here.) It is an old problem in this field: how to
effectively and, not less importantly, conveniently use GPU in
usual, CPU-centric programs? There are two main examples of
systems that answer this question: Open Computing Language
(OpenCL) [2] and CUDA framework from Nvidia [3]. Both
these frameworks propose the use of C and C++ languages
extended with special functions and attributes for writing
device code (code to be executed on secondary processors).
It can be written, depending on user’s aims and requirements,
either in separate files or in the main program files together
with usual C/C++ host code that is intended to be executed
on CPU. OpenCL uses dynamic compilation (at runtime) of
device code; some device vendors provide offline compilers
for their devices (for example, Intel Code Builder for OpenCL
API). CUDA similarly provides both possibilities: Nvidia has
an offline compiler called NVCC and a runtime compilation
library NVRTC.

The motivation behind these examples and presented in
this paper library is essentially the same: use of the same
programming interface for all constituents of a heterogeneous
system.

Another area that this work touches is the ideas of genera-
tive, multi-stage programming and runtime code generation. A
good discussion of general motivations and trade-offs behind
these ideas, as well as examples of some actual realizations
and a number of references provides [4].

Among their examples Delite—a heterogeneous parallel
framework for domain-specific languages [5], [6]—is of par-
ticular interest. Delite’s focus is on the performance of parallel
heterogeneous systems, e.g. mixed CPU/GPU architectures
and clusters. It is built on top of Lightweight Modular Staging
(LMS) [7] system, that makes use of a form of metaprogram-
ming to construct a symbolic representation of a DSL program.
LMS provides a basis for DSLs embedded in Scala. On top of
this layer, Delite is structured into a compiler framework and
a runtime component. The framework provides primitives for
parallel operations and generates Scala, CUDA or C++ code
from DSLs.

Although both we and the authors of Delite start from
the same idea of multi-stage programming, our systems sig-
nificantly differ in the approaches and application domains.
Most importantly, we use dynamic code generation and thus
employ the generative programming at runtime to achieve
dynamic optimizations. The authors of Delite, on the other
hand, require static compilation of DSLs—they promote the
use of additional compilation stage to perform domain-specific
optimizations.

III. HIGH LEVEL DESCRIPTION

Further in the text by the word host is meant primary
processor, by target—one of the peripheral processors or
microcontrollers, by the user—developer who uses this library.

47

A. Main Architectural Decisions

The following decisions have shown themselves as reason-
able and grounded and thus are inherited from the previous
work [1]. They are discussed here to provide better context.

Runtime changes in executable code on targets can be
achieved by two approaches: dynamic compilation which
happens on the host and code interpretation which happens
on targets. Because modern interpreted languages generally
have higher requirements and cause more overhead, the first
decision is to use dynamic compilation on the more powerful
host.

The second decision is to use embedded domain specific
language (DSL) as a basis for dynamic code generation. An
alternative of using code attributes with compiler extension
(e.g. as used by OpenCL) is less viable due to several reasons.
First, code defined in a such way can be manipulated at the
runtime only as a string of characters. It complicates analysis
and dynamic code specialization, requiring additional step of
semantic analysis before that, whereas DSL approach gives
semantic information ’for free’. Second, it’s more demanding
to maintain the compiler extension to keep it up-to-date with
the needed compiler versions. And it’s still necessary to use
dynamic compilation tools. It seems excessive to support
both the compiler extension and the dynamic compilation
tools. Moreover, it would restrict library users to only one
compiler, which can be especially inconvenient in the world
of embedded systems.

LLVM [8] is used as a compilation backend. There is no
real alternative, and its excellent design and convenience of
use made this work possible.

C++ is chosen as a language of implementation by sev-
eral reasons: firstly, it is a natural choice for embedded
systems domain; secondly, it allows to avoid overhead of
interfacing with LLVM; and, most importantly, with template
metaprogramming it provides the necessary expressive power
for implementation of the DSL, which itself must be very
expressive and general to be applicable in a wide range of use
cases. Specifically, the latest C++17 standard is used.

B. Architecture Overview

DSL allows the user to describe the code which will be
executed on targets. CodeGen module provides a simplified
interface to LLVM compilation and optimization facilities.
CodeLoader, Execution and Connection modules let user load
code on targets, communicate with them (for example, using
global variables) and control the code execution. Management
of the target’s memory is provided by the host through
MemoryManager module.

Fig. 1 shows the structure of the system.
This architecture has a benefit of simple extensibility. Each

of the following parts of the library can be extended indepen-
dently from others:

• DSL constructs and operations (for example, support
array slicing or exponentiation at the language level);

• communication protocols;
• target runtime functionality;

• most importantly, target platforms.
For details on these points, the reader can proceed to the
following sections.

IV. DSL

A. Design

The core of this library is a powerful embedded C-like
DSL. It is translated to LLVM Intermediate Representation
(IR) to allow code compilation for a wide range of targets
supported by LLVM. This design of the DSL as translated and
compiled at runtime is directly motivated by the concept of
generative (or multi-stage) programming when the abstraction
power of high-level languages is used to compose pieces
of low-level code [4]. It makes runtime code generation
and domain-specific optimization a fundamental part of the
program logic.

As authors of [4] note, the usual appeal of DSLs is in
increasing productivity by providing a higher level, more
intuitive programming model for domain experts, who are
not necessarily expert programmers (”user-facing” DSLs). The
other direction, which is of interest for us in this paper, is in
using DSL as a means for exposing knowledge about high
level program structures to a compiler.

This DSL implementation makes heavy use of powerful
template metaprogramming capabilities of C++, up to C++17
standard. The idea to leverage C++ templates to cope with
challenges that poses development of DSLs aimed at genera-
tive programming goes back at least to the work of Czarnecki
et al. [9].

B. Description and Examples

DSL provides all necessary language constructs with a
familiar syntax:

• basic types (possibly cv-qualified):
– arithmetic types;
– pointers;
– arrays of fixed length (possibly nested);
– structs (possibly nested);

• operations:
– arithmetic operators (with the support of pointer

arithmetic);
– logical operators;
– bitwise operators;
– C-like cast;

• control flow expressions:
– sequential (comma operator expression);
– conditional (if-else expression);
– while loop;

• functions (with a fixed number of arguments; no recur-
sion);

• literal values.
It is also easily extensible with other higher-level constructs

(for example, Python-like array slicing) which will be trans-
lated directly to LLVM IR (i.e. will be efficient).

48

Fig. 1. UML class diagram of the system. DSL class hierarchy is shown only approximately because of its breadth and dynamic nature. IRTranslator together
with non-resident DSL constructs constitute independent and reusable DSL subsystem.

To allow simpler organization of the language, every DSL
construct models either value or expression; there are no
statements. For example, to return void from a function user
needs to use special DSL construct ’Unit’. Loops naturally
return value from their last cycle. If loop didn’t run it returns
default-initialized value (generally, zero-initialized).

Any DSL construct has a corresponding underlying C++
type, which determines allowed operations on it and conver-
sions to other types. Underlying C++ type can be accessed
through member type alias ::type which is present in every
DSL type. And the DSL value type can be obtained (if there
is one) from C++ type using to_dsl<T> type trait. In other
words, there is a direct mapping between DSL types and C++
types. Type trait to_dsl<T> can be used as a convenient
type factory.

Type of the DSL constructs (real C++ type, not the underly-
ing C++ type) encodes how it was constructed and what child
DSL constructs constitute it (for example see listing 1).

Listing 1. Type of some DSL expression
Var<int> x, y, z;
auto expr = (x + y) * z;

using expr_type =
EBinOp< Instruction::FMul,

EBinOp< Instruction::Add,
Var<int>,
Var<int>

>,
Var<int>

>;

One of the most interesting features of the DSL is a
separation of DSL abstract syntax tree (AST) construction
from DSL function instantiation. It is achieved through the

use of C++14 generic lambdas which play a role of DSL code
generators (AST builders). Example can be seen on the next
listing.

auto max_gen = [](auto x, auto y) {
return If(x > y, x, y);

};
auto dsl_max = make_dsl_fun<int, int>(max_gen);

It allows simple and effective reuse of needed DSL constructs,
as in the next example.

auto max3_gen = [&](auto x1, auto x2, auto x3) {
return max_gen(x1, max_gen(x2, x3));

};
auto dsl_max3 =

make_dsl_fun<int, int, int>(max3_gen);

This conceptually differs from simple function call as a means
of code reuse and is closer to function inlining. In this way the
new DSL generator is constructed which, in its turn, can be
later reused. Moreover, on the point of DSL code generation
user can utilize C++ constructs to build more complex DSL
expressions:

Listing 2. Use C++ code to build complex DSL expressions.
// note: accepts arbitrary DSL expressions
auto reduce_sum_gen = [](auto ...xs) {

// Using C++17 fold expression
return (... + xs);

};

auto sum3 = make_dsl_fun<
float, unsigned, int

>(reduce_sum_gen);

Listing 3. Generator of DSL reduce function over arbitrary DSL expressions.
// note: accepts arbitrary DSL expressions

49

// (e.g. other generators)
auto get_reducer = [](const auto& binary_op) {

return [&](auto x1, auto... xs) {
// Using C++17 fold expression
return ((x1 = binary_op(x1, xs)), ...);
// Redundant assignments
// will be optimized out by LLVM

};
};

auto max_vararg_gen = get_reducer(max_gen);
auto max3 = make_dsl_fun<

float, float, float
>(max_vararg_gen);

Listing 4 shows two noticeable syntactic features of the
DSL: the sequential operator that plays a role of C/C++
semicolon and DSL local variables. Generally, any DSL vari-
able which is not an argument of DSL generator (enclosing
lambda) will be considered a local one. For the more consistent
syntax user can define local variables inside the generator
lambdas. Also note that they can’t be defined inside the DSL
expressions because they follow the rules of C++ expressions.
To use global variables a user is required to first load them on
the target because they are translated to LLVM IR as actual
memory addresses.

Listing 4. Use of comma operator and local variables.
Var<int> local1;
// note lambda capture (can also be [&])

auto max_gen = [=](auto arg) {
Var<int> local2;
return (

// variables can’t be defined here!
local1 += arg,
local1 += local2,
arg // last expression is returned

);
};

The next listing demonstrates that DSL allows to construct
complex expressions in familiar, close to C, syntax.

auto complex_expr = [](Ptr<Var<uint32_t>> ptr){
Var<uint32_t> tmp;
return tmp = *ptr &= ˜(*++ptr ˆ Lit(1 << 8));

};

Generic DSL functions is another very useful feature. As
can be seen from previous examples, DSL generators are
not bound to specific types of parameters. Instead of explicit
manual instantiation of DSL function with required types of
parameters library user can instantiate generic DSL function
with a help of function factory. If generic function is used with
arguments of inappropriate types, compiler will catch this and
compilation will fail with comprehensible error message.

Instantiated generic functions are stored in a function repos-
itory by a key which represents their type. As a type of
DSL constructs encodes their AST, type of DSL functions
encodes their body. Thus, the structural equivalence between
functions is achieved without any overhead. Thanks to this
repeated instantiation of the (structurally) same DSL functions
is avoided. DSL function is deleted from the repository at
the end of translation to LLVM IR. Needless to say, all this
happens behind the scenes and a user isn’t required to know
about these details.

The following listing shows an example of the use of a
generic DSL function.

Listing 5. Generic DSL function example
auto generic_max = make_generic_dsl_fun(max_gen);

auto max4_gen =
[&](auto x1, auto x2, auto x3, auto x4) {

return generic_max(
generic_max(x1, x2),
Cast<float>(generic_max(x3, x4))

);
};
// This will cause instantiation
// of 2 max functions:
// for ints and for floats
auto max4 = make_dsl_fun<

float, float, int, int
>(max4_gen);

Last, but not the least, DSL is designed with usability in
mind. C++ code with a heavy use of templates is known for
its complex error message on compilation failure. In DSL all
major type constraints are checked with static assert standard
library function which produces comprehensible compile time
error messages.

V. SUBSYSTEMS DESCRIPTION

A. MemoryManager

This centralized memory management organization allows
to free less powerful targets from extra tasks and avoid
extra communication cycles which would be inevitable to
ensure correct memory allocation if targets managed their
memory themselves. Best-fit, worst-fit and first-fit memory
management algorithms are implemented. Conceptually Mem-
oryManager is part of a CodeLoader and used only for data
and code loading. That is, it’s important to note that target
code can’t dynamically allocate memory on targets.

B. CodeLoader

With the help of CodeLoader module user can load DSL
global variables and compiled code on targets. CodeLoader
also allows getting a handle to already loaded variables and
functions. In this case, no checks or memory allocation is
performed, because, in general, there is no possibility to ensure
correctness of user’s actions. For example, functions can be
loaded on a target in a persistent memory in one program run,
and on another program run any knowledge about it will be
lost, whereas the user may want to access previously loaded
data and functions. So, it is assumed that user knows what he
is doing.

C. Connection Module: Host side

Connection module consists of two parts: command pro-
tocol for communication between host and targets and un-
derlying connection implementation. The functionality of the
former is fully built on the primitives of the latter, which must
provide synchronous read and write operations.

The core command protocol includes the following com-
mands:

50

• echo (for testing);
• read specified number of bytes at a specified address;
• write data to a specified address;
• call function at the specified address (without arguments

and return value);
• set function at the specified address on execution by the

timer;
• set function at the specified address on execution on the

specific interrupt.
This abstraction from specific implementation allows easier

extensibility on new connection protocols. This work imple-
ments connection through TCP and through USB (used as a
virtual serial port).

D. Connection Module: Target Runtime API

Each specific target platform requires its own firmware to
interface with the host. It must provide functionality for com-
municating with the host and answering to requests according
to the command protocol.

At this point an important consideration arises: targets must
provide API sufficient for a wide range of tasks. Generally,
peripheral devices on microcontrollers are memory mapped,
which means that runtime API consisting of memory read
and write functions can be sufficient. For example, the family
of STM32 microcontrollers has fixed memory map and each
device has a specific predefined address in memory.

Some platforms may need an extended API. When the target
has an operating system, in particular Linux, it can additionally
provide an interface to some of the system calls: open() for
using devices represented as input/output ports and mmap()
for correct work with library runtime process address space.
It is implemented in the LinuxConnection module. Although
for this platform it is also possible to implement an interface
to arbitrary system calls and libraries using dlopen() and
dlsym() functionality, the library runtime API for Linux is
intentionally left minimal but sufficient for tasks concerned
with controlling peripheral devices.

Another important question is a debugging interface. Issu-
ing diagnostic messages to some local to target buffer can
accomodate most of the needs and at the same time is easily
implementable. Target must provide interface to read the buffer
and to get an address of the target local logging function.
This address is used to construct the DSL wrapper for remote
logging function. From this point it can be further used in the
DSL code.

VI. APROBATION

The system was tested on several setups:
• Linux on x86 plays the role of both host and target

machines, communication is through TCP connection
(setup for tests during development);

• the host is Linux x86, the target is Odroid XU4 (armv7a)
with Linux, TCP connection;

• the host is Linux x86, the target is bare-bones stm32f429i-
discovery microcontroller (armv7em), USB Virtual COM
Port connection;

• the host is Odroid XU4 (armv7a) with Linux, the target is
bare-bones stm32f429i-discovery (armv7em), connection
through USB Virtual COM Port.

Tests were performed for each command from the command
protocol (see above in the section V-C).

VII. DEMONSTRATION

For a demonstration of dynamic optimization possibilities,
which this library opens, the reader can refer to the following
listings of PID control (list. 6) and its tuning (list. 7) for
specific conditions of the deployment environment.

Listing 6. PID controller DSL code.
using namespace hetarch;
using namespace hetarch::dsl;

// Convenient typedefs
// for control variables
// and coefficients
typedef int32_t ctrl_t;
typedef float coef_t;

// Example of the target
typedef uint32_t addr_t; // size_t of the target
conn::SerialConnImpl<addr_t>

connImpl{"/dev/ttyACM0"};
SimplePipeline<addr_t>

pipeline{"armv7e_linux_eabihf", connImpl};

// Global variables
// to store error data between control cycles
auto perr =

pipeline.load(Global{ Var<ctrl_t>{0} });
auto ierr =

pipeline.load(Global{ Var<ctrl_t>{0} });

// dt -- control cycle durations (in seconds)
auto pid_gen = [&](auto Kp, auto Ki, auto Kd,

auto dt, auto setpoint){
auto pid_ctrl = [&]{

// Local variables
// pv -- process variable
// cv -- control variable
Var<ctrl_t> pv, cv, prev_perr, derr;

// read_pv and write_cv
// are some dsl generators
// that perform actual input/output
return (
pv = read_pv(),

prev_perr = perr,
perr = setpoint - pv,
ierr += perr,
derr = perr - prev_perr,
cv = Kp*perr + Kd*derr/dt + Ki*ierr*dt;

write_cv(cv)
);

};
return pid_ctrl;

};

Listing 7. PID tuning DSL code.
auto tuner = [&](auto dt, auto sp){
// For tuning, coefficients are
// usual mutable DSL variables
Var<coef_t> Kp{0}, Ki{0}, Kd{0};
auto pid_ctrl = pid_gen(Kp, Ki, Kd, dt, sp);

51

// Specific tuning method:
// determines current operating conditions
// (e.g. reading some sensors)
// and returns tuning data
// that allows to compute optimal
// PID controller coefficients.
// E.g. for Ziegler-Nichols method it is
// Ku -- "ultimate gain" and
// Tu -- oscillation period
return (/* actual tuning code goes here */);

};

// Example parameters
Lit sp{42}; // Setpoint
int ms_delay = 100; // Control cycle duration
Lit dt{ms_delay / 1000.0};

auto tuning_code = make_dsl_fun(tuner, dt, sp);
// Translate, compile and load tuning code
auto tuning_fun = pipeline.load(tuning_code);

// Run tuning code and get tuning data
auto tuning_data = exec.call(tuning_fun, dt, sp);
// Compute coefficients using optimal tuning data
auto coefs = compute_coefs(tuning_data);
auto Kp = coefs[0];
auto Ki = coefs[1];
auto Kd = coefs[2];

// Generate optimal PID controller
auto opt_pid_gen = pid_gen(Kp, Ki, Kd, dt, sp);
auto opt_pid_code = make_dsl_fun(opt_pid_gen);
// Translate, compile and load
// optimal PID controller
auto opt_pid = pipeline.load(opt_pid_dsl);

// Finally, run PID controller on timer
pipeline.schedule(opt_pid.callAddr, ms_delay);

The work is organized in the following way:
• in the first phase host loads general version of the PID

controller with tuning code on the target;
• in the second phase tuning code is called and data

produced by it is read by host;
• in the third phase host computes coefficients based on

tuning data and recompiles PID controller with them;
• finally, host loads PID controller optimized for specific

coefficients.
This example shows two advantages of using the library.

Firstly, tuning code is completely absent from the final pro-
gram running on the target. Dynamic code generation allows
compiling code for specific constant coefficients to achieve
better execution times and smaller program size.

Secondly, the dynamically generated code can be more
optimal due to optimizations performed by LLVM. When
coefficients are integer values, or, even better, integer powers
of two (or float values, that can be rounded without big errors),
resulting code will be generated with fewer (or completely
without) expensive floating operations.

Listing 8. PID controller C code used for LLVM IR comparison.
typedef int ctrl_t;
typedef float coef_t;

extern coef_t Kp, Kd, Ki;
ctrl_t perr = 0, ierr = 0;

ctrl_t pid_ctrl(float dt, ctrl_t sp, ctrl_t pv) {
ctrl_t prev_perr = perr;
perr = sp - pv;
ierr += perr;
ctrl_t derr = perr - prev_perr;

return Kp*perr+(Kd*derr/dt)+(Ki*ierr*dt);
}

To emphasize possible dynamic optimizations, fig. VII
presents a comparison between listings of the PID controller
code for two cases:

• C code from listing 8 compiled with clang without this
library;

• DSL code from listing 6 dynamically optimized with this
library.

There’re several things on the fig. VII to note:
• dynamically generated code has fewer memory accesses

because it is compiled for specific values (note lines 2, 7,
15 where usual code loads coefficients stored as global
variables);

• instead of floating-point multiplications (lines 4 and 17
on the left) integer shift (line 4, right) and integer
multiplication (line 16, right) are used;

• one apparent to a programmer optimization on
line 9, right is missed: substitute multiplication by
0.5 with integer division by 2 or right shift by one; and
it should be2, although it is possible to implement such
optimizations on the DSL level.

A. Library Applicability

The library is intended for use with embedded heteroge-
neous systems of a small scale with low-power secondary pro-
cessors and microcontrollers that run heterogeneous tasks. The
case of homogeneous tasks on the more powerful systems is
better accomodated with existing tools (e.g. OpenCL or Delite)
that are specifically aimed at scheduling and parallelizing the
computations across bigger number of secondary processors.
This library isn’t intended for such use cases and doesn’t
provide any orchestration for parallel tasks. Each secondary
processor should be managed manually and separately.

Generally, the benefits and applicability of the library should
be considered in each particular case. As noted in the intro-
duction, the library is well suited for the problems when the
dynamic configuration of the system is required (either for
particular environment conditions or for different peripheral
devices and sensors). It’s also important to consider the price
of dynamic recompilation: the benefits of the specialized and
optimized code should amortize the compilation price.

2This compiler behavior is expected according to C11 standard (section
F9.2.1), because representations of 0.5 and 2 maybe not be equivalent and
the result can be different on some machines.

52

1 ; Kp * perr
2 %9 = load float, float* @Kp
3 %10 = sitofp i32 %perr to float
4 %11 = fmul float %9, %10
5
6 ; Kd * derr / dt
7 %12 = load float, float* @Kd
8 %13 = sitofp i32 %derr to float
9 %14 = fmul float %12, %13

10 %15 = fdiv float %14, %dt
11
12 %16 = fadd float %11, %15
13
14 ; Ki * ierr * dt
15 %17 = load float, float* @Ki
16 %18 = sitofp i32 %ierr to float
17 %19 = fmul float %17, %18
18 %20 = fmul float %19, %dt
19
20 %21 = fadd float %16, %20

1
2
3 ; Kp * perr
4 %12 = shl i32 %perr, 2
5 %13 = sitofp i32 %12 to float
6
7 ; Kd * derr / dt
8 %14 = sitofp i32 %derr to float
9 %15 = fmul float %14, 5.000000e-01

10 %16 = fdiv float %15, 1.000000e-01
11
12 %17 = fadd float %16, %13
13
14
15 ; Ki * ierr * dt
16 %18 = mul i32 %ierr, 6
17 %19 = sitofp i32 %18 to float
18 %20 = fmul float %19, 1.000000e-01
19
20 %21 = fadd float %20, %17

Fig. 2. Comparison of LLVM IR generated for expression "Kp * perr + (Kd * derr / dt) + (Ki * ierr * dt)" (core part of the PID
controller code; other lines are omitted here). Compiler options used: -O2 -target x86_64-pc-linux-gnu. LLVM IR is used instead of native
assembler because it is more readable and optimizations are done on the IR.
Left: compiled with clang from C code on listing 8. LLVM IR is presented only for the last line.
Right: compiled with LLVM from DSL (see listing 6). For the sake of demonstration it is assumed that dynamically determined PID controller coefficients
are Kp=4, Kd=6, Ki=0.5; and control cycle duration is dt=0.1.

VIII. CONCLUSION

This work presented a powerful DSL language aimed at
metaprogramming and showed its application to the domain of
heterogeneous embedded systems. Although the library misses
some features (as noted in Further Work section), it constitutes
a proof of concept that the idea of dynamic code generation
is perspective and useful in the real-world scenarios.

IX. FURTHER WORK

The work can be continued in several directions.
The library doesn’t provide facilities for loading on the

targets existing compiled code, for example, libraries. To be
applicable to a wider range of use cases it requires support of
this functionality.

The development of the DSL is another direction. It can
be extended with additional language constructs, for example,
switch, goto or to support recursion. It can also be further
developed to include more features of functional programming
languages, e.g. functions as first-class citizens. Support for a
debugging in terms of the DSL (breakpoints, tracing) can also
be added.

REFERENCES

[1] K. Melentev, R. Belkov, and I. Kirilenko, “Sistema programmirovaniya
kiberneticheskih geterogennyh arhitektur s ispolzovaniem LLVM,” in Sec-
ond Conference on Software Engineering and Information Management
(SEIM-2017)(short papers), 2017, p. 31.

[2] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in science &
engineering, vol. 12, no. 3, pp. 66–73, 2010.

[3] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Mor-
ton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing experiences
with CUDA,” IEEE micro, vol. 28, no. 4, 2008.

[4] T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, M. Jonnalagedda, N. Amin,
G. Ofenbeck, A. Stojanov, Y. Klonatos, M. Dashti et al., “Go meta! A case
for generative programming and DSLs in performance critical systems,” in
LIPIcs-Leibniz International Proceedings in Informatics, vol. 32. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[5] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “A heterogeneous parallel framework for domain-
specific languages,” in Parallel Architectures and Compilation Techniques
(PACT), 2011 International Conference on. IEEE, 2011, pp. 89–100.

[6] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun, “Delite: A compiler architecture for performance-oriented
embedded domain-specific languages,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 13, no. 4s, p. 134, 2014.

[7] T. Rompf and M. Odersky, “Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs,” Communica-
tions of the ACM, vol. 55, no. 6, pp. 121–130, 2012.

[8] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[9] K. Czarnecki, J. T. O’Donnell, J. Striegnitz, and W. Taha, “DSL im-
plementation in MetaOCaml, Template Haskell, and C++,” in Domain-
Specific Program Generation, 2003.

53

Applying Deep Learning to C# Call Sequence
Synthesis

Aleksandr Chebykin, Iakov Kirilenko
Faculty of Mathematics and Mechanics

Saint Petersburg State University
Universitetsky prospekt, 28, Peterhof, St. Petersburg, 198504, Russian Federation

Email: a.e.chebykin@gmail.com, jake.kirilenko@gmail.com

Abstract—Many common programming tasks, like connecting
to a database, drawing an image, or reading from a file, are
long implemented in various frameworks and are available
via corresponding Application Programming Interfaces (APIs).
However, to use these functions, a software engineer must first
learn of their existence and then of the correct way to utilize
them. Currently, the Internet seems to be the best and the most
common way to gather such information.

Recently, a deep-learning-based solution was proposed in the
form of DeepAPI tool. Given English description of the desired
functionality, sequence of Java function calls is generated. In
this paper we show the way to apply this approach to a different
programming language (C# over Java) that has smaller open
code base; we describe techniques used to achieve results close
to the original, as well as techniques that failed to produce an
impact. Finally, we release our dataset, code and trained model
to facilitate further research.

I. INTRODUCTION

When writing code, software developers often utilize vari-
ous libraries via APIs. Since the problems being solved in this
manner are usually similar for most users, their solutions form
stable patterns of API invocations.

API mining is a long-established line of research aimed
at extracting these API usage trends from source code. The
importance of the task lies in the fact that generally developers
spend a lot of time trying to learn frameworks’ APIs in
order to efficiently utilize them. A field study has found that
developers often struggle to map a task from problem domain
to the terminology of the API [1]. In another survey 67.6%
of respondents identified that learning APIs is hindered by
inadequate or absent resources [2].

Usually, when facing such problems, developers turn to
general web search engines. However those are not optimized
for programming-related queries and thus tend to be ineffi-
cient [3].

An alternative lies in various approaches based on statistical
analysis of source code. They can provide sequences of API
methods that are often used together [4], mine API specifi-
cations in the form of automata [5], synthesize relevant code
snippets [6].

Deep API Learning [7] is a recent deep learning-based take
on the problem that reports state-of-the-art results. The authors
formulate the problem of providing API patterns satisfying
users’ needs as a translation one. Input language, in which
user describes desired functionality, is English, and the output

language is one of API sequences: API calls are words of the
language, ordered sequences of these calls form sentences.
For example, English sentence ”generate random int” could
be translated to the language of Java API as ”Random.new
Random.nextInt”, which corresponds to the construction of
the object of type Random and subsequent call of its nextInt
method.

DeepAPI tool targets exclusively Java programming lan-
guage and reportedly performs well. Benefits of the approach
come from the usage of deep recurrent neural networks.
Thanks to them, trained model can distinguish synonyms and
impact of word sequence (for example, it can distinguish
queries convert string to int and convert int to string).

However the authors identify several threats to validity,
including possible failure when extending the approach to
other programming languages.

Our main goals are to test this threat, thus appraising gener-
ality of the approach, and to consider possible improvements.
We choose C# as target languages due to its general similarity
to Java, aiming to make a first step towards more different —
and therefore challenging — target languages.

However even in our case simple copying of DeepAPI
approach leads to bad results, and constructing well-working
model proves to be far from trivial. In this paper we describe
our experience of extending the proposed approach to C#.

To achieve our goals we collect dataset of 2,886,309 training
samples from open source projects’ code and use it to first train
model with the architecture of DeepAPI (attaining the result
of 10.94 BLEU), and then tune parameters to achieve BLEU
26.26. After that we introduce data preprocessing, which
reduces dataset size to 1,397,597, but improves its quality and
increases BLEU metric to 46.99. Finally we employ transfer
learning on an alternative dataset of method names and achieve
the best results of 50.14 BLEU, which is fairly close to 54.42
reported by DeepAPI on Java dataset.

Additionally we ask professional developers to evaluate
output of our model on several queries, which shows that on
average our model, DeepAPI#, performs as well as DeepAPI.

Our main contributions are:
• reproduction of the DeepAPI experiment with a different

dataset;
• modification of the approach via programming-language-

independent preprocessing which leads to results, com-

54

parable to original, despite lack of data;
• collection of C# dataset of commented methods and

publishing of it for the benefit of the future research in
the area;

• employment of transfer learning techniques for additional
improvement of the results. To the best of our knowledge,
we are the first to investigate transfer learning in the area
of API mining.

The paper is organized as follows: in section II we outline
DeepAPI model architecture. Next, in section III collection
of the dataset needed for model training is discussed and
additional preprocessing steps are introduced. We describe our
application of transfer learning to the problem in section IV.
Technical details of model training are reported in section V,
which is followed by section VI, where evaluation results are
described. We finish the paper with section VII, where we
report work done on different related problems and discuss
ways in which existing research differs from ours.

II. DEEPAPI MODEL

We borrow general model structure from DeepAPI, which
is itself based on recent advancements in neural machine
translation. Here we will provide only an overview, for details
please refer to the original paper [7] and our previous research-
in-progress paper [8].

Since the goal is to generate one sequence of words based on
another, the task falls in the category of Sequence-to-Sequence
learning [9]. One of the best architecture for the task is an
Encoder-Decoder network [10].

It consists of two recurrent neural networks (Recurrent
neural network is a special class of a neural network where
unit can be connected to itself, thus allowing its state to serve
the role of memory). Encoder network reads input sequence,
Decoder generates output one. The process goes as following.

Encoder reads input word by word, embeds each one in
a high-dimensional space and sequentially updates its hidden
state, which by the end of the sentence contains language-
independent idea of the input sentence. This state (also known
as context vector) is then passed to the Decoder, which based
on it and the last generated word generates words one by one
until a special end-of-sequence token is outputted.

An example of such model at work can be seen in Figure 1.
In the image states of networks are rolled out in time, so
for example RNN1, RNN2, RNN3 is the RNN state at
time steps 1, 2, 3. Note that Encoder and Decoder consist of
different RNNs and work in different time windows: at first,
Encoder RNN makes 3 steps in time and then Decoder RNN
makes 3 steps in time.

The benefits of this model include synonym handling (words
used in the similar contexts get embedded near each other),
successful processing of long inputs thanks to the memorizing
ability of the recurrent networks, and finally appreciation of
word sequence impact.

One major downside of such a model is the need for a large
amount of sentence pairs describing the same functionality
in two languages (”generate random number”, ”Random.new

Random.Next”). Format of the API language description is
reported in the section III-A3

Source of such data can be methods’ documentation com-
ments (that in C# are XML-based and contain summary sec-
tion, in which brief description of the method’s functionality
should be supplied) and corresponding API calls made in the
method body. Details of the dataset collection are described
in section III

There are several improvements of the Encoder-Decoder
architecture that were shown to reliably improve results.

• Using Bidirectional Encoder leads to input being pro-
cessed twice: in normal order and in reverse, resulting
in 2 context vectors, which are then concatenated to get
final context vector [11].

• Attention mechanism [12] allows decoder to focus on
different input words when generating different output
ones.

In the original DeepAPI paper an additional improvement
is introduced in the form of a regularization term punishing
generation of the most widespread and therefore probably
problem-irrelevant API calls, such as logging ones. We have
not tried such regularization since its reported impact on
BLEU score is minimal. We leave testing of this enhancement
for future research.

III. DATASET

A. Dataset collection

To train the model, we need to gather big amount of pairs
(English description of functionality, API description). One
way to do it is to process Open Source projects, looking for
methods with documentation comments, extracting summary
sections and linearizing interesting parts of ASTs (i.e. API
calls). The processing of individual methods is described in
section III-A3

GitHub1 is one of the most popular Open Source project
hostings. Following DeepAPI authors, we construct our dataset
from data published there.

We attempted to augment GitHub data with data from
alternative sources. In our previous paper [8] we proposed
using Nuget2 - a repository of compiled C# packages. However
we eventually found out that compared to GitHub it does
not provide much data, and what samples it provides often
duplicate ones collected from GitHub. So we discontinued
using Nuget as data source.

There are other sites with published open source projects,
for example, Codeplex3 and SourceForge4. Unfortunately, we
found there only a small amount of C# projects, many of which
gradually migrate to GitHub, or have already done so. These
hosting sites also lack search APIs, that are essential for the
automatic collection of our dataset. So the potentially small

1http://github.com
2https://www.nuget.org/
3https://archive.codeplex.com/
4https://sourceforge.net/

55

http://github.com
https://www.nuget.org/
https://archive.codeplex.com/
https://sourceforge.net/

Fig. 1: RNN Encoder-Decoder workflow

Fig. 2: Dataset gathering workflow

amount of additional data is nontrivial to collect, and therefore
we choose to ignore these alternative sources.

We collect dataset from GitHub in several steps:
1) obtain a list of repositories relevant to us;
2) download these repositories;
3) process them, extracting from methods with documen-

tation comments these comments, linearized in a special
way API calls, types and names of method parameters.

The architecture overview can be seen in figure 2. Let us
discuss every step in detail.

1) Obtaining list of relevant repositories: We are interested
in repositories in C# language. Similar to the original paper,
we would like to consider only projects that have at least
one star in order to filter unused or toy projects. Both these
requirements can be satisfied when setting specific parameters

of GitHub Search API.
Using this API via Octokit.rb5 library, we retrieve 140,990

URLs of relevant projects created from 2012 to 2017. This
contrasts to the original paper that reports working with
442,928 Java repositories. So we initially have approximately
3 times less projects to work with. This lack of data can
potentially be a significant obstacle when transferring the
approach to other languages with smaller open code bases.

Search API also poses several technical difficulties.
Firstly, it returns no more than 1,000 results for any search

request. To go around this restriction, we set additional param-
eter limiting repository creation date to a short span of time,
for example, ”2016-01-01 .. 2016-01-08”. Every our requests
covers 8 days, which we find short enough a period that no
more than 1,000 repositories are created during it.

Secondly, Search API limits number of requests per minute
by 30. In order not to exceed this limit, our script sleeps for
2 seconds after each request.

We store repositories list and the rest of our data in a SQLite
database6.

2) Downloading repositories: Having gathered repository
list, we can start cloning them with git. We set clone depth to
1 to speed up the process.

After download we search for solution files — special files
that encompass source code files, as well as store project
dependencies. We process these files in the next step.

3) Extracting data: C# type system is problematic for our
purposes compared to Java because of the implicit type ”var”
introduced in version 3.0. As a consequence of its existence,
code needs to be compiled in order for the type of a variable
to be determined correctly, as opposed to Java where name of
the variable’s type or supertype is evident from its declaration.

5https://github.com/octokit/octokit.rb
6https://www.sqlite.org

56

https://github.com/octokit/octokit.rb
https://www.sqlite.org

Fig. 3: Example of data extraction

This need for compilation limits number of projects we can
process.

For compilation and syntax tree processing we use
Roslyn7 — an open source C# compiler developed by Mi-
crosoft. To compile a project we need it to satisfy two
requirements:

1) no manual actions are necessary for its build and com-
pilation;

2) a solution file, encompassing source code files, must
exist.

In order to compile more projects, we employ Nuget to
restore project dependencies prior to compilation.

About 80.6% percent of repositories contain solution files,
and of those 47.1% could be compiled.

After compilation we process projects in the following
fashion:

1) find methods with documentation comments;
2) store whole comment and summary section;
3) walk syntax tree of the method body, collecting API call

sequence;
4) store method name, parameter types and names.
An example of extracting data from method with documen-

tation comment is provided in Figure 3
We construct API sequence similarly to the original paper.

We traverse the tree in the way an interpreter might traverse it
during execution, e.g. depth-first post order, processing method
call’s arguments before processing the call itself, and so on.
When encountering constructor invocation new C(), we add
C.new to the API sequence. When encountering method call
o.m() where o is an instance of a class C, we add C.m to
the API sequence. Additionally, when encountering if-else
statement, we firstly process condition expression, then if -
branch statements and finally else-branch statements.

We introduce one additional step to this scheme: when
encountering try-with-resources node, we save the class C of
an object being created in the try node and after processing

7https://github.com/dotnet/roslyn

everything inside try branch we add C.Dispose to the API
sequence. While it is easier for a programmer to rely on
the language feature of try-with-resources block to take care
of finalization of the resources, this construct is not always
used, and we think that our model should know that certain
sequences of API calls should end with finalization call.

Eventually we obtain 2,886,309 pairs of English descrip-
tions and API sequences. However, this number is not directly
comparable to the 7,519,907 methods reported in the DeepAPI
paper. The authors explained to us (in an e-mail) that 7,519,907
is the amount of data after filtering out-of-vocabulary words,
the step which in our experience removes certain samples
entirely, significantly reducing size of the dataset.

Our preprocessing and the final size of dataset is discussed
in the further section.

B. Data preprocessing

Upon inspecting the gathered data we conclude that it
can be improved prior to being used for model training. By
introducing following preprocessing steps we aim to make the
training easier and the results consequently better - a notion
supported by our experiments (see section VI).

1) Language detection: We consider our model to work
with English language as input, however, many comments are
not in it. Therefore we try to filter out non-English comments
using language detection package 8.

We find, however, that some English sentences are recog-
nized as non-English. In our opinion, most likely reasons are
extreme shortness of sentences used for language detection and
uncommon profession-specific programmers’ vocabulary. We
do not want to decrease dataset size by filtering out comments
incorrectly recognized as non-English, and so we change our
filtering approach.

Instead of leaving only sentences recognized as English,
we remove ones that are reported to be in a set of well-
recognizable languages (which we deduce by hand exam-
ination) that occur in our dataset most often. Languages,
sentences in which we remove, are Chinese, Korean, Japanese,
Russian, German and Polish (reported in the order of decreas-
ing frequency). As a side note, the reason for good recognition
of said languages probably lies in them having alphabets
different from the English one.

Such filtering leads to vocabulary containing mostly En-
glish words. It reduces training size from 2,886,309 pairs to
2,606,424.

2) Leaving only distinct pairs: The percent of unique pairs
is about 86.6%. Note that we consider two pairs distinct even
if English descriptions coincide while API descriptions do not,
and vice versa.

We could identify several reasons for occurrence of repeti-
tions:

• auto-generated code and comments (Windows Forms are
especially ubiquitous);

8https://github.com/Mimino666/langdetect

57

https://github.com/dotnet/roslyn
https://github.com/Mimino666/langdetect

• libraries being copied to the project sources instead of
being linked as dependencies.

This step reduces amount of training instances from
2,606,424 to 2,259,653.

3) Repetition contraction: In some API sequences an API
call is repeated several times in a row. This could happen
as a result of our AST linearization in a situation where,
for example, an API call is made with different parameters
in branches of an if-else statement. Since we do not record
call parameters and when linearizing if-else statement save
API calls from both branches, this may lead to an API call
repeating twice in the resulting sequence. End user would not
care about such repetitions in the output of the model, so we
remove them before training, leaving only one copy of API
call in a row.

This step does not influence amount of data, but rather is
intended to improve quality of the existing training samples.

4) Vocabulary filtering: Similar to original paper, we create
vocabularies of 10,000 most popular words in each language,
and filter out the rest. If after filtering no words are left in
either English description or API one, we remove the pair
altogether.

This step reduces training dataset size significantly, from
2,259,653 to 1,397,597.

Additionally we experiment with, but eventually discard a
preprocessing step of stemming.

5) Stemming: Stemming is the process of reducing inflected
words to their bases. We intended to use it, as is usual, to
decrease vocabulary by replacing multiple word forms with
the root.

In our case it fails to provide improvement and instead
makes results worse. A possible explanation may lie in the
fact that stemming model was trained on regular words, not
ones specific for software development and therefore works
badly with this unusual vocabulary.

We discuss impact of the preprocessing steps in section VI.
The final size of our dataset is 1,397,597 pairs, which

is more than 5 times smaller than 7,519,907 pairs used for
training in the original paper. Even if only preprocessing from
the original paper is used (i.e. vocabulary filtering and nothing
else), dataset size is 1,692,898 (of which 1,434,805 pairs
are unique). We consider this a significant problem that very
probably makes achieving comparable results harder and takes
a great toll on the model performance.

For easy reproduction of our research and for conduction
of new experiments in the area, we provide our dataset9, as
well as the code used to collect 10 and preprocess 11 it.

IV. TRANSFER LEARNING FOR API MINING

Broadly speaking, transfer learning is utilizing knowledge
gained in one problem to solve another. It is often used in

9https://www.kaggle.com/awesomelemon/
csharp-commented-methods-github

10https://github.com/AwesomeLemon/api-extraction
11https://github.com/AwesomeLemon/api-extraction-scripts

NLP [13] and neural machine translation, especially in the
contexts where data is scarce [14]. Since our situation is one
of lacking data (as shown by an experiment in section VI), we
decided to investigate this idea.

A. Alternative dataset

To apply transfer learning to our problem of generating API
calls given English description, we need to train a model for
a task that is different, yet very similar.

As already mentioned, the DeepAPI paper proposes method
bodies as source of API descriptions of functionality and
method comments as source of English ones. But there is
another description for a method functionality beside its
comment - its name. Combined with class name, it seems
descriptive of the method’s contents. While not forming proper
natural language sentences, these names could provide crude
approximations.

Examples of correspondence between comments and names
of the methods are provided in Table I. It can be seen that
generally tokenized names are very similar to summary section
of documentation comments. However, this is not always the
case. In the last two examples despite similarity between
comment and name, essential information is missing from the
tokenized name. In the first of these samples key word is
”Matches”, without it tokenized method name loses meaning.
In the second one ”DWORD” is separated to ”d” and ”word”
due to the tokenizing technique. When we tokenize method
name, we assume that naming guidelines are followed and
therefore first letter of the method name and first letters of
every word in the name are capitalized. Here this leads to
wrong division of words and thus vital information disappears,
making description senseless.

However in most cases method names tokenized in this
way are similar to comments and thus provide relatively good
description of method contents.

We start exploration of this alternative dataset by simply
training a model on it with the best parameters and our
preprocessing. Resulting BLEU is not very good — 28.57
(model №4 in table II; the table is discussed minutely in
section VI).

We conclude that comments indeed seem to be more de-
scriptive of method contents than method names. But can we
utilize this new dataset nonetheless?

B. Applying transfer learning for model improvement

We hypothesize that alternative method names dataset con-
tains valuable information about correspondence between En-
glish words and API calls.

In terms of transfer learning, we can consider both our
source task and target task to be the same, namely to gen-
erate API call sequence given English description of it. The
difference lies in the datasets. When training for the source
task, we can use the alternative dataset of pairs (Tokenized
method name, API call sequence). Then we can utilize gained
knowledge when training the model for the target task, that

58

https://www.kaggle.com/awesomelemon/csharp-commented-methods-github
https://www.kaggle.com/awesomelemon/csharp-commented-methods-github
https://github.com/AwesomeLemon/api-extraction
https://github.com/AwesomeLemon/api-extraction-scripts

TABLE I: Comparison between method names and comments

Full method name Tokenized
method name

Summary section
of the documentation

comment
Method name corresponds to comment well

ManagedFusion.
Serialization.
JsonSerializer.

Serialize

json serializer
serialize Serializes to JSON

MathNet.Symbolics.
Packages.Standard.

Structures.
ComplexValue.Cosine

complex value
cosine

Trigonometric
Cosine of an angle

in radians

StickyDesk.
Utilities.ResizeBitmap

utilities resize
bitmap

Resizes a bitmap
image.

Nini.Config.
IniConfigSource.
RemoveSections

ini config
source remove

sections

Removes all INI
sections that were

removed as configs
Method name corresponds to comment badly

Spark.Parser.
CharGrammar.

StringOf

char grammar
string of

Matches a string of
characters

TagLib.Asf.
DescriptionRecord.

ToDWord

description
record to d

word

Gets the DWORD
value contained in

the current instance.

makes use of the original dataset of pairs (Documentation
comment summary, API call sequence).

So we train a model on the alternative dataset, and then use
resulting weights for initializing the model to be trained on the
standard dataset, which is a technique known as pretraining.

Also we wonder if we can similarly bootstrap learning
without using alternative dataset. We perform an experiment
by training the model on the comments dataset and using it
for initialization and training on the same dataset.

We evaluate impact of both approaches in section VI.

V. MODEL TRAINING

Per description in section II, original authors use Encoder-
Decoder architecture. As implementation of RNN they choose
GRU [12]. They use 1-layered model with 1,000 hidden units
and 120 dimensions for word embedding. To train the model,
GroundHog 12 was used.

GroundHog since then has been discontinued, instead we
use popular modern framework OpenNMT [15], that is de-
signed specifically to train neural translation models.

We start training from the architecture reported in Deep
API Learning [7]. After getting bad results we go on and
empirically tune parameters, eventually arriving at following
values. As RNN implementation we use LSTM [16] - a more
complex model than GRU, with on-par performance, which
is highly dependent on the problem. In our task it performs
better. We find that 1 layer makes model not complex enough
to work with C#, and since it is known that adding more layers
increases model’s learning ability [17], we introduce additional
layers to the total of 3, which impacts results positively. We

12https://github.com/pascanur/GroundHog

leave number of hidden units at 1,000 and word embedding
at 120 dimensions.

For training, Stochastic Gradient Descent [18] is used with
batch size of 32 and exponential learning rate decay. We
initialize learning rate to be 1.0 and start multiplying it by
0.7 after every epoch, starting from sixth one. Every model is
trained for approximately 25 epochs on the server equipped
with one Nvidia GTX 1070 GPU.

For model testing we separate 12,000 random pairs of
descriptions from the dataset; the rest is used for training.
We publish our trained model for easy reproduction of the
results13.

After training, when translating queries to API sequences we
follow original authors in using beam search [19], a heuristic
search algorithm popular in statistical translation. Instead of
generating only the most probable word on every step, we
generate multiple, and then keep only several most probable
sequences. This approach solves problem of discarding good
translation sequences because of some sub-optimal words.

VI. EVALUATION

A. Metrics

In the area of API mining there are no universally adopted
metrics. For better comparison to the original paper we follow
in its steps and calculate BLEU score [20] for intrinsic
evaluation, FRank score [6] and Precision@N for extrinsic
one.

1) BLEU: BLEU is a standard metric used in machine
translation to evaluate how closely generated translation re-
sembles reference one. It does not consider grammar or others
high-level features, instead calculating corrected geometric
mean of n-gram precision on the whole test set [20].

Since we expect the model to generate sequences of API
calls similar to the ones extracted from human-written source
code, n-gram approach is applicable to our situation. The
theoretical foundations of the metric stand in our case, despite
target language being language of API calls rather than natural
language.

BLEU is reported on the scale from 0 to 100, where higher
score corresponds with bigger similarity between generated
and reference sequences.

2) FRank: FRank metric value is the position of the first
relevant result in the ranked list, as decided by a human
evaluator. Such a metric is justified by two facts. Firstly, good
scores of it show that the model has solved exactly the problem
we intended for it, i.e. the problem of translating from English
to relevant API calls. It was possible for the model to learn
a target function uninteresting for us, in which case human
evaluators would not find in model output API calls, relevant
to the input.

Secondly, it is known that humans scan through ranked
results from top to bottom [21], thus making it a desired trait
for a model to rank relevant output higher.

13http://public-resources.ml-labs.aws.intellij.net.s3.amazonaws.
com/deep-api-sharp/deep-api-sharp-model.t7

59

https://github.com/pascanur/GroundHog
http://public-resources.ml-labs.aws.intellij.net.s3.amazonaws.com/deep-api-sharp/deep-api-sharp-model.t7
http://public-resources.ml-labs.aws.intellij.net.s3.amazonaws.com/deep-api-sharp/deep-api-sharp-model.t7

In our case FRank is measured on the scale from 1 to 10
(since similar to the DeepAPI paper, our model generates 10
outputs for every query), where lower is better. Where models
fail to provide relevant results, FRank is considered to be 11.

3) Precision@N: Precision@N measures percentage of the
relevant results in the first N outputs produced by the sys-
tem. Following DeepAPI, we report Precision@5 and Preci-
sion@10 (note that the term used in the DeepAPI paper is
”relevancy ratio N”, which does not seem to be an established
term).

This metric is reported on the scale from 0 to 100, where
higher is better.

B. BLEU evaluation

In table II we report results of our experiments in terms
of BLEU score. We start experiments with model architecture
reported in the original paper and achieve surprisingly bad
results of 10.94 BLEU, which is significantly worse than 54.42
BLEU reported in the paper. Since Java and C# are fairly
similar, we expected original model to work better. Possible
explanation may lie in the size of our dataset, which is more
than 5 times smaller.

Model with tuned parameters achieves higher BLEU score
of 26.26, which is still far from the original results.

After introduction of our preprocessing steps a 94% increase
in BLEU is obtained, and the resulting score of 46.99 comes
fairly close to the reported performance of the DeepAPI model.

The best result is achieved by model№8, where we employ
transfer learning techniques and pretrain the model on the
alternative dataset of method names. Additional analysis of
transfer learning application is presented in section VI-C.

Model №4 was trained on the alternative dataset of the
method names (with the size of 1,967,414 pairs) and yielded
not outstanding BLEU score of 28.57. So our model performs
worse on the alternative dataset, which is logical, given that
it is not in grammatically correct English and sometimes
does not provide good descriptions of functionality, as already
discussed in section IV.

To measure if number of training instances indeed impacts
model result, as we hypothesized, we try to train the model on
800,000 samples as opposed to the usual 1,397,597. This is
the model №5, and it achieves 36.63 BLEU, which is worse
than 46.99 achieved under the same parameters, but bigger
dataset size. This leads us to the conclusion that dataset size
is vital for model performance.

C. Transfer Learning evaluation

We ask several questions regarding our application of trans-
fer learning techniques:

1) Does it improve our results?
2) Can we use the model itself for pretraining, without

utilizing model trained on alternative dataset?
3) Is transfer learning necessary for performance improve-

ment, or are instead our two datasets so similar that they
could be merged and considered one big dataset?

TABLE II: BLEU scores for various models

№ Parame-
ters Dataset Prepro-

cessing

Transfer
learning

from
model
№

BLEU

Parameter tuning
1 original comments - - 10.94
2 tuned comments - - 26.26

Preprocessing data
3 tuned comments yes - 46.99

Different datasets
4 tuned names yes - 28.57

5 tuned comments
(part) yes - 36.63

6 tuned comments
and names yes - 44.31

Transfer learning
7 tuned comments yes 3 46.18
8 tuned comments yes 4 50.14

We answer these questions with several experiments, and
come up with following answers:

1) Transfer learning leads to the best results achieved by
us (model №8 with BLEU score of 50.14).

2) A model with sub-optimal parameters (which we do not
include in the table in order not to clutter it) is improved
by approximately 2.5 BLEU when pretrained on itself.
However, best model is not, as shown by performance
of model №7, that achieves only 46.18 BLEU, which
approximately equals the result of the model №3 used
for pretraining. So bootstrapping with the dataset itself
may make sense sometimes, but not always. Presumably,
model №3 was trained so well that there was no room
for improvement.

3) We try to merge comments and names in one dataset,
which we use for training model №6. Resulting BLEU
score of 44.31 is better than using only names (28.57
BLEU, model №4), but worse than using only com-
ments (46.99 BLEU, model №3). Thus we conclude
that datasets are fairly different and should not be used
together in a straightforward way.

D. Human evaluation

DeepAPI reports FRank, Precision@5, Precision@10 on
two types of queries: popular ones, that often occur in Bing
search log [6], and ones designed to showcase abilities of the
proposed approach, including handling of semantically similar
requests, longer input handling, combination of several tasks.

We would like to address a potential problem in evaluating
the model on queries from the first group. While the DeepAPI
paper reports that they do not occur in the training dataset, it
seems unlikely since they were chosen for the perk of being
popular, i.e. widespread, and authors do not mention filtering
them out.

We test the hypothesis that such popular queries occur in the
dataset by searching for them in ours. In our training data most

60

of these popular inputs occur multiple times as exact matches.
For example, ”copy file” occurs 14 times, ”reverse string”
occurs 7 times, ”execute sql statement” occurs 14 times. We
conduct this search after filtering out non-unique pairs, so for
these occurrences API calls do not coincide, however, they
are very similar. Therefore we believe that testing on such
inputs makes little sense, because it essentially means testing
on the training set, which speaks only about the model’s
ability to memorize. And that is expected from any model,
and consequently is not very interesting.

However, to show that our model is capable of that, we test
on 5 of these queries (the first 5 queries in table III).

But more interesting is the inspection of the model’s ability
to generalize, i.e. use gained knowledge to work with novel
data. The model should be able to handle combined or seman-
tically similar requests that are not included in the training
data. We evaluate our model on 4 new queries, constructed
for this exact purpose, and one such query from the DeepAPI
paper. Since DeepAPI paper does not report results on 4
new queries, we used online demo of their tool14 to generate
corresponding sequences.

To avoid conflict of interest, we ask 5 professional devel-
opers to evaluate extrinsic metrics for our model. Since the
correspondence between query and model output is viewed
differently by every developer and is up to debate, we consider
relevant only those answers that were marked as relevant by
at least 2 developers.

In the table III we report results of extrinsic evaluation.
In general our model performs approximately the same as the
original, which, having established importance of data and our
lack of it, we consider an achievement.

Our model produces slightly less amount of relevant outputs
(as shown by Precision@N scores), but ranks these outputs
slightly higher (as shown by FRank).

Good performance on the first 5 queries demonstrate that
our model is capable or memorizing correct answers, and
outputs to the second 5 queries show that it can manage long
requests, that require performing several action, as well as
semantically similar requests.

However, both models are not very stable to slight semantic
variations in the input. For example, query ”create socket
and then send text” is understood very well by DeepAPI,
while DeepAPI# produces low amount of relevant answers,
and on the contrary, query ”write text using socket” perplexes
DeepAPI, that generates no socket-related calls in the top 10
results, while DeepAPI# generates only relevant output.

Additionally it should be noted that while model outputs
are not directly comparable due to different target languages,
both models should still be able to correctly answer queries
we are testing them on, since these tasks are fairly common
and programming-language-independent.

E. Limitations
As already discussed in previous section, our model can be

inconsistent and sensitive to query wording. While DeepAPI#

14http://211.249.63.55/

is capable of understanding synonymous queries and gener-
ating similar relevant output, it does not generate exactly the
same sequences.

Also, our model is data-hungry. While we do not artificially
limit our vocabulary with standard C# library, as DeepAPI
does with Java and JDK, we still observe that the model cannot
take into account APIs with low amount of usages. It can work
with extremely popular Math.NET and Json.NET, but not with
many other frameworks, even though their APIs are included
in the model dictionary. It remains an open problem for the
further research to find ways to make model less data-hungry,
or to fine-tune it for use of specific not very popular libraries.

VII. RELATED WORK

A. API usage pattern mining

This group of projects is primarily concerned with extract-
ing common usages of the library. The first algorithm to mine
API patterns was MAPO [22]. It starts with clustering API
sequences, then for every cluster finds API calls that are
the most frequent there and passes those to an API usage
recommender, that ranks API calls according to their similarity
to the code context.

UP-Miner [23] improves upon MAPO by using API call
sequence n-grams as a clustering metric and an additional
clustering step. A near parameter-free approach PAM [4]
significantly outperforms both MAPO and UP-Miner, intro-
ducing a probability model constructed in the form of a joint
probability distribution over API calls observed in code and
the underlying unobserved API patterns, used by developer.
Acharya et al. [24] extract API patterns as partial orders,
and unfortunately do not compare results to those of previous
approaches.

The differences of these projects from our work are twofold.
Firstly, these models do not allow user to specify their exact
needs (MAPO and UP-Miner take API call as input, but an
API call can be utilized in more than one scenario, therefore
using it as input can be ambiguous; PAM and framework
of Acharya et al. do not ask for input). This leads to the
output containing many samples irrelevant to user, while not
guaranteeing to provide those he was wishing for. Secondly,
to use such models one needs to know beforehand which API
calls (in case of MAPO and UP-Miner) or libraries (in case
of PAM and framework of Acharya et al.) he is interested in.
Our approach allows for recommendation of APIs to use, as
well as the specifics of the usage.

B. Generating source code from natural language

Code generation based on natural language input is one of
the holy grails of Computer Science. It could be seen as a more
promising alternative to our problem: after all, rather than
generate API call sequence and leave it to software developer
to write code utilizing it, it would be better to just generate
code in the first place.

However, current research in the area seems to be far
from this dream. It mostly focuses on Domain Specific Lan-
guages [25], [26], which are simpler than general-purpose

61

http://211.249.63.55/

TABLE III: Extrinsic model evaluation

Query DeepAPI DeepAPI# DeepAPI# outputFRank P@5 P@10 FRank P@5 P@10
convert int to string 2 40 90 1 80 50 CultureInfo.InvariantCulture Int64.ToString
convert string to int 1 100 100 3 40 50 Int32.TryParse
get current time 10 10 10 1 60 40 DateTime.Now
get files in folder 3 40 50 1 80 90 DirectoryInfo.GetFiles FileInfo.Name List.Add
generate md5 hash code 1 100 100 1 80 60 MD5.Create Encoding.GetBytes MD5.ComputeHash

Byte[].Length StringBuilder.Append
StringBuilder.ToString

copy a file and
save it to a destination path

1 100 100 2 40 40 File.Exists String.Equals File.Exists IO.File.Copy

create socket and
then send text

1 100 90 3 20 10 AddressFamily.InterNetwork SocketType.Stream
ProtocolType.Tcp Socket.Connect Encoding.GetBytes
Socket.Send SocketShutdown.Both Socket.Shutdown
Socket.Close

write text using socket - 0 0 1 100 100 ASCIIEncoding.GetBytes Socket.Send
connect to database and
execute statement

1 80 50 6 0 30 IDbConnection.Open IDbConnection.CreateCommand
IDbCommand.CommandText
IDbCommand.ExecuteScalar Convert.ToInt32
Exception.ToString Console.WriteLine
IDbConnection.Close

download from url and
save image

3 20 20 1 60 50 String.IsNullOrEmpty WebClient.DownloadFile

Average scores 3.4 59 61 2.0 56 52

programming languages and have by definition limited usage
domain.

Recent developments in generating code in general-purpose
languages include works by Ling et al. [27] and Yin et al. [28].
The first paper proposes a novel approach of Latent Predictor
Networks that allows for better copying of relevant key words
from input to output. The second paper introduces a special
version of Encoder-Decoder model (employed by us as well
and described in section II), where Decoder is tailored to
generate syntax trees as opposed to sequences.

The main difference between these works and ours lies
in the datasets. Ling et al. and Yin et al. report results on
two datasets: code of Hearthstone cards and annotated Django
code (Ling et al. also report results on the dataset of code
of Magic the Gathering cards, but this dataset is semantically
very similar to the Hearthstone one). The target code for the
Hearthstone dataset is rather homogenous and limited to small
subset of the wide variety that is the Python language, thus
resembling code in DSL more, than code in general-purpose
language. And while Django dataset covers various usage
scenarious, it contains impractically sesquipedalian natural
language descriptions of every line of code. For example the
description of line ”for i in range (0, len (result)): ” is ”for
every i in range of integers from 0 to length of result, not
included”. The generation of code from descriptions several
times longer than itself seems impractical.

Our dataset, on the other hand, contains wide variety of
API usages, described by reasonably long sentences like
”Serializes to JSON”, which resemble real queries written by
programmers in order to look up interesting APIs.

C. Deep neural machine translation and source code

Deep API Learning [7] paper itself was published in 2016, is
widely cited, but little work has followed from it. The authors
went on to successfully apply the neural machine translation
approach to code migration between Java and C# [29], which
shows that the proposed architecture can model both languages
of API sequences well.

Lin et al. [30] similarly to us apply the Encoder-Decoder
approach to a different target language, specifically Bash. They
succeed, but it should be noted, that their research problem is
a simpler one in terms of target language used, since only 17
commands were selected from Bash. Together with command
flags, types of open-vocabulary constants and logical connec-
tives (&&, ||, parentheses) total output dictionary size does not
exceed 300. To contrast that, our work is concerned with the
same API dictionary size as original paper, which is 10,000
and therefore requires vastly bigger dataset and more complex
model.

VIII. CONCLUSION

In this paper we applied deep learning approach for rec-
ommendation of C# APIs, removing one of the threats to the
validity of the paper that originally proposed this approach for
Java. To achieve this goal, we collected massive dataset, intro-
duced several data preprocessing steps, and finally employed
transfer learning techniques.

Extending DeepAPI’s approach turned out to be nontrivial
even for a similar language. Nonetheless, its main idea of
modelling API sequences with RNN Encoder-Decoder stands.

Data preprocessing steps, suggested by us, are not de-
pendent on C# and should therefore be applicable to any

62

programming language, thus they should make extending the
approach even to very different languages much easier.

By releasing data, code and trained model we hope to allow
repeatability of the experiments and to inspire further research
in the area.

ACKNOWLEDGMENT

The authors would like to thank JetBrains Research15 for
providing a GPU-equipped server for fast machine learning
models training, as well as for the Young Researcher stipend
granted to our team. Additionally we would like to thank
Kirsanov Alexander and other friendly developers from the
JetBrains ReSharper team for their input in evaluating FRank
and Precision@N metrics.

REFERENCES

[1] M. P. Robillard and R. Deline, “A field study of api learning
obstacles,” Empirical Software Engineering, vol. 16, no. 6, pp.
703–732, 2011.

[2] M. P. Robillard, “What makes apis hard to learn? answers from
developers,” IEEE software, vol. 26, no. 6, 2009.

[3] J. Stylos and B. A. Myers, “Mica: A web-search tool for
finding api components and examples,” in Visual Languages
and Human-Centric Computing, 2006. VL/HCC 2006. IEEE
Symposium on. IEEE, 2006, pp. 195–202.

[4] J. Fowkes and C. Sutton, “Parameter-free probabilistic api
mining across github,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2016, pp. 254–265.

[5] S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia, “Static
specification mining using automata-based abstractions,” IEEE
Transactions on Software Engineering, vol. 34, no. 5, pp. 651–
666, 2008.

[6] M. Raghothaman, Y. Wei, and Y. Hamadi, “Swim: Synthesizing
what i mean-code search and idiomatic snippet synthesis,” in
Software Engineering (ICSE), 2016 IEEE/ACM 38th Interna-
tional Conference on. IEEE, 2016, pp. 357–367.

[7] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM,
2016, pp. 631–642.

[8] A. Chebykin, M. Kita, and I. Kirilenko, “Deepapi#: Clr/c# call
sequence synthesis from text query.”

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in neural informa-
tion processing systems, 2014, pp. 3104–3112.

[10] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[11] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, 1997.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[13] P. H. Calais Guerra, A. Veloso, W. Meira Jr, and V. Almeida,
“From bias to opinion: a transfer-learning approach to real-
time sentiment analysis,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2011, pp. 150–158.

15https://research.jetbrains.org/

[14] B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer learning
for low-resource neural machine translation,” arXiv preprint
arXiv:1604.02201, 2016.

[15] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush,
“Opennmt: Open-source toolkit for neural machine translation,”
arXiv preprint arXiv:1701.02810, 2017.

[16] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to
forget: Continual prediction with lstm,” 1999.

[17] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Acoustics, speech and
signal processing (icassp), 2013 ieee international conference
on. IEEE, 2013, pp. 6645–6649.

[18] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the max-
imum of a regression function,” The Annals of Mathematical
Statistics, pp. 462–466, 1952.

[19] P. Koehn, “Pharaoh: a beam search decoder for phrase-based
statistical machine translation models,” in Conference of the
Association for Machine Translation in the Americas. Springer,
2004, pp. 115–124.

[20] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a
method for automatic evaluation of machine translation,” in
Proceedings of the 40th annual meeting on association for
computational linguistics. Association for Computational
Linguistics, 2002, pp. 311–318.

[21] L. A. Granka, T. Joachims, and G. Gay, “Eye-tracking analysis
of user behavior in www search,” in Proceedings of the 27th
annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2004, pp. 478–
479.

[22] T. Xie and J. Pei, “Mapo: Mining api usages from open source
repositories,” in Proceedings of the 2006 international workshop
on Mining software repositories. ACM, 2006, pp. 54–57.

[23] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang,
“Mining succinct and high-coverage api usage patterns from
source code,” in Proceedings of the 10th Working Conference
on Mining Software Repositories. IEEE Press, 2013, pp. 319–
328.

[24] M. Allamanis and C. Sutton, “Mining idioms from source
code,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM,
2014, pp. 472–483.

[25] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare,
M. Marron, S. Roy et al., “Program synthesis using natural
language,” in Proceedings of the 38th International Conference
on Software Engineering. ACM, 2016, pp. 345–356.

[26] S. Gulwani and M. Marron, “Nlyze: Interactive programming
by natural language for spreadsheet data analysis and manipula-
tion,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. ACM, 2014, pp. 803–814.

[27] W. Ling, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, A. Senior,
F. Wang, and P. Blunsom, “Latent predictor networks for code
generation,” arXiv preprint arXiv:1603.06744, 2016.

[28] P. Yin and G. Neubig, “A syntactic neural model for general-
purpose code generation,” arXiv preprint arXiv:1704.01696,
2017.

[29] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deepam: Migrate
apis with multi-modal sequence to sequence learning,” arXiv
preprint arXiv:1704.07734, 2017.

[30] X. V. Lin, C. Wang, D. Pang, K. Vu, and M. D. Ernst,
“Program synthesis from natural language using recurrent neural
networks,” Technical Report UW-CSE-17-03-01, University of
Washington Department of Computer Science and Engineering,
Seattle, WA, USA, Tech. Rep., 2017.

63

https://research.jetbrains.org/

In-Kernel Memory-Mapped I/O Device Emulation
Vitaly Cheptsov

Ivannikov Institute for System Programming
of the Russian Academy of Sciences;

Higher School of Economics
Moscow, Russia

cheptsov@ispras.ru

Alexey Khoroshilov
Ivannikov Institute for System Programming

of the Russian Academy of Sciences
Moscow, Russia

khoroshilov@ispras.ru

Abstract—Device emulation is a common necessity that arises
at various steps of the development cycle, hardware migration, or
reverse-engineering. While implementing the algorithms behind
the device may be a nontrivial task by itself, connecting the
emulator to an existing environment, such as drivers intended to
work with the actual hardware, may be no less complex. Devices
relying on memory-mapped input/output are of a particular
interest, because unlike port-mapped input/output there is much
less of a chance that the target platform provides a direct
interface to intercept the transmissions. A well-known approach
used in various virtual machine software is to put the entire
operating system under a hypervisor and build the emulator
externally. This may not be desirable for reasons like hypervisor
complexity, performance loss, additional requirements for the
host hardware. In this paper we extend this approach to the
kernel and explain how it may be possible to build the emulator
by relying on the existing interfaces provided by an operating
system.

Index Terms—device emulation, memory-mapped i/o, kernel
modules

I. INTRODUCTION

One of the common engineering demands is device emu-
lation. It may arise during the software development cycle,
for example, in testing or driver verification, at hardware
migration, when there is no easy way to rewrite the existing
software. Other than that, in the world of proprietary hardware
and software it is not rare that the only way to understand and
document the device abilities is to reverse-engineer it, and
the ability to dynamically debug or reverse-engineer the code
could be the key in security analysis or adding the device
support to a virtual machine.

Speaking of virtual machines, or rather hypervisors, building
the entire virtual stack for a single device one needs to emulate
is often an overkill due to performance reasons, although it
could be partially mitigated by hardware-assisted virtualisation
and software compatibility. The latter may involve working
on completely unrelated parts of the driver stack and result in
unnecessary costs for continuous support.

However, while the development of full platform emulators
is a considerably common topic with abundance of existing
papers and products like qemu, bochs, iOS simulator, etc.,
peripheral emulation is much less widespread. In some cases
virtual machine guest tools do try to mimic certain hardware,
but even that is usually implemented as a part of a full scale
platform emulation. The problem with the peripherals is not

just in implementing the algorithms behind the device, which
may be a nontrivial task by itself, but also connecting the
emulator to an existing environment, such as other drivers
above in the stack intended to work with the real hardware.

Since one of the important aspects of using any peripherals
is the ability for the CPU to communicate to them, the
common demand for a device emulator is to provide a way to
do it. Presently there are two common low-level approaches to
perform input and output operations: port-mapped I/O (PMIO)
and memory-mapped I/O (MMIO). While there are other ways
such as involving some dedicated hardware, they are relatively
less widespread. High-level communications operating on a
packet basis (like USB bus) usually go through the dedicated
abstraction layer, and thus may be implemented with the
standard APIs offered by the operating system without any
special effort.

It is fairly easy to implement communication protocols with
a hypervisor, the standard approach is to ensure that accessing
certain memory exits the virtual machine context (vmexit),
which is later handled by the implementation. However, as
we mentioned previously, the use of a hypervisor may be im-
practical, and we have to look for other means of intercepting
memory access. Since direct memory access is very common,
yet quite problematic to intercept, in this paper we explain
how one could implement a considerably portable MMIO
emulator in the kernel and cover the details of emulating
device communication protocols on common platforms.

II. STATE OF THE ART

We admit to not being the first to experiment with pe-
ripheral device emulation. Every single year several pub-
lished papers in the field of hardware virtualisation cover
this topic to a certain level. Articles published by VMware
Inc. researchers [1] [2] provide an in-depth coverage of x86-
compatible hardware emulation. They explain the existing
obstacles and necessary actions to be taken to implement a
complete virtual stack from the CPU to network adapters. In
their works they pay a lot of attention to performance optimi-
sation, hardware-assisted virtualisation and show a visible per-
formance penalty reduction over the new CPU generations in
Virtualization nanobenchmarks section of the first referenced
paper.

64

As a result of continuous contribution from different parties
and competitive product development, the general hypervisor
performance has dramatically improved. While GPU emula-
tion is out of the scope of this paper, it should be admitted
that there are several works which do manage to provide a
complete GPU emulation at a reasonable performance [3] [4].
These works feature an open GPUvm platform in the Xen
hypervisor.

Another related direction involves security analysis or
reverse-engineering. While less frequently found in academic
writing, there are several products, tools, and patches for
Linux intended to log execution details from the Linux kernel
for later analysis. One of the most well-known toolsets is
Linux Trace Toolkit, and one of the most prominent cases
of applying the approach in practice is for Nouveau driver
development for NVIDIA GPUs. Enabling OS Research by
Inferring Interactions in the Black-Box GPU Stack by Kon-
stantinos Menychtas, Kai Shen, and Michael L. Scott [5]
provides a good coverage in detail.

III. BASIC I/O INTRODUCTION

Port-mapped I/O is usually more demanding to the CPU
instruction architecture and requires a number of so-called
ports the devices will be mapped to, and perhaps a dedicated
instruction set to access these ports as well. Because the device
memory is accessed indirectly, another name for PMIO is
detached I/O.

As an example, one of the most popular architectures to
implement PMIO is x86. It can be utilised by means of two
dedicated instructions: in and out, which enable one to
receive and send 8, 16, or 32 bits of data to a port from 0
to 65535. Since there are faster ways to perform I/O on x86
and PMIO is not recommended for use nowadays, in some
literature it may be referred to as legacy I/O. This may not be
the case for other architectures found in micro-controllers, but
in general MMIO support is increasing.

Memory-mapped I/O involves direct mapping of the device
memory to the host memory, enabling the software to access
the device just like a normal chunk of noncacheable RAM
with the use of the native instruction set. Since MMIO imple-
mentation is often faster than PMIO and sometimes simpler to
use, it will be the one to opt for when implementing a device
communication protocol. For example, on x86 various devices
installed as PCI extension cards or system management con-
trollers make a use of it.

Virtual devices are not supposed to be functionally different
from real hardware. For this reason emulators have difficulties
supporting I/O communication protocols. The taken approach
varies depending on the demands and available resources, but
usually one of the following is used:

• Custom device development
• Driver reimplementation
• Building a hypervisor
Sadly each of these has serious limitations, and most of

them create obstacles for generic peripheral emulation.

Device Driver Hypervisor
Software independency + − ±
Low costs − ± +
Legal issues + − −
Infrastructure depend. − + −
Forward compatibility + − +
Performance + ± ±
Other device support + + −

Table 1. Pros and cons summary

Developing a new device by extending a microcontroller
to offer a required interface or creating an entire chip mostly
works for very simple devices when a single copy is going to
be used for some kind of deep debugging or instrumentation. A
good example could be removable BIOS chips for debugging
or HDMI to VGA adapters with HDCP decoding. While this
solution is very reliable for creating a test device, the results of
mass-producing a customised device will likely be not worth
the effort. It will be either more expensive or worse in quality.
In addition it is important to have the legal part of the question
in mind and avoid patent infringement. However, this method
could be most reliable when it comes to stability.

Reimplementing the driver to support another communi-
cation interface for the virtual device is very useful when
working with performance-critical hardware such as GPUs.
For them each extra communication layer may heavily affect
the performance due to high bandwidth usage, and that is why
virtualisation software implements extended GPU support (like
DirectX or OpenGL) in such a way. However, in our case it
defeats the entire purpose of creating a virtual device. If the
point is to test the driver, it will no longer stay the same. If
the reason is to support a proprietary driver, one will have to
reverse-engineer it and have issues every time it gets updated.

Bringing in a virtual machine with a hypervisor is a way
to overdo it. While a decent virtual machine has a wide range
of supported hardware, it adds a lot of downsides as well. In
particular there will always be potential performance issues,
even with hardware-assisted virtualisation support. More than
that, compatibility issues will likely become a blocker if the
rest of the environment is not generic and well-known. It is
unfortunate, but even the mainstream operating systems may
be unwilling to expose new interfaces for virtual machines
(like most of the graphical stack on Apple macOS).

IV. INTERCEPTING THE I/O
As a result I/O interception comes out as a pragmatic

way to achieve the goal. Despite not being very common,
software and hardware have enough capabilities to intercept
raw device communication without touching the higher level
drivers themselves.

For example, for the past 8 years the recent x86 firmwares
contain a dedicated UEFI System Management Mode [6]
protocol to intercept PMIO. This protocol originally ex-
isted as a EFI_SMM_IO_TRAP_DISPATCH_PROTOCOL
protocol1, but later on was extended with an additional

1GUID: 58DC368D-7BFA-4E77-ABBC-0E29418DF930

65

IO_TRAP_EX_DISPATCH_PROTOCOL protocol2. Both pro-
tocols allow you to create direct handlers to intercept the port-
mapped access. By design, the management mode affects the
operating system code as well, so it works throughout the boot
process and is fully transparent to the higher level software im-
plementations like OS kernel or drivers. However, aside from
not being very well documented, third-party code execution
in the System Management Mode is generally prohibited. So
even if one is to reimplement the SMI handler similar to what
Intel offers with the open source platform code, it will be of
no use for anyone but UEFI firmware developers.

Fortunately, most of PMIO interface code is usually well
abstracted in the kernel, and when it comes to intercepting
you could just replace the underlying low level function
implementation within the emulator context. However, devices
relying on MMIO are of a particular interest, because unlike
PMIO there is a much less chance that the target platform
provides a direct interface to intercept the transmissions.

For embedded devices it may well be sufficient to statically
analyse the firmware, find the instructions responsible for I/O,
and either dynamically or statically overwrite them to jump
to prepared thunks that will handle them accordingly. This
approach is common for security analysis especially when very
little is known not only about the explored peripherals but the
whole controller. However, since the firmware or the driver
may receive updates in the future, this approach is not very
effective outside of security or code coverage analysis, and the
like.

One of the first ideas that comes to mind due to the nature
of MMIO writes is relying on CPU debug registers. These
registers (e.g. DR on Intel or BP_CTRL/BP_COM on ARM
Cortex) allow you to implement hardware breakpoints or rather
watchpoints, which may trap read and write access. However,
these registers are very few, and their scope area is small (i.e. a
32-bit or 64-bit word). Other than that, the kernel, debuggers,
or other software may use these registers for their own needs,
which leads to them being simply impractical for this kind of
work.

In general-purpose operating systems with defined kernel
APIs there are much better ways, such as a page protection
mechanism, which is used to implement watchpoints in soft-
ware. While this is suitable for doing MMIO emulation, most
of the known works relying on this technique either use it for
tracing or just for debugging backends. The notable example
is MMIO trace in Linux, which was originally developed to
reverse-engineer proprietary NVIDIA drivers by tracing the
register access [7]. Other than that there hardly are very few
examples of how it can be utilised for device I/O emulation.

V. PROPOSED APPROACH

The idea of general purpose I/O interception is very simple:
catch reads and writes, make sure that the values read are
correct, and the values written are accounted for. To apply it
to MMIO we could limit page protection of the target area, and

2GUID: 5B48E913-707B-4F9D-AF2E-EE035BCE395D

trap the faults as they happen. Due to bandwidth limitations
and architecture simplicity the I/O sequences are generally
serialised, even if they happen from different threads. It may
not be the case for GPUs, yet GPUs likely will not need this
kind of emulation due to performance reasons. Still, in general
if serialised I/O is not guaranteed even within a single memory
page (which is rare) one could always implement it manually
by utilising the synchronisation primitives.

Therefore, the most obvious approach will be:
1. Mark the relevant page as neither writable nor readable

(not present in x86 terms).
2. Catch a fault and decode the fault address and the

direction (in or out).
3. Disassemble the instruction that caused the fault and

obtain its operands from the frame.
4. Handle the operands for the emulation.
5. Update the destination registers or memory for the reads

as necessary.
6. Return to the location after the instruction, which caused

the fault.
While it indeed solves the problem and looks very straight-

forward, the implementation itself could be very convoluted.
While the saved context is likely to contain the fault and return
addresses, bringing a full-scale disassembling framework to
the kernel is inflexible due to extra architecture dependencies
and considerable amounts of code required for instruction
emulation. Even more, it may impose additional performance
penalties, which are already tough enough.

For these reasons we tried to alter the algorithm in a way
that would be simpler, less platform-dependent, and similarly
performant. After examining several real-world examples we
consider the following model of a MMIO-based I/O protocol,
which could be applied to quite a number of devices:

1. Host ensures that the target is ready for an I/O operation.
2. Host performs the I/O operation (by reading or writing

at a defined address space).
3. Host ensures that the operation is complete and repeats

the process.
The 1st and 3rd steps are usually implemented as a write-

and-poll, a write-and-interrupt or just as a poll. Another
advantage comes out from common differences in frequencies
between the host and the peripheral. Since communications
usually happen between the devices with different clock bases,
most of the protocols are synchronous, and the host generally
does not overwrite the areas it has just written to without
making a read to confirm it was successful. Even more, most
of the protocols are stateful, and it is uncommon to see
subsequent reads from the same place expecting the value to
change more than once. A write operation will most likely
appear in-between.

Under these assumptions we use a simple satisfactory trans-
action model as an example:

1. Write operation type (read or write).
2. Read acknowledge status until status ready.
3. Handle the values.

66

3.1. Read the value for read operations.
3.2. Write the value for write operations and read acknowl-

edge status until status ready.

A. With write-only page support

If write-only pages are supported, in a number of cases
one may implement a flip-flop approach, that will switch page
protection from read-only to write-only and backwards as the
process goes.

To emulate the proposed transaction we could start the
communication process with the page marked as read-only,
which will then trap on operation type. Here we will initiate
the transaction and switch the protection to write-only. After
the operation is written the trap on the status read will trigger,
where we will read the written operation type, update the
value for read operations and set its status. Afterwards the
page protection is returned to read-only and the control is
transferred back to the driver. For read operations that is all
of it, for write operations the driver will read the status and
attempt to perform the actual write, which should trigger the
trap again. From there on one could repeat the process as
described for the operation type. In the end for both reads and
writes page protection returns back to read-only, eliminating
any platform-specific disassembling and relying on generic
approach.

Expectedly one does not have any easy access to write-only
pages on popular architectures such as ARM [8] or x86. Per-
haps, if these architectures were originally designed at present,
when the demand for better memory protection management
is much higher and when features like WˆX memory and
execute-only memory have already become commonplace, we
would have had finer memory management that would support
write-only pages. However, nowadays write-only pages are not
very common in both hardware and software implementations.
Certain PowerPC implementations [9] or processor extensions
may provide access to them, so it remains a good idea to
check CPU manuals before abandoning the try. For example,
Intel x86 processors starting from Nehalem technically support
write-only memory via EPT (Extended Page Tables [10]), yet
it can hardly be used for anything but virtualisiation.

B. Without write-only page support

When write-only pages are not available, we may still
be able to work out a simpler approach, and this is where
memory patching comes in hand. The idea is to let the original
instruction perform the I/O just as normal, but to encode a
jump-back instruction right afterwards to ensure that page
protection is limited again to trap the next I/O operation.
Initially this approach may appear to have too many issues to
be considered in practice, however, they could all be solved
with enough effort, and some of them could even be turned
into benefits.

The first issue to solve is the length of the faulted instruc-
tion. A number of architectures provide fixed-length instruc-
tion sets, so the next instruction address to encode our jump-
back instruction could be calculated even without knowing

anything about the current instruction. For others one could
write or find simple instruction fetchers, to only decode the
length without operand or operation details. Such software
may also go under the name of length disassemblers, and
various implementations exist for popular platforms [11]. It
may become a little more involved when the I/O instruction
results in non-linear control flow, but in general I/O and
branching instructions belong to separate classes and are not
mixed together.

The second issue occurs when the device memory is mapped
to userspace and the communication happens in userspace as
well. In this case a direct jump to protection restoration code
is not possible, and a breakpoint or similar instruction will
have to be encoded to trigger the context switch, return to the
kernel and pass the control to our handler.

The third and probably the most serious issue happens
when I/O operations are performed through shared code. By
assuming serialised I/O we consider no cases of simultaneous
code execution from the same area (unless there are multiple
devices). Therefore we could safely patch it. However, nothing
prohibits the driver from utilising generic memory primitives
like memcpy or memset to bulk-write or read the dedicated
area. These primitives generally have no effect on the I/O
itself, and we do not need to intercept every byte they touch.
To avoid the issue one could examine the stack trace and
modify the instruction at the return address. Not only this does
not require disassembling but also reduces the penalty from
trapping extra I/O operations, so a quick stack unwinding that
can often be implemented with compiler intrinsics easily pays
off.

With all the pieces put together it creates a solid approach
for a large chunk of I/O protocols. In addition to these
general improvements platform-specific optimisations could
be applied. For example, extra page protection changes may
be avoided for write operations, if the hardware may ignore
interrupts caused by write protection violation (CR0 WP bit on
x86). It should be noted, that one is to pay extra attention to
the scheduler (e.g. disable preemption) not to let it switch the
task to another core, where write protection is on.

VI. EVALUATION

To apply the proposed solution in practice we created a
software-based emulator for the 2nd generation Apple SMC
in a form of a kernel extension for Apple macOS. System
Management Controller (SMC) is a chip commonly found
in Intel-based Apple Macintosh computers or certain Google
Chromebooks. This chip is responsible for computer power
management, display backlight control, HDD monitoring, ther-
mal control, hybrid sleep and hibernation support, external
device current regulation (AirPort, USB, FireWire), charging
the battery, trackpad controls, screen mirroring, etc. This chip
is not essential for computer functioning, and could be viewed
as a convenience feature for a vendor to rely on to centralise
and simplify hardware management.

There are two main generations of SMC controllers in
Apple computers. The 1st generation was built on a 16-bit

67

Renesas H8S/2117 controller and exposed port-mapped I/O
interfaces to communicate with the operating system. The 2nd

and subsequent generations are based on 32-bit ARMv7-A
processors, and expose memory-mapped and port-mapped I/O
interfaces. Both approaches are used to implement the same
functionality within a single synchronous stateful protocol.
Initially the communication happens via the PMIO protocol,
and then a switch to MMIO protocol happens if the device
supports it. The whole communication process happens within
the kernel and the existing drivers for the 2nd generation hard-
ware are closed-source. Fortunately, due to side researchers
the communication protocols are mostly documented [12].

The reasons for taking this particular device into consider-
ation was not only because it is a challenging task compared
to devices with open specifications and decent documentation,
but also for the importance of having better control of the
hardware you use. Apple SMC has complete access to every
device in the system and could monitor the bus communica-
tions. Other than that it stores temporary encryption keys for
hibernation images or user action free restarts (authenticated
restarts), when full disk encryption is enabled. Apple SMC
drivers expose a dedicated protocol to userspace. This protocol
provides a way to obtain SMC data and configure both
SMC and onboard devices. Given its direct connection to the
hardware, it may be possible to inflict damage on the computer
by overheating or causing power surges. Moreover, previous
researches discovered that it was very easy to modify SMC
firmware, which is also a very serious concern [13].

The actual implementation follows the proposed approach
without write-only page support with all the suggested optimi-
sations and certain platform-specific adjustments. SMC MMIO
protocol covers a 64 KB area, which we split into pages with
the dedicated handlers based on the page index. Since the
access to each page is serialised, no additional I/O wrapping
is necessary.

In the XNU kernel, which powers all modern Apple hard-
ware including Macs, Intel CPU exceptions are routed through
a dedicated kernel_trap function. To let the driver com-
municate with the emulated device we added a SMC nub
via the standard I/O Kit APIs with mapped memory regions
with restricted protection and extended the kernel_trap
function in EXC_I386_PGFLT handling code specifically for
our memory.

A simplified version of this code is shown in Listing 1.
ioRegionStart and ioRegionEnd locate the emulated
I/O area starting and ending addresses, appleSmcStart
and appleSmcEnd point to the AppleSMC driver address
range. instrSize function calculates the instruction length
at the return address to later write the jump-back code via
writeTrampoline function, which not only writes the
trampoline code (by disabling the WP bit and interrupts) but
additionally disables CPU preemption to avoid the scheduler
switch.

To transfer the control flow to the protocol emulator
updateProtection is performing the actual protection
upgrade of the emulated I/O area and invokes the read access

auto f a u l t A d d r = s t a t e −>c r 2 ;
i f (f a u l t A d d r >= i o R e g i o n S t a r t &&

f a u l t A d d r < ioRegionEnd) {
auto r e t A d d r = s t a t e −>r i p ;
i f (r e t A d d r >= a p p l e S m c S t a r t &&

r e t A d d r < appleSmcEnd) {
/ / S i mp le case (from AppleSMC)
r e t A d d r += i n s t r S i z e (r e tAddr , 1) ;

} e l s e {
/ / Complex case (from e . g . memcpy)
r e t A d d r = unwindToSMC (s t a t e −>r s p) ;

}

auto f a u l t T y p e = Fau l tTypeRead ;
i f (s t a t e −>e r r & T PF WRITE) {

f a u l t T y p e = F a u l t T y p e W r i t e ;
}
u p d a t e P r o t e c t i o n (f a u l t T y p e , f a u l t A d d r) ;
saveOrgCode (re tAddr , T r a m p o l i n e S i z e) ;
w r i t e T r a m p o l i n e (f a u l t T y p e , f a u l t A d d r) ;
re turn ;

}

Listing 1. Sample code

handler. It should be noted that a dedicated procedure may be
needed for platforms with delayed physical mapping update.
For example, with XNU it is necessary to trigger virtual
memory fault twice when the page is not present. Similarly
the protection restoration routine invoked from the trampoline
preserves the registers and calls the write handler.

As a result it was possible to emulate all the existing SMC
protocols at no issue and avoid the use of the original device.

VII. CONCLUSION

Emulating peripheral devices within the existing operating
system is not a new problem. Different solutions and ap-
proaches have appeared over the years. The industrial demand
for full-stack operating system virtualisation brought their
performance to a completely different level, and the needs for
better customisation resulted in operating system developers
providing more flexible interfaces with the possibility to create
virtual hardware out of the box. Programmable microcon-
trollers made the process of building a device clone with the
necessary features a much simpler task to accomplish.

However, there are numerous cases, where in-kernel pe-
ripheral emulation is highly anticipated, such as driver devel-
opment needs, testing and verification, hardware migration,
security analysis, etc. As we stated, it is often not possible
or extremely impractical to attempt to incorporate virtual
machines due to development costs or performance penalties.
While virtual machines succeed in emulating CPUs of the
same architecture at almost the same speed with hardware-
assisted virtualisation, the performance of other CPUs without
the use of JITs, commonly used in video game console

68

emulators but rarely found in generic virtualisation software,
is often much worse. And in terms of I/O emulation, which is
the primary concern of this paper, the situation is no better.

Furthermore, all the solutions heavily depend on the target
architecture. While it was possible to think of x86 as the main
architecture for personal computers in the beginning of 2000-
s, today the concept of personal computers has shifted away,
and other major players, e.g. ARM, appeared on the market.
With this in mind the classical approach to virtualising the
whole operating system could face severe issues in the future.

The idea of using page protection faults to handle device
I/O events without a hypervisor may be known but not
widespread anywhere out of I/O tracing. In this paper we
described a way to implement a complete MMIO protocol
emulator in the kernel with the use of a generic approach
that has few dependencies on the target architecture and relies
on platform features such as MMU and paging. We showed
that certain target architecture capabilities and device protocol
specifics may affect the implementation, and effectively allow
or disallow a broad range of optimisations. We believe that a
suggested device I/O protocol model is applicable to various
hardware, and give examples on how to simplify and optimise
its implementation. After exploring the existing hardware we
built a SMC emulator in the XNU kernel to illustrate the
suggested approach.

ACKNOWLEDGEMENTS

ISP RAS and SYRCoSE staff for review and comment.
Nikita Golovliov for aid in SMC emulator development. Mar-
vin Häuser for reverse-engineering Apple SMC UEFI drivers.

REFERENCES

[1] Jeremy Sugerman, Ganesh Venkitachalam, Beng-Hong Lim. Virtualizing
I/O Devices on VMware Workstation’s Hosted Virtual Machine Monitor.
Proceedings of the General Track: 2001 USENIX Annual Technical
Conference, 2001, pp. 1-14. http://static.usenix.org/legacy/publications/
library/proceedings/usenix01/sugerman/sugerman.ps.

[2] Keith Adams, Ole Agesen. A Comparison of Software and Hardware
Techniques for x86 Virtualization. ASPLOS XII Proceedings of the
12th international conference on Architectural support for programming
languages and operating systems, 2006, pp. 2-13. https://www.vmware.
com/pdf/asplos235 adams.pdf.

[3] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji. GPUvm:
Why Not Virtualizing GPUs at the Hypervisor? Proceedings of
USENIX ATC ’14, 2014 USENIX Annual Technical Conference,
2014, pp. 109-120. https://www.usenix.org/system/files/conference/
atc14/atc14-paper-suzuki.pdf.

[4] Hangchen Yu, Christopher J. Rossbach. Full Virtualization for GPUs
Reconsidered. WDDD, The Annual Workshop on Duplicating, Decon-
structing, and Debunking, 2017.

[5] Konstantinos Menychtas, Kai Shen, Michael L. Scott. Enabling OS
Research by Inferring Interactions in the Black-Box GPU Stack.
Proceedings of the 2013 USENIX conference on Annual Technical
Conference, 2013, pp. 291-296. https://www.usenix.org/system/files/
conference/atc13/atc13-menychtas.pdf

[6] Unified EFI, Inc. Platform Initialization (PI) Specification. Version 1.6.
2017. http://www.uefi.org/sites/default/files/resources/PI Spec 1 6.pdf.

[7] Jeff Muizelaar, Pekka Paalanen. In-kernel memory-mapped I/O tracing
https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt

[8] Arm Holdings. ARM1176JZ-S Technical Reference Manual.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/
Caceaije.html

[9] NXP Semiconductors. e500mc Core Reference Manual. http://cache.
freescale.com/files/32bit/doc/ref manual/E500MCRM.pdf

[10] Intel. Intel Virtualization Technology: Hardware Support for Effi-
cient Processor Virtualization. http://www.ece.cmu.edu/∼ece845/sp17/
docs/vt-overview-itj06.pdf.

[11] BeaEngine. Length Disassembler Engine for Intel 64-bit processors.
https://github.com/BeaEngine/lde64

[12] CupertinoNet. EfiPkg, AppleSmcIo protocol. https://github.com/
CupertinoNet/EfiPkg

[13] Crowdstrike. Alex Ionescu. ”Spell”unking in Apple SMC Land.
2013. http://www.nosuchcon.org/talks/2013/D1 02 Alex Ninjas and
Harry Potter.pdf

69

http://static.usenix.org/legacy/publications/library/proceedings/usenix01/sugerman/sugerman.ps
http://static.usenix.org/legacy/publications/library/proceedings/usenix01/sugerman/sugerman.ps
https://www.vmware.com/pdf/asplos235_adams.pdf
https://www.vmware.com/pdf/asplos235_adams.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-suzuki.pdf
https://www.usenix.org/system/files/conference/atc14/atc14-paper-suzuki.pdf
https://www.usenix.org/system/files/conference/atc13/atc13-menychtas.pdf
https://www.usenix.org/system/files/conference/atc13/atc13-menychtas.pdf
http://www.uefi.org/sites/default/files/resources/PI_Spec_1_6.pdf
https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Caceaije.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0333h/Caceaije.html
http://cache.freescale.com/files/32bit/doc/ref_manual/E500MCRM.pdf
http://cache.freescale.com/files/32bit/doc/ref_manual/E500MCRM.pdf
http://www.ece.cmu.edu/~ece845/sp17/docs/vt-overview-itj06.pdf
http://www.ece.cmu.edu/~ece845/sp17/docs/vt-overview-itj06.pdf
https://github.com/BeaEngine/lde64
https://github.com/CupertinoNet/EfiPkg
https://github.com/CupertinoNet/EfiPkg
http://www.nosuchcon.org/talks/2013/D1_02_Alex_Ninjas_and_Harry_Potter.pdf
http://www.nosuchcon.org/talks/2013/D1_02_Alex_Ninjas_and_Harry_Potter.pdf

Asymmetric multiprocessor problems of real-time OS

Alexander Emelenko

Ivannikov Institute for System

Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

emelenko@ispras.ru

Andrey Tsyvarev

Ivannikov Institute for System

Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

tsyvarev@ispras.ru

Nikolay Pakulin

Ivannikov Institute for System

Programming

of the Russian Academy of Sciences

Moscow, Russian Federation

npak@ispras.ru

Abstract— Multiprocessor support provides great advantages

in increasing performance of developed products. Of course,

modern operating systems must support multiprocessor

execution too. However, this solution entails many problems

during development, especially for real-time operating system.

Our institute is working on RTOS for civil airborne avionics

called JetOS and in this paper, we present our work in adding

AMP (Asymmetric Multiprocessing) support.

Keywords— real-time OS, AMP, multicore, multiprocessor

I. INTRODUCTION

Asymmetric Multiprocessing or AMP is a system behavior
description where each module, which has its own CPU, is
working independently and plays its own role in system
behavior. For instance, only one CPU has access to I/O
operations. However, it doesn’t mean that these modules can’t
interact.

In most cases, AMP support is the first step to a fully
multiprocessing system which is our next goal in developing
RTOS. Let’s briefly consider the main features of our system.

JetOS is a prototype operating system for civil airborne
avionics. It supports PowerPC, MIPS, ARM and x86
platforms. Also, it is designed to work within Integrated
Modular Avionics (IMA) architecture and implements ARINC-
653 API specification, the de-facto architecture for applied
(functional) software.

The primary objectives of ARINC 653 are deterministic
behavior and reliable execution of the functional software. To
achieve this, ARINC-653 imposes strict requirements on time
and space partitioning. For instance, all memory allocations
and execution schedules are pre-defined statically.

The unit of partitioning in ARINC-653 is called partition.
Every partition has its own memory space and is executed in
user mode. Partitions consist of one or more processes,
operating concurrently, that share the same address space.
Processes have data and stack areas and they resemble the
well-known concept of threads.

ARINC-653 compatible scheduler executes each partition
only within time frame assigned to that partition regardless of
their state. Even when all processes of an application are idle or
waiting for incoming event, CPU switches to another
application only when the time frame elapses. However, there
are some applications (for instance, visualization application)
that need as much CPU time as possible. Of course, we can

give one CPU wholly to these partitions but other CPUs must
have a mechanism to communicate with them.

II. AMP CONCEPT FOR JETOS

Applicable to a real-time operating system, modules can be
RTOSes (such as JetOS) with different partitions, i.e. monitor
or critical plane applications; or it can be different OSes such
as Linux.

In JetOS we developed the following concept of AMP
support:

 Each module has its own kernel image. This kernel image

consists of JetOS itself and a set of applications.

 Modules work independently on separate CPU cores, but

they can exchange messages via shared memory blocks.

 Each JetOS kernel knows that there are other kernels in the

system. It must use only those slices of physical memory

which had been statically defined for this kernel.

Fig. 1. JetOS AMP architecture

III. SPECIFIC CHALLENGES OF AMP FOR RTOS

Developing a multiprocessor support for a real-time OS is
not a simple task. During development, we faced many
challenges .

First of all, we should divide physical memory between all
modules and this solution must support easy switch between
configurations, i.e. adding or removing a module, changing
partition number for module etc. Moreover, we must secure all

70

modules from each other and provide communication
mechanism for them.

Secondly, fault tolerance is also important in a real-time
OS. There are different situations during the flight and a critical
error in one module must have no influence on other modules.
Of course, we should have a mechanism to restart such
modules in real time.

Thirdly, JetOS has a debugger, which uses client-server
communication where the client is GDB and server is
implemented in our kernel. It supports debugging both user
space applications and kernel. Therefore there is a problem of
debugger’s behavior – whether it should stop all modules and
CPUs after breakpoint in some module or not.

It is also important to mention that we have to start CPU
cores with their own kernel images. Of course, we could
change our kernel and use special kernel image, which would
load all other kernels and continue its execution. However, our
goal is to create one kernel image, which will execute different
partitions without dividing kernels into the first one and the
others.

Moreover, JetOS supports MIPS, x86, ARM and PowerPC
architectures. All these architectures have their own multicore
mechanisms, and some of them lack virtualization support.
Therefore our AMP support must consider all these features.
Many problems could be solved by hypervisor, but it isn’t
supported by some processors.

IV. DESIGN

To tackle all the above mentioned challenges and to
consider all specific features, we chose paravirtualization
architecture. It is a method of virtualization which requires
changes in target operating systems to execute them
simultaneously and independently. To achieve this, we
changed JetOS in the following ways:

 During system build, we create configuration files for each

module where we describe memory blocks that modules

use during kernel initialization. Therefore after changing

the number of modules or configuration of some module,

we don’t have to build all other modules, only create

configuration files for them. Hence our system becomes

more flexible.

 The debugger can only influence the module which is being

debugged now. To debug other modules users should start

another GDB client and connect to that module.

 We developed our small loader, which works both on bare-

metal and in QEMU emulator. The loader is used to boot

our system and it supports all architectures needed by

JetOS.

 One of the goals is to distribute different devices between

kernels. We use memory mapping for that purpose: each

device, both PCI and embedded, has memory-mapped

control and IO spaces, and a module can access a device

only when corresponding memory blocks are assigned to

that module.

 The biggest challenge we faced was the console: when

multiple kernels want to write data on the screen, it may

result in a race condition. Our solution was to give

permission to communicate with the external world by

serial port only to one module.

 Multiprocessor communication is realized via special

shared memory.

The loader is the critical part of JetOS and it must do all the
work related to CPU initialization, such as:

 Load kernel images from the file system and decompress

them into physical memory.

 Start all CPUs.

 Configure necessary environment for each CPU

 Configure shared memory blocks, which are used for multi-

module communication.

 Start kernels.

In some cases, it resembles a first type (or bare-metal)
hypervisor, but it has many differences:

 Our loader doesn’t provide any memory security. This

work falls upon JetOS kernels. Kernels have strict

requirements on memory management – they receive

information about memory mapping and must use only

specified memory.

 Also, the loader doesn’t control any system calls

The JetOS AMP architecture is presented on “Fig. 1”.

V. RELATED WORK

Of course, we are not the first to consider the problem of
support for asymmetric multiprocessing. There are many types
of AMP solutions, such as Integrity Multivisor, XEN or
JAILHOUSE, and OSes which can work with AMP such as
PikeOS.

Here we briefly consider these products and their primary
features.

A. Integrity Multivisor

Integrity Multivisor [1] by Green Hills software is an
embedded virtualization solution. Applications and guest
operating systems are flexibly scheduled across one or multiple
cores. They also can communicate efficiently with each other,
and utilize system peripherals.

Integrity Multivisor supports ARM, x86 and PowerPC.
Also, it can work with many guest operating systems such as
Linux, Windows, Solaris and VxWorks.

It provides a great capability to control execution of every
OS as well as full hardware virtualization support.

The configuration is presented on “Fig. 2”.

71

Fig. 2. Integrity Multivisor example

B. XEN

XEN project [2] is a hypervisor developed by the
University of Cambridge and is now being developed by the
Linux Foundation.

The main features of XEN are:

 Support for multiple guest operating systems such as Linux,

Windows, NetBSD, FreeBSD and Cloud platforms –

CloudStack and OpenStack.

 High level of security

 Support for both Paravirtualization (PV) and Hardware

Virtualization (HVM)

Fig. 3. XEN Paravirtualization example

XEN is available for x86, ARM, PowerPC and MIPS
architectures.

It is important to say that in XEN only one module can
communicate with hardware – domain 0 as on “Fig. 3”.

C. PikeOS

PikeOS by SYSGO AG [3] is a hard real-time operating
system with a virtualization platform. It has been developed for
security-critical applications in the fields of Aerospace,
Network Infrastructures, Consumer Electronics and more.

PikeOS is designed to provide safe and secure virtualization
for real-time operating systems. In AMP module, PikeOS on
one CPU can coexist with various OSes on other CPU cores as
on “Fig. 4”.

It guarantees independent execution of modules on
different CPUs without multi-module communication.

Fig. 4. PikeOS virtualization example

PikeOS design fully supports the AMP concept. Also, users
can use SMP (Symmetric Multiprocessing).

PikeOS supports PowerPC, x86, ARM, MIPS, Leon 1/2
and SPARC 3/4 architectures.

D. Siemens JAILHOUSE

Siemens JAILHOUSE [4] is an open source project which
presents a partitioning Hypervisor based on Linux. It’s
designed to work with bare-metal applications and RTOSes, as
well as run real-time code. JAILHOUSE can only run on
Linux.

It is also important to mention that JAILHOUSE is
Asymmetric Multiprocessing and it requires that all supported
architectures have at least 2 logical CPUs.

JAILHOUSE supports several platforms such as x86 and
ARM.

After JAILHOUSE starts, it partitions system resources and
assigns them to additional domains, called "cells".
JAILHOUSE takes full control over the hardware and it

72

doesn’t need external support. The system state can be seen on
“Fig. 5”.

Fig. 5. Siemens Jailhouse example

JAILHOUSE doesn’t support debuggers, it only provides
log messages, which can be seen via a serial cable connected to
real hardware or on emulator screen.

VI. FUTURE WORK

As already mentioned, AMP is a step to full
multiprocessing support in JetOS.

Nowadays new avionics specifications are being developed.
Some of them require SMP support. Hence, our next goal is to
support SMP too.

Moreover, paravirtualization solution has a problem with
memory security. So, developing a hypervisor is a good next
step (of course, for those platforms, which support
virtualization). It is also important to say that we can run Linux
as one of the modules via hypervisor.

VII. CONCLUSION

In this paper, we presented the architecture of asymmetric
multiprocessing support for JetOS hard real-time operating
system. It is based on paravirtualized kernels that run on
separate cores and communicate through dedicated channels in
shared memory. We don’t use hypervisor due to the fact that
some of the platforms where JetOS runs lack hardware
virtualization. In our design we support distributing devices
between modules and independent static configuration of each
virtual module. This architecture provides the capability to
reconfigure the system in response for changes in configuration
in little to no time.

Our next goals are to add SMP as well as support for SMP
and AMP working simultaneously and to create hypervisor for
JetOS on some of the platforms supported by JetOS.

REFERENCES

[1] Green Hills Software, “INTEGRITY Multivisor overview”, 2018
https://www.ghs.com/products/rtos/integrity_virtualization.html#multivi
sor

[2] The Linux Foundation, “Xen Project Software Overview”, 19 January
2018 https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview

[3] SYSGO AG, ”SYSGO Product Overview”, 2017
https://www.sysgo.com/fileadmin/user_upload/www.sysgo.com/redaktio
n/downloads/pdf/data-sheets/SYSGO-Product-Overview-PikeOS.pdf

[4] Siemens Corporate Technology. “Siemens JAILHOUSE”. January 7,
2018 https://github.com/siemens/jailhouse/blob/master/FAQ.md

73

Building Modular Real-time software
from Unified Component Model

Kurbanmagomed Mallachiev, Alexey Khoroshilov
Ivannikov Institute for System Programming of the RAS,
25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia.

Abstract—Modern real-time operating systems are complex
embedded product made by many vendors: OS vendor, board
support package vendor, device driver developers, etc. These
operating systems are designed to run on different hardware;
the hardware often has limited memory. Embedded OS contains
many features and drivers to support different hardware. Most of
the drivers are not needed for correct OS execution on a specific
board. OS is statically configured to select drivers and features
for each board.

Modularity of OS simplifies both configuration and devel-
opment. Splitting OS to isolated modules with well specified
interfaces reduces developers needs to interact during joint
development. The configurator, in turn, can easily compose
isolated components without component developers.

We use formal models to specify components and their com-
position. Formal model describes the behaviour of components
and their interaction. Usage of formal models has many benefits.
Models contain enough information to generate source code in
C language. Our model is executable, this allows configurator to
quickly verify the correctness of component configurations.

Moreover, model contains constraints on its parameters. These
constraints are internal consistency or some external properties.
Constraints are translated into asserts in generated source
code. Therefore, we can check these constraints both at model
simulation and at source code execution.

This paper presents our approach to describe such models at
Scala language. We successfully tested the approach in RTOS
JetOS.

I. INTRODUCTION

Modern embedded operating systems support several CPU
architectures and a lot of peripheral devices. OS contains many
drivers to support numerous different hardware. Embedded OS
are often designed for execution in a restricted environment,
for example, with limited memory. Most of the drivers are
not needed for correct OS execution on some specific board
and spend valuable resources. Therefore, OS must support
configuration to select drivers, which will execute on the target
hardware.

Static OS configuration is used in cases when it is known
in advance on which hardware the OS image is going to be
executed. Static means that configuration is performed on the
host machine before OS loading to the target machine. The
result of static OS configuration is the final image, that can
be run on the target. Static configuration allows keeping final
image small.

Typically, there are two roles taking part in the process of
OS image building. The first role is a developer of whole
OS or some driver. Developer implements his part in some

programming language, write documentation and provides
support of source code and documentation. The second one
is a system integrator who is responsible for correct OS
configuration for specific task of specific board. Usually the
system integrator does not change OS source code.

Besides simple selecting which driver will be in the final
OS image many operating systems support finer tuning. For
example, configuration allows selecting file system for each
hard drive, or set IP address that will be used by network stack.
These details are configured statically because for embedded
OS and especially for safety-critical systems simplicity is more
important then generality.

It is a natural desire to divide the operating system into
isolated components, but not every part of the OS can be
isolated. For example OS core often is strongly coupled and
might be divided into isolated components only if the core
will be fully redesigned to support new architecture.

If we investigate configurations of the same OS on different
boards, then we will see that there is the most variable part
in the OS. We call this part OS drivers. OS drivers contains
device drivers and some services such as network stack, file
system, logging, etc. Our work aimed to support flexible
configuration of OS drivers.

It is common that there are many vendors involved in
building of OS drivers. When services or drivers are strongly
coupled, their developers have to interact a lot. Therefore,
splitting OS drivers into independent isolated components
helps to simplify and accelerate development.

Component should interact with each other. Appearance of
fixed interface between components would make component
development easier. Moreover, fixed interface can make system
flexible. Only connected components can interact, and only
component with the same interfaces can be connected. System
integrator is responsible for connection of the components.

Suppose that system integrator created a composition of the
components, which describes how each component is config-
ured and how components are connected. We call component-
based system flexible if the system integrator can:

• modify configuration of the single component without
modifying others,

• substitute component with another one of the same inter-
face without modifying other components,

• add a new component between two other connected com-
ponents without modifying any component configuration
except the new one.

74

• add to composition a copy of existing component, and
they should not disturb each other.

We are developing an embedded real-time operating sys-
tem for civil aircraft computers called JetOS [1]. JetOS is
ARINC-653 compliant and statically configured. Approaches
presented in this paper are designed for JetOS. Since JetOS is
a RTOS, we are focused on minimizing the overhead added
by component-based system.

II. RELATED WORKS

Classical distributed component models like Enterprise Jav-
aBeans, CORBA and CORBA Component Model [2], [3]
define components and interfaces between them. These models
allow substituting one component with the another one if
both have the same interfaces. Components configuration is
dynamically changed by brokers. This dynamic configuration
is not suitable for embedded systems with static configuration.

Ideas to separate OS appeared long ago in microkernels.
Microkernel architecture’s [4], [5] primary goal is to separates
OS into independent servers that could be isolated from each
other. Servers interact through inter-process communication
(IPC). IPC calls are typed and servers with the same interface
can substitute one another. But there cannot be two servers
with the same interface; therefore, this model is not suitable
for our tasks too.

OS-Kit [6] and eCos [7] apply modularity benefits into OS
development process. They provide a set of OS components,
which are used as building blocks to configure an OS. For
configuration eCos uses the Component Definition Language
(CDL), an extension of the existing Tool Command Lan-
guage (Tcl) scripting language. Configuration is represented
as feature tree with internal dependencies, group and feature
constraints. Enabling of one component can lead to enable of
whole components subtree. Components can have calculated
value in configuration, which are calculated based on other
configuration parameters. However, this is not enough for our
task. Configurator cannot manage component connections and
cannot add copies of the same component.

µC/OS-II kernel uses THINK component framework [8],
[9]. THINK is an implementation of the FRACTAL com-
ponent model that aims to take into account the specific
constraints of embedded systems development. Component
describes through its interface. Interaction between compo-
nents is possible once bindings between their interfaces has
been established. Binding is a communication channel between
two or more components. Binding can be created between
components of a distributed system (RPC binding). This
concept also does not allow to have several copies of the same
component in the composition.

VxWorks is a popular embedded operating system. Vx-
Works board support package (BSP) is divided into com-
ponents. Components interfaces are declared in Component
Description Language (CDL). Note that this CDL is different
from the CDL used in eCos. BSP developer can construct BSP
from existing component and can add their own components.

But this system is not flexible. For example, each component
has fixed list of component names it can interact with.

We are not aware of any component based model with the
following set of features:

• Static configuration,
• Low overhead,
• Flexible configuration (in all aspects described in the

introduction),
• Type checking of the connection, i.e. checking that con-

nected components have the same interface.

III. COMPONENT-BASED MODEL

Our model is based on components. Component has state,
which is changed during model execution, and configuration,
which is immutable. Components can communicate with other
components via ports. Port is a set of functions, there are two
kinds of ports: input ports and output ports. Output port can
be connected with input port. Set of port function signatures
is called port type. Only input and output port of the same
port type can be connected.

Each function of a component input port has an assigned
handler inside the component. Call of output port function
leads to the call of connected input port, which, in turn, calls
the assigned handler. These calls are standard function call,
or in other words synchronous call inside the same thread.
Therefore, component looses control during output port call.

Thus, port call keeps the current thread. Threads cannot be
created dynamically during model execution. Threads count is
constant during execution.

If component needs an additional thread, then this should be
explicitly specified in the model. These components are called
active. Active components have special handlers, which are
called periodically or once in the context of the new thread.
We call these handlers the activity handlers.

In order to facilitate component reuse we introduce the
concepts of a component type and a component instance.
Each component type can have any number of instances. The
components described above are close to component instances.

Component type contains types of component state and
configuration, but not their values. Component type contains
types and names of input and output ports, but not their
connection. Also, component type contains implementation of:

• component initialization function, which is called at start
and is used to initialise state based on the configuration;

• handlers assigned with input ports, if component has any;
• activity handlers if component is active.
Instances have unique values of state and configuration. It

is easy to see that concepts of component type and compo-
nent instance are similar to terms “class” and “class object”
respectively.

A. Component Developer View

Component developer designs component state structure,
how it should be initialized base on configuration and how
it is changed during execution. Developer chooses types of
configuration parameters. Developer does not aware of specific

75

Fig. 1. Graphical representation of Amplifier component type specification

amp1:Amplifier

factor = 2

sensor1

...
actuator

...

in out

amp2:Amplifier

factor = 10

sensor2

... in out

Fig. 2. Amplifier instances connection scheme.

configuration parameters values, but he can add constraints on
the values. He designs component input and output ports and
implements handlers for input ports. Component developer’s
knowledge about “outside world” is restricted by component’s
input and output ports. He does not know how many instances
of his component will be created nor how they will be
connected.

Component developer’s definition of component types con-
sists of two parts: component type specification and imple-
mentation. Specification contains:

• component type name
• component input and output port names and their types
• structure of component configuration
• description of component purpose: how it should be

configured and in which environment its input ports
should be called.

The rest of the information is private for component and is
considered as implementation part.

B. System integrator view

System integrator gets specification of all component types
in the system. System integrator decides how many instances
of each component should be created and how they should
be connected for solution of the specific problem. For each
instance integrator sets its configuration values.

C. Simple example

Suppose that component developer created Amplifier com-
ponent type. Amplifier has single input port “in” and single
output port “out”. Also, it has single configuration parameter
“factor”. Components aim is to amplify input signal from “in”
port by factor “factor” and put output to “out” port.

Suppose that the system integrator wants to pass signal from
two sensors to a single actuator, but he should amplify signal
from first sensor by factor of 2 and from second one by factor
of 10. System integrator decides to use Amplifier component
type. He does not worry about implementation, only interfaces
matters to him. For simplicity let’s assume that all ports have

the same type. Amplifier component type as seen by system
integrator can be seen at Fig. 1

System integrator creates two instances of Amplifier compo-
nent type: “amp1” with configuration value “factor” equal to
2 and “amp2” with configuration value “factor” equal to 10.
Then connects them accordingly to sensors and to actuator.
Scheme of the result can be seen at Fig. 2

IV. PROTOTYPE

In previous work [10] we implemented component-based
approach in C language with some YAML code. We used com-
mon approach to apply object-oriented ideas in C language.
Component state and configuration is presented as C structure,
which explicitly passed to all component functions. Calls to
output ports was hidden by wrappers.

There was a lot of boilerplate code used to create component
instances, describe their configuration, and their connections,
in component type specification and its wrappers implemen-
tation.

To reduce amount of hand work we started to use YAML
— simple declarative language. In the YAML component
developer specifies component type state, configuration, in-
put and output ports, names of functions-handler for input
ports. System integrator describes in the YAML component
instances, their configuration and connections. We generated
C code based on these YAML specifications.

This approach has some disadvantages:
• Component developer has to manually keep consistent

two files (in YAML and C languages). Change in one
file leads to change in another one.

• Component developer’s workflow is not comfortable: af-
ter change in YAML code generation should be processed
and only then C code should be updated accordingly.

• System integrator can connect instances incorrectly (this
does not apply to type checking, which is performed
during compilation) and cannot see the problem until final
OS image is prepared and executed in target hardware.

V. MODEL-BASED APPROACH

We decided to go further along the path of abstraction and
use abstract models of components and their composition. We
use formal executable models. This has many benefits. Model
contains more information than source code, thus source code
can be generated based on the model. Also, executable model
allows to simulate instances behaviour and their interaction.
This is very useful for system integrator to quickly verify the
correctness of configurations. Moreover, formal model can be
used to formally verify its internal consistency.

We use Scala language to model components. Scala is a
functional object-oriented language that suits us well.

A. Model Description

1) Component Developer View: Component type is pre-
sented as Scala class inherited from interface (trait) “Compo-
nent”. Component configuration and state are the class fields
with fixed names “config” and “state” respectively.

76

Active components have functions, which are called peri-
odically or once. If component type inherits trait “RunOnce”
then it should implement function “start”, which will be
called once after component initialization. If component type
inherits class “Periodically”, then it should implement function
“periodically”; the frequency of the call is determined by the
configuration.

For example, consider “Counter” component type, which
has a state but no configuration. State contains value “call-
Count”, which is initialized with zero. Function “periodically”
increases “callCount” on every call.

class Counter extends Periodic with Component {
class State(val callCount: Int)
var state = new State(0)

type Config = Unit
val config = ()

def periodically = {callCount += 1}
}

Listing 1. “Counter” component type.

Port types are declared as interfaces(traits). Input ports are
defined inside component type class as objects, which inherited
port type. Output port are class fields with type of port type.
Output ports values are passed as component type constructor
parameters. It is worth noting that output ports can be passed
by name to constructor, this allows initializing component
instances with cycle connections among them.

Example of input/output ports for “Amplifier” component
type (defined in previous sections):

trait SignalProcessor {
def processSignal(s:Int): Int

}

class Amplifier(out: =>SignalProcessor)...{
...
object in extends SignalProcessor {
def processSignal(s: Int): Int = {
val processed = process(s)
out.processSignal(processed)

}
}

}

Listing 2. Port type SignalProcessor and ports of “Amplifier” component
type. The component type has input port “in” and output port “out”, both
of them have type SignalProcessor. There is an implementation of function
processSignal of “in” port. Port “out” passed-by-name. Scala syntax may be
confusing, here function processSignal returns result of out port call.

Model can have constraints on state and configuration
parameters values. These constraints are defined using Scala
require function.

Example of require statement for “Amplifier” component
type:

class Amplifier...{
class Config(val factor: Int) {
require (factor>0 && factor<50)

} ...
}

Listing 3. Configuration constraint for “Amplifier” component type. “factor”
can take values only in the interval from 1 to 49.

Fig. 3. “AmplifyAndFilter” component type.

2) System Integrator View: System integrator creates in-
stances of component type and connects them. For each
instance he defines its configuration parameters values.

As an example of component instances and their connec-
tions consider model of the scheme depicted in the Fig. 2
val actuator = new Actuator

val amp1 = new Amplifier(actuator.in) {
val config = new Config(factor = 2)

}
sensor1 = new Sensor(amp1.in)

val amp2 = new Amplifier(actuator.in) {
val config = new Config(factor = 10)

}
sensor2 = new Sensor(amp2.in)

Listing 4. Amplifier instances connection scheme.

3) Preconfigured components: There is often component
which have configuration parameters that have the same value
in different configuration. To simplify configuration process
for system integrator, we can define new component type, in
which these parameters are fixed and cannot be configured.
New component type class constructor calls constructor of the
original one with values of these parameters. For example, it
is possible to define “AmplifierBy2” which amplifies signal by
fixed factor of 2.

It is more interesting to define new component, which
is a composition of existing components. This is useful if
some compositions are used often. Our approach assumes
unified modelling of components and their composition. This
allows using component-composition transparently for system
integrator.

As an example, assume that there are component type “Am-
plifier” and “Filter”, that are often connected. We create a new
component type “AmplifyAndFilter” that is the composition
of “Amplifier” and “Filter” Graphical representation of the
“AmplifyAndFilter” component type can be seen at Fig. 3 and
implementation:
class AmplifyAndFilter(out: SignalProcessor)

extends Component {
val amp = new Amplifier(out) {
val config = new Config(factor)

}
val filter = new Filter(amp.in)

object in extends SignalProcessor {
def processSignal(x:Int):Int = filter.in(x)

}
}

Listing 5. “AmplifyAndFilter” component type.

77

B. Model Usage

We use model to simulate instances behaviour and their
interaction. We can verify that constraints are hold during
simulation. Also, we can write tests (unit and integration) to
check that component model is correct.

We use model to generate C code, which gets into JetOS.
We statically parse Scala code, extract needed information and
translate it into C code.

Generated C code structurally looks much like code gener-
ated by prototype based on YAML files. We use same approach
to model OOP in C language.

Some parts of the model can be translated into C without
modifications, for example, simple operations and function
calls. Some parts modified automatically during translation,
but some can not be automatically translated without human
help.

JetOS has strict coding style and, for instance, function can
not have more than one return statement. We can generate
code according this code style and, for example, we can
automatically substitute several return statements in the model
with a single one in the generated code.

As was mentioned, there are also statements, which cannot
be easily translated into C. Also there are situations when gen-
erator tool cannot get enough information statically analysing
Scala code. To solve these problems we add annotations
to Scala code. Annotations does not change behaviour of
model, they used only to provide additional information for
the generator tool.

We use annotations to highlight input and output ports
and their type interfaces. Annotations are “inport”, “outport”
and “interface” for input ports, output ports and port types
respectively. As an example, “Amplifier” component type with
annotations:

@interface
trait SignalProcessor {
def processSignal(s:Int): Int

}

class Amplifier(@outport out: SignalProcessor)...{
...
@inport
object in extends SignalProcessor {
def processSignal(s: Int): Int = {
val processed = process(s)
out.processSignal(processed)

}
}

}

Listing 6. Port type SignalProcessor and ports of “Amplifier” component type
with annotations.

Scala language has rich syntax and not every statement can
be easily translated to C. We allow annotating blocks of Scala
code or Scala functions with C code. Partial example:

@C_code(code="int process(int* array) {...}")
def process(lst:List[Int]) = {...}

Listing 7. C_code annotation example.

This C_code annotation allows iteratively develop generator
tool. At start, when tool supports only a few Scala statements,
almost all code has C annotations. When support for new Scala
statements adds to the tool, C annotations for these statements
are no longer needed. Therefore, during tool development
number of C_code annotations decreases.

VI. FUTURE WORK

First of all we still do not support many Scala statements
and have a lot of C_code in our models. We are going to fix
this in the new versions of generator tool.

For now system developer should write Scala code by
hand. This Scala code is very simple and match a simple
pattern. Thus, we can generate this Scala code from some
GUI interface. Configuration constraints of the model can be
extracted and added to this tool. This is one of optional future
work.

Furthermore, formal model is a powerful tool and allows
much more than C code generation. Formal model can be used
for model checking and formal verifying internal consistency,
preconditions or state invariants.

Tests and requirements can be generated based on the model
and requirement generation is our next task. Requirement is
the most important part of safety-critical system certification.
Requirement writing is a hard hand work and automation (at
least partial) will be very helpful.

VII. CONCLUSION

The paper presents continuation of the work on modularity
of RTOS. OS drivers are decomposed into isolated com-
ponents. Component composition is carried out by system
integrator, and it can be done without contacting component
developers and without writing C code.

We use a unified formal model to specify both components
and their composition. Model, which is written in Scala
language, is used to generated C code.

Also, model is executable, this allows system integrator
to quickly verify correctness of composition. Model contains
constraints on the model parameters. These constraints are
tested during model simulation, also constraints can be trans-
lated into asserts in the generated C code.

Model-based approach still has disadvantage since the
model is divided in two parts written in two languages, which
have to be manually kept consistent. However, C code for
some Scala statement is placed right before the statement, we
hope that this will stimulate developers to update parts syn-
chronously. Maturing of the generator tool decreases amount
of C code in the model and reduces the importance of the
problem.

The approach has been successfully tested on OS drivers
of JetOS — ARINC-653 compliant RTOS. ARINC-653 has
restrictions on the code executed in OS. For instance, resources
(like buffers, semaphores, threads, etc.) can be requested
only during initialization stage. Model restriction on threads
creation apply well to ARINC-653 restrictions. Moreover, con-
structor code of the component type class is executed during

78

initialization stage. Thus, component can request resources in
the constructor.

REFERENCES

[1] K. M. Mallachiev, N. V. Pakulin, and A. V. Khoroshilov, “Design and
architecture of real-time operating system,” Proceedings of the Institute
for System Programming of the RAS, vol. 28, no. 2, pp. 181–192, 2016.

[2] J. Siegel and D. Frantz, CORBA 3 fundamentals and programming. John
Wiley & Sons New York, NY, USA:, 2000, vol. 2.

[3] N. Wang, D. C. Schmidt, and C. O’Ryan, “Overview of the corba com-
ponent model,” in Component-Based Software Engineering. Addison-
Wesley Longman Publishing Co., Inc., 2001, pp. 557–571.

[4] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig,
J. E. Tidswell, L. Deller, and L. Reuther, “The sawmill multiserver
approach,” in Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating
system. ACM, 2000, pp. 109–114.

[5] I. Boule, M. Gien, and M. Guillemont, “Chorus distributed operating
systems,” Computing Systems, vol. 1, no. 4, 1988.

[6] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers,
“The flux oskit: A substrate for kernel and language research,” in ACM
SIGOPS Operating Systems Review, vol. 31, no. 5. ACM, 1997, pp.
38–51.

[7] A. Massa, Embedded software development with eCos. Prentice Hall
Professional Technical Reference, 2002.

[8] J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller, “Think: A
software framework for component-based operating system kernels.” in
USENIX Annual Technical Conference, General Track, 2002, pp. 73–86.

[9] F. Loiret, J. Navas, J.-P. Babau, and O. Lobry, “Component-based
real-time operating system for embedded applications,” in International
Symposium on Component-Based Software Engineering. Springer,
2009, pp. 209–226.

[10] K. Mallachiev, N. Pakulin, A. Khoroshilov, and D. Buzdalov, “Using
modularization in embedded os,” Proceedings of the Institute for System
Programming of the RAS, vol. 29, no. 4, pp. 283–294, 2017.

79

STATIC VERIFICATION FOR MEMORY SAFETY OF LINUX
KERNEL DRIVERS*

Anton Vasilyev
Ivannikov Institute for System Programming, RAS

Moscow, 109004, 25, A. Solzhenitsyn st.
vasilyev@ispras.ru

Abstract—Memory errors in the Linux kernel drivers are a
kind of serious bugs that could lead to dangerous consequences
but such errors are hard to detect. Debug and disclose of kernel
memory corruptions often requires specially compiled kernel.

Static verification of industrial projects such as Linux kernel
requires additional effort to support inaccuracy produced by
environment model. The current work proposes an approach to
reveal issues with memory usage in incomplete parts of ANSI C
programs. Our static verification technique based on Symbolic
Memory Graphs (SMG) theory with extensions aims to reduce
rate of false alarms. Methods were evaluated within Linux Driver
Verification project.

Index Terms—shape analysis, static verification, symbolic
memory graphs, memory model

I. INTRODUCTION

Operating system kernel is often written in the C program-
ming language. This language is portable and effective, but
unfortunately it is not memory safety. Issues in source code
could lead to vulnerability or unpredictable failures. Common
methods such as testing are unable to find all problems. A
probable solution to get an evidence of source code properties
is formal methods and there are results of comprehensive
formal verification of the seL4 microkernel [1]. However
formal methods generally require a closure for a verification
object and its environment to produce an appropriate verdict.
This article considers operating system kernel drivers with
automatically generated environment models as a target for
approbation of a memory verification technology.

Main contributions of this paper are connected with exten-
sions of an existed static memory verification approach to be
able to perform Linux kernel drivers verification, which are
described in section V.

II. LINUX DRIVER VERIFICATION

The Linux kernel represents an industrial code base with
more than 10 million lines of drivers code. A distinctive feature
of Linux is instability of internal interfaces. A high speed of
changes with a distributed development process requires an
efficient bug finding strategy.

The research of typical faults in Linux operating system
drivers divides errors into typical and atypical [2]. Atypical
faults in drivers are described as connected with specific
hardware and not applicable to other drivers. Typical faults
can be specified by some rule which is true for all or some
group of drivers. Typical faults are further divided into:

*The research was supported by RFBR grant 18-01-00426

• Linux specific faults, which correspond to kernel inter-
faces usage rules.

• Races and deadlocks, which are related with parallel
execution.

• Generic problems, which are common for C programs
such as null pointer dereference, integer overflow, etc.

Authors show that 29.2% of typical errors fixed in stable
branches of the Linux kernel are generic problems. Statistics
about memory problems corresponding to all generic faults is
shown in the table:

Type Percentage
null pointer dereference 30.4%
resource: 23.5%

memory leak,
double free,
use after free

buffer overflow 7.8%
uninit: 5.9%

uninitialized pointer free,
write to unallocated memory

Total 67.6%

This information shows that main part of stable kernel fixes
of generic faults match memory errors. We suggest to improve
situation with memory safety of stable Linux kernel with help
of static verification.

Linux Driver Verification project (LDV) [3], [4], [5] aims
at performing automatic static driver verification and reporting
detected problems. It provides a static verification framework
called Klever [6] for Linux kernel verification including auto-
mated environment model generation [7], [8], rules of correct
kernel API usage [2], interfaces for storing and visualization of
verification results [9]. As a verification engine Klever includes
the CPAchecker [10] verification tool.

In this work we have made the following contributions:
1) improved Klever environment models to remove mem-

ory errors inside them
2) added several Linux kernel specific extensions into

CPAchecker verification tool for memory safety veri-
fication.

We have made experimental evaluation on drivers of Linux
kernel v.4.11.6, analyzed all memory safety problems reported
by the verification tool and classified them into bugs and false
alarms. We have prepared bug reports and fixes to the newest
kernel version at the moment. Regarding false alarms we

80

conclude that automatic generation heavily affects verification
results and requires further improvement.

III. SHAPE ANALYSIS

Shape analysis is a verification method with abstractions
allowing to describe dynamic structures such as heap allocated
data, linked lists, hash tables, etc [11]. A central function used
to extract an abstraction from a memory state is a summariza-
tion procedure. Materialization is an opposite operation which
slices an abstraction to concrete items.

We describe shape analysis which can disclose following
types of memory issues:

• memory leak,
• double free,
• uninitialized pointer free,
• write to unallocated memory,
• use after free,
• buffer over read/write,
• null pointer dereference.

IV. SYMBOLIC MEMORY GRAPHS

The symbolic memory graph (SMG) algorithm [12] is
a kind of shape analysis. It works with directional graph
representation of memory state. Nodes are used for symbolic
values, memory regions and abstracted structures representa-
tion. Edges show references between nodes and are divided
into point-to edges for pointers and has-value edges. Each
edge and node in SMG has a set of labels representing
size, offset, allocation status. One symbolic memory graph
with abstractions can represent several memory states called
concrete memory images. Set of all concrete memory images
for SMG G is denoted as MI(G).

Our SMG implementation in CPAchecker [10] keeps map-
ping between global, stack variables and memory regions.
Also it tracks correspondence between symbolic and concrete
values. A memory graph is modified in correspondence with
instructions from source code.

Detailed description of operations on SMG can be found at
[12]. Here we provide a brief overview.

• Data Reinterpretation
– Read Reinterpretation
– Write Reinterpretation

Modifications. A level of details for memory model
allows to take into account such low level interpretation
as unions and provide facility for reinterpretation values
even on the same offset with different types.
Algorithm supports partial values overwrite if memory
for corresponding field intersects. For example:
1 union {
2 int i;
3 char c;
4 } u;
5 u.i = 10;
6 u.c = ’A’;

After line 5 union u will contain integer value 10 with
size 4 byte, but after line 6 from this union we are able to
read 1 byte char ’A’ or undefined 4 byte integer value.
Checks. For these operations the tool performs checking
for read/write within object bounds against null pointer
dereference, buffer overread/overwrite errors.

• Join of SMGs
This operation is central one for abstraction and decision
whether current memory state is covered by another
and vice versa, so the algorithm can drop one of the
states. It takes as input 2 SMGs G1, G2, compares their
concrete memory images and produces join status with
summarization SMG G. If MI(G1) 6⊆ MI(G2) and
MI(G1) 6⊇ MI(G2) then SMGs are semantically in-
comparable and their join is undefined. Algorithm travels
through pair of source SMGs and tries to join nodes.
It is possible if nodes have same size, validity, and
special conditions for join with abstract lists. Abstract
lists are join-able if they have same head, prev and next
offsets, join result will have number of elements equal to
minimum from originals. Also result of join region with
abstract list become abstract list. It is possible to insert
empty list abstraction at any correct position in graph to
increase opportunity of correct join.

• Summarize sequence of objects to list abstraction
Algorithm discovers sequences of neighboring objects
which could be considered as candidate list entries and
then sequentially adds them into one abstract list and
increases its size.

• Abstract list materialization
Opposite operation to the summarize.

• Checking equality and inequality of values and pointers
Algorithm performs sound and efficient but incomplete
check for equality and inequality of values. In some cases
it can fail on abstractions.

Tool performs stack variables cleaning on function exit and
checking for dangling pointers to allocated memory, which
helps identify memory leak errors.

Let’s consider analysis of a simple example:

void main() {
1 void *array;
2 long b = 2;
3 long c = 3;
4 array = calloc(1, 16);
5 memcpy(&array[4], &b, 4);
6 memcpy(&array[5], &c, 4);
}

Fig. 1:
• Modification: allocate 4 byte memory region on stack for

a pointer array.
Fig. 2:
• Modification: allocate 4 byte memory region on stack for
long b and assign new value #1 with explicit value 2L.

• Check: memory size is sufficient for assigned value.

81

Location: 1 void *array;

Stack

#1: void main();

REGION(array, 4B)

level=0

Fig. 1

Location: 2 long b = 2;

Stack

#1: void main();

REGION(b, 4B)
level=0

REGION(array, 4B)
level=0

#1 : 2

[0B-4B]

Fig. 2

Fig. 3:
• Modification: allocate 4 byte memory region on stack for
long c and assign new value #2 with explicit value 3L.

• Check: memory size is sufficient for assigned value.
Fig. 4:
• Modification: allocate 16 byte memory region on heap

(mark it by tag calloc_ID3), fill it by NULL values,
and assign array a new point-to-value #4 which points to
0 offset of region calloc_ID3.

• Check: memory size is sufficient for assigned values.
Fig. 5:
• Modification: assign 4 byte value #1 by offset 4 of region
calloc_ID3.

Location: 3 long c = 3;

Stack

#1: void main();

REGION(b, 4B)
level=0

REGION(c, 4B)
level=0

REGION(array, 4B)
level=0

#1 : 2

[0B-4B]

#2 : 3

[0B-4B]

Fig. 3

Location: 4 array = calloc(1, 16);

Stack

#1: void main();

REGION(b, 4B)
level=0

REGION(c, 4B)
level=0

REGION(array, 4B)
level=0

#1 : 2

[0B-4B]

#2 : 3

[0B-4B]

#4

[0B-4B]

REGION(calloc ID3, 16B)
level=0

NULL

[0B-16B]

+0B, reg

Fig. 4

• Check: dereference and assignment are done within allo-
cated memory.

Fig. 6:

• Modification: assign 4 byte value #2 by offset 5 of region
calloc_ID3, remove intersecting values, so value at
offset 4 of region calloc_ID3 is not defined.

• Check: dereference and assignment are done within allo-
cated memory.

V. LINUX SPECIFIC EXTENSIONS FOR SMG

A. Bit precise model

Linux kernel code operates on structures with bit fields. We
have support bit fields in CPAchecker [10] and switched SMG
operations granularity from byte to bit precision.

82

Location: 5 memcpy(&array[4], &b, 4);

Stack

#1: void main();

REGION(b, 4B)
level=0

REGION(c, 4B)
level=0

REGION(array, 4B)
level=0

#1 : 2

[0B-4B]

#2 : 3

[0B-4B]

#4

[0B-4B]

REGION(calloc ID3, 16B)
level=0

[4B-8B]

NULL

[8B-16B]

NULL

[0B-4B]

+0B, reg

Fig. 5

Location: 6 memcpy(&array[5], &c, 4);

Stack

#1: void main();

REGION(b, 4B)
level=0

REGION(c, 4B)
level=0

REGION(array, 4B)
level=0

#1 : 2

[0B-4B]

#2 : 3

[0B-4B]

#4

[0B-4B]

REGION(calloc ID3, 16B)
level=0

[5B-9B]

NULL

[0B-4B]

NULL

[9B-16B]

+0B, reg

Fig. 6

B. Predicate extension

Complexity of drivers code requests us to make precise
conditions tracking for filtering infeasible paths. We imple-
mented this feature by enriching SMG state with predicate
path annotation on symbolic and concrete SMG values. On
branching we perform predicate satisfiability check to decide
which branch is feasible. In addition, this method allows us

to extend memory region over-read and overwrite checks for
arrays using error predicate check on data reinterpretation
operation.

C. Memory on demand

For simplification we consider Linux kernel as trusted code
and drivers as untrusted code in following sense: all structures
provided to drivers on initialization by the kernel core are
controlled by the kernel. We assume that the kernel recursively
initializes all fields so drivers do not require to manage these
structures. We support current point of view as a memory on
demand concept within CPAchecker.

Memory on demand is marked by special function void*
ext_allocation(). Returned pointer allows any recursive
dereference by any offset and distinguishes values by list of
offsets and pointers from original pointer. Additionally any
explicitly allocated memory which is reachable from memory
on demand is considered as automatically freed on program
exit. Let’s illustrate concept on a simple example:

1 struct S {
2 int i;
3 struct S *s;
4 } *top;
5 top = ext_allocation();
6 top->i = 5;
7 top->s->s = malloc(8);
8 top->s->i = top->i;
9 return;

• Line 5: Mark top as memory on demand
• Line 6: Store 5 at top->i
• Line 7: Recursively initialize pointer top->s as memory

on demand block and store pointer to new memory block
at top->s->s

• Line 8: Read value from top->i and store it at
top->s->i

• Line 9: Check of memory leaks excludes top, top->s
and top->s->s.

This example shows possible way for environment simpli-
fication to reduce false positive rate of memory errors.

VI. CONFIGURABLE PROGRAM ANALYSIS

Theory of SMG is implemented as Configurable Program
Analysis (CPA) [13] within CPAchecker tool [10] under the
name SMGCPA.

Common CPA has abstract domain, transfer, merge and
stop operators.

• Abstract domain describes abstract states which represent
sets of concrete states of the program.

• Transfer operator gets one state and a control flow
operation as input and returns all states which appears
after applying the operation on the original state.

• Merge operator takes 2 states as input and tries to
combine them into one.

83

TABLE I: Evaluation on Linux kernel drivers v.4.11.6

Safe 1560
Unknown 4023 Timeouts 2594

Others 1429
Unsafe 641 Bugs 49

False alarms 512
Without marks 80

• Stop operator identifies when one state is covered by
others and decides whether it is required to continue
analysis with a current state.

CPAchecker allows to combine different CPAs into one
composite CPA. It works with a composite state which in-
cludes states of each involved CPAs. Merge operator produces
a Cartesian product of separate analyses merge results.

SMGCPA fits into CPA conception with the following
operators:

• Abstract domain has SMG states as abstractions.
• Transfer performs SMG transformations corresponding to

current control flow operation.
• Merge tries to join SMGs from states and returns new

SMG if join is successful.
• Stop checks whether MI(G1) ⊆MI(G2) or a state has

memory issues.

VII. EXPERIMENTAL RESULTS

Experiments were performed with the help of Klever static
verification framework [6] a part of LDV project [4].

Klever automatically generates environment model and a
general use case driver life-cycle for each separate driver.
We performed verification of Linux kernel drivers v.4.11.6 on
memory safety.

See Table I for results of an experiment on 6224 generated
verification tasks with 15 minutes time limit for each task.
We performed manual analysis of 561 Unsafe verdicts and
classified 49 Unsafes as real memory bugs and 512 as false
alarms.

The causes of 512 false alarms are the following:
• Imprecise environment models (258).

Automatically generated environment models could mis-
takenly provide wrong driver initialization and deallo-
cation. Also some emulated functions are imprecise for
correct proof of memory safety.

• Absent function (139).
Current environment models do not contain functions
imported from other drivers. This leads to false positive
verdicts if missed functions are important for memory
safety properties.

• Require predicate SMG (83).
These false alarms are connected mainly with arithmetic
operations on unknown values. We expect that some
common patterns used in software could be emulated
by additional predicates description, e.g. bitwise AND
on unsigned values provide result value less or equal to

operands and this is common check for array dereference
in kernel.

• SMG problems (13).
Problems with analysis such as missed values after merge
and wrong assumption about loop invariants.

• Task generator problems (10).
Current task generator omits information about packed
pragma for structures at final file, but on preprocessing
step this information is available and may be inlined
at alloc(sizeof(..)) constructions. Sometimes it
provides less allocation size then unpacked structure size.

• Unknown allocation sizes (9).
If SMG cannot derive explicit value for allocation size it
uses predefined value, which may be less then required.

The list of reported bugs is presented in Table II. Not all
bugs were reported, because some of them were detected in
old unsupported drivers or were already fixed.

Let’s consider the bug 2017/8/15/322 from Table II discov-
ered in Samsung I2S Controller driver within Linux kernel
v4.11.6 for which our patch was applied in v4.14-rc1.

Klever provides full error trace from entry point to error
occurrence for unsafe verdict on the left side of screen. Right
side is used for source code relevant to selected trace line. The
parts of the trace for I2S driver are shown in figure 7.

Fig. 7a shows a part of the error trace with the declaration
of the structure struct i2s_dai *pri_dai in function
samsung_i2s_probe(). In the same function in Fig. 7b
pri_dai is initialized by function i2s_alloc_dai()
(line 1246), and field sec_dai becomes NULL (line 1095).

The third part of the error trace in Fig. 7c shows that
sec_dai initialization is skipped by condition in line 1319
(quirks & QUIRK_SEC_DAI) triggered by device capa-
bilities, so pri_dai is remained equal to NULL.

In the same figure we see that the structure pri_dai be-
comes stored at driver_data by dev_set_drvdata()
in line 1363 and then extracted by dev_get_drvdata()
in line 1382 of samsung_i2s_remove(). Next we assign
sec_dai in line 1383 and then perform dereference of
sec_dai in line 1386 without check for NULL, which leads
to Null pointer dereference.

The bug could be reproduced on Samsung “s3c6410-i2s”
and “exynos7-i2s1” devices by inserting and removing the
driver module sound/soc/samsung/i2s.ko, because
the condition in line 1319 is false for i2sv3_dai_type
and i2sv5_dai_type_i2s1 (see lines 1454 and 1477 in
sound/soc/samsung/i2s.c).

VIII. RELATED WORK

Linux kernel is important open source software. Many
research and industrial projects improve kernel quality by
testing, bug hunting, fuzzing or error reports. There are
available examples: The Linux Test Project 1, Autotest 2,
Kmemleak, Kmemcheck, kselftest, Fault Injection Framework.

1http://linux-test-project.github.io
2http://autotest.github.io

84

https://lkml.org/lkml/2017/8/15/322

TABLE II: Bugs reported to Linux Kernel Mailing List (https://lkml.org/lkml)

Message ID Subject
2017/8/1/615 Buffer overread in pv88090-regulator.ko
2017/8/10/693 hwmon:(stts751) buffer overread on wrong chip
2017/8/10/597 dmaengine: qcom hidma: avoid freeing an uninitialized pointer
2017/8/15/322 ASoC: samsung: i2s: Null pointer dereference on samsung i2s remove
2017/8/10/535 i2c: use release mem region instead of release resource
2017/8/16/493 mtd: plat-ram: Replace manual resource management by devm
2017/8/11/366 mISDN: Fix null pointer dereference at mISDN FsmNew
2017/8/10/522 parport: use release mem region instead of release resource
2017/8/11/368 video: fbdev: udlfb: Fix use after free on dlfb usb probe error path
2017/8/10/550 dvb-usb: Add memory free on error path in dw2102 probe()
2017/8/16/345 udc: Memory leak on error path and use after free

CPAchecker has ability to disclosure race and reachability
errors. These error classes are used by LDV project as checks
for correct interface usage at Linux kernel and races.

Microsoft research has a project called Angelic Verifica-
tion [14] which aim is to provide static assertion checking in
open programs with low level of false-positives.

IX. CONCLUSIONS AND FUTURE WORK

We have presented approach to static verification of Linux
kernel code on memory errors. We expect to reduce SMG
false positive rate by introducing precise predicate extension.
Further efforts will be aimed at reducing timeouts and new
efficient abstractions for arrays and multiple values support.
Also current environment models should be improved to
reduce number of false positive verdicts.

REFERENCES

[1] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser, “Comprehensive formal verification of an
os microkernel,” ACM Trans. Comput. Syst., vol. 32, no. 1, pp. 2:1–2:70,
Feb. 2014. [Online]. Available: http://doi.acm.org/10.1145/2560537

[2] V. Mutilin, E. Novikov, and A. Khoroshilov, “Analiz tipovyh oshibok
v drajverah operacionnoj sistemy Linux (Analysis of typical faults
in Linux operating system drivers) (in Russian),” Proceedings of the
Institute for System Programming of RAS, vol. 22, pp. 349–374, 2012.
[Online]. Available: http://doi.org/10.15514/ISPRAS-2012-22-19

[3] A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov, “Establishing
Linux driver verification process,” in Perspectives of Systems Infor-
matics, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2010, vol. 5947, pp. 165–176.

[4] Web-site, “Linux driver verification project,” http://linuxtesting.org/ldv.
[5] I. Zakharov, M. Mandrykin, V. Mutilin, E. Novikov, A. Petrenko,

and A. Khoroshilov, “Configurable toolset for static verification
of operating systems kernel modules,” Programming and Computer
Software, vol. 41, no. 1, pp. 49–64, 2015. [Online]. Available:
http://dx.doi.org/10.1134/S0361768815010065

[6] Web-site, “Klever verification framework,”
https://forge.ispras.ru/projects/klever.

[7] I. S. Zakharov, V. S. Mutilin, and A. V. Khoroshilov, “Pattern-based
environment modeling for static verification of linux kernel modules,”
Program. Comput. Softw., vol. 41, no. 3, pp. 183–195, May 2015.
[Online]. Available: http://dx.doi.org/10.1134/S036176881503007X

[8] A. Khoroshilov, V. Mutilin, E. Novikov, and I. Zakharov,
“Modeling environment for static verification of linux kernel
modules,” in Perspectives of System Informatics, A. Voronkov
and I. Virbitskaite, Eds., vol. 8974. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 400–414. [Online]. Available:
https://doi.org/10.1007/978-3-662-46823-4 32

[9] E. Novikov and I. Zakharov, “Towards automated static verification
of GNU C programs,” in Perspectives of System Informatics,
A. K. Petrenko and A. Voronkov, Eds., vol. 10742. Springer
International Publishing, 2018, pp. 402–416. [Online]. Available:
https://doi.org/10.1007/978-3-319-74313-4 30

[10] D. Beyer and M. Keremoglu, “CPAchecker: A tool for configurable
software verification,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011,
vol. 6806, pp. 184–190. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-22110-1 16

[11] R. Wilhelm, S. Sagiv, and T. W. Reps, “Shape analysis,” in Proceedings
of the 9th International Conference on Compiler Construction, ser. CC
’00. London, UK, UK: Springer-Verlag, 2000, pp. 1–17. [Online].
Available: http://dl.acm.org/citation.cfm?id=647476.760384

[12] K. Dudka, P. Peringer, and T. Vojnar, “Byte-precise verification of low-
level list manipulation,” in Static Analysis, F. Logozzo and M. Fähndrich,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 215–
237. [Online]. Available: https://doi.org/10.1007/978-3-642-38856-9 13

[13] D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable software
verification: concretizing the convergence of model checking and
program analysis,” in Proceedings of CAV. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 504–518. [Online]. Available: http://portal.
acm.org/citation.cfm?id=1770351.1770419

[14] A. Das, S. K. Lahiri, A. Lal, and Y. Li, “Angelic verification: Pre-
cise verification modulo unknowns,” in Computer Aided Verification,
D. Kroening and C. S. Păsăreanu, Eds. Cham: Springer International
Publishing, 2015, pp. 324–342.

85

https://lkml.org/lkml/2017/8/1/615
https://lkml.org/lkml/2017/8/10/693
https://lkml.org/lkml/2017/8/10/597
https://lkml.org/lkml/2017/8/15/322
https://lkml.org/lkml/2017/8/10/535
https://lkml.org/lkml/2017/8/16/493
https://lkml.org/lkml/2017/8/11/366
https://lkml.org/lkml/2017/8/10/522
https://lkml.org/lkml/2017/8/11/368
https://lkml.org/lkml/2017/8/10/550
https://lkml.org/lkml/2017/8/16/345
http://doi.acm.org/10.1145/2560537
http://doi.org/10.15514/ISPRAS-2012-22-19
http://dx.doi.org/10.1134/S0361768815010065
http://dx.doi.org/10.1134/S036176881503007X
https://doi.org/10.1007/978-3-662-46823-4_32
https://doi.org/10.1007/978-3-319-74313-4_30
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dl.acm.org/citation.cfm?id=647476.760384
https://doi.org/10.1007/978-3-642-38856-9_13
http://portal.acm.org/citation.cfm?id=1770351.1770419
http://portal.acm.org/citation.cfm?id=1770351.1770419

Fig. 7: Error trace for I2S driver

(a) probe function

(b) pri_dai initialization

(c) dev_set_drvdata/dev_get_drvdata and Null pointer dereference

86

Configurable system call tracer in Qemu emulator

 Ivanov Alexey
Novgorod State University

Russia, Velikiy Novgorod, B. St-Peterburgskaya, 41
alexey.ivanov@ispras.ru

ABSTRACT

The paper describes a method for tracing applications through

configurable system calls in a virtual machine. This method is

based on plugins, receiving information about system calls from

the running system and outputs it to a file. The plugin loads a

configuration file that corresponds to the running operating

system. The plugin parses the information received and, based on

it, traces the OS and applications.

KEYWORDS

Qemu, configurable system calls, debugging, plugin, system calls,

tracing.

1 INTRODUCTION

Sometimes programmers face the task of analyzing the work of a

compiled program to find its flaws, defects, and even search for

malicious code in it. To analyze the work of such applications,

we have to study their binary code or try to decompile the code,

which is a laborious task. In order to simplify the analysis of

applications, we can use the system calls of this application.

System calls provide an essential interface between a program and

the operating system. It is possible to track which system calls the

application makes, and draw conclusions about the behavior of the

program. This method allows us to debug the application without

delving into the level of instructions and architecture features,

thereby reducing the time required to find the problem.

Debugging applications using system tracing can be done

inside the operating system, but a number of problems arise:

strong dependence of the debugger on the operating system; it is

not possible to run several debuggers at the same time; there is no

access to the privileged execution; it is necessary to secure the

operating system when analyzing programs that have harmful

effects. To solve these problems, we can use the virtual machine

tools. In this way, we can debug applications in a wide range of

different operating systems running under different process

architectures.

2 APPROACH AND UNIQUENESS

To date, several debuggers allow us to trace an application

using system calls. All these debuggers have a drawback: they do

not provide enough portability of the debugger between different

operating systems and processor architectures. We offer a new

approach to implementing the debugger through system calls, load

all the information necessary for tracing from the configuration

file. The configuration files will allow us to easily configure and

change the parameters needed for debugging, and also simplify

the addition of support for new operating systems and

architectures without recompiling the program and learning the

debugger code.

It was decided to implement the debugger under the virtual

machine QEMU[1], using the plugin mechanism. QEMU is an

open source virtual machine that emulates the hardware of various

platforms. This virtual machine supports the emulation of a large

number of processors such as x86, PowerPC, ARM, MIPS,

SPARC, m68k. Also, this simulator supports the launch of a large

number of different operating systems.

At the moment for QEMU there is a plugin mechanism

implemented by ISP RAS[2], which allows us to connect

developed plugins to a virtual machine both during startup and

during its operation. In the plugin mechanism an implemented,

functional allows each additional translation of the instruction to

substitute additional code for execution, when this instruction is

called. This mechanism is suitable for debugging through system

calls, so it was decided to use it.

In addition, various mechanisms of the system call play an

important role. The classical way of implementation is the use of

interrupts. With the help of interrupts, control is transferred to the

kernel of the operating system, with the application having to

enter the number of the system call and the necessary arguments

into the corresponding registers of the processor.

For many RISC processors, this method is the only one,

however, the CISC architecture has additional methods. The two

mechanisms developed by AMD and Intel are independent of

each other, but, in fact, perform the same functions. These are

SYSCALL / SYSRET or SYSENTER / SYSEXIT statements.

They allow us to transfer control to the operating system without

interrupts.

Each operating system supports values returned from the

system call, which are passed as reference types when the system

call handler is called. During the execution of the system call, the

service procedure records the required values if necessary by the

available links, after which the system call is exited.

One of the main tasks that we had to face was the task of

supporting the plugin of different operating systems and processor

architectures. The solution to this problem was the interface with

the configuration file. The configuration file makes the debugger

more flexible and customizable. With its help, we can disconnect

87

mailto:alexey.ivanov@ispras.ru

2

from the trace a certain mechanism of system calls or disable

unnecessary system calls. In addition, such a mechanism makes it

easier to add support for new operating systems and processor

architectures.

To implement the interface with the configuration file, it was

necessary to study a wide range of different operating systems and

processor architectures. After gathering the necessary information,

we can determine the information necessary for debugging: what

type of system call is supported by SYSCALL / SYSRET or

SYSENTER / SYSEXIT and their opcodes; location of system

call arguments; a list of system calls, with the name of each

system call, its code, and the list of arguments. Thus, by

developing an interface for debugger and configuration file

interfacing, we can add support for operating systems without

going into the debugger code.

When implementing the debugger interaction interface with the

configuration file, it became necessary to recognize the various

expressions read from the file. For this task, we used the generator

of the bison parser and developed the corresponding grammar[3].

3 BACKGROUND AND RELATED WORK

At the moment, there are several debuggers to solve existing

problems. Nitro[4] allows us to trace system calls, but it works

only under Intel x86 architecture. Another debugger - Panda[5],

can also trace system calls, supports operating systems: Linux,

Windows 7, Windows XP and two architectures of the i386

processor and ARM. The description of all system calls is found

in the code of this debugger, as a result of which this approach

makes it difficult to add support for new operating systems and

processor architectures, and also worsens the flexibility in

configuring the plugin, since the system debugger settings

mechanism is not provided.

4 CONCLUSION AND DISCUSSION

Based on the results of the work done, a plugin was developed

in the QEMU virtual machine, with which we can trace and debug

an application using system calls. As input to the plugin, the

configuration file corresponding to the operating system running

in the QEMU virtual machine and corresponding to the selected

processor architecture is used.

The structure of the configuration file consists of 4 parts. The

first part provides information about the operating system, name

and bit capacity. The second part is responsible for the supported

mechanisms of system calls. The next part contains the location of

the system call arguments. The last part contains a list of all

available system calls and service information about the

arguments of the system call.

As result of the plugin’s work a log file is created that contains all

the system calls that the plugin has intercepted. Each system call

displays detailed information: the name and value of each system

call argument, the number of the thread of execution from which

this system call was made, and the value that returned the system

call after execution. In Fig. 1 presents a small fragment of the

output file that was created by the implemented plugin launched

in the windows XP operating system and the i386 processor

architecture.

Figure 1: Part of the output file of the plugin.

From the information gathered in the log file, we can analyze the

operation of the debugged application running inside the virtual

machine. The operating system load time when using the

developed plugin is increased by 1.2 times compared to the time

of the operating system loading without this plugin.

ACKNOWLEDGMENTS

The work was partially supported by RFBR, research project No.

REFERENCES
[1] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the

Annual Conference on USENIX Annual Technical Conference, ATEC ’05,

pages 41–41, Berkeley, CA, USA, 2005. USENIX Association.

[2] Vasiliev I.A., Fursova N.I., Dovgaluk P.M., Klimushenkova M.A., Makarov

V.A. Modules for instrunenting the exrcutable code in QEMU simulator. Journal

of Formation Security Problems. Computer Systems, 2015, 4, 195-203

[3] GNU Bison [HTML] (https://www.gnu.org/software/bison/)

[4] Nitro. [HTML] (http://nitro.pfoh.net/index.html)

[5] Panda. Plugin: syscalls2. [HTML] (https://github.com/panda-

re/panda/blob/master/panda/plugins/syscalls2/USAGE.md)

88

Stealth debugging of programs in Qemu emulator

with WinDbg debugger

Mikhail Abakumov
Novgorod State University

Velikiy Novgorod, Russia

mikhail.abakumov@ispras.ru

When programs are analyzed for the presence of vulnerabilities

and malicious code, there are situations when the program changes

its behavior due to the connection of the debugger. The WinDbg

debugger has the possibility of connecting to a remote debug service

(Kdsrv.exe) in the Windows kernel. Therefore, it is possible to

connect to the guest system running in the QEMU emulator. Kernel

debugging is possible only with the enabled debugging mode, may

change at the same time. Our module of WinDbg debugger for

QEMU is an alternative of the remote debugging service in the

kernel. Thus, the debugger connects to the debugging module, not

to the kernel of the operating system. The module obtains all the

necessary information answering debugger requests from the

QEMU emulator. At the same time for debugging there is no need

to enable debugging mode in the kernel. This leads to stealth

debugging. Our module supports all features of WinDbg regarding

remote debugging, besides interception of events and exceptions.

QEMU, Windows, WinDbg, remote debugging, stealth

debugging

 Introduction

When performing a dynamic analysis of binary
(executable) code, the problem arises of qualitatively isolating
the code and the instrumentation on which this analysis is
performed. The need for isolation is dual. On the one hand, it is
necessary to limit the impact of the code being studied, since it
is able to affect the state of the instrument machine, which is
especially important in the study of malicious software. On the
other hand, analysis tools can indirectly change the behavior of
the program being studied. The most indicative are the
situations when errors in working with dynamic memory and
race conditions cease to appear in the debugging mode.

The search for undocumented features in a binary code
encounters a similar problem. Various techniques and
techniques are known [1], with the help of which malware
reveals that its execution takes place in a controlled
environment, and does not fulfill its objective functions. To
find the debugger to be connected, check the int 3 handler and
hardware debug registers, evaluate the behavior of certain API
functions, and track the progress of the system time.

It is possible to divide potential sources of information,
which makes it possible to identify the fact of working in a
controlled environment into three disjoint groups. The first is
the interaction with external, uncontrolled components, the
program being studied, such as remote servers. To the same
category, it is necessary to include speed checks. Successful
struggle with such sources allows the mechanism of

deterministic reproduction [2]. If you write the progress of the
system in advance, when debugging and analyzing it during
playback, there will be no effect on the guest's state because all
time characteristics are fixed during recording. The second
group of sources is the discrepancy in the behavior of the
equipment [3]. The implementation of virtual equipment in
software emulators is not always ideal. Known inaccuracies
can be used to determine the emulator in which the program
runs. The third group is the analysis tools present in the
runtime. This kind of facility occurs even when the debugger is
running in conjunction with a virtual machine.

I. RELATED WORK

In the Qemu emulator at the moment there is only a module
of the GDB debugger, which allows debugging the kernel of
the system, but in itself it has relatively small functionality and
does not have a GUI. You can use IDA Pro Disassembler [4] to
connect to the emulator via the GDB interface, but this will not
extend the range of the GDB's features, but will only increase
the ease of use. In addition, there is a utility called Winbagility
[5], which allows the debugger WinDbg to connect to the
kernel without debugging mode of the operating system.

II. WINDBG

The WinDbg debugger is one of the most advanced
debuggers for Windows operating systems. WinDbg is claimed
by developers, because it extracts symbolic information from
applications and libraries, displays the contents of internal
Windows data structures, performs remote debugging of a
physical or virtual machine. WinDbg can be used to debug user
applications, device drivers, the operating system itself in
kernel mode, to analyze memory dumps in kernel mode created
after the so-called Blue Screen of Death, which occurs when an
error is issued. It can also be used to debug custom mode crash
dumps. WinDbg supports several debugging modes: debugging
the local process, debugging the kernel, and remote debugging.

With local debugging the WinDbg running in the debugged
system is easily detected by applications. Remote debugging
requires the operation of the OS kernel in debugging mode,
when the kernel using the KdSrv service generates various
debugging information for responding to requests from a
remote debugger, which also reveals system control (Fig. 1).

89

QEMU

CPU + RAM
WinDbg

Client
Windows

kernel

Fig. 1. Directly connecting the WinDbg to the kernel

III. STEALTH DEBUGGING

We developed for the QEMU emulator a mechanism for
stealth debugging, which allows WinDbg to be remotely
connected. The mechanism is an analysis module built into the
emulator, and turns out to be an external tool in relation to the
guest system. The needs of the KdSrv service in the core of the
system being debugged is not required - the analysis module
itself extracts the necessary data from the system and transfers
it to the remote debugger (Fig. 2). The programs running in the
guest system can not track the presence of the connected
debugger through functions such as IsDebuggerPresent or
through the state of the hardware registers.

One way to remotely debug the kernel using the WinDbg
debugger is to debug through the COM port, while the
interaction between the computers takes place via a private
KDCOM protocol, the specification of which has been
restored. One of the computers in this case is represented by a
virtual machine, the second is an instrumental computer with
Windows OS where this machine is started. Running WinDbg
connects to the emulator via a named pipe, through which the
COM-port of the virtual machine is forwarded.

The developed module for the emulator fully implements
the KDCOM protocol, within the framework of the restored
specification, so the debugger WinDbg interacts with it, as with
the debugging module of the Windows kernel, without noticing
the substitution. It should be noted that the use of the QEMU
emulator as a runtime opens the possibility of debugging
during deterministic playback of the virtual machine. The
recorded scenarios can be debugged many times in the
emulator, which would not be possible if the Windows debug
module running inside the guest system were used.

QEMU

CPU + RAM

WinDbg
Client

Windows
kernel

WinDbg
module

Fig. 2. Connecting the WinDbg to the kernel via the module

IV. RESULTS AND CONTRIBUTIONS

The developed module supports almost all features of
WinDbg regarding remote debugging, besides interception of
events and exceptions. It is open source project placed in:
github.com/ispras/qemu/tree/windbg. The official community
recognized the module as useful. In addition, patches have
already been prepared for inclusion in the official repository.

ACKNOWLEDGMENT

The work was partially supported by RFBR.

REFERENCES

[1] Timothy Vidas and Nicolas Christin. Evading android runtime analysis
via sandbox detection. // Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security, 2014, pp. 447-
458

[2] P. Dovgalyuk, Pavel. Deterministic Replay of System's Execution with
Multi-target QEMU Simulator for Dynamic Analysis and Reverse
Debugging. In Proceedings of the 2012 16th European Conference on
Software Maintenance and Reengineering, pages 553-556, CSMR '12,
Washington, DC, USA, 2012. IEEE Computer Society.

[3] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and
Danilo Bruschi. 2009. A fistful of red-pills: how to automatically
generate procedures to detect CPU emulators. In Proceedings of the 3rd
USENIX conference on Offensive technologies (WOOT'09). USENIX
Association, Berkeley, CA, USA, 2-2.

[4] IDA Pro Disassembler. [HTML] (https://www.hex-
rays.com/products/ida/index.shtml).

[5] Winbagility. [HTML] (https://winbagility.github.io/).

90

An Interactive Specializer Based on
Partial Evaluation for a Java Subset

Igor A. Adamovich1
Ailamazyan Program Systems Institute

Russian Academy of Sciences
4a Peter the First str.

Veskovo, Yaroslavl region, 152021 Russia
i.a.adamovich@gmail.com

Andrei V. Klimov2
Keldysh Institute of Applied Mathematics

Russian Academy of Sciences
4 Miusskaya sq.

Moscow, 125047 Russia
klimov@keldysh.ru

Abstract—Specialization is a program optimization approach
that implies the use of a priori information about values of some
variables. Specialization methods are being developed since 1970s
(mixed computations, partial evaluation, supercompilation), but
unfortunately they have not reached the level needed for their
wide application in practice. The task of specialization requires
much greater human involvement into the specialization process
and the analysis of its results and conducting computer experi-
ments than in the case of common program optimization in com-
pilers. Hence, specializers should be embedded into integrated
development environments (IDE) familiar to programmers and
appropriate interactive tools should be developed.

In this paper we provide a work-in-progress report on prelimi-
nary results of development and implementation of an interactive
specializer based on partial evaluation for a subset of the Java
programming language. The specializer has been implemented
within the popular Eclipse IDE. Scenarios of the human-machine
dialogue with the specializer and interactive tools to compose the
specialization task and to control the process of specialization are
under development.

An example of application of the current version of the
specializer is shown. The residual program runs several times
faster than the source one.

Index Terms—program analysis, program transformation,
interactive program specialization, partial evaluation, object-
oriented language, integrated development environment

I. INTRODUCTION

The method of program specialization known as partial
evaluation was invented more than 30 years ago along with
the achievement of the famous result [1], [2] of evaluation of
the First, Second and Third Futamura projections [3]–[5] for
a tiny List subset. The first round of research was completed
in early 1990s when the main textbook on partial evaluation
had been published [2]. A lot of programming problems were
found to be solved by program specialization (the most known
being the generation of a compiler from an interpreter by the
Second Futamura Projection) and the emergence of a new class
of program development tools based on specialization were

1Supported by RFBR research project No. 18-37-00454 (contribution:
development of interactive methods of partial evaluation, design of the
architechture and implementation of the specializer, analysis of related works).

2Supported by RFBR research project No. 16-01-00813 (contribution:
problem statement, design of methods based on the existing approaches,
supervision, analysis of related works).

expected. Some other program specialization techniques, e.g.,
supercompilation [6], [7], has been developed in parallel as
well. However, it is surprising, that even after three decades,
these promising methods have not been put into the wide
programming practice. One may wonder: What is the reason?

Our hypothesis is that that main expectation that governed
the development of specializers was wrong. The developers
of these methods hoped that specializers can work in fully
automatic mode and they just needed to invent some finitely
many features and improvements that solve the problem,
after which “the great goal” would be achieved and happy
programmers started using the new tools. They expected that
specializers could work in the similar “black-box mode” as
optimizing compilers. However this did not happen. The time
and space complexity of the program transformations that are
necessary for specialization, turned out to be much higher
than the complexity of program optimizations that can be
used as “black boxes” with short and predictable run time
and consumed memory.

We argue that automatic methods of program optimization
have reached certain inherent limits. In order to develop and
use more powerful tools, we must give up the expectations
that the program analysis and transformation systems will op-
erate in automatic mode without human intervention. Program
specializers possess too many degrees of freedom and choice,
which can not be resolved by the algorithms of their kind and,
therefore, should use human help.

Based on this observation, we put forward the goal of con-
struction of an interactive specializer embedded in a habitual
integrated development environment (IDE) such as Eclipse
[8]. Eclipse provides a rich open-source toolkit referred to as
Java development tools (JDT) [9], which allows a developer
to deal only with essential tasks of analysis, visualization
and transformation of Java code. Adequate human-machine
dialogue tools to control the specializer and deal with the
results of specialization are to be developed.

We would like to emphasize that there is strict separation of
concerns between the machine and the human: the specializer
guaranties the functional equivalence of program transforma-
tion and the user is responsible to control the specializer in
such a way that it produces the code that satisfied his goals

91

Figure 1. Source code of Ackermann function with BT annotation

and needs (which the machine does not know).
We think that partial evaluation is better suited than other

specialization methods (like supercompilation) for human-
machine dialogue organized in such a way that the user
comprehends what is happing in the specializer, receives
valuable and interesting information about his code, is capable
of adjusting the source code to be better specialized and
controls the specializer. The reason is that the method of partial
evaluation consists of two stages:

• binding-time analysis (BTA) of sourc code that selects the
parts of the code that are to be evaluated at specialization
time, and

• residual program generation (RPG) that follows the infor-
mation supplied by BTA, performs specialization proper
and produces the resulting code (referred to as residual).

A pleasant feature of BTA is that its result (called BT
annotation) may be naturally shown on the source code by
highlighting and due to such visualization the residual code is
intuitively predictable. We hope that this will allow for easy
adoption of specializers as new programming tools by rank-
and-file programmers.

Terminological remark. In the theory of partial evaluation
the parts of source code to be evaluated during specialization
are called static. The other source code that is transferred to
the residual program (residualized) is referred to as dynamic.
The term static conflicts with the static modifier in Java
and the term dynamic may be confused with the run-time
notions. That is why we avoid using these words in the partial
evaluation sense and use abbreviations S and D instead, e.g.,
S-annotation, D-annotation, S-code, D-code, S-part and D-part
of a program.

The contributions of this paper are as follows:
• We show the first results of development of the Java

specializer, where partially evaluated code is restricted
to operations on primitive types.

• We demonstrate the work of the specializer by an example
of specialization of the Ackermann function with respect
to the first argument.

• We discuss some of the details of implementation in
Eclipse and the methods and features to be implemented
in future.

Figure 2. Residual code of Ackermann function

The outline of the paper is as follows. In Section II we
present the basics of partial evaluation for Java by the example
of specialization of the Ackermann function. In Section III
a bird-eye view of the implementation of the specializer in
the Eclipse IDE is presented. Section IV contains a survey of
related works in comparison with our specializer. In Section
V we conclude.

II. JAVA SPECIALIZATION BY EXAMPLE

Figures 1 and 2 contain screenshots of the source and
residual code of the Ackermann function made from the
running specializer in Eclipse IDE. The method A imple-
ments the Ackermann function and the method test invokes
it with the first constant argument 3. The Java annotation
@Specialize at the method test specifies that it should
be specialized, i.e., its body is to be replaced with the residual
code and the specialized versions of the methods that it invokes
are to be generated and added to the program. The names of
the methods A and test in their headers are marked in orange
in order to show that they are involved in BTA. The bodies of
these methods are analyzed and annotated: green highlighting
marks S-parts of code. (You see gray highlighting in Figure 1
if you read this paper in a monochrome print).

A. Binding-Time Analysis

The BTA algorithm for variables and operations of primitive
types is rather straightforward. First, all constants are anno-
tated with S. Then recursively: subexpressions containing only
S-parts become S; local variable declarations and assignments
with S right-hand sides become S; method parameters that

92

correspond to S arguments at all points of invocation become
S; in case of conflict of several invocations of the same method
the conflicting parameter becomes D; a conflict on several
assignments to a local variable turns it to D as well; an if
statement with the S conditional expression is annotated with
S regardless of the annotation of its branches (this means
that if-else will disappear while one of the branches will
be residualized); other control statements are analyzed and
annotated similarly. When recursion reaches a fixed point, the
remaining parts of code are annotated with D. D-parts are not
highlighted in Figure 1.

This mode of operation of BTA, when each code fragment
gets univocal annotation S or D, is referred to as monovariant.
The more general mode when several versions of annotation
are allowed is called polyvariant. The current version of BTA
is monovariant. In future we plan to implement polyvariant
BTA for classes and reference types according the theory
developed in [10]–[18].

Monovariant BTA on primitive types can be defined for-
mally as abstract interpretation on a lattice with 3 elements:
undefined ≤ S ≤ D.

As an illustration of monovariance, notice that method A is
invoked 3 times in the source code, one of which has both
S arguments, another 2 invocations have the first S argument
and the second one is D. Nevertheless, the first invocation is
processed in the same way as the other two with the second
S argument assigned to the D formal parameter.

B. Residual Program Generation

At the generation stage, partial evaluation starts from the
method with the @Specialize annotation and recursively
visits all invoked methods in turn. Notice that, since all
statements and methods with side effects are considered D and
hence are residualized rather than executed at specialization
time, the order of specialization of methods does not matter.

For each of the specialized methods, several residual ver-
sions can be produced — one for each combination of values
of S arguments. They got different names of the form (in the
current version): source-name_number. They have only those
parameters that correspond to D parameters in the source code.

The current version of the specializer can loop forever if
infinitely many values of S arguments are generated. The
production version of the specializer should contain special
debugging means to gracefully leave such situations. This is
our future work.

In Figure 2 there are 4 versions of residual method A
corresponding to values 0, 1, 2, 3 of its first argument.
Notice that because of monovariance the invocations A_2(1),
A_1(1), and A_0(1) has not being evaluated, since the
constant 1 correspond to the D parameter of method A.

C. Running Source and Residual Programs

We have chosen this example for presentation, since it
demonstrates all main features of the current version of the
specializer. We did not expect a significant speed-up as it
seemed that asymptotically the number of method invocations

was almost the same and the invocations were the most
expensive operations in this example. Thus we were very
surprised when the speed-up was about 3 times.

The obtained acceleration can be explained by several
reasons. First, calculation showed that the specialized version
performs 1.86 times less Java byte code instructions. Second
and more important, it is natural to suppose that the JIT com-
piler in JVM performs inlining of those specialized method
that are simpler and more compact than in the source code.

This example illustrates the principle, which we observed
many times in experiments with various specializers: A spe-
cializer does not replace the classic optimizing compilers.
Rather, we observe “composition” of optimizations by a spe-
cializer and a low-level optimizing compiler and hence multi-
plication of speed-ups. Residual code produced by specializers
is more amendable for classic optimizations than code written
by a human being. We may conclude that specialization opens
up additional opportunities for program optimization.

III. ARCHITECTURE OF SPECIALIZER

The specializer has been implemented in the Eclipse de-
velopment environment (IDE) [8]. The IDE has open source
code and provides points and tools to extend it. The basis
for Eclipse extension is the concept of a plug-in. Each plug-
in is an archive JAR file containing a so-called manifest, a
set of files describing the dependencies of the plug-in and
the possibility of its extension (extension points). Other plug-
ins can add their functionality to these extension points. For
example, one might want to add his toolbar extensions to an
already implemented toolbar plug-in.

A small tool is usually implemented as a separate plug-
in, while a large one is often provided as a set of plug-
ins. Our specializer is implemented as three Eclipse plug-ins.
The general structure of Eclipse and the dependencies of the
specializer (i.e., the plug-ins required for its operation) are
shown in Figure 3.

The specializer consists of the following plug-ins:
• A plug-in SpecCore is the core of the specializer, which

implements its main functionality.
• A plug-in SpecMarkers is responsible for text highlight-

ing in the Eclipse editor in accordance with the annotation
produced by the SpecCore plug-in.

• A plug-in SpecMenus implements interactions with var-
ious menus (including context menus) and toolbars to
provide a user-friendly interface.

The SpecCore implements the binding-time analysis (BTA)
and the generation of a residual program. When analyzing the
source program the plug-in SpecCore uses the abstract syntax
tree (AST) built by the Eclipse Java development tools (JDT).
JDT is a set of plug-ins that provides us with an easy way to
manipulate Java source code.

The second of the three plug-ins that form the specializer
is the SpecMarkers plug-in. It is responsible for highlighting
the source code, which allows the programmer to see which
parts of the program are evaluated at specialization time and

93

Figure 3. Architecture of Eclipse and the specializer basic dependencies

which are residualized. This helps him to understand how to
change the code to provide better specialization.

The last part of the specializer is the SpecMenus plug-
in. This plug-in uses the extension points of other plug-ins
to add the necessary elements to some menus. It adds two
new buttons to the main toolbar of Eclipse: enable/disable the
highlighting and the “generate optimized Java files” button.
Also this plug-in adds items to the context menu of the Project
Explorer and Package Explorer views.

IV. RELATED WORK AND COMPARISON

A lot of works are devoted to partial evaluation for func-
tional languages. The book [2] summarizes the first wave of
development of this method.

Later on, research into partial evaluation for imperative
“Algol-like” languages [19], [20] and C [21] was performed.
In early 1990’s, the first (to our knowledge) specializer for C
was developed, called C-MIX [21], [22]. Chapter 11 of the
book [2] contains its detailed presentation. C-MIX specializes
a program in three stages. The first stage is the analysis of
references. For each reference variable, a set of the variables
that it can refer to is built. If the analysis finds that several
variable references can refer to the same memory, they are
labeled identically. The second stage is the construction of
a binding-time annotation of the source code. References to
the same memory area are annotated identically. In case of
conflicts, the annotation is reduced to D as usual. The third
stage is the generation of the residual program.

Specialization of reference types in Java can be similar
to elaboration of pointers in C-MIX. However, Java stricter
typing and managed run-time can be leveraged for deeper spe-
cialization. The current version of our specializer annotates all
reference variables D and, therefore, they are left unchanged.

In the future, we plan to add the binding-time analysis of
reference types. Unlike C-MIX, we expect that our specializer
will continue to work in two stages — without the reference
analysis phase.

Further development of ideas of C-MIX led to the creation
of a specializer of programs written in C, called Tempo [23],
[24]. This specializer is much like C-MIX.

The next important step was the development of the first
specializer for an object-oriented language — JSpec for Java
[25]. JSpec uses the Harissa compiler [26] to translate the
Java program into C. Then the Tempo specializer mentioned
above transforms the program. The obtained C-representation
of a specialized Java program is mapped back into Java using
the Assirah translator [25]. Finally, the AspectJ tool weaves
the specialized program with the source program to get the
executable Java bytecode. The main limitation of JSpec is that
it is capable of partially evaluating only immutable classes and
objects, while mutable objects are always residualized. Our
goal is to waive this restriction.

The most advanced (to our knowledge) partial evaluation
method for object-oriented languages like C# and Java has
been developed in CILPE [10]–[18], a partial evaluator for
Common Intermediate Language (CIL), the bytecode of the
Microsoft .NET Framework. It supports almost all of the basic
constructs of object-oriented languages such as C# and Java.
In CILPE, a new concept of a binding-time heap (BT heap)
has been introduced. The BT heap is an abstract description
of the state of the run-time heap, which allows us to separate
reference type data into evaluated at specialization time and
residualized and to avoid the use of the reference analysis
stage as in C-Mix. As a result of specialization, some of the
objects are no longer created in the residual program, and if
necessary, local variables are used instead of object fields. We
will base on the results of this research in our future work to
implement BTA of classes and partial evaluation of objects.

A relatively new specializer of Java programs is Civet [27].
Civet is based on a so-called Hybrid Partial Evaluation (HPE)
approach. Specialization in HPE is performed in online mode,
i.e., in one pass, while the programmer can specify which
parts of the program have S-annotation. On the contrary,
in our specializer we choose the offline approach, i.e., the
residual program is built at the stage of generation of the
residual program after the completion of the binding-time
analysis, where information about the S-parts of the program
is collected automatically rather than specified by the user as
in Civet1.

PE-KeY [28] is a partial evaluator for Java programs
based on the KeY verification system [29]. PE-Key works
in two stages. At the first stage, the program is executed
in a symbolic form with the application of a special set of
rules. At the second stage, a residual program is synthesized,
while the rules are applied in the opposite direction. The PE-
KeY approach is similar to the classical offline specialization

1For discussion of the features of and differences between online and offline
partial evaluation see [2, Chapter 7].

94

that our specializer uses: a specialized program is produced
in two stages. However, in the first stage of PE-KeY, the
program is executed symbolically, while our binding-time
analysis performs an abstract interpretation of the program.
In addition, due to limitations of the KeY verification system,
PE-KeY does not support floating-point arithmetic, while our
specializer supports.

JSpec, Civet, PE-Key deal with objects at specialization
time, while the current version of our specializer annotates
classes and variables of reference types with D and thus
residualizes them unchanged. The extension of our specializer
to partial evaluation of classes and objects is our future work.

The specializers considered above interact with the user
through the command line, so it’s extremely difficult to use
them. In order for the specialization to be widely used, it is
required to develop the methods of interaction with the user
and to embed the specializer into an integrated development
environment convenient for the programmer, what we are
implementing in our specializer. This is a crucial difference.

We know about just one work on partial evaluation carried
out in a practical setting — the GraalVM toolkit in Oracle
Labs [30], [31]. The toolkit is designed for defining domain-
specific languages by interpreters and, nevertheless, achieving
high-performance by using a specializer. The first Futamura
projection provides an opportunity for such acceleration (see
[3], [4] and [2, Chapter 1.5.1]): given a program and an
interpreter that executes the program, GraalVM specializes the
interpreter with respect to a part of the given program and
produces the machine code of this part. The resulting code
is executed much faster than the original one in the inter-
preter. The main goal of GraalVM is to provide a technology
similar to just-in-time (JIT) compilation for the developer of
a programming language without the need to implement the
complex machinery of JIT. The interpreter specialization in
GraalVM is not automatic and uses prompts by the interpreter
developer. This case of implementation of partial evaluation
confirms that practical application of specialization requires
guidance from the programmer. We conduct our research in
the same direction: methods and tools are being developed to
provide the programmer with information about his program
behavior under specialization and levers to control the partial
evaluation processes.

V. CONCLUSION

In this paper we put forward the task of development of
an interactive specializer. We argue that the current stage
of program specialization methods has reached certain limits
because the previously implemented specializers do not imply
the participation of the user in the process of specialization.
Our specializer uses the offline partial evaluation approach,
where the program transformation if performed in two stages
— binding-time analysis (BTA) and residual program gen-
eration (RPG). We briefly described the architecture of our
interactive specializer in the Eclipse development environment.

We illustrated the work of the specializer with the famous
example of the Ackermann function and the result of its

specialization with respect to its first argument. The special-
ized program runs several times (about three) faster than the
original one.

We see the following directions for further development of
the specializer:

• to develop and implement binding-time analysis and
residual program generation for classes and objects;

• to implement interactive tools for making a specialization
task and controlling the process of binding-time analysis
and residual program generation;

• to implement tools to visualize the correspondence of
between source and residual code;

• to demonstrate that a well-developed specializer can
convert well-structured high-level human-oriented code,
which can not be automatically parallelized, into code
that can be parallelized by existing methods and tools;

• to prepare demo programs that benefit from specializa-
tion, for example, building a compiler from an interpreter;

• to generalize the binding-time analysis from monovariant
to polyvariant;

• to develop an interactive tracer (similar to run-time de-
buggers) that allows the user to observe the analysis and
generation processes in order to improve the behavior of
his code under specialization.

AVAILABILITY

The current version of our specializer is available at
ftp://ftp.botik.ru/rented/iaadamovich/Specializer/.

ACKNOWLEDGMENT

We are grateful to our friends and colleagues Yuri Klimov,
Arkady Klimov, Sergei Romanenko, Sergei Abramov for
valuable advices on specialization methods in general and
partial evaluation in particular and constructive feedback on
the design of our specializer system.

REFERENCES

[1] N. D. Jones, P. Sestoft, and H. Søndergaard, “An experiment in partial
evaluation: the generation of a compiler generator,” in Rewriting Tech-
niques and Applications, ser. Lecture Notes in Computer Science, J.-P.
Jouannaud, Ed., vol. 202. Springer-Verlag, 1985, pp. 124–140.

[2] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation
and Automatic Program Generation. Prentice-Hall, 1993. [Online].
Available: http://www.itu.dk/∼sestoft/pebook/pebook.html

[3] Y. Futamura, “Partial evaluation of computation process — an approach
to a compiler-compiler,” Systems, Computers, Controls, vol. 2, no. 5,
pp. 45–50, 1971.

[4] ——, “Partial evaluation of computation process — an approach to a
compiler-compiler,” Higher-Order and Symbolic Computation, vol. 12,
no. 4, pp. 381–391, Dec 1999, updated and revised version of [3].
[Online]. Available: http://doi.org/10.1023/A:1010095604496

[5] ——, “EL1 Partial Evaluator (Progress Report),” Center for Research
in Computing Technology, Harvard University, Tech. Rep., 1973.
[Online]. Available: http://fi.ftmr.info/PE-Museum/EL1.PDF

[6] V. F. Turchin, “The concept of a supercompiler,” Transactions on
Programming Languages and Systems, vol. 8, no. 3, pp. 292–325, 1986.

[7] ——, “Supercompilation: techniques and results,” in Perspectives of
System Informatics, Second International Andrei Ershov Memorial
Conference, Akademgorodok, Novosibirsk, Russia, June 25-28, 1996.
Proceedings, ser. Lecture Notes in Computer Science, D. Bjørner,
M. Broy, and I. V. Pottosin, Eds., vol. 1181. Springer, 1996, pp. 227–
248.

95

[8] Eclipse Foundation, “Eclipse integrated develoment environment (IDE).”
[Online]. Available: https://www.eclipse.org

[9] ——, “Eclipse Java development tools (JDT).” [Online]. Available:
https://www.eclipse.org/jdt

[10] Yu. A. Klimov, “An approach to polyvariant binding time analysis
for a stack-based language,” in First International Workshop on
Metacomputation in Russia, Proceedings. Pereslavl-Zalessky, Russia,
July 2–5, 2008. Pereslavl-Zalessky: Ailamazyan University of
Pereslavl, 2008, pp. 78–84. [Online]. Available: http://meta2008.
pereslavl.ru/accepted-papers/paper-info-6.html

[11] ——, “Osobennosti primeneniya metoda chastichny`x vy`chislenij k
specializacii programm na ob``ektno-orientirovanny`x yazykax [Program
specialization for object-oriented languages by partial evaluation:
approaches and problems],” Preprinty` IPM im. M. V. Keldy`sha
[Keldysh Institute Preprints], no. 12, 2008, (in Russian). [Online].
Available: http://library.keldysh.ru/preprint.asp?id=2008-12

[12] ——, “Vozmozhnosti specializatora CILPE i primery` ego primeneniya
k programmam na ob``ektno-orientirovanny`x yazy`kax [Specializer
CILPE: examples of object-oriented program specialization],” Preprinty`
IPM im. M. V. Keldy`sha [Keldysh Institute Preprints], no. 30, 2008,
(in Russian). [Online]. Available: http://library.keldysh.ru/preprint.asp?
id=2008-30

[13] ——, “SOOL: ob``ektno-orientirovanny`j stekovy`j yazy`k dlya
formal`nogo opisaniya i realizacii metodov specializacii programm
[SOOL: an object-oriented stacked-based language for specification
and implementation of program specialization techniques],”
Preprinty` IPM im. M. V. Keldy`sha [Keldysh Institute
Preprints], no. 44, 2008, (in Russian). [Online]. Available:
http://library.keldysh.ru/preprint.asp?id=2008-44

[14] ——, “Specializator CILPE: analiz vremen sviazy`vaniia [Specializer
CILPE: binding time analysis],” Preprinty` IPM im. M. V. Keldy`sha
[Keldysh Institute Preprints], no. 7, 2009, (in Russian). [Online].
Available: http://library.keldysh.ru/preprint.asp?id=2009-07

[15] ——, “Specializator CILPE: generaciya ostatochnoj programmy`
[Specializer CILPE: residual program generation],” Preprinty` IPM im.
M. V. Keldy`sha [Keldysh Institute Preprints], no. 8, 2009, (in Russian).
[Online]. Available: http://library.keldysh.ru/preprint.asp?id=2009-08

[16] ——, “Specializator CILPE: dokazatel`stvo korrektnosti [Specializer
CILPE: correctness proof],” Preprinty` IPM im. M. V. Keldy`sha
[Keldysh Institute Preprints], no. 33, 2009, (in Russian). [Online].
Available: http://library.keldysh.ru/preprint.asp?id=2009-33

[17] ——, “Specializaciya programm na ob``ektno-orientirovannyx yazykax
metodom chastichnyx vy`chislenij [Specialization of programs in
object-oriented languages by partial evaluation],” Ph.D. dissertation,
Keldysh Institute of Applied Mathematics of RAS, Moscow, Russia,
Nov 2009, (in Russian). [Online]. Available: http://pat.keldysh.ru/
∼yura/publications/2009.10-Klimov-Disser-Specializacia programm
na ob’ektno-orientirovannyx yazykah.pdf

[18] ——, “Specializator CILPE: chastichny`e vy`chisleniya dlya ob``ektno-
orientirovanny`x yazykov [Specializer CILPE: Partial evaluation
for object-oriented languages],” Programmny`e sistemy`: teoriia i
prilozheniia [Program Systems: Theory and Applications], no.
3(3), pp. 13–36, 2010, (in Russian). [Online]. Available: http:
//psta.psiras.ru/read/psta2010 3 13-36.pdf

[19] M. A. Bulyonkov and D. V. Kochetov, “Practical aspects of specializa-
tion of Algol-like programs,” in Dagstuhl Seminar on Partial Evaluation,
ser. Lecture Notes in Computer Science, O. Danvy, R. Glück, and
P. Thiemann, Eds., vol. 1110. Springer, 1996, pp. 17–32.

[20] A. P. Ershov and V. E. Itkin, “Correctness of mixed computation in
Algol-like programs,” in MFCS, ser. Lecture Notes in Computer Science,
J. Gruska, Ed., vol. 53. Springer, 1977, pp. 59–77.

[21] L. O. Andersen, “Program analysis and specialization for the C program-
ming language,” Ph.D. dissertation, DIKU, University of Copenhagen,
May 1994, (DIKU report 94/19).

[22] ——, “Binding-time analysis and the taming of C pointers,” in Proc. of
ACM Symposium on Partial Evaluation and Semantics-Based Program
Manipulation, PEPM’93, D. Schmidt, Ed., 1993.

[23] C. Consel, J. L. Lawall, and A.-F. L. Meur, “A tour of Tempo: a program
specializer for the C language,” Sci. Comput. Program., vol. 52, no. 1-3,
pp. 341–370, 2004.

[24] A. L. Meur, J. L. Lawall, and C. Consel, “Towards bridging the gap
between programming languages and partial evaluation,” in Proceedings
of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM ’02), Portland, Oregon,

USA, January 14-15, 2002, P. Thiemann, Ed. ACM, 2002, pp. 9–18.
[Online]. Available: http://doi.acm.org/10.1145/503032.503033

[25] U. P. Schultz, J. L. Lawall, and C. Consel, “Automatic program special-
ization for Java,” ACM Trans. Program. Lang. Syst., vol. 25, no. 4, pp.
452–499, 2003.

[26] G. Muller, B. Moura, F. Bellard, and C. Consel, “Harissa: A flexible
and efficient Java environment mixing bytecode and compiled code,”
in Proceedings of the Third USENIX Conference on Object-Oriented
Technologies (COOTS), June 16-20, 1997, Portland, Oregon, USA,
S. Vinoski, Ed. USENIX, 1997, pp. 1–20. [Online]. Available: http:
//www.usenix.org/publications/library/proceedings/coots97/muller.html

[27] A. Shali and W. R. Cook, “Hybrid partial evaluation,” SIGPLAN
Not., vol. 46, no. 10, pp. 375–390, Oct. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2076021.2048098

[28] R. Ji and R. Bubel, “PE-KeY: A partial evaluator for Java programs,”
in Proceedings of the 9th International Conference on Integrated
Formal Methods, ser. IFM’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 283–295. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-30729-4 20

[29] W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H. Schmitt,
and M. Ulbrich, Eds., Deductive Software Verification — The
KeY Book — From Theory to Practice, ser. Lecture Notes in
Computer Science. Springer, 2016, vol. 10001. [Online]. Available:
https://doi.org/10.1007/978-3-319-49812-6

[30] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko, “One vm to rule them all,”
in Proceedings of the 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software,
ser. Onward! 2013. New York, NY, USA: ACM, 2013, pp. 187–204.
[Online]. Available: http://doi.acm.org/10.1145/2509578.2509581

[31] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton,
G. Duboscq, D. Simon, and M. Grimmer, “Practical partial evaluation
for high-performance dynamic language runtimes,” SIGPLAN Not.,
vol. 52, no. 6, pp. 662–676, Jun. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3140587.3062381

96

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Static Dependency Analysis for Incremental
Validation of Semantically Complex Data

Denis Ilyin
Ivannikov Institute for Systems

Programming of the Russian Acedemy of
Sciences

Moscow, Russia
denis.ilyin@ispras.ru

Natalya Fokina
Ivannikov Institute for Systems

Programming of the Russian Acedemy of
Sciences

Moscow, Russia
nfokina@ispras.ru

Vitaly Semenov
Ivannikov Institute for Systems

Programming of the Russian Acedemy of
Sciences

Moscow, Russia
sem@ispras.ru

Abstract — Modern information systems manipulate data
models containing millions of items, and the tendency is to make
these models even more complex. One of the most crucial aspects
of modern concurrent engineering environments is their
reliability. The principles of ACID (atomicity, consistency,
isolation, durability) are aimed at providing it, but directly
following them leads to serious performance drawbacks on large-
scale models, since it is necessary to control the correctness of
every performed transaction

In the paper, a method for incremental validation of object-
oriented data is presented. Assuming that a submitted
transaction is applied to originally consistent data, it is
guaranteed that the final data representation is also consistent if
only the spot rules are satisfied. To identify data items subject to
spot rule validation, a bipartite data-rule dependency graph is
formed. To automatically build the dependency graph a static
analysis of the model specifications is proposed to apply. In the
case of complex object-oriented models defining hundreds and
thousands of data types and semantic rules, the static analysis
seems to be the only way to realize the incremental validation and
to make possible to manage the data in accordance with the
ACID principles.

Keywords — information systems, ACID, data consistency
management, EXPRESS

I. INTRODUCTION
Management of semantically complex data is one of the

challenging problems tightly connected with emerging
information systems such as concurrent engineering
environments and product data management systems [1-4].
Although transactional guarantees ACID (Atomicity,
Consistency, Isolation, and Durability) are widely recognized
and recommended for any information system, it is difficult to
maintain the consistency and integrity of data driven by
complex object-oriented models. Often such models are
specified in EXPRESS language being part of the STEP
standard on industrial automation systems and integration
(ISO 10303). To be unambiguously interpretable by different
systems the data must satisfy numerous semantic rules
imposed by formal models. Maintaining data consistency and
ensuring system interoperability become a serious
computational problem. Full semantic validation requires
extremely high costs, often exceeding the processing time of
individual transactions. Periodic validation is possible, but at a
high risk of violating rules and losing actual data.

The paper presents an effective method for incremental
validation of object-oriented data. An idea of incremental
checks is well-understood and was successfully implemented
for the validation of such specific data as UML charts, XML
documents, deductive databases [5-7]. Unlike the
aforementioned results, the proposed method can be applied to
semantically complex data driven by arbitrary object-oriented
models.

Assuming that a submitted transaction is applied to
originally consistent data, it is guaranteed that the final data
representation is also consistent if only the spot rules are
satisfied. To identify data items subject to spot rule validation,
a bipartite data-rule dependency graph is formed. To
automatically build the dependency graph a static analysis of
the model specifications is proposed to apply. In the case of
large-scale models defining hundreds and thousands of data
types and semantic rules, static analysis seems to be the only
way to realize the incremental validation and to make possible
to effectively manage the data in accordance with the ACID
principles.

The structure of the paper is as follows. In section 2, we
will shortly overview EXPRESS language with an emphasis
on the data types and the rule categories admitted by the
language. Formal definitions of model-driven data, rules and
transactions are also provided. In section 3, we will present a
complete validation routine and then explain how an
incremental validation can be arranged using the proposed
dependency graph. This is accompanied by an example of the
model specification. In conclusion, we summarise benefits of
the proposed validation method and outdraw future efforts.

II. PRODUCT DATA AND TRANSACTIONS

A. EXPRESS language
Product data models and, particularly, semantic rules can

be specified formally in EXPRESS (ISO 2004) language [8].
This object-oriented modeling language provides a wide range
of declarative and imperative constructs to define both data
types and constraints imposed upon them. The supported data
types can be subdivided into the following groups: simple
types (character, string, integer, float, double, boolean, logical,
binary), aggregate types (set, multi-set, sequence, array),
selects, enumerations, and entity types.

97

Depending on the definition context, three basic sorts of
constraints are distinguished in the modeling language: rules
for simple user-defined data types, local rules for object types,
and global rules for object type extents. Depending on the
evaluation context these imply the following semantic checks:

• attribute type compliance (𝑅𝑅0);
• limited widths of strings and binaries (𝑅𝑅1, 𝑅𝑅2);
• size of aggregates (𝑅𝑅3);
• multiplicity of direct and inverse associations in objects

(𝑅𝑅4, 𝑅𝑅5);
• uniqueness of elements in sets, unique lists and arrays

(𝑅𝑅6);
• mandatory attributes in objects (𝑅𝑅7);
• mandatory elements in aggregates excluding sparse

arrays (𝑅𝑅8);
• value domains for primitive data types (𝑅𝑅9);
• value domains restricting and interrelating the states of

separate attributes within objects (𝑅𝑅10 or so-called local
rules);

• uniqueness of attribute values (optionally, their groups)
on object type extents (𝑅𝑅11 or uniqueness rules);

• value domains restricting and interrelating the states of
whole object populations (𝑅𝑅12 or so-called global rules).
Value domains can be specified in a general algebraic
form by means of all the variety of imperative
constructs available in the language (control statements,
functions, procedures, etc.).

Certainly, each product model defines own data types and
rules. Therefore, semantic validation methods and tools should
be developed in a model-driven paradigm allowing their
application for any data whose model is formally specified in
EXPRESS language. For a more detailed description refer to
the mentioned above standard family which regulates the
language.

B. Formalisation of models, data and transactions
An object-oriented data model 𝑀𝑀 can be formally

considered as a triple 𝑀𝑀 = 〈𝑇𝑇 ∪ ≺ ∪ 𝑅𝑅〉 , where the types
𝑇𝑇 = {𝐶𝐶 ∪ 𝑆𝑆 ∪ 𝐴𝐴 ∪ … } are classes 𝐶𝐶 , simple types 𝑆𝑆 ,
aggregates 𝐴𝐴 and other constructed structures allowed by
EXPRESS. Generalization/specialization relations ≺ are
defined among these types. Each class 𝑐𝑐 ∈ 𝐶𝐶 defines a set of
attributes in the form 𝑐𝑐. 𝑎𝑎: 𝐶𝐶 ↦ 𝑇𝑇. The attributes 𝑐𝑐. 𝑎𝑎: 𝐶𝐶 ↦ 𝐶𝐶,
𝑐𝑐. 𝑎𝑎: 𝐶𝐶 ↦ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶) are single and multiple associations
which play role of object references. The rules 𝑅𝑅 =
{𝑅𝑅0 ∪ 𝑅𝑅1 ∪ 𝑅𝑅2 ∪ … ∪ 𝑅𝑅12} define the value domains of typed
data in an algebraic way in accordance with EXPRESS. The
rules are subdivided into 12 categories enumerated above. Let
us define the key concepts that are used in further
consideration.

An object-oriented dataset 𝑥𝑥 = {𝑜𝑜1, 𝑜𝑜2, … } is said to be
driven by the model 𝑀𝑀〈𝑇𝑇, ≺, 𝑅𝑅〉 if all the objects belong to its
classes: ∀ 𝑜𝑜 ∈ 𝑥𝑥 → 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜) ∈ 𝐶𝐶 ⊂ 𝑇𝑇.

Let a dataset 𝑥𝑥 is driven by the model 𝑀𝑀〈𝑇𝑇, ≺, 𝑅𝑅〉. All the
objects {𝑜𝑜∗} ⊂ 𝑥𝑥 such that 𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜∗) = 𝑐𝑐 ∈ 𝐶𝐶 ⊂ 𝑇𝑇 are
called an extent of the class 𝑐𝑐 on the dataset 𝑥𝑥 . A query

returning the class extent 𝑐𝑐 on the dataset 𝑥𝑥 is called the extent
query and is designated as 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑐𝑐).

Let a dataset 𝑥𝑥 is driven by the model 𝑀𝑀〈𝑇𝑇, ≺, 𝑅𝑅〉 . An
object set {𝑜𝑜∗} ⊂ 𝑥𝑥 , 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜∗) = 𝑐𝑐∗ ∈ 𝐶𝐶 ⊂ 𝑇𝑇 is said to be
interlinked with the objects {𝑜𝑜} ⊂ 𝑥𝑥, 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜) = 𝑐𝑐 ∈ 𝐶𝐶 ⊂ 𝑇𝑇
along the association 𝑐𝑐. 𝑎𝑎 if ∀𝑜𝑜 ∈ {𝑜𝑜}, 𝑜𝑜. 𝑎𝑎 ⊂ {𝑜𝑜∗}, ∀𝑜𝑜∗ ∈
{𝑜𝑜∗} → ∃𝑜𝑜 ∈ {𝑜𝑜}: 𝑜𝑜∗ ∈ 𝑜𝑜. 𝑎𝑎 . We will denote that as {𝑜𝑜}
𝑐𝑐.𝑎𝑎
�� {𝑜𝑜∗}.

Let a dataset 𝑥𝑥 is driven by the model 𝑀𝑀〈𝑇𝑇, ≺, 𝑅𝑅〉 . An
object set {𝑜𝑜∗} ⊂ 𝑥𝑥 , 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜∗) = 𝑐𝑐∗ ∈ 𝐶𝐶 ⊂ 𝑇𝑇 is said to be
interlinked with the objects {𝑜𝑜} ⊂ 𝑥𝑥, 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜) = 𝑐𝑐 ∈ 𝐶𝐶 ⊂ 𝑇𝑇
along the route {𝑐𝑐. 𝑎𝑎} if ∃ {𝑜𝑜′} ⊂ 𝑥𝑥, {𝑜𝑜′′} ⊂ 𝑥𝑥 , …, so that

{𝑜𝑜}
𝑐𝑐.𝑎𝑎
�� {𝑜𝑜′}

𝑐𝑐′.𝑎𝑎′

�⎯� {𝑜𝑜′′}
𝑐𝑐′′.𝑎𝑎′′

�⎯⎯� … → {𝑜𝑜∗} . A query returning the
objects {𝑜𝑜∗} interlinked with a given set {𝑜𝑜} along the route
{𝑐𝑐. 𝑎𝑎} is called the route query and is designated as
𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒(𝑥𝑥, {𝑜𝑜}, {𝑐𝑐. 𝑎𝑎}). A query returning the objects {𝑜𝑜} by a
given object set {𝑜𝑜∗} is called the reverse route query and is
designated as 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒(𝑥𝑥, {𝑜𝑜∗}, 𝑎𝑎𝑎𝑎𝑟𝑟 {𝑐𝑐. 𝑎𝑎}).

The object set 𝑥𝑥 = {𝑜𝑜1, 𝑜𝑜2, … } driven by the model
𝑀𝑀〈𝑇𝑇, ≺, 𝑅𝑅〉 is called consistent if all the rules being instantiated
and evaluated are satisfied on this data set: ∀ 𝑎𝑎 ∈ 𝑅𝑅 → 𝑎𝑎(𝑥𝑥) =
𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎.

Finally, let us introduce the concept of the delta as a
specific representation of transactions. Each delta Δ(𝑥𝑥′, 𝑥𝑥)
aggregates the changes happened in the dataset 𝑥𝑥′ =
{𝑜𝑜1

′ , 𝑜𝑜2
′ , … } compared with its original revision 𝑥𝑥 = {𝑜𝑜1, 𝑜𝑜2, … }.

It is assumed that both revisions are driven by the same model
and the objects have unique identifiers that allows to uniquely
map the objects and to compute delta in a formal way as
Δ(𝑥𝑥′, 𝑥𝑥) = 𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎(𝑥𝑥′, 𝑥𝑥) . The delta can be arranged as
bidirectional one and then any of the revisions can be restored
by the given other: 𝑥𝑥′ = 𝑎𝑎𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡(𝑥𝑥, Δ) and 𝑥𝑥 = 𝑎𝑎𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡(𝑥𝑥′, Δ−1).

The delta is represented as a set of elementary and
compound changes Δ = {𝛿𝛿}, where each change can be either
the creation of an object, or its deletion or modification
designated as 𝛿𝛿𝑒𝑒𝑒𝑒𝑛𝑛(𝑟𝑟) , 𝛿𝛿𝑑𝑑𝑒𝑒𝑑𝑑(𝑟𝑟) , 𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑟𝑟) correspondingly. The
modification, in turn, is represented as a change in the
attributes 𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑟𝑟) = �𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑟𝑟.𝑎𝑎)� that in the case of aggregates
is represented by the operations of insertion, removal and
modification of the elements
𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑟𝑟.𝑎𝑎) = �𝛿𝛿𝑖𝑖𝑒𝑒𝑖𝑖(𝑟𝑟.𝑎𝑎[]), 𝛿𝛿𝑟𝑟𝑒𝑒𝑚𝑚(𝑟𝑟.𝑎𝑎[]), 𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑟𝑟.𝑎𝑎[])� . In what
follows, we assume that each creation operation in the delta
representation is complemented by the operations of
initializing the attributes that are equivalent to the
modification operations. Each deletion operation is
supplemented by the operations of resetting the attributes to an
undefined state, also representable by the modification
operations. Regardless of the way, the delta is structured, only
elementary operations are taken into account in the context of
the studied validation problems.

III. VALIDATION

A. Complete validation
The complete validation routine is provided below (see

Figure 1). In a cycle on all objects their attributes are checked

98

against the rules of the categories 𝑅𝑅1 ∪ 𝑅𝑅2 ∪ … ∪ 𝑅𝑅9 . The
checks are performed individually for each attribute provided
that the corresponding rules are imposed on their types. In case
of detected violations, the error messages are logged. Rules
𝑅𝑅10 are evaluated for entire objects in the same loop. The
second cycle is formed due to the need for checks of
uniqueness rules 𝑅𝑅11. Since these rules are declared inside the
class definitions, an additional cycle is arranged on the model
classes. The rules are evaluated on the class extents. Finally,
the third cycle allows to check global rules 𝑅𝑅12 which are
defined directly in the model. Such checks are performed for
the corresponding class extents.

for each object o ∈ x in dataset
 for each attribute o.a in object
 for each attribute rule ∈ R0 U R1 U R2 U … U R9

defined for typeof(o.a)
 check rule(o.a), log if violated
 for each local rule ∈ R10 defined for typeof(o)
 check rule(o), log if violated
for each class c ∈ C defined in model
 for each uniqueness rule ∈ R11 defined for class c
 check rule(Q_extent(x, rule.c)), log if

violated
for each global rule ∈ R12 defined in model
 check rule(Q_extent(x, rule.c1), Q_extent(x,

rule.c2),…), log if violated

Fig. 1. Complete validation routine.

As mentioned above, complete validation of semantically
complex product data is a computationally costly task that can
cause performance degradation when processing transactions.
Incremental validation makes it possible to reduce the amount
of checks to be performed.

B. Incremental validation
The proposed incremental validation method is based on

the idea of localizing spot rules that can be affected by a
transaction and generating a set of semantic checks that is
sufficient to detect all potential violations. For this purpose,
the dependency graph is built by a given specification of the
data model in EXPRESS language. For brevity, we just
explain that this structure represents and omit the details of
how it can be formed using static analysis of the specification.

The dependency graph is a bipartite graph whose nodes
represent the kinds of transaction operations and the categories
of semantic rules both defined by the underlying model. An
operation node is connected with the rule nodes by directed
edges if only such operations can violate the rules being
instantiated for particular data. Usually, the semantics of the
operations imply what are the data it is applied to. Sometimes
the inspected data are apriori unknown and have to be
determined by executing corresponding route queries.
Therefore, each edge is formed by the dependency structure 𝜎𝜎
containing both a rule reference 𝜎𝜎. 𝑎𝑎𝑠𝑠𝑑𝑑𝑎𝑎 and an optional query
route 𝜎𝜎. 𝑎𝑎𝑜𝑜𝑠𝑠𝑎𝑎𝑎𝑎 . In some sense, the graph reflects the
transaction structure as if it contains all possible kinds of
changes and the data organisation as if all data types are
present and all rules are potentially suffered to violations. As
mentioned above, only elementary operations are involved in
the dependency analysis.

Thus, the dependency graph enables to determine spot
rules that could be violated for particular data due to the
accepted transaction. For example, if the node operation is a
modification of the object attribute 𝑐𝑐. 𝑎𝑎 and a rule 𝑎𝑎 ∈ 𝑅𝑅0 ∪
 𝑅𝑅1 ∪ 𝑅𝑅2 ∪ … ∪ 𝑅𝑅9 is defined for its type, then the node
𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑐𝑐.𝑎𝑎) is connected with the rule node 𝑎𝑎 by a corresponding
edge. Having a specific operation of this kind 𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑟𝑟.𝑎𝑎) ,
𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜) = 𝑐𝑐 in the delta representation the corresponding
check 𝑎𝑎(𝑜𝑜. 𝑎𝑎) can be produced using the dependency edge.

The method of the dependency graph construction is
described in more detail in the next section. Still, here we will
point out some of its important features.

If the same attribute 𝑐𝑐. 𝑎𝑎 participates in an expression of
the domain rule 𝑎𝑎 ∈ 𝑅𝑅10 for the class 𝑐𝑐 , then the operation
𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑟𝑟.𝑎𝑎) , 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜) = 𝑐𝑐 produces the check 𝑎𝑎(𝑜𝑜) for the
object 𝑜𝑜.

If the attribute 𝑐𝑐. 𝑎𝑎 participates in the uniqueness rule
𝑎𝑎 ∈ 𝑅𝑅11 defined for the class 𝑐𝑐, then another dependency edge
must be associated with the operation node. In this case, the
corresponding check 𝑎𝑎(𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑐𝑐)) must be performed.

There is a more difficult case when the attribute 𝑐𝑐. 𝑎𝑎
participates in an expression of the domain rule 𝑎𝑎 ∈ 𝑅𝑅10
defined for the other class 𝑐𝑐∗. The attribute 𝑐𝑐. 𝑎𝑎 is assumed to
be accessed by traversing associated objects along the route
{𝑐𝑐∗. 𝑎𝑎∗} from the objects 𝑜𝑜∗ ∈ 𝑐𝑐∗. Then the operation 𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑟𝑟.𝑎𝑎),
𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑜𝑜𝑡𝑡(𝑜𝑜) = 𝑐𝑐 induces the checks 𝑎𝑎(𝑜𝑜∗) for all 𝑜𝑜∗ ∈
𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑜𝑜, 𝑎𝑎𝑎𝑎𝑟𝑟 {𝑐𝑐∗. 𝑎𝑎∗}) . To identify and perform such
checks the operation node must be connected with the
evaluated rule node and a route {𝑐𝑐∗. 𝑎𝑎∗} must be prescribed to
the edge. The dependency analysis of spot rules 𝑎𝑎 ∈ 𝑅𝑅12 is
carried out in a similar way.

Finally, we note that the operations of creating and deleting
objects on the assumptions made above can only violate global
rules and only in those cases if the cardinalities of class extents
are computed. Considering object references as specific
attribute types, it is possible to localize some spot rules more
exactly. Differing operations on aggregates also leads to better
localization of spot rules. For brevity we omit the details how
the spot rules can be localized more carefully and provide an
example in the next subsection.

for each elementary operation δ(o),δ(o.a) ∈ delta
 { σ } = dependency_graph(kindof(δ))
 for each dependency σ ∈ { σ }
 switch kindof(σ.rule)
 case attribute_rule :
 check σ.rule(o.a), log if violated
 case local_rule :
 { o* } = Query_route(x, o, rev (σ.route))
 for each o* ∈ { o* }
 checkset.put(σ.rule(o*))
 case uniqueness_rule :
 checkset.put(σ)
 case global_rule :
 checkset.put(σ)
for each check σ, σ(o) ∈ checkset
 switch kindof(σ.rule)
 case local_rule :
 check σ.rule(o), log if violated
 case uniqueness_rule :

99

 check σ.rule(Query_extent(x, σ.rule.c)),
log if violated
 case global_rule :

check σ.rule(Query_extent(x, σ.rule.c1),
Query_extent(x, σ.rule.c2),…), log if
violated

Fig. 2. Incremental validation routine.

The validation routine presented in Figure 2 consists in the
sequential traversing of delta operations, determining the
nodes of the operation semantics, obtaining associated spot
rule nodes, evaluating the rules directly or filling the checkset
for the subsequent validation. The checkset is organized as an
indexed set of records each of which stores references on the
validated rule, query and factual data to perform the
corresponding check. The use of the checkset is motivated by
the fact that some operations lead to repeated checks of the
same rules. Indexing of the checkset allows you to exclude
repeated records and, thus, to avoid redundant computations.
At the same time, the attribute rule checks are always
produced once by the modification operations and, therefore, it
is more expedient to execute them immediately, without
overloading the checkset.

C. Dependency graph construction
To construct the dependency graph, an abstract syntactic

tree for the model is built. According to the retrieved data, for
all attribute declarations operation nodes are built. Number
and types of these nodes constructed for a single attribute
depend on its type. For non-aggregate attributes 𝑐𝑐. 𝑎𝑎 only
node 𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑐𝑐. 𝑎𝑎), representing modification of the attribute, is
built. For aggregate attributes 𝑐𝑐. 𝑎𝑎[] three nodes are created:
(1) 𝛿𝛿𝑖𝑖𝑒𝑒𝑖𝑖(𝑐𝑐. 𝑎𝑎[]) – insertion of a new element; (2) 𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑐𝑐. 𝑎𝑎[])
– modification of an element of the aggregate; (3) 𝛿𝛿𝑟𝑟𝑒𝑒𝑚𝑚(𝑐𝑐. 𝑎𝑎[])
– removal of an element.

Construction of the dependency graph proceeds with
generating rule nodes. We handle construction of nodes for
rules R1-R9 and R10-R12 differently.

For rules R1-R9 we take all explicit attributes and build rule
nodes for each of them. The types of rule nodes depend on the
type of the attribute in question. For instance, if it is a bounded
string c.S, we generate a R1(c.S) (R1 – limited width of strings),
connected with the node corresponding to the modification of
S 𝛿𝛿𝑚𝑚𝑟𝑟𝑑𝑑(𝑐𝑐. 𝑆𝑆). Similarly, if an attribute is a bounded aggregate,
we construct a node of type R4 and connect it with the
insertion 𝛿𝛿𝑖𝑖𝑒𝑒𝑖𝑖(𝑐𝑐. 𝑎𝑎[]) and/or removal 𝛿𝛿𝑟𝑟𝑒𝑒𝑚𝑚(𝑐𝑐. 𝑎𝑎[]) operation
nodes of the attribute, depending on the side from which the
aggregate is bounded – if it is bounded above, then only with
insertion node, if below – with removal, if from both sides –
with both of them.

The way of construction of rule nodes for R10-R12 is
uniform. We start with locating all local rules for R10, all
uniqueness rules for R11 and all global rules for R12. For each
of the rules, we find all attributes used in it. If an attribute is
explicit, we only connect its modification with the rule node,
and also with insertion and removal, if it is an aggregate used
inside a SIZEOF operation. If an attribute is derived, we take
its definition and find the attributes used in it; if inverse – we
proceed with analyzing the attribute it references. For derived

and explicit attributes, the analysis is performed recursively,
until all the explicit attributes, directly and indirectly
referenced by them, are located. Then all of them are
connected with the rule node corresponding to the rule in
question. If the during the analysis we find a node that is a
function call, we substitute its formal parameters with actual
and thus locate the attributes which are used in it; the analysis
of a function body with the parameters substituted is
completely identical to the analysis of a rule.

An example illustrating the constructed graph is given in
the next section.

D. Example of a dependency graph
Let us consider a fragment of the EXPRESS specification

of a project management system. Three classes depicted in
Figure 3 – Task, Link and Calendar – are its core entities. The
meaning of Task is self-evident; Link represents a connection
defining a relation and execution order between two tasks. The
fact that between two tasks might be only a single link of one
type is reflected in uniqueness rule ur1. A Calendar defines a
typical working pattern: working days, working times,
holidays. The calendar can be assigned to specific tasks, and
one calendar can be set as a default project calendar, that
means that it will be used for tasks for which no task calendar
is set. Besides that, it is possible to use an Elapsed calendar for
a task implying that work will be performed 24/7. Global rule
SingleProjectCalendar restricts the possible number of project
calendars to no more than one. Moreover, local rule wr3 is
used to check that if a task has got a task calendar, it the
reference to it must be non-null. One more local rule, wr2,
restricts the length of an EntityName to be between 1 and 32
characters.
TYPE LinkEnum = ENUMERATION OF
 (START_START, START_FINISH, FINISH_START,
FINISH_FINISH);
END_TYPE;

TYPE CalendarRuleEnum = ENUMERATION OF
 (TASK, PROJECT, ELAPSED);
END_TYPE;

FUNCTION TaskIsCyclic (T1 : Task, T2 : Task) :
BOOLEAN;
 IF (SIZEOF(T1.Parent) = 0) THEN RETURN(FALSE);
 ELSE
 IF ((TaskIsCyclic(T1.Parent[1], T2) = TRUE)
OR (T1 = T2))
 THEN RETURN(TRUE);
 END_IF;
 END_IF;
END_FUNCTION;
RULE SingleProjectCalendar FOR (Calendar);
WHERE
 wr1: SIZEOF(QUERY(Temp <* Calendar |
Temp.isProjectCalendar = TRUE)) <= 1;
END_RULE;

TYPE EntityName = STRING;
WHERE
 wr2: (1 <= SELF) AND (SELF <= 32);
END_TYPE;

ENTITY Task;
 ID : INTEGER;

100

 Name : EntityName;
 TaskCalendar : Calendar;
 CalendarRule : CalendarRuleEnum;
 Children : LIST [0:?] OF Task;
DERIVE
 TaskDuration : Duration := ?;
INVERSE
 Parent : SET [0:1] OF Task FOR Children;
 DownstreamLinks : SET [0:?] OF Link FOR
Predecessor;
 UpstreamLinks : SET [0:?] OF Link FOR Successor;
WHERE
 wr3 : CalendarRule <> CalendarRuleEnum.TASK OR
EXISTS(TaskCalendar);
 wr4 : (SIZEOF(Parent) = 0) OR
(TaskIsCyclic(Parent[1], SELF) = FALSE);
UNIQUE
 ur1 : ID;
END_ENTITY;

ENTITY Link;
 ID : INTEGER;
 LinkType : LinkEnum;
 Predecessor : Task;
 Successor : Task;
UNIQUE
 ur2 : LinkType AND Predecessor.ID AND
Successor.ID;
 ur3 : ID;
END_ENTITY;

ENTITY Calendar;
 ID : INTEGER;
 Name : OPTIONAL EntityName;
 IsProjectCalendar : BOOLEAN;
UNIQUE
 ur4 : ID;
END_ENTITY;

Fig. 3. An example of the model specification in EXPRESS language

The dependency graph for this fragment of the
specification is shown in Figure 4.

δins(Children[])

δmod(Children[])

δmod(Name)

δmod(LinkType)

δmod(Predecessor)

δmod(Successor)

δmod(TaskCalendar)

δmod(CalendarRule)

δmod(IsProjectCalendar)

R0(Children)

R8(Children)

R10(wr2)

R12(SingleProjectCalendar)

δrem(Children[]) R4(Children)

R5(Parent)

R11(ur2)

R10(wr3)

R0(Name)

R7(Name)

R0(TaskCalendar)

R0(LinkType)

R7(CalendarRule)

R0(CalendarRule)

R7(LinkType)

R0(Predecessor)

R7(Predecessor)

R0(Successor)

R7(Successor)

R0(IsProjectCalendar)

R7(IsProjectCalendar)

R10(wr4)

δmod(Task.ID)

R11(Task.ID)

δmod(Link.ID)

R11(Link.ID)

δmod(Calendar.ID)
R11(Calendar.ID)

Fig. 4. A fragment of the model dependency graph

Each operation of attribute modification except for

removal of elements from the list of task children is connected
with the rules validating corresponding attribute type
compliance R0 and availability of defined values for
mandatory attributes R7. To avoid placement of null values to
the list of mandatory elements the rule R8 should be validated
as well after the operations have been performed. The insertion
cannot violate multiplicity of the direct and inverse
associations as their upper borders are unlimited, but checks
R4, R5 should be performed when an element is removed from
Children. So, the corresponding operation nodes should be
connected with the aforementioned nodes of the rules that the
operations may potentially violate. As the expression for the
local rule wr3 includes the attributes CalendarRule and
TaskCalendar, the nodes corresponding to the operations of
modification of these attributes are connected with the wr3
rule node. For the rule wr2 defining the value range of the
EntityName type, there is a connection between the
EntityName modification node and the wr2 rule node. The
corresponding edges are assigned by the routes by traversing
of which the attributes could be accessed. The expression of

101

the global rule SingleProjectCalendar references only one
attribute IsProjectCalendar, so the appropriate graph nodes
are connected by the edge as well. Modification of any
attribute of the Link class can affect its uniqueness defined by
ur2; hence the connections between LinkType, Predecessor
and Successor and the uniqueness rule node.

It is also possible that a change affects a constraint not
directly but through an inverse association, or even a chain of
them, where other classes can be involved. In this case, rules
for all the chain of affected classes is added to the checkset.
Furthermore, they can be affected not only by direct
associations but also by the inverse. For instance, cardinality
constraints on inverse aggregate attributes causes insertion of
additional rule nodes to the graph.

IV. CONCLUSION
This paper presents the incremental method of model data

validation. The method is applicable for semantically complex
data driven by arbitrary object-oriented models. It allows to
increase the performance of semantic validation and to
effectively manage the data in accordance with the ACID
principles.

The planned work concerns basically the implementation
of the method proposed and its evaluation for industry
meaningful product data. The expected positive results will
allow its wide introduction into new software engineering
technologies and emerging information systems.

REFERENCES
[1] V.A. Semenov, Product Data Management with Solid Transactional

Guarantees, In C.-H. Chen, A.C. Trappey, M. Peruzzini, J. Stjepandić,
N. Wognum (eds.): Transdisciplinary Engineering: A Paradigm Shift
Series Advances in Transdisciplinary Engineering, IOS Press, 2017, pp.
592-599.

[2] L. Lämmer and M. Theiss, Product Lifecycle Management, In J.
Stjepandić, N. Wognum, W.J.C. Verhagen (eds.): Concurrent
Engineering in the 21st Century — Foundations, Developments and
Challenges, Springer, 2015, pp. 455-490.

[3] J. Osborn, Survey of concurrent engineering environments and the
application of best practices towards the development of a multiple
industry, multiple domain environment, Clemson University, 2009,
Accessed: 29/01/2018. Available:
http://tigerprints.clemson.edu/all_theses/635/

[4] M. Philpotts, An introduction to the concepts, benefits and terminology
of product data management, Industrial Management & Data Systems,
MCB University Press, vol. 96, no. 4, 1996, pp. 11–17.

[5] X. Blanc, A. Mougenot, I. Mounier, T. Mens, Incremental Detection of
Model Inconsistencies based on Model Operations, In: van Eck P.,
Gordijn J., Wieringa R. (eds): Advanced Information Systems
Engineering, CAiSE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6] C. Xu, C.S. Cheung, W.K. Chan, Incremental Consistency Checking for
Pervasive Context, In Proc. the 28th International Conference on
Software Engineering, 2006, pp. 292-301.

[7] J. Harrison, S.W. Dietrich, Towards an Incremental Condition
Evaluation Strategy for Active Deductive Databases, In: B. Srinivasan, J.
Zeleznikow (eds.): Research and Practical Issues in Databases, World
Scientific, 1992, pp. 81-95.

[8] ISO 10303-11: 2004. Industrial automation systems and integration —
Product data representation and exchange — Part 11: Description
methods: The EXPRESS language reference manual, ISO, 2004.

102

Source Code Augmentation for Supervised Learning
Valeriy Savchenko

Ivannikov Institute for System Programming
of the Russian Academy of Sciences

25 Alexander Solzhenitsyn street
109004, Moscow, Russian Federation

Email: vsavchenko@ispras.ru

Alexander Volkov
Lomonosov Moscow State University

GSP-1 Leninskie Gory
119991, Moscow, Russian Federation

Email: volkovas 174@icloud.com

Abstract—Modern machine learning algorithms rely on large
quantities of labeled data. Google’s Open Images, for example,
consists of 9 million images annotated with over 6000 labels.
However, the process of labeling is expensive because it requires
significant manual work. When it comes to source code, costs
are even higher in comparison to image or text, considering the
level of expertise needed to tag it correctly.

One known method of reducing the manual workload is
data augmentation, an automatic way to expand the existing
labeled dataset. It is widely used in text and image processing.
Augmentation expands the dataset by duplicating each element
in the sample, and then performing simple transformations to the
copies that preserve the label. For example, an image of a cat may
be augmented by rotation or cropping, provided that it remains
recognizable as a cat. However, source code augmentation is
difficult to implement due to the fact that manipulating the text
easily changes the meaning of the original code.

The aim of this study is to develop an instrument that is able
to maintain the semantics of the transformed code. In order to
achieve this, we use compiler dataflow analyses. Our experiments
show that the proposed techniques can increase the size of the
sample by orders of magnitude.

Index Terms—data augmentation, code transformation, llvm,
compiler, machine learning

I. INTRODUCTION

Software systems grow at an incredible speed; big cor-
porations operate with codebases of millions and tens of
millions lines of code. In 2017 alone, Github hosted 1 bil-
lion commits[1]. These extensive amounts of data provide
a great opportunity to improve software development using
machine learning and data analysis. Full or partial automation
of everyday activities like bug detection, code review, and
program comprehension can significantly improve developer
productivity and the quality of the final product.

However, for supervised learning algorithms, one should
provide not only data, but also labels. Popular public datasets
ImageNet[2] and Google’s Open Images[3] contain millions of
annotated images. Manual labeling at that scale is expensive
in terms of time and human-power. The cost grows with the
amount of work and expertise required to analyze and label
each example properly. The cost is heightened further in the
case of source code, which will be examined later.

Data augmentation is a known way to expand an existing
labeled dataset. It provides new examples by duplicating
already labeled ones and modifying them. The benefit is that
new examples automatically have labels without any manual

work. The main requirement is that augmentation preserves
the original label. In text analysis, for example, if we were to
train a model to predict sentiment in tweets, we could expand
the dataset through synonym replacements, provided that the
meaning of the tweet remained the same.

Label retention becomes a more serious issue in source
code augmentation. Unlike image or text augmentations, that
generally perform simple heuristic transformations, source
code must be altered with more caution. Any non-trivial mod-
ification of the program source text can change its behavior.
This paper investigates the possibility of using code analysis
to perform code augmentation that maintains the meaning of
the original program.

Compiler optimization techniques provide us with the nec-
essary framework to achieve this goal. Code transformations
that maintain code semantics are known as safe or con-
servative[4]. In this paper, we propose three conservative
augmentation techniques that help alter instruction order,
control flow and call graphs of the modified program. This
diversification ensures that features of different natures vary
from one augmented example to the next.

This paper is organized into six sections as follows. The
next section gives a brief overview of our infrastructure. We
propose three new source code augmentation algorithms in
Section III. The fourth section examines the generative ability
of the developed solution. Section V gives a review of the
related work, and our conclusions are drawn in the final
section.

II. INFRASTRUCTURE

Our implementation is based on LLVM[5]. LLVM is a
modern modular compiler infrastructure. It provides high-level
interfaces to perform analyses and transformations over its
own intermediate representation (IR). Compilers for many
languages use LLVM as their backend, most notably C/C++1,
Rust2, Swift3, and Kotlin4. LLVM is easily extended, making
it a playground for realizing new ideas. It is also can be
embedded into other programs (i.e. used as a library), which
is rare for such a large project.

1https://clang.llvm.org/
2https://www.rust-lang.org/
3https://www.apple.com/swift/
4https://kotlinlang.org/

103

https://clang.llvm.org/
https://www.rust-lang.org/
https://www.apple.com/swift/
https://kotlinlang.org/

By using LLVM, we impose the following limitations:
1) Augmentation requires the ability to compile the code

first, which in turn depends on flags used during compi-
lation such as include directories and macro definitions.

2) The features used for machine learning must be extracted
from IR and not from the source code. This demands
that data scientists have a comprehensive understanding
of source code analysis and compiler techniques.

III. TRANSFORMATIONS

A. Instruction shuffling

One of the first ideas for code augmentation is to shuffle
instructions, however like English text, this requires a thorough
analysis to maintain its meaning. The meaning of a sentence,
for example, can be easily changed by swapping object and
subject of the sentence. Thus to accomplish conservative in-
struction shuffling, dependencies should be taken into account.
Dependencies can be of two kinds: data and control[6]. In this
study, we consider two ways to perform instruction shuffling:
within the borders of a single basic block, and within the
borders of one function.

1) Single basic block: Due to a linear structure of a basic
block, we can discard control dependencies. Data dependency
in turn can be divided into two categories: pure use-def
dependency[7] and aliasing. Since our target languages are
C/C++, which allow their users to work with memory directly,
not all alias analysis techniques can be used[8]. We selected
Steensgaard alias analysis[9] due to its good balance between
accuracy and complexity. It is significant considering the fact
that precise flow-insensitive alias analysis is NP-hard[10]. Al-
ternatively use-def chains require no additional computations
since they are incorporated into LLVM’s SSA form[11].

Algorithm 1 Instruction shuffling (basic block)
1: procedure SHUFFLE(BB)
2: N := |BB|
3: decided := ∅
4: for i := 0 to N − 1 do
5: p := rand(N) 6∈ decided
6: d := pick5({1,−1}) . randomly pick direction
7: while p+ d 6∈ decided ∧BBp+d depends6 on BBp do
8: swap(BBp+d, BBp)
9: p := p+ d

10: end while
11: decided := decided ∪ {p} . mark instruction as decided
12: end for

The resulting algorithm can be summarized as follows: we
randomly select one of the instructions in the basic block and
the direction in which we want to move it, then we move it the
furthest we can do it while maintaining all of the instruction’s
dependencies. Algorithm 1 shows it in more details.

2) Single function: In order to shuffle instructions within
the borders of a function, we need to tackle the problem
of control dependency as well. To simplify our algorithm,
we move only instructions that dominate[12] all of their

5randomly pick an element from the given set
6according to use-def and alias information

dependent instructions. In fact, this restriction provides us
with a useful property: each basic block of the function that
is dominated by the selected instruction, and dominates all
dependent instructions of the selected instruction, can be used
as a new basic block for this instruction.

The entire procedure is illustrated in Algorithm 2.

Algorithm 2 Instruction shuffling (function)
1: procedure MOVE(Objective)
2: Source = Objective.parent . original basic block
3: deps := {inst.parent : ∀inst dependent on Objective}
4: if ∃BB ∈ deps→ Source ¬dominates BB then
5: return
6: end if
7: D := nearest common dominator(deps)
8: candidates := ∅
9: for BB ∈ DomTree.Descentants(Source) do

10: if BB dominates D then
11: candidates := candidates ∪ {BB}
12: end if
13: end for
14: Dest := pick(candidates)
15: Dest := {Objective} ∪Dest . place it at the top of Dest
16: Source := Source \ {Objective} . remove from Source

B. Conversion of a preconditional loop into a postconditional
loop

In typical C/C++ code, preconditional loops (for and
while) dominate over postconditional (do-while). To ar-
tificially increase the presence of the last kind in a sample,
we suggest converting pre- into postconditions. Because they
are not semantically equal, we need to make additional trans-
formations to keep the original meaning. the only distinction
between the two kinds, apart from syntactic differences, is the
possibility of the first iteration. Therefore, in order to make it
non-mandatory, we duplicate the loop condition and place it
before the loop body (as illustrated in Fig. 2).

C. Function inlining and outlining

In order to diversify source code on a higher interprocedural
level, we use inlining[13] and outlining[14]. These changes the
CFG of each modified function, as well as the call graph of
an augmented program.

Our approach is to randomly select function calls to inline
and CFG subgraphs to outline. However, not every CFG
subgraph can be extracted into a separate function because
each function should start with a single entry block that
dominates all other basic blocks in the function. Furthermore,
to simplify the extraction itself, we limit the resulting function
to one exit block as well. Algorithm 3 illustrates the entire
procedure. It is noteworthy that for any selected basic block,
there is at least one subgraph that satisfies all domination
and post-domination conditions. Because every basic block
dominates and post-dominates itself.

The juxtaposition of inlining and outlining performed in a
random order corresponds to partial inlining; therefore, we
always inline a whole function and not part of it.

104

(a) Instruction shuffling (b) Loop transformation (c) Outlining

Figure 1: Evaluation results

condition

loop body

loop exit
(a) before

condition

loop body

loop exit

condition

(b) after

Figure 2: Loop transformation

Algorithm 3 Function outlining
1: procedure OUTLINE(Function)
2: Entry := pick(Function.Blocks)
3: dominated := DomTree.Descendants(Entry)
4: post-dominators := ∅
5: for BB ∈ dominated do
6: if BB post-dominate Entry then
7: post-dominators := post-dominators ∪ {BB}
8: end if
9: end for

10: Exit := pick(post-dominators)
11: extract code region(Entry, Exit)

IV. EVALUATION

Our goal is to research and evaluate the performance of
implemented source code transformations. We measure this
in terms of the number of possible transformations. Since
the original code can vary in size and structure, we use a
real-world open-source project (LLVM). Functions are the
unit of source code transformation. For each function in the
project, we calculate the number of ways this function can be
augmented.

Fig. 1 shows the evaluation results. Each of the histograms
represents a distribution of functions over a number of possible
augmentations. As expected, the most efficient transformation

is instruction shuffling. 50% of all functions in the test project
can be augmented in more than 100 ways. On average across
all function, the number of transformations reaches 106.

Loop transformations can be applied only to functions with
preconditional loops. For LLVM, they make up 2% of all
functions. Each of these functions can be transformed in at
least one way, 14% of the functions in at least two ways.

Outlining on average produces 22 augmentations per func-
tion, and 60% of all functions can be outlined in 10 or more
different ways.

Our findings show that even for the big variety in the
original dataset, our method is able to enlarge the dataset by
the orders of magnitude and augment a significant amount of
samples.

V. RELATED WORK

Although source code augmentation is new, it is heavily
influenced by adjacent areas of study in computer science.
Augmentation in general is widely used for different types of
data. The most famous data augmentation techniques come
from image processing. Simple transformations like flipping,
cropping, and blurring can be easily implemented and pro-
vide good results. Even applied to classic problems like
MNIST7, augmentation can improve existing state-of-the-art
models[15], [16], [17]. New examples can even be composed
of reference images to create a dataset from scratch[18]. In
speech recognition[19], music[20], and sound processing[21],
[22], additional noise and distortions expand the scope of the
dataset, improving the quality of the trained model. Interesting
results were obtained for natural language processing as well,
where augmentation can be used on different levels — from
generating new words with morphemes[23] to generating
questions for visual question answering (VQA)[24]. For some
problems, like low-resource language processing[25], data
augmentation is the only viable solution to enlarge limited
data.

Code augmentation is possible only within strict borders
of conservative transformations. It is a vast area of research

7http://yann.lecun.com/exdb/mnist/

105

http://yann.lecun.com/exdb/mnist/

that takes its roots from compiler optimizations. It modi-
fies programs to improve performance, size[26], and energy
consumption[27]. All of this makes sense only if the result is
functionally equivalent to the original. Compiler optimization
is an actively developing domain[28], [29], [30] with a well-
formed foundation [4], [31], [32], [33].

Code obfuscation is another similar area of study. Its goal
is to deliberately make the original code hard for human
understanding. In addition optimization and augmentation,
obfuscation also has to maintain code semantics. Obfuscation
algorithms include dead, irrelevant, and unreachable code
insertion, loop unrolling[34], opaque predicates[35], [36], and
CFG dispatching[37]. Even though obfuscation and augmen-
tation pursue different goals, many of the obfuscation methods
can be used for augmentation.

VI. CONCLUSION AND FUTURE WORK

Achieving correct source code augmentation requires deep
analysis of control and data dependencies. In this paper, we
suggested conservative transformation methods. Our experi-
ments demonstrate that our methods are able to increase the
size of the dataset by orders of magnitude. This finding lays
the foundation for the development of new methods of source
code augmentation.

There are two limitations to this approach. First, presented
code augmentation requires a compiled code, which means that
in order to use code augmentation, compilation flags must be
provided for each source file. Next, data scientists are restricted
to extracting features from intermediate representations, not
the source code itself.

Our next step is to test this approach on real-world deep
learning models and evaluate its influence on performance.

REFERENCES

[1] “The state of the octoverse 2017.” https://octoverse.github.com/, 2017.
[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:

A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.
[3] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija,

A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, A. Veit, S. Belongie,
V. Gomes, A. Gupta, C. Sun, G. Chechik, D. Cai, Z. Feng, D. Narayanan,
and K. Murphy, “Openimages: A public dataset for large-scale multi-
label and multi-class image classification.,” Dataset available from
https://github.com/openimages, 2017.

[4] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[5] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, (Washington, DC, USA), pp. 75–,
IEEE Computer Society, 2004.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence
graph and its use in optimization,” ACM Trans. Program. Lang. Syst.,
vol. 9, pp. 319–349, July 1987.

[7] J. C. Reynolds, “Automatic computation of data set definitions,” IFIP
Congress, 1967.

[8] V. Raman, “Pointer analysis – a survey,” 2004.
[9] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceed-

ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 32–41, ACM, 1996.

[10] S. Horwitz, “Precise flow-insensitive may-alias analysis is np-hard,”
ACM Trans. Program. Lang. Syst., vol. 19, pp. 1–6, 1997.

[11] C. Lattner and V. S. Adve, “The llvm instruction set and compilation
strategy,” 2002.

[12] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 1, no. 1, pp. 121–141, 1979.

[13] R. Allen and S. Johnson, “Compiling c for vectorization, parallelization,
and inline expansion,” SIGPLAN Not., vol. 23, pp. 241–249, June 1988.

[14] P. Zhao and J. N. Amaral, “Function outlining and partial inlining,”
17th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’05), pp. 101–108, 2005.

[15] K. R. Konda, X. Bouthillier, R. Memisevic, and P. Vincent, “Dropout
as data augmentation,” CoRR, vol. abs/1506.08700, 2015.

[16] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” CoRR, vol. abs/1708.04896, 2017.

[17] A. Fawzi, H. Samulowitz, D. S. Turaga, and P. Frossard, “Adaptive
data augmentation for image classification,” 2016 IEEE International
Conference on Image Processing (ICIP), pp. 3688–3692, 2016.

[18] B. Sapp, A. Saxena, and A. Y. Ng, “A fast data collection and
augmentation procedure for object recognition,” in AAAI, 2008.

[19] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation
for speech recognition,” in INTERSPEECH, 2015.

[20] B. McFee, E. J. Humphrey, and J. P. Bello, “A software framework for
musical data augmentation,” in ISMIR, 2015.

[21] B. McFee, E. J. Humphrey, and J. P. Bello, “A software framework for
musical data augmentation,” in ISMIR, 2015.

[22] X. Cui, V. Goel, and B. Kingsbury, “Data augmentation for deep neural
network acoustic modeling,” 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5582–5586,
2014.

[23] M. Silfverberg, A. Wiemerslage, L. Liu, and L. J. Mao, “Data augmen-
tation for morphological reinflection,” in CoNLL Shared Task, 2017.

[24] K. Kafle, M. A. Yousefhussien, and C. Kanan, “Data augmentation for
visual question answering,” in INLG, 2017.

[25] M. Fadaee, A. Bisazza, and C. Monz, “Data augmentation for low-
resource neural machine translation,” in ACL, 2017.

[26] R. Leupers, Code Optimization Techniques for Embedded Processors:
Methods, Algorithms, and Tools. Norwell, MA, USA: Kluwer Academic
Publishers, 2000.

[27] G. E. Chen, F. Li, M. T. Kandemir, and M. J. Irwin, “Reducing noc
energy consumption through compiler-directed channel voltage scaling,”
in PLDI, 2006.

[28] G. Duboscq, T. W252rthinger, L. Stadler, C. Wimmer, D. Simon, and
H. M246ssenb246ck, “An intermediate representation for speculative
optimizations in a dynamic compiler,” in VMIL ’13, 2013.

[29] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. P.
Amarasinghe, “Halide: a language and compiler for optimizing paral-
lelism, locality, and recomputation in image processing pipelines,” in
PLDI, 2013.

[30] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar, “Compiling and
optimizing java 8 programs for gpu execution,” 2015 International
Conference on Parallel Architecture and Compilation (PACT), pp. 419–
431, 2015.

[31] G. Wood, “Global optimization of microprograms through modular
control constructs,” in ACM SIGMICRO Newsletter, vol. 10, pp. 1–6,
IEEE Press, 1979.

[32] M. Tokoro, T. Takizuka, E. Tamura, and I. Yamaura, “A technique of
global optimization of microprograms,” in MICRO, 1978.

[33] J. D. Ullman, “Fast algorithms for the elimination of common subex-
pressions,” Acta Informatica, vol. 2, no. 3, pp. 191–213, 1973.

[34] C. Collberg, C. Thomborson, D. Low, and D. Low, “A taxonomy
of obfuscating transformations. department of computer sciences, the
university of auckland,” tech. rep., Technical Report 148, July, 1997.

[35] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov, “An approach
to the obfuscation of control-flow of sequential computer programs,”
in International Conference on Information Security, pp. 144–155,
Springer, 2001.

[36] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, re-
silient, and stealthy opaque constructs,” in Proceedings of the 25th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pp. 184–196, ACM, 1998.

[37] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Dependable Systems and Networks,
2001. DSN 2001. International Conference on, pp. 193–202, IEEE,
2001.

106

https://octoverse.github.com/

Buffer Overflow Detection via Static Analysis:
Expectations vs. Reality

Irina Dudina
Ivannikov Institute for System Programming of the Russian Academy of Sciences,

Alexander Solzhenitsyn st., 25., Moscow, 109004, Russian Federation
Lomonosov Moscow State University

GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation
Email: eupharina@ispras.ru

Abstract—Over the last few decades buffer overflow remains
one of the main sources of program errors and vulnerabilities.
Among other solutions several static analysis techniques were
developed to mitigate such program defects. We analyzed dif-
ferent approaches and tools that address this issue to discern
common practices and types of detected errors. Also we explored
some popular sets of synthetic tests (Juliet Test Suite, Toyota
ITC benchmark) and set of buggy code snippets extracted from
real applications to define types of defects that a static analyzer
is expected to uncover. Our goal is to use this knowledge to
enhance our own buffer overrun detector. Now it can perform in-
terprocedural context- and path-sensitive analysis to detect buffer
overflow mainly for static and stack objects with approximately
65% true positive ratio. We think that promising directions are
improving string manipulations handling and combining taint
analysis with our approaches.

I. INTRODUCTION

Buffer overflow is a type of program defect caused by
buffer access with index that exceeds buffer’s bounds. This
can lead to a program crash or even to a security vulnerability.
Defects of such kind are still really common, despite all
efforts made to eliminate them. There are several techniques
one can apply to detect buffer overflows. One approach is to
employ testing and dynamic analysis. These methods don’t
suffer from false positives, but in most cases it’s impossible
to check all execution paths, so some defects can remain
undetected. Another approach is to analyze program code
without executing it. In this way one can find a defect on
any path, even rarely executed. In this paper we will focus on
the latter approach known as static analysis.

We are interested in building a buffer overflow detector that
is applicable to large C/C++ programs with millions of lines of
code while producing decent analysis performance and quality.
Basic properties of the algorithms constituting such a detector
are well-known and include among others interprocedural
analysis, path sensitivity, and loop handling. However, after
initial support for these features has been made and the quality
goals achieved, it is unclear which direction to choose for
the further improvement. The usual development pace that
comes from the customer feedback and own code analysis
may be not enough. In the following chapters we’ll overview
possible sources of inspiration for the buffer overflow detector
development, present our short survey that is based on the

buffer overflow-related vulnerabilities sample from the CVE
database, then briefly describe our experience of developing
an overrun detector as a part of the Svace tool, and present
our conclusions from tools and vulnerabilities analysis.

II. BUFFER OVERFLOW DETECTION TECHNIQUES AND
TOOLS

There exist many static analysis tools that can detect buffer
overflows. In this section we conduct a brief survey on the
most popular methods.

Some buffer overflows can be detected during the process of
lexical analysis, like in the ITS4 tool [1]. Most common errors
and bad patterns can be found at this level. This technique can
work really fast and, as it doesn’t involve compilation, can
be easily applied to any code, even if it is not complete. As
a result, such analysis can be performed ”on-the-fly” during
the process of code development with IDE, so that erroneous
patterns are eliminated on the very early coding stage. Of
course, such a lightweight method is far from being sound, i.e.
it misses many defects. Even changing the name of a variable
can prevent such tools from detecting a defect.

To detect more defects a deeper analysis of code is needed.
To achieve this many tools use the idea of abstract interpre-
tation [2]. Some tools chose different numerical abstract do-
mains to implement the analysis of integer index values, buffer
sizes, and string lengths. These domains include intervals,
zones, octagons, affine equalities, interval linear equalities,
convex polyhedra, tropical polyhedra, etc. [3]. Tools based
on this approaches derive sound relationship between integer
values listed above in varying degrees of precision. Soundness
is a major advantage of such tools, but less precise domains
produce large number of false positives, while analysis with
more precise domains doesn’t scale on many real-world pro-
grams.

Another popular approach is symbolic execution. The main
idea of this method is performing analysis by traversing all
paths in a function separately. This approach can be used to
build a path-sensitive detector, i.e. that can find errors that,
at the same time, occur only on a certain feasible function
path and are not inevitable for any single point from this path
alone. While processing a particular path, the analyzer keeps
track of variables values and relationships and computes a path

107

predicate, i.e. a conjunction of all corresponding branch con-
ditions that are taken along this path. This information is used
to prune infeasible paths and check buffer access instructions.
Analyzing all paths in a function can be a challenging task due
to the path explosion, so a number of techniques are proposed
to reduce this problem. A simple, but often effective approach
is to abandon the idea of full path coverage and just to stop the
analysis after some threshold or time limit reached. Another
approach is to merge symbolic states at join points, preserving
path-sensitivity of analysis by providing guard conditions for
joined states. Third approach, first introduced in Marple, is
employing demand-driven analysis [4], [5], i.e. reducing the
set of analyzed paths by focusing only on those that end with
buffers access.

One of the main obstacles for all mentioned symbolic-
execution-based approaches is handling loops. Typical solution
is to implement some heuristics to handle the most simple
and common loops and ignore other loops. However, there are
methods proposed to handle loops with multiple paths inside
and summarize their effect on program values [6].

Many buffer overflow errors are caused by violations of
function contracts. This can happen when a caller of a library
or a user function provides unexpected data to a function, or,
on the contrary, a function is not able to correctly handle all
input cases implied by the contract. Interprocedural analysis
is needed to detect such inconsistencies.

On the lexical analysis level formal and actual arguments
matching can be based on similar variables names and usually
happens only for the well-known library callees like memcpy.
For more rigorous scan some tools analyze the whole program
as a unified inter-procedural graph. The monomorphic analysis
merges information for every call-site — efficient, but impre-
cise approach. The polymorphic analysis treats each call site
individually, so this approach provides context-sensitivity but
scales poorly.

An alternative approach is using some approximation of a
function’s behaviour when analyzing its caller. These approx-
imations can be provided in user’s annotations, but they are
not always available. A tool can use its own findings obtained
by the callee analysis as an approximation. This approached is
called summary-based. By choosing the right function order,
a tool can minimize the number of missing summaries, but
handling recursion still requires additional tricks, e.g. making
several analysis passes over strongly connected components of
the call graph.

III. BUFFER OVERFLOW DETECTION TOOLS
BENCHMARKING

For the past twenty years several studies have been pub-
lished on evaluating and testing buffer overflow detectors. In
addition, there exist different test suites, which provide sets of
synthetic buggy and correct code snippets to test the abilities
and false positive rate of static analysis tools.

One of the biggest and probably the most popular bench-
mark is Juliet Test Suite C/C++, created by NSA’s Center
for Assured Software (CAS) [7]. For C/C++ code it contains

64,099 test cases tagged by CWE entries. Groups corre-
sponding to buffer overflow defects are CWE 121 — ”Stack-
based Buffer Overflow” (4,968 tests), CWE 122 — ”Heap-
based Buffer Overflow” (5,922 tests), CWE 124 — ”Buffer
Underwrite” (2,048 tests), CWE 126 — ”Buffer Over-read”
(1,452 tests), and CWE 127 — ”Buffer Under-read” (2048
tests). Tests in this suite are also tagged with a number called
”flow variant” that represents the complexity of control and
data flow in a particular test case.

Control flow variants cover different types of
conditionals (e.g. STATIC_CONST_FIVE==5,
globalReturnsTrueOrFalse(), etc.) and different
control statements (switch, while, etc.). Data flow
variants describe many types of intraprocedural data flow and
interprocedural interaction, e.g. data passing through function
arguments (via pointer, C++ reference, array, container, etc.),
return value, global variable, etc. There are many flow variants
that represent C++-specific features and not applicable to
C-tests.

We noticed that the distribution of the flow variants is close
to uniform in groups of our interest. Another observation is
large amount of tests involving wide characters. Many tests
contain library function usage, e.g. memcpy-like functions,
string manipulations, format string processing, etc.

Toyota ITC Benchmark is a test suite created by Toyota
InfoTechnology Center aimed at the static analysis tool evalu-
ation [8]. It contains 1,276 simple tests (638 erroneous and 638
correct) divided into 9 types and 51 sub-types. Our interest is
in the following tests: sub-types ”static buffer overrun” (54
cases), ”static buffer underrun” (13 cases) from the ”static
memory” type and sub-types ”dynamic buffer overflow” (32
cases), ”dynamic buffer underrun” (39 cases) from the ”dy-
namic memory” type. Each case is represented by a pair of a
buggy test and a fixed test.

These samples cover following features in varying combi-
nations: (i) static, stack and heap buffers; (ii) different element
types (char, int, float, struct, etc.); (iii) index calcula-
tions (constant, linear and non-linear expressions, passed as an
argument or returned from a function, loop variables and array
elements); (iv) obtaining buffer address (local/global variable,
function argument, pointer arithmetic including loop variables
and aliases); (v) buffer size (heap buffers only with constant
sizes, pointer casting); (vi) access types (via index, pointer
dereference, in a library function, in a string function).

IV. SURVEY ON OVERFLOW-RELATED CVES

We believe that although evaluating with a test suite could
give a good insight in a particular tool’s abilities, any test
suite alone can not perfectly represent the whole populations
of buffer overflow defects in real code. One (but not the only
one) noble goal for static analyzers is to prevent security
vulnerabilities to sneak in the project source code. We wanted
a better understanding of the features of a static analyzer that
are more or less important for achieving this goal. Our survey
technique was inspired by [9] and we mostly followed in their
footsteps to produce a set of vulnerabilities to classify.

108

We have to note that detection of exploitable vulnerabilities
is not the only goal of a static analyzer. Still there are some
types of defects that don’t lead to vulnerabilities or may not
be exploited with ease, but it is undesirable to have those in
the source code. Besides, we believe that nowadays developers
more intensively use different (static and/or dynamic) analysis
tools before releasing the product. For this reason many simple
defects are eliminated during the development process and
don’t appear in the vulnerability databases. Consequently,
we think that analysis of the vulnerabilities can reveal the
weakest sides of modern static analysis and show potential
improvement directions.

First of all, we have randomly picked 100 entries from the
”overflow” category from the CVE database [10]. For 25 of
them we could find a source code of the vulnerable version
to inspect. For each defect we have studied its causes in the
code and then classified the defect by several attributes. Our
set of attributes is based on the taxonomy provided in [11]
with some changes.

Our first insight is that there are some trends in our
sample that can be explained by the source of this sample
(vulnerability database): (i) most of the overflows from our
sample (72%) happened on write memory access, only few on
read access; (ii) only the upper bounds of buffers are exceeded
in the defects from our sample; (iii) almost all defects (92%)
occurred when tainted data (unbounded data from network,
file read, input parameters etc.) overflowed some buffer.

We also noticed that simple errors (e.g. using unsafe func-
tions like strcpy) are present in the old code (before 2010),
but rarely in the late entries. We believe that this can be
partially explained by the usage of code analysis tools.

In our sample about a half of overflowed buffers (48%)
reside on a stack, other half (48%) is allocated on a heap, and
just a few are global variables.

40% of all defects have overflowed buffer accessed via
index (e.g. buf[i]), 12% via pointer dereference, 44%
via library calls, 24% of which are string functions. The
latter requires C-strings modeling to properly analyze such
patterns. When buffer is accessed in a library call, we think
of size/limit argument as an index (when it’s reasonable) for
further investigation.

According to our data, 48% of all vulnerable buffers have
constant size (all stack and static buffers and a few buffers
on the heap). Another 16% have a size that is calculated as
a linear combination of other variables. As a result, almost
half of all inspected defects require deep analysis of integer
variables relationship to detect them.

Another feature that we have evaluated for every entry is
whether buffer allocation is global or resides in the same func-
tion with buffer access. We have found that this is true only
for 24% of defects. On the other hand, all index calculations
are in the same function with the access in 32% of defects.
Both properties are true for 12% of defects. It follows from the
foregoing that interprocedural analysis is essential for buffer
overflow detection.

Last thing that we have checked is whether there exists
a program point that any path through this point will lead
to a corresponding error. If there is no such point, then we
assume that path-sensitive analysis is needed to detect this
defect. Our sample contains only 28% of defects, for which
such a program point exists. This means that path-sensitivity
will provide the real advantage for a static analysis tool.

V. SVACE BUFFER OVERRUN DETECTOR

Svace is a static analysis tool that is designed to find as
many defects of different types as possible with few false
positives and acceptable analysis time [12]. The purpose of
this work is to improve the Svace buffer overflow detector
with the most needed features. Our detector implements the
interprocedural path-sensitive detection algorithm based on
symbolic execution with state merging [13]. For now the
analysis scope is limited to detection overflows of buffers with
compile-time-known size. Our detector looks for faulty paths
in a function, i.e. it reports a warning if it finds a path that
for any input values is either infeasible or produces an error.
Such a strict defect definition is chosen to prevent many false
positives caused by unknown function preconditions.

For a buffer access instruction we collect a predicate that
implies that there exits a faulty path through this instruction.
We use an SMT solver to search a solution for this predicate
if any. In case of this formula is satisfiable, we use its model
provided by the solver to extract a faulty path. It follows from
our experience that simply asking solver for any index value
that exceeds buffer bounds in our case leads to many false
positives. Reasons for that are unknown function precondition
and symbolic path conditions being not precise enough (due
to poor loop handling, calls of unknown or complex functions,
etc.).

Our interprocedural analysis is implemented using sum-
maries. In the function summary we save the information
about relationships between integer values on function entry
and exit points. We also save overflow conditions for those
input-dependent buffer accesses whose correctness can only
be checked in the caller context. Such facts can be propagated
to the caller more than once, so the analysis can find an
overflow of a buffer allocated in a function that is far away on
the call stack from a function with the access instruction. We
also implemented a heuristic to handle simple loops that have
an inductive variable iterating over an arithmetic progression.
Currently on Android 5.0.2 our detector emits 351 warnings
with 65% true-positive ratio.

VI. CONCLUSION

We have inspected a number of buffer overflow test suites,
related CVE entries, and the source code of large production
projects that our tool regularly analyzes. All three sources
are essential to understand the design goals of a production
quality static analyzer. Test suites expose a set of features to
support that is easy to understand, classify, and check. On the
other hand, they don’t provide a real picture of a production
code. Inspecting vulnerabilities is useful, but provides an

109

exploitation-biased sample. Besides, it does not include defects
eliminated during the development process (probably with the
help of some static analyzer). Finally, while developing a static
analyzer one always deals with false positives produced by
the tool and reported by customers, but getting false negative
samples is much more difficult. True positives reported by the
other tools could be useful, but most of the state-of-the-art
tools are proprietary and their results are closed.

From what has been said above it follows that interprocedu-
ral analysis, path-sensitivity and loop handling are essential.
An analysis can really benefit from tracking affine relations
between variables and modeling C-style strings as a very
important case of buffers.

Our current goal is to improve the Svace buffer overflow
detector to reduce the number of false negatives while pre-
serving the moderate level of false positives. For the afore-
mentioned reasons we think that the most promising directions
are handling buffers with dynamic size, C-string modeling,
and tracking tainted values. We are working now on the
extension of our detection technique described in Section V
by tracking string length changes happening during string
operations in much the same way as we track buffer indexes
while calculating integer values. We believe that this will be
sufficient for most of cases, but there are some promising
works in the area of string solvers [14] that would additionally
allow to track also string contents.

As we have seen, static analysis detection of buffer over-
flows requires a number of techniques from vastly various
fields to move on the road from expectations to real code,
and there will always be a way to go.

REFERENCES

[1] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, “Its4: A static
vulnerability scanner for c and c++ code,” in ACSAC, 2000.

[2] P. Cousot and R. Cousot, “Abstract Interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” pp. 238–252, 1977.

[3] X. Allamigeon, “Static analysis of memory manipulations by abstract
interpretation – Algorithmics of tropical polyhedra, and application to
abstract interpretation,” Theses, Ecole Polytechnique X, Nov. 2009.
[Online]. Available: https://pastel.archives-ouvertes.fr/pastel-00005850

[4] W. Le and M. L. Soffa, “Marple,” Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering - SIGSOFT ’08/FSE-16, p. 272, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1453101.1453137

[5] L. Li, C. Cifuentes, and N. Keynes, “Practical and effective symbolic
analysis for buffer overflow detection,” in Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’10. New York, NY, USA: ACM, 2010, pp. 317–
326. [Online]. Available: http://doi.acm.org/10.1145/1882291.1882338

[6] X. Xie, Y. Liu, W. Le, X. Li, and H. Chen, “S-looper:
automatic summarization for multipath string loops,” Proceedings
of the 2015 International Symposium on Software Testing and
Analysis - ISSTA 2015, pp. 188–198, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2771783.2771815

[7] Juliet Test Suite v1.2 for C/C++. User Guide, Center for Assured
Software National Security Agency, 9800 Savage Road Fort George G.
Meade, MD 20755 - 6738, 12 2012.

[8] S. Shiraishi, V. Mohan, and H. Marimuthu, “Test suites for benchmarks
of static analysis tools,” in 2015 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), Nov 2015, pp.
12–15.

[9] T. Ye, L. Zhang, L. Wang, and X. Li, “An Empirical Study on Detecting
and Fixing Buffer Overflow Bugs,” Proceedings - 2016 IEEE Interna-
tional Conference on Software Testing, Verification and Validation, ICST
2016, pp. 91–101, 2016.

[10] “CVE security vulnerability database. Security vulnerabilities, exploits,
references and more,” https://www.cvedetails.com/index.php, accessed:
2018-04-08.

[11] K. Kratkiewicz and R. Lippmann, “A taxonomy of buffer overflows
for evaluating static and dynamic software testing tools,” Proceedings
of Workshop on Software Security Assurance Tools, Techniques, and
Metrics, vol. 500, no. November, p. 44, 2006.

[12] A. Borodin and A. Belevantcev, “A static analysis tool svace as a
collection of analyzers with various complexity levels,” Proceedings of
ISP RAS, vol. 27, pp. 111–134, 2015.

[13] I. A. Dudina and A. A. Belevantsev, “Using static symbolic
execution to detect buffer overflows,” Programming and Computer
Software, vol. 43, no. 5, pp. 277–288, Sep 2017. [Online]. Available:
https://doi.org/10.1134/S0361768817050024

[14] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based string solver
for web application analysis,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013.
New York, NY, USA: ACM, 2013, pp. 114–124. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2491456

110

An approach to simulation-based verification of
SoC bus controllers
Mikhail Chupilko∗, Ekaterina Drozdova†

∗Institute for System Programming of the Russian Academy of Sciences (ISP RAS)
†Lomonosov Moscow State University, Moscow, Russia

Email: chupilko@ispras.ru

Abstract—The paper presents an approach to verification of
commutation components of SoC. The core idea is to verify bus
controllers and supporting interface parts at unit-level, having
reference models written in SystemC. The reference models in
the proposed test system is supposed to be easily adjusted to the
required bus parameters. The approach has been applied as an
in-house prototype to verification of a Verilog model of Wishbone
controller. There is a possibility to extend the approach to other
busses and protocols by development of a library of supported
interfaces.

I. INTRODUCTION

This paper is devoted to the problem of the technology of
unit-level verification of commutation parts of HDL-models.
Each SoC in fact is an HDL-model, where IP-blocks, being
parts of the system, are connected according to some tradi-
tional communication protocol (Wishbone[1], OCP-IP[2] or
something else). To verify it, one has to somehow obtain a
golden model to be referred to in the verification process either
to create such a model. In case of IP-blocks, their reference
models are typically provided by their vendors. In case of
the commutation part connecting IP-blocks, the situation is
more difficult. There might be a standard bus controller with
a predefined bus width, or, that is more common, there will
be an implementation of the standard protocol. The integration
problem also looks quite important, as physical layer of bus
protocol is not the only thing that can be erroneous, but
the incompatible logic of data transfers between different IP-
blocks also might be a weak point.

In this research, we propose a technology of unit-level
verification of communication models in the case when there
is a SystemC reference model provided by a vendor or when
this model is absent. C++TESK[3], C++ library of macros
meeting all typical requirements of unit-level verification, in-
cluding reference modeling, stimulus generation, and coverage
estimation, is selected as a basic tool for technology definition.
This tool supports both reference model development in terms
of its macro library and easy attachment to any C++-code.

The rest of this paper is divided into five sections. Section 2
contains more information about communication protocols,
including information about Wishbone. Section 3 describes
related works in the field of verification. Section 4 presents a
proposed approach to unit-level verification. Section 5 studies
an example of the approach application. Section 6 discusses
the results of the work and outlines directions of future
research and development.

Fig. 1. Open Core Protocol Architecture.

II. COMMUNICATION PROTOCOLS AND WISHBONE
STANDARD

As such, each communication protocol is a system of rules
allowing several entities to transmit data to each other. More
specific definition includes descriptions of possible entities
and fixes a physical parameters of transferring. Typically,
when speaking about communication part of SoC, one means
transmission layer between active (e.g., processor blocks) and
passive (e.g., RAM) blocks inside of SoC. To implement the
standard interface for data transmission between IP-blocks, a
bus controller is used. The aim of the standard interface is
to decrease the number of integration problems and support
possible re-use.

There are different ways to connect IP-blocks together. The
simplest one is a point-to-point connection. As an example
of point-to-point connection, let’s consider OCP-IP[2] (Open
Core Protocol International Partnership, see Figure 1), which is
a medium layer between blocks and the bus. OCP is oriented to
typical master (active component) – slave (passive component)
communication. The protocol was proposed several years ago
as a first step in development of a single standard and flexible
solution in communication.

Another standard of communication in SoC is Wishbone[1].
Being widely distributed, it was selected in this work for

111

Fig. 2. Wishbone Shared Bus Interconnection.

Fig. 3. Wishbone Crossbar Switch Interconnection.

being an example for test system development. The Wish-
bone standard specifies a standard interconnection between
computational IP cores. It supports interconnection of few IP
cores using such methods as a point-to-point, a shared bus
(see Figure 2, a crossbar switch (see Figure 3, and a switched
fabric. The first one represents a simple interconnection be-
tween two IP cores where the one called Master initiates
the data exchange and another one called Slave responds to
this call. The second method supports binding more than two
blocks in a consequent order. This method is efficient when
the data should be transferred from one IP core to another
repeatedly. The third and the fourth methods are similar and
also represent the interconnection between several IP cores. In
both of them, there is a common bus connecting more than
two Master and Slave cores. The Master core can evoke any
Slave connected to this bus but the only one at the cycle. Using
the crossbar switch method, several Master-Slave cores can be
interconnected simultaneously; using the switch fabric — only
one pair of cores is connected.

From this review, one can derive the following ideas.
First, due to the point-to-point connection being the basics of
communication in all cases, when testing the bus controller,
IP cores interfaces should be also taken into consideration.
Second, the bus controller is limited in its types of requests
(mainly, send and receive), the most important for testing
situations seem to be with handling of protocol violations and
prevent collisions in bus access.

Fig. 4. UVM Test Architecture.

III. RELATED WORK

The task of SoC verification is typically considered as a
problem of a mainly unit-level verification. In this case, DUT
(Design Under Test) is taken separately from its environment.
Stimuli are applied and reactions to check are received via
pins of the DUT.

Among unit-level verification approaches, UVM (Universal
Verification Methodology) created by Accelera is the most
popular. It represents the union of Open Verification Method-
ology (OVM), Advanced Verification Methodology (AVM)
and Universal Reuse Methodology (URM). UVM is a library
built upon the SystemVerilog language that provides some
basic classes such as the class constructing the testbench
structure, the class serving as a basic data structure, the
class defining transactions to be passed through components
of UVM. This methodology can be used for a constrained
random, a coverage-driven, an assertion-based, and emulation-
based verification. The UVM testbench structure is as follows
(see Figure 4 schematically depicturing UVM test). To begin
with, there is the DUT. The transaction sequencer block serves
to interact with the DUT by generating sequences of bits to be
transmitted to the DUT. The monitor block is responsible for
listening the communication of the DUT and the sequencer,
and gets responses from the DUT. The block called scoreboard
compares and evaluates all the information that the monitor
is receiving from the DUT and the prediction made by the
monitor, describing which output is expected to be taken
from the DUT. Sequencers, monitors, and coverage collectors
together are called agents. An agent and a scoreboard form the
environment. At the same time, there is no any evident method
for a making a golden-model as itself, it is up to engineers.
The SystemVerilog language is also more a congregation of
different methods to describe properties to be checked, rather
than a general-purpose programming language convenient for
the golden-model development.

Another approach to unit-level verification is C++TESK
Testing Toolkit [3], [4], which is represented by a library of
C++ macros. The methodology can be used for constrained
random and coverage-driven verification. The C++TESK test-
bench structure (see Figure 5) is similar to the UVM testbench
structure but there are some distinctions. There is a stimulus

112

Fig. 5. Verification Environment Architecture.

generator that chooses one of the predefined stimuli to be sent
to the DUT and to the reference model expressed explicitly.
The comparator gets the output from the model and from the
DUT, compares it and evaluates the coverage. C++TESK is
compatible with SystemC as a source of reference models,
which is one of the key advantages comparatively with UVM.

IV. PROPOSED APPROACH

In this section, we present an approach to functional veri-
fication of bus controllers. Each bus controller is either repre-
sented by a SystemC model as well as by an RTL description
or there is only RTL code and no reference model at all.
The conformance between the abstract (SystemC) reference
model and the RTL description should be established. This
can be done in a simulation-based manner by verifying both
sides against the same specification or by verifying the RTL
description against the (SystemC) reference model.

To perform verification, a C++TESK Testing Toolkit has
been selected, being a C++ library with all necessary classes
and macros for specifying design behavior, generating stim-
uli, and checking reactions. A C++TESK-based verification
environment is structured as shown in Figure 5.

The central component of the verification environment is
a test oracle, which is responsible for checking whether the
DUT behaves properly. It typically includes a reference model
that takes stimuli as an input and produces reference reactions
as an output, and a reaction matcher that intercepts reference
reactions and implementations reactions provided by the DUT
and composes reactions pairs. Usually, the reaction matcher
works independently for each output interface.

To transform high-level stimuli to the low-level ones and
low-level reactions to the high-level ones, the adapter is used.
It consists of multiple interface adapters, each being connected
with a single input or output interface. An interface adapter
describes a simple protocol of putting a single stimulus or
getting a single reaction. A special component of the reaction
matcher, called a reaction arbiter, specifies ordering between
reactions. The task of the reaction arbiter is to choose a
reference reaction (if there are any) for a given implementation
one. There are two main predefined strategies: model-based
arbitration and adaptive arbitration. The first strategy implies
that the reference model is accurate enough to predict reaction

order for some output interface (the arbiter selects the next
reference reaction stored in the interface buffer). The second
strategy is when the reference model is time inaccurate, in
which case, given an implementation reaction, the arbiter
searches for a reference reaction being equal or similar to the
given one. If some reactions are mismatched, a diagnostics
subsystem explains what is wrong with the DUT in terms of
incorrect, missing, and unexpected reactions.

Other components of a verification environment are a stim-
ulus generator and a test coverage collector. The stimulus
generator creates stimuli by exploring the abstract state space
of the reference model. The generator is supplied with a set of
available stimuli and a function for abstract state calculation;
it tries to apply each stimulus in each reachable abstract state.
Speaking about verification of a bus controller, it is natural to
consider e.g. the number of messages in the bus channel con-
trollers as being the abstract state (though any other abstraction
is possible). Such an adjustable stimulus generator allows
to produce hard-to-get-into situations which include those
with missing messages in one long packet transmission. The
test coverage collector estimates the verification completeness
basing on user-defined functional coverage metrics, which is
more efficient than simply code coverage.

The typical way of C++TESK usage for unit-level veri-
fication in case of its own reference model is described in
earlier papers (e.g.,[3] or [4]), the method of connection to
SystemC reference model should be developed. To be more
precise, SystemC model should include not only the model of
DUT itself, but the model of its environment, including full
communication topology. It allows to send complex requests,
model collisions, and so on.

The following scheme of commutation between C++TESK
and SystemC model is proposed (see Figure 6). C++TESK
stimulus generator substitute a master component for the
controller bus. Stimuli are applied to both SystemC model (via
function calls; to its selected master as if this master wants to
send stimuli the generator applied) and to DUT (via procedural
interface between C and HDL-simulator; to the input master
interface of DUT). SystemC computes the behavior of all
environment and creates reactions those are to be got from
DUT and checked, and those which are in fact additional
stimuli to DUT, e.g. responses from slaves to DUT which are
requested by the bus controller and which are substituted by
test environment. Output DUT reactions are checked against
correspondent SystemC reactions by C++TESK reaction com-
parator. To provide the program interface between C++TESK
and SystemC model, there is a top SystemC class encapsulat-
ing all the interfaces between masters and slaves, and model of
bus controller. This class is referenced to in C++TESK golden
model. In order to register reactions from SystemC in proper
C++TESK adapters (serializers for stimuli and deserializers for
reactions to be checked), there are special listeners of SystemC
model activities (more precisely, bool vector of new reactions
on different interfaces). When there is some new reaction, it
is registered either to be applied to DUT as a stimulus, or to
be added into list of reference reactions to find correspondent

113

Fig. 6. Architecture of C++TESK, DUT, and SystemC Models Interconnec-
tion.

implementation reaction in given time.

V. CASE STUDY

To develop the prototype of verification system and to
make experiments with it, a Verilog model of simple Wish-
bone controller has been taken. The controller supports only
point-to-point connection. A correspondent SystemC model
has been developed from scratch, taking into account the
necessity to support different bus sizes and different topologies
of master-slave interconnections. The resulted class (see the
following listing to see the main part of it) has been attached
to C++TESK reference model as an object that should be
stimulated by stimulus generator, and with a possibility of
sending reactions that are to be checked against the Verilog
model. The whole aspects of the earlier proposed architecture
including stimulus generation, HDL implementation reaction
checking, and coverage estimation have been kept alive in the
prototype of test system. Experiments show that the proposed
ideas really work and that future research into this field is
required.

template <typename adr_bus_size, typename data_bus_size>
SC_MODULE(Controller) {
typedef Master<adr_bus_size, data_bus_size> master_type;
typedef Slave<adr_bus_size, data_bus_size> slave_type;

// types for containers with masters and slaves
typedef std::map<master_type*> masters_type;
typedef std::map<slave_type*> slaves_type;

...
SC_HAS_PROCESS(Controller);

Controller(sc_module_name _name, bus_mode mode,
masters_type &masters, slaves_type &slaves) :

sc_module(_name), mode(mode);

// to register all system’s masters and slaves
// and to bind all masters and slaves to the controller
void register_master(master_type &master);
void register_slave(slave_type &slave);

// to listen for request messages
void request_listener();
...

}

VI. CONCLUSION

The approach of communication parts of SoC by means
of adjustable SystemC reference models and by C++TESK’s
stimulus generator, reaction matcher, and coverage collector
has been proposed. Description of the approach includes the
architecture of test systems. The idea has been checked in form
of a test system prototype for a Verilog model of Wishbone
controller. The final result of this research is expected to be
a creation a SystemC library of adjustable models of widely
distributed bus standards.

REFERENCES

[1] Specification for the: WISHBONE System-on-Chip (SoC) Interconnection
Architecture for Portable IP Cores. Revision: B.3, Released: September
7, 2002.

[2] Open Core Protocol Specification 3.0. Released by Accellera in October
2013.

[3] M. Chupilko, A. Kamkin. A TLM-Based Approach to Functional Veri-
fication of Hardware Components at Different Abstraction Levels. Pro-
ceedings of the Latin American Test Workshop (LATW), 2011. 1-6 pp.
DOI: 10.1109/LATW.2011.5985902.

[4] M. Chupilko, A. Kamkin. Runtime Verification Based on Exe-
cutable Models: On-the-Fly Matching of Timed Traces. Proceedins of
the Model-Based Testing Workshop (MBT), 2013. 67-81 pp. DOI:
10.4204/EPTCS.111.6.

114

Verification of System on Chip Integrated

Communication Controllers

Mikhail Petrochenkov1, Ruslan Mushtakov2, Danil Shpagilev3

Department of Verification and Modeling

MCST

Moscow, Russia

petroch_m@mcst.ru1, mushtakov_r@mcst.ru3, shpagilev_d@mcst.ru3

Abstract —This article presents an approach used to verify

communication controllers developed for Systems on Chip

developed in MCST. We provide a list of communication

controllers developed in MCST and present their characteristics.

We describe principles of communication controller’s operation,

and highlight their similarities. Then we describe a common

method of device verification: principles of test system design, test

stimuli generation and checking of device behavior. Based on

common features of the controllers, we provide the general design

of their test system. In addition, we describe specific features of

devices that require the adjustments to the common approach.

Later we describe how verification of those features affected the

design of different test systems. In conclusion, we provide a list of

found errors and directions of further research.

Keywords: Elbrus, system on chip, communication controller,

Ethernet, DDR4, PCI Express, UVM, stand-alone verification.

I. INTRODUCTION

Modern systems on chip (SOC) may include multiple
microprocessor cores, complex hierarchy of caches, peripheral
controllers and other types of data processing modules. The task
of interconnection between different systems on chip is solved
by communication controller (CC) modules. Those modules
solve the problem of interprocessor communications,
communication between CPU and random access memory
(RAM), CPU and peripheral devices, network interfaces, etc.
Performance and reliability of communication controllers is
crucial for the quality of the whole system. To ensure that
communication controllers satisfy all requirements, they must
be thoroughly verified. Verification of complex communication
controllers is a time-consuming task [1]. One of the widely used
approaches to verification of SoC is system verification -
execution of test programs (implemented in assembly language)
on the model of microprocessor. Another approach is stand-
alone verification of SOC components. In this approach, model
of the device under verification (DUT) is included in a special
program – a test system, which goal is to ensure that DUT
satisfies all requirements. This article describes a problem of
stand-alone verification of communication controllers with
physical media access interfaces in the industrial setting.

The rest of the paper is organized as follows. Section 2
describes communication controllers for physical media access
interfaces developed by MCST company. Section 3 presents a
common approach to the design a test system and describes its

components. In section 4 we provide a case study for suggested
approach applied to specific devices, and adjustments to the
approach that were implemented to verify specific features of
those devices. In conclusion, we present of verification and
provide a direction of further research.

II. OVERVIEW OF COMMUNICATION CONTROLLERS IN

“ELBRUS-16C” MICROPROCESSOR

“Elbrus-16C” System on Chip includes many
communication controllers. In the following list we will
describe ones that require the stand-alone verification: the most
complex ones and the ones which reliability is crucial for the
functionality of the system.

1. DDR4 Memory Controller is a digital circuit that manages
the flow of data going to and from the computer's main
memory. The controller contains the logical circuits necessary
to perform read and write operations in DRAM, with all
necessary delays (for example, between reading and writing).
The flow of incoming requests is converted into sequences of
DRAM commands, while monitoring various conflicts on
banks, buses and channels. To increase the effective bandwidth
of the memory channel, incoming requests can be buffered and
reordered. The reordering mechanism is implemented on the
basis of a sequential combination filter system.

2. PCI Express Root Complex (RC) Controller transforms
packets from in-house protocol to standard PCI Express
transaction level packets and implements RC configuration
space for communication with peripheral devices. The
controller is connected directly to on-chip network to improve
throughput and reduce delays. The controller supports up to 16
lanes with speed up to 8 GT/s [2].

3. Inter-Processor Communication Controller (IPCC) is
designed to solve problems of organization of multiprocessor
architectures with shared memory [3]. IPCC functions are
logically divided into two levels: the link layer (DLL - Data
Link Layer) and the physical layer (PHL - Physical Layer).
Exchange by link is carried out by transport packages
(containers) of fixed size. Packages contain information about
the type of the channel, data, as well as the CRC checksum.
Packages are formed into containers according to special rules
in order to ensure the priority and maximize the bandwidth of
the link. The protocol packets are distributed among several
virtual channels (VC) or streams with different priorities. To

115

mailto:petroch_m@mcst.ru1
mailto:mushtakov_r@mcst.ru3

ensure the integrity of the data during the transmission over the
link, the mechanism of sequential container numbering and
CRC encoding are used.

4. Wide Link Communication Controller (WLCC) is used to
connect south bridge controller to SOC using a protocol similar
to PCI Express 2.0 but with reduced overhead. Controller
supports memory and configuration space access operations.
Supported link width is up to 16 lanes with speed 2.5 or 5 GT/s
for each lane. To ensure channel reliability transmitted packets
are protected by 16 bit CRC. After transmission, packets are
stored in replay buffer waiting for receive confirmation. If
negative packet acknowledge is received or time-out is reached,
packets are retransmitted. Controller supports up to 8 virtual
channels.

5. 10 Gigabit Ethernet Controller uses 10GBASE-KR
interface [4]. It sends and receives Ethernet frames over
backplane electrical interface. On a physical layer, it supports
procedures of Clause 73 Auto-negotiation and Clause 72 Auto-
adaptation. This device supports hardware calculation and
checking of Ethernet CRC, IPv4, TCP and UDP checksums,
various filtering mechanisms based on MAC addresses and
VLAN tags and automatic handling of pause frames.

6. Gigabit Ethernet Controller uses 1000BASE-KX interface
[4]. Ethernet frames are sent using backplane electrical
interface. It supports calculation and checking of Ethernet frame
CRC, calculation and checking of IPv4, TCP and UDP
checksums, filtering based on mac and IP addresses and
automatic handling of pause frames.

Despite the fact that those devices implement sufficiently
different protocols, they nonetheless solve a lot of similar
problems and implement similar features. Common features of
controllers are:

 Register transfer level (RTL) models of this devices
are implemented using Verilog and SystemVerilog [5]
hardware description languages.

 Controllers communicate with other components on
chip using the system interface that implements on-
chip communication protocol, and represents
transaction layer of the device.

 Controllers don’t possess complex internal state and
don’t implement complex data processing or caching
mechanisms. They transform packets between
different representations: system level communication
protocol packets (used for on-chip communications)
and physical interface signals (used for communication
on distances beyond the single chip).

 Controllers implement data link layer (DLL) that
performs error detection and/or correction using such
mechanisms as Cyclic Redundancy Checks (CRC) or
forward error correction (FEC).

 Controllers expose the physical interface and
implement logical and electrical parts of physical layer
for communication with other components on a board.
All aforementioned controllers communicate using low
voltage differential signaling (LVDS). To ensure clock

recovery and dc balancing devices use physical
encoding schemes (for example 8b/10b, 64b/66b,
128b/130b) and signal scrambling.

III. TEST SYSTEM STRUCTURE

Test systems are usually implemented using either general
purpose programming languages (C++), hardware description
languages (VHDL, Verilog) or dedicated verification languages
(SystemVerilog, e, OpenVera). In our company we use
SystemVerilog [5] with Universal Verification Methodology [6]
(UVM). Use of this language allows for an easy interface with
Verilog and SystemVerilog devices, and UVM describes a
general test system structure and provides a library of basic
verification components.

Fig 1. Structure of test system of communication controllers.

Common principles of controller behaviour determine the
general structure of the test system. All test systems include a
set of basic components.

A. Test stimuli generators are based on constrained
randomization. In our case, stimuli generators
communicate with system and physical interfaces of
DUT. Transactions are described in terms of their
attributes and constraints. To specify some test
scenario, one must define specific constraints for
transactions that will be issued by request generators.
SystemVerilog offers a native support for constrained
randomization constructs. In addition to transaction
transmission and reception. physical agent is able to
model some “non-standard” types of behavior: injection
of corrupted or non-standard compliant transactions, or
handling of received transactions in user-specified way
(for example, send negative acknowledge for non-
corrupted packet, drop the response to request from
DUT, etc..).

B. Test system scoreboard implements a correctness
checks. Devices under verification do not possess
complex data processing logic and simply perform
transformation of transactions between different
representations. Scoreboard receives transactions from

116

system and physical interface monitors and performs
comparison between ingress and egress transaction. If
discrepancy between expected (transmitted) and
received packets is detected, module reports about an
error in the test system.

C. In addition to global test system scoreboard, test system
contains local (system and physical) interface
protocol checkers. Their goal is to check that interface
rules and invariants are not violated and otherwise
report an error.

D. Configuration agent is used to access a set of
memory-mapped configuration registers in the
controllers. Those registers are accessed using separate
configuration interface. Initial phase of a test is writing
desired values to this registers. Test system structure is
presented in fig.1.

IV. CASE STUDY

This chapter describes the adjustment and highlights
specific implementation details of different test systems.

A. Verification of Link Training and Status State Machine.

One of the features of PCI Express, WLCC and IPCC links
is a complex procedure of link initialization and training.
During the initialization procedure device sends data patterns
containing device capabilities and its current state across the
link. Those data pattern are called a training sequence (TS). At
the same time, using information from received training
sequences, the controller detects the presence of a link partner,
determines its active lanes and abilities. Based on this
information, pair of devices establishes common mode of
operation for transaction transfer. In addition, training
sequences are used to change the state of the link (for example,
from active to low power mode or to the disabled state).

Presence of the LTSSM provides several additional
challenges for the device verification:

 To send the transactions across the link, the active link
must be established first. Thus, first action that the
controller and its physical link agent partner performs is
a link training sequence.

 One must test ability of the device to change its state
and check that it reacts correctly to the state change of
the link partner.

 In addition to “main” device states there are several
“transient” states that the device passes when switching
from one main state to another. Depending on training
sequences received from link partner in transient states,
link training procedure either continues successfully or
terminates while reporting the error status.

It should be said that, despite the internal complexity of
LTSSM protocols, they are almost invisible to the transaction
layer. Only information available to transaction layer is
whenever link is currently active or not.

B. Test systems based on a pair of controllers

To verify implementations of in-house communication
protocols (IPCC and WLCC) additional type of test system was
used [7]. It is based on the pair of RTL-models of
communication controllers. In this test systems two controllers
are connected using their corresponding physical interfaces.
Errors are injected by manipulating the signals of physical
interface. The structure of the test system presented in fig.2.
Advantages of the approach:

 Simulation of device behaviour in realistic scenarios. Those
devices (IPCC and WLCC) use our company’s proprietary
protocols are used to connect identical devices, developed
in-house. Thus, test system of this kind represents a
realistic use-case of the device.

 Simplicity of implementation. The development of physical
level agent is a labor-intensive and time-consuming, and its
development cannot be avoided by purchasing a third party
Verification IP (VIP). In this approach, the development of
only a system agent is necessary, and verification can start
earlier.

Disadvantages:

 Lower simulation performance is caused by the need to
simulate two identical controllers. This doubles the
required computational resources.

 More difficult state and error injection control. To inject
errors into sent and received transactions one must either
directly manipulate external signals of the controller or use
hierarchical access to modify the behaviour of the
controllers.

 Inability to detect “self-correcting” bugs (for example,
incorrect CRC polynomial). This disadvantage is mitigated
by the fact those bugs will also self-correct in “real” device.

 Absence of checks on lower protocol levels. The main way
to detect an error is to receive an unexpected packet on
system interfaces. This may cause difficulties in bug
detection and localization in many cases. For example, an
error that causes an incorrect request to repeat a transaction
can be detected only by performance degradation.

One can reduce the disadvantages while keeping most of
some of the advantages of the approach by adding physical
monitor on a link between devices.

Fig 2. Structure of test system based on a pair of controllers

117

C. Complex system agent in the Ethernet test systems

Distinctive feature of Ethernet test systems (both 10 Gigabit
and Gigabit) is a complex system agent [8]. To reduce CPU
usage and increase device efficiency controllers implement
Direct Memory Access (DMA). Instead of sending Ethernet
frames directly to device interfaces, frames are stored in system
memory and the device reads the memory when it is ready for
frame transmission. In a same way, the system must prepare a
memory space for device to store received frames The device
will write the data to this location after the frame reception.
Ethernet controllers are managed using a set of memory-
mapped registers. The most important ones are descriptor
pointer registers (head and tail). Descriptors contains an
Ethernet frame metadata (size of frame, memory location
address, higher-level protocol information, etc...). The head
register points to the first descriptor available to the controller,
and the tail points to the last processed by it. Using those
registers the controller reads and writes transaction descriptors
and a frame memory. The structure of Ethernet agents is
presented in fig. 3.

Fig 3. Structure of Ethernet controller test system

D. DDR4 Memory Controller protocol checks.

A system agent in the memory controller test system
consists of a set of two modules: the management agent of the
information written into the memory and the agent for
transferring requests from the system to the controller. The test
system requires more sophisticated physical protocol checkers.
For this purpose, two modules are used: the DFI protocol
verification module and the DDR protocol verification module.

Before active work with the memory is started, the
controller performs programming of the operating modes of the
DRAM memory modules, conducts its initialization and
training. To verify these processes, the DDR Protocol Checker
is used. In addition to the fact that the module monitors the
initialization and training of the memory, it also controls the
execution of all the time constraints imposed to the controller
when it issues commands to the memory.

Another important function of the memory controller is to
periodically update the data stored in the DRAM using a refresh
command. Without periodic updates, DRAM memory chips
would gradually lose information, as capacitors storing bits are
discharged by leakage currents. DDR protocol checker is used
to analyze transactions on physical interface and to check if
Refresh commands are issued within specified timing
constraints. In addition, the memory state is checked before
executing the Refresh command. The memory must be in the
IDLE state. The controller has built-in noise immunity
mechanisms that allow to check the integrity of the data, and to
correct it if necessary. Such mechanisms include: rectification
of parity errors of the DDR bus, calculation of checksums,
correction of CRC errors on the data bus of the DFI interface
while writing, and correction of ECC errors on the DFI data bus
during reading. Verification of noise immunity of transmitted
data is provided by the DFI Protocol Checker. In addition,
checker provides a way to verify the process of switching to and
from power saving modes of memory chips by checking their
timing parameters.

V. RESULTS

Methods described in the paper were used to verify
components of “Elbrus-16C” microprocessor. Errors found in
the controllers as a result of stand-alone verification are
presented in table 1.

Device Number of bugs

DDR4 MC PCI Express RC

PCI Express RC 48

IPCC 13

WLCC 2

10 GBit Ethernet 51

Gigabit Ethernet 22

Table 1. Results of stand-alone verification

Verification of those devices is still ongoing. Our future
work is aimed at improving those test systems, developing
additional test scenarios and using the approach to verify other
devices.

REFERENCES

[1] Stotland I., Shpagilev D., Starikovskaya N. UVM based approaches to
functional verification of communication controllers of microprocessor
systems. 2016 IEEE East-West Design & Test Symposium (EWDTS)

[2] PCI Express Base Specification Revision 3.0,
http://pcisig.com/specifications

[3] Belyanin I, Petrakov P., Feldman V. Funkcionalnaya organizatsiya I
apparatura setevogo vzaimodeystviya modulei v vichislitelnom klastere
na baze mikroprocessorov s arkhitekturoi “Elbrus” [Functional
organization and hardware means of network interconnection of modules
in computer cluster on «Elbrus» microproseccors.] Voprosy
radioelektroniki, 2015, no. 3, pp. 7–20

[4] IEEE Standard for Ethernet. IEEE Std 802.3-2012. 1983 p.

[5] IEEE Standard for SystemVerilog — Unified Hardware Design,
Specification, and Verification Language. IEEE Std 1800-2012

118

http://pcisig.com/specifications

[6] 1800.2-2017 - IEEE Standard for Universal Verification Methodology
Language Reference Manual

[7] Stotland I., Shpagilev D., Petrochenkov M. Osobennosti funkcional'noj
verifikacii kontrollerov vysokoskorostnyh kanalov obmena
mikroprocessornyh sistem semejstva "Elbrus" [Features of High Speed
Communication Controllers Standalone Verification of “Elbrus”

Microprocessor Systems]. Voprosy radioelektroniki, seriya EVT, 2017, 3,
pp. 69-75.

[8] S. Chitti, P. Chandrasekhar, M. Asha Rani. “Gigabit Ethernet
Verification using Efficient Verification Methodology”. Proc. of
International Conference on Industrial Instruments and Control (ICIC),
College of Enginnering Pune, India. May 28-30, 2015, pp.1231-1235.

119

Construction of validation modules based on

reference functional models in a standalone

verification of communication subsystem

Lebedev Dmitriy1, Irina Stotland2

Department of Verification and Modeling

MCST

Moscow, Russia

lebedev_d@mcst.ru1, stotl_i@mcst.ru2

Abstract — Some approaches to functional verification of

microprocessor communication subsystems based on developing

layered Universal Verification Methodology (UVM) test systems

are considered in this paper. The main functions of communication

subsystem controllers are transferring and transformation data

between microprocessor units. The transformation must be carried

out quickly and without data corruption for the correct functioning

of the system. Some benefits of application standalone simulation

based verification for checking the correctness of communication

subsystems are marked out in the paper. Communication

controllers could carry additional functions such transmission

values of copies of the system registers, address translation and

others. The approach of construction a standalone verification

environment using UVM is presented in the paper. We also propose

some techniques for checking the correctness of communication

subsystems which we used to verify the communication subsystem

— Host-Bridge — of Sparc V9 microprocessor developed by

MCST. The difficulties discovered in the process of test system

developing and its resolutions are described. The results of using

presented solutions for verification of communicating subsystem

controllers and further plan of the test system enhancement are

considered.

Keywords — test system, communication controller,

Universal Verification Methodology (UVM), reference model.

I. INTRODUCTION

The state of the art in microprocessors composition includes
a variety of hardware controllers, which differ in complexity,
speed rate, volume and types of data transmitted over them. The
characteristics of data are continuously increasing. At the same
time, verification costs are increasing, because the possibilities of
verification methods are significantly lagging behind the
development of microprocessor systems and, accordingly, the
correctness checking requires more resources [1].

Each peripheral controller in the system could have its own
data format. Converting data format is one of the functions of the
interface communication controllers. The communication
controllers can be a part of communication subsystem also
known as northbridge. The northbridge typically handles
communications among the CPU, I/O and in some cases RAM.
Therefore, these transformations must be carried out quickly and
without data loss. For this reason, the verification of

communication controllers is an important step in the
development of the microprocessor system.

The rest of the paper is organized as follows. Section 2
reviews the existing techniques for verifying communication
controllers. Section 3 suggests an approach to the problem of
developing test system. Section 4 describes a case study and the
suggested approaches. Section 5 reveals results and Section 6
concludes the paper.

II. FUNCTIONAL VERIFICATION OF THE COMMUNICATION

CONTROLLERS

It is necessary to simulate the operation of entire environment
while providing standalone verification of a controller. This
requires a test system, the development of which could be started
at the earliest stages of whole microprocessor development, as
soon as module specification and the RTL-model becomes
available. Standalone verification allows detecting errors in the
early stages of project. In addition, it helps to create complicated,
critical and incorrect situations for the verified module. The
achivement of such situations using system verification of the
whole microprocessor model takes lot of resources. It is also
important to note that the localization of the error is faster, what
reduces the debugging time of the controller.

Due to its location between the CPU and the peripheral
interface controller, the communication controller, in addition to
its basic data format transformation function, could include
copies of registers, buffers, FIFOs, parts of distributed control
systems, and perform other additional functions. A number of
these features should be taken into account in the standalone
verification of communication controllers.

It is essential that, according to the classification proposed in
[2], the properties of communication controllers include the
absence of a pipeline, the absence of strict time (in the system
clock frequency) restrictions on transaction processing and
tagging of transmitted data. Accordingly, when the devices of
this type are verified it is possible to use event-checking modules.

There are a number of methods to build a test system and
implement a standalone verification of microprocessor
controllers. Among them there is a tool created in the "MCST"
named Alone-env, the development of the ISP RAS named
C++TESKHW and methodology UVM [3]. The Alone-env tool

120

simplifies implementation of standalone Verilog tests by creating
test sequences in C++. Its library provides a wrapper-class over
Verilog description of the verified module. Despite the relative
simplicity of using Alone-env tool, there are some disadvantages:
the lack of collecting coverage means, high requirements for the
testing reference model and the inability to reuse the test system.
One of the C++TESKHW tool features is availability of test
generation based on the device state graph traversal. However,
sometimes it is very hard to define all of the states of device and
it needs high accuracy of documentation and checking reference
model. UVM is the most widespread verification methodology
developed by Accellera Systems [4]. UVM is a library with well-
described tools for building portable and reusable testbenches
and their components. The test system based on UVM can
generate pseudo-random constrained input requests to cover all
the possible states of the verified device. Most of well-known
simulation tools (like Incisive, VCS, etc.) support the
methodology. Moreover, most of VIP (Verification IP) support
UVM-based interfaces. We also have a number of test systems
and libraries already written and debugged. Therefore, we choose
to use UVM for verification of RTL implemented modules of
microprocessor systems.

Alone-env and C++TESKHW do not support UVM and we
cannot use these tools for UVM-based test system development.
UVM provides the universal approach for all types of devices to
develop test systems. In this way test systems are becoming more
complex and worse in debugging. UVM also has no additional
approaches for construction of validation modules based on
reference functional models. Therefore, the main purpose of our
investigation is to develop and extend the methods of standalone
verification of communication controllers using UVM and
program reference models.

III. PRINCIPLES FOR THE IMPLEMENTATION OF FUNCTIONAL

TESTING COMMUNICATION CONTROLLERS

Standalone verification of communication controllers can be
carried out using simulation reference models that are part of the
test systems - specially implemented software environment for
the verified device. Test system functions includes:

• generating of input requests;

• monitoring of reactions from the verified device and the
reference model;

• checking of reactions;

• forming a conclusion about the completeness of testing.

Uvm_sequence_item and uvm_sequence extension classes
are defined to generate pseudorandom constrained impacts. The
first one defines a set of variables that are required for
serialization of set of impacts into a serial bit format. The second
performs a single or multiply generating of a set of variables to
transmit a request. The request generated by the
uvm_sequence_item object is processed by a special
uvm_sequencer class and passed to the uvm_driver class.
Uvm_driver produces a transformation of generated random
requests into sequential bit-vectors in accordance with the
interface exchange protocol. Uvm_monitor class is passive. It
tracks changes in the interface of the verified device, indicating

the appearance of input or output data, then packages the serial
bit signals into the uvm_sequence_item format and transmits for
further analysis to the checking blocks. To simplify the structure
of the test environment perception, the uvm_driver,
uvm_monitor, and uvm_sequencer are combined in the
uvm_agent class, shown on fig.1.

ITEM

SEQUENCER

DRIVER

MONITOR

AGENT

ITEM

ITEM D
U

V
 I

N
T

ER
FA

CE

Fig 1. An example of the uvm_agent structure.

Checking the reactions of the verified device can be carried
out by internal means of the UVM library, however, if the
verified device has a complex structure and many states, the
checking module is based on the external to the controller
environment reference model usually written in C++. A typical
reference model-based test system is shown in Fig. 2.

In Fig. 2 DUV (Design Under Verification) is RTL-model of
the verified device, ENV (Environment) - test environment. The
number of agents are determined by the number of interface
groups of the verified device (tracking the reactions
uvm_monitor object can be taken outside from the agents). The
reference model generates reference responses when impacts
from the test environment are implied. Uvm_scoreboard is a
checking module compares the response from the verification
device and the reference model and makes a conclusion about the
correctness of the operating. Using the DPI (Directed
Programming Interface) of System Verilog is necessary to
reconcile the types and classes of the test system written in
SystemVerilog hardware description language with the C++
language in which the reference model is developed.

D
U
V

M
O
D
E
L

ENVIROMENT

DRIVER

AGENT

MONITOR

S
C
O
R
E
B
O
A
R
D

AGENT

AGENT

DPI

 Fig 2. A typical structure of a test system for testing
communications controllers.

The reference models could be divided into three types:
cycle-accurate, discrete-event with time accounting and event
models [5]. The choice of model type depends on the type of
verified device, its architecture, and the complexity of

121

developing a test environment. As stated earlier, the use of event
models is justified for communication controllers, as they require
less time to develop, maintain changes and can fully simulate the
operation of such a controllers.

IV. FUNCTIONAL VERIFICATION OF COMMUNICATION

CONTROLLER - HOST-BRIDGE

Host-Bridge is a part of northbridge of microprocessor
MCST-R2000 CPU with Sparc V9 architecture developing by
MCST. The Host-bridge interface communication controller
connects the system with external devices, accepting requests
from the system and the I/O space while maintaining the
transaction formats accepted in the system and I/O space. The
Host-bridge receives requests from the System Commutator,
communicate with two I/O channel controllers (IO-links) and
provide translation of the virtual address to physical addresses.
In addition, controller provides access to the system registers,
registers of inter-processor links, memory controller’s registers,
transferring the new values of the registers to the local copies of
them, transmitting interrupts, status signals and collecting snoop-
responses. Each type of the registers has its own interface for
communication with the destination device. All these features
should be taken into account when verifying Host-bridge.

Some approaches for standalone verification using UVM and
reference models were observed in [2, 6-8]. In [2] authors used
buffers between testbench and reference model for checking
marked transactions. In [6, 7] assertions and checking reference
model were applied. In [8] there was reference model with very
complicated algorithms. In our work, we used model buffers and
assertions for checking correctness of transactions. In addition,
we present a number of new solutions of the standalone
verification process, which was applied for verification of Host-
Bridge:

A. Several synchro signals parameters randomization

The main task of communication controllers is to coordinate
the requests and data of several devices of the microprocessor
system operating at different frequencies of the synchro signal.
The parts of the communication controller in which several
synchro signals interact should be checked carefully. Generating
of random periods of synchro signals and their shifts that are
relative to each other can be used for this purpose. The controller
specification defines the operating ranges of each synchro signal.
At the beginning of each test the frequency and start time of
random synchro signal generators are pre-calculated. Thus, it is
possible to detect errors in synchronization of internal units: the
detection of metastability, desynchronization of releasing
requests and data, sticking data in some positions of the buffers.

B. Support of credit exchange mechanisms

To control the flow of requests and free positions in the
transaction buffers, Host-bridge supports a credit mechanism,
which is a one-bit signal transmission that informs about the
availability of free space in the buffers of connected devices. The
management of this mechanism allows creating tests with full
filling of all positions in the device buffers and needing to wait
the vacated space to handle new requests, or on the other hand,
tests, when the release of positions provides very fast, and the
requests are executed almost instantly. As a result, it is possible

to create test scenarios that are difficult to implement during
system testing.

C. Verification of address translation controller

One of the components of the Host-Bridge is the address
translation controller IOMMU. It translates a virtual address
received from the I/O subsystem requests to physical addresses.
The controller sends a request for information about the physical
address to a special memory area for providing translation.
Virtual address mapping to physical addresses is stored in a
special controller buffer – IOTLB (Input-Output Translation
Lookaside Buffer). If the buffer is full, the oldest element is
displaced. The algorithm of the translation could be represented
in the form of several consecutive steps:

1) receiving DMA request p ← start(x),

2) analyzing of the input request then matching in the
cache IOMMU with the following scenarios:

a) match is found (hit IOMMU) – a request with the translated
address x'' is executed;

b) a match is not found (miss IOMMU) – a request for a
physical address x' is executed , then waiting for a response
p.receive(y) with the data, and only after that translation of the
address is done.

Under dynamic test conditions, there may be situations when
a lane in the IOMMU cache is not yet displaced in the RTL-
model and the address can be translated without additional
request, but it is not present in the reference model. In this case,
the reference model will give unnecessary requests to the test
system. A global transaction counter was introduces in the
reference model to solve this problem. The task of this counter
was to identify the source of the requests. In addition, the
responses generated by the test system are analyzed too. In the
case when the request is successfully translated on the RTL-
model side, and the reference model has already given an extra
request for a physical address, the test environment generates a
response that is marked with a special identifier and sent it to the
reference model. When processing a response, the model
concludes that the translation was not performed
p.model_check(y), calculates the desired transaction identifier
y.id and sends it to a special buffer of canceled requests 𝑄𝑖𝑑 for
the physical address. When checking the interchange buffers
with reference model after the test completes, the identifier
values in the buffer of canceled requests 𝑄𝑟𝑒𝑞 are compared with

the identifiers of the remaining unprocessed requests for physical
addresses from the reference model. Such remaining requests are
not treated as erroneous and are deleted delete(req.id). The
pseudo-code of the algorithm is presented below.

DMA handling:

while true do

 wait p ← start(x)

 if 𝑥′ then

 p.ncheck(𝑥′)

 else if 𝑥′′ then

 begin

 wait p.receive(y)

 p.model_check(y)

122

 𝑄𝑖𝑑← y.id

 p.finish()

end

end

After test checking:

for i ∈ 𝑄𝑟𝑒𝑞 do

 if c.check(req.id, 𝑄𝑖𝑑) then

 delete(req.id)

 else report(req.id)
 end

D. The correct organization of the exchange in terms of the
uncertainty of the issuance of queries

In high-load dynamic tests with many input requests and
responses, labeling requests and responses with tags that
correspond to positions in the controller’s buffers may differ
from the values of tags in the reference model. This happens
because of the inability to predict time of release of the buffer's
position in the event-driven models. Therefore, it is important to
match the input and output requests of the model and the verified
device. Each request, whether it is an I/O request or a PIO
request, has several stages of execution. To ensure the correct
functioning of the test scenarios we need to use an associative
memory (mappers) for matching. The function of this memory is
to store the matching of RTL request tags with reference model
tags, when the remaining request data field, such as an address,
destination device ID, processor number, and others are
compared. Later, when you receive responses to the request, you
have to pass to the model the same tag, which was allocated by
the model at the stage of forming the request.

Communication controllers in multi-core systems can
participate in the coherence protocol and accept snoop responses.
Depending on the mode of operation and the content of the fields
of the first received for the request response could come as
several responses or only one. To complete the request check in
coherent mode, it needed to pass all the responses with the correct
tags to the model.

E. After test checking

The correct behavior of the communication controller is
determined in providing a certain number of responses to
requests and receiving the exact number of responses to them.
Incorrect operation can be identified by counting the number of
received requests, converted to another format requests, and
accepted responses. For this purpose, the test system includes
transaction counters. They capture all kinds of transactions while
the test is running. At the end of the test, special algorithm checks
values of these counters and make a conclusion about
correctness.

After the test scenario is complete, it also needs to verify
absence of unanswered requests in the buffers that link the
reference model to the test environment. The presence of such
requests signals about error of either the verified device or the
reference model.

V. RESULTS

The approaches described above were applied to standalone
verification of the Host-Bridge of microprocessor MCST
«R2000». Parametrization of synchro signals allowed finding
metastability in the controller interfaces. Using different types of
credit exchange rate helped to locate deadlocks and livelocks in
the controller. Based on one test system the built-in IOMMU
controller was also verified. Different configuration of answers
with physical address were verified, which helps finding errors
in displacement algorithms. After test, checking of model buffers
and requests counters provide finding of not released responses
to the system.

For the Host-Bridge controller, due to its functional and
structural features that belong to the class of communication
controllers, a test environment is developed with a checker based
on reference event-model. Due to standalone verification of the
device 67 errors that have not been found by other means of
verification were found and corrected. Code and functional
coverage was carried out and 94% coverage was extracted. Gaps
in coverage will be eliminated with the further expanding of the
test environment with external parts of interrupt system. Total
result indicates about effectiveness of standalone verification of
communication controller.

HOST BRIDGE

CPU

I/O
links

registers

JTAG

status

interrupts

aerrs

interfaces

signals

apic

apic

Fig 3. A typical structure of a Host Bridge controller
connected with interrupt controllers.

VI. CONCLUSION

Communication controllers are among the important parts of
multi-core microprocessor systems have to be thoroughly tested.
The principles described in the article do not depend mainly on
the implementation of these controllers and allow their full
standalone verification. The article suggests the ways to organize
the interaction of the test system and the event reference model,
as well as ways to resolve the difficulties encountered in the
development of the test system.

The proposed approaches have been applied in the
verification of the controller Host-bridge as a part of eight-core
microprocessor, developed by "MCST". The developed test
system and tests made it possible to detect and correct a number
of logical errors that were not detected by other test methods.

123

 In the future, it is planned to expand the test environment by
adding a part of the interrupt system transmitting signals directly
to the core. Figure 3 shows a generalized diagram of a Host-
bridge, and the dotted lines illustrate such extension.

REFERENCES

[1] Kamkin, A.M. Kotsynyak, S.A. Smolov, A.A. Sortov, A.D. Tatarnikov,
M.M. Chupilko. Sredstva funktsional'noi verifikatsii mikroprotsessorov
[Tools for functional verification of microprocessors]. 2014, pp. 149-199.
http://www.ispras.ru/proceedings/docs/2014/26/1/isp_26_2014_1_149.pd
f (31.03.2018).

[2] Shmelev V.A., Stotland I.A. Avtonomnaya verifikatsiya
mikroprotsessorov na osnove etalonnykh modelei raznogo urovnya
abstraktsii [Standalone verification of microprocessors using reference
models with various levels of abstraction]. // Vserossiiskaya nauchno-
tekhnicheskaya konferentsiya «Problemy razrabotki perspektivnykh
mikro- i nanoelektronnykh sistem (MES)». Sbornik trudov, 2012, no 1, pp.
435-440.

[3] A.N. Meshkov, M.P. Ryzhov, V.A. Shmelev. Razvitie sredstv verifikatsii
mikroprotsessora «Elbrus-2S» [The developement of the verification tools

of the Elbrus-2S microprocessor]. // «Voprosy radioelektroniki», ser. EVT,
2014, no. 3, pp. 5-17.

[4] Standard Universal Verification Methodology
http://accellera.org/downloads/standards/uvm (31.03.2018).

[5] Kelton W., Law A. Imitatsionnoe modelirovanie [Simulation modeling] //
Klassika CS. 3-e izd. SPb.: Piter, 2004.

[6] Li-Bo Cheng, Francis Anghinolfi, Ke Wang, Hong-Bo Zhu, Wei-Guo Lu,
Zhen-An Liu. A UVM Based Testbench Research for ABCStar. Proc. of
IEEE-NPSS Real Time Conference (RT), Padua, Italy. June 6-10, 2016.
https://indico.cern.ch/event/390748/contributions/1825090/attachments/1
280814/1906413/CR_PosterSession2_268.pdf (31.03.2018).

[7] Abhineet Bhojak, Tejbal Prasad. A UVM Based Methodology for
Processor Verification. Proc. of Design and Verification Conference and
Exhibition (DVCON), India. September 10-11, 2015. https://dvcon-
india.org/sites/dvcon-
india.org/files/archive/2015/proceedings/6_UVM_Based_Processor_Veri
fication_paper.pdf (31.03.2018).

[8] Kamkin A., Petrochenkov M. A Model-Based Approach to Design Test
Oracles for Memory Subsystems of Multicore Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160. DOI:
10.15514/ISPRAS-2015-27(3)-11.

124

http://www.ispras.ru/proceedings/docs/2014/26/1/isp_26_2014_1_149.pdf
http://www.ispras.ru/proceedings/docs/2014/26/1/isp_26_2014_1_149.pdf
http://accellera.org/downloads/standards/uvm
https://indico.cern.ch/event/390748/contributions/1825090/attachments/1280814/1906413/CR_PosterSession2_268.pdf
https://indico.cern.ch/event/390748/contributions/1825090/attachments/1280814/1906413/CR_PosterSession2_268.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2015/proceedings/6_UVM_Based_Processor_Verification_paper.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2015/proceedings/6_UVM_Based_Processor_Verification_paper.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2015/proceedings/6_UVM_Based_Processor_Verification_paper.pdf
https://dvcon-india.org/sites/dvcon-india.org/files/archive/2015/proceedings/6_UVM_Based_Processor_Verification_paper.pdf

Medical Images Segmentation Operations
Sabrina Musatian

Mathematics and Mechanics Faculty
Saint Petersburg State University

Saint Petersburg, Russia
sabrina.musatian@yandex.ru

Alexander Lomakin
Mathematics and Mechanics Faculty

Saint Petersburg State University
Saint Petersburg, Russia

alexander.lomakin@protonmail.com

Stanislav Sartasov
Mathematics and Mechanics Faculty

Saint Petersburg State University
Saint Petersburg, Russia

Stanislav.Sartasov@spbu.ru

Lev Popyvanov
Faculty of Medicine

Saint Petersburg State University
Saint Petersburg, Russia

lev.popyvanov@gmail.com

Ivan Monakhov
Faculty of Medicine

Saint Petersburg State University
Saint Petersburg, Russia
ivanishe94@gmail.com

Angelina Chizhova
Faculty of Economics

Saint Petersburg State University
Saint Petersburg, Russia

chilina4@gmail.com

Abstract—Extracting various valuable medical information
from head MRI and CT series is one of the most important
and challenging tasks in the area of medical image analysis. Due
to the lack of automatization for many of these tasks, they require
meticulous preprocessing from the medical experts. Nevertheless
some of these problems may have a semi-automatic solutions, they
are still dependant on the persons competence. The main goal of
our research project is to create an instrument that maximizes
series processing automatization degree. Our project consists of
two parts: a set of algorithms for medical image processing and
tools for its results interpretation. In this paper we present an
overview of the best existing approaches in this field, as well the
description of our own algorithms developed for specific tissue
segmentation problems.

Index Terms—deep neural networks, convolutional neural net-
works, brain tumours, bony orbit, medical images, segmentation

I. INTRODUCTION

Modern ray diagnosis is at the stage of development, and
completely different settings and methods are required for
different organs: x-ray, MRI, CT, ultrasound are supplemented
with invasive contrast methods. Only the doctor can see
everything necessary for correct diagnosis and subsequent
treatment. However, at the heart of all these methods lie
common tasks - the most accurate visualization of the selected
zone and obtaining as much data as possible from the results
of the examination. In 3D methods (CT and MRI), these
tasks are essentially the same, despite the differences in
both physical principles and additional settings. Since the
ultimate goal of our work is to create a tool that would as
accurately as possible visualize isolated structures from raw
data obtained by MRI and CT procedures, then this complex
work can be decomposed into separate logical components.
To isolate complex structures, we formulated the problem of
segmentation of tumor processes in MRI images. MRI better
visualizes soft tissue and allows to carry out various sequences,
change the basic settings of the method in a wide range and use
contrast agents. To determine the volume and edge isolation
of structures, the problem of determining the volume of bony
orbits on a CT was singled out. In this method the bone

structures have a high contrast, the distance between slices
is very small, and the method itself is widely distributed and
takes little time, which allows to study a large data volume.

From the point of medical informatics those problems are
not completely dissimilar and could be solved in a unified
manner. Moreover, creating a single instrument that may solve
all of these challenging tasks autonomously will not only
save doctors time, but also decrease the amount of errors. To
the best of our knowledge, there have not been introduced
any instrument for automatic segmentation of different body
tissues. We came to the conclusion that while the segmentation
tasks on different body parts may seem different, they may also
all be derived from a core solution based on the deep neural
networks.

In this work we explored state-of-the-art solutions based on
deep neural networks for brain tumor segmentation and created
an ensemble to see if their performance can be improved and
used not only for the brain segmentation task but also for
complicated head bony structures in general. We use the results
of this research as a first step for creating a convenient and
powerful instrument for all medical specialities.

II. OVERVIEW

An interest in the possibility of medical images segmenta-
tion has increased during the last decade and many different
approaches were explored. However, only a few researches
evolutionized into a complete useful tools for medicine. Com-
monly used software, that allows semi-automatic segmentation
is Brainlab IPlan (commercial distribution) and ITK-SNAP
(open source project) . The main feature of IPlan, that have
already been used in several studies [1], [2], is atlas-based
segmentation. Atlas is the described and sketched out by
experts shape variations of the ROIs(Region of Interest).
Due to complexity of human body structure, there are many
problems about the accuracy of delineated atlas. ITK-Snap
allows segmentation via active contour evolution method -
smooth blow-out of preplaced bubbles into the desired region
of interest [3]. Although many of the tasks have been solved by
these instruments, there are still many problems that specialists

125

face constantly waiting for improvement. Segmentation is
performed by manual or semi-automatic methods.

For the brain tumor segmentation problem many different
approaches have been explored and evaluated. There may be
formed mainly two classes for these algorithms: methods,
which require training on the dataset in advance and those
which do not. Early works in this area treated a brain tumor
segmentation problem as an anomaly detection problem on the
image. Representative works for these approaches may be [4]
and [5]. The main advantage of these works is that the pre-
sented solutions do not need to be trained beforehand, however
that makes it harder to improve the quality of the detection,
especially on the smaller tumors. Another class of approaches
is based on the idea of using supervised learning methods,
such as random forests [6] or support vector machines [7].
These models can learn a powerful set of features and work
quite well on the most common cases, but due to the highly
discriminative nature of brain tumors it is hard to detect the
correct feature set and create a good model. As a result, recent
approaches on segmentation refer to the deep neural networks.
It is a powerful instrument that has a capability of extracting
new features while training and hence may outperform pre-
defined features sets of the supervised learning methods. The
results of these algorithms may be also used for different kinds
of medical images.

We are developing our own tool - Medical Images Segmen-
tation Operations (MISO), which uses neural networks as a
back-end for solving various segmentation tasks in medicine.
In the next sections we overview separately application of
neural networks for brain tumor and bony orbit segmentation
as they were trained and used in MISO.

III. BRAIN TUMOR SEGMENTATION

For that task we chose to overview two CNNs(Convolutional
Neural Networks) with different architecture which have
proven to be the best in this field: DeepMedic [8] - 11-layers
deep, multi-scale, 3D CNN with fully connected conditional
random field and WNet [9] - fully convolutional neural net-
work with anisotropic and dilated convolution.

A. Data

For the experiments we used BraTS 2017 dataset [10],
[11], which includes images from 285 patients of glioblastoma
(GBM) and lower grade glioma(LGG). For acquiring this
data each patient (Fig. 1) was scanned with native T1, post-
contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid
Attenuated Inversion Recovery (Flair). For all patients ground-
truth segmentation was provided.

B. Implementation Details

For Wnet we used configuration described in the original
papers and BRaTS 2017 dataset for training. For DeepMedic
we trained two versions of this network on different datasets
and injected some changes into original architecture of this
network. For the first version we introduced the following
changes: model was trained only on T1 and T2 images.

(a) (b) (c) (d) (e)

Fig. 1. Original data from BRaTS 2017 dataset: a)T1Gd b)T1 c)Flair d)T2
e)Ground-truth

The reason for that change was that these are the most
common MRI sequences. Having a network trained only with
this data makes the model available for more hospitals in
future. Also, instead of PReLu non-linearity, introduced in
the original model, we use SELU [12], which improves the
performance and time spend on training. For the second
version of DeepMedic we also used SELU, but this network
was trained only on T1 images. We wanted to explore how
this network will cope when having only one source. For
all of these three networks we separated initial dataset into
3 chunks: training(about 80% percent), validation(10%) and
test(10%). The performance of these networks on test data may
be seen at Table I. In the observed studies authors were aiming
not only to detect the tumor but also to segment the tumor
into three categories: whole tumor, tumor core and enhancing
tumor core. However, in our work we are only interested in
the whole tumor detection problem.

TABLE I
INDIVIDUAL PERFORMANCE OF OBSERVED CNNS

Network Dice coefficient
Wnet 0.9148
DeepMedic (inputs:T1+T2) 0.8317
DeepMedic(inputs:T1) 0.6725

C. Detecting the Percentage of False Negative Segments

The original works analyse the quality of CNN performance
based on the Dice and Hausdorff measurements, which are
good for the segmentation problems in general, but hides the
necessary details about misclassifications. For that reason, we
explored the results from work of the considered networks to
determine the percentage of false positives via false negatives
results. Our main goal was to examine whether these methods
are more prone to predict false positives then false negatives.

Since the decisive opinion during the diagnosis and treat-
ment is always on doctor, our main goal is to indicate if there
may be an pathological tissue and get the surgeons attention
to this area. Our system is aiming to find all suspicious
areas and send them for reevaluation to medical specialist.
Hence, one of the main qualities of this system that should
be optimised first-hand would be not false positive results, but
false negatives, because those when unnoticed may not get the
essential medical care and be a reason for future proliferation
of tumor cells. The results of this experiment may be seen at
Table II.

126

TABLE II
NUMBER OF FALSE POSITIVE VIA FALSE NEGATIVE IN THE FINAL SEGMENTATION

Network mean (False positive / ground truth) mean (False negative / ground truth)
Wnet 0.0863 0.0830
DeepMedic (inputs:T1+T2) 0.2330 0.1170
DeepMedic(inputs:T1) 0.4690 0.2455

TABLE III
THE PERFORMANCE OF NEURAL NETWORK ENSEMBLE. THE RESULTS OF COMBINING NETWORKS TOGETHER DIFFERENTLY

CNN 1 CNN 2 CNN 3 Dice coefficient
Wnet DeepMedic(inputs:T1 + T2) - 0.8861
DeepMedic (inputs:T1+T2) DeepMedic(inputs:T1) - 0.7657
DeepMedic(inputs:T1) Wnet - 0.7941
DeepMedic (inputs:T1+T2) DeepMedic(inputs:T1) Wnet 0.8823

D. Neural Network Ensembles

We wanted to detect whether the general performance of
these three networks can be improved, when they are used
together. So, we proposed the idea of forming the neural
networks ensemble [13] out of them. We implemented the
following voting scheme: for each voxel we determine each
individual result for every neural network, based on their
already pre-trained models, and then we qualify a voxel as part
of the tumor if and only if the majority of networks classify
it as tumor, otherwise it is considered to be a healthy matter.
The results of this experiment may be seen at Table III.

IV. BONY ORBIT SEGMENTATION

A. Methods

Our approach consists of two steps. First of all, image
classification was presented, dividing initial dataset into two
groups: “contains orbit” and “does not contain orbit”. The
next step is to segment the orbit in the images marked by
the classifier in the previous stage. In this paper first step is
described in details, whereas the second step is introduced
briefly as it is the subject of further research.

This section describes the approach we have used in details
and is organized as follows:

1) Data collection
2) CNNs model choosing
3) CNNs training details
4) Output image visualization

B. Data Collection

Raw CT scans was presented by faculty of Medicine of
Saint Petersburg State University. Using Toshiba Scanner as
instrument and Helical image acquisition as main method, 5
series was made and anonymised. The initial image dimen-
sions were 512 ∗ 512, using short(2-byte number) to represent
radiation intense with Grayscale Standard display function.
Orbits occupy less than 1/4 of the image, so we reduced the
original size from 512 ∗ 512 to 256 ∗ 256 in order to decrease
computation complexity(Fig 2 b). Slices with orbit was labeled
and some of them was manually segmented by expert (Fig. 2
c). Total amount of data: 601 sinus + 80 head CT images were

marked as “contains orbit” and 1414 were marked as “doesnt
contain orbit”. 150 images were segmented.

(a) (b) (c) (d)

Fig. 2. Data for bony orbit segmentation: a) Initial image b) cropped image
c) segmented by expert d) extracted mask (label for cropped image)

C. Model Choosing

To achieve best classification performance of 1st CNN,
some important parameters like number of layers and con-
volutional kernel size must be chosen. So, several kernel
sizes and layers number have been evaluated for classification
accuracy. The quantitative assessment are shown in Table IV.
As a result, the model used for training consisted of eight
layers, out of which four were convolutional layers and four
were fully connected layers. The output of last fully-connected
layer has been fed to a sigmoid function, as it is a standard
neural network classification layer [14]. The initial images
were cropped and compressed in order to reduce training time.
Hence, network accepts grayscale images of dimension 128
128 as inputs. The first layer filters input with 32 kernels of
size 5 ∗ 5. As it could be seen from experiments, rectified
linear unit (ReLU) [15] nonlinearity applied to the outputs of
all convolutional layers gives best result compared with other
activation functions. The (n+ 1)

th convolutional layer takes
the output of nth as input processed by ReLU nonlinearity and
max pooling layer respectively and process it with F (n + 1)
filters. Filters configuration are shown in Table IV. All fully
connected layers have equal number of neurons i.e., 256. For
the Second CNN the U-net architecture [16] was chosen, as it
has already proven its suitability for segmentation in general.
Several layer sequences was evaluated to find most fitting
model. In order to reduce bias and increase universality, 2
dropout layers with dropout rate equals to 0.2 were added.

127

TABLE IV
QUANTITATIVE ASSESSMENTS OF DIFFERENT CNN CONFIGURATIONS

Neurons in each FCLs* 1st CVL* kernel Filters model val.acc.
3200 11 32-64-128-128 0.725
256 11 32-64-128-128 0.9964
3200 7 32-64-128-128 0.7821
512 7 32-64-128-128 0.9782
512 7 64-64-128-256 0.9295
512 11 32-64-128-128 0.9964
256 7 32-64-128-128 0.8214

FCL - fully-connected layers CVL -convolutional layer, val. acc. - accuracy
on validation dataset

D. Training Details

Classification CNN was implemented, trained and evalu-
ated using Python 3.6 as programming language on NVIDIA
GTX740M GPU with CUDA Toolkit 9.0 and CuDNN 7.0.5.
Keras 2.1.*(version was continuously updated during develop-
ment) was chosen as neural networks framework, working on
top of Tensorflow 1.5*. We have trained and evaluated CNNs
on a range different filter models(amount of filters in each
convolutional layer), kernel sizes and neuron amount in fully-
connected layers. Also experiments with dropout layer [17]
were performed.

E. Output Image Visualization

After segmentation has been performed, series of marked
images are converted to voxel grid using initial DICOM
metadata in order to create 3D model using Marching cubes
algorithm by means of MISO Tool and The Visualization
Toolkit library. Result is presented in Fig 3.

Fig. 3. Rendered bony eye orbit using marching cubes algorithm

F. Experimental Results

1) Images cropping: As the main purpose of our work is
to create an instrument, that could be run on our servers from
multiple clients, in order to deliver the best performance to the
customers and lessen waiting time, computation complexity
must be decreased as much as possible. To achieve that goal, it
was decided to perform experiments with cropped and resized
images. When the image was reduced to less than 128 ∗ 128,
we were unable to achieve the required accuracy. The best
result under the condition ”accuracy > 0.95” showed the
approach in which a piece of 256 ∗ 256 was cut out of the
image, which subsequently was compressed to 128. Because
of high similarity of head position in CT scans, it was not
necessary to move the cropping window.

Fig. 4. Different cropping window positions and sizes were examined

Fig. 5. CNN accuracy on training data(blue) and validation data(orange)

2) Performance: For the 1st CNN we used different kernels
from 3 to 11 pixels, different CNN model configurations,
activation functions and a suitable epoch number to illustrate
which one of these properties support CNN to get the highest
level of performance. Data was split between train and vali-
dation in proportion 4:1. Our model performs best after 115
training epochs - validation accuracy 99% and then stabilizes.
Dropout layers with dropout rate lower than 0.4 doesnt impact
the accuracy significantly, and more than 0.4 fails the accuracy
to 85%, so it was decided to exclude dropout layers from final
model. Worth noticing the fact that models with 512 neurons in
each FCL showed approximately same result as a model with

128

256 neurons, but it takes up to 1.4 times more computation
time, so 256 was chosen as less resource-consuming.

V. RESULTS

In this paper the first step for the medical segmentation
system was introduced. Based on the existing CNN solutions
we demonstrated that they may be easily adapted for the
segmentation tasks on different medical images. Also, in this
work has been shown that these segmentations may be used
for creating 3D models and volume estimation. Based on the
obtained results, the target tool model was developed using
C 7.0 as programming language and .NET 4.7 as framework.
As the development is still in the very beginning, there is
no purpose for service hosting, although it is considered as
the only possible option for the further development, so for
now MISO(Medical Images Segmentation Operations) tool has
been prototyped as a classic desktop application with CNN
results visualization abilities (Fig. 6)

Fig. 6. MISO tool interface

REFERENCES

[1] Wagner ME, Gellrich NC, Friese KI et al (2016) Model-based seg-
mentation in orbital volume measurement with cone beam computed
tomography and evaluation against current concepts. Int J Comput Assist
Radiol Surg 11:19.

[2] Jean-Franois D, Andreas B. Atlas-based automatic segmentation of head
and neck organs at risk and nodal target volumes: a clinical validation.
Radiat Oncol (2013) 8(1):111. doi:10.1186/1748-717X-8-154.

[3] Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et
al. User-guided 3D active contour segmentation of anatomical struc-
tures: significantly improved efficiency and reliability. Neuroimage.
2006;31(3):11161128.

[4] Doyle, S., Vasseur, F., Dojat, M., Forbes, F., 2013. Fully automatic brain
tumour segmentation from multiple MR sequences using hidden markov
fields and variational EM. In: Procs. NCI-MICCAI BRATS, pp. 1822.

[5] Cardoso, M.J., Sudre, C.H., Modat, M., Ourselin, S., 2015. Template-
based multimodal joint generative model of brain data. In: Information
Processing in Medical Imaging. Springer, pp. 1729.

[6] Tumor Segmentation from Multimodal MRI Using Random Forest
with Superpixel and Tensor Based Feature Extraction HN Bharath, S
Colleman, DM Sima, S Van Huffel International MICCAI Brainlesion
Workshop, 463-473.

[7] Lee, C.h., Schmidt, M., Murtha, A.: Segmenting brain tumors with
conditional random fields and support vector machines. In: CVBIA. pp.
469478 (2005).

[8] Kamnitsas, K., Ledig, C., Newcombe, V.F.J., Simpson, J.P., Kane,
A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D
CNN with fully connected CRF for accurate brain lesion segmentation.
Medical Image Analysis 36, 6178 (2017).

[9] G. Wang, W. Li, S. Ourselin, T. Vercauteren, Automatic brain tumor
segmentation using cascaded anisotropic convolutional neural networks,
Proc. Multi- modal Brain Tumor Segmentation (BRATS) Challenge 2017
- MICCAI workshop. 2016 (2017). arXiv:1709.00382.

[10] Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani,
K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi,
L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N.,
Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das,
T., Delingette, H., Demiralp, C ., Durst, C.R., Dojat, M., Doyle, S.,
Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X.,
Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu,
E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price,
S.J., Raviv, T.R., Reza, S.M., Ryan, M., Sarikaya, D., Schwartz, L.,
Shin, H.C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely,
G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F.,
Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa,
M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image
segmentation benchmark (BRATS). TMI 34(10), 19932024 (2015).

[11] Bakas S et al. Advancing The Cancer Genome Atlas glioma MRI col-
lections with expert segmentation labels and radiomic features, Nature
Scientific Data, (2017) [In Press].

[12] Gnter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter
”Self-Normalizing Neural Networks” arXiv:1706.02515.

[13] L.K. Hansen and P Salamon. Neural network ensembles. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 12(10):993- 1001,
Oct. 1990.

[14] J. van Doorn, Analysis of deep convolutional neural network archi-
tectures, 2014. http://referaat.cs.utwente.nl/conference/21/paper/7438/
analysis-of-deep-convolutional-neural-network-architectures.pdf. pages
9, 12, 15.

[15] Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS.
Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit. Nature. 2000;405(6789):947951. doi: 10.1038/35016072.

[16] O. Ronneberger, P. Fischer, and T. Brox, ”U-Net: Convolutional
Networks for Biomedical Image Segmentation,” ArXiv150504597 Cs
(2015).

[17] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15, 1 (January 2014),
1929-1958.

129

Automatic detection of physiologically singular points of
the bony orbit

Maria Platonova 1 and Stanislav Sartasov 2 and Ivan Monakhov 3

Abstract. Nowadays it is possible to get a clinically valuable and
useful information, for example singular points of the bony orbit
from medical images, such as CT. These points are necessary for
reconstructive and plastic surgery. Unfortunately, some problems re-
lated to these points are still present, such as their vague location de-
scription or the influence of human factor when finding them, despite
that professional surgeons are dealing with this issue. As a result no
fully or semi-automatic tool exists for handling this task.

Therefore, the main goal of this work is to create an automatic
tool to accurately determine the location of these points based on
convolutional neural networks and deep learning.

1 Introduction
Singular points are important because they are using by ophthal-

mologists and reconstructive and plastic surgeons. Moreover, the or-
bital volume, which is an important part of preparation and process of
the orbital reconstruction operation, can be calculated with the usage
of these points.

According to anthropological data, each point has a strictly deter-
ministic position on the surface of the bone orbit, but in connection
with the individual features of the structure of the human skull, some
people may have separate position of the same point. Unfortunately,
so far there is no such automatic method that would determine the po-
sition of these points, while manual operations are prone to human
error.

At the present time, medical informatics has a very high level of
development, so it became possible to automate some of medical
tasks. Substantial information is that this problem can be solved by
using computer science methods such as segmentation neural net-
works applied to CT images. The main purpose of this research is
to describe a method to automatically detect the location of singular
points in the series of CT images.

2 Singular points
Singular points are special points which located in the surface of

the bone orbit. They represent the features of the structure of the bony
orbit. According to anthropological data, each point has a strictly
deterministic position on the surface of the bone orbit. In connection
with the individual features of the structure of the human skull, some
people may have separate position of the same point.

These points are located in the whole surface of the orbit: some
points are located at the entrance of the orbit, and some located at the
inner surface.
1 St. Petersburg State University, email: Platonova.Maria@outlook.com
2 St. Petersburg State University, email: Stanislav.Sartasov@spbu.ru
3 St. Petersburg State University, email: ivanishe94@gmail.com

An example of a skull model with marked some singular points
and their description presented in figure 1:

• point 1 is the vertex of the perpendicular drawn from canalis in-
fraorbitalis;

• point 2 - the point forming with MF the line dividing the orbit in
half;

• point 3 - the most medial point of the orbit ;
• point 4 - the middle of the upper edge of the orbit;
• point 5 - the middle of the lower edge of the orbit;
• point 6 - vertex of the orbital opening of the optic nerve canal;
• front-malar-orbital point (fronto-malare-orbitale) - lies at the in-

tersection of the outer edge of the orbit with the frontal-zygomatic
suture;

• orbital point (orbitale) - the lowest point of the lower edge of the
orbit. It is located on the ocular margin of the malar bone;

• maxillo-frontal point (maxillofrontale) - is located at the intersec-
tion of the inner edge of the orbit with the frontomaxillary joint;

• the ectoconchion is the point of intersection of the outer edge of
the orbit with a line drawn from the maxillo-frontal point parallel
to the upper edge of the orbit;

Figure 1. 3D model of human skull with singular points

3 Related works
Applications of the bony orbit singular points are very diverse. As

a consequence, an interest to these points increases. Unfortunately,

130

there is still a lack of researches and information that could be suit-
able or helpful during this work.

In addition, some semi-automatic methods are using singular
points as one of the main component. As an example, in the article
[1] the algorithm was presented for calculating the orbital volume us-
ing singular points of the bony orbit, but surgeons manually marked
these points.

Therefore, this work is very actual. Moreover, it can be developed
for the applicance in other medical tasks that require segmentation as
the part of the solution.

4 Description of the experiment
4.1 Dataset

To begin with, there are 5 series of CT images in our disposal.
Each series of CT has about 400 images and approximately 140 of
them contain an orbit. CT images are provided in a 512x512 Dicom
format (Figure 2).

As a dataset for training the neural network, a set of CT images
and a set of marked images are used which were prepared by profes-
sional surgeon. In addition to the original image a supplementary im-
age containing the location of the singular points is provided. These
points are presented as a set of circles with the radius equals 3 pixels
that painted with a separate color. Marking these points is a difficult
task even for a competent surgeons, so data preparation is a crucial
step in this field of research.

To sum up, the dataset was collected and it is consist of 679 CT
images that contain an orbit. Moreover, 621 CT image without orbit
was added to dataset to provide correct perception of the rest of CT
set during the training.

Figure 2. CT image with orbit

4.2 Model
Due to the features of the data, it is difficult to get an extensive

dataset, so we decided to use U-net architecture [2], as a mean to

overcome scarce amount of data at our disposal. The U-Net is a con-
volutional network architecture for fast and precise segmentation of
images.

This architecture consists of a down-sampling path, followed by an
up-sampling path (Figure 3). In the down-sampling path, max pool-
ing is repeatedly applied to the input image and feature maps. In the
up-sampling path, spatial resolution is recovered by performing up-
sampling, convolution, eventually mapping the intermediate feature
representation back to the original resolution.

During training the input to the neural network will be a CT scan
with the corresponding mask, on which singular points are marked as
the epsilon ambit. For the experiments, the whole sets of CT images
will be used.

In the output layer, sigmoid (f(x) = 1
1+e−x) is used as the acti-

vation function, due to the derivative of the sigmoid function is ex-
pressed only through the function itself, that is, no additional compu-

tation is needed. The ReLU
(

f(x) =

{
x, x > 0

a ∗ x, otherwise

)
, where

a is preset factor, is used in convolutional layers, due to it cuts un-
necessary details and is devoid of resource-intensive operations.

The estimation of the accuracy of the neural network process was
presented using Dice coefficient as a metrics, since this metric is able
to excellent show the accuracy of the segmentation process. The fol-
lowing formula provide the value of this coefficient: D = 2∗ |A∩B|

|A|+|B| .
The irrationality to use standard metrics for estimating the accuracy
was explained as the fact that some incorrectly selected pixels in the
area of singular points of the orbit are much more important than the
pixels in the rest of the image, even if the recognition was correct.

Figure 3. U-Net architecture

4.3 Training

We selected Python as the programming language. Also, we de-
cided to use Keras, working on Tensorflow, as the neural network
library. Moreover, as a part of training, dataset was split into 2 parts
in proportion 4:1: train and validation. Training of the neural network
took place on a service from Google - Collaboration, which provides
an opportunity to use the Tesla K80 13Gb GPU for free.

4.4 Result

The results of training are presented on the table 1.

131

Table 1. Result table
Number of epoch Dice coefficient
5 0,54
10 0,62
20 0.67
30 0.64
40 0.68
60 0.64
80 0.73
100 0.71

Moreover, an approbation was carried out using real data, since
the result obtained during this testing is more significant for us than
the obtained dice’s coefficient. The testing took place on 50 CT im-
ages. As an example, the figure 4 is shown in which the first part is
a CT image, the second part is its mask, the third part is the result of
testing.

Figure 4. Result of testing

5 Conclusion
In this paper we presented a method for determining singular

points of the bony orbit and showed its accuracy using dice coeffi-
cient.

It is also worth noting that this method can be used for solving
similar problems in fields of medicine and can be expanded for any
other part of human body. As a result, plenty of different problems
will be able to solve in various fields medicine. For example, in the
department of software engineering of St. Petersburg State Univer-
sity similar studies are conducted related to diseases of the stomach,
lungs, brain, etc.

To summarize, at the present time, our main trend of applying
this method is ophthalmology and reconstructive and plastic surgery.
Moreover, we consider that our application to be of great import in
medical practice as it may significantly decrease the number of un-
successful surgeries and diagnostic mistakes.

REFERENCES
[1] Leander Dubois Thomas J. J. Maal Peter J. J. Gooris Jesper Jansen,

Ruud Schreurs and Alfred G. Becking, ‘Orbital volume analysis: vali-
dation of a semi-automatic software segmentation method’, (2016).

[2] O. Ronneberger, P.Fischer, and T. Brox, ‘U-net: Convolutional networks
for biomedical image segmentation’, (2015).

132

The Variants of Chinese Postman Problems and Way

of Solving through Transformation into Vehicle

Routing Problems

Mariia Gordenko

Software Engineering School

National Research University Higher School of Economics

Moscow, Russia

mgordenko@hse.ru

Scientific Advisor: Prof. Sergey Avdoshin

Software Engineering School

National Research University Higher School of Economics

Moscow, Russia

savdoshin@hse.ru

Abstract— This article provides an overview of the various

Chinese Postman problems. The classification of Chinese Postman

problems in different types of multigraph (mixed, directed,

undirected) is presented. It is shown that the Arc Routing

Problems, to which the Chinese Postman problem relate, can be

solved with the transformation it into Vehicle Routing Problems.

A study of simple algorithms for the solution of a Generalized

Travelling Salesman Problem (special case of Vehicle Routing

Problem) was carried out. The research is in the process of work.

The article also contains plans for future research.

Keywords— Generalized Routing Problem, Arc Routing

Problem, Chinese Postman Problem, Generilized Travelling

Salesman Problem

I. INTRODUCTION

The General Routing Problem (GRP) is a routing problem
defined on a graph where a minimum cost tour is to be found
and where the route must include visiting certain required
vertices and traversing certain required edges [1]. The routing
problems are closely related to the logistic and transportation
management. From the theoretical point of view, routing
problems are mainly related to determining the optimal set of
routes in a graph. In practice, the routing problems are not only
the tasks of determining optimal set of routes, they are also the
tasks of testing robots, the correctness of links in the application
menu and operating systems, interactivity usability of web-sites
[2]. The Travelling Salesman Problem (TSP) is one of the
routing problem consisting in finding a minimal length closed
tour that visits each city once. The TSP is one of the most well-
known routing problem. Another practical, but less well-known
problem is the Chinese Postman Problem (CPP). The CPP is
finding a shortest closed path that visits every edge or arc of a
graph. The CPP has a simple formulation and a lot of potentially
useful applications, but today is poorly understood.

The article gives an overview of various CPPs, provides
mathematical formulations of problems, and describes the scope
of the problem.

In addition, the article cites references to the literature, in
which the various ways of transforming different types of ARP
to VRP is described. Also, the results of the current research of
various algorithms for solving the problem of a Generalized
Traveling Salesman Problem (GTSP) are presented.

II. ROUTING PROBLEMS

A. The General Routing Problem

 The general routing is one of the most important problem

in the optimization researches [1].

 Formally, the GRP is defined on multigraph
𝐺 =< 𝑉, 𝐸, 𝐴, 𝐶 >, where

𝑉 is a set of vertices;

𝐴 is a multiset of directed edges (arcs);

𝐸 is a multiset of undirected edges (edges);

𝐶: is a cost function giving non-negative weights

of arcs and edges between vertices.

In the routing problems, it is not necessary to visit all

vertices, edges and arcs of the multigraph. Two subsets of edges

and arcs 𝐴𝑅 ∈ 𝐴 and 𝐸𝑅 ∈ 𝐸 are defined. The arcs and edges

from 𝐴𝑅 and 𝐸𝑅 must necessarily appear in the solution. Let the

subset of vertices 𝑉𝑅 ∈ 𝑉 consist of those vertices that must

appear in the route.

 The goal of all routing problems is to define a minimum cost

set of routes, that traverses all the arcs and edges from the

multisets 𝐴𝑅 and 𝐸𝑅 and includes all vertices of the set 𝑉𝑅.

B. The Vehicle Routing Problem

The vehicle routing problem (VRP) is a special case of the

GRP with and , i.e. the restrictions on the

edges and arcs, which must necessarily appear in the route, are

absent. The VRP is to determine the Hamiltonian cycle of

minimum cost, which traverse all vertices of the subset 𝑉𝑅 [3].

In the case, when 𝑉𝑅 = 𝑉, the problem reduces to one of the

most famous problem of combinatorial optimization – the

classical TSP).

C. The Arc Routing Problem

 Another special case of the GRP is the arc routing problem

(ARP), it is to determine the minimum cost set of routes, that

traverses all required edges 𝐸𝑅 and all required arcs 𝐴𝑅 of

original multigraph [4].

 In the ARP, there are no restrictions on the presence of

vertices in the route, i.e. . The CPP is the variant of ARP.

133

In the original formulation, the CPP is the problem, where the

postman should traverse through every street in the given area.

III. VARIATIONS OF CHINESE POSTMAN PROBLEM

There are a lot of variations of CPP. Below, some of them
are described.

A. Windy Rural Chinese Postman Problem

The Windy Rural Chinese Postman Problem (WRCPP) is a

special case of ARP, in which AR ⊆ A, ER ⊆ E, and the cost of

traversing the edges is depended from the direction of

traversing.

WRCPP is a generalization of the CPP in a mixed

multigraph. In original CPP problem, it is necessary to find a

closed route of minimum length that contains all edges and arcs

of the original multigraph at least once. In the real world, it is

not always necessary to traverse absolutely all edges and arcs,

it is enough to traverse only a certain set of them. Besides, the

cost of traversing the edges depend from direction of traversing.

The problem of this type is known as the Windy Rural Chinese

Postman Problem, which is finding a closed route of minimum

length that contains all required edges or arcs of the original

multigraph at least once and can contains non-required edges or

arcs, so, that the cost of traversing edges depends on traversing

direction [5, 6].
Fix the edge {𝑣𝑖 , 𝑣𝑗} (non-oriented pair of vertex) from 𝐸.

Define (𝑣𝑖 , 𝑣𝑗) as ordered pair of vertices, meaning the traversing

an edge {𝑣𝑖 , 𝑣𝑗} from vertex 𝑣𝑖 to 𝑣𝑗 vertex. Note, that

(∃{𝑣𝑖 , 𝑣𝑗} ∈ 𝐸) (𝐶(𝑣𝑖 , 𝑣𝑗) ≠ 𝐶(𝑣𝑖 , 𝑣𝑗)) (1)

Let arc be (𝑣𝑖 , 𝑣𝑗) ∈ 𝐴 ordered pair of vertices, meaning the

traversing an arc (𝑣𝑖 , 𝑣𝑗) from vertex 𝑣𝑖 to 𝑣𝑗 vertex.

We give a formal formulation of the WRCPP problem,
extending it to the case of a mixed multigraph.

Let 𝐼 = {1, 2, … , |𝐸𝑅 + 𝐴𝑅|}, 𝐿 = {1, 2, … , |𝑉|}. On the

set of vertices 𝑉 of 𝐺 define indexation 𝑖𝑛𝑣 = 𝑉 → 𝐿,
 (∀𝑣𝑖 ∈ 𝑉) (∀𝑣𝑗 ∈ 𝑉) (𝑣𝑖 ≠ 𝑣𝑗 => 𝑖 ≠ 𝑗), 𝑖 = 𝑖𝑛𝑣(𝑣𝑖). On

the set 𝐸𝑅 ∪ 𝐴𝑅 of 𝐺 define indexation 𝑖𝑛𝑒𝑎 = 𝐸𝑅 ∪ 𝐴𝑅 → 𝐼,

(∀𝑢𝑖 ∈ (𝐸𝑅 ∪ 𝐴𝑅)) (∀𝑢𝑗 ∈ (𝐸𝑅 ∪ 𝐴𝑅))

(𝑢𝑖 ≠ 𝑢𝑗 => 𝑖 ≠ 𝑗), 𝑖 = 𝑖𝑛𝑢(𝑢𝑖).

The solution of WRCPP is the route

𝜇 = (𝑣𝑙1
, 𝑢𝑝1

, 𝑣𝑙2
, 𝑢𝑝2

, … , 𝑣𝑙𝑘
, 𝑢𝑝𝑘

), which satisfy for the

following [11]:

• 𝑢𝑝𝑖
= {

(𝑣𝑙𝑖
, 𝑣𝑙𝑖+1

), (𝑣𝑙𝑖
, 𝑣𝑙𝑖+1

) ∈ 𝐴

(𝑣𝑙𝑖
, 𝑣𝑙𝑖+1

), {𝑣𝑙𝑖
, 𝑣𝑙𝑖+1

} ∈ 𝐸
 𝑖 = 1,2, … 𝑘 − 1 (2)

𝑢𝑝𝑘
= {

(𝑣𝑙𝑘
, 𝑣𝑙1

), (𝑣𝑙𝑘
, 𝑣𝑙1

) ∈ 𝐴

(𝑣𝑙𝑘
, 𝑣𝑙1

), {𝑣𝑙𝑘
, 𝑣𝑙1

} ∈ 𝐸

• 𝐸𝑅 ∪ 𝐴𝑅\ {𝑢𝑝1
, 𝑢𝑝2

, … , 𝑢𝑝𝑘
} = ∅. (3)

We denote by 𝐶(𝜇) = ∑ 𝐶(𝑢𝑝𝑖
)𝑘

𝑖=1 the cost of traversing the

route.
Let ℳ is a set of WRCPP routes, satisfying (7). It is needed

to find 𝜇0 ∈ ℳ, where (∀𝜇 ∈ ℳ) (𝐶(𝜇0) ≤ С(𝜇)) or

𝜇0 = arg min
𝜇∈ℳ

(С(𝜇)).

A lot of theoretical and computational works is devoted to
WRCPP. WRCPP cannot be solved for polynomial time. In
general, the problem of WRCPP is NP-hard [12].

B. The Undirected Rural Chinese Postman Problem

The Undirected Rural Chinese Postman Problem (URCPP)
is a particular WRCPP which consists of determining a
minimum cost circuit on a graph so that it is possible to traverse
a given subset of required edges.

DCPP is a special case of WRCPP, where 𝐴 = ∅, and there

is not edges, which satisfy (1). So, ∀{𝑣𝑖 , 𝑣𝑗} ∈ 𝐸,

𝐶(𝑣𝑖 , 𝑣𝑗) = 𝐶(𝑣𝑗 , 𝑣𝑖).

The URCPP is known to be an NP-hard problem and it has

some interesting real-life applications.

C. The Undirected Chinese Postman Problem

The Chinese Postman problem in the undirected graph
(Undirected Chinese Postman Problem, UCPP) is the original
statement of the CPP problem, which was firstly introduced by
the mathematician Kwang-Mei-Ko in 1960 [2].

UCPP is a special case of WRCPP, where 𝐴 = ∅, 𝐸𝑅 = 𝐸

and there is not edges, which satisfy (1). So, ∀{𝑣𝑖 , 𝑣𝑗} ∈ 𝐸,

𝐶(𝑣𝑖 , 𝑣𝑗) = 𝐶(𝑣𝑗 , 𝑣𝑖)

If multigraph has Eulerian circuit then this cycle is a solution
of UCPP. The algorithm for constructing the Eulerian circuit has
𝑂(|𝐸|) time complexity [5].

The Eulerian circuit is existing in an undirected multigraph
if multigraph is connected and every vertex has an even degree.
A multigraph satisfying the conditions for the existence the
Eulerian circuit is called Eulerian multigraph. If the original
multigraph is not Eulerian, then for UCPP solution some edges
must be traversed more than once. In other words, the
multigraph should be supplemented with copies of some the
edges to the Eulerian multigraph, so that the cost of the added
copies of the edges is minimal [4].

Copies of the edges needed to complement the multigraph to
Eulerian can be determined using the following algorithm [6]:

• Find the set of vertices with odd degree
𝑉′ = {𝑣 ∈ 𝑉|𝛿(𝑣) 𝑚𝑜𝑑 2 = 1}. Here the 𝛿(𝑣) is the
degree of vertex 𝑣.

• For every pair of vertices 𝑣𝑖 ∈ 𝑉′, 𝑣𝑗 ∈ 𝑉′ define the

shortest path 𝜇𝑖𝑗.

• In the complete weight graph 𝐺′ =< 𝑉′, 𝑉′ × 𝑉′, 𝐶 >,
where

𝐶𝑖𝑗 = {
𝐶(𝜇𝑖𝑗), 𝑖 ≠ 𝑗

+∞, 𝑖 = 𝑗
 (4)

build matching 𝑀 with minimum cost. Here the 𝐶(𝜇𝑖𝑗) is

the weight of shortest path from vertex 𝑣𝑖 to vertex 𝑣𝑗.

• Add copies of edges entering the shortest paths of matching
𝑀 an undirected multigraph for obtaining an Eulerian
multigraph.
The time complexity of the above algorithm is determined

by the time complexity of the algorithm for construction a
minimum cost matching, which is 𝑂(|𝑉′|3) [7]. So, UCPP
belongs to the class of problems 𝑃, solved in polynomial time.

D. The Directed Rural Chinese Postman Problem

The Directed Rural Chinese Postman Problem (DRCPP) is a
special case of the WRCPP where a subset of the set of arcs of a
given directed graph is required to be traversed at minimum cost
[2, 8].

DRCPP is a special case of WRCPP, where 𝐸 = ∅.
In general, the DRCPP is NP-hard for directed multigraphs

[8].
This problem also known as the Selecting Chinese Postman

problem.

E. The Directed Chinese Postman Problem

The Chinese Postman problem in the directed graph
(Directed Chinese Postman Problem, DCPP) is a special case of
the WRCPP problem, in which defined on directed graph and all
arcs should be traversed. In some articles DCPP also called New
York Street Sweeper Problem [8].

DCPP is a special case of WRCPP, where 𝐸 = ∅, 𝐴𝑅 = 𝐴.

134

If multigraph has Eulerian trail, then this trail is a solution of
DCPP. The algorithm for constructing the Eulerian trail has
𝑂(|𝐴|) time complexity [9].

The Eulerian trail is existing in a directed multigraph if
multigraph is strongly connected and outdegree of each vertex
is equal to indegree. A multigraph satisfying the conditions for
the existence the Eulerian trail is called Eulerian multigraph. If
the original multigraph is not Eulerian, then for DCPP solution
some edges must be traversed more than once. In other words,
the multigraph should be supplemented with copies of some the
arcs to the Eulerian multigraph, so that the cost of the added
copies of the arcs is minimal [2].

Copies of the edges needed to complement the multigraph to
Eulerian can be determined using the following algorithm [2]:

• Find the set of vertices with negative divergence
𝑉− = {𝑣 ∈ 𝑉|𝑑(𝑣) < 0} and the set of vertices with
positive divergence 𝑉+ = {𝑣 ∈ 𝑉|𝑑(𝑣) > 0}. Here
𝑑(𝑣) = 𝛿+(𝑣) − 𝛿−(𝑣), where 𝛿−(𝑣) and 𝛿+(𝑣) indegree
and outdegree od vertex 𝑣.

• Let the capacity of each arc equal to +∞, determine the
minimum cost maximum flow from a set of sources 𝑉+ to
a multitude of drains 𝑉−.

• Add an oriented multigraph copies of arcs through which
the flow proceeds. In this case, the multiplicity of the added
arcs corresponds to the value of the flow passing through
the arc.

 The time complexity of the above algorithm is determined
by the time complexity of the algorithm for construction a
minimum cost maximum flow, which is 𝑂(|𝑉|2|𝐴|) [10]. So,
DCPP belongs to the class of problems 𝑃, solved in polynomial
time.

F. Undirected Windy Rural Chinese Postman Problem

 The Undirected Windy Rural Chinese Postman Problem
(UWRCPP) is an important ARP which generalizes most of the
single-vehicle ARP and can be defined as follows [2, 9].

 UWRCPP is a special case of WRCPP, where 𝐴 = ∅ and
there is edges, which satisfy (1).

G. The Undirected Windy Chinese Postman Problem

The Undirected Windy Chinese Postman problem is the NP-
hard problem of finding the minimum cost of a tour traversing
all edges of an undirected multigraph, where the cost of traversal
of an edge depends on the direction [10].

UWCPP is a special case of WRCPP, where 𝐴 = ∅ and

there is not edges, which satisfy (1). So, ∀{𝑣𝑖 , 𝑣𝑗} ∈ 𝐸,

𝐶(𝑣𝑖 , 𝑣𝑗) = 𝐶(𝑣𝑗 , 𝑣𝑖).

If multigraph has Eulerian circuit then this cycle is a solution
of WCPP. The algorithm for constructing the Eulerian circuit
has 𝑂(|𝐸|) time complexity [5]. If the original multigraph is not
Eulerian, then some should be traversed more than once. In other
words, the multigraph should be supplemented with copies of
the edges to the Eulerian multigraph so that the cost of the added
copies of the edges is minimal. The solution of the complement
problem for a graph that does not satisfy properties (9) and (10)
is an NP-hard problem. Thus, WCPP belongs to the class of NP-
hard that cannot be solved in polynomial time [13].

H. Mixed Chinese Postman Problem

Mixed Chinese Postman Problem (MCPP) it is a version of

WRCPP, where multigraph consists from edges and arcs,

simultaneously, and all of them should be traversed [11, 12].

MCPP is a special case of WRCPP, where 𝐴𝑅 = 𝐴, 𝐸𝑅 = 𝐸.

and there is not edges, which satisfy (1). So, ∀{𝑣𝑖 , 𝑣𝑗} ∈ 𝐸,

𝐶(𝑣𝑖 , 𝑣𝑗) = 𝐶(𝑣𝑗 , 𝑣𝑖).

In 1962, Ford and Fulkerson proposed necessary and

sufficient conditions for a mixed graph to be Eulerian. It is

necessary and sufficient that in a strongly connected

multigraph, the degrees of all vertices are even, and the

divergence of each vertex is zero. If a mixed multigraph does

not satisfy these conditions, then it must be supplemented by

copies of arcs and edges to the Eulerian multigraph, so that the

cost of the added copies of the arcs and edges is minimal. The

addition of a mixed multigraph to Eulerian is an NP-difficult

problem [13].

I. Mixed Windy Chinese Postman Problem

The Mixed Windy Chinese Postman Problem (MWCCP,

also called WCPP) is a special case of WRCPP. In MWCCP the

cost of traversing the edges is depended from the direction of

traversing.
 UWRCPP is a special case of WRCPP, where there are
edges, which satisfy (1).

In many theoretical works it was shown that problem is NP-
hard.

J. Mixed Rural Chinese Postman Problem

The Mixed Rural Chinese Postman Problem (MRCCP) is a

special case of WRCPP. In MRCCP not all edges and arcs

should be traversed. There is a set of arcs and edges, which must

appear in solution, other arcs and edges may appear in solution

or may not.
 MRCPP is a special case of WRCPP, where there are not
edges, which satisfy (1).

In many theoretical works it was shown that problem is NP-
hard [14].

We tried to build a classification of different CPP. Combine

the existing CPP in a table containing the following criteria:

• the presence of set of edges (A),

• the presence of set of required edges (B),

• the presence of edges with cost, depending on traversing

direction (C),

• the presence of set of arcs (D),

• the presence of set of required arcs (E).

The results are shown in Table 1. As we can see, there are

four problems, which today are not existing (yellow cells in

table), but also can have real-world applications.

TABLE I. THE CLASSIFICATION OF CPP

 UCPP URCPP UWCPP UWRCPP DCPP DRCPP MCPP DRUCPP MWCPP DURWCPP URDCPP MRCPP DRUWCPP WRMCPP

A - - - - + + + + + + + + + +

B - - - - - + - - - - + + + +

C - + - + - - - + - + - + - +

D + + + + - - + + + + + + + +

E - - + + - - - - + + - - + +

135

IV. SOLVING THE VARIOS CHINESE POSTMAN PROBLEMS

In many sources was shown that almost all ARP problems

can be transformed into VRP problems, predominantly in

generalized travelling salesman problems (GTSP) [13, 15, 16,

17]. For example, in [16] paper is described how the

Capacitated Arc Routing Problem can be formulated as a

standard vehicle routing problem. This allows us to transform

arc routing into node routing problems and, therefore,

establishes the equivalence of these two classes of problems. A

well-known transformation by Pearn, Assad and Golden [16]

reduces arc routing problem (ARP) into an equivalent vehicle

routing problem (VRP). However, that transformation is

regarded as unpractical, since an original instance with n

required edges is turned into a VRP over a complete graph with

3n+1 vertices. In [15] article was proposed a similar

transformation that reduces this graph to 2n+1 vertices, with the

additional restriction that a previously known set of n pairwise

disconnected edges must belong to every solution.

Thus, one can move from less studied problems ARP to

well-known problems VRP, such as TSP and GTSP, which

have a lot of different approximation algorithms for solving.

In the next sections, we try to compare the simplest

algorithms for solving the GTSP.

V. GENERILIZED TRAVELLING SALESMAN PROBLEM

Generalized travelling salesman problem (GTSP) is an

expansion of well-known TSP (Travelling Salesman Problem).

In GTSP all vertices of graph are grouped in separate clusters.

The solution of GTSP is a minimum-cost route, which traverse

each cluster exactly once.

GTSP is a special case of GRP, where 𝐸𝑅 = ∅, 𝐴𝑅 = ∅ и

𝑉𝑅 ≠ ∅.

Let 𝑘 clusters are defined 𝑉1, 𝑉2, … , 𝑉𝑘, where

𝑉1 ∪ 𝑉2 ∪ … ∪ 𝑉𝑘 = 𝑉 and 𝑉1, 𝑉2, … , 𝑉𝑘 – disjoint sets. Let 𝐼 =
{1, 2, … , |𝑉|}. On the set of vertices define indexation
𝑖𝑛𝑑𝑒𝑥 = 𝑉 → 𝐼, (∀𝑣𝑖 ∈ 𝑉)(∀𝑣𝑗 ∈ 𝑉) (𝑣𝑖 ≠ 𝑣𝑗 => 𝑖 ≠ 𝑗),
𝑖 = 𝑖𝑛𝑑𝑒𝑥(𝑣𝑖).

It is needed to build a route 𝑠 = (𝑣𝑖1
, 𝑣𝑖2

, … , 𝑣𝑖𝑘
), where

each vertex located in different clusters.

Let 𝑆 is a set of all routes 𝑠 = (𝑣𝑖1
, 𝑣𝑖2

, … , 𝑣𝑖𝑘
) of G.

The cost of cycle 𝑠 ∈ 𝑆 defines as

 𝑓(𝑠) = 𝐶(𝑣𝑖1
, 𝑣𝑖𝑘

) + ∑ 𝐶(𝑣𝑗𝑖
, 𝑣𝑗𝑖+1

)𝑘−1
𝑗=1 , where 𝐶 – is a cost of

traversing from one to another vertex.

It is needed to find 𝑠0: 𝑓(𝑠0) = min
𝑠∈𝑆

𝑓(𝑠).

It is NP-hard problem [18].

VI. METHODS FOR SOLVING THE GENERILIZED TRAVELLING

SALESMAN PROBLEM

Now, we investigate the following simple approximate

algorithms for solving GTSP:

• Nearest Neighbor Heuristic (NN) [19];

• Repetitive Nearest Neighbor Heuristic (RNN) [20];

• Improved Nearest Neighbor Heuristic (INN) [21];

• Repetitive Improved Nearest Neighbor Heuristic (RINN)

[22];

• Loneliest Neighbor Heuristic (NLN) [23];
• Double-Ended Nearest and Loneliest Neighbor Heuristic

(DENLN) [23].

To evaluate the developed algorithms, the source code was

written in the C++language.

Experiments was conducted on Apple Macbook Pro 13

a1502. Measurements were made of the executing time of the

algorithm and the error rate of the solution. The results is

presented in Table 1, 2, 3, 4, 5 and 6. Min(T), max(T) and M(T)

means minimum, maximum and average time of algorithm

working. Min(C), max(C) and M(C) means minimum,

maximum and average error rate of algorithms.

TABLE II. THE MEASUREMENTS OF NN ALGORITHM

|V| min (𝑇) max (𝑇) 𝑀(𝑇) min (𝐶) max (𝐶) 𝑀(𝐶)

50 0,001 0,079 0,003 6,65% 23,53% 14,59%

100 0,001 0,009 0,002 7,35% 21,25% 15,00%

200 0,002 0,025 0,004 8,93% 21,77% 15,24%

500 0,007 0,041 0,017 12,18% 35,04% 20,42%

1000 0,025 0,114 0,062 12,99% 40,77% 21,33%

1500 0,054 0,264 0,132 12,90% 37,38% 20,52%

2000 0,098 3,317 0,445 12,28% 39,08% 20,41%

3000 0,350 3,888 2,510 12,81% 42,00% 21,29%

TABLE III. THE MEASUREMENTS OF RNN ALGORITHM

|V| min (𝑇) max (𝑇) 𝑀(𝑇) min (𝐶) max (𝐶) 𝑀(𝐶)

50 0,011 0,088 0,033 4,31% 16,66% 9,84%

100 0,079 2,521 0,261 6,07% 15,52% 11,07%

200 0,630 3,365 1,504 6,72% 18,41% 12,51%

500 6,678 98,085 31,772 10,08% 30,40% 17,83%

1000 62,258 695,821 247,218 11,65% 37,44% 18,51%

1500 198,014 2009,900 763,293 11,40% 34,29% 18,68%

2000 489,153 6731,020 2224,092 11,29% 33,46% 18,67%

3000 4102,820 8901,420 6334,230 12,53% 38,94% 20,59%

TABLE IV. THE MEASUREMENTS OF INN ALGORITHM

|V| min (𝑇) max (𝑇) 𝑀(𝑇) min (𝐶) max (𝐶) 𝑀(𝐶)

50 0,000 0,008 0,001 5,81% 25,32% 14,50%

100 0,000 0,009 0,001 7,48% 22,43% 14,79%

200 0,002 0,009 0,004 8,43% 22,36% 15,27%

500 0,011 0,054 0,025 12,57% 35,96% 20,30%

1000 0,040 0,178 0,095 12,64% 40,29% 20,63%

1500 0,091 0,395 0,207 12,24% 38,45% 20,31%

2000 0,155 1,035 0,404 12,09% 35,56% 20,24%

3000 0,369 21,215 4,478 12,65% 42,12% 21,20%

TABLE V. THE MEASUREMENTS OF RINN ALGORITHM

|V| min (𝑇) max (𝑇) 𝑀(𝑇) min (𝐶) max (𝐶) 𝑀(𝐶)

50 0,001 0,029 0,008 6,49% 22,54% 14,07%

100 0,004 0,652 0,067 7,17% 20,65% 14,86%

200 0,050 1,212 0,372 8,65% 23,28% 15,14%

500 0,018 0,178 0,072 12,57% 35,96% 20,30%

1000 0,094 1,177 0,446 12,64% 40,29% 20,63%

1500 0,212 6,003 1,769 12,24% 38,45% 20,36%

2000 0,556 28,860 6,816 12,09% 35,56% 20,24%

3000 1,007 114,590 28,321 12,65% 42,12% 21,20%

TABLE VI. THE MEASUREMENTS OF NLN ALGORITHM

|V| min (𝑇) max (𝑇) 𝑀(𝑇) min (𝐶) max (𝐶) 𝑀(𝐶)

50 0,001 0,029 0,003 6,38% 22,21% 14,44%

100 0,004 0,046 0,011 8,03% 20,63% 14,76%

200 0,017 0,078 0,036 8,45% 21,76% 15,41%

500 0,078 0,434 0,190 12,52% 34,46% 20,36%

1000 0,293 2,262 0,814 12,65% 40,48% 20,68%

1500 0,656 15,192 3,043 12,81% 36,84% 20,17%

2000 0,356 19,953 3,764 12,59% 38,07% 21,32%

3000 1,456 120,110 27,402 13,34% 39,91% 22,33%

VII. SUMMARY

This article provides an overview of the known CPP. An

attempt to systematize and classify these problems has been

made. Mathematical formulations of new types of CPP was

founded. The paper also shows that almost all problems of the

136

ARP can be transformed to VRP. In addition, for solving the

Chinese Postman problems the way of transformation it into

VRP (mainly in GTSP) has been chosen.

At this stage, the research is not complete. It is necessary

to investigate the various ways of transformation ARP is into

VRP. In addition, it is necessary to investigate the various ways

of solving the GTSP. And the key idea of future research is the

use of transformation algorithms and algorithms for solving the

GTSP for solving the different modifications of CPP.

TABLE VII. THE MEASUREMENTS OF DENLN ALGORITHM

|V| min (𝑇) max (𝑇) 𝑀(𝑇) min (𝐶) max (𝐶) 𝑀(𝐶)

50 0,001 0,015 0,003 5,22% 28,44% 15,82%

100 0,005 0,088 0,012 7,65% 22,59% 15,73%

200 0,018 0,089 0,039 9,71% 23,78% 15,97%

500 0,019 0,192 0,058 13,14% 38,21% 22,05%

1000 0,101 1,081 0,433 12,94% 48,55% 22,28%

1500 0,299 22,092 2,174 13,31% 39,38% 21,64%

2000 0,440 28,828 4,095 12,59% 38,06% 21,31%

3000 1,498 147,260 35,357 13,34% 39,90% 22,31%

REFERENCES

[1] Eglese R., Letchford A., General Routing Problem. In: Floudas C.,
Pardalos P. (eds) Encyclopedia of Optimization. Springer, Boston, MA.
2008.

[2] Thimbleby, H. The directed chinese postman problem. Software: Practice
and Experience, 2003, 33(11), pp. 1081-1096.

[3] Toth P., Vigo D. (ed.). The vehicle routing problem. – Society for
Industrial and Applied Mathematics, 2002.

[4] Hertz A., Laporte G., Mittaz M. A tabu search heuristic for the capacitated
arc routing problem //Operations research. – 2000. – Т. 48. – №. 1. – С.
129-135.

[5] Zerbino D. R., Birney E. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs //Genome research. – 2008. – Т. 18. –
№. 5. – С. 821-829.

[6] Edmonds J., Johnson E. L. Matching, Euler tours and the Chinese
postman //Mathematical programming. – 1973. – Т. 5. – №. 1. – С. 88-
124.

[7] Kolmogorov V. Blossom V: a new implementation of a minimum cost
perfect matching algorithm //Mathematical Programming Computation. –
2009. – Т. 1. – №. 1. – С. 43-67.

[8] Robinson H. Graph theory techniques in model-based testing
//International Conference on Testing Computer Software. – 1999. – Т. 1.
– С. 999.

[9] Wilson R. J. An eulerian trail through Königsberg //Journal of graph
theory. – 1986. – Т. 10. – №. 3. – С. 265-275.

[10] Ababei C., Kavasseri R. Efficient network reconfiguration using
minimum cost maximum flow-based branch exchanges and random
walks-based loss estimations //IEEE Transactions on Power Systems. –
2011. – Т. 26. – №. 1. – С. 30-37.

[11] Chen W. H. Test sequence generation from the protocol data portion
based on the Selecting Chinese Postman algorithm //Information
Processing Letters. – 1998. – Т. 65. – №. 5. – С. 261-268.

[12] Aho A. V. et al. An optimization technique for protocol conformance test
generation based on UIO sequences and rural Chinese postman tours
//IEEE transactions on communications. – 1991. – Т. 39. – №. 11. – С.
1604-1615.

[13] Dror M. (ed.). Arc routing: theory, solutions and applications. – Springer
Science & Business Media, 2012.

[14] Ghiani G., Improta G. An algorithm for the hierarchical Chinese postman
problem //Operations Research Letters. – 2000. – Т. 26. – №. 1. – С. 27-
32.

[15] Longo H., De Aragão M. P., Uchoa E. Solving capacitated arc routing
problems using a transformation to the CVRP //Computers & Operations
Research. – 2006. – Т. 33. – №. 6. – С. 1823-1837.

[16] Pearn W. L., Assad A., Golden B. L. Transforming arc routing into node
routing problems //Computers & operations research. – 1987. – Т. 14. –
№. 4. – С. 285-288.

[17] Laporte G. Modeling and solving several classes of arc routing problems
as traveling salesman problems //Computers & operations research. –
1997. – Т. 24. – №. 11. – С. 1057-1061.

[18] Fischetti M., Salazar González J. J., Toth P. A branch-and-cut algorithm
for the symmetric generalized traveling salesman problem //Operations
Research. – 1997. – Т. 45. – №. 3. – С. 378-394.

[19] Solomon M. M. Algorithms for the vehicle routing and scheduling
problems with time window constraints //Operations research. – 1987. –
Т. 35. – №. 2. – С. 254-265.

[20] Modares A., Somhom S., Enkawa T. A self-organizing neural network
approach for multiple traveling salesman and vehicle routing problems
//International Transactions in Operational Research. – 1999. – Т. 6. – №.
6. – С. 591-606.

[21] Cheung K. L., Fu A. W. C. Enhanced nearest neighbour search on the R-
tree //ACM SIGMOD Record. – 1998. – Т. 27. – №. 3. – С. 16-21.

[22] Tao Y., Papadias D., Shen Q. Continuous nearest neighbor search
//VLDB'02: Proceedings of the 28th International Conference on Very
Large Databases. – 2002. – С. 287-298.

[23] Pimentel F. G. S. L. Double-ended nearest and loneliest neighbour: a
nearest neighbour heuristic variation for the travelling salesman problem
//Revista de Ciências da Computação. – 2011.

137

Applying the methods of system analysis to
teaching assistants’ evaluation

Ekaterina Beresneva
Faculty of Computer Science

National Research University Higher School of Economics
Moscow, Russia

eberesneva@hse.ru

Mariia Gordenko

Faculty of Computer Science
National Research University Higher School of Economics

Moscow, Russia
mkgordenko@edu.hse.ru

Abstract— This article presents the results of applying vari-
ous methods of system analysis to evaluation of teaching assis-
tants. The article shows the process of interaction of teaching as-
sistants with students and faculty. Selection and analysis of cri-
teria for the evaluation of training assistants are carried out. In
the article various soft methods for decision-making are consid-
ered. In addition, the application of the methods AHP and Fuzzy
AHP type-2 to evaluate teaching assistants is considered. In the
process of work, the best teaching assistant is selected, and the
group of the best teaching assistants is defined.

Keywords—system analysis, combination of soft and hard
methods, multicriteria decision making (MCDM), AHP, type-2
fuzzy sets, Fuzzy AHP

I. INTRODUCTION
At the Higher School of Economics (HSE) there is a program

“Teaching assistant” which has been effective for several years.
Each teacher can invite an education assistant, who will take
some of the routine tasks related to teaching the course (checking
home work, developing test materials, etc.).

Every student or a graduate student of the HSE, who meets
the criteria established by the faculty, can be a teaching assistant.
The teacher (or group of teachers) formulates tasks for the teach-
ing assistants and monitors the quality of their performance. The
teacher is responsible for the results of the students' knowledge,
the quality of materials prepared by the education assistant, me-
thodical support of the teaching assistant’ work.

At the moment, all faculties establish their own criteria for
selecting teaching assistants independently. Now there is only
one criterion for all disciplines: “A student must have a mark at
least 8 on the course in which he/she is involved, or he/she must
have a recommendation from the department, to which teaching
of this discipline is fixed.” However, the practice shows that it is
not enough to have only this criterion. There were no special
studies about it before, but annual evidence showed that an ex-
cellent mark does not fully correlate with being a good teaching
assistant. Recent year revealed that 60% of assistants were not
able to cope with their work according to teachers. Most prob-
lems were connected with personal qualities, professional and
communicative skills. For example, somebody did all the tasks
slowly and did not do everything in time, or just did not have
enough knowledge in the subject area. There were even some
facts of disclosure of condidential information: one teaching as-
sistant shared answers to the tests with students. Thus, there is a
strong necessity to define a group of selective factors in a clever

manner.
Recently, the head of Computer Science faculty has ordered

each teacher (or group of teachers) on all disciplines to choose
the best teaching assistant to give him/her an incentive award. In
addition, next year the number of students is reduced, and it is
necessary to decrease the number of assistants. Now there is a
tendency on “Discrete mathematics” course that the education
assistants who come from year to year are the same. This situa-
tion prompted the idea that at the moment when assessing teach-
ing assistants, it is worth using additional criteria that will allow
the group of teachers to select the best assistant and choose the
group of the most successful assistants.

Thus, two tasks are faced – to choose the best assistant on
“Discrete mathematics” course and to select the group of the
most successful assistants, with whom it is possible to continue
working on this course.

The purpose of this work is the development of searching
method, which will select the best assistant and select the group
of the most successful ones according to the criteria set by the
group of teachers.

The rest of the paper is organised as follows. We discuss the
problem specification in Section 2 and introduce our premises
for model, which we use to illustrate our main results on Section
9. Sections 3, 4 and 6 present the different methods used for so-
lution the problem. In sections 5 and 7 the derivations for the
AHP and Fuzzy AHP are discussed. Section 8 presents a sensi-
tivity analyse.

II. THE DIFFERENCE BETWEEN PREVIOUS WORKS
AND OUR APPROACH

The literature review show there are a lot of researches that
reveal a high success of applying the teaching assistant program
in general. The most recent one is [3]. However, no one article is
aimed neither at selection criteria for teaching assistants nor at
searching methodology.

The closest study to our problem is devoted to a proposed
framework for evaluating student’s performance [4]. This work
is based on the hard approach only. It uses the variation of the
most widely used approach for multi-criteria decision making –
Analytic Hierarchy Process that combines mathematics and ex-
pert judgment. Since Analytic Hierarchy Process suffers from the
problem of imprecision and subjectivity, their paper proposes to
use Fuzzy AHP instead of traditional method.

However, there is an opinion about useless of applying Fuzzy

138

2 THE APPLIED SYSTEM ANALYSIS COURSE (MODULES 1-3 | 2017-2018 ACADEMIC YEAR)

AHP method. In [3] it is said that “the numerical representation
of judgments in the AHP is already fuzzy” and “making fuzzy
judgments more fuzzy does not lead to a better more valid out-
come and it often leads to a worse one.”

Our article proves that Fuzzy AHP with type-2 modification
can still be used in a decision making process. Moreover, our
study combines both hard and soft approaches because this prob-
lem consists of not only main criteria but also it has a lot of ad-
ditional ones. And these auxiliary factors can not be described
using only formal algorithms.

III. PROBLEM DEFINITION
The problem of finding the best teaching assistant and the

group of teaching assistants is closely related with searching the
criteria by which the teaching assistants should be selected.
To analyze the domain and determine its boundaries, the rich pic-
ture can be applied. Rich Picture is a collection of sketches, pic-
tures, photos, symbols, signatures which represent a particular
situation or a question (system/problemneed) of the real world
from the point of view of the person or group of people who cre-
ate it. Image components are people (stakeholders), systems, pro-
cesses, interfaces, data streams, information sources, infrastruc-
ture objects, attendant and impeding factors, emotions, points of
view and attitude to them, etc.

Rich Picture can reflect the interaction and connections of

the system components (or the surrounding world), their influ-
ence, cause and effect. It can also represent such subjective ele-
ments as attitude (perception), point of view, prejudice [1].

It is used to explore and aggregate the physical, conceptual
and emotional aspects of the actual situation (system/prob-
lem/need).

Rich picture on subject “Teaching assistants” interactions in
discipline “Discrete mathematic” is provided in Figure 1.
To analyze the subject area and project boundaries, the CAT-
WOE technique is a good addition to Rich Pictures.

CATWOE is defined by Peter Checkland as a part of his Soft
Systems Methodology (SSM). It is a simple checklist for think-
ing. CATWOE is an acronym, each letter stands for a specific
word: Clients, Actors, Transformation, World view, Owner, En-
vironmental constraints [2].

The Table 1 shows the result of applying the CATWOE anal-
ysis to the domain problem.

After analyzing the processes and interactions associated
with the members of the system, a clear understanding of the sub-
ject area is emerged. There are three teachers: one lecturer (the
leading teacher) and two seminarians at “Discrete mathematics”
course. They compose a decision group for choosing best assis-
tants. Fair and reliable evaluation results would be obtained by
this group because its members have a strong relationship with
teaching assistants during the course.

Figure 1. Rich picture on subject “Teaching assistans’ interactions in discipline “Discrete mathematics”

139

Table 1. The CATWOE analysis
Role Description

Clients Teachers who want to assess their
teaching assistants. Students who need
assistans’ help.

Actors Groups of teachers who interested in
evaluating of skills of teaching assis-
tants and choosing the group of the
best teaching assistants. The head of
faculty who wants to encourage the
best teaching assistant.

Transformation Each teaching assistant receives points
for certain evaluation criteria.

World View It is needed to define a group of the
best teaching assistants and the best
teaching assistant. The definition of a
group of best teaching assistants is
necessary in order to reduce the risks
associated with incompetent and dis-
interested teaching assistants with the
next year group of teaching assistants.

Owner Teachers and the head of faculty.
Environmental

constraints
National educational and assesment
standarts

In order to evaluate the assistants, it is decided to come up
with evaluation criteria. After the first brainstorm, the list of cri-
teria is similar to a chaotic list of records. The next meeting of
the teachers shows that some of the criteria identified in the first
stage for assessing the assistants turned out to be duplicated or
unnecessary. After long discussions and joint brainstorming,
three main groups of criteria are identified: professional skills,
communicating skills, personal qualities.

The professional skills include the following sub-criteria:
- active involvement in the process of forming the pro-

gram of discipline;
- initiative to compile new types of tasks for tests;
- knowledge of the subject domain;
- quality of homework checking;
- speed of homework cheking;
- experience of active use of the LMS;

The communicating skills include the following sub-criteria:
- pedagogical experience, the ability to correctly present

information;
- openness to student issues (e.g. quick response to ques-

tions, competent answers);
- participation in counseling sessions before the tests and

examinations;
- active communicating with teachers, participation in

weekly meetings;
- the ability to listen carefully.

The personal qualities include the following sub-criteria:
- ethical compliance;
- punctuality;
- self-motivation, the desire for development;
- responsibility for work;
- teamwork skills;
- subordination;
- striving to achieve common results;

- resistance to conflict situations;
- the ability to generate new and innovative ideas;
- the ability to compromise;
- benevolence.

From the first group the next criteria are deleted:
- active involvement in the process of forming the pro-

gram of discipline. The teachers should do it, because
drawing up a discipline program requires experience
and entails a great responsibility.

- knowledge of the subject domain. Taking into account
that each assistant is selected among the best students
of the course, this requirement should be fulfilled by de-
fault.

And the next criteria are combined as they characterize the
cheking of homework and are closely interrelated:
- quality of homework checking;
- speed of homework cheking.

From the second group the next criteria are deleted:
- pedagogical experience, the ability to correctly present

information. This ability can be learned. One of the
goals of the "Teaching Assistant" program is the develop-
ment of teaching skills.

- the ability to listen. In our opinion, this parameter is
almost impossible to estimate.

From the third group the next criteria are combined, because
they are very interrelated and cannot be separated:

- self-motivation, the desire for development;
- responsibility for work;
And the next criteria are deleted:
- teamwork skills. It is related with the responsibility of

work criteria.
- ability to be subordinate. By default, the main person

on the course is the teacher. This is necessary to under-
stand at first.

- striving to achieve common results. It is related with
the responsibility of work criteria.

- resistance to conflict situations. It is the responsibility
of the teacher to resolve and prevent the emergence of
conflict situations.

- the ability to generate new and innovative ideas. This is
not a paramount task of the teaching assistant. And the
teaching assistant can work great, but do not come up
with ideas, it's not scary.

- the ability to compromise. The last word for the teacher.
- benevolence. It is related with the ethical compliance

and punctuality of work criteria.

Table 2. The involvement in educational process
 A B C D E F G H I J

1.1. 5 5 5 5 4 5 3 2 1 1
1.2. 4 5 5 4 4 4 4 4 1 4
1.3. 1 2 1 4 5 1 1 1 1 1
2.1. 4 3 3 4 2 5 5 1 3 1
2.2. 5 4 4 4 3 5 2 1 2 2
2.3. 4 4 3 4 1 4 5 2 1 2

The final elected criteria and subcriteria are shown in Figure

3. All the criteria and subcriteria have their own identification
numbers

140

4 THE APPLIED SYSTEM ANALYSIS COURSE (MODULES 1-3 | 2017-2018 ACADEMIC YEAR)

IV. EXPLORING THE ALTERNATIVES
There are ten teaching assistants A, B, C, D, E, F, G, H, I, J

on the course.
We can reduce the number of evaluating teaching assistants

after assessing the involvement of teaching assistants in educa-
tional process.

We have 3 groups of criteria, consisting of 9 sub-criteria. In
order to assess the involvement of assistants in the educational
process, we did not use the values of the last three subcriteria
(3.1-3.3). These sub-criteria refer to a group of personal qualities
and can not be regarded as involvement in the educational pro-
cess. Then the involvement of the teaching assistant in the edu-
cational process for each criterion is evaluated, based on expert
judgment. The results are presented in Table 2.

Let's understand which assistants are least involved in the
work process, according to experts. Calculations of treshhold
equals to 3, 4 and 5 are shown in Tables 3, 4 and 5.

Table 3.Treshhold is equal to 3
 A B C D E F G H I J

1.1. 1 1 1 1 1 1 1 0 0 0
1.2. 1 1 1 1 1 1 1 1 0 1
1.3. 0 0 0 1 1 0 0 0 0 0
2.1. 1 1 1 1 0 1 1 0 1 0
2.2. 1 1 1 1 1 1 0 0 0 0
2.3. 1 1 1 1 0 1 1 0 0 0

Table 3 and 4 allow to identify teaching assistants who are
least involved in the educational process.

Table 4.Treshhold is equal to 4
 A B C D E F G H I J

1.1. 1 1 1 1 1 1 0 0 0 0
1.2. 1 1 1 1 1 1 1 1 0 1
1.3. 0 0 0 1 1 0 0 0 0 0
2.1. 1 0 0 1 0 1 1 0 0 0
2.2. 1 1 1 1 0 1 0 0 0 0
2.3. 1 1 0 1 0 1 1 0 0 0

The Table 5 with treshhold equals to 5 shows that no one from
H, I, J is not indispensable.

Table 5.Treshhold is equal to 5
 A B C D E F G H I J

1.1. 1 1 1 1 0 1 0 0 0 0
1.2. 0 1 1 0 0 0 0 0 0 0
1.3. 0 0 0 0 1 0 0 0 0 0
2.1. 0 0 0 0 0 1 1 0 0 0
2.2. 1 0 0 0 0 1 0 0 0 0
2.3. 0 0 0 0 0 0 1 0 0 0

Thus, it is decided not to consider further the last three teach-
ing assistants (H, I, J). However, little involvement in the educa-
tional process has its own explanations:

- H was ill two month;
- I was out of connection;
- J decided to switch to another faculty. Preparation

for the exams took all his spare time.
Thus, seven candidates are remained. It is difficult to find the

best one because each of them is successful in one or more crite-
ria.

Stakeholders are about to choose A as a winner because this
assistant took part in all teacher meetings and he suggested new
types of tasks for tests so regularly (approximately once every
two weeks). Assistant A communicated with teachers a lot
(flashed before their eyes), that's why they prefer him.

However, this decision can be too unfair, that’s why mul-
ticriteria decision making (MCDM) prosess is decided to be ap-
plied.

V. ANALITIC HIERARCHY PROCESS
Analytic Hierarchy Process (AHP) which is one of the most

used MCDM approaches [6] is a structured multicriteria tech-
nique for organizing and analyzing complex decisions including
many criteria. In this paper we use a classical AHP proposed by
the author [7].

At the first step of AHP a model for the decision is developed.
Experts break down the decision into a hierarchy of goals, crite-
ria, sub-criteria and alternatives (see Fig. 3).

Figure 2. The final list of criteria

141

After that, decisioners derive priorities (weights) for the cri-
teria with respect to the desired goal. It is made in the form of
pairwise comparisons using individual questionnaries. Since the
evaluation criteria are subjective and qualitative in nature, it is
very difficult for the decision maker to express the preferences
using exact numerical values. That’s why a special numerical
scale [4] which consists of interpretation of linguistic terms is
used (see Table 6).

Table 6. Saaty’s pairwise comparison scale
Numeric value Linguistic terms
1 Equally important
3 Moderately more important
5 Strongly more important
7 Very Strongly more important
9 Extremely important
2, 4, 6, 8 The intermediate values that are

used to address situations of un-
certainty between the two adja-
cent judgments

Results of comparisons of all experts are presented in the form
of matrices (see Table 7).

Table 7. Criteria pairwise comparisons obtained by experts
 Professional skills Communicative

skills Personal qualities

Exp.
1

Exp.
2

Exp.
3

Exp.
1

Exp.
2

Exp.3 Exp.
1

Exp.
2

Exp.3

Prof. skills 1 1 1 5 5 4 3 2 1
Comm. skills 1/5 1/5 1/4 1 1 1 1/3 1/4 1/5
Pers. qualities 1/3 1/2 1 3 4 5 1 1 1

Before calculating the weights, the consistency of the com-

parison matrix is checked. As a rule, only if consistency is less
than 0.1, it considered as acceptable, otherwise the pair-wise
comparisons should be revised. In this decision making process,
all of them are less than 0.092 that shows answers are consist-
ence.

On the basis of Table 7 the final matrix is created by finding
a mean between estimates of all experts (see Table 8). This metric
is used because of solid decision to make all experts’ voices to be

equal.

Table 8. Aggregate matrix with criteria pairwise comparisons
 Professional

skills
Communicative

skills
Personal
qualities

Prof. skills 1 4,66 2
Comm. skills 0,22 1 0,25
Pers. qualities 0,6 4 1

The matrix from Table 8 is used in order to calculate criteria

priority weights. The same way as it was earlier, a pairwise com-
parison of all the sub-criteria, with respect to each criterion, in-
cluded in the decision-making model, is made. Obtained results
are shown in Table 9.

Table 9. Criteria and subcriteria priority weights
1. Profes-

sional skills 54,772%
1.1. New task types creation 25,232%
1.2. HW checking 26,068%
1.3. Experience in LMS 3,472%

2. Communi-
cative skills 10,069%

2.1. Openness to students 2,946%
2.2. Communication with teachers 1,288%
2.3. Participation in consultations 5,834%

3. Personal
qualities 35,159%

3.1. Punctuality 13,086%
3.2. Ethical compliance 10,062%
3.3. Self-motivation 12,011%

Next step consists of deriving the relative priorities (prefer-
ences) of the alternatives with respect to each criterion. Overall
priority weights of assistants are calculated by summing all local
priorities. Final figures are shown in Table 10. Bar chart is built
on the basis of overall preferences of the alternatives (see Fig. 4).

Table 10. Local and overall priorities of alternatives

 A B C D E F G
1.1. 8,352% 6,711% 3,784% 2,728% 1,821% 1,214% 0,622%
1.2. 3,140% 6,060% 9,131% 3,836% 1,700% 0,966% 1,234%
1.3. 0,160% 0,249% 0,148% 1,001% 1,618% 0,148% 0,148%
2.1. 0,203% 0,154% 0,101% 0,441% 0,082% 0,803% 1,161%
2.2. 0,444% 0,089% 0,117% 0,062% 0,062% 0,444% 0,072%
2.3. 0,414% 0,387% 0,198% 0,833% 0,144% 1,628% 2,230%
3.1. 1,035% 2,677% 1,921% 3,670% 1,663% 1,041% 1,078%
3.2. 0,254% 1,928% 0,254% 3,822% 1,782% 0,993% 1,029%
3.3. 0,923% 2,040% 0,761% 4,201% 1,640% 1,108% 1,339%

Total
weight 14,924% 20,296% 16,416% 20,595% 10,010% 8,846% 9,114%

Figure 3. Decision model

142

6 THE APPLIED SYSTEM ANALYSIS COURSE (MODULES 1-3 | 2017-2018 ACADEMIC YEAR)

Figure 4. Overall preferences of the alternatives

VI. A DISCUSSION ON AHP RESULTS
AHP analysis shows that the prompt decision of choosing A

as the best assistant is totally unfair. Results reveale that experts
did not take into account other important criteria that in general
overweighted those, which were chosen at first. Another discov-
ered problem of A is some ofhis/her estimates, which are the
worst in comparison with others (for instance, criteria 3.1 and
3.2). This fact also decreases his/her chances to be a leader.

The main interesting point of results are the highest figures
which belong to both two assistants B and D. Let's describe each
of them.

Assistant B can not be named as a brilliant employee. Never-
theless, he/she has showed good stable work without having bad
results in any of the activities during the course. Despite not be-
ing the best in any of the criteria, B always was close to the
leader.

In the same manner as B, assistant D has shown quite strong
results in technical and communicationing estimates. In addition,
D was on the top in the personal qualities criteria. He/she pro-
duces an impression of too self-motivated person and D was
never late on any events. Result of D exceeds B at an inconspic-
uous gap of 0,3. Since experts make an arrangement on having
no less than 2% advantage taking by the leader, such difference
is admitted being not crucial for them.

In addition, there is a problematic situation with evaluation of
the five best assistants. Four employees can be determined more
or less clearly (A, B, C, and D). However, the difference between
E and the closest competitor G is less than 1%, which is also in-
significant.

VII. FUZZY TYPE-2 AHP
Since experts want to be more confident in fairness of their

choice, we decide to apply another MCDM approach for purpose
of aiming our goal. It is called Fuzzy AHP. In classical AHP crisp
numbers are used, for pairwise comparison evaluations. How-
ever, in Fuzzy AHP, the linguistic variables are represented as
fuzzy numbers instead of crisp. In this case a fuzzy logic provides
a mathematical strength to capture the uncertainties associated
with human cognitive process. Many researchers [5], [6] who
have studied the Fuzzy AHP have provided evidence that it
shows relatively more sufficient description of decision making
processes compared to the traditional AHP methods.

According to [7], the membership functions of type-1 fuzzy
sets have no uncertainty associated with it. Type-2 fuzzy sets

generalize type-1 fuzzy sets and systems so that more uncertainty
for defining membership functions can be handled. That’s why
type-2 fuzzy logic is used.

A type-2 fuzzy set 𝐴 in the universe of discourse X can be
represented by a type-2 membership function 𝜇#, shown as fol-
lows [8]:

𝐴 = 𝑥, 𝑢 , 𝜇# 𝑥, 𝑢 ∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽, ⊆ 0, 1 , 0 ≤ 𝜇# 𝑥, 𝑢 ≤ 1 ,

where J2 denotes an interval [0, 1].
A is called an interval type-2 fuzzy set if all µ7 = 1 [8]. Inter-

val type-2 fuzzy sets are the most commonly used type-2 fuzzy
sets because of their simplicity and reduced computational effort
with respect to general type-2 fuzzy sets. For this reason, we use
interval type-2 fuzzy sets.

A trapezoidal interval type-2 fuzzy set is illustrated as

𝐴8 = 𝐴89; 𝐴8; = 𝑎=>9 , 𝑎=?9 , 𝑎=@9 , 𝑎=A9 ; 𝐻> 𝐴89 , 𝐻? 𝐴89 ,	
																	 𝑎=>; , 𝑎=?; , 𝑎=@; , 𝑎=A; ; 𝐻> 𝐴8; , 𝐻? 𝐴8; ,

where 𝐴89 and 𝐴8; are type-1 fuzzy sets, 𝑎=>9 , 𝑎=?9 , … , 𝑎=@; , 𝑎=A;
are the references points of the interval type-2 fuzzy set 𝐴8;
𝐻E 𝐴89 denotes the membership value of the element 𝑎E(EG>)9 in
the upper trapezoidal membership function 𝐴89 and 𝐻E 𝐴8; de-
notes the membership value of the element 𝑎E(EG>); in the lower
trapezoidal membership function 𝐴8;, 𝑗 = 1. .2 [7].

Pairwise comparison matrices got from experts for AHP are
directly applied for our needs in Fuzzy AHP. We introduce inter-
val trapezoidal type-2 fuzzy scales of the linguistic variables (see
Table 11). They represent a modified version of scales proposed
by [8] and include intermediate values between the two adjacent
judgments like in AHP.

The priority weights of criteria (Table 12) and sub-criteria
(Table 13) are demostrated.

Type 2 fuzzy and defuzzified overall weights of the alterna-
tives are shown in Tables 14 and 15. Bar chart is built on the basis
of overall preferences of the alternatives (see Fig. 5). For defuzz-
ification the Defuzzified Trapezoidal Type-2 Fuzzy Set (DTraT)
approach is used proposed by [11].

Figure 5. Overall preferences of the alternatives

VIII. A DISCUSSION ON FUZZY TYPE-2 AHP RESULTS
Now, we see that assistant D has higher priority weigth than

B and difference between them (2%) is suitable for experts. In
addition, it can be noticed that E should be in the top five group,
for sure (difference is also about 2%). Thus, Fuzzy AHP does not
change ranks of alternatives but makes it clearer. It means that
more reliable results are maintained since interval type-2 fuzzy

143

sets can better represent uncertainties.

Table 11. Trapezoidal interval type-2 fuzzy scales
Numeric value

from AHP
Trapezoidal interval type-2 fuzzy scales

1 (1, 1, 1, 1; 1, 1) (1, 1, 1, 1; 1, 1)
2 (1, 1, 3, 4; 1, 1) (1.2, 1.2, 2.8, 3.8; 0.8, 0.8)
3 (1, 2, 4, 5; 1, 1) (1.2, 2.2, 3.8, 4.8; 0.8, 0.8)
4 (2, 3, 5, 6; 1, 1) (2.2, 3.2, 4.8, 5.8; 0.8, 0.8)
5 (3, 4, 6, 7; 1, 1) (3.2, 4.2, 5.8, 6.8; 0.8, 0.8)
6 (4, 5, 7, 8; 1, 1) (4.2, 5.2, 6.8, 7.8; 0.8, 0.8)
7 (5, 6, 8, 9; 1, 1) (5.2, 6.2, 7.8, 8.8; 0.8, 0.8)
8 (6, 7, 8.5, 9; 1, 1) (6.2, 7.2, 8.3, 8.8; 0.8, 0.8)
9 (7, 8, 9, 9; 1, 1) (7.2, 8.2, 8.8, 9; 0.8, 0.8)

Table 12. Interval type-2 fuzzy weights of criteria

Criteria Interval type-2 weights

1. Professional skills (0.275, 0.377, 0.754, 1.005; 1, 1)
(0.304, 0.410, 0.706, 0.935; 0.8, 0.8)

2. Communicative skills (0.057, 0.073, 0.14, 0.211; 1, 1)
(0.061, 0.078, 0.13, 0.19; 0.8; 0.8)

3. Personal qualities (0.188, 0.257, 0.519, 0.708; 1, 1)
(0.203, 0.274, 0.477, 0.639; 0.8, 0.8)

Table 13. Interval type-2 fuzzy weights of sub-criteria

Sub-criteria Interval type-2 weights
1.1. (0.071, 0.134, 0.447, 0.811; 1, 1)

(0.085, 0.154, 0.396, 0.703; 0.8, 0.8)
1.2. (0.074, 0.138, 0.453, 0.811; 1, 1)

(0.088, 0.158, 0.402, 0.705; 0.8, 0.8)
1.3. (0.013, 0.022, 0.069, 0.124; 1, 1)

(0.015, 0.025, 0.061, 0.108; 0.8, 0.8)
2.1. (0.008, 0.014, 0.062, 0.149; 1, 1)

(0.009, 0.016, 0.052, 0.118; 0.8, 0.8)
2.2. (0.004, 0.007, 0.031, 0.071; 1, 1)

(0.004, 0.008, 0.025, 0.055; 0.8, 0.8)
2.3. (0.014, 0.029, 0.115, 0.24; 1, 1)

(0.017, 0.034, 0.099, 0.199; 0.8, 0.8)
3.1. (0.055, 0.087, 0.212, 0.317; 1, 1)

(0.062, 0.095, 0.191, 0.28; 0.8, 0.8)
3.2. (0.046, 0.069, 0.168, 0.265; 1, 1)

(0.051, 0.075, 0.151, 0.23; 0.8, 0.8)
3.3. (0.046, 0.075, 0.196, 0.317; 1, 1)

(0.052, 0.082, 0.175, 0.274; 0.8, 0.8)

IX. SENSITIVITY ANALYSIS
It is important to note that, contrary to the common belief, the

system does not determine the decision we should make, rather,
the results should be interpreted as a blueprint of preference and
alternatives based on the level of importance obtained for the dif-
ferent criteria taking into consideration our comparative judg-
ments. In other words, the AHP methodology allows us to deter-
mine which alternative is the most consistent with our criteria
and the level of importance that we give them.

Taking this point into account, Sensitivity Analysis is used. It

performs a “what-if” analysis to see how the final results would
have changed if the weights of the criteria would have been dif-
ferent [9].

Let’s start with a goal of finding the best teaching assistant.
The first criterion has the highest weigth in our results (≈ 50%).
If we decrease its weight and proportionally increase other
weigths then D will still be a leader. In this case D will have even
more clear-cut victory. Othervise, if we increase weigth of this
criterion up to 60% and more, then B will become a new leader.
However, stakeholders come to one opinion that no one criterion
should cost more than a half and they has highlited that the first
criterion (professional skills) should stay as the most important
one.

It means that weigth of the first criterion should be in the next
approximate range [33%; 50%].

Let’s now tune proportions of the second and the third criteria.
Calculations show that D can stop be a winner only and only if
the third criterion will cost more than the second. Thus, this point
was brought to expert discussion and they have unanimously de-
cided that personal qualities (third criterion) shoud be appreci-
ated higher than communicationing ones.

Another important note is change of proportions of subcriteria
inside their criteria. There are no strong disputes about subcrite-
ria weigths, experts’ opinions differ no more than 10%. In this
case change of subcriteria preferences in that range does not in-
fluence on the leader.

It means that there is no opportunity to have another leader
than D by introducing small changes in current proportions of
criteria weights.

At the same time, there is a complex situation with choosing
top five assistants group. Analysis shows that four assistants are
determined clearly. They are A, B, C, and D. The fifth assistant
can be either E or G.

Calculations reveal that position of assistant G is directly con-
nected with the second criteria and if its weight is equal or more
than 15% than G will be in top five group instead of E. However,
now second criterion has only nearly 10%.

Finally, after Sensitivity Analysis is done, next recommenda-
tions for the experts are given:

1. To choose assistand D as a winner.
2. To prolongate contracts with A, B, C and D.
3. To prolongate contract with E if experts think that per-

sonal qualities should be at least twice more important
than communicting skills (finally, communicating skills
should have a weight less than 15).

4. To prolongate contract with G, in other case.

X. FINAL RESULT AND CONCLUSIONS
Taking into consideration recommendations mentioned

above, group of teachers has decided to follow first two instruc-
tions. They have selected D as the best teaching assistant on the
course of “Discrete mathematics”. Also, they have prolongated
contracts with D and A, B, and C assistants.

144

8 THE APPLIED SYSTEM ANALYSIS COURSE (MODULES 1-3 | 2017-2018 ACADEMIC YEAR)

Table 14. Local and overall priorities of alternatives A, B, C, D
 A B C D

1.1.
(0.115, 0.212, 0.505, 0.806; 1, 1)

(0.133, 0.234, 0.462, 0.723; 0.8, 0.8)
(0.098, 0.174, 0.414, 0.692; 1, 1)

(0.113, 0.191, 0.378, 0.612; 0.8, 0.8)
(0.048, 0.091, 0.252, 0.484; 1, 1)

(0.056, 0.101, 0.226, 0.413; 0.8, 0.8)
(0.037, 0.063, 0.173, 0.342; 1, 1)

(0.042, 0.07, 0.154, 0.29; 0.8, 0.8)

1.2.
(0.04, 0.067, 0.158, 0.272; 1, 1)

(0.045, 0.073, 0.143, 0.238; 0.8, 0.8)
(0.083, 0.144, 0.314, 0.471; 1, 1)

(0.095, 0.157, 0.291, 0.429; 0.8, 0.8)
(0.186, 0.265, 0.477, 0.657; 1, 1)

(0.202, 0.283, 0.447, 0.608; 0.8, 0.8)
(0.067, 0.108, 0.26, 0.406; 1, 1)

(0.077, 0.12, 0.239, 0.366; 0.8, 0.8)

1.3.
(0.038, 0.042, 0.055, 0.067; 1, 1)

(0.039, 0.043, 0.053, 0.064; 0.8, 0.8)
(0.038, 0.051, 0.082, 0.106; 1, 1)

(0.041, 0.054, 0.078, 0.101; 0.8, 0.8)
(0.032, 0.037, 0.051, 0.067; 1, 1)

(0.033, 0.038, 0.049, 0.063; 0.8, 0.8)
(0.177, 0.229, 0.382, 0.536; 1, 1)

(0.187, 0.242, 0.361, 0.496; 0.8, 0.8)

2.1.
(0.029, 0.044, 0.086, 0.133; 1, 1)

(0.032, 0.047, 0.08, 0.12; 0.8, 0.8)
(0.027, 0.038, 0.072, 0.11; 1, 1)

(0.029, 0.041, 0.067, 0.1; 0.8, 0.8)
(0.021, 0.026, 0.046, 0.071; 1, 1)

(0.022, 0.028, 0.043, 0.064; 0.8, 0.8)
(0.064, 0.104, 0.237, 0.409; 1, 1)

(0.072, 0.113, 0.217, 0.359; 0.8, 0.8)

2.2.
(0.185, 0.262, 0.448, 0.587; 1, 1)

(0.2, 0.278, 0.426, 0.554; 0.8, 0.8)
(0.041, 0.05, 0.077, 0.106; 1, 1)

(0.043, 0.052, 0.073, 0.098; 0.8, 0.8)
(0.044, 0.055, 0.084, 0.111; 1, 1)

(0.046, 0.057, 0.08, 0.104; 0.8, 0.8)
(0.038, 0.043, 0.061, 0.076; 1, 1)

(0.039, 0.045, 0.058, 0.072; 0.8, 0.8)

2.3.
(0.033, 0.046, 0.091, 0.137; 1, 1)

(0.035, 0.05, 0.084, 0.124; 0.8, 0.8)
(0.034, 0.046, 0.083, 0.122; 1, 1)

(0.036, 0.049, 0.078, 0.111; 0.8, 0.8)
(0.019, 0.025, 0.046, 0.07; 1, 1)

(0.02, 0.026, 0.042, 0.063; 0.8, 0.8)
(0.065, 0.1, 0.22, 0.366; 1, 1)

(0.072, 0.108, 0.201, 0.323; 0.8, 0.8)

3.1.
(0.029, 0.042, 0.086, 0.13; 1, 1)

(0.032, 0.045, 0.079, 0.116; 0.8, 0.8)
(0.102, 0.161, 0.324, 0.462; 1, 1)

(0.113, 0.174, 0.302, 0.425; 0.8, 0.8)
(0.038, 0.052, 0.095, 0.138; 1, 1)

(0.041, 0.055, 0.089, 0.126; 0.8, 0.8)
(0.134, 0.215, 0.483, 0.71; 1, 1)

(0.153, 0.237, 0.446, 0.649; 0.8, 0.8)

3.2.
(0.015, 0.02, 0.035, 0.053; 1, 1)

(0.016, 0.021, 0.033, 0.048; 0.8, 0.8)
(0.068, 0.102, 0.198, 0.295; 1, 1)

(0.075, 0.109, 0.185, 0.27; 0.8, 0.8)
(0.015, 0.02, 0.035, 0.053; 1, 1)

(0.016, 0.021, 0.033, 0.048; 0.8, 0.8)
(0.163, 0.269, 0.543, 0.78; 1, 1)

(0.184, 0.292, 0.505, 0.72; 0.8, 0.8)

3.3. (0.05, 0.059, 0.09, 0.115; 1, 1)
(0.052, 0.061, 0.086, 0.108; 0.8, 0.8)

(0.061, 0.089, 0.23, 0.325; 1, 1)
(0.07, 0.099, 0.209, 0.294; 0.8, 0.8)

(0.038, 0.047, 0.081, 0.115; 1, 1)
(0.04, 0.049, 0.076, 0.105; 0.8, 0.8)

(0.184, 0.262, 0.492, 0.632; 1, 1)
(0.203, 0.283, 0.463, 0.594; 0.8, 0.8)

Total fuzzy
weight

(0.018, 0.052, 0.372, 1.069; 1, 1)
(0.023, 0.064, 0.302, 0.826; 0.8, 0.8)

 (0.026, 0.074, 0.496, 1.336; 1, 1)
(0.034, 0.091, 0.407, 1.044; 0.8, 0.8)

(0.023, 0.061, 0.384, 1.062; 1, 1)
(0.029, 0.074, 0.316, 0.827; 0.8, 0.8)

(0.035, 0.09, 0.552, 1.459; 1, 1)
(0.045, 0.11, 0.454, 1.136; 0.8, 0.8)

Total
defuzzy
weight

0.331 0.426 0.337 0.471

Total
normalized

defuzzy
weight

14.868% 19.119% 15.124% 21.128%

Table 15. Local and overall priorities of alternatives E, F, G

 E F G

1.1. (0.025, 0.042, 0.123, 0.257; 1, 1)
(0.029, 0.046, 0.109, 0.212; 0.8, 0.8)

(0.019, 0.03, 0.082, 0.161; 1, 1)
(0.021, 0.033, 0.073, 0.134; 0.8, 0.8)

(0.013, 0.018, 0.04, 0.077; 1, 1)
(0.014, 0.019, 0.036, 0.065; 0.8, 0.8)

1.2. (0.029, 0.046, 0.106, 0.192; 1, 1)
(0.033, 0.05, 0.097, 0.165; 0.8, 0.8)

(0.021, 0.028, 0.055, 0.091; 1, 1)
(0.022, 0.03, 0.05, 0.08; 0.8, 0.8)

(0.024, 0.033, 0.076, 0.131; 1, 1)
(0.026, 0.036, 0.068, 0.111; 0.8, 0.8)

1.3. (0.283, 0.378, 0.56, 0.674; 1, 1)
(0.302, 0.4, 0.532, 0.648; 0.8, 0.8)

(0.032, 0.037, 0.051, 0.067; 1, 1)
(0.033, 0.038, 0.049, 0.063; 0.8, 0.8)

(0.032, 0.037, 0.051, 0.067; 1, 1)
(0.033, 0.038, 0.049, 0.063; 0.8, 0.8)

2.1. (0.015, 0.02, 0.037, 0.06; 1, 1)
(0.016, 0.021, 0.034, 0.053; 0.8, 0.8)

(0.128, 0.193, 0.392, 0.613; 1, 1)
(0.14, 0.208, 0.363, 0.553; 0.8, 0.8)

(0.177, 0.282, 0.546, 0.772; 1, 1)
(0.198, 0.304, 0.509, 0.715; 0.8, 0.8)

2.2. (0.038, 0.043, 0.061, 0.076; 1, 1)
(0.039, 0.045, 0.058, 0.072; 0.8, 0.8)

(0.226, 0.292, 0.461, 0.589; 1, 1)
(0.239, 0.306, 0.44, 0.559; 0.8, 0.8)

(0.042, 0.049, 0.068, 0.086; 1, 1)
(0.044, 0.05, 0.066, 0.081; 0.8, 0.8)

2.3. (0.014, 0.017, 0.031, 0.049; 1, 1)
(0.014, 0.018, 0.029, 0.044; 0.8, 0.8)

(0.135, 0.2, 0.409, 0.6; 1, 1)
(0.148, 0.216, 0.377, 0.543; 0.8, 0.8)

(0.179, 0.272, 0.537, 0.747; 1, 1)
(0.2, 0.295, 0.5, 0.693; 0.8, 0.8)

3.1. (0.064, 0.094, 0.194, 0.316; 1, 1)
(0.07, 0.1, 0.179, 0.28; 0.8, 0.8)

(0.046, 0.064, 0.128, 0.209; 1, 1)
(0.049, 0.068, 0.118, 0.184; 0.8, 0.8)

(0.05, 0.067, 0.13, 0.197; 1, 1)
(0.053, 0.071, 0.12, 0.175; 0.8, 0.8)

3.2. (0.088, 0.146, 0.327, 0.538; 1, 1)
(0.099, 0.159, 0.3, 0.48; 0.8, 0.8)

(0.047, 0.067, 0.145, 0.263; 1, 1)
(0.051, 0.072, 0.132, 0.227; 0.8, 0.8)

(0.056, 0.077, 0.145, 0.225; 1, 1)
(0.06, 0.082, 0.135, 0.203; 0.8, 0.8)

3.3. (0.111, 0.129, 0.195, 0.233; 1, 1)
(0.117, 0.135, 0.186, 0.222; 0.8, 0.8)

(0.059, 0.074, 0.131, 0.175; 1, 1)
(0.063, 0.078, 0.122, 0.159; 0.8, 0.8)

(0.064, 0.078, 0.137, 0.167; 1, 1)
(0.067, 0.082, 0.127, 0.154; 0.8, 0.8)

Total weight (0.021, 0.049, 0.283, 0.789; 1, 1)
(0.026, 0.059, 0.233, 0.604; 0.8, 0.8)

(0.015, 0.035, 0.227, 0.681; 1, 1)
(0.018, 0.042, 0.183, 0.509; 0.8, 0.8)

(0.016, 0.037, 0.232, 0.652; 1, 1)
(0.019, 0.044, 0.188, 0.496; 0.8, 0.8)

Total
defuzzy weight 0.251 0.208 0.205

Total normalized de-
fuzzy weight 11.347% 9.334% 9.079%

The main important step now is to choose the fifth assistant.
Before making a choice, experts decide to use a retrospective and
to look through all methods that were applied earlier. Lecture of

the cource noticed that since A, B, C, and D assistants are already
confirmed it means that nobody will be responsible for commu-

145

nication with students (answering questions, having consulta-
tions) because assistant F did it before. However, now there is a
choice between either E or G. And in this case G demonstrates a
clear superiority compared with others as he/she is one of the top
in this kind of work. Finally, G is chosen.

At the very beginning teachers wanted to choose assistant A
as the best teaching assistant. However, the soft methods of anal-
ysis helped us to choose another assistant. Also, neither AHP nor
Fuzzy AHP chose G teaching assistant as the 5th best assistant in
the group. Only a sound logic helped us to do this.

The application of methods of system analysis can help to
make a decision but it does not make a choice for us. We should
look carefully at the results of system analysis methods, but make
a balanced and considered decision.

BIBLIOGRAPHY

[1] J. Lopa, "Using Undergraduate Students as Teaching
Assistants," The Professional & Organizational Development
Network in Higher Education, vol. 21, pp. 50-62, 2009.

[2] M. Asad, S. Kermani and H. Hora, "A Proposed Framework for
Evaluating Student’s Performance and Selecting the Top
Students in E-Learning System, Using Fuzzy AHP Method," in
Proceedings of the International Conference on Management,
Economics and Humanities, Istanbul-Turkey, 2015.

[3] T. Saaty, "There is no mathematical validity for using fuzzy
number crunching in the analytic hierarchy process," Journal of
Systems Science and Systems Engineering, vol. 15, no. 4, pp. 457-
464, 2006.

[4] A. Monk and S. Howard, "The Rich Picture: A Tool for
Reasoning About Work Context," [Online]. Available:
http://www-users.york.ac.uk/~am1/RichPicture.pdf.

[5] Changing Minds, "CATWOE," [Online]. Available:
http://creatingminds.org/tools/catwoe.

[6] M. Velasquez and P. Hester, "An Analysis of Multi-Criteria
Decision Making Methods," vol. 10, no. 2, pp. 56-66, 2013.

[7] T. Saaty, The Analytic Hierarchy Process, New York: McGraw
Hill, 1980.

[8] C. Boender and J. De Graan, "Multicriteria Decision Analysis
with Fuzzy Pairwise Comparisons," vol. 29, pp. 133-143, 1989.

[9] D. Chang, "Applications of The Extent Analysis Method on
Fuzzy-AHP," vol. 95, pp. 649-655, 1996.

[10] J. Mendel and R. John, "Type-2 fuzzy sets made simple," vol. 10,
no. 2, pp. 117-127, 2002.

[11] C. Kahraman and B. Öztayşi, "Fuzzy analytic hierarchy process
with interval type-2 fuzzy sets," vol. 59, pp. 48-57, 2014.

[12] E. Mu and M. Pereyra-Rojas, An Introduction to the Analytic
Hierarchy Process (AHP) Using Super Decisions, vol. 2, New
York: Springer, 2016.

146

Analysis of Mathematical Formulations of

Capacitated Vehicle Routing Problem and Methods

for their Solution

Ekaterina Beresneva

Faculty of Computer Science

National Research University Higher School of Economics

Moscow, Russia

eberesneva@hse.ru

Scientific Advisor: Prof. Sergey Avdoshin

Software Engineering School

National Research University Higher School of Economics

Moscow, Russia

savdoshin@hse.ru

Abstract— Vehicle Routing Problem (VRP) is one of the most

widely known questions in a class of combinatorial optimisation

problems. It is concerned with the optimal design of routes to be

used by a fleet of vehicles to serve a set of customers. In this study

we analyse Capacitated Vehicle Routing Problem (CVRP) – a

subcase of VRP, where the vehicles have a limited capacity. CVRP

is aimed at savings in the global transportation costs. Typical

applications of CVRP are delivery of goods, solid waste collection,

street cleaning etc. The problem is NP-hard, therefore heuristic

algorithms which provide near-optimal polynomial-time solutions

will be considered instead of the exact ones. The aim of this article

is to present a new adaptation of mathematical formulations of

CVRP and to make a survey on methods for solving each type of

this problem. This paper provides an overview of the most

perspective methods to be realized in later works.

Keywords—survey, classification, mathematical formulations,

capacitated vehicle routing problem.

I. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the most

widely known questions in a class of combinatorial

optimization problems. VRP is directly related to Logistics

transportation problem and it is meant to be a generalization of

the Travelling Salesman Problem (TSP). In contrast to TSP,

VRP produces solutions containing some (usually, more than

one) looped cycles, which are started and finished at the same

point called “depo”. The objective is to minimize the cost (time

or distance) for all tours. For the identical type of input data,

VRP has higher solving complexity than TSP. Both problems

belong to the class of NP-hard tasks. Specialised algorithms are

able to consistently find optimal solutions for cases with up to

about 50 customers; larger problems have been solved to

optimality in some cases, but often at the expense of

considerable computing time. Thus, actuality of research and

development of heuristics algorithms for solving VRP is on its

top, because such approximate algorithms can produce near-

optimal solutions in a polynomial time. It is especially

important in real-based tasks when there are more than one

hundred clients in a delivery net.

Real world applications may be mail delivery, solid waste

collection, street cleaning, distribution of commodities, design

telecommunication, transportation networks, school bus

routing, dial–a–ride systems, transportation of handicapped

persons, and routing of sales people and maintenance units. A

survey of real–world applications is in [1].

This work is aimed at analysis of VRP subcase, which is

called Capacitated Vehicle Routing Problem (Capacitated

VRP, CVRP), where the vehicles have a limited capacity. It

means that there is a physical restriction on transportation more

than determined amount of weight for each machine.

Capacitated vehicle routing problems CVRP form the core of

logistics planning and are hence of great practical and

theoretical interest.

Unfortunately, there are no articles concerned with CVRP,

which have both a full classification of the subcases and

description of the solving algorithms. In addition, all observed

math models are based on linear programming. The purpose of

this study is to present a new adaptation of mathematical

formulations of CVRP and to make a survey on heuristic

methods for solving each extension of this problem.

Clearly, a study of this type is inevitably restricted by

various constraints, in this research only CVRP subcases with

static and deterministic input are considered instead of the

dynamic and stochastic ones. Another condition is that

classification is based according to various types of constraints.

The paper is structured as follows. In the second part, the

classical mathematical formulations of CVRP are described.

After that, in the third section, some notes on solution methods

of the problems are provided. In the fourth part, a classification

of most popular subcases of CVRP is given, including

description of additional constraints with their math

formulations. This section also includes most perspective

methods that can be applied for solving special types of CVRP.

Finally, the fifth part consists of scheme with basic problems of

the CVRP class and their interconnections and of conclusion.

II. CLASSICAL CVRP

In this paper, mathematical formulation of Asymmetrical

CVRP (ACVRP) proposed by [2] is adopted in a new way as

follows. ACVRP is chosen for basic formulation instead of

147

Symmetrical CVRP (SCVRP) because the first one is a general

variant of the second problem. In the paper we will use CVRP

abbreviation having in mind the next formulation.

Given a complete weighted oriented graph 𝐺 = (𝑉, 𝐴).
Let 𝐼 = {0, 1, … , 𝑁}, where 𝑁 = |𝑉|. Graph vertices are

indexed as 𝑖𝑛𝑑 = 𝑉 → 𝐼, (∀𝑣 ∈ 𝑉)(∀𝑤 ∈ 𝑉)(𝑣 ≠ 𝑤 ⟹
𝑖𝑛𝑑(𝑣) ≠ 𝑖𝑛𝑑(𝑤)). Thus, 𝑉 = {𝑣0, 𝑣1, … , 𝑣𝑁} is set of vertices,

here 𝑖 = 𝑖𝑛𝑑(𝑣𝑖), and 𝐴 is set of arcs. Let 𝑣0 be a depot, where

vehicles are located, and 𝑣𝑖 be the destination points of a

delivery, 𝑖 ≠ 0.

The distance between two vertices 𝑣𝑖 and 𝑣𝑗 is calculated

using a distance function 𝑐(𝑣𝑖 , 𝑣𝑗). Here a real-valued function

𝑐: 𝑉 × 𝑉 → ℝ satisfies [3]:

1. 𝑐(𝑣𝑖 , 𝑣𝑗) ≥ 0 (non-negativity axiom).

2. 𝑐(𝑣𝑖 , 𝑣𝑗) = 0 if and only if 𝑣𝑖 = 𝑣𝑗 (identity axiom).

Each destination vertex 𝑣𝑖, 𝑖 = 0. . 𝑁̅̅ ̅̅ ̅̅ , is associated with a

known nonnegative demand, 𝑑(𝑣𝑖), to be delivered, and the

depot has a fictitious demand 𝑑(𝑣0) = 0. The total demand of

the set 𝑉′ ⊆ 𝑉 is calculated as follows: 𝑑(𝑉′) = ∑ 𝑑(𝑣𝑖)𝑣𝑖∈𝑉′ .

Let 𝐾 = 𝑐𝑜𝑛𝑠𝑡 be a number of available vehicles at the

depot 𝑣0. Each vehicle has the same capacity – 𝐶. Let us assume

that every vehicle may perform at most one and 𝐾 ≥ 𝐾𝑚𝑖𝑛,

where 𝐾𝑚𝑖𝑛 is a minimal number of vehicles needed to serve all

the customers due to restriction on 𝐶. Clearly, next condition

must be fullfilled – (∀𝑣𝑖 ∈ 𝑉) (𝑑(𝑣𝑖) ≤ 𝐶), which prohibites

goods tranportation that exceed maximum vehicle capacity.

Let introduce 𝑉0 = {𝑣0}, where 𝑣0 ∈ 𝑉. We divide 𝑉 in

𝐾 + 1 sets: 𝑆 = {𝑉0, 𝑉1, … , 𝑉𝐾}, each subset, except for 𝑉0,

represent a set of customers to be served for one vehicle. 𝑆𝑎𝑙𝑙 is

a set of all possible partitions of 𝑉. Let 𝐽 = {0, 1, … , 𝐾} be a

set that keeps indexes. Then (∀𝑖 ∈ 𝐽) (|𝑉𝑖| ≥ 1). There

should be no duplicates in any of subsets from

𝑆𝑎𝑙𝑙: (∀𝑆 ∈ 𝑆𝑎𝑙𝑙)(∀𝑖 ∈ 𝐽)(∀𝑗 ∈ 𝐽)(𝑖 ≠ 𝑗 ⇒ 𝑉𝑖 ∩ 𝑉𝑗 = ∅).

Also, all subsets from 𝑆 must form set 𝑉. Thus, 𝑉 = ⋃ 𝑉𝑖𝐾
𝑖=0 .

In this notation, we should make 𝑉0𝑖 = 𝑉0 ∪ 𝑉𝑖 , 𝑖 = 1. . 𝐾̅̅ ̅̅ ̅̅ . It is

obvious that 𝑑(𝑉𝑜𝑖) ≤ 𝐶, 𝑖 = 1. . 𝐾̅̅ ̅̅ ̅̅ .

Let introduce 𝑀𝑖 = {1, … , 𝑁𝑖}, 𝑁𝑖 = |𝑉𝑖|, ∑ 𝑁𝑖𝐾
𝑖=1 = 𝑁.

Then 𝑀0𝑖 = {0} ∪ 𝑀𝑖. Let 𝐼𝑖 = {𝑖𝑛𝑑(𝑣)|𝑣 ∈ 𝑉𝑖} be a set of

vertex indices from 𝑉𝑖 . Then 𝐼0𝑖 = {0} ∪ 𝐼𝑖 .

Let 𝐻𝑖 = {𝑝𝑖 : 𝑀0𝑖 → 𝐼0𝑖| 𝑝𝑖(0) = 0 & (∀𝑥 ∈ 𝑀0𝑖)

(∀𝑦 ∈ 𝑀0𝑖) (𝑥 ≠ 𝑦 ⟹ 𝑝𝑖(𝑥) ≠ 𝑝𝑖 (𝑦))} be a set of codes 𝑝𝑖

of all Hamiltonian cycles ℎ𝑖 = (𝑣𝑝𝑖(0), 𝑣𝑝𝑖(1), … , 𝑣𝑝𝑖(𝑁𝑖)) of

𝑉0𝑖 .

Weight of a Hamiltonian cycle ℎ𝑖 ∈ 𝐻𝑖 can be found using

𝑝𝑖 according to the formula:

𝑓(𝑝𝑖) = 𝑐 (𝑣𝑝𝑖(0), 𝑣𝑝𝑖(𝑁𝑖)) + ∑ 𝑐(𝑣𝑝𝑖(𝑗), 𝑣𝑝𝑖(𝑗+1))

𝑁𝑖−1

𝑗=0

Let 𝑆′ be a set of {𝑉01, 𝑉02, … , 𝑉0𝐾}. It should be noticed

that a set of Hamiltonian cycles ℎ𝑖 depends on 𝑆, thus, in this

notation the weight of 𝑆′ is calculated as

𝐹(𝑆′, 𝑝1 , … , 𝑝𝐾) = ∑ 𝑓(𝑝𝑖)𝑖=1..𝐾̅̅ ̅̅ ̅ .

Overall, the formulation of CVRP is to find:

(𝑆0, 𝑝0
1 , … , 𝑝0

𝐾) = arg min
(𝑆,𝑝1,…,𝑝𝐾)∈𝑆𝑎𝑙𝑙×𝐻1×…×𝐻𝐾

𝐹(𝑆, 𝑝1 , … , 𝑝𝐾)

If 𝑐(𝑣𝑖, 𝑣𝑗) = 𝑐(𝑣𝑗, 𝑣𝑖) for ∀𝑣𝑖 ∈ 𝑉 ∀𝑣𝑗 ∈ 𝑉 then the

problem is symmetrical (SCVRP) and triangle inequality axiom

must be hold 𝑐(𝑣𝑖 , 𝑣𝑘) ≤ 𝑐(𝑣𝑖, 𝑣𝑗) + 𝑐(𝑣𝑗 , 𝑣𝑘).

According to [1], another variant of mathematical

formulation of CVRP allows to leave some vehicles unused, it

means that at most 𝐾 circuits must be determined. Of course,

the number of 𝐾𝑚𝑖𝑛 must be less or equal than 𝐾.

In this case the basic formulation described above should

be changed as follows:

We subsequently divide 𝑉 in 𝐾′ + 1 sets: 𝑆 =

{𝑉0 , 𝑉1 , … , 𝑉𝐾′
}, where 𝐾′ = 𝐾𝑚𝑖𝑛 . . 𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. And all 𝐾 from basic

formulation should be replaced by 𝐾′.

Alternative variant takes its place from real-based

situations where available vehicles have their own capacity

𝐶𝑖 , 𝑖 = 1. . 𝐾̅̅ ̅̅ ̅̅ . Due to this fact, next restriction appears:

𝑑(𝑉0𝑖) ≤ 𝐶𝑖 , 𝑖 = 1. . 𝐾̅̅ ̅̅ ̅̅ .

However, most researches put this alternative to another

class of problems not connected with CVRP which is known as

the Mixed Fleet VRP or as the Heterogeneous Fleet VRP. Thus,

this variant will not be taken into consideration in this paper.

Among the best-known heuristic algorithms are those

proposed by Pisinger and Ropke (2007) [4], Nagata and Braysy

(2009) [5], and Vidal et al. (2012) [6].

III. SOLUTION METHODS

Before classification it should be noted, that there are three

types of algorithms that are used to solve any subcase VRP:

• Exact algorithms. They find an optimal solution but take

a great time for solving of large instances. Such methods

include branch and bound, cutting plane, branch and cut,

column generation, cut and solve, branch-and-cut-and-price,

branch-and-price, and dynamic programming.

• Classical heuristics. They look for a quite good solution

without guarantee of optimality. In comparison to exact

methods, they work faster. Such methods include constructive

heuristics, two phase methods, improvement heuristics.

• Metaheuristics. Such type of algorithms is also called a

framework for building heuristics. According to [7],

metaheuristics are classified into three groups: metaheuristics

based on local search, on population (natural inspired), and

hybrid metaheuristics.

148

IV. EXTENSIONS OF CVRP

A. Open VRP (OVRP)

The OVRP is a variant of the CVRP where the vehicles

need not return to the depot after visiting the last customer of a

given route. Any OVRP instance can be converted to an

ACVRP instance by simply setting 𝑐(𝑣𝑖, 𝑣0) = 0.

There is only one heuristic algorithm for solving OVRP

proposed by Salari et al. (2010) [8]. Their method is based on

Integer Linear Programming Improvement Procedure.

There is a good variety of metaheuristics. Most known and

important are following algorithms: Hybrid evolution strategy

algorithm by Repoussis et al. (2010) [9], variant of Variable

Neighborhood Search (VNS) algorithm for OVRP by Fleszar et

al. (2009) [10], method based on Tabu Search (TS) with route-

evaluations memories by Zachariadis and Kiranoudis (2010)

[11], Yu et al. (2011) Genetic algorithm and the last one is

Particle swarm optimization metaheuristic proposed by

MirHassani and Abolghasemi (2011) [12].

B. Distance-Constrained CVRP (DCVRP) [13]

The next extension of CVRP to be considered is Distance-

Constrained CVRP. It suggests introducing the maximum

length or time constraint for each route. It means that the total

travelled distance by each vehicle in the solution is less than or

equal to the maximum possible travelled distance 𝑓𝑀𝑎𝑥. And the

next restriction must be hold: (∀𝑖 = 1. . 𝐾̅̅ ̅̅ ̅̅)(𝑓𝑇(ℎ𝑖) ≤ 𝑓𝑀𝑎𝑥).

Most heuristics applied to simple CVRP can be easily

converted for solving DCVRP cases. However, one heuristic

proposed by Li et al. stands out from them [14]. It transforms

the DCVRP into a multiple traveling salesman problem with

time windows.

C. VRP with Time Windows (VRPTW)

In VRPTW there is a constraint on time interval [𝑎𝑖 ; 𝑏𝑖]
associated with each 𝑣𝑖, called time window. It means that

service of each customer must start only after the time 𝑎𝑖 comes

and this service must end before the time 𝑏𝑖. Obviously, 𝑎0 = 0

and 𝑏0 = ∞ for 𝑣0. Let us assume that if 𝑡𝑐𝑢𝑟 is a current time,

then all vehicles leave 𝑣0 when 𝑡𝑐𝑢𝑟 = 0. If a vehicle arrives to

𝑣𝑖 at the moment when 𝑡𝑐𝑢𝑟 < 𝑎𝑖 , then it is obliged to wait until

𝑡𝑐𝑢𝑟 = 𝑎𝑖 and to start serving only after that moment.

New function 𝑡(𝑣𝑖 , 𝑣𝑗), returning travel time between 𝑣𝑖

and 𝑣𝑗, appears. Also, a variable 𝑠𝑟𝑣𝑖 keeping serving time of

𝑣𝑖 is introduced. It is clear, that the problem can be solved if

(∀𝑣𝑖 ∈ 𝑉)(∃𝑣𝑗 ∈ 𝑉) (𝑎𝑖 + 𝑠𝑟𝑣𝑖 + 𝑡(𝑣𝑖, 𝑣𝑗) + 𝑠𝑟𝑣𝑗 ≤ 𝑏𝑗).

There are a lot of metaheuristics for solving VRPTW, but

the most actual and state-of-the-art ones are given. The guided

Evolutionary algorithm of Repoussis et al. (2009) [15]

combines evolution, ruin-and-recreate mutations and guided

local search. Prescott-Gagnon et al. (2009) [16] suggests a

Large Neighborhood search (LNS) combined with branch-and-

price for solution reconstruction. The method proposed by

Nagata et al. (2010) [17] uses an interesting relaxation scheme

with penalized returns in time. Another algorithm (Vidal et al.

(2013)) [18] also applies time-constraint relaxations during the

search to benefit from infeasible solutions in the search space.

D. VRP with Bachhauls (VRPB)

VRPB is another extension to CVRP. To define VRPB we

need to divide the set of customers 𝑉𝑖 into two subsets: the first

set contains customers who require the product to be delivered,

these customers are called linehaul customers 𝐿𝑖 ⊂ 𝑉𝑖 . The

other set contains customers who require the product to picked

up, they are called backhaul customers 𝐵𝑖 ⊂ 𝑉𝑖 .

𝐿𝑖 ∩ 𝐵𝑖 = ∅, 𝐿𝑖 ∪ 𝐵𝑖 = 𝑉𝑖 . Also, neither all deliveries nor all

pick-ups should exceed vehicle capacity: 𝑑(𝐿𝑖) ≤ 𝐶 &
𝑑(𝐵𝑖) ≤ 𝐶. If the tour contains customers from both sets, the

linehaul customers must serve before any backhaul customers.

Note that tours with backhaul customers only are not allowed

in some formulations [1].

In basic formulation 𝐻𝑖 shoud be changed as follows:

𝐻𝑖 = {𝑝𝑖 : 𝑀𝑜𝑖 → 𝐼0𝑖| 𝑝𝑖(0) = 0 & (∀𝑥 ∈ 𝑀𝑜𝑖)(∀𝑦 ∈ 𝑀𝑜𝑖)

(𝑥 ≠ 𝑦 ⟹ 𝑝𝑖(𝑥) ≠ 𝑝𝑖 (𝑦)) & ((𝑥 < 𝑦) ⟹ ((𝑣𝑝𝑖(𝑥) ∈ 𝐿𝑖) 𝑜𝑟

(𝑣𝑝𝑖(𝑦) ∈ 𝐵𝑖)))}.

The best metaheuristics, according to [19], include the

Adaptive LNS (ALNS) of Ropke and Pisinger (2006) [20], the

Tabu Search (TS) of Zachariadis and Kiranoudis (2012) [21]

which uses long-term memories to direct the search toward

inadequately exploited characteristics; and finally multi-ant

colony system algorithm by Gajpal and Abad (2009) [22],

which suggests two multi-route local search schemes.

E. VRP with Bachhauls and Time Windows (VRPBTW)

Like in VRPB, VRPBTW suggests having linehaul and

backhaul customers. In addition, with every location 𝑣𝑖 there is

a service time 𝑠𝑟𝑣𝑖 associated for loading/unloading and a time

window [𝑎𝑖 ; 𝑏𝑖], which specifies the time in which this service

has to be provided. In the same way as for VRPTW, when

arriving too early at a location 𝑣𝑖, i.e., before 𝑎𝑖 , the vehicle is

allowed to wait until 𝑎𝑖 to start the service. Also, the linehaul

customers must be served before any backhaul customers.

Thus, mathematical formulation of VRPBTW is a combination

of both formulations of VRPTW and VRP.

The most powerful algorithms for solving VRPBTW are

those which are proposed by Thangiah et al. (1996) [23] and by

Kucukoglu et al (2015) [24]. The first method is based on

insertion procedure with improving through the application of

λ-interchange and 2-opt exchange procedures. The second one

includes combination of TS and SA.

F. VRP with Pickup and Delivery (VRPPD)

In the basic version of VRPPD, each customer 𝑣𝑖 requests

two demands: 𝑑(𝑣𝑖) to be delivered and 𝑝(𝑣𝑖) to be picked up.

In addition, we need to add for each customer 𝑣𝑖 two new

149

variables: 𝑂(𝑣𝑖) which denotes the vertex where the source of

delivery originates and 𝐷(𝑣𝑖) which denotes the customer

where the destination of the pick up exists. It should be noted

that for each customer the delivery must be implemented before

the pick up.

Let define 𝑑(𝑉𝑝𝑎𝑟𝑡
0𝑖) − 𝑝(𝑉𝑝𝑎𝑟𝑡

0𝑖) ≤ 𝐶, 𝑝𝑎𝑟𝑡 = 0. . 𝑁𝑖̅̅ ̅̅ ̅̅ ̅, as

the weight of the current load of the vehicle after visiting

𝑣𝑝𝑖(𝑝𝑎𝑟𝑡), where 𝑑(𝑉𝑝𝑎𝑟𝑡
0𝑖) = ∑ 𝑑(𝑣𝑗)𝑗∈|0..𝑝𝑎𝑟𝑡| , 𝑝𝑎𝑟𝑡 ≤ 𝑁𝑖 and

𝑝(𝑉𝑝𝑎𝑟𝑡
0𝑖) = ∑ 𝑝(𝑣𝑗)𝑗∈|0..𝑝𝑎𝑟𝑡| .

In basic formulation 𝐻𝑖 shoud be changed as follows:

𝐻𝑖 = {𝑝𝑖 : 𝑀𝑜𝑖 → 𝐼0𝑖| 𝑝𝑖(0) = 0 & (∀𝑥 ∈ 𝑀0𝑖)(∀𝑦 ∈ 𝑀𝑜𝑖)

(𝑥 ≠ 𝑦 ⟹ 𝑝𝑖(𝑥) ≠ 𝑝𝑖 (𝑦)) & (∀𝑥 ∈ 𝑀𝑜𝑖)(∀𝑦 ∈ 𝑀𝑜𝑖)

((𝑣𝑝𝑖(𝑦) = 𝐷(𝑣𝑝𝑖(𝑥))) ⟹ (𝑥 < 𝑦)) & (∀𝑥 ∈ 𝑀𝑜𝑖)

(∀𝑦 ∈ 𝑀𝑜𝑖)((𝑣𝑝𝑖(𝑥) = 𝑂(𝑣𝑝𝑖(𝑦))) ⟹ (𝑥 > 𝑦))}

A great number of heuristics and metaheuristics are

presented in [25].

G. VRP with Simultaneous Pickup and Delivery (VRPSPD)

VRPSPD is a subcase of VRPPD where each customer is

a linehaul as well as a backhaul customer. In VRPSPD each

customer not only requires a given quantity of products to be

delivered but also requires a given quantity of products to be

picked up. A complete service (both delivery and pickup) to the

customer is provided by a vehicle in a single visit. Thus, there

is no need to explicitely indicate both variables 𝑂(𝑣𝑖) and

𝐷(𝑣𝑖) as in VRPPD.

It is found in the literature that the heuristics of

Subramanian et al. (2010) [25], Zachariadis and Kiranoudis

(2011) [26] and Souza et al. (2010) [27] together produce the

best known results.

H. VRP with Mixed Pickup and Delivery (VRPMPD)

VRPMPD is also a subcase of VRPPD where each

customer has either a delivery demand or pickup. Therefore,

there is 𝑑(𝑣𝑖) > 0 and 𝑝(𝑣𝑖) = 0 in the first case and

𝑝(𝑣𝑖) > 0 and 𝑑(𝑣𝑖) = 0. Nevertheless, in basic formulation

𝐻𝑖 shoud be changed the same way as it was shown for VRPPD.

The best known heuristics are those of Subramanian

(2013) which is based on Iterative Local Search (ILS) idea [28]

and hybrid algorithm proposed by Subramanian, Uchoa and

Ochi (2013) [29].

I. VRP with Pickup and Delivery and Time Windows

(VRPPDTW)

The VRPPDTW in this paper contains all constraints in

the VRPPD plus added constraints in which both pickup and

delivery have given time windows. With every location 𝑣𝑖 there

is a service time 𝑠𝑟𝑣𝑖 associated for loading/unloading and a

time window [𝑎𝑖 ; 𝑏𝑖], which specifies the time in which this

service has to be provided. In the same way as for VRPTW,

when arriving too early at a location 𝑣𝑖, i.e., before 𝑎𝑖 , the

vehicle is allowed to wait until 𝑎𝑖 to start the service. Also, for

each customer the delivery must be implemented before the

pick up.

Efficient neighborhood-centered metaheuristics have

been proposed, including the ALNS of Ropke and Pisinger

(2006) [30] and the two-phase method of Bent, and Van

Hentenryck (2006) [31], which combines SA to reduce the

number of routes with LNS to optimize the distance. However,

these methods were recently outperformed by the memetic

algorithm of Nagata and Kobayashi (2011) [32], which exploits

a well-designed crossover focused on transmitting parent

characteristics without introducing too many new arcs in the

offspring.

J. Multi-depot VRP (MDVRP)

The MDVRP is a generalization of the CVRP where more

than one depot may be considered. Also, the vehicle must start

and end at the same depot.

So, part of basic formulation shoud be changed as follows:

Let 𝐺 be a number of depots. Let introduce

𝑉0 = {𝑣0
1 , 𝑣0

2, … , 𝑣0
𝐺}, where 𝑣0

𝑖 ∈ 𝑉. In this case, we should

make 𝑉0𝑖 = {𝑣0
𝑗 ∈ 𝑉0} ∪ 𝑉𝑖 , 𝑖 = 1. . 𝐾̅̅ ̅̅ ̅̅ , 𝑗 = 1. . 𝐺̅̅ ̅̅ ̅̅ .

The best heuristic approaches for the MDVRP are

considered to be developed by Pisinger and Ropke (2006) [33]

and Vidal et al. (2012) [6].

K. VRP with Multiple Use of Vehicles (VRPM) or Multi-Trip

VRP (MTVRP)

VRPM or MTVRP is a variant of standart CVRP in which

the same vehicle can be assigned to several routes during a

given planning period. Not only this costraint is introduced but

also the sum of the durations of the trips assigned to the same

vehicle must not exceed 𝑇𝑀𝑎𝑥. 𝑇𝑀𝑎𝑥 is a trip duration being the

sum of the travel times on arcs used in the route. Thus, new

function 𝑡(𝑣𝑖 , 𝑣𝑗), returning travel time between 𝑣𝑖 and 𝑣𝑗,

appears. Function 𝑡: 𝑉 × 𝑉 → 𝑅 satisfies the same axioms as 𝑐.

In this variant it is possible if 𝑑(𝑉𝑜𝑖) > 𝐶, 𝑖 = 1. . 𝐾̅̅ ̅̅ ̅̅ . We

additionally divide 𝑉𝑖 in 𝑀𝑇𝑖 sets: 𝑉𝑖 = {𝑉1
𝑖 , 𝑉2

𝑖 , … , 𝑉𝑀𝑇𝑖

𝑖 },

where 𝑀𝑇𝑖 ∈ [1; |𝑉𝑖|]. Let 𝐽 = {0, 1, … , 𝐾} be a set that keeps

indexes. Then (∀𝑖 ∈ 𝐽) (∀𝑚𝑡 ∈ 1. . 𝑀𝑇𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅) (|𝑉𝑚𝑡

𝑖 | ≥ 1). There

should be no duplicates in any of subsets from 𝑉𝑖:
(∀𝑖 ∈ 𝐽)(∀𝑚𝑡1 ∈ 1. . 𝑀𝑇𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅) (∀𝑚𝑡2 ∈ 1. . 𝑀𝑇𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅) (𝑚𝑡1 ≠ 𝑚𝑡2 ⇒

𝑉𝑚𝑡1
𝑖 ∩ 𝑉𝑚𝑡2

𝑗 = ∅). Also, 𝑉𝑖 = ⋃ 𝑉𝑚𝑡
𝑖𝑀𝑇𝑖

𝑚𝑡=1 . In this notation, we

should make (∀𝑚𝑡 ∈ 1. . 𝑀𝑇𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅) (𝑉𝑚𝑡

0𝑖 = 𝑉0 ∪ 𝑉𝑚𝑡
𝑖). It is

obvious that (∀𝑚𝑡 ∈ 1. . 𝑀𝑇𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑑(𝑉𝑚𝑡

𝑜𝑖) ≤ 𝐶).

Let introduce 𝑀𝑚𝑡
𝑖 = {1, … , 𝑁𝑚𝑡

𝑖 }, 𝑁𝑚𝑡
𝑖 = |𝑉𝑚𝑡

𝑖 |,

∑ 𝑁𝑚𝑡
𝑖𝑀𝑇𝑖

𝑚𝑡=1 = 𝑁𝑖 . Then 𝑀𝑚𝑡
0𝑖 = {0} ∪ 𝑀𝑚𝑡

𝑖 . Let

𝐼𝑚𝑡
𝑖 = {𝑖 | 𝑖 = 𝑖𝑛𝑑(𝑣), 𝑣 ∈ 𝑉𝑚𝑡

𝑖 } be a set of vertex indices from

𝑉𝑚𝑡
𝑖 . Then 𝐼𝑚𝑡

0𝑖 = {0} ∪ 𝐼𝑚𝑡
𝑖 .

150

Let 𝐻𝑚𝑡
𝑖 = {𝑝𝑚𝑡

𝑖 : 𝑀𝑚𝑡
0𝑖 → 𝐼𝑚𝑡

0𝑖 | 𝑝𝑚𝑡
𝑖 (0) = 0 &

(∀𝑥 ∈ 𝑀𝑚𝑡
0𝑖)(∀𝑦 ∈ 𝑀𝑚𝑡

0𝑖) (𝑥 ≠ 𝑦 ⟹ 𝑝𝑚𝑡
𝑖 (𝑥) ≠ 𝑝𝑚𝑡

𝑖 (𝑦))} be

a set of codes of all Hamiltonian cycles

ℎ𝑚𝑡
𝑖 = (𝑣𝑝𝑚𝑡

𝑖 (0), 𝑣𝑝𝑚𝑡
𝑖 (1), … , 𝑣𝑝𝑚𝑡

𝑖 (𝑁𝑖)) of 𝑉𝑚𝑡
0𝑖 .

Weight of a Hamiltonian cycle ℎ𝑚𝑡
𝑖 ∈ 𝐻𝑚𝑡

𝑖 can be found

according to the formula:

𝑓(ℎ𝑚𝑡
𝑖) = 𝑐 (𝑣𝑝𝑚𝑡

𝑖 (0), 𝑣
𝑝𝑚𝑡

𝑖 (𝑁𝑚𝑡
𝑖)

) + ∑ 𝑐 (𝑣𝑝𝑚𝑡
𝑖 (𝑗), 𝑣𝑝𝑚𝑡

𝑖 (𝑗+1))

𝑁𝑚𝑡
𝑖 −1

𝑗=0

Let 𝑆′ be a set of {𝑉𝑚𝑡
01, 𝑉𝑚𝑡

02, … , 𝑉𝑚𝑡
0𝐾}, 𝑚𝑡 = 1. . 𝑀𝑇𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅. In

this notation the weight of 𝑆′ is calculated as 𝐹(𝑆′) =
∑ ∑ 𝑓(ℎ𝑚𝑡

𝑖)𝑚𝑡=1..𝑀𝑇𝑖̅̅ ̅̅ ̅̅ ̅̅𝑖=1..𝐾̅̅ ̅̅ ̅ .

Weight of a Hamiltonian cycle ℎ𝑚𝑡
𝑖 ∈ 𝐻𝑖 can be found

using 𝑝𝑚𝑡
𝑖 as 𝑓𝑇(ℎ𝑚𝑡

𝑖) = 𝑡 (𝑣𝑝𝑚𝑡
𝑖 (0), 𝑣

𝑝𝑚𝑡
𝑖 (𝑁𝑚𝑡

𝑖)
) +

 ∑ 𝑡 (𝑣𝑝𝑚𝑡
𝑖 (𝑗), 𝑣𝑝𝑚𝑡

𝑖 (𝑗+1))
𝑁𝑚𝑡

𝑖 −1

𝑗=0 . The most important thing here

is the next constraint: (∀𝑖 = 1. . 𝐾̅̅ ̅̅ ̅̅)(∑ 𝑓𝑇 (ℎ𝑚𝑡
𝑖)

𝑀𝑇𝑖
𝑚𝑡=1 ≤ 𝑇𝑀𝑎𝑥).

Overall, the formulation of VRPM is to find:

𝑆0, ℎ𝑚𝑡
1 , … , ℎ𝑚𝑡

𝐾 : 𝐹(𝑆0, ℎ𝑚𝑡
1 , … , ℎ𝑚𝑡

𝐾)
= min

𝑆∈ 𝑆𝑎𝑙𝑙 , 𝑚𝑡= 1..𝑀𝑇𝑖̅̅ ̅̅ ̅̅ ̅̅
𝐹(𝑆, ℎ𝑚𝑡

1 , … , ℎ𝑚𝑡
𝐾)

Metaheuristic inspired by ideas of TS and adaptive

memory-based search (AMS) (Taillard (1993) [34]) still shows

good results. In addition, another variant of AMS by Olivera

and Viera (2007) [35] is considered to be competitive.

L. Periodic VRP (PVRP)

The Periodic VRP (PVRP) is used when planning is done

over a certain period and deliveries to the customer can be done

in different days. For the PVRP, customers can be visited more

than once, though often with limited frequency.

Efficient algorithm for solving PVRP is parallel extension

of UTS with neighborhood-centered search (Cordeau and

Maischberger, 2012 [36]). Also, the VNS of Hemmelmayr et

al. (2009) [37], and the hybrid record-to-record and integer

programming matheuristic of Gulczynski et al. (2011) [38] can

be successfully applied. And one more metaheuristic is one that

proposed by Vidal et al. (2012) [6]. It produces the current best

solutions by combining the GA search breadth with efficient

LS, relaxations schemes, and diversity management

procedures.

M. Split Delivery VRP (SDVRP)

In the SDVRP-MDA, more than one vehicle can service a

customer, so that a customer’s demand can be split among

several vehicles on different routes. The most important here is

that split deliveries are allowed only if at least a minimum

fraction of a customer’s demand is delivered by each vehicle

visiting the customer.

The first matheuristic for a SDVRP is proposed in Chen et

al. (2007) [39]. The idea of the approach is based on

combination of the classical Clarke and Wright algorithm, the

Mixed-Integer Linear Programming (MILP) model and

variable length record-to-record travel methos. A similar

procedure is applied in Gulczynski et al. (2010) [40] to the

SDVRP with minimum delivery amounts, that is a SDVRP

where each delivery to a customer should consist of at least a

minimum amount of goods. Another metaheuristic which

contains TS approach is proposed in 2008 by Archetti et al. [41]

The main thing here is to obtain a reduced graph by removing

some arcs and to apply a set covering MILP formulation for the

best routes. And in Jin et al. (2008) [42] a set covering

formulation is proposed and the problem is solved through

column generation.

N. Cumulative CVRP (CCVRP)

CCVRP minimizes the sum of the arrival times at the

customers instead of minimizing the total distance (or travel

time) as an objective.

For the CCVRP, Ngueveu et al. (2010) [43] and Ribeiro

and Laporte (2012) [44] modified the hybrid GA. Also, two-

phase metaheuristic proposed by Ke and Feng in 2013 [45] is

considered to be successful enough.

V. CONCLUSION

The presented study is undertaken in order to make a

survey on CVRP subcases and on heuristic methods for solving

each extension of this problem. In addition, author variants of

mathematical formulations for some subcases of CVRP are

given. It should be noticed that a great work is done because

more than 80 sources (articles, books, thesises etc) were

analyzed and intercompared. Not all are listed in references due

to page limits and different contribution to the paper.

Fig. 1. The basic problems of the CVRP class and their interconnections.

Figure 1 sums up relations between classes of the CVRP

and forms the classification of its subtypes.

In our future work, we are going to extend current survey by
adding dynamic and stochastic subcases of CVRP. Also, due to
the fact that in this paper some extensions have not got full
description of math models, it will be provided soon.

REFERENCES

[1] P. Toth and D. Vigo, "An overview of vehicle routing problems," in The Vehicle

Routing Problem, SIAM, 2002.

151

[2] G. B. Dantzig and J. H. Ramser, "The Truck Dispatching Problem," Management

Science, vol. 6, no. 1, pp. 80-91, 1959.

[3] M. Reed and B. Simon, Methods of Modern Mathematical Physics, London:

Academic Press, 1972.

[4] P. Pisinger and S. Ropke, "A general heuristic for vehicle routing problems,"

Computers & Operations Research, vol. 34, no. 8, pp. 2403-2435, 2007.

[5] Y. Nagata and O. Braysy, "Edge assembly-based memetic algorithm for the

capacitated vehicle routing problem," Networks, vol. 54, no. 4, pp. 205-215, 2009.

[6] T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi and W. Rei, "A hybrid genetic

algorithm for multi-depot and periodic vehicle routing problems," Operations

Research, vol. 60, no. 3, pp. 611-624, 2012.

[7] B. Golden, S. Raghavan and E. Wasil, The vehicle routing problem: Latest advances

and new challenges, New York: Springer, 2008.

[8] M. Salari, P. Toth and A. Tramontani, "An ILP improvement procedure for the Open

Vehicle Routing Problem," Computers & Operations Research, vol. 37, no. 12, pp.

2106-2120, 2010.

[9] P. Repoussis, C. Tarantilis, O. Braysy and G. Ioannou, "A hybrid evolution strategy

for the open vehicle routing problem," Computers & Operations Research, vol. 37,

no. 3, pp. 443-455, 2010.

[10] K. Fleszar, I. Osman and K. Hindi, "A variable neighbourhood search algorithm for

the open vehicle routing problem," European Journal of Operational Research, vol.

195, no. 3, pp. 803-809, 2009.

[11] E. Zachariadis and C. Kiranoudis, "An open vehicle routing problem metaheuristic

for examining wide solution neighborhoods," Computers & Operations Research,

vol. 37, no. 4, pp. 712-723, 2010.

[12] S. MirHassani and N. Abolghasemi, "A particle swarm optimization algorithm for

open vehicle routing problem," Expert Systems with Applications, vol. 38, no. 9, pp.

11547-11551, 2011.

[13] G. Laporte, Y. Nobert and M. Desrochers, "Optimal routing under capacity and

distance restrictions," Operations Research, vol. 33, no. 5, p. 1050–1073, 1985.

[14] C. Li, D. Simchi-Levi and M. Desrochers, "On the distance constrained vehicle

routing problem," Operational Research, vol. 40, pp. 790-799, 1992.

[15] P. Repoussis, C. Tarantilis and G. Ioannou, "Arc-guided evolutionary algorithm for

the vehicle routing problem with time windows," IEEE Transactions on

Evolutionary Computation, vol. 13, no. 3, p. 624–647, 2009.

[16] E. Prescott-Gagnon, G. Desaulniers and L. Rousseau, "A branch-and-price-based

large neighborhood search algorithm for the vehicle routing problem with time

windows," Networks, vol. 54, no. 4, p. 190–204, 2009.

[17] Y. Nagata, O. Bräysy and W. Dullaert, "A penalty-based edge assembly memetic

algorithm for the vehicle routing problem with time windows," Computers &

Operations Research, vol. 37, no. 4, p. 724–737, 2010.

[18] T. Vidal, T. Crainic, M. Gendreau and C. Prins, "A hybrid genetic algorithm with

adaptive diversity management for a large class of vehicle routing problems with

time-windows," Computers & Operations Research, vol. 40, no. 1, p. 475–489,

2013.

[19] K. Braekers, K. Ramaekers and I. Nieuwenhuyse, "The vehicle routing problem:

State of the art classification and review," Computers & Industrial Engineering, vol.

99, pp. 300-313, 2016.

[20] S. Ropke and D. Pisinger, "A unified heuristic for a large class of vehicle routing

problems with backhauls," European Journal of Operational Research, vol. 171,

no. 3, p. 750–775, 2006.

[21] E. Zachariadis and C. Kiranoudis, "An effective local search approach for the

vehicle routing problem with backhauls," Expert Systems with Applications, vol. 39,

no. 3, p. 3174–3184, 2012.

[22] Y. Gajpal and P. Abad, "Multi-ant colony system (MACS) for a vehicle routing

problem with backhauls," European Journal of Operational Research, vol. 196, no.

1, p. 102–117, 2009.

[23] S. Thangiah, J.-Y. Potvin and T. Sun, "Approaches to Vehicle Routing with

Backhauls and Time," Windows International Journal of Computers and

Operations Research, vol. 23, no. 11, pp. 1043-1057, 1996.

[24] I. Küçükoğlu and N. Öztürk, " An advanced hybrid meta-heuristic algorithm for the

vehicle routing problem with backhauls and time windows," Computers and

Industrial Engineering, vol. 86, no. 3, pp. 60-68, 2015.

[25] A. Subramanian, Drummond, C. Bentes, L. Ochi and R. Farias, "A parallel heuristic

for the vehicle routing problem with simultaneous pickup and delivery," Computers

& Operations Research, vol. 37, no. 11, pp. 1899-1911, 2010.

[26] E. Zachariadis and C. Kiranoudis, "A local search metaheuristic algorithm for the

vehicle routing problem with simultaneous pick-ups and deliveries," Expert Systems

with Applications, vol. 38, no. 3, pp. 2717-2726, 2011.

[27] M. Souza, M. Silva, M. Mine, L. Ochi and A. Subramanian, "A hybrid heuristic,

based on iterated local search and GENIUS, for the vehicle routing problem with

simultaneous pickup and delivery," International Journal of Logistics Systems

Management, vol. 10, no. 2, pp. 142-156, 2010.

[28] A. Subramanian and M. Battarra, "An iterated local search algorithm for the

travelling salesman problem with pickups and deliveries," Journal of the

Operational Research Society, vol. 64, pp. 402-409, 2013.

[29] A. Subramanian, E. Uchoa and L. Ochi, "A hybrid algorithm for a class of vehicle

routing problems," Computers & Operations Research, vol. 40, no. 10, pp. 2519-

2531, 2013.

[30] S. Ropke and D. Pisinger, "An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows," Transportation Science, vol. 40,

no. 4, p. 455–472, 2006.

[31] R. Bent and P. Van Hentenryck, "A two-stage hybrid algorithm for pickup and

delivery vehicle routing problems with time windows," Computers & Operations

Research, vol. 33, no. 4, p. 875–893, 2006.

[32] Y. Nagata and S. Kobayashi, "A memetic algorithm for the pickup and delivery

problem with time windows using selective route exchange crossover," Proceedings

of PPSN’11, vol. 6238, p. 536– 545, 2011.

[33] D. Pisinger and S. Ropke, "A general heuristic for vehicle routing problems,"

Computers & Operations Research, vol. 34, no. 8, p. 2403–2435, 2007.

[34] E. Taillard, G. Laporte and M. Gendreau, "Vehicle routeing with multiple use of

vehicles," Journal of the Operational Research Society, vol. 47, no. 8, p. 1065,

1996.

[35] A. Olivera and O. Viera, "Adaptive memory programming for the vehicle routing

problem with multiple trips," Computers & Operations Research, vol. 34, no. 1, p.

28–47, 2007.

[36] J.-F. Cordeau and M. Maischberger, "A Parallel Iterated Tabu Search Heuristic for

Vehicle Routing Problems," Computers & Operations Research, vol. 39, no. 9, p.

2033–2050, 2012.

[37] V. Hemmelmayr, K. Doerner and R. Hartl, "A variable neighborhood search

heuristic for periodic routing problems," European Journal of Operational

Research, vol. 195, no. 3, p. 791–802, 2009.

[38] D. Gulczynski, B. Golden and E. Wasil, "The period vehicle routing problem : New

heuristics and real-world variants," Transportation Research Part E : Logistics and

Transportation Review, vol. 47, no. 5, pp. 648-668, 2011.

[39] S. Chen, B. Golden and E. Wasil, "The split delivery vehicle routing problem:

Applications, algorithms, test problems, and computational results," Networks, vol.

49, p. 318–329, 2007.

[40] D. Gulczynski, B. Golden and E. Wasil, "The split delivery vehicle routing problem

with minimum delivery amounts," Transportation Research Part E, vol. 46, p. 612–

626, 2010.

[41] C. Archetti and M. Speranza, "The split delivery vehicle routing problem: a survey,"

in The Vehicle Routing Problem Latest Advances and New Challenges, Operations

Research, Computer Science Interfaces Series, 2008, pp. 103-122.

[42] M. Jin, K. Liu and B. Eksioglu, "A column generation approach for the split delivery

vehicle routing problem," Operations Research Letters, vol. 36, pp. 265-270, 2008.

[43] S. Ngueveu, C. Prins and C. Wolfler, "An effective memetic algorithm for the

cumulative capacitated vehicle routing problem," Computers & Operations

Research , vol. 37, no. 11, p. 1877–1885, 2010.

[44] G. Ribeiro and G. Laporte, "An adaptive large neighborhood search heuristic for the

cumulative capacitated vehicle routing problem," Computers & Operations

Research, vol. 39, no. 3, p. 728–735, 2012.

[45] L. Ke and Z. Feng, "A two-phase metaheuristic for the cumulative capacitated

vehicle routing problem," Computers & Operations Research, vol. 40, no. 2, pp.

633-638, 2013.

152

Auto-calibration and synchronization
of camera and MEMS-sensors

Alexander Polyakov
Saint Petersburg
State University

polyakov.alx@gmail.com

Anastasiya Kornilova
Saint Petersburg
State University

kornilova.anastasiia@gmail.com

Iakov Kirilenko
Saint Petersburg
State University

y.kirilenko@spbu.ru

Abstract—In this paper, we present a robust auto calibration
and synchronization algorithm for a system which consists of
camera and MEMS-sensors (gyroscopes). The main task of our
research is to find such parameters as the focal length of camera
and time offset between sensor timestamps and frame timestamps
which is caused by frame processing and encoding. This auto
calibration makes possible to scale computer vision algorithms
(video stabilization, 3D reconstruction, video compression), which
use frames and sensor data, to a wider range of devices with
camera and MEMS-sensors. In this article, we present a review
and comparison of current approaches to calibration and propose
our improvements for these methods which increase the quality
of previous works and applicable for a general model of video
stabilization algorithm with MEMS-sensors.

I. INTRODUCTION

The high quality of frames, received from modern smart-
phone cameras, expands the frontiers of solutions in computer
vision tasks. Lately, there are more and more attempts to
scale current practices in such areas of computer vision as
video stabilization [1], [2], [3], [4], augmented reality[5], 3D
reconstruction [6], [7], photogrammetry on mobile platforms
and embedded systems. But these algorithms demand big
computational resources that not allows to apply them to
above-mentioned platforms and, moreover, in real time.

The presence of numerous different sensors on these plat-
forms, caused by the low cost of their production and high
precision at the same time, allows using their data effectively.
As the majority of above-stated tasks is any way connected
with detection of camera movement (which is the “bottleneck”
in most algorithms), the main preference is given to motion
sensors – gyroscope and accelerometer [8], [9].

Expansion of mathematical model of computer vision al-
gorithm not only increases quality and reduces calculations,
but gives rise to new difficulties. In particular, besides general
intrinsic parameters of the camera (focal length, optical center,
rolling shutter) there are parameters of sensors (i.e, bias for gy-
roscope) and parameters of model “camera-sensors” (camera
and sensors orientation, camera and sensors synchronization
parameters). Therefore, if desired to scale an algorithm to a
large amount of platforms (for example, in case of mobile
phones) automatic calibration of these parameters is needed.
It is caused by a big variety of cameras, sensors and their
combinations.

This work is a continuation of the research [10] conducted
on a subject of real-time digital video stabilization using
MEMS-sensors and aims to prototype and implement an
algorithm of auto-calibration of key parameters for this task:
focal length and parameters of synchronization of frames and
gyroscope data.

II. PRELIMINARIES
This section is devoted to basic definitions, general mathe-

matical models, and agreements which will come out through-
out this work.

A. Pinhole camera model
Pinhole camera model is a basic mathematical camera

model which describes a mapping from 3-dimentional real
world to its projection onto the image. This mapping satisfies
the formula, in which X is coordinates of a point in real world
and x is coordinates of its projection. Also, it depends on
camera parameters: f – focal length, (ox, oy) – optical center
[11]. 1

Figure 1. Pinhole camera model

 x1

x2

1

 =

 fx 0 −ox
0 fy −oy
0 0 1

 X1

X2

X3


B. Rotation camera model

In case of camera rotation in space using rotation operator
R, we get the next relationship between two projections x1

and x2 of one point in space X caught at a different time t1
(rotation R1) and t2 (rotation R2) correspondingly.

1Image is taken from the website https://en.wikipedia.org/wiki/Pinhole_
camera_model

153

Figure 2. Rotation camera model

x1 = KR(t1)X

x2 = KR(t2)X

By transforming these expressions, the following needed
relationship is established:

x2 = KR(t2)R
T (t1)K

−1x1

Thus, the matrix of image transformation between moments
in time t1 and t2 is defined as:

W (t1, t2) = KR(t2)R
T (t1)K

−1

x2 = W (t1, t2)x1

C. Rolling shutter effect
”Rolling shutter” is an effect arising on the majority of

CMOS cameras, at which each row of the frame is shot at
different time due to vertical shutter.2

Figure 3. Object movement

When shutter scans the scene vertically, the moment in time
at which each point of the frame is shot, directly depends on
the row it is located in. Thus, if i is the number of the frame
and y is the row of that frame, then the moment at which it
was shot can be calculated this way:

t(i, y) = ti + ts
y

h
where ti is the moment when frame number i was shot, ts

is the time it takes to shot a single frame, h is the height of
the frame. This can be used to make the general model more
precise, when calculating the image transformation matrix.

2Images are taken from the website http://www.red.com/learn/red-101/
global-rolling-shutter

Figure 4. Rolling-shutter effect during capturing the moving object

D. Gyroscope

The gyroscope is a sensor (MEMS-sensor in our case)
which sends information about angular velocities of a body.
Using this data and its timestamps, a rotation matrix (rotation
operator) can be calculated through integration.

There are two approaches for integration data of gyroscope
with different computational complexity and accuracy. The
first approach is linear integration for receiving Euler angles
and then their transformation to a rotation matrix, where θ –
is rotation angle of one axis and ω – velocity over this axis
between t and t+ δ:

θ(t+ δ) = θ(t) +

∫ t+δ

t

ω(t)dt, (1)

This approach is applied only in case of insignificant and
small rotations, because of the imperfection of Euler angles as
an algebraic structure. The other and more complex approach
is to use quaternions for data integration. This article [12] gives
a full description about the integration of angular velocities
using quaternions, and we tend to apply it.

E. Stabilization quality metrics

There are two main metrics which can estimate the quality
of video stabilization of static scene – RMSE (root mean
square error) and ITF (inter-frame transformation fidelity).

The first is a comparison between two frames pixel-by-pixel
using typical L2 metric.

The ITF metric directly depends on PSNR (peak signal-to-
noise ratio) parameter between two consecutive frames (k, k+
1):

PSNR(k) = 10 log10
Imax

MSE(k)

where Imax is maximum pixel intensity,
and is counted as:

ITF =
1

N − 1

N−1∑
k=1

PSNR(k)

where N is count of frames in the video.

154

F. Features
In the computer vision, feature is a pattern that satisfies

certain properties and can be detected on the image. One of
directions of feature use is feature matching which is mainly
focused on searching of similar objects on two frames. In our
work, we use feature matching to estimate how the camera
moved through shooting.

In our experiments we have used two features types – ORB
(Oriented FAST and rotated BRIEF) [13] and SIFT (Scale-
Invariant Feature Transform) [14] which prove themselves
as the most stable and robust in feature matching. SIFT is
considered to exhibit the highest matching accuracies, but
requires significant computational resources, while ORB is
very fast but less precise [15].

G. Description of stabilization algorithm
At the moment stabilization algorithm, proposed in our

previous paper[10], works as follows.
1) Integrate gyroscope data (angular velocities and times-

tamps) using quaternions.
2) Determine frame timestamp and corresponding rotation

matrix.
3) Count transformation camera matrix for every horizontal

section of the frame (typically, there are several gyro
reading per frame and, consequently, several rotation
matrices).

4) Transform every section using transformation matrix and
combine them.

5) Write transformed frame to the video.
The algorithm stabilizes video like a tripod, at now complex

camera motion is not supported, but in progress.

III. DETAILED PROBLEM DESCRIPTION

As it was mentioned in the description of the stabilization
algorithm, it directly depends on camera parameters: focal
length, optical center and rolling shutter parameter. In most
cases, all parameters besides focal length can be got from API
of the device on which this algorithm runs (at the moment the
major advantage is given to Android platforms). Thus, one of
the main goals of this research is to find focal length which
is the most accurate for our stabilization algorithm.

The other significant direction is to synchronize frames
received from the camera and data received from sensors.
Mistiming is caused by the time needed for frame processing –
scanning and encoding. Therefore, we need to find time offset
of this processing to consider it in our model.

Figure 5. Matching the time series of frames and gyroscope

Thus, the main goal of this research is to find the suitable
focal length and time offset. Some of the described methods
are wider and cover other parameters, and we also consider
this information.

IV. CALIBRATION ALGORITHMS

In this section we describe various approaches that we have
tested during this research. The section contains a description
of our basic method, review and implementation of the most
known methods of calibration from other areas, and our
improvements on these methods for our specific task.

A. Calibration based on stabilization metrics
focal length, time offset, rolling shutter
This simple approach is based on stabilization metrics

described in section 2. Using ITF metric, we can estimate the
quality of video stabilization after transformation of frames:
the higher the value of metric – the better video is stabilized.

The approach determines three parameters: focal length,
time offset and rolling shutter parameter and is as follows:
detect a range and step of each parameter (for example, range
of focal length – [500, .., 1200] and step – 50) and find tuple
of parameters on which metric is maximized using brute-force
search.

It is worth noting, despite of the huge computational com-
plexity this method gives the most accurate results due to the
strong dependence on the current mathematical model.

B. OpenCV calibration method
focal length, optical center, distortion coefficients
This algorithm is applicable only in case of known geometry

of subject which is on the scene. Also, the subject should
contain easily distinguished feature points. This subject is
usually called calibration pattern. We have used use the main
calibration pattern which is supported by OpenCV – chess-
board. It depends on such parameters as size of chessboard,
the distance between cells and others.

The algorithm also determines distortion coefficients 3 and
is as follows:

1) Count initial intrinsic parameters of the camera. Initial
distortion coefficients are equal to zero.

2) Estimate camera position using this initial parameters
using PnP method.

3) Using Levenberg-Marquardt algorithm minimize re-
projection error – sum of square root distances between
two matched point.

C. Grid search method
focal length, time offset
Using frames and gyroscope data we can estimate the

motion of camera in two ways:
1) Use feature points on frames and estimate motion using

the difference between matched points on consequence
frames.

3https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_
3d_reconstruction.html

155

2) Use data of gyroscope – measurements and their times-
tamps.

This approach is as follows. Firstly, we determine two
functions which describe the average measure of camera mo-
tions in two ways – using feature points and using gyroscope
measurements. These functions must depends on time and
if necessary must have facilities for interpolation (data of
gyroscope is discrete). Having these functions, that describes
motion in different ways, we can estimate shift (time offset)
of functions using cross-correlation.

Let’s determine these functions:

rf (t) =

∑
m∈M(t) (mx −m′

x) + (my −m′
y)

2|M(ti)|(ti − ti−1)

rg(t) =
ωx(t) + ωy(t) + ωz(t)

3

On the picture, you can see similar shape of these functions.

Figure 6. Time offset between frame and gyroscope

We have tried two typical cross-correlation functions to find
offset:

s(a, b) = a ∗ b

s(a, b) = −|a− b|

If we have a set of possible offsets Td, we can find offset
with a maximum value of correlation between frames and
gyroscope functions:

offset = arg max
td∈Td

∑
t∈T

s(rf (t− td), rg(t))

Authors who support this approach tend to opinion that
initial scale constant is a focal length value and try to find
this constant like:

rg(t) = f ∗ rf (t)

Using a method of the least squares:

f = arg min
f

n∑
i=1

(rf (ti + td)− f ∗ rg(ti))2

D. Improvements for grid search method
This method presents a combination of two methods –

method with stabilization metrics and method with grid search.
The time offset is found by grid search method. If we have
a set of possible focal lengths F and the calculated value of
time offset, we can calculate a value of focal length which
maximizes stabilization metric.

f = arg max
f∈F

ITF (f, td)

This method is suitable very well in case of using these time
offset and focal length in our video stabilization algorithm.

Also, we have abandoned to take in account motion over z-
axis, which is perpendicular to the camera matrix. This motion
has non-linear correlation with linear angular velocity over this
axis and leads to an error in the algorithm.

V. RESULTS OF PROTOTYPING

In this section we will describe results of experiments and
conditions in which they were conducted.

A. Dataset and environment
Our algorithm was tested on a dataset which consists of

video and gyroscope data from smartphones with the Android
operating system. For these purposes, we have a special
Android application which records mp4 video file and csv
format file with stamps for gyroscope and frame events. This
application supports mobile platforms starting with 21 level
Android API because of in this API event-driven scheme for
camera frames was supported by camera2 interface. The csv
file consists of two types of strings: ”f” – for frames and ”X,
Y, Z, timestamp” – for gyroscope readings.

A framework for calibration algorithm comparison was
implemented in Python using OpenCV 3.4 library. It consists
of modules for video and gyroscope file parsing and a module
for integration of gyroscope readings using quaternion. The
framework also has opportunities for calculating metric statics
for every method.

We have tested our algorithms on a dataset from the
smartphone with the following parameters:

• Model number: Xiaomi Redmi 3S;
• Android version: 6.0.1 (build MMB29M).

B. Experiments
Inside our framework, we have implemented all described

algorithms and compare them using stabilization quality met-
rics. We have tested algorithms on different scene types
and with different camera movements. An algorithm with
stabilization metric was considered as standard. All results
are presented in tables. We compare grid search method
using different cross-correlation functions and different feature
detectors.

Experiments show that OpenCV algorithm has the worst
result because of it is very sensitive for the scene (user needs
to use chessboard or other pattern) and rotation and is not fit
for our mathematical model.

156

In the table, you can see results of grid search algorithm
without/with improvements (metric) in comparison with stabi-
lization metric algorithm.

The algorithm is parametrized with feature types and shows
the best results with the second cross-correlation function
(similarity function).

Algorithm Offset, µs f Metric
Metric (standard) 45 850 14.04
Grid Search + ORB 45 825 13.97
Grid Search + SIFT 45 950 13.33
Grid Search + Metric + ORB 45 850 14.04
Grid Search + Metric + SIFT 45 850 14.04

Algorithm Offset, µs f Metric
Metric (standard) 45 850 16.25
Grid Search + ORB 50 850 16.10
Grid Search + SIFT 40 925 15.87
Grid Search + Metric + ORB 50 850 16.10
Grid Search + Metric + SIFT 40 850 15.53

Algorithm Offset, µs f Metric
Metric (standard) 45 850 15.82
Grid Search + ORB 45 950 15.05
Grid Search + SIFT 50 825 15.31
Grid Search + Metric + ORB 45 850 15.82
Grid Search + Metric + SIFT 50 850 15.30
The first two tables show the result of calibration in case

of 1-dimentional motion. It is demonstrated that in case of
ORB and SIFT features results are identical in accuracy. Also,
results show that in case of metric improvements focal length
after calibration is equal to standard in comparison with simple
grid search.

The third table describes results of calibration in case of
2-dimentional motion. Results are equal to the case of 1-
dimensional motion. As we discussed earlier, the algorithm
does not consider 3-dimentional motion because of constraints
of grid search model.

C. Main results
To sum up, experiments have demonstrated that:
1) grid search method shows the better result for our

mathematical model of camera and camera motion;
2) using grid search method, the best calibration result

is achieved with the second cross-correlation function
(similarity function);

3) ORB and SIFT features show equals results in search of
the time offset, therefore we can use ORB as a faster
method of feature matching;

4) our improvements of grid search with stabilization met-
ric allow to find focal length which is equal to standard;

5) the algorithm supports only two-dimensional motion
(except motion over, axis which is perpendicular to
camera matrix), but this is not a strong restriction for
users, therefore, our algorithm can be used on a large
scale.

VI. CONCLUSION

As lately cameras and motion sensors (gyroscope, ac-
celerometer) very often tend to occur on one platform (smart-
phones or embedded systems), the quantity of the algorithms,
using their joint information, has significantly increased. These
algorithms directly depends on parameters of the system
”camera-sensors,” such as focal length, rolling shutter, syn-
chronization parameters, which differ from platform to plat-
form, and therefore these parameters must be calibrated for
increasing of scalability.

Our work proposes the method for auto-calibration of focal
length and time series offset (synchronization parameter),
which is the most suitable for our video stabilization algorithm
using MEMS-sensors. We have review different approaches
and choose the nearest for our specific task. We have found
parameters for this method which increase the quality of the
calibration algorithm.

It worth noting that proposed algorithm can be scaled not
only for stabilization video task. It can be scaled for all
algorithms which support our mathematical model of camera
and camera movement.

In the future, we plan to expand the count of calibration
parameters with rolling shutter parameter and parameter of
relative orientation of the camera and sensor axes.

ACKNOWLEDGMENT

Funding for this work was provided by JetBrains Research.

References
[1] S. Liu, M. Li, S. Zhu, and B. Zeng, “Codingflow: Enable

video coding for video stabilization,” vol. 26, pp. 1–1,
Apr. 2017.

[2] M. Grundmann, V. Kwatra, and I. Essa, Auto-Directed
Video Stabilization with Robust L1 Optimal Camera
Paths. 2011.

[3] W.-C. Hu, C.-H. Chen, Y.-J. Su, and T.-H. Chang,
“Feature-based real-time video stabilization for vehicle
video recorder system,” Multimedia Tools and Applica-
tions, vol. 77, no. 5, pp. 5107–5127, Mar. 1, 2018, issn:
1573-7721. doi: 10.1007/s11042-017-4369-7. [Online].
Available: https://doi.org/10.1007/s11042-017-4369-7.

[4] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala,
Subspace video stabilization. 2011.

[5] D. Chatzopoulos, C. Bermejo, Z. Huang, and P. Hui,
“Mobile augmented reality survey: From where we are
to where we go,” IEEE Access, vol. 5, pp. 6917–6950,
2017, issn: 2169-3536. doi: 10.1109/ACCESS.2017.
2698164.

[6] A. Bethencourt and L. Jaulin, “3d reconstruction using
interval methods on the kinect device coupled with
an imu,” International Journal of Advanced Robotic
Systems, vol. 10, no. 2, p. 93, 2013. doi: 10.5772/54656.

157

[7] J. Rambach, A. Pagani, S. Lampe, R. Reiser, M.
Pancholi, and D. Stricker, “Fusion of unsynchronized
optical tracker and inertial sensor in ekf framework for
in-car augmented reality delay reduction,” in 2017 IEEE
International Symposium on Mixed and Augmented Re-
ality (ISMAR-Adjunct), Oct. 2017, pp. 109–114. doi:
10.1109/ISMAR-Adjunct.2017.43.

[8] A. Karpenko, D. Jacobs, and J. Baek, Digital Video
Stabilization and Rolling Shutter Correction using Gy-
roscopes. 2011.

[9] S. Bell, A. Troccoli, and K. Pulli, A Non-Linear Filter
for Gyroscope-Based Video Stabilization. 2014.

[10] N. Z. A.V. Kornilova I.A. Kirilenko, “Real-time digital
video stabilization using mems-sensors,” Proceedings
of the Institute for System Programming, vol. 29, no. 4,
pp. 2220–6426, 2017, issn: 2169-3536. doi: 10.15514/
ISPRAS-2017-29(4)-5.

[11] R. Szeliski, Computer Vision: Algorithms and Applica-
tions. 2010.

[12] J. Diebel, Representing Attitude: Euler Angles, Unit
Quaternions, and Rotation Vectors. 2006.

[13] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,
“Orb: An efficient alternative to sift or surf,” in 2011
International Conference on Computer Vision, Nov.
2011, pp. 2564–2571. doi: 10 . 1109 / ICCV . 2011 .
6126544.

[14] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. Comput. Vision, vol. 60,
no. 2, pp. 91–110, Nov. 2004, issn: 0920-5691. doi:
10 . 1023 / B : VISI . 0000029664 . 99615 . 94. [Online].
Available: https://doi.org/10.1023/B:VISI.0000029664.
99615.94.

[15] E. Karami, S. Prasad, and M. S. Shehata, “Image
matching using sift, surf, BRIEF and ORB: perfor-
mance comparison for distorted images,” CoRR, vol.
abs/1710.02726, 2017. arXiv: 1710 . 02726. [Online].
Available: http://arxiv.org/abs/1710.02726.

158

An approach to a software implementation of

architectural generative design for BIM

Mikhail Prokofyev

Chair of Computer-aided design

BMSTU Kaluga Branch

Kaluga Branch of Bauman Moscow State Technical

University, 2 Bazhenova Str., Kaluga, 248000, Russian

Federation

mp.prokofyev@gmail.com

Vladimir Kirillov

Chair of Computer-aided design

BMSTU Kaluga Branch

Kaluga Branch of Bauman Moscow State Technical

University, 2 Bazhenova Str., Kaluga, 248000, Russian

Federation

kvu@bmstu-kaluga.ru

Abstract—This paper describes a flexible workflow for

generative design applied to architectural space planning.

Generative design can be described as a process of exploration of

design space according to high-level goals, constraints, and

preferences defined by the user. Building software system that

implements generative design methods is a complicated task.

Existing state-of-art papers on architectural generative design

sidestep an issue of problems emerging while developing and

implementing generative methods into real solutions. Current

research provides some systematization and generalization on

generative architectural design and problems behind the

implementation of generative evolutionary concepts on different

stages. Awareness about system level problems could help

developers to build highly efficient generative design software

and components for new generation of BIM solutions.

Keywords—generative; design; architecture; space; planning;

genetics; evolution; bim

I. INTRODUCTION

BIM or Building Information Modelling is a process for
creating and managing information on a construction project
across the project lifecycle. It brings together all of the
information about every component of a building, in one place.
Now BIM is in transition to the third “level of maturity” when
questions of collaborative work, cloud computing, and open
data formats arise and become urgent. In such conditions,
generative design becomes a present-day topic of interest
again. Applied to the conceptual design stage of building
lifecycle it could make a dramatic impact on entire
architectural practice. According to survey results on
integration of BIM and generative design [1], about 80% of
practitioners said that integration of BIM and generative design
could help to overcome difficulties they face with on
conceptual design stage.

II. GENERATIVE DESIGN

Generative design (GD) is a field, which incorporates

architecture, design, and computations. It is a process of

exploration of design space according to high-level goals,

constraints, and preferences defined by the user. After

architectural space is observed, GD program reports to the

designer which options it considers promising for further

analysis. The goal of the process is to decrease the time of

concept design development and provide stakeholders with a

wider variety of design solutions.

On conceptual design stage, generative design system

provides the designer with a much deeper exploration of

complex design spaces. Potentially it helps to deliver more

efficient complex design concepts to stakeholders much faster.

Mathematically speaking it is possible to describe

generative design task as design optimization problem (1):

 (1)

subject to gj(x) ≤ 0; j = 1,2,…, m; hl(x) = 0; l = 1,2,…, b;

where (2)

 (2)

is a vector of objective functions, k is the number of

objective functions, m is the number of inequality constraints,

and b is the number of equality constraints. x=[x1, x2, …, xn] is

a vector of design variables.

Methods of objectives minimization can vary.

Marler and Arora [2] provide a comprehensive survey of

optimization methods for engineering tasks. Research [3]

contains a brief overview of other works related to generative

design problem as well. Generative design approach proposed

in this paper incorporates evolutionary (genetic) systems and

adaptation paradigms into the architectural design process to

solve the minimization problem.

For multiple-objective problems, the objectives are

generally conflicting, preventing simultaneous optimization of

159

each objective. Genetic algorithms (GA) are a meta-heuristic

that is particularly well suited for this class of problems.

Traditional GA are customized to accommodate multi-

objective problems by using specialized fitness functions and

introducing methods to promote solution diversity [4].

The concept of GA was developed by Holland and his
colleagues in the 1960s and 1970s [5]. GAs are inspired by the
evolutionist theory explaining the origin of species.

In GA terminology, a solution vector x X is called an
individual or a chromosome. Chromosomes are made of
discrete units called genes. Each gene controls one or more
features of the chromosome. GA operate with a collection of
chromosomes, called a population. GA use two operators to
generate new solutions from existing ones: crossover and
mutation. The crossover operator is the most important
operator of GA. In the crossover, generally, two
chromosomes, called parents, are combined together to form
new chromosomes, called offspring. The mutation operator
introduces random changes into characteristics of
chromosomes. Mutation is generally applied at the gene level.
Reproduction involves selection of chromosomes for the next
generation. In the most general case, the fitness of an
individual determines the probability of its survival for the
next generation [4].

Another of the critical components in evolutionary design
system is the relationship between genotype and phenotype.
Using generative design notion phenotype is a high-level
design representation while genotype is genetic chromosome
code of the design. The generative approach described in this
paper works on both of the levels.

III. PROBLEMS OF GENERATIVE DESIGN SYSTEMS

Existing state-of-art papers on architectural generative
design, such as [3] or [6], sidestep an issue of problems
emerging while developing and implementing generative
methods into real software solutions. This knowledge about
system level problems could help developers to build more
efficient generative design software and components for new
generation of BIM solutions.

A. Encoding problem

Normally, a chromosome corresponds to a unique solution
x in the solution space. This requires a mapping mechanism
between the solution space and the chromosomes. This
mapping is called an encoding [4].

In fact, genetic evolution algorithms work on the encoding
of a problem, not on the problem itself. Therefore, choosing
encoding schema for generative design method is an essential
task.

In the original implementation of GA by Holland, genes
are assumed to be binary digits [4]. In later implementations,
more varied gene types have been introduced: permutation
encoding, floating point encoding, tree encoding, etc.
Nevertheless, none of these encoding schemas are applicable
to generative design without any modification. It means that it
is very complicated to develop universal encoding method for

any type of design. Architectural conceptual planning task
proposes that design space contains elements of different types
and structure: walls, doors, windows, floor, etc.; and
developing encoding schema we should decide what parts of
the design are important for genetic representation.

Encoding schema depends on parametrization concepts
and influences crossover and mutation operators logic.

B. Crossover and mutation problem

As it was mentioned earlier, crossover and mutation
operators represent core evolution mechanisms and operate on
the genotype level where encoding is important.

If parent chromosomes encode designs with different
configurations, for example, with twelve and eleven rooms or
zones or with different rooms placement, crossover operator
should process such cases and include corresponding
conditions or verifications on configuration equality. Mutation
strategy is of great importance as well. Mutation helps to
overcome local optima cases but if the mutation is performed
on the entire feasible design set it can break all design solution
geometry. Therefore, the developer should process all possible
cases of such “wrong” evolution behavior and build
corresponding strategies for crossover and mutation operators.

C. Fitness evaluation problem

Evaluation problem addresses the fact that design itself is
high-dimensional space and fitness evaluation could depend
on design parameters that are not encoded in the chromosome.

In the most general case, the fitness of generated individual
determines the probability of its survival for the next
generation. This probability depends on the performance and
quality of the generated solution, which are defined by user
metrics. Evaluation of fitness on particular metric could
require additional design parameters not encoded in
chromosome or usage of special software. Therefore, it is
more flexible to compute fitness function not on the level of
genotype (chromosome) but on the level of phenotype
(design).

D. Complexity and performance

In fact, the complexity of the generative process itself
depends on many parameters including hyper-parameters of
the evolution process, the number of evolution epochs, the
complexity of evaluation methods, the number of metrics, etc.

While fitness evaluation could require including special
third-party software or methods into evolution process, the
complexity of the entire generative process could grow
dramatically.

Moreover, some of the parameters could stay uncertain
during all generative process. For example, the quantity of
evolution epochs depends on termination criteria of the
evolution process, which could turn to be unreachable. The
upper bound for that parameter which is usually defined by
maximum iterations limit could archive hundreds of thousand
iterations or more.

160

Therefore, evaluation of generative method performance is
possible only when the particular generative case is
considered.

IV. METHODOLOGY

Workflow of generative architecture design proposed in
this paper is organized into the following steps (see Figure 1).

Fig. 1. Proposed generative design workflow

A. Preprocessing

Preprocessing stage is crucial for the success of generative
design system development. This step contains input of
different user parameters and following generative process
configuration.

Input parameters could be divided into the following
groups:

1) Design preferences: This group of parameters includes

preferences resulting from requirements specification and

stakeholders expectations. For example, recommended

planning, desired number of storeys, etc.

2) Design metric constraints: This group of parameters
include metric constraints inferring from requirements
specification. Research [3] propose the following
classification for architectural performance metrics:

 Those that can be easily quantified and calculated using
existing tools (e.g. daylight analysis);

 Those that can theoretically be quantified but cannot be
computed using existing tools, for which new
computation tools must be developed (e.g. work style
preference and activity hotspots);

 Those that cannot be quantified and must be addressed
through other means outside of generative design (e.g.
beauty).

3) Design configuration parameters: This group includes

constraint parameters that describe desired design solution.

For instance, zones types and placement, parametrization

preferences and strategies, etc. Geometry configuration

parameters could be presented as initial solution model file. In

this case, corresponding file parsers should be provided. For

instance, IFC [7] parser.

4) Strategies types and parameters: This group includes

parameters defining types of crossover, mutation, selection

and other strategies and their corresponding parameters.

5) Generation hyper-parameters: This group includes

hyper-parameters of evolution strategy, for instance,

population size, termination criteria, etc.

Combination of described input data defines limitations of
the entire generative process. It is not mandatory to define all
of the listed parameters in a macro-configuration way, but all
of them influence the results of generative design and stay
accountable.

The way this macro-configuration is provided depends on
the purpose of developing a generative system and BIM
software this system is integrated with.

B. Initialization

Initialization should be performed both on phenotype and
genotype levels. Actually, parametrization strategy defines
initialization strategy, and different generative process goals
could lead to different parametrization strategies. Various
segmentation methods could be used for design initialization:
nearest neighbor methods (e.g. Voronov diagram), reference
geometry markup, etc.

When design initialization is done, generated phenotypes
should be mapped to initial population of chromosomes.
Separation of phenotype and genotype initialization is
important because design initialization relates to the
parametrization of design geometry while genotype
initialization usually uses resulting parameters. The
parameters define chromosomes and genes structure.

Therefore, building initialization module developer should
use flexible mechanisms and approaches to archive a certain
level of generalization.

C. Evolution

Combination of crossover, mutation and selection
strategies defines evolution strategy. While generative design
task could require optimizing design based on number of
metrics, different multi-objective evolutionary strategies and
algorithms could be used: Multi-objective Genetic Algorithm

161

(MOGA) [8], Niched Pareto Genetic Algorithm (NPGA) [9],
Weight-based Genetic Algorithm (WBGA) [10], Random
Weighted Genetic Algorithm (RWGA) [11], Nondominated
Sorting Genetic Algorithm (NSGA) [12], Strength Pareto
Evolutionary Algorithm (SPEA) [13], improved SPEA
(SPEA2) [14], Pareto-Archived Evolution Strategy (PAES)
[15], Pareto Envelope-based Selection Algorithm (PESA)
[16], Region-based Selection in Evolutionary Multiobjective
Optimization (PESA-II) [17], Fast Nondominated Sorting
Genetic Algorithm (NSGA-II) [18], Multi-objective
Evolutionary Algorithm (MEA) [19], Micro-GA [20], Rank-
Density Based Genetic Algorithm (RDGA) [21], and Dynamic
Multi-objective Evolutionary Algorithm (DMOEA) [22].
Research [4] provides a comparison of the most well-known
multi-objective genetic algorithms.

Despite the chosen evolution strategy, crossover and
mutation operations could lead to different design anomalies.
In this paper, the following notion is used.

Two chromosomes are compatible with each other if and
only if they have equal structure and encode equal
configuration.

Term structure relates to the genotype level and means
using encoding schema. Term configuration relates to the
phenotype level and means configuration of the design
solution. For instance, two chromosomes with the same
configuration (e.g. number and placement of rooms) could be
encoded using different schemas. Similarly, two
chromosomes, which encode different configuration, could
use the same encoding schema. In both cases – chromosomes
are not compatible. Crossover of chromosomes that are not
compatible could lead to unpredictable or even broke design
geometry.

There are different selection procedures in genetic
algorithms depending on how the fitness values are used.
Proportional selection, ranking, and tournament selection are
the most popular selection procedures. For generative design
task additional selection filtering of designs could be used to
increase generation stability.

D. Fitness evaluation

Fitness evaluation process depends on metric constraints
defined by user input. Depend on metric type evaluation
process could require integration with special software and
libraries.

Developing evaluation module questions of performance
and efficiency are of great importance. Usually, each metric is
independent and can be computed using parallel computations.

Usage of special software leads to the problem of mapping
mechanisms development for each type of third-party
software. These procedures also increase the evaluation step
complexity.

Some of design metrics could not be measured by existing
engineering tools and could require the development of new
one. A good example of such metric is beauty or aesthetics.
Application of machine learning methods for this task requires
further research.

E. Postprocessing

Postprocessing stage includes automated pre-filtering and
manual filtering steps.

Manual filtering is just a process of exploring generated
solutions by the designer using different filtering tools.
However, resulting solutions could contain many “similar”
designs or ever duplicates depending on evolution selection
strategy. Therefore, an additional step should be used to
reduce complexity and quantity of generated solutions. Pre-
filtering helps to solve this task.

This step also required integration with parent BIM
software to export resulting designs in the appropriate format,
for example, IFC [7].

V. CONCLUSION

This paper described architectural generative design
process and provided some systematization and generalization
on the development of custom generative design method.
Main problems behind the implementation of generative
evolutionary concepts on different stages were discussed.

Developing universal architectural generative design

method is a complicated task, and macro-configuration of the

generative process through parameters input is crucial for the

success of generative design software development. It is not

mandatory to define all of the existing parameters in the

macro-configuration way, but all of them influence the results

of generative design and stay accountable.

Parametrization strategy and encoding schema are

connected. Together they form core element of evolution –

genotype. Genotype and phenotype should be considered

separately on different evolution stages because it makes the

generative process more flexible. Fitness evaluation could be

challenging because of development of custom evaluation

methods. Moreover, it influences the complexity and

performance of entire evolution process to great extent.

Finally, the proposed workflow could be used as a

framework for the development of custom generative design

methods for new generation of BIM solutions.

REFERENCES

[1] Abrishami, S., Goulding, J., Rahimian, F. P., & Ganah, A. (2014).
Integration of BIM and generative design to exploit AEC conceptual
design innovation. Information Technology in Construction, 19, 350-
359.

[2] Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective
optimization methods for engineering. Structural and multidisciplinary
optimization, 26(6), 369-395.

[3] Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R., ... &
Benjamin, D. (2017). Project Discover: An Application of Generative
Design for Architectural Space Planning. In Symposium on Simulation
for Architecture and Urban Design.

[4] Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective
optimization using genetic algorithms: A tutorial. Reliability
Engineering & System Safety, 91(9), 992-1007.

[5] Holland JH. Adaptation in natural and artificial systems. Ann Arbor:
University of Michigan Press; 1975.

162

[6] Berquist, J., Tessier, A., O’Brien, W., Attar, R., & Khan, A. An
Investigation of Generative Design for Heating, Ventilation, and Air-
Conditioning.

[7] IFC4 Documentation. URL: http://www.buildingsmart-
tech.org/ifc/IFC4/final/html/

[8] Fonseca CM, Fleming PJ. Multiobjective genetic algorithms. In:
IEEcolloquium on ‘Genetic Algorithms for Control Systems
Engineering’ (Digest No. 1993/130), 28 May 1993. London, UK: IEE;
1993.

[9] Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic algorithm
for multiobjective optimization. In: Proceedings of the first IEEE
conference on evolutionary computation. IEEE world congress on
computational intelligence, 27–29 June, 1994. Orlando, FL, USA: IEEE;
1994.

[10] Hajela P, lin C-y. Genetic search strategies in multicriterion optimal
design. Struct Optimization 1992;4(2):99–107.

[11] Murata T, Ishibuchi H. MOGA: multi-objective genetic algorithms. In:
Proceedings of the 1995 IEEE international conference on evolutionary
computation, 29 November–1 December, 1995. Perth, WA, Australia:
IEEE; 1995.

[12] Srinivas N, Deb K. Multiobjective optimization using nondominated
sorting in genetic algorithms. J Evol Comput 1994;2(3):221–48.

[13] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE Trans
Evol Comput 1999;3(4):257–71.

[14] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto
evolutionary algorithm. Swiss Federal Institute Technology: Zurich,
Switzerland; 2001.

[15] Knowles JD, Corne DW. Approximating the nondominated front using
the Pareto archived evolution strategy. Evol Comput 2000;8(2):149–72.

[16] Corne DW, Knowles JD, Oates MJ. The Pareto envelope-based selection
algorithm for multiobjective optimization. In: Proceedings of sixth
international conference on parallel problem solving from Nature, 18–20
September, 2000. Paris, France: Springer; 2000.

[17] Corne D, Jerram NR, Knowles J, Oates J. PESA-II: region-based
selection in evolutionary multiobjective optimization. In: Proceedings of
the genetic and evolutionary computation conference (GECCO-2001),
San Francisco, CA, 2001.

[18] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
2002;6(2):182–97.

[19] Sarker R, Liang K-H, Newton C. A new multiobjective evolutionary
algorithm. Eur J Oper Res 2002;140(1):12–23.

[20] Coello CAC, Pulido GT. A micro-genetic algorithm for multiobjective
optimization. In: Evolutionary multi-criterion optimization. First
international conference, EMO 2001, 7–9 March, 2001. Zurich,
Switzerland: Springer; 2001.

[21] Lu H, Yen GG. Rank-density-based multiobjective genetic algorithm
and benchmark test function study. IEEE Trans Evol Comput
2003;7(4):325–43.

[22] Yen GG, Lu H. Dynamic multiobjective evolutionary algorithm:
adaptive cell-based rank and density estimation. IEEE Trans Evol
Comput 2003;7(3):253–74.

163

Product Reviews Sentiment Analysis in Russian

Sergey Smetanin

Faculty of Business and Management

National Research University

Higher School of Economics

Moscow, Russia

sismetanin@gmail.com

Mikhail Komarov

Faculty of Business and Management

National Research University

Higher School of Economics

Moscow, Russia

mkomarov@hse.ru

Abstract — Nowadays reviews on e-commerce sites that

generated by customers tend to be a valuable resource in terms of

evaluation of customers’ behavior, their preferences and needs.

This paper provides an approach for sentiment analysis of product

reviews in Russian using a convolutional neural network. The

training dataset was collected from reviews on Aliexpress top-

ranked goods, where the user-ranked score was used as a class

label on a 5-point scale. Word2Vec was used in order to set up pre-

trained word embeddings for one-layer convolutional neural

network, which was constructed using Keras with Theano

backend. Experiments showed F-measure score up to 52.51%.

Keywords—sentimen analysis; convolutional neural network;

natural language processing.

I. INTRODUCTION

It is a common practice for users of the e-commerce
sites not only to analyze recommendations of users,
which already have bought a specific product, but
also to post reviews of the products that they
purchase. As online shopping is becoming more and
more popular, a volume of user-generated textual
content increase dramatically.

This paper major goal is to present the proposed
Convolutional Neural Network (CNN) architecture
for sentiment analysis of product reviews in Russian
based on pre-trained word embeddings, obtained
using Word2Vec. The training data for the classifier
were collected from the e-commerce site
Aliexpress [4].

The rest of the article is organized as follows.

Section 2 lays emphasis on the overview of the

related work. Section 3 is focused on the data

collection process. Pre-processing and word

embedding techniques are provided in section 4. In

section 5 multinomial Naïve Bayes classifier as a

baseline model is described. The CNN architecture is

proposed in section 6. In the conclusion, the results

and further ways of research of this paper are

discussed.

II. RELATED WORK

Machine learning techniques for sentiment analysis
of product reviews tend to be a common topic in
natural language processing sphere. Basic
classification algorithms for sentiment analysis such
as Naïve Bayes and decision list classifier were
described in many top-cited papers [23] [12] [20], so
it was decided to use it as a baseline solution.

In recent years deep learning techniques have
captured the attention of researchers due to their
ability to outperform significantly traditional
methods. To explore state-of-the-art solutions, the
top-ranked evaluations of computational semantic
analysis systems for English and Russian were
examined in the first order.

The first competition for predominantly English
language is SemEval-2017, which was organized
under the umbrella of SIGLEX, the Special Interest
Group on the Lexicon of the Association for
Computational Linguistics. The paper [10] describes
the approach, which won all five subtasks in
SemEval-2017 Task 4 [29], which are focused in
sentiment analysis. The author pre-trained word
embeddings on a large amount of unlabeled data
using Word2Vec [17], FastText [7], Glove [22], and
then fine-tuned obtained representations using distant
supervision. CNNs and Long Short Term Memory
(LSTMs) were finally trained on the dataset provided
by SemEval-2017. In addition to separate
performance evaluation, several CNNs and LSTMs
were combined to boost classification performance.

The second one is SentiRuEval-2016 Sentiment
Analysis Task, which was organized as a special

164

direction of the International Conference on
Computational Linguistics and Intellectual
Technologies «Dialogue-2016». LSTMs and CNNs
applications to the aspect-based sentiment analysis
task were explored in the paper [27], which were
selected as the best model at SentiRuEval-2016 [16].
The authors described approaches based on Gated
Recurrent Unit neural network (GRU), CNN, and
SVM, which also used Word2Vec vectors as word
embeddings. The GRU-based approach shows the
best results in terms of macro-averaged F1-score.

Deep CNNs, which were proposed in [11], jointly
uses character-level, word-level and sentence-level
features to perform sentiment analysis of short texts.
This approach achieved 85.7% and 86.4% accuracy
in binary classification task for SSTb corpus [26] and
STS corpus [12], respectively, and 48.3% accuracy in
5-class classification for SSTb corpus.

The effect of architecture components on CNN model
performance was conducted in [29]. Authors
proposed a one-layer CNN architecture for sentence
classification, where simultaneously used multiple
filters for the same region size and multiple kinds of
filters with different region sizes. As a result, authors
summarized their experience into a practitioners’
guide to CNN for sentiment classification at a
sentence level.

According to the [15], the convolutional neural
networks should not be complex to realize strong
results. A simple one-layer CNN demonstrated state-
of-the-art accuracy results for English language
datasets: 81.5% for binary movie reviews dataset
with one sentence per review [21], 88.1% for SST-2
corpus, 85.0% for binary customer reviews dataset
[13], and 89.6% for opinion polarity detection
subtask of the MPQA dataset [28].

Based on the analyzed papers it was decided to use
CNN for Russian language because of the ability to
provide state-of-the art results without complex
structure. The proposed CNN architecture was
inspired by approaches described in [10] and [29].
The Word2Vec representation for initial word
embeddings was chosen based on information
provided by papers [25] and [16].

III. DATA COLLECTION

The training dataset was collected from reviews on
Aliexpress top-ranked goods, where the user-ranked
score was used as a class label on a 5-point scale. The

Aliexpress Reviews Dataset was collected from the
all top-level product categories from the official
website. It has 4529391 samples.

According to the obtained data, in some cases, it is
not only difficult to distinguish reviews score with the
close values (e.g. with score 1 and 2 or with score 4
and 5) but also to correctly evaluate reviews with the
same texts. For example, the review text
“Нормально” (“Fine” translation from Russian into
English) has 42.45% reviews with a score of 5, 27.
36% reviews with a score of 4, 29.25% reviews with
a score of 3, and 0.94% reviews with a score of 2. It’s
clear that such contradictions in the training dataset
tend to affect the classification score, so we decided
to mark these reviews with the class label, which is
the most common for this text in the collected dataset.
Coming back to the example mentioned above, all
reviews with such text should be labelled with a score
of 5 because it occurs in 42.45% of cases.

After such type of preprocessing, we found, that data
are quite imbalanced, so we decided to use an
undersamping technique to solve this problem. For
each class 30000 of reviews were randomly selected
to make balanced dataset.

IV. WORD EMBEDDINGS

A. Text Pre-processing

Before any training stage, reviews were pre-

processed using the following procedure:

• All characters in the text are converted to
lowercase.

• All non-alphabet characters, except numbers,
emoji, and some punctuation marks (“+”, “-”,
“%”), are replaced with space.

• Emoji are replaced by the tokens defined by the
Unicode consortium [2], e.g. “simple_smile”,
“laughing”, “thumbsdown”,
“disappointed_relieved” and so on. Emoji for
Python library [1] was used to extract emoji
from raw texts and convert them to their textual
annotation.

• Repeated letters, which occurs together more
than 2 times in a row, were replaced by 2 such
letters. For instance, “so cooool” was replaced
with “so cool”.

165

B. Word2Vec

Word2vec [17] [18] [19] is a computationally-
efficient predictive model for learning low-
dimensional word embeddings from raw textual data.
It consists of the Continuous Bag-of-Words model
(CBOW) and the Skip-Gram model. They are quite
similar, except the CBOW predicts the target word
according to the current context, and the Skip-Gram
does the inverse task, i.e. predicts the context
according to the current target word. Word vectors
that were calculated using Word2Vec have been
shown to capture semantic information. Thus, their
usage in many NLP tasks leads to major
improvements.

We used Gensim [24] with Word2Vec support for
obtaining vector representations of Russian words.
The model was trained on the entire dataset, which
was collected and pre-processed at the previous steps.
Each review was tokenized into sentences using
NLTK [3]. The following training parameters were
used based on [27]:

• CBOW architecture with negative sampling;

• dimensionality of the feature vector is 200;

• the maximum distance between analyzed
words within a sentence is 5;

• number of epochs over the corpus is 5;

• ignores all words with the total frequency lower
than 2 per corpus.

V. BASELINE MODEL

The multinomial Naïve Bayes Classifier was selected
as a baseline classification algorithm because of its
tendency to perform significantly well in the
sentiment analysis task [14]. The basic idea of Naïve
Bayes technique is to find the probabilities of classes
assigned to texts by using the joint probabilities of
words and classes. Consider the given data point 𝑥
and class 𝑐𝐶. The starting point is Bayes’ theorem
for conditional probability which estimates as
follows:

 𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)

𝑃(𝑥)
 ()

 𝑃(𝑥|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑥,𝑐)

𝑐𝑜𝑢𝑛𝑡(𝑐)
 ()

Where 𝑐𝑜𝑢𝑛𝑡(𝑥, 𝑐) is the count of word x in class c;

count(c) is a count of all words in class c. For texts

with unknown words, the estimation (2) might be

problematic because it would give zero probability.

The usage of Laplace smoothing is a common way to

solve this problem (3).

 𝑃(𝑥|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑥,𝑐)+1

𝑐𝑜𝑢𝑛𝑡(𝑐)+|𝑉|+1
 ()

Where |V| is the length of vocabulary in training set.

From the assumption of word independence, it
appears that for data point x = {x1, x2, ..., xi} the
probability of each of its features to occur in the given
class is independent. Thus, the estimation of this
probability can be calculated as follows:

 𝑃(𝑐|𝑥) = 𝑃(𝑐) ∏ 𝑃(𝑥𝑖|𝐶) ()

In this context, that means the final equation for the
class chosen by a naive Bayes classifier is (5).

 𝑐𝑛𝑏 = argmax
𝑐∈𝐶

𝑃(𝑐) ∏ 𝑃(𝑥𝑖|𝑐) ()

To avoid underflow and increase speed, the Naive
Bayes calculations are performed in the log space (6).

 𝑐𝑛𝑏 = argmax
𝑐∈𝐶

(log P(c) + ∑ log 𝑃(𝑥𝑖|𝑐)) ()

The classifier was implemented using machine
learning library Scikit-Learn [5]. The Naïve Bayes
classifier was trained on the balanced dataset with
150000 reviews. The grid search was used to
optimize following training parameters [9]: n-gram
range, use of TF-IDF, TF-IDF normalization, use of
Additive (Laplace/Lidstone) smoothing. The dataset
was split into random train (70% of the entire dataset)
and test subset (30% of the entire dataset). The 10-
fold cross-validation shows accuracy on the test
subset up to 47.12%.

VI. CONVOLUTIONAL NEURAL NETWORK

A. CNN Architecture

The proposed CNN architecture was inspired by
approaches described in [10] and [29]. To begin with,
a tokenized sentence converted to a sentence matrix,
where each row represents a word vector. In our case,
this representation is outputs from the trained
Word2Vec model, where the dimensionality of words

166

vector is 𝑑 = 200. Assuming that a length of a given
sentence is s (based on our dataset we decided to use
𝑠 = 60), the dimensionality of a sentence matrix is
𝑠 × 𝑑.

Fig. 1. The simplified illustration of a CNN architecture for review

classification. There are five filter region sizes: 1, 2, 3, 4 and 5, each of which
has 3 filters. These filters generate feature maps by performing colvutions on

the sentence matrix. Next 1-max pooling performed on each feature map and

results are concatenated into one vector. Concatenated features vector goes

through the fully-connected hidden layer and at the final stage it processed by

the softmax activation layer.

A configuration of different filter sizes and their
amount affect significantly the classification quality.
For example, multiple filters with the same region
sizes provide with complementary features of the
analyzed data, whereas multiple types of filters with
a variety of region sizes allow focusing on smaller or
larger regions of the texts. We use five filter sizes [1,
2, 3, 4, 5] with a total of 50, 50, 50, 30, 20 filtering
matrices (ReLU activation function) for each
convolution filter size (based on [10] and [29]),
consequently. It should be mentioned that significant
part of the reviews dataset contains texts with only
one token (an emoticon or a word). Thus, it was
decided to use filters size of 1 in order to correctly
extract information from these reviews.

After that, a max-pooling operation is applied to each
convolutional layer output in order to extract major
features, independently of their location in the text. It
can be interpreted as an extraction of the most
important n-grams from the text based on their
embeddings. Next, maximum values obtained from
each convolutional layer combined into one vector
and then processed by fully-connected layers of size
100. At the last step, feature maps from the fully-

connected layer go through a sigmoid activation layer
to predict the final classification labels.

To reduce overfitting, dropout layers were added
after the max-pooling layer (with dropout probability
𝑝 = 0.3) and after the fully connected layer (with
dropout probability 𝑝 = 0.1).

B. Supervised Training

At the training stage, the balanced dataset with
150000 reviews was used. It was divided into three
parts: train dataset (60% of the entire dataset),
validation dataset (20% of the entire dataset), and test
dataset (20% of the entire dataset). The loss function
was minimized using the Adam optimizer with a
learning rate of 0.001. The embedding layer was
initialized with Word2Vec word embeddings and was
frozen for the first 10 epochs. Then we train model
from the previous step with best validation scores
(that was the model obtained at the 5 epoch) for
additional 10 epochs with unfrozen embeddings. The
best results on the validation subset was obtained at
the 3 epochs and in terms of F-measure was 52.80%.
This model was evaluated on the test dataset and
demonstrated F-measure score up to 52.51%.

The models were implemented using Keras [8] with

Theano [6] backend. Experiments were run on AWS

EC2 GPU optimized instance g2.2xlarge (1 NVIDIA

GRID K520 Kepler GPU).

VII. RESULTS

We have proposed CNN architecture for reviews

classification in Russia and have trained it on the

collected dataset. Preprocessed reviews were

mapped into feature space using Wor2Vec. The best

validation score for CNN in terms of F-measure was

52.51%, while MNB demonstrated F-measure value

up to 47.12%. Thus, CNN significantly

outperformed the baseline approach.

The data, which was obtained in the research, is

available by the URL

https://bitbucket.org/sismetanin/aliexpress-reviews-

dataset.

The further research will be focused on adding a

second layer of hidden filters in the CNN architecture

in order to extract and process more complex

syntactic and semantic features.

REFERENCES

167

https://bitbucket.org/sismetanin/aliexpress-reviews-dataset
https://bitbucket.org/sismetanin/aliexpress-reviews-dataset

[1] "Emoji for Python", Python, 2018. [Online]. Available:
https://pypi.python.org/pypi/emoji/. [Accessed: 25- Mar- 2018].

[2] "Full Emoji List, v11.0", The Unicode Consortium, 2018. [Online].
Available: http://www.unicode.org/emoji/charts/full-emoji-list.html.
[Accessed: 25- Mar- 2018].

[3] "NLTK documentation", Natural Language Toolkit, 2018. [Online].
Available: https://www.nltk.org/. [Accessed: 25- Mar- 2018].

[4] "Products from China Wholesalers at Aliexpress", Aliexpress, 2018.
[Online]. Available: https://www.aliexpress.com. [Accessed: 25- Mar-
2018].

[5] "Scikit-Learn: Machine Learning in Python", Scikit-Learn, 2018.
[Online]. Available: http://scikit-learn.org/stable/. [Accessed: 25- Mar-
2018].

[6] Bergstra J. et al. “Theano: A CPU and GPU math compiler in Python”,
Proceedings of the Python for Scientific Computing Conference (SciPy),
pp. 1-7, 2010.

[7] Bojanowski P., Grave E., Joulin A., Mikolov T. “Enriching word vectors
with subword information,” arXiv preprint arXiv:1607.04606, 2016.

[8] Chollet F. Keras. 2015.

[9] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze,
Introduction to Information Retrieval. Cambridge University Press. 2008.

[10] Cliche M. “BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis
with CNNs and LSTMs”, Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), pp. 572–579, 2017.

[11] dos Santos C., Gatti M. “Deep convolutional neural networks for
sentiment analysis of short texts”, Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical
Papers, pp. 69–78, 2014.

[12] Go A., Bhayani R., Huang L. "Twitter Sentiment Classification using
Distant Supervision," CS224N Project Report, pp. 1-12, 2009.

[13] Hu M., Liu B. "Mining and summarizing customer reviews," Proceedings
of the tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 168-177, 2004.

[14] Jurafsky D. Martin J. “Naive Bayes and Sentiment Classification,” in
Speech and Language Processing, draft of August 7, 2017.

[15] Kim Y. "Convolutional neural networks for sentence classification,"
arXiv preprint arXiv:1408.5882, 2014.

[16] Loukachevitch N. V., Rubtsova Y. V. “SentiRuEval-2016: overcoming
time gap and data sparsity in tweet sentiment analysis,” Computational
Linguistics and Intellectual Technologies: Proceedings of the
International Conference Dialogue, pp. 375–384, 2016.

[17] Mikolov T., Chen K., Corrado G., Dean J. “Efficient estimation of word
representations in vector space”, arXiv preprint arXiv:1301.3781, 2013.

[18] Mikolov T., Sutskever I., Chen K., Corrado G. S., Dean J. “Distributed
representations of words and phrases and their compositionality”,
Advances in Neural Information Processing Systems, pp. 3111-3119,
2013.

[19] Mikolov T., Yih W., Zweig G. “Linguistic regularities in continuous
space word representations”, Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 746-751, 2013.

[20] Pak A., Paroubek P. "Twitter as a Corpus for Sentiment Analysis and
Opinion Mining," Proceedings of the Seventh Conference on
International Language Resources and Evaluation, pp. 1320–1326, 2010.

[21] Pang B., Lee L. "Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales," Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 2005.

[22] Pennington J., Socher R., Manning C. “Glove: Global vectors for word
representation,” Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 1532-1543, 2014.

[23] Rain C. “Sentiment Analysis in Amazon Reviews Using Probabilistic
Machine Learning”, Swarthmore College, 2013.

[24] Rehurek R., Sojka P. “Software framework for topic modelling with large
corpora”, Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pp. 46-50, 2010.

[25] Rosenthal S., Farra N., Nakov P. “SemEval-2017 task 4: Sentiment
analysis in Twitter” Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017), pp. 502–518, 2017.

[26] Socher R., Perelygin A., Wu J., Chuang J., Manning C. D., Ng A., Potts
C. "Recursive deep models for semantic compositionality over a
sentiment treebank," Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 1631-1642, 2013.

[27] Trofimovich J., "Comparison of Neural Network Architectures for
Sentiment Analysis of Russian Tweets", Computational Linguistics and
Intellectual Technologies: Proceedings of the International Conference
Dialogue, pp. 50–59, 2016.

[28] Wiebe J., Wilson T., Cardie C., "Annotating Expressions of Opinions and
Emotions in Language", Language Resources and Evaluation, vol. 39, no.
2-3, pp. 165-210, 2005.

[29] Zhang Y., Wallace B. "A sensitivity Analysis of (and Practitioners' Guide
to) Convolutional Neural Networks for Sentence Classification," arXiv
preprint arXiv:1510.03820, 2015.

168

On the verification of strictly deterministic
behaviour of Timed Finite State Machines

Evgenii Vinarskii
Lomonosov Moscow State University

Moscow, Russia
vinevg2015@gmail.com

Vladimir Zakharov
Lomonosov Moscow State University

Moscow, Russia
zakh@cs.msu.su

Abstract—Finite State Machines (FSMs) are widely used as
formal models for solving numerous tasks in software engineer-
ing, VLSI design, development of telecommunication systems, etc.
To describe the behavior of a real-time system one could supply
FSM model with clocks — a continuous time parameters with
real values. In a Timed FSM (TFSM) inputs and outputs have
timestamps, and each transition is equipped with a timed guard
and an output delay to indicate time interval when the transition
is active and how much time does it take to produce an output.
A variety of algorithms for equivalence checking, minimization
and test generation were developed for TFSMs in many papers.
A distinguishing feature of TFSMs studied in these papers is
that the order in which output letters occur in an output timed
word does not depend on their timestamps. We think that such
behaviour of a TFSM is not realistic from the point of view of an
outside observer. In this paper we consider a more advanced and
adequate TFSM functioning; in our model the order in which
outputs become visible to an outsider is determined not only
by the order of inputs, but also by delays required for their
processing. When the same sequence of transitions is performed
by a TFSM modified in a such way, the same outputs may follow
in different order depending on the time when corresponding
inputs become available to the machine. A TFSM is called strictly
deterministic if every input timed word activates no more than
one sequence of transitions (trace) and for any input timed word
which activates this trace the letters in the output words always
follows in the same order (but, maybe, with different timestamps).
We studied the problem of checking whether a behaviour of an
improved model of TFSM is strictly deterministic. To this end
we showed how to verify whether an arbitrary given trace in a
TFSM is steady, i.e. preserves the same order of output letters for
every input timed word which activates this trace. Further, having
the criterion of trace steadiness, we developed an exhaustive
algorithm for checking the property of strict determinacy of
TFSMs. Exhaustive search in this case can hardly be avoided:
we proved that determinacy checking problem for our model of
TFSM is co-NP-hard.

I. INTRODUCTION

Finite State Machines (FSMs) are widely used as formal
models for analysis and synthesis of information processing
systems in software engineering, VLSI design, telecommu-
nication, etc. The most attractive feature of this model of
computation is its simplicity — many important synthesis
and analysis problems (equivalence checking, minimization,
test derivation, etc.) for classical FSMs can be solved in time
which is almost linear or quadratic of the size of a FSM under
consideration.

The concept of FSM is rather flexible. Since in many ap-
plications time aspects such as durations, delays, timeouts are
very important, FSMs can be augmented with some additional
features to describe the dependence of the behavior of a system
on events occurring in real time. One of the most advanced
timed extension of FSMs is the concept of Timed Automata
which was developed and studied in [1]. Timed Automata
are supplied with clocks (timers) for indicating real time
moments, measuring durations of events, providing timeout
effects. Transitions in such automata depends not only on the
incoming of the outside messages and signals but also on the
values of clocks. Further research showed that this model of
computation is very expressive and captures many important
features of real-time systems behaviour. On the other side,
Timed Automata in the full scope of their computing power are
very hard for analysis and transformations. The reachability
problem for Timed Automata is decidable [2], and, therefore,
this model of computation is suitable for formal verification of
real-time computer systems. But many other problems such as
universality, inclusion, determinizability, etc. are undecidable
(see [2], [8]), and this hampers considerably formal analysis
of Timed Automata.

When a Timed Automaton is capable to selectively reset
timers it can display rather sophisticated behaviour which is
very difficult for understanding and analysis. In some cases
such ability is very important; see, e.g. [9]. But a great deal
of real-time programs and devices operate with timers much
more simply: as soon as such a device switches to a new mode
of operation (new state), it resets all timers. Timed Finite State
Machines (TFSM) of this kind were studied in [5], [10], [13],
[14]. TFSM has the only timer which it resets ”automatically”
as soon as it moves from one state to another. On the other
hand, TFSMs, in contrast to Timed Automata introduced in
[1], operate like transducers: they receive a sequence of input
signals augmented with their timestamps (input timed word)
and output a sequence of responses also labeled by timestamps
(output timed word). The timestamps are real numbers which
indicate the time when an input signal becomes available to
a TFSM or an output response is generated. Transitions of a
TFSM are equipped with time guards to indicate time intervals
when transitions are active. Therefore, a reaction of a TFSM
to an input signal depends not only on the signal but also
on its timestamp. Some algorithms for equivalence checking,

169

minimization and test generation were developed for TFSMs
in [6], [5], [13], [14], [15]. It can be recognized that this model
of TFSM combines a sufficient expressive power for modeling
a wide class of real-time information processing systems and
a developed algorithmic support.

As it was noticed above a behaviour of a TFSM is char-
acterized by a pair sequences: an input timed word and a
corresponding output timed word. A distinguishing feature
of TFSMs studied in [5], [10], [13], [14], [15] is that an
output timed word is formed of timestamped output letters that
follows in the same order as the corresponding input letters
regardless of their timestamps. Meanwhile, suppose that a user
of some file management system gives a command ”Save” and
immediately after that a command ”Exit”. Then if a file to be
saved is small then the user will observe first a response ”File
is saved” and then a notification ”File Management System is
closed”. But if a file has a considerable size then it takes a lot
of time to close it. Therefore, it can happen that a user will
detect first a notification ”File Management System is closed”
and then, some time later, he/she will be surprised to find an
announcement ”File is saved”. Of course, the user may regard
such behaviour of the system enigmatic. But much worse if the
order in which these notifications appear may vary in different
sessions of the system. If a File Management System interacts
with other service programs such an interaction will almost
certainly lead to errors. However, if a behaviour of TFSMs is
defined as in the papers referred above then such a model can
not adequately capture behavioral defects of real-time systems,
similar to the one that was considered in the example.

To avoid this shortcoming of conventional TFSMs and to
make their behaviour more ”realistic” from the point of view
of an outside observer we offer some technical change to this
model. We will assume that an output timed word consists
of timestamped letters, and these letters always follow in
ascending order of their timestamps regardless of an order in
which the corresponding input letters entered a TFSM. In this
model it may happen so that an input b follows an input a but
a response to b appears before a response to a is computed.
Clearly, the defect with File Management System discussed
above becomes visible to an outside observer ”through” the
model of TFSMs thus modified.

At first sight, it may seem that this change only slightly
complicates the analysis of the behavior of such models. But
this is a false impression. In the initial model of TFSM the
formation of an output timed word is carried out by local
means for each state of the system. In our model this is a
global task since to find the proper position of a timestamped
output letter one should consider the run of TFSM as a whole.
Therefore, even the problem of checking whether a behaviour
of an improved model of TFSM is deterministic can not be
solved as easy and straightforwardly as in the case of the initial
model of TFSM.

It should be noticed that the property of deterministic
behavior is very important in theory real-time machines. As
it was said above, universality, inclusion and equivalence
checking problems are undecidable for Timed Automata in

general case [2] but all these problems have been shown to be
decidable for deterministic Timed Automata [3], [11]. How-
ever, testing whether a Timed Automaton is determinizable
has been proved undecidable [8]. Understanding and coping
with these weaknesses have attracted lots of research, and
classes of timed automata have been exhibited, that can be
effectively determinized [3], [12]. A generic construction that
is applicable to every Timed Automaton, and which, under
certain conditions, yields a deterministic Timed Automaton,
which is language-equivalent to the original timed automaton,
has been developed in [4].

We studied the determinacy checking problem for improved
TFSMs and present the results of our research in this paper.
First, we offer a criterion to determine whether a given
sequence of transition (trace) in a TFSM is steady, i.e. for
any input timed word which activates this trace the letters of
output words always follow in the same order (but, maybe,
with different timestamps). Then, using this criterion we
developed an exhaustive algorithm for checking the property
of strict determinacy of TFSMs. This property means that
every input timed word activates no more than one trace and
all traces in a TFSM are steady. Exhaustive search, although
been time consuming, can hardly be avoided in this case:
we proved that determinacy checking problem for improved
version of TFSMs is co-NP-hard by polynomially reducing to
its complement the subset-sum problem [7] which is known
to be NP-complete.

The structure of the paper is as follows. In Section II we
define the basic notions and introduce an improved concept of
TFSM (or, it would be better said, a concept of TFSM with an
improved behaviour). In Section III we present necessary and
sufficient conditions for steadiness of traces in a TFSM and
show how to use this criterion to check whether a given TFSM
is strictly deterministic. Section IV contains the results on the
complexity of checking the properties of strictly deterministic
behavior of TFSM. In the Conclusion we briefly outline the
consequences of our results and topics for further research.

II. PRELIMINARIES

Consider two non-empty finite alphabets I and O; the
alphabet I is an input alphabet and the alphabet O is an
output alphabet. The letters from I can be regarded as control
signals received by some real-time computing system, whereas
the letters from O may be viewed as responses (actions)
generated by the system. A finite sequence w = i1, i2, . . . , in
of input letters is called an input word, whereas a sequence
z = o1, o2, . . . , on of output letters is called an output word.
As usual, the time domain is represented by the set of non-
negative reals R+

0 . The set of all positive real numbers will be
denoted by R+. When such a system receives a control signal
(a letter i) its output depends not only on the input signal i
but also on
• a current internal state of the system,
• a time instance when i becomes available to a system,

and
• time required to process the input (output delay).

170

These aspects of real-time behaviour can be formalized with
the help of timestamps, time guards and delays. A timestamp
as well as a delay is a real number from R+. A timestamp
indicates a time instance when the system receives an input
signal or generates a response to it. A delay is time the system
needs to generate an output response after receiving an input
signal. A time guard is an interval g = 〈u, v〉, where 〈∈ {(, [},
〉 ∈ {),]}, and u, v are timestamps such that 0 < u < v. Time
intervals indicate the periods of time when transitions of a
system are active for processing input signals. As usual, the
term time sequences is reserved for an increasing sequence of
timestamps. For the sake of simplisity we will deal only with
time guards of the form (u, v]: all the results obtained in this
paper can be adapted with minor changes to arbitrary time
guards.

Let w = x1, x2, . . . xn and τ = t1, t2, . . . , tn be an input
(output) word and a time sequence, respectively, of the same
length. Then a pair (w, τ) is called a timed word. Every pair
of corresponding elements xj and tj , 1 ≤ j ≤ n, indicates
that an input signal (or an output response) xj appears at
time instance tj . In order to make this correspondence more
clear we will often write timed words as sequences of pairs
(w, τ) = (i1, t1), (i2, t2), . . . , (in, tn) whose components are
input signals (or output responses) and their timestamps.

A Finite State Machine (FSM) over the alphabets I and O
is a triple M = 〈S, sin, ρ〉 where

• S is a finite non-empty set of states,
• sin is an initial state,
• ρ ⊆ (S × I ×O × S) is a transition relation.

A transition (s, i, o, s′) means that FSM M when being at the
state s and receiving an input signal i moves to the state s′

and generates the output response o.
FSMs can not measure time and, therefore, they are un-

suitable for modeling the behavior of real-time systems. The
authors of [1] proposed to equip FSMs with clocks —
variables which take non-negative real values. To manipulate
with clocks machines use reset instructions, timed guards
and output delays. Time guards indicate time intervals during
which transitions are active and input signals can be processed.
An output delay indicates how much time does it take to
process an input. Thus, every transition in such a machine is
a quadruple 〈input, timed guard, output, delay〉. Input signals
and output responses are accompanied by timestamps. If an
input is marked by a timestamp which satisfies the time guard
then the transition fires, the machine moves to the next state
and generates the output. This output is marked by a timestamp
which is equal to the timestamp of the input plus the delay. For
real-time machines of this kind usual problems from automata
theory (equivalence and containment checking, minimization,
etc.) may be set up and solved. The minimization problem for
real-time machines is very important, since the complexity of
many analysis and synthesis algorithms depend on the size of
machines. In [14] this problem was studied under the so called
”slow environment assumption”: next input becomes available
only after an output response to the previous one is generated.

In this paper, we consider a more advanced real-time
machine; in this model the order in which outputs become
visible to an outside observer is determined not only by the
order in which inputs follow, but also by the delay required
for their processing. When the same sequence of transitions is
performed by such a machine the same outputs may follow
in different order depending on the arriving time of the
corresponding inputs. Our main goal is to develop equivalence
checking and minimization algorithms for real-time machines
of this kind. But, as the results of Automata Theory show, these
problem may have efficient solution only for deterministic
machines. Thus, our first step toward the solution of these
problems is to find a way to check if the behaviour of a
machine is deterministic.

But there is also another reason to study the problem
of checking the determinism of the behavior of real-time
machines. Unlike traditional discrete models of computation,
the behavior of real-time machines depends not only on the
control signals as such, but also on the time of their arrival.
However, the latter factor has a greater degree of uncertainty.
In most cases, in practice, it is desirable to reduce the effect
of this uncertainty to a minimum. Therefore, the determinacy
checking problem for real-time machines can be considered
as a special version of the verification problem — checking
that the time factor does not have an unforeseen influence on
the behavior of the system.

Formally, by Timed FSM (TFSM) over the alphabets I and
O we mean a quadruple M = (S, sin, G, ρ) where:

• S is a finite non-empty set of states,
• sin is an initial state.
• G is a set of timed guards,
• ρ ⊆ (S × I ×O × S ×G×R+) is a transition relation.

A transition (s, i, o, s′, g, d) should be understood as follows.
Suppose that TFSM receives the input letter i marked by a
timestamp t when being at the state s. If the previous letter has
been delivered to the TFSM at time t̂ such that ∆t = t− t̂ ∈ g
then the TFSM moves to the state s′ and outputs the letter
o marked with the timestamp τ = t + d. When algorithmic
and complexity issues of TFSM’s analysis and synthesis are
concerned then we assume that time guards and delays are
rational numbers, and the size of a TFSM is the length of a
binary string which encodes all transitions in the TFSM.

A trace tr in TFSM M is a sequence of transitions
(s0, a1, b1, s1, (u1, v1], d1),. . . , (sn−1, an, bn, sn, (un, vn], dn),
where every state sj , 0 < j < n, is an arrival state of one
transition and a departure state of the next transition.
We say that the trace tr converts an input timed word
α = (a1, t1), (a2, t2), . . . , (an, tn) to the timed output word
β = (bj1 , τ1), (bj2 , τ2), . . . , (bjn , τn), iff

• tj − tj−1 ∈ (uj , vj] holds for all j, 1 ≤ i ≤ n (it is
assumed that t0 = 0);

• β is such a permutation of the sequence γ = (b1, t1 +
d1), (b2, t2 + d2), . . . , (bn, tn + dn) that the second com-
ponents of the pairs τ1, τ2, . . . , τn constitute a time se-
quence.

171

Clearly, for every trace tr and an input timed word α its con-
version β (if any) is determined uniquely; such a conversion
will be denoted as conv(tr, α). If conv(tr, α) is defined then
we say that the input timed word α activates the trace tr.
We will say that the output word bj1 , bj2 , . . . , bjn is a plain
response to the input timed word α on the trace tr; it will be
denoted as resp(tr, α).

s0 s1 s2 s3
i,(0.5,2]/(o1,4) i,(1.5,2]/(o2,3) i,(1,1.5]/(o3,1)

Fig.1 TFSM M

Consider, for example, a TFSM M depicted in Fig. 1 and
a trace

tr = (s0, i, s1, o1, (0.5, 2], 4), (s1, i, s2, o2, (1.5, 2], 3),
(s2, i, s3, o3, (1, 1.5], 1)

in this TFSM. Then this trace
1) accepts an input timed word α1 = (i, 1), (i, 2.7), (i, 4.1)

and converts it to the output timed word β1 =
(o1, 5), (o3, 5.1), (o2, 5.7); thus, the plain response of M
to α1 is w1 = o1, o3, o2;

2) accepts an input timed word α2 =
(i, 1.5), (i, 3.2), (i, 4.3) and converts it to the output
timed word β2 = (o3, 5.3), (o1, 5.5), (o2, 6.2), and the
plain response of M to α2 is w2 = o3, o1, o2 which is
different from w1;

3) does not accept an input timed word α3 =
(i, 2.3), (i, 4), (i, 6).

III. STEADY TRACES AND STRICTLY DETERMINISTIC
TFSMS

As can be seen from the above example, a pair of input
timed words that differ only in timestamps of input signals
may activate the same trace in a TFSM, although plain
responses of TFSM to these words are different. Generally
speaking, there is nothing unusual in this: in real-time models
not only the input signals, but also the values of timers
influence a run of a model. Nevertheless, in many applications
it is critically important to be sure that the behaviour of a real-
time system is predictable: once a system choose a mode of
computation (i.e. a trace in TFSM) it will behave in a similar
way (i.e. give the same plain response) in all computations of
this mode. Traditionally, computer systems in which for any
input data the processing mode is uniquely determined by the
system are called deterministic. But for our model of real-time
systems this requirement should be clarified and strengthened.
For this purpose we introduce the notion of steady traces and
the property of strict determinacy of a real-time system.

A trace tr in TFSM M is called steady if resp(tr, α1) =
resp(tr, α2) holds for every pair of input timed words α1

and α2 that activate tr. Thus, the order of the output letters
generated by a steady trace does not depend on the small de-
viations of the timestamps of the input signals. A TFSM M =
(S, sin, G, ρ) is called deterministic iff for every pair of tran-
sitions (s, i1, o1, s

′, (u1, v1], d1) and (s, i2, o2, s
′′, (u2, v2], d2)

in ρ either i1 6= i2, or (u1, v1]∩(u2, v2] = ∅. This requirement
means that every timestamped input letter can activate no
more than one transition from an arbitrary given state s. It
also implies that every input timed word can activate no more
than one trace in M . A deterministic TFSM is called strictly
deterministic iff every initial trace in M which starts from the
initial state sin is steady. It is easy to see that TFSM, depicted
in Fig. 1, is not strictly deterministic.

The Strict Determinacy Checking Problem (in what follows,
SDCP) is that of checking, given a TFSM, if it is strictly deter-
ministic. It is easy to check whether a TFSM is deterministic
by considering one by one all pairs of transitions that emerge
from the same state. But local means alone are not enough to
check whether a given trace in a TFSM is steady. A simple
criterion for steadiness of traces is presented as a Theorem
below.

Let a sequence of transitions

(s0, i1, s1, o1, 〈u1, v1〉, d1), . . . , (sn−1, in, sn, on, 〈un, vn〉, dn)

be a trace tr in a TFSM M . Then the following theorem holds.

Theorem 1. A trace tr is steady iff for all pairs of integers
k,m such that 1 ≤ k < m ≤ n at least one of the two

inequalities dk − dm ≤
m∑

j=k+1

uj or dk − dm >
m∑

j=k+1

vj

holds.

Proof. (⇒) Suppose that there exists a pair k,m such that
1 ≤ k < m ≤ n, and a double inequality holds:

m∑
j=k+1

uj < dk − dm ≤
m∑

j=k+1

vj .

Then we use two positive numbers r = dk − dm −
m∑

j=k+1

uj

and ε = r
n and consider a behaviour of a TFSM M in the

input timed words

α′ = (i1, v1), . . . , (ik, vk), (ik+1, uk+1+ε),. . . ,(im, um+ε),
α′′ = (i1, v1), . . . , (ik, vk), (ik+1, vk+1), . . . , (im, vm).

It is easy to see that both words activate tr.
The trace tr converts the timed input word α1 to the timed

output word

conv(tr, α′) = . . . , (om, T
′
m), . . . , (ok, T

′
k), . . .

such that T ′m =
k∑

j=1

vj +
m∑

j=k+1

(uj + ε) + dm, and T ′k =

k∑
j=1

vj + dk. In this timed output word, the output letter ok

follows the output letter om since

T ′k−T ′m = dk−dm−
m∑

j=k+1

uj+(m−k)ε = r−r(m− k)

n
> 0.

Hence, resp(tr, α′) = . . . , om, . . . , ok,
On the other hand, the trace tr converts the timed input

word α′′ to the timed output word

conv(tr, α′′) = . . . , (ok, T
′′
k), . . . , (om, T

′′
m), . . .

172

such that T ′′k =
k∑

j=1

vj + dk and T ′′m =
m∑
j=1

vj + dm. In this

timed output word the output letter om follows the output letter
ok since

T ′′m − T ′′k = dm − dk =
m∑

j=k+1

vj ≥ 0

Therefore, resp(tr, α′′) = . . . , ok, . . . , om,
Thus, we got evidence that the trace tr is not steady.

(⇐) Suppose that the trace tr is not steady. Then there exists
a pair of timed input words α′ = (i1, t

′
1), . . . , (in, t

′
n) and

α′′ = (i1, t
′′
1), . . . , (in, t

′′
n) such that both words activate the

trace tr and resp(tr, α′) 6= resp(tr, α′′). Consequently, there
exists a pair of output letters om and ok such that

conv(tr, α′) = . . . , (ok, T
′
k), . . . , (om, T

′
m), . . .

conv(tr, α′′) = . . . , (om, T
′′
m), . . . , (ok, T

′′
k),

Such permutation of output letters is possible iff the following
inequalities hold

t′k + dk = T ′k < T ′m = t′m + dm,
t′′k + dk = T ′′k > T ′′m = t′′m + dm .

But since both input timed words α′ and α′′ activate tr, we
have the following chain of inequalities:

m∑
j=k+1

uj < T ′′m − T ′′k < dk − dm < T ′m − T ′k ≤
m∑

j=k+1

vj .

Thus, if tr is not steady then there exists a pair of integers
such that 1 ≤ k < m ≤ n and

m∑
j=k+1

uj < dk − dm ≤
m∑

j=k+1

vj

holds.

Now, having the criterion for steadiness of traces, we can
give a solution to SDCP for TFSMs. Let TFSM M =
(S, sin, G, ρ) be a deterministic TFSM. Denote by umin the
greatest lower bound of all left boundaries used in the time
guards of M . In our model of TFSM umin > 0. Let dmin

and dmax be the minimum and the maximum output delays
occurred in the transitions of M . A theorem below gives
necessary and sufficient conditions for the behaviour of M
to be strictly deterministic.

Theorem 2. A deterministic TFSM M is strictly deterministic
iff all its traces of length p, where p = ddmax−dminumin

e, are
steady.

Proof. The necessity of conditions is obvious.
We prove the sufficiency of conditions by contradiction.

Suppose that all traces of length less or equal p are steady but
TFSM M is not. Then there exists such a trace tr in M which
is not steady. Then, by Theorem 1, this trace is a sequence of
transitions (sj−1, ij , sj , bj , (uj , vj], dj), 1 ≤ j ≤ n, such that

for some pair of integers m and k, where 1 ≤ k < m ≤ n,
two inequalities

m∑
j=k+1

uj ≤ dk − dm ≤
m∑

j=k+1

vj

hold. It should be noticed, that, by the same Theo-
rem 1, the trace tr′ which includes only the transitions
(sj−1, ij , sj , bj , (uj , vj], dj),m ≤ j ≤ k, is not steady as well.
Hence, m − k > p, and we have the following sequence of
inequalities

dmax − dmin ≥ dm − dk ≥
m∑

j=k+1

uj > p ∗ umin

which contradicts our choice of p = ddmax−dminumin
e.

As it follows from Theorems 1 and 2, to guarantee
that a given TFSM M = (S, sin, G, ρ) is strictly
deterministic it is sufficient to consider all traces
(s0, a1, b1, s1, (u1, v1], d1), . . . , (sn−1, an, bn, sn, (un, vn], dn)
in M , whose length n does not exceed the value
p = ddmax−dminumin

e defined in Theorem 2, and for every

such trace check that one of the inequalities d1−dn <
n∑

j=2

uj

or d1 − dn >
n∑

j=2

vj holds. Thus, we arrive at

Corollary 1. Strict Determinacy Checking Problem for TF-
SMs is decidable.

s0 s1 s2

sN−1sNsN+1

0, (1, 2]/(0, L +D)

0, (δ, ε]/(0, δ)

1, (m1 − ε,m1 + ε]/(1, δ)

. . .

0, (δ, ε]/(0, δ)

1, (mN−1 − ε,mN−1 + ε]/(1, δ)0, (δ, ε]/(0, D)

1, (mN − ε,mN + ε]/(1, D)

Fig.2 TFSM M

IV. STRICT DETERMINACY CHECKING PROBLEM FOR
TFSMS IS CO-NP-HARD

Clearly, the decision procedure, based on Theorem 2, is time
consuming since p may be exponential of the size of M and
the number of traces of length p in TFSM M is exponential
of p. In this section we show that such an exhaustive search
can hardly be avoided because SDCP for improved version of
TFSMs is co-NP-hard.

We are aimed to show that the complement of SDCP is NP-
hard. To this end we consider the Subset-Sum Problem (see
[7]) which is known to be NP-complete and demonstrate that
this problem can be polynomially reduced to the complement
of SDCP for TFSMs.

173

The Subset-Sum Problem (SSP) is that of checking, given
a set of integers Q and an integer L, whether there is any
subset Q′, Q′ ⊆ Q, such that the sum of all its elements is
equal to L. More formally, the variant of the SSP we are
interested in is defined as follows. Let Q = m1,m2, . . . ,mN

be a sequence of positive integers, and L be also a positive
integer. A solution to (Q,L)-instance of SSP is a binary tuple

z = 〈σ1, σ2, . . . , σN 〉 such that
N∑
j=1

σjmj = L. In [7] it was

proved that the problem of checking the existence of a solution
to a given (Q,L)-instance of SSP is NP-complete.

Now, given a (Q,L)-instance of SSP, we show how to build
a deterministic TFSM MQ,L such that it has an initial trace
which is not strictly determined iff this instance of SSP has

a solution. Let D =
N∑
j=1

mj , and ε and δ be positive rational

numbers such that ε = o(1/N2) and δ = o(ε/N2). Consider
a TFSM depicted in Fig. 2. This machine operates over alpha-
bets I = O = {0, 1}. It has N + 2 states s0, s1, . . . , sn, sN+1.
The only transition (s0, 0, 0, s1, (1, 2], L + D) leads from
the initial state s0 to s1. From each state sj , 1 ≤ j <
N , two transitions (sj , 1, 1, sj+1, (mj − ε,mj + ε], δ) and
(sj , 0, 0, sj+1, (δ, ε], δ) lead to the state sj+1. The state sN
is different: two transitions (sN , 1, 1, sN+1, (mN − ε,mN +
ε], D) and (sN , 0, 0, sN+1, (δ, ε], D) lead this state to sN+1.

First, we make some observations.
1) Since all transitions outgoing from the states sj , 1 ≤ j < N ,
have the same delay δ, every trace from a state sk to a state
s`, where 0 < k < ` ≤ N , is strictly deterministic.
2) Since δ = o(1/N4) and 0 < ε = o(1/N2), for every
k, 1 < k ≤ N , and a binary tuple z = 〈σk, σk+1, . . . , σN 〉 the
inequalities

δ −D < 0 < Nδ ≤
N∑

j=k+1

(σj(mj − ε) + (1− σj)δ)

hold. By Theorem 1, this implies that every trace from a state
sk, 1 ≤ k ≤ N , to the state sN+1 is strictly deterministic.
3) For the same reason the inequalities

D + L− δ >
k∑

j=1

mj + kε =

k∑
j=1

(σj(mj + ε) + (1− σj)ε)

hold for every k, 1 ≤ k < N , and a binary tuple z =
〈σ1, σ2, . . . , σk〉. By Theorem 1, this guarantees that every
initial trace leading to a state sk, 1 ≤ k ≤ N is strictly
deterministic.

As for the initial traces that lead to the state sN+1, due
to our choice of ε and δ, we can trust the following chain
of reasoning. By definition, a (Q,L)-instance of SSP has a

solution z = 〈σ1, σ2, . . . , σN 〉 iff
N∑
j=1

σjmj = L. The latter is

possible iff two following inequalities hold:
N∑
j=1

σjmj − ε+Nδ < L <
N∑
j=1

σj(mj) +Nε (1)

By taking into account the relationships below
N∑
j=1

(σj(mj − ε) + (1− σj)δ) <
N∑
j=1

σjmj − ε+Nδ

N∑
j=1

σj(mj) +Nε =
N∑
j=1

(σj(mj + ε) + (1− σj)ε),

we can conclude that (1) holds iff another pair of inequalities
hold:
N∑
j=1

(σj(mj−ε)+(1−σj)δ) < L <
N∑
j=1

(σj(mj+ε)+(1−σj)ε)

But in the context of observations 1) – 3) above, the latter
inequalities, as it follows from Theorem 1, provide the nec-
essary and sufficient conditions that the initial trace in TFSM
MQ,L activated by the input word z = 〈σ1, σ2, . . . , σN 〉 is not
strictly deterministic.

Thus, a (Q,L)-instance of SSP has a solution iff TFSM
MQ,L is not strictly deterministic.

The considerations above bring us to

Theorem 3. SDCP for TFSMs is co-NP-hard.

V. CONCLUSION

The main contributions of this paper are
1) the development of a modified version of TFSM which,

in our opinion, provides a more adequate model of real-
time computing systems;

2) the introduction of the notion of strict deterministic be-
haviour of TFSM and setting up the Strict Determinacy
Checking Problem (SDCP) for a modified version of
TFSMs;

3) the establishing of an effectively verifiable criterion for
the strict determinacy property of TFSMs;

4) the proving that SDCP for TFSMs is co-NP-hard.
However, some problems concerning strict deterministic be-
haviour of TFSMs still remain open. They will be topics for
our further research.

1. In Sections III and IV it was shown that SDCP for TFSMs
is co-NP-hard and in the worst case it can be solved in double
exponential time by means of a naive exhaustive searching
algorithm based on Theorems 1 and 2. We think that this
complexity upper bound estimate is too much high. The
question arises, for what complexity class C SDCP for TFSMs
is a C-complete problem. By some indications we assume that
SDCP for TFSMs is PSPACE-complete problem.

2. As it can be seen from the proof of Theorem 3, SDCP for
TFSMs is intractable only if timed parameters of transitions
(time guards and delays) depend on the number of states
in TFSM. But this is not a typical phenomenon in real-
time systems since in practice the performance of individual
components of a system does not depend on the size of the
system. Therefore, it is reasonable to confine ourselves to
considering only such TFSMs, in which the time guards and
the delays are chosen from some fixed finite set. As it follows
from Theorem 2, for this class of TFSMs SDCP is decidable

174

in polynomial time. One may wonder what is the degree of
such a polynomial, or, in other words, how efficiently the strict
determinacy property can be checked for TFSMs corresponded
to real systems.
3. In the model of TFSM besides the usual transitions there
are also possible timeout transitions. A timeout transition fires
when a timestamped input letter (i, t) can not activate any
usual transition from a current state. In [5] it was shown that
in some cases such timeout transitions can not be replaced
by any combination of ordinary transitions. In the future we
are going to study how SDCP can be solved for TFSMs with
timeouts.

The authors of the article express their deep gratitude to
V.V. Podymov and the anonymous reviewers for their valuable
comments and advice on improving the article.

This work was supported by the Russian Foundation for
Basic Research, Grant N 18-01-00854.

REFERENCES

[1] Alur R., Dill D. A Theory of Timed Automata. Theoretical Computer
Science, 1994, vol. 126, p. 183-235.

[2] Alur R., Madhusudan P. Decision Problems for Timed Automata: A
Survey. Proceedings of the 4-th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems
(SFM’04), 2004, p. 1-24.

[3] Alur R., Fix L., Henzinger Th. A. A Determinizable Class of Timed Au-
tomata. Proceedings of the 6-th International Conference on Computer
Aided Verication (CAV94), 1994, p 1-13.

[4] Baier C., Bertrand N., Bouyer P., Brihaye T. When are Timed Automata
Determinizable? Proceedings of the 36-th International Colloquium on
Automata, Languages, and Programming (ICALP 2009), 2009, p. 43-54.

[5] Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed
Finite State Machines: Equivalence Checking and Expressive Power.
International Conference GANDALF, 2014, p. 203-216.

[6] Cardell-Oliver R. Conformance Tests for Real-Time Systems with Timed
Automata Specifications. Formal Aspects of Computing, 12(5), 2000, p.
350371.

[7] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. ”35.5: The subset-
sum problem” // Introduction to Algorithms (2-nd ed.), 2001.

[8] Finkel O. Undecidable Problems about Timed Automata. Proceedings
of 4th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS06), 2006, p. 187-199.

[9] Fletcher J. G., Watson R. W. Mechanism for Reliable Timer-Based
Protocol. Computer Networks, 1978, vol. 2, p. 271-290.

[10] Merayo M.G., Nuunez M., Rodriguez I. Formal Testing from Timed
Finite State Machines. Computer Networks, 2008, vol. 52, No 2, p. 432-
460.

[11] Ouaknine J., Worrell J. On the Language Inclusion Problem for Timed
Automata: Closing a Decidability Gap. Proceedings of the 19-th Annual
Symposium on Logic in Computer Science (LICS04), 2004, p. 54-63.

[12] Suman P.V., Pandya P.K., Krishna S.N., Manasa L. Timed Automata with
Integer Resets: Language Inclusion and Expressiveness. Proceedings of
the 6-th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS08), 2008, p. 7892.

[13] Tvardovskii A., Yevtushenko N. Minimizing Timed Finite State Machines
// Tomsk State University Journal of Control and Computer Science, No
4 (29), 2014, p. 77-83.

[14] Tvardovskii A., Yevtushenko N. Minimizing Finite State Machines with
Time Guards and Timeouts // Proceedings of ISP RAS, vol. 29, Issue 4,
2017, p. 139-154.

[15] Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test
Derivation Strategies for Systems with Timeouts. Proceedings of the 11-
th International Conference on Quality Software, 2011, p. 141-149.

175

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Deriving adaptive distinguishing sequences for Finite

State Machines

Aleksandr Tvardovskii

National Research Tomsk State University

Tomsk, Russia

tvardal@mail.ru

Nina Yevtushenko

Institute for System Programming of the Russian Academy of

Sciences

Moscow, Russia
evtushenko@ispras.ru

Abstract—Distinguishing sequences (DS) are used in FSM

(Finite State Machines) based testing for state identification and

can significantly reduce the size of a returned complete test.

However, such sequences not always exist for deterministic and

nondeterministic FSMs and are rather long when existing.

Adaptive DS are known to exist more often and be much shorter

that makes them attractive for test derivation. In this paper, we

investigate properties of adaptive distinguishing sequences and

propose an approach for optimizing the procedure of adaptive

DS derivation.

Keywords—Finite State Machine (FSM); test case; adaptive

distinguishing sequence

I. INTRODUCTION

Finite State Machines (FSMs [1]) are widely used for
deriving tests with the guaranteed fault coverage for reactive
discrete event systems. The well-known are the W-method [2]
and many its derivatives for deterministic and nondeterministic
FSMs [see for example, 3 and 4]. In FSM based test derivation,
the specification behavior and the behavior of an
implementation under test (IUT) are described by FSMs and a
test suite is derived that detects each non-conforming
implementation of a given fault domain. The well-known
conformance relations are the equivalence [2] and reduction
relations [3]. The equivalence means that an IUT has to have
the same behavior as the specification FSM (trace equivalence)
while the reduction relation is used when the behavior of an
IUT is allowed to be contained in the specification behavior
(trace containment).

FSM based test derivation methods rely on the state
identification sequences in the specification FSM, namely, on
distinguishing sequences (DS) that can be preset or adaptive
[5]. Preset input sequences are derived before starting the test
derivation procedure, while for adaptive sequences, the next
input depends on the outputs produced for the previous inputs.
Adaptive sequences are represented by a tree or an acyclic
FSM [3] called a test case. It is also known that usually a test
suite can be shorter if the specification FSM has a sequence
which distinguishes every two states [3, 10] but such a
distinguishing sequence does not always exist. Moreover, the
length of a distinguishing sequence can exponentially depend
on the number of states of the specification FSM. Adaptive
distinguishing sequences exist more often than the preset and
are usually shorter, thus, adaptive distinguishing sequences can
be preferable for test derivation.

When deriving adaptive distinguishing sequences the
authors consider a successor or a spanning tree. However,
based on the above trees for nondeterministic FSMs, there are
no necessary and sufficient conditions when an adaptive
distinguishing sequence exists. The authors of [9] propose
another formal approach that is based on deriving an
appropriate distinguishing FSM and establish the necessary and
sufficient conditions for the existence of an adaptive
distinguishing sequence. In this paper, we consider the problem
of deriving adaptive distinguishing sequences for a complete
possibly nondeterministic FSM and propose an approach for
optimizing the procedure for deriving an adaptive
distinguishing sequence based on a distinguishing FSM. The
performed experiments with randomly generated
nondeterministic FSMs demonstrate that in many cases, an
optimized distinguishing machine is simpler and the existence /
nonexistence of adaptive distinguishing sequences can be faster
determined.

The rest of the paper has the following structure. Section II
contains the preliminaries. The procedure for deriving an
adaptive distinguishing sequence based on a distinguishing
FSM and its optimization are presented in Section III. Section
IV contains experimental results and Section V concludes the
paper.

II. PRELIMINARIES

In this section, we introduce necessary definitions and
notations which are mainly taken from the papers [6, 9].

A. Finite State Machines

A finite state machine (FSM), or simply a machine, is a 5-

tuple S = S, I, O, hS, s0 where S is a finite non-empty set of
states with the designated initial state s0, I and O are finite input

and output alphabets, and hS  S  I  O  S is a transition

relation. FSM S is nondeterministic if for some pair (s, i)  S 

I, there can exist several pairs (o, s)  O  S such that (s, i, o,

s)  hS; otherwise, the FSM is deterministic. FSM S is

complete if for each pair (s, i)  S  I there exists (o, s)  O 

S such that (s, i, o, s)  hS; otherwise, the FSM is partial. FSM
S is observable if for every two transitions (s, i, o, s1), (s, i, o,

s2)  hS it holds that s1 = s2. In the following, we consider
complete observable possibly nondeterministic FSMs if the
contrary is not directly stated. An example of a complete
nondeterministic FSM with S = {0, 1, 2, 3}, I = {0, 1, 2}, O =
{0, 1} is shown in Fig. 1.

176

Fig 1. Complete nondeterministic FSM S

Given an input/output pair io and a state s of a complete

observable FSM S, state s is the io-successor of state s of FSM

S if (s, i, o, s) hS. The io-successor of state s not necessary
exists and in this case, we say that the io-successor of state s is
the empty set. A trace of FSM S at state s is a sequence of
input/output pairs which label consecutive transitions starting
from state s, tr = i1/o1 … il/ol . A sequence i1 … il is an input
sequence of the trace, a sequence o1 … ol is an output
sequence.

FSM S is merging-free [7] if for every two states s1 and s2

and any input i it holds that if (s1, i, o, s1), (s2, i, o, s2)

hSthen s1  s2.

B. Test Case definition

An input sequence α is adaptive if the next input depends
on the output to the previous one. Such an input sequence can
be represented by a special FSM called a test case [8].

Given an input alphabet I and an output alphabet O, a test
case TC(I, O) (over I and O) is an initially connected

observable FSM T = T, I, O, hT, t0 with an acyclic transition
graph such that at each state either only one input with all
possible outputs is defined or there are no outgoing transitions.
Given a complete FSM S over alphabets I and O, a test case
TC(I, O) represents an adaptive experiment with the FSM S. If

|I| > 1 then a test case is a partial FSM. A state t  T is a
deadlock state of the FSM T if there are no defined inputs at
this state. The length (height) of the test case T is defined as the
length of a longest trace from the initial state to a deadlock state
of T and it specifies the length of the longest input sequence
that can be applied to an FSM S during the adaptive
experiment.

A test case T is a distinguishing test case (DTC) for an FSM

S if for every trace  of T from the initial state to a deadlock

state,  is a trace at most at one state of S. Sometimes, a
distinguishing test case is called an adaptive distinguishing

sequence. A distinguishing test case D for a FSM S in Figure 1
is shown in Figure 2.

Fig 2. DTC D for a FSM S

Given a DTC D for FSM S, an adaptive distinguishing
sequence defined by DTC D is applied in the following way. If
input i1 is defined at the initial state d0 of D then first input i1 is
applied to FSM S and DTC D moves to the i1o-successor d1 of
state d0 if the output o is the response of S to the input i1. The
next input to apply is the input defined at state d1, etc. The
procedure terminates when a deadlock state is reached. The
corresponding trace allows to determine a state of the FSM S
before the experiment. For example, consider a DTC in Figure
2. At the first step an input 1 that is a defined input at the initial
state {0, 1, 2, 3} is applied. If an output 1 is produced by the
FSM under experiment then the DTC moves to state {0, 1} and
the defined input 2 at this state is applied. Let the FSM produce
the output 2 and consider a trace 1/1 2/1 that is a trace from the
initial state to a deadlock state in Figure 2. By direct inspection,
one can assure that FSM S in Figure 1 has such a trace only at
state 1.

III. TEST CASE DERIVATION

The method for deriving a distinguishing test case for a
nondeterministic FSM based on a distinguishing machine is
described in [9]. Given a complete observable nondeterministic
FSM S = (S, I, O, hS), a distinguishing FSM Sdist is derived in
the following way. The set of inputs (outputs) Sdist coincides
with the set of inputs (outputs) of S, while states Sdist are
defined over the set of all non-empty and non-singleton subsets
of states of S and the distinguishing machine has a special state
F. The process of constructing transitions of Sdist starts at the
initial state which corresponds to the set of all states of FSM S
and the machine Sdist is a minimal machine that can be
constructed using the following rules.

Given a state b of Sdist, let b be a non-empty and non-
singleton subset of states of S.

1) There is transition (b, i, o, b) in Sdist if and only if b is

not a singleton, for every o  O, the non-empty io-
successors of every two different states of the set b do

not coincide, and b is the non-empty io-successor of

This work is partly supported by RSF Project No. 16-49-03012

177

the set b. In this case, state b is added to the set of
states of Sdist.

2) There is a transition (b, i, o, F) if and only if there

exists o  O such that the non-empty io-successors of
two different states of the set b coincide. In this case,
state F is added to the set of states of Sdist.

3) A transition from state b under input i in Sdist is labeled

as an undefined transition if and only if for every o 

O, the non-empty io-successors of every two different
states of the set b do not coincide and each io-successor
of the set b is singleton.

At the state F, there is a transition (F, i, o F) for every i/o

pair, i  I, o  O.

By definition of a distinguishing FSM Sdist, an input i is an
undefined input at state b if there are no transitions from state b

under i, i.e., if for every o  O, the non-empty io-successors
of every two different states of the set b do not coincide and
each io-successor of the set b is singleton. In order to check if
FSM S has a DTC, states with undefined inputs are iteratively
removed from Sdist with all incoming transitions until either
there are no undefined inputs in Sdist or the initial state of Sdist
has an undefined input. When deleting a state b with undefined
inputs, we denote UN(b) = i for some undefined input i. The
initial state has an undefined input if and only if FSM S has a
DTC D that can be derived from Sdist by using saved undefined
inputs when removing states, i.e., the specification FSM S has
a DTC if and only if the machine Sdist has no complete
submachine. In this case, the initial state d0 of D corresponds to
the initial state b0 of Sdist. The input UN(b0) is the only defined
input at state d0 of D and D has a transition (d0, UN(b0), o, d) if
and only if FSM Sdist had a transition (b0, UN(b0), o, b) before

removing of states. If for some o  O, there is no transition (b0,
UN(b0), o, b) in Sdist, then transition (d0, UN(b0), o, DL) is
added to FSM D where DL is the deadlock state. Transitions for
every state d of DTC D are constructed in a similar way. For
the FSM S in Figure 1, the corresponding distinguishing
machine Sdist is shown in Figure 3; this machine has nine states
and a DTC of height three can be constructed by the iterative
removal of states with undefined transitions. In fact, the above
contains the informal proof how to check whether FSM S has a
DTC using machine Sdist.

According to the results in [9], the length of a DTC can
reach 2n-1 – 1 for a complete observable FSM with n states and
for the class of such FSMs, it can happen that each non-empty
and non-singleton subset of S is a state of Sdist, and thus, there
can occur the state explosion problem when constructing a
corresponding Sdist. For this reason, we propose to limit the
construction with states which are reachable from the initial
state by an input sequence limited by the length L > 0, i.e., to
construct SL

dist, since according to the reference to experimental
results in [9], the length of a DTC for randomly generated
machines with up to 100 states does not exceed 15.

In other words, when constructing the distinguishing
machine SL

dist, we propose to limit the set of states only with
states which can be reached from the initial state by a trace of
length up to L. All the transitions at a state reachable only via a
trace of length L are directed to the designated state F and state

F has a loop for each i/o pair, i  I, o  O. Similar to the use of
the machine Sdist, the following theorem can be proven.

Theorem 1. The specification FSM S has a DTC of length
up to L if and only if the machine SL

dist has no complete
submachine.

In this case, the same iterative procedure of deleting states
with undefined inputs can be applied for checking the existence
of a DTC of height up to L as well as for deriving a DTC (if it
exists). Before writing the corresponding procedure we
illustrate the above optimization for a distinguishing machine
in Figure 1. Already after construction a machine in Figure 3
for traces of length up to two we can see that there is a DTC of
length two (Figure 2) in the specification FSM.

For the distinguishing FSM in Figure 3, grey states are
states of FSM S2

dist. This distinguishing machine S2
dist has no

complete submachine and a corresponding DTC of height two
is shown in Figure 2.

Thus, the following procedure for deriving a DTC for a
complete observable possibly nondeterministic FSM can be
proposed.

Optimized procedure for deriving DTC
Input: a complete observable FSM S, integer L > 0
Output: A DTC of length up to L for FSM S or the

message ‘FSM S has no DTC of length up to L’

l: = 1, the set of undefined inputs UN := , distinguishing
FSM S0

dist with the only initial state; Q = S0
dist;

Step 1. Add to Sl-1
dist states which are reachable by a trace

of length l, i.e., derive a distinguishing FSM Sl
dist and copy all

new transitions (states) to FSM Q.
If Sl

dist = Sl-1
dist then output the message ‘FSM S has no

DTC’ and END the procedure.
Else Step 2.
Step 2. Iteratively delete from Sl

dist each state b that has
an undefined input with its incoming transitions, select an
undefined input i and denote UN(b) = i.

If the initial state has an undefined transition then Step 3
Else

If l + 1 > L then output the message ‘FSM S has no
DTC of length up to L’ and END the procedure

Else l = l + 1 and Step 1.
Step 3. Derive a DTC using the set UN of undefined

inputs and the distinguishing FSM Q which coincides with
the FSM Sl

dist;
END

Theorem 2. Given a complete observable possibly

nondeterministic FSM S, an above optimized procedure returns
a shortest DTC D for FSM S if there exists a DTC of length up
to L.

Indeed, due to Theorem 1, there exists a DTC of length up
to k if and only if the FSM Sk

dist has no complete submachine,
i.e., at the k-th iteration the initial state of the distinguishing
machine will have an undefined input. As we start with k = 1
and the procedure terminates once there is a DTC of height k <
L + 1 (Step 2), the procedure returns a shortest DTC of height
up to L if such a DTC exists.

178

Fig. 3. Distinguishing FSM for a FSM S in Fig. 1

As mentioned above, in Figure 3, only grey states and the
designated state F are left in the distinguishing machine S2

dist
that correspondingly has six states; all the transitions from
these states to non-grey states are directed to the designated
state F. By direct inspection, one can assure that this machine
has no complete submachine, since after two iterations the
initial state has an undefined input. Correspondingly, FSM S
in Figure 1 has a DTC of length 2 (Figure 2).

The appropriate length L can be determined after a number
of experiments. Both, original and optimized methods, have
been implemented and in the next section, we present the
obtained experimental results.

IV. EXPERIMENTAL REULTS

In this section, we present experimental results on checking
the existence of a DTC for deterministic and nondeterministic
FSMs with a number of parameters and evaluate the DTC
height when it exists. When performing the experiments,
randomly generated FSMs were utilized [11].

A. Randomly generated FSMs

We first performed experiments with randomly generated
nondeterministic FSMs with various numbers of transitions for
every pair ‘state, input’. The maximum number of transitions is
further denoted nd and our experiments clearly show that a
DTC rarely exists when nd is more than three (Figure 4).

Correspondingly, for other experiments, nd  3 is only
considered.

Fig 4. Percentage of FSMs when a DTC exists with respect to the number of

transitions for each pair ‘state, input’, |I| = |O| = |S| = 10

In Figure 5, the DTC length is shown depending on the
number of FSM states. The lowest curve demonstrates the
average length of DTC for deterministic FSMs while two upper
curves are related to nondeterministic FSMs where nd = 2 for
the middle curve and nd = 3 for the upper curve. FSMs with up
to 30 states are considered with |I| = |O| = 10.

Fig. 5. DTC length for deterministic and nondeterministic FSMs

As we can see, according to the experimental results,
randomly generated FSMs either have a rather short DTC or
have no DTC at all. The latter is due to the fact that randomly
generated FSMs have a big number of merging transitions,
especially for nd ≥ 3. Respectively, corresponding
distinguishing FSMs are not large and an optimized approach
based on the distinguishing machine SL

dist proposed in Section
III did not significantly overcome the approach based on the
FSM Sdist. In particular, for FSMs with |S| = 30, |I| = |O| = 10
and nd = 2, the implementation of an optimized approach was
twice faster on average. The runtime of the DTC derivation by
both approaches for FSMs with |I| = |O| = 10 and nd = 3 is
demonstrated below. In Figure 6, the lower curve corresponds
to the runtime of an optimized procedure while the upper curve
corresponds to the approach based on the machine Sdist.

179

Fig 6. The runtime of original and optimized procedures for DTC derivation (|I|

= |O| = 10 and nd = 3)

Note, that similar curves can be derived for memory used
by the original and optimized procedures. However the
dependence on the number of distinguishing FSM states is
different. For FSMs with 30 states, |I| = |O| = 10 and nd = 3, on
average, FSMs S4

dist and Sdist have 847 and 1756 states
respectively. The obtained results clearly show that the increase
of the nondeterminism degree leads to significant resource
increasing and respectively, the DTC derivation by an
optimized procedure becomes preferable.

In the next subsection, we consider a proper class of so-
called merging-free FSMs which is actively investigated and
for which a DTC exists more often.

B. Merging-free FSMs

A merging-free FSM has a DTC if and only if each pair of
states has a DTC [7]. FSMs of this class can be used as formal
models of real systems and the check of the existence of a DTC
is simpler for such FSMs. In particular, randomly generated
merging-free FSMs have a DTC more often and experiments
were conducted for FSMs with larger number of states. For
merging-free FSMs, a distinguishing machine has no
transitions to the designated state F and due to the absence of
merging transitions, distinguishing FSMs are significantly
bigger than those for arbitrary FSMs with merging.

For merging-free FSMs with nd = 3, distinguishing FSMs
are rather big and below the runtime evaluation is performed

only for nd  2.

 Since the runtime and memory for constructing a
distinguishing FSM Sdist increase for merging-free FSMs, a
proposed optimization for using SL

dist for the test case
derivation becomes more efficient. For example, given
merging-free FSMs with 50 states, |I| = |O| = 10 and nd = 2 and
looking for a DTC of length up to three, the number of states of
FSMs S3

dist and Sdist are 4992 and 8202 respectively. Curves for
the runtime of an original and an optimized procedure for the
DTC derivation are presented below.

Fig 7. The runtime of an original and an optimized procedure for DTC

derivation for merging-free FSMs (|I| = |O| = 10 and nd = 2)

Similar to ordinary FSMs, the optimized procedure is twice
faster than the original one when |S| < 100 and nd = 2.
However, the runtime is increased for merging-free FSMs
compared with the common case.

The results on the DTC length evaluation almost coincide
with those in Figure 5. For FSMs with 100 states, the length of
a DTC (when it exists) does not exceed 5 for merging-free
FSMs when |I| = |O| = 10 and nd = 2. At the same time,
merging-free FSMs have DTC much more often than ordinary
FSMs. For random generated merging-free FSMs with 100
states the percentage of FSMs with a DTC is almost 100%
when |I| = |O| = 10 and nd = 2.

V. CONCLUSIONS

In this paper, we have investigated approaches for adaptive
distinguishing sequence derivation for a complete observable
possibly nondeterministic FSM and proposed an optimized
procedure for deriving a distinguishing test case (DTC) that
represents an adaptive distinguishing sequence. Experiments
were conducted for the evaluation of the effectiveness of a
proposed procedure as well as for the evaluation how often
adaptive distinguishing sequences exist for nondeterministic
FSMs depending on the number of different transitions for each
pair ‘state, input’. The experimental results show that the length
of an adaptive distinguishing sequence for randomly generated
FSMs does not reach the worst exponential complexity with
respect to the number of FSM states. For such stress testing a
corresponding FSM class has to be implemented for which the
same experiments should be conducted.

REFERENCES

[1] A. Gill. Introduction to the Theory of Finite-State Machines. 1964, 272
p.

[2] T.S. Chow. Testing software Design Modelled by Finite-State Machines.
IEEE Transactions on Software Engineering, vol. 4, issue 3, 1978, pp.
178-187.

[3] A. Petrenko and N. Yevtushenko. Conformance Tests as Checking
Experiments for Partial Nondeterministic FSM. Proceedings of the 5th
International Workshop on Formal Approaches to Testing of Software
(FATES 2005), LNCS 3997, 2005, pp. 118-133.

[4] R. Dorofeeva, K. El-Fakih, S. Maag, A.R. Cavalli, N. Yevtushenko.
FSM-based conformance testing methods: a survey annotated with
experimental evaluation. Information and Software Technology, 52,
2010, pp. 1286-1297.

180

[5] R. Alur, C. Courcoubetis, and M. Yannakakis, “Distinguishing tests for
nondeterministic and probabilistic machines”, Proc. of the 27th ACM
Symposium on Theory of Computing, 1995, pp. 363-372.

[6] A. Petrenko, and N. Yevtushenko. “Adaptive testing of deterministic
implementations specified by nondeterministic FSMs”, Proc. of the
International Conference on Testing Software and Systems, LNCS 7019,
2011, pp. 162-178.

[7] N.Yevtushenko, N. Kushik. Nondeterministic merging-free finite state
machines. Proceedings of IEEE East-West Design & Test Symposium
(EWDTS), 2015, pp. 338–341.

[8] N. Yevtushenko, K. El-Fakih, and A. Ermakov. On-the-fly construction
of adaptive checking sequences for testing deterministic implementations

of nondeterministic specifications, Lect. Notes Comput. Sci., 2016, vol.
9976, pp. 139–152.

[9] K. El-Fakih, N. Yevtushenko, N. Kushik. Adaptive distinguishing test
cases of nondeterministic finite state machines: test case derivation and
length estimation. Formal Aspects of Computing vol. 30, issue 2, 2018,
pp. 319-332.

[10] A. Tvardovskii. Refining the Specification FSM When Deriving Test
Suites w.r.t. the Reduction Relation. Lecture Notes in Computer Science
(LNCS), 2017, Vol. 10533, pp. 333-339.

[11] N. Shabaldina, M. Gromov. FSMTest-1.0: a manual for researches.
Proceedings of the 13th Intern symposium on IEEE EAST-WEST
DESIGN & TEST SYMPOSIUM (EWDTS’15), 2015, pp. 216–219.

181

Prosega/CPN: An Extension of CPN Tools for
Automata-based Analysis and System Verification

Julio César Carrasquel
Department of Computer, Control

and Management Engineering
La Sapienza University of Rome

Rome, Italy
julio.carrasquel@yahoo.com

Ana Morales
School of Computer Science

Central University of Venezuela
Caracas, Venezuela

ana.morales@ciens.ucv.ve

Marı́a Elena Villapol
School of Engineering, Computer

and Mathematical Sciences
Auckland University of Technology

Auckland, New Zealand
maria.villapol@aut.ac.nz

Abstract—The combination of Coloured Petri Nets (CPNs) and
Automata Theory has proved to be a successful formal technique
in the modelling and verification of different distributed systems.
In this context, this paper presents Prosega/CPN (Protocol
Sequence Generator and Analyzer), an extension of CPN Tools
for supporting automata-based analysis and verification. The
tool implements several operations such as the generation of
a minimized deterministic finite-state automaton (FSA) from a
CPN’s occurrence graph, language generation, and FSA com-
parison. The tool is intended to support a formal verification
methodology of communication protocols; however, it may be
used in the verification of other systems whose analysis involves
the comparison of models at different levels of abstraction. An
insightful use case is provided where Prosega/CPN has been used
to analyze part of the IEEE 802.16 MAC connection management
service specification.

Index Terms—formal methods, Coloured Petri nets, CPN Tools,
finite-state automata (FSA), protocol verification

I. INTRODUCTION

The verification of distributed systems, and the assurance
of their correctness is a task of utmost importance; specially
in today’s world where many critical services are completely
supported by computer technologies. Among the solutions
for system modelling and verification, Petri Nets [1] play
a major role since its capability of graphically visualize
systems, and for maintaining the formal rigor, so it allows to
perform a convenient analysis of the behavioral properties of a
system. Thus, the formalism of Petri Nets has been extended
to other models in order to enrich their expressiveness and
practicability. Particularly, we consider Coloured Petri Nets
(CPNs) [2] where data types (colours) may be associated to
net elements. CPN Tools [3] is a consolidated software tool
for editing, simulating, and analyzing CPN models.

However, when dealing with a higher complexity of the
system, it may be useful to combine the usage of different
analysis techniques. This also allows the application of the best
formalism or technique to different components of a system.
In the context of Coloured Petri Nets, the last version of CPN
Tools includes the Simulator Extensions whose development
has been driven by the need of integrating CPN with other
formal methods [4]. In particular, we consider the integration
of CPNs and Finite-state Automata (FSA) which has been

proved to be useful for the validation of different protocols
and communication systems [5] [6] [7].

For instance, given a CPN’s occurrence graph (OG), the
arcs through a path in the OG may be seen as the sequence
of service primitives that a user (i.e. another system entity in
a higher layer) invokes in order to request some action by a
service provider. The nodes in the OG may be considered as
changes of state in the system due to the services invocations.
Finally, some nodes of the OG may represent halt states,
meaning the termination of a specific process. Hence, the OG
can be seen as a FSA which can be analyzed using well-
known algorithms and theorems.

There are several tools for building, combining, optimizing,
and searching Finite-state Automata. However, in order to
apply them for analyzing CPNs and occurrence graphs, these
ones must be converted into FSA specific formats (i.e. see
[5] [6]). Using several tools may complicate the verification
process.

Thereby, we developed a solution called Prosega/CPN (Pro-
tocol Sequence Generator and Analyzer). The tool aims to
bridge conveniently the formalism of CPNs with Finite-state
Automata, taking advantage of the Simulator Extensions fea-
ture in CPN Tools. Thus, the software provides a mechanism
for transforming a CPN’s occurrence graph into a minimized
deterministic FSA as well as other operations for language
generation and FSA comparison. Prosega/CPN has been
conceived to support the protocol verification methodology
proposed by Billington [8]. However, the tool may be useful to
support the verification of other systems whose strategy may
involve the usage of FSAs, or the comparison of models at
different levels of abstraction; for example, business strategy
and business processes.

The remainder of this paper is structured as follows. Section
II introduces the literature related to our work. Section III
presents some formal definitions for understanding the models
managed by Prosega/CPN. Sections IV and V describe the
tool functionalities and architecture respectively. Section VI
describes a use case where the tool has been used to analyze
part of the IEEE 802.16 MAC connection management service
specification. Finally, Section VII presents the conclusions.

182

II. RELATED WORK

Prosega/CPN has been developed within the context of
system verification through the formalism of Coloured Petri
Nets (CPNs) and Finite-state Automata (FSA). The tool has
been conveniently developed as an extension of CPN Tools [3]
since it performs several operations on FSAs generated from
a CPN model. i.e. the reduction of a CPN’s occurrence graph
into a FSA. Hence, through the development of Prosega/CPN
we have been focused in three topics within the literature:

(i) Works dealing with the development of extensions for
CPN Tools [4] [9] [10] [11].

(ii) Tools and other solutions for the analysis and manipula-
tion of FSA [12] [13] [14] [15] [16].

(iii) Works proposing a system verification methodology us-
ing CPNs and FSA, and the use cases in which it has
been applied [5] [6] [7] [8] [17], and other scenarios
where both formalisms have been used together [18] [19]
[20].

CPN tools has a history for communicating with external
solutions; its architecture provides a set of communication
primitives for connecting external software to the CPN simu-
lator engine. As an initial effort it was developed Comms/CPN
[9], a library for Java and C/C++ which makes it possible for
CPN Tools to communicate based on TCP/IP with external
application and processes; the BRITNeY Suite [10] is other
solution which provides model visualizations in an external
tool, and more recently Access/CPN [11] that provides a
channel to interact with the CPN Tools simulator engine from
external Java programs. However, while these previous tools
have made it easy to interact with CPN Tools, they have
not made it possible to extend the software. Thereby, it was
developed the Simulator Extensions [4] feature included in
the last version of CPN Tools. This component provides a
mechanism for adding new functionalities within the CPN
Tools Graphical User Interface (GUI), thereby allowing to
integrate other related formalisms with CPN models; as a
result, it has been possible to handle other models in the tool
such as low-level Place/Transition nets, Declare models, and
drawing message sequence charts from model executions [4].

On the other hand, Finite-state Automata (FSA) have been
used in a much wider spectrum of fields than CPNs; as
an important tool for FSA manipulation we highlight the
FSM Library from AT&T Labs [12] which is a collection
of Unix software tools for creating and manipulating finite-
state machines. Despite the library is quite general purpose,
it was designed for speech processing applications such as
speech recognition/synthesis; FSM Library was used as well
in previous works regarding the verification of communication
systems based on CPNs and automata [5] [6]. Some of the
researchers of the AT&T FSM project developed later an
enhanced version called OpenFST [13] which is an open-
source alternative that also allows to construct finite-state
transducers, and it provides a C++ template library. Within
the range of tool solutions for FSA manipulation we may

also find Foma [14], the FAdo project [15] and the specialized
pedagogical tool JFLAP [16] among many others.

Bridging CPNs and FSA may be useful for verification
of systems of very high complexity. In particular, Billington
[8] proposed a CPN and FSA approach for the verification
communication systems that has proven to be successful;
namely, in the verification of the Resource Reservation Pro-
tocol (RSVP) [5], the Wireless Application Protocol (WAP)
[6], the Transmission Control Protocol (TCP) [7], and the
Internet Open Trading Protocol (IOTP) [17], among other
cases. Between other domains in which both formalisms have
been applied together we may find the verification of web-
services composition [19] [20] or vehicular traffic control
systems [18], just to mention a few.

III. FORMAL DEFINITIONS

This section presents some formal definitions of the models
and data structures that are manipulated through the func-
tionalities of CPN Tools and Prosega/CPN. In particular, it is
formulated how it can be derived an occurrence graph (OG)
from a CPN model, and afterwards is explained how can it
be generated a Finite-state Automaton (FSA) from a CPN’s
occurrence graph. The following formulations are based in the
work done in [8]. Albeit CPNs are managed in this work; for
the formal definition it has been rather convenient to generalize
the type into a High-level Petri Net (i.e. for proving further
theorems regarding the relationship between an OG and a
FSA as described in [8]). Hence, we firstly take the definition
of a High-level Petri net (HLPN) [21].

Definition 1. A High-level Petri net is a structure of the form
HLPN = (P, T,D;Type, Pre, Post,M0) where
• P is a finite set of Places;
• T is a finite set of Transitions, P ∩ T = ∅;
• D is a non-empty finite set of non-empty domains where

each element of D is called a type;
• Type : P ∪ T → D is a function used to assign types to

places and to determine transition modes;
• Pre, Post : TM → µPLACE are the pre and post

mappings with
– TM = {(t,m) | t ∈ T, m ∈ Type(t)}, the set of

transition modes;
– PLACE = {(p, g) | p ∈ P, g ∈ Type(p)}, the set

of elementary places.
• M0 ∈ µPLACE is a multiset called the initial marking

of the net.
µPLACE is the set of all possible multisets of PLACE.

For the analysis of a High-level Petri net it is generated
an occurrence graph (OG). We consider that an OG can be
defined as a labelled and rooted directed graph, where the
nodes of the graph represent markings of the Petri Net, and
the directed arcs represent the transition modes (or binding
elements [2]) that can occur in all executions from the initial
marking.

183

The root of the graph refers to a node which is considered
as the initial state. In addition, the arcs of an OG may be
labelled by the transition modes. Thus, we start by defining
a labelled and rooted directed graph, and then we give the
definition of an OG associated to a HLPN .

Definition 2. A labelled directed graph, with v0 as the root
node, is a triple G = (V,L,E) where

• V is a finite set of vertices or nodes; v0 ∈ V represents
the root or initial node.

• L is a set of labels;
• E ⊆ V × L× V is a set of labelled directed edges.

Definition 3. An occurrence graph of a HLPN with an initial
marking M0, is a labelled and rooted directed graph
OG = (V, TM,A) where

• V is the set of markings reachable from M0 (the reach-
bility set); M0 ∈ V represents the initial marking (root
node).

• TM is the set of transition modes of the HLPN ;
• A = {(M, tm,M ′) ∈ V × TM × V ′ |M tm→M ′} is the

set of arcs (directed edges) labelled by transition modes.

Remark. M tm→ M ′ indicates the ocurrence of a transition
mode tm ∈ TM in a marking M which results in a new
marking M ′.

However, when we are only interested in the transition
names, then the arcs of the OG are just labelled with such
transitions names rather than the transition modes (binding
elements). For example this is useful when it is just required to
understand which user observable events (service primitives)
may lead from a state of the system to another one; instead of
transition modes which involve the parameters binded to such
events.

In addition, when we are also interested in the identification
of the markings for the nodes of the OG, rather than the
marking details, we introduce an injection I : [M0〉 → N.
This function maps the set of reachable markings from M0

(denoted as [M0〉) into the set of natural numbers.
Giving the described abstractions for transitions and mark-

ings, we consider the definition of an abstract OG.

Definition 4. An abstract OG of a HLPN with an initial
marking M0, is a labelled and rooted directed graph
OG = (V, T,A) where

• V = {I(M) |M ∈ [M0〉} is the set of nodes;
I(M0) ∈ V represents the root or initial node.

• T is the set of transitions of the HLPN ;
• A = {(I(M), t, I(M ′)) ∈ V × T × V | (t,m) ∈
TM, M

(t,m)→ M ′} is the set of arcs labelled by transition
names.

We point out that the abtract occurrence graph OG defined
above is finite. i.e. It has a finite number of states. Indeed this
is an important fact when dealing with real scenarios. This
means that the corresponding Petri Net must be a bounded

Figure 1. Tool palette of Prosega/CPN.

net [1], and hence a preliminary boundedness analysis on the
Petri Net is performed.

Finally, it is presented a mapping from an abstract OG
(Definition 4) into a Finite-state Automaton FSA.
We define a function Prim : T → SP ∪ {ε} that maps each
transition of the HLPN to either an identifier name (i.e. an
user observable event or service primitive name), or to an
epsilon (i.e. an empty move); SP is the set of identifiers (for
the user observable events or service primitive names) for the
system that we are describing.

Definition 5. Given an abstract occurrence graph OG =
(V, T,A) it is derived the corresponding Finite-state Automa-
ton FSA = (V, SP,ASP , v0, F) where
• V is the set of nodes of the abstract OG (the states of

the FSA);
• SP is the set of identifiers (for the user observable events

or service primitive names) of the system of interest (the
alphabet of FSA);

• ASP = {(v, Prim(t), v′) | (v, t, v′) ∈ A} is the set of
transitions labelled by elements of SP or epsilons (the
transition relation of the FSA);

• v0 corresponds to the abstract initial marking (initial
state of the FSA);

• F ⊆ V is the set of final (acceptance) states.

Prosega/CPN performs the conversion of an OG as de-
scribed in Definition 4 into a FSA as described in Definition
5. Moreover, this mapping between OG and the FSA allows
the tool conveniently manage the generation of the language
and the comparison between other FSAs.

IV. FUNCTIONALITIES

Prosega/CPN is an extension in CPN Tools. Thus, the user
interacts with the application using a Graphical User Interface
(GUI) through a tool palette added to CPN Tools (see Figure
1) - available under the Tool box entry [3]. The tool supports
the generation of a minimized deterministic Finite-state Au-
tomaton (FSA) derived from the CPN’s occurrence graph,
the language generation, and the comparison between two
different FSAs. We proceed to explain these functionalities
in detail.

A. FSA generation

Once the occurrence graph (OG) from a CPN model is
generated using the CPN Tools simulator [3], its associated
Finite-state Automaton (FSA) can be generated and reduced

184

using the RUN tool (see Figure 1). To this aim, the following
steps are performed: getting the transitions, and also dead
markings of the OG, assigning identifiers to transitions (i.e.
constructing the mapping Prim defined in Section III), reduc-
ing the FSA, and displaying the results. Here, we consider
the structure of an abstract OG where the nodes are identified
by numbers which represent the markings and the arcs are just
labelled with the transitions rather than the binding elements
(see Definition 4).

Firstly, the tool communicates with the CPN Tools simulator
in order to obtain all the transitions and the dead markings (see
Section V). The user interacts with the Prosega/CPN GUI to
assign identifiers (corresponding to user observable events or
service primitive names) to the model transitions (i.e. mapping
elements from a set SP). The character 0 is considered as an
epsilon (ε). Hence, any transition assigned with 0 is considered
an epsilon transition (or empty move). Then, the user chooses
the set of terminal states F for the FSA which may include
nodes representing the dead markings or other nodes in the
OG. Thereby, it is obtained a FSA in line with Definition 5.

For instance, Figure 2 shows the Prosega/CPN interface
which supports the described operation. In particular, it is
defined a FSA given a CPN’s occurrence graph extracted
from the use case in Section VI. The user assigns identifiers
for the CPN transitions. For example, the identifier 1 to the
transition MACCrtConnReq, which is in the CPN model page
CreatConnection. Later, the user chooses the following nodes
of the OG as terminal states: 1, 7, 8, 13, 26, 27, 31, 48 (some
are not displayed in the figure due to window size limitation).

Afterwards, the modelled FSA is reduced by following the
algorithm described in [22], which consists in performing the
following operations over a FSA:
• removal of epsilon transitions (remove empties).
• removal of non-determinism (determinization).
• reduction by identifying and merging equivalent states

(minimization).
Thereby, the algorithm produces as output a reduced de-

terministic FSA with a minimal number of states that is
equivalent to the input automata. Finally, an interface showing
the results of the FSA reduction is displayed to the user as
shown in Figure 3. The interface shows general information
about the reduced FSA (FSA Info), such as initial state and
number of arcs, which may be relevant for the FSA analysis.
It also includes a graphical representation of the FSA (FSA
Image Preview), and the established mapping between the
identification numbers/names assigned by the user and the
transition names, which may be useful for debugging and
verification of the model.

B. Language Generation

The language accepted by a FSA can be generated by
using either the LANG tool in Figure 1 or the Generate
Language button in Figure 3. The interface shown in Figure
4 is displayed to the user after it clicks on the LANG tool.
Then the user can choose both the FSA, in plain text or
in the compiled format [13], for which the language will

be generated and the corresponding symbol table file—for
mapping the arc inscriptions with the symbols selected by the
user. The language generator module generates the language L
of the FSA by extension; if L is finite, the whole sequences
are printed; otherwise a subset of the language, L′ ⊆ L is
generated, as illustrated in Figure 5. In particular, L′ is a set
of symbol sequences whose symbols belong to different arcs in
the FSA. Notice that some arcs of the FSA may be labelled
with the same symbol. However, in the generation of each
sequence, each arc of the FSA is visited just once.

Indeed, for generating each sequence accepted by the au-
tomaton it was developed an algorithm based on iterative
Depth-first Search (DFS) which was implemented in the
language generator component of Prosega/CPN (as mentioned
in Section V). This component performs DFS between the
initial state of the FSA, to each of the halt states. Hence, the
symbols of the arcs visited through the path from the initial
state to a specific halt state are printed, thereby representing
a sequence accepted by the automaton.

In addition, this module supports a generator of random
sequences of the language symbols, as shown in Figure 6,
which may be useful when the language is infinite. For exam-
ple, in Figures 5 and 6, we can see the following sequence of
language symbols: 1, 5 which corresponds to the sequence of
actions (transitions): MACCrtConnReq, MACCrtConnCf2 (as
shown in the interface in Figure 4, where the user assigned an
Id (language symbol) to each transition).

In particular, for generating each random sequence it is
computed a random walk in the FSA from the initial state
to any of the halt states. Whenever a halt state is visited, the
walk will be terminated with a probability p

100 0 < p ≤ 100,
and the sequence of symbols which were collected throughout
the visited path will be printed.

Thereby, in the Generate Random interface (Figure 6),
the user can manipulate the average size of the randomly
generated sequences of language symbols by entering the halt-
rate parameter value p; therefore, if the value p is close to 0,
the number of language symbols in each sequence may be
big, while if p is close to 100, then the number of language
symbols in each sequence may be small, thereby determining
the length of each sequence. For instance, since the halt-rate
parameter value in Figure 6 is 55, in that case the sizes of the
sequences are medium.

C. FSA Difference

The user can use the DIFF tool to calculate the difference
between two automata, FA and FB . This functionality, whose
output interface is illustrated in Figure 7, generates a new
automaton FC which only accepts the sequence of symbols ac-
cepted by the first automaton FA, and that are not accepted by
the second one FB . In particular, FB must be an epsilon-free,
deterministic finite automaton. This is useful to understand
the sequences of languages symbols in which may differ two
models; in this sense, as seen in Figure 7, this functionality
allows to generating the language of FC for getting such
sequences in which may differ two models.

185

Figure 2. Initial Prosega/CPN interface used by the user for assigning Ids to transitions and entering terminal states.

Figure 3. Interface showing the results of the FSA reduction process.

V. ARCHITECTURE

Prosega/CPN is implemented in Java programing language,
so we use the new feature in CPN Tools 4 called Simulator
Extensions [4] to add the software functionalities. Figure 8
shows the software architecture which illustrates the relation-
ship among all the components of our tool, CPN Tools and
the third-party components. Communication between the CPN
Tools GUI and the simulator, and between the simulator and
the Simulator Extensions is supported by the BIS (Boolean -
Integer - String) protocol. Each protocol message is encoded
using a number of booleans, integers, and strings as explained
in [23]. In order to facilitate the development of Prosega/CPN
we use some third-party libraries which implement many
of the functions to manage and display the automata. In
particular, we utilize OpenFST [13] [24] for FSA reduction
and FSA difference, and Graphviz [25] for drawing the
automata. On the other hand, we wrote the code for language
generation (fsm2language) in C programming language [26].

The fsm2language implements the procedures for language
generation and the computation of random sequences accepted
by a FSA, that were described in Section IV. The bridge
between the fsm2language component and the Prosega/CPN
tool is supported by JNI (Java Native Interface) which enables
a Java program to call native libraries written in C/C++
programming language.

VI. USE CASE

The IEEE 802.16 standard [27] is responsible for specifying
and describing the air interface of Broadband Wireless Access
Systems (BWA), and point-multipoint fixed/mobile wireless
metropolitan area network. The standard is limited to the de-
scription of the Medium Access Control (MAC) and physical
(PHY) layers. In overall, IEEE 802.16 provides great benefits
for providing mass broadband wireless connectivity, allowing
user mobility, mesh-mode network support, and even has been
thought as an alternative for Internet-of-Things deployments.
However, due to its inherent complexity, there are several

186

Figure 4. Language generation interface.

Figure 5. Interface showing part of the language accepted by the FSA
generated in Figure 3.

parts of the specification that turn out to be ambiguous,
difficult to understand and imprecise. In this context, Morales
et al. [28] [29] has contributed establishing a formal model
for a module of IEEE 802.16. In particular, it developed
a formal verification of the MAC connection management
service specification. To this aim, the Prosega/CPN tool has
been used in conjunction with the Billington’s protocol veri-
fication methodology [8]. Figure 9 illustrates the steps of the
methodology; we proceed to explain such steps, and how they
have been applied within our use case using CPN Tools and
Prosega/CPN.

Figure 6. Interface showing some randomly generated sequences of language
symbols.

Figure 7. The interface shows the resulting difference FSA given two
automata as parameters.

A. Service Definition

In Figure 9, the dashed box in the left represents the first
step which consists in modelling the service specification of
the system, and to define the services that it aims to provide
(either to a higher layer or to another system entity). In
the scenario of the IEEE 802.16 MAC layer, the service
specification consists in a set of service primitives that the
MAC sub-layer, responsible for connection management pro-
cedures, provides to the sub-layer on top of it. Each of these
primitives correspond to one of the following procedures: The

187

Figure 8. Prosega/CPN Architecture.

Figure 9. Steps within the protocol verification methodology proposed in [8].

ReqMAC

State1

1`(NonConect)

RqToRp

MsjReq

RespMAC

State2

1`(NonConect)

RpToRq

MsjRsp

TerminateConnection

TerminateConnectionTerminateConnection

CreatConnection

CreatConnectionCreatConnection

ChangeConnection

ChangeConnectionChangeConnection

Figure 10. CPN model representing the hierarchical view for the processes of creation, changes and termination of connections between peer MAC entities
in the IEEE 802.16 service specification.

188

Figure 11. OG of the CPN model representing the IEEE 802.16 MAC connection management service specification.

Figure 12. Minimized determnistic FSA generated from the OG illustrated in Figure 11.

189

establishment of a connection between communication peers,
the connection maintenance (i.e. management of the dynamic
network resources) and the termination of the connection by
any of the communication peers.

B. Service CPN and OG

Using CPN Tools, it is created the CPN model of the service
specification. Figure 10 presents the CPN main page which
shows a top view of the model [2]. This top module is linked
with the pages that model the service primitives that corre-
spond to the establishment, maintenance, and termination of a
connection through the transitions CreatConnection, Change-
Connection, and TerminateConnection respectively. Each of
these pages of the model can be checked in [28]. Afterwards,
it is generated the CPN’s occurrence graph (OG), shown in
Figure 11, which is the input for the FSA reduction feature
of Prosega/CPN.

C. FSA Reduction

Once the service OG is generated, it is modelled as a FSA
in line with Definitions 4 and 5. To this aim, it is used the RUN
tool of Prosega/CPN for converting the OG into a FSA (as
presented in Figure 2). For each transition of the CPN model,
it is assigned a number value which represents the associated
service primitive identifier (Id) (resembling the function Prim
described in Section III). Transitions that are considered as
empty moves (or internal events) are labelled with 0 (epsilon
transitions). Later, there are assigned the terminal states. The
assignation performed between all the model transitions and
the service primitive identifiers as well as the decision of
the terminal states can be fully checked in [28]. Afterwards,
the FSA is minimized following the procedure explained in
Section IV. Figure 12 presents the minimized deterministic
FSA (exported from the output/analysis interface of the RUN
tool previously presented in Figure 3).

D. Language Generation

The service language (the set of sequences of service
primitives) is generated using Prosega/CPN as explained in
Section IV —utilizing FSA minimization (RUN tool) and
FSA language generation (LANG tool). Figure 5 presented
some sequences that are accepted by the FSA. In addition,
Table I shows the identifier selected for each primitive service
[28]. For example, the sequence of language symbols 1, 2,
3, 4, 7, 8, 9, 10 represent the service primitives invoked
by the protocol entity in top of the MAC for the successful
establishment and maintenance (change of a communication
resource) of the connection. In overall, the minimized FSA
generated by Prosega/CPN provides a compact description of
the possible sequences of service primitives, and allows to
remove complexity from the model, which allows the language
to present a clear specification of the service that the system
provides.

Table I
SERVICE PRIMITIVES ON THE IEEE 802.16 MAC LAYER AND

THEIR CORRESPONDING IDENTIFICATION NUMBER [28].

Service Primitive Id

MAC CREAT CONNECTION.Request 1

MAC CREAT CONNECTION.Indication 2

MAC CREAT CONNECTION.Response 3

MAC CREAT CONNECTION.Confirmation 4, 5, 6

MAC CHANGE CONNECTION.Request 7

MAC CHANGE CONNECTION.Indication 8

MAC CHANGE CONNECTION.Response 9

MAC CHANGE CONNECTION.Confirmation 10

MAC TERMINATE CONNECTION.Request 11

MAC TERMINATE CONNECTION.Indication 12

MAC TERMINATE CONNECTION.Response 13

MAC TERMINATE CONNECTION.Confirmation 14, 15, 16

E. Further Steps

The second part of the methodology (dashed box in the right
of Figure 9) concerns to the modelling of the protocol, and its
comparison against the service specification through language
equivalence. These further steps are still in progress within
the research work [28]. The modelling of the protocol consists
in constructing the CPN model which describes the protocol
procedures which are performed when a service primitive is
invoked by a higher entity of the system. Later, it is generated
the OG associated to this CPN model. On the one hand,
behavioral properties of the protocol may be analyzed through
the OG. On the other hand, the OG may be reduced into a
minimized deterministic FSA. i.e. using again the RUN tool
of Prosega/CPN. Then, the FSA of the service specification
may be compared with the FSA of the protocol. i.e. using
the DIFF function of Prosega/CPN - see Figure 7. Finally, the
language of the difference FSA may be generated in order
to determine language equivalence between the service and
the protocol. Thus, we can determine the sequences of service
primitives which are in the protocol specification but are not in
the service specification. It is important to know if the service
specification meets the protocol specification, since it is not
desirable to have a service requirement from the service user
which cannot be met by the protocol. In addition, it may not
be wanted a service provided by the protocol which actually
it is never required by the user.

VII. CONCLUSIONS

This work has presented Prosega/CPN. The tool is an
extension of CPN Tools for supporting several operations for
FSA-based analysis and system verification. The tool provides
a feature for generating a minimized deterministic Finite-state
Automaton (FSA) from a CPN’s occurrence graph (OG).
It includes as well operations for language generation, and
for automata comparison. These functionalities are supported

190

taking advantage of consolidated third-party components such
as OpenFST and Graphviz. In addition, we developed a
module for language generation.

Prosega/CPN has been integrated within the CPN Tools
GUI using the Simulation Extensions (new feature in the last
version of CPN Tools) component whose development has
been driven by the demand of many research works to suitably
integrate Coloured Petri Nets with other formalisms [4]. In
particular, the integration between CPNs and FSA was not
existing within CPN Tools, and the application of this multi-
formalism strategy has shown its merits in many published
papers, specially from the domain of protocol verification.
Furthermore, other works may be benefited from this FSA-
based verification; for example, as presented in our use case,
the analysis of an equivalent reduced FSA provides a compact
and clear description of the possible user observable events
(service primitive calls) rather than to deal with the analysis
of the OG, thereby allowing to reduce the time complexity
when it may be required to check the behavioral properties of
the system through the FSA.

As future work, the tool will keep providing support
within the further steps of the formal verification work of
the IEEE 802.16 standard, regarding to the MAC connection
management procedures. On the other hand, as another further
direction for the tool enhancement, the tool has been thought
to be tested in other domains; indeed, as it has been stated,
Prosega/CPN can be used in other cases where FSA may be
required, and within the verification of other systems whose
analysis may involve the comparison of models at different
levels of abstraction. This future work on other use cases
will be able to keep maturing the tool. i.e. integrating new
operations/features for automata manipulation, and testing the
tool performance in terms of scalability, among other key facts.
In addition, it has been considered to keep exploiting more
capabilities offered by the Simulator Extensions channel; for
example, to be able draw and manually edit a FSA in the CPN
Tools canvas, instead of only using the Graphviz support for
automata drawing.

REFERENCES

[1] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, April 1989.

[2] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Berlin, Heidelberg: Springer-Verlag,
2009.

[3] “CPN Tools - A tool for editing, simulating, and analyzing Coloured
Petri Nets,” http://www.cpntools.org/.

[4] M. Westergaard, “CPN Tools 4: Multi-formalism and Extensibility,”
in Application and Theory of Petri Nets and Concurrency. Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 400–409.

[5] M. E. Villapol, “Modelling and Analysis of the Resource Reservation
Protocol Using Coloured Petri Nets,” Ph.D. dissertation, University of
South Australia, Australia, December 2003.

[6] S. Gordon, L. M. Kristensen, and J. Billington, “Verification of a Revised
WAP Wireless Transaction Protocol,” in Application and Theory of Petri
Nets and Concurrency. Berlin, Heidelberg: Springer-Verlag, 2002, pp.
182–202.

[7] B. Han, “Formal Specification of the TCP Service and Verification of
TCP Connection Management,” Ph.D. dissertation, University of South
Australia, Australia, April 2004.

[8] J. Billington, G. E. Gallasch, and B. Han, A Coloured Petri Net Approach
to Protocol Verification. Berlin, Heidelberg: Springer-Verlag, 2004, pp.
210–290.

[9] G. Gallasch and L. M. Kristensen, “Comms/CPN: A Communication
Infrastructure for External Communication with Design/CPN,” January
2001.

[10] M. Westergaard and K. B. Lassen, “The BRITNeY Suite Animation
Tool,” in Applications and Theory of Petri Nets and Concurrency.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 431–440.

[11] M. Westergaard, “Access/CPN 2.0: A High-Level Interface to Coloured
Petri Net Models,” in Application and Theory of Petri Nets and Con-
currency. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 328–337.

[12] AT&T Researchers - Inventing the Science Behind the Service, http:
//www.research.att.com/evergreen/portfolio/.

[13] “OpenFst Library,” http://www.cpntools.org/.
[14] M. Hulden, “Foma: A Finite-state Compiler and Library,” in Proceedings

of the 12th Conference of the European Chapter of the Association for
Computational Linguistics: Demonstrations Session. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2009, pp. 29–32.

[15] A. Almeida, M. Almeida, J. Alves, N. Moreira, and R. Reis, “FAdo
and GUItar: Tools for Automata Manipulation and Visualization,” in
Implementation and Application of Automata. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 65–74.

[16] S. H. Rodger, JFLAP: An Interactive Formal Languages and Automata
Package. USA: Jones and Bartlett Publishers, Inc., 2006.

[17] C. Ouyang and J. Billington, “Formal Analysis of the Internet Open
Trading Protocol,” in Applying Formal Methods: Testing, Performance,
and M/E-Commerce. Berlin, Heidelberg: Springer-Verlag, 2004, pp.
1–15.

[18] S. Barzegar, M. Davoudpour, M. R. Meybodi, A. Sadeghian, and
M. Tirandazian, “Traffic Signal Control with Adaptive Fuzzy Coloured
Petri Net Based on Learning Automata,” in Annual Meeting of the North
American Fuzzy Information Processing Society, July 2010, pp. 1–8.

[19] N. Danapaquiame, E. Ilavarasan, N. Kumar, and S. K. Dwivedi, “Rat-
ification strategy for web service composition using CPN: A survey,”
in IEEE International Conference on Computational Intelligence and
Computing Research, December 2013, pp. 1–4.

[20] J. Zhu, K. Zhang, and G. Zhang, “Verifying Web Services Composition
based on LTL and colored Petri Net,” in 6th International Conference
on Computer Science Education, August 2011, pp. 1127–1130.

[21] ISO/IEC, “High-level Petri Nets - Part 1: Concepts, Definitions and
Graphical Notation,” Software and Systems Engineering, ISO/IEC FDIS
15909-1. Final Draft International.

[22] W. A. Barrett and J. D. Couch, Compiler Construction: Theory and
Practice. Chicago, Illinois: Science Research Associates Inc., 1979.

[23] M. Westergaard, “CPN Tools 4 Extensions: Part 4: Advanced
Communication and Debugging,” https://westergaard.eu/2013/11/
cpn-tools-4-extensions-part-4-advanced-communication-and-debugging/,
November 2013, Blog entry.

[24] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri, “OpenFst:
A General and Efficient Weighted Finite-State Transducer Library,” in
Implementation and Application of Automata. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 11–23.

[25] “Graphviz - Graph Visualization Software,” http://www.graphviz.org/.
[26] J. C. Carrasquel, “Java/PROSEGA: An extension in CPN Tools for

generating languages accepted by FSA and minimized deterministic
FSA from a state space,” Central University of Venezuela, Caracas,
Venezuela, Tech. Rep., October 2015.

[27] IEEE 802.16 Working Group on Broadband Wireless Access Standards,
“IEEE Std. 802.16e-2005. Local and Metropolitan Area Network. Part
16: Air Interface for Fixed and Mobile Broadband Wireless Access
Systems.”

[28] A. V. Morales and M. E. Villapol, “Towards Formal Specification of the
Service in the IEEE 802.16 MAC Layer for Connection Management,”
in Proceedings of the 9th WSEAS International Conference on Compu-
tational Intelligence, Man-machine Systems and Cybernetics. World
Scientific and Engineering Academy and Society (WSEAS), 2010, pp.
140–146, Mérida, Venezuela.

[29] A. V. Morales and M. E. Villapol, “Reviewing the Service Specification
of the IEEE 802.16 MAC Layer Connection Management: A Formal
Approach,” in CLEI Electronic Journal, vol. 16, August 2013, pp. 1–
12.

191

Simulating Behavior of Multi-Agent Systems with
Acyclic Interactions of Agents
Roman A. Nesterov∗†, Alexey A. Mitsyuk∗, Irina A. Lomazova∗

∗National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, 101000 Moscow, Russia
†Univeristà degli Studi di Milano-Bicocca, 1 Piazza dell’Ateneo Nuovo, 20126 Milan, Italy

E-mail: {rnesterov, amitsyuk, ilomazova}@hse.ru

Abstract—In this paper, we present an approach to model and
simulate models of multi-agent systems (MAS) using Petri nets.
A MAS is modeled as a set of workflow nets. The agent-to-
agent interactions are described by means of an interface. It is
a logical formula over interaction rules specifying the order of
inner agent actions. Our study considers positive and negative
interaction rules. In this work, we study only interfaces which
describe acyclic agent interactions. We propose an algorithm
for simulating the MAS with respect to a given interface. The
algorithm is implemented as a ProM 6 plug-in that allows one to
generate a set of event logs. We suggest our approach to be used
for evaluating process discovery techniques against the quality
of obtained models since this research area is on the rise. The
proposed approach can be used for process discovery algorithms
concerning internal agent interactions of the MAS.

Index Terms—Petri nets, multi-agent systems, interaction,
interfaces, simulation, event logs

I. INTRODUCTION

Process discovery has been actively developed over recent
years [1]. Many algorithms for the automatic model synthesis
from event logs have been proposed [2]–[7]. They produce
process models in different notations. These can be Petri nets
[3], [6], [7], fuzzy models [2], heuristics nets [4] or BPMN
models [5] and many others (see [8] for the comprehensive
review of process discovery algorithms).

Discovering process models from event logs helps to use
information about users and system runtime behavior for
proper specification, design, and maintenance of software
systems [9], [10]. This topic is increasingly attracting the
attention of researchers [11]–[14]. In particular, application
of process mining techniques to distributed and multi-agent
software systems [15], [16] is interesting and important.

The main drawback of most algorithms is that they are
not appropriate for modeling highly concurrent systems. In
particular, these are multi-agent systems (MAS). Such a system
consists of multiple agents executing their work independently
and interacting via predefined interfaces. It makes sense to use
compositional approaches to model MASs. Fortunately, such
approaches have been proposed within recent years [17], [18].

The overwhelming majority of process discovery algorithms
employ different heuristics. That is why, testing is used to
evaluate their efficiency and validity [8]. It is performed using
real-life and artificially generated event logs with suitable char-
acteristics. The latter are prepared using event log generators.

In this paper, we describe a new event log generator that
aims at preparing artificial event logs for MASs. We model

individual agents using workflow nets, whereas interfaces are
specified using special formulae. They are constructed using a
declarative formalism that we introduce to describe basic asyn-
chronous interactions between agents. Based on agent models
and a declarative interface formula our generator derives the
operational semantics that describes a MAS behavior. We show
that both representations of a MAS are equivalent, i. e. they
have the same set of possible model runs. Thus, this semantics
can be used to simulate the model and generate event logs.

The main contributions of this paper are:
1) a formalism for a declarative description of the require-

ments for agent interactions is defined;
2) the operational semantics representing the behavior of

a multi-agent system with declarative requirements for
interactions of agents is defined;

3) an algorithm for generating event logs from given agent
models and declarative constraints on their interactions
based on the operational semantics is developed;

4) the approach is implemented as a prototype software and
evaluated.

This paper is structured as follows. The next section gives
an overview of existing approaches for generating event logs
and simulating process models. Section III introduces main
notions used in the paper. In Section IV, we describe our
approach to modeling multi-agent systems with the help of
Petri nets. Implementation details are discussed in Section V,
and Section VI concludes the paper.

II. RELATED WORK

Process Logs Generator PLG2 [19] is one of the most
popular tools for generating well-structured process models
represented by dependency graphs. The tool constructs models
using randomly generated context-free grammars. The user
should specify desired characteristics of models: a size, a
number of choices, hierarchy blocks etc. Afterwards, the
obtained model can be used to generate an event log.

Another tool that aims at randomized event log generation
is PT and Log Generator [20]. It generates random process
trees (well-structured models), which contain desired number
of specified workflow patterns. In particular, generated models
can be constructed from sequences, AND-/XOR-/OR- splits
and joins, structured loops. The algorithm can also randomly
insert elements representing activities. The tool also generates

192

the desired number of event logs from automatically con-
structed models.

The problem of the randomized process model generation
has been also considered by Yan, Dijkman, and Grefen in [21].
Their approach does not consider event log generation.

The main goal of the tools discussed above is the rando-
mized testing using sets of models and event logs. However,
in some cases there is a need to generate event logs from
specific process models that have been prepared on the basis
of the real data or expert knowledge. If this is the case, one
can use the tool GENA [22]. It aims at generating sets of
event logs from a Petri net model. The approach allows users
to use preferences to influence a control-flow and to artificially
introduce a randomized noise into an event log. The improved
version of GENA can generate event logs from BPMN 2.0
models [23]. Most basic BPMN constructs are supported:
tasks, gateways, messages, pools, lanes, data objects.

Colored Petri nets can also be used to generate event logs
[24]. Authors have developed the extension for CPN Tools
that can generate randomized event logs based on a given
colored Petri net. The main drawback of this approach is that
it implies writing Standard ML scripts, which leads to possible
problems during tool adaptation for a specific task. Moreover,
this approach and GENA do not support multi-agent systems
with independent asynchronous agents.

Declarative process models can also be used to generate
event logs [25]. This approach is based on construction of
a finite automaton using a Declare process model. The tool
can generate a specified number of strings accepted by this
automaton. Strings are generated using the automaton and its
randomized execution. Afterwards, each string is transformed
into a log trace with necessary attributes. This tool is useful,
when the only information about the process is the set of
constraints. This approach is also not appropriate for the MAS
simulation as we suggest, because it does not support the
imperative control-flow description of individual agents.

In this paper, we propose an extension to the GENA tool
that can be used for generating event logs by simulating MAS
models, because the tools described above cannot fully support
this feature.

III. PRELIMINARIES

Let N denote the set of all non-negative integers, A+ —
the set of all finite non-empty sequences over a set A, and
A∗ = A+ ∪ {ε}, where ε is the empty sequence. For a subset
B ⊂ A the projection of σ ∈ A∗ on set B, denoted σ|B , is
the subsequence of σ including all elements belonging to B.

A. Petri Nets

A Petri net is a triple N = (P, T, F), where P and T are
two disjoint sets of places and transitions, and F ⊆ (P ×T)∪
(T × P) is a flow relation. Pictorially, places are shown by
circles, transitions — by boxes, whereas the flow relation is
depicted using directed arcs (see Fig. 1 for an example).

We suppose that transitions of a Petri net are labeled with
activity names from A∪{τ} where A is a set of visible activity

names, and τ is a label for an invisible action. Labels are
assigned to transitions via a labeling function λ : T → A∪{τ}.

A marking (state) of a Petri net N is a function m : P → N
assigning numbers to places. A marking m is designated by
putting m(p) black dots into each place p. By m0 we denote
the initial marking.

Let X = P ∪ T . For x ∈ X , •x = {y ∈ X | (y, x) ∈ F} is
the set of input nodes of x in N , and x• = {y ∈ Y | (x, y) ∈
F} is the set of its output nodes.

A marking m enables a transition t ∈ T iff there is at least
one token in all input for t places. An enabled transition may
fire yielding a new marking m′ (denoted m[t〉m′), consuming
one token from each of its input places and producing a token
into each of its output places (Fig. 1b).

(a) initial marking (b) transition b fires

Fig. 1. A Petri net

A sequence w = t1t2 . . . tn over T is a firing sequence iff
mo[t1〉m1[t2〉 . . .mn−1[tn〉mn (denoted m0[w〉mn).

Let w = t1t2 . . . tn be a firing sequence in the net N ,
λ — a labeling function over a set of activity names A.
Define λ(w) = λ(t1)λ(t2) . . . λ(tn). Then λ(w)|A is called
an (observable) run in N .

A marking m is reachable iff ∃w ∈ T ∗, s.t. m0[w〉m. A
reachable marking is called dead if it does not enable any
transition.

Workflow nets (WF-nets) form a subclass of Petri nets used
for business process modeling.

A Petri net N = (P, T, F,m0) is a WF-net iff:
1) there is a single source place i and a single sink place

f , s.t. •i = f• = ∅;
2) each node in P ∪ T lies on a path from i to f .

The initial marking m0 for a WF-net contains exactly one
token in its source place i.

B. Event Logs

A multiset over a set A is a map B : A → N. The set of
all multisets over A is denoted by B(A).

Let A be a set of activity names. A trace σ over A is
defined as a finite non-empty sequence over A. An event log
L over A is a finite multiset of traces, i. e. L ∈ B(A+).

IV. MODELING MULTI-AGENT SYSTEMS

In this section, we present a formalism for modeling multi-
agent systems consisting of several asynchronously interacting
agents.

A model for a system of k agents will consist of k WF-nets
N1, N2, . . . , Nk, representing behavior of individual agents

193

(called agent nets), and constraints on their asynchronous
interaction I (called interface). We assume that transitions
of agent nets have individual labels. In other words, different
agents implement different activities. We also assume that
agent interactions are acyclic, namely, activities in interaction
constraints do not belong to cycles and therefore occur in each
system run not more than once.

Interfaces are defined as positive logical formulae over
atomic constraints. Let us give the exact definitions.

Let N1, N2, . . . , Nk be agent nets with pairwise disjoint sets
of activity names λ1(T1), λ2(T2), . . . , λk(Tk) respectively. We
define two types of atomic constraints, namely, ACB, and
ACB, where A and B are activity names from two different
sets, i. e. A ∈ λi(Ti), B ∈ λj(Tj), and i 6= j.

The validity of atomic constraints for a given trace σ over
the set of activity names A = λ1(T1)∪λ2(T2)∪ · · · ∪λk(Tk)
is defined as follows:

σ |= ACB ⇔ if B occurs in σ, then A occurs before B;
σ |= ACB ⇔ A does not occur before B.

When σ |= φ, we say that φ is valid for σ, and σ satisfies φ.
The validity of the atomic constraints has a natural in-

terpretation. The constraint A C B means that B should
be always preceded by A, e.g. a message can be received
only if it has already been sent. Thus, A C B is valid for
a trace σ = . . . A . . . B . . . and is not valid for a trace
σ′ = . . .︸︷︷︸

except A

B

The constraint ACB means that B cannot occur, if A has
happened before, e.g. if a message was already sent by mail,
we should not fax it. A trace σ′ = . . .︸︷︷︸

except A

B . . . satisfies this

constraint, and a trace σ = . . . A . . . B . . . does not satisfy
it. Note, however, that atomic constraints are not negations of
each other. Both ACB and ACB are valid for a trace which
does not contain B.

Now a language of interface constraints is defined by the
following grammar rules:

Atom ::= ACB |ACB
φ ::= Atom |φ ∨ φ |φ ∧ φ,

where Atom is an atomic constraint, and φ — a constraint
formula.

Validity of a constraint formula for a given trace is defined
in a standard way:

σ |= φ1 ∧ φ2 ⇔ σ |= φ1 and σ |= φ2

σ |= φ1 ∨ φ2 ⇔ σ |= φ1 or σ |= φ2

Let L be an event log over a set A of activity names, φ —
a constraint formula, then φ is valid for L iff φ is valid for
each trace in L.

Interface formulae allow us to express different useful
interaction constraints, e.g. the formula φ = (ACB∧BCA)
describes a conflict between A and B, i. e. A and B cannot
occur in the same trace.

Recall that a MAS model consists of k agent nets
N1, N2, . . . , Nk, where Ni = (Pi, Ti, Fi,m

i
0, λi), and a

constraint formula I (interface) with atomic constraints that
defines the relations on activities of different agents.

It is easy to see that the union of Petri nets (considering
several disjoint graphs as one disconnected graph) is also a
Petri net. So, we can consider k agent nets as a single Petri
net N . Recall that a run for a Petri net N is a sequence of
activity names, corresponding to a firing sequence of N , and
a trace from the related event log. Then, for a MAS model
S = (N1, N2, . . . , Nk, I) a run is defined as a run ρ in N ,
satisfying I, i. e. ρ |= I.

The following proposition is the immediate consequence of
the definitions.

Proposition 1: Let S = (N1, N2, . . . , Nk, I) be a MAS
model, and ρ — a run in S. Then for all i the projection ρ|Ni

of the run ρ on transitions of an agent net Ni is a run in Ni.

Fig. 2. A MAS with two interacting agents

Consider as an example the system in Fig. 2 with I =
(ACB) ∧ (BCA), which means that B conflicts with A.
Consider a run σ = x1B y2x3 satisfying I. Projecting σ on
agent nets gives traces x1x3 and B y2 which are runs of agent
nets. This property will be used for designing the simulation
algorithm presented in the next section.

V. SIMULATING MAS PROCESS MODELS

In this section, we describe an algorithm for simulating
MAS models. This algorithm was implemented as a ProM 6
plug-in, developed on the basis of GENA tool [22].

A. An Interface-Driven Firing Rule

A constraint formula in a MAS model defines declarative
restrictions on the model’s behavior. To simulate the model
behavior, we need to define operational semantics for MAS
models based on a special firing rule for selecting and execut-
ing the next step in the run of the model. We call this rule an
interface-driven firing rule to distinguish it from the standard
Petri net firing rule. Naturally, this rule should be consistent
with the declarative definitions of MAS models behavior.

Let S = (N, I) be a MAS model, where a Petri net N =
(P, T, F,m0, λ) is a union of all agent nets.

Firstly, we convert I to a disjunctive normal form (DNF)
using standard logical laws. Then, an interface I =

∨n
j=1 Cj ,

194

where Cj =
∧m

`=1 S`, and S` is an atomic constraint. By abuse
of notation, we denote by I also the set of its conjuncts, and
by Cj — the set of atomic constraints in a conjunct Cj .

Obviously, a trace σ satisfies I iff ∃Cj ∈ I : σ |= Cj , i. e.
σ satisfies at least one conjunct in I. So, to generate a model
run, we choose a conjunct Cj and fire transitions of N only
if they do not violate Cj .

Then we define TI ⊆ T to be the set of transitions involved
in agent interaction, i. e. t ∈ TI iff λ(t) occurs in I. We
call transitions from TI interface transitions. Independent
transitions from T \TI fire according to the standard firing rule
for Petri nets. The firing of interface transitions is restricted by
the constraint formula. To check whether firing of a transition t
violates Cj , we keep the current historical run, i.e. a sequence
of already fired activities. When a transition t ∈ TI is enabled
according to the standard Petri net firing rule at a current
marking m, and an atomic constraint AC λ(t) occurs in Cj ,
then t is defined to be enabled only if A occurs in the current
run. Similarly, if ACλ(t) occurs in Cj , then t is enabled only
if A does not occur in the current run. Otherwise, a transition
t is enabled in the model, when it is enabled in N .

Now the operational semantics of a MAS model S =
(N, I), where N = (P, T, F,m0, λ), and I =

∨n
j=1 Cj , is

defined by the following execution procedure.
Step 1. Choose nondeterministically a conjunct C in I.
Step 2. Start with the initial marking m0 and the empty
sequence ε for a current run σ.
Step 3. For a current marking m and a current run σ repeat
while there are enabled transitions of N :

1) compute the set Tok of all transitions enabled at m, not
violating constraints from C w.r.t. σ;

2) choose nondeterministically a transition t from Tok;
3) fire t by changing the current marking to m′, m[t〉m′,

and adding λ(t) to the run σ.

B. Event Log Generation

In this section we present an algorithm for generating an
event log by simulating a MAS model.

Let S = (N, I) be a MAS model, where N =
(P, T, F,m0, λ) is a Petri net, and I is in DNF. Firstly, for
each conjunct C occurring in I, we simulate S to check if
it is possible to obtain a run σ satisfying C. If we cannot
obtain such a run by simulating S, we exclude this conjunct.
As a result, we come to a set of conjuncts I ′ ⊆ I which can
actually be satisfied by runs of S or an empty set if I cannot
be satisfied by runs of S. If I ′ = ∅, then the simulation is
terminated producing the empty event log L.

That is why, we can simulate S with respect to conjuncts
occurring in I ′ only. Starting a new simulation iteration, we
randomly choose a conjunct from I ′ and execute N according
to the interface-driven firing rule.

The end user also specifies the final marking mf which is
actually a set of output places of agent nets. Apart from that,
log generation is also regulated by the number of logs and
traces in a log and by the maximum number of steps which
can be done while generating a single trace (maxSteps).

Algorithm 1 is used for generating a single trace, which
satisfies a nondeterministically chosen conjunct C from I ′.

Algorithm 2 is used for finding enabled transitions which do
not violate constraints of C. Firstly, we find a set of transitions
enabled at a reachable marking m according to the standard
firing rule. Secondly, if m enables interface transitions, we
check whether the current run σ = λ(w)|A, s.t. m0[w〉m,
satisfies constraints of C using the interface-driven firing rule.
A run σ is a trace to be recorded into an event log L.

Algorithm 1: Single trace generation
Input: N = (P, T, F,m0, λ), I ′, mf

Output: Trace σ, s.t. σ |= I ′
σ ← ε /* current run */

m← m0 /* current marking */

i← 1 /* step number */

C ← pickRandomConjunct(I ′) /* chosen conjunct */

while (i ≤ maxSteps) ∧ (m 6= mf) do
Tok ← findEnabledTransitions(N,m,C, σ)
if Tok 6= ∅ then

t← pickRandomTransition (Tok)
m← fireTransition(N,m, t)
if λ(t) 6= τ then

/* visible actions are recorded in σ */

σ ← σ + λ(t); i← i+ 1;
end

else
σ ← ε; break; /* dead marking */

end
end

Algorithm 2: Function findEnabledTransitions
Input: N = (P, T, F,m0, λ),m ∈ [m0〉, C ∈ I ′, σ
Output: A set of transitions Tok enabled w.r.t to C
Tm ← stEnabledTransitions(N ,m) /* firing rule */

Tok ← Tm \ TI /* non-interface transitions */

foreach t ∈ Tm ∩ TI do /* check whether σ |= C */

foreach S ∈ C do /* if right of S is λ(t) */

if S = X C λ(t) then
if σ = uXv then /* u, v can be empty */

Tok ← Tok ∪ t;
end

else if S = X Cλ(t) then
if σ 6= uXv then Tok ← Tok ∪ t;

end
end

end

We do not show here how the transition firing is imple-
mented. It is discussed in detail in [22] where the original
GENA plug-in is described.

Consider an example based on the system shown in Fig. 2.
Assume I = (ACB) ∨ (y1 C x1 ∧ x2 C y1). C = y1 C x1 ∧
x2 C y1 is chosen. We are at the initial marking, so the run
is empty, i. e. σ = ε. Enabled transitions are {A, x1, B, y1}.

195

However, x1 cannot fire, since it should wait until y1 is
executed. Then, nondeterministically B fires. Subsequently,
the run is σ = B, and enabled transitions are {A, x1, y2},
but x1 still cannot fire. We can choose A to fire. Then, the
trace is σ = BA, and the enabled transitions are {x2, y2},
which are not influenced by C. As a result, we can obtain a
trace σ = BAy2x2 satisfying C, and the projections of σ on
agent transitions, Ax2 and By2, are the runs of agent nets.

C. Experimental Simulation

We have developed the extension for the ProM1 plug-in
GENA which implements the proposed simulation algorithm
and allows users to obtain a set of event logs by simulating a
MAS model w.r.t. to interaction constraints.

We have developed five use cases for evaluating the pro-
posed simulation approach. In each case we have generated
event logs with 5000 traces. For each case we provide a
“filtered” version of event log with respect to interacting
actions, s. t. it is clear whether the interface is observed
exactly. We have used Disco2 to visualize generated event logs.
Insignificant parts of agent nets are shown by shaded ovals.

a) Sequencing: Consider a system with three interacting
agents (see Fig. 3). Each agent always executes one action. We
have simulated it with respect to the interface I = A C B ∧
B CC. Intuitively, in this case each agent prepares resources
needed for the other agent.

(a) a system

526

819

827

646

949

1,294

494

846

1,226

557

871

529

1,533

932

1,625

523

1,796

162

162

466

602

181

1,1951,218

897

1,548

3,071

1,462

1,104

1,588

1,165

383

1,424

432

1,314

2,534

t1
2,467

t7
5,000

t9
5,000

t15
5,000

A
5,000

t8
5,000

t17
5,000

t16
5,000

t4
9,849

t6
5,000

t23
5,000

t22
5,000

B
5,000

C
5,000

t11
2,533

t20
2,479

t24
5,000

t13
2,533

t12
2,467

t14
2,467

t19
2,521

t2
2,533

t5
4,849

5,000

5,000

5,000

5,000

A
5,000

B
5,000

C
5,000

(b) an event log

Fig. 3. Sequential interaction

b) Conditional Sequencing: As opposed to sequencing,
conditional sequencing allows for several execution options. In
this case, a system consists of two agents, one of which has
alternative branches (see Fig. 4). Interface for the conditional
sequencing is as follows: I = AC C ∨ C CB.

c) Alternative interaction: The alternative interaction im-
plies that one of two interacting agents influences the choice
done by the other agents. A system consists of two interacting
agents both having alternative branches (see Fig. 5). An inter-
face formula for this case is as follows: I = ACC ∨BCD.

1ProM 6 Framework page: http://www.promtools.org
2Fluxicon Disco page: https://fluxicon.com/disco/

(a) a system

774

1,079

805

789

1,370 1,395

1,611

1,418

344

428

580

585

1,15068

719

1,365

187465

1,235

345

1,285

1,889

1,331

594

429

1,798

1,293

1,4721,450

1,192

1,856

1,325

579

1,629

1,676

3,705

t3
2,512

t21
2,512

t20
2,512

t1
5,000

t23
2,512

C
5,000

t8
2,510

t4
5,000

t9
5,000

t10
2,491

t5
5,000

B
2,735

t14
5,000

t18
5,000

t16
5,000

t17
5,000

t19
5,000

A
2,265

t7
2,490

t11
2,509

t2
2,488

t22
2,488

2,735

2,265

2,735

2,265

2,265

2,735

C
5,000

B
2,735

A
2,265

(b) an event log

Fig. 4. Sequential interaction with options

(a) a system

1,112

2,324

448

1,153

1,712

1,246

778

2,083

839

1,809

1,814

515

891

551

164

2,366 583

804

5,380 3,971

1,246

956

2,404

608

819

1,876

622

695

663

2,383

2,587

742

793

705

1,307

1,172 5,554

159

1,534

1,734

1,799

t14

2,452

t16

2,452

t1

5,000

t2

5,000

t3

11,732

t7

6,732

t4

5,000

B

2,502

D

2,502

t10

2,502

t8

5,827

t20

2,502

t21

5,876

t12

2,502

t27

2,502

t15

2,548

t17

2,548

A

2,498

C

2,498

t22

1,220

t23

2,498

t11

2,498

t26

2,498

t13

2,498

t25

3,374

t9

3,325

t24

1,278

2,502 2,498

2,502 2,498

2,502 2,498

B
2,502

D
2,502

A
2,498

C
2,498

(b) an event log

Fig. 5. Alternative interaction

d) Interaction using negative constraints: Assume we
have a system of two interacting agents with two alternative
branches as shown in Fig. 5a. The result of simulating this
system with respect to the interface I = ACC is shown in
Fig. 6. It is clear from the simulation result that C is never
preceded by A. Intuitively, negative constraints allow for a
more compact way of interface construction.

3,158

621

1,100

510

4,081 2,956

765

356

186

254

363

1,542

189

108

1,156

185

944

553

551

1,969

783

222

3,886

1,069

1,426

4,006

1,443

550

86

1,360

740

928

723

1,588

771

2,643

101

773

751

4,096

1,714

3,113

t15
2,469

t1
5,000

t2
5,000

t17
2,469

C
2,485

t3
11,587

t7
6,587

t24
1,204

t4
5,000

A
1,173

t23
2,485

t11
1,173

t26
2,485

t13
1,173

t14
2,531

t16
2,531

D
2,515

t20
2,515

t21
5,869

t27
2,515

B
3,827

t10
3,827

t8
8,996

t9
5,169

t12
3,827

t22
1,281

t25
3,354

156

317

146

1,111

1,1091,088

1,073

317

2,220

2,161

302

2,199

473

146

2,182

A
2,516

D
2,693

C
2,307

B
2,484

Fig. 6. Interaction using negative constraints: an event log

e) Complex interaction: In this case, we show several
ways of interaction among three different agents (see Fig.
7a). For convenience, we have filtered the obtained log in
two ways (see Fig. 8). We have used the following interface
formula (given in a conjunctive normal form for convenience
of reader): I = (B CA) ∧ (H C C) ∧ (D C F ∨ E CG).

196

(a) a system

1,032

5

401

168

660

3

384

1,351

3,318

8851,038

1,377

762

804

1,105

3,351

2,077

1,226

761

1,464

403

1,403

1,217

1,602

1,881

1,361

645

1,299

1,372

794

547 430

3,038

666

171

1,041

950

1,079

543

921

256

426

399

682

427

1,341

1,037

1,789

t1
2,489

t21
5,000

D
2,489

F
2,489

t24
2,489

t12
2,489

H
5,000

t27
10,112

t29
5,112

t14
5,000

C
5,000

B
5,000

t18
2,477

t19
5,000

t3
2,489

t20
5,000

A
5,000

t6
5,000

t7
5,000

t8
5,000

t28
5,000

t2
2,511

t4
2,511

E
2,511

G
2,511

t25
2,511

t13
2,511

t17
2,523

(b) a full event log

Fig. 7. Complex interaction

2,489 2,511

2,489 2,511

2,489 2,511

D
2,489

F
2,489

E
2,511

G
2,511

(a) actions D,E, F,G

3,607

982

948

1,012

3,577

2,148

1,930

3,070

3,040

1,960

H
5,000

C
5,000

B
5,000

A
5,000

(b) actions A,B,C,H

Fig. 8. Complex interaction: filtered event logs

VI. CONCLUSION

We have proposed the new approach to model and simulate
multi-agent systems using Petri nets. Independent agents are
modeled using a set of labeled workflow nets, and their inter-
action is described using a declarative interface. The interface
is constructed as a logic formula over atomic constraints
describing the order of internal agent actions. This study
have considered only acyclic agent interactions described by
two kinds of atomic constraints, s.t. interacting activities are
implemented only once. If cyclic interactions are allowed,
more subtle relations on interacting activities are needed to
express such constraints as “each B should be preceded by
A” or “at least one B should be preceded by A”. This is a
subject for further research.

An algorithm for simulating process models of multi-agent
systems with respect to the interface has been constructed.
We have implemented the algorithm within ProM 6 plug-in
GENA and have evaluated it using different cases of agent
interactions. The experiment results show how to use our
approach for describing agent interactions.

VII. ACKNOWLEDGMENTS

This work is supported by the Basic Research Program at
the National Research University Higher School of Economics
and Russian Foundation for Basic Research, project No. 16-01-
00546.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[2] C. W. Günther and W. M. P. van der Aalst, “Fuzzy mining: Adaptive
process simplification based on multi-perspective metrics,” in BPM
2007. Springer, Heidelberg, 2007, pp. 328–343.

[3] J. M. E. M. van der Werf, B. F. van Dongen et al., “Process discovery
using integer linear programming,” Fundam. Inform., vol. 94, no. 3-4,
pp. 387–412, 2009.

[4] A. Weijters and J. Ribeiro, “Flexible Heuristics Miner (FHM),” in IEEE
Symposium on Computational Intelligence and Data Mining (CIDM
2011). IEEE, 2011, pp. 310–317.

[5] A. A. Kalenkova, I. A. Lomazova, and W. M. P. van der Aalst, “Process
model discovery: A method based on transition system decomposition,”
in ICATPN 2014, ser. LNCS, vol. 8489. Springer, 2014, pp. 71–90.

[6] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Scalable
process discovery with guarantees,” in BPMDS/EMMSAD, ser. LNBIP,
vol. 214. Springer, 2015, pp. 85–101.

[7] A. K. Begicheva and I. A. Lomazova, “Discovering high-level process
models from event logs,” Modeling and Analysis of Information Systems,
vol. 24, no. 2, pp. 125–140, 2017.

[8] A. Augusto, R. Conforti et al., “Automated discovery of process models
from event logs: Review and benchmark,” CoRR, vol. abs/1705.02288,
2017.

[9] V. A. Rubin, A. A. Mitsyuk et al., “Process mining can be applied to
software too!” in Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ACM,
2014, pp. 1–8.

[10] M. Leemans and W. M. P. van der Aalst, “Process mining in software
systems: Discovering real-life business transactions and process models
from distributed systems,” in MODELS 2015. IEEE, 2015, pp. 44–53.

[11] M. Leemans, W. M. P. van der Aalst, and M. van den Brand, “Recursion
aware modeling and discovery for hierarchical software event log
analysis (extended),” CoRR, vol. abs/1710.09323, 2017.

[12] C. Liu, B. van Dongen et al., “Component behavior discovery from
software execution data,” in SSCI 2016. IEEE, 2016, pp. 1–8.

[13] K. V. Davydova and S. A. Shershakov, “Mining hybrid UML models
from event logs of SOA systems,” Proceedings of the Institute for System
Programming, vol. 29, no. 4, pp. 155–174, 2017.

[14] “3TU: Big software on the run.” [Online]. Available: http://www.3tu-
bsr.nl

[15] L. Cabac and N. Denz, “Net components for the integration of process
mining into agent-oriented software engineering,” in Transactions on
Petri Nets and Other Models of Concurrency I, ser. LNCS, vol. 5100.
Springer, Heidelberg, 2008, pp. 86–103.

[16] L. Cabac, N. Knaak et al., “Analysis of multi-agent interactions with
process mining techniques,” in Multiagent System Technologies, ser.
LNCS, vol. 4196. Springer, Heidelberg, 2006, pp. 12–23.

[17] R. Nesterov and I. Lomazova, “Using interface patterns for compo-
sitional discovery of distributed system models,” Proceedings of the
Institute for System Programming, vol. 29, no. 4, pp. 21–38, 2017.

[18] R. A. Nesterov and I. A. Lomazova, “Compositional process model
synthesis based on interface patterns,” in TMPA 2017, ser. CCIS, vol.
779. Springer, Heidelberg, 2018, pp. 151–162.

[19] A. Burattin, “PLG2: Multiperspective process randomization with online
and offline simulations,” in Proceedings of the BPM Demo Track 2016.
CEUR Workshop Proceedings, 2016, pp. 1–6.

[20] T. Jouck and B. Depair, “PTandLogGenerator: A generator for artificial
event data,” in Proceedings of the BPM Demo Track 2016. CEUR
Workshop Proceedings, 2016, pp. 23–27.

[21] Z. Yan, R. M. Dijkman, and P. Grefen, “Generating process model
collections,” Software and System Modeling, vol. 16, no. 4, pp. 979–
995, 2017.

[22] I. S. Shugurov and A. A. Mitsyuk, “Generation of a Set of Event
Logs with Noise,” in Proceedings of the 8th Spring/Summer Young
Researchers Colloquium on Software Engineering (SYRCoSE 2014),
2014, pp. 88–95.

[23] A. A. Mitsyuk, I. S. Shugurov et al., “Generating event logs for
high-level process models,” Simulation Modelling Practice and Theory,
vol. 74, pp. 1–16, 2017.

[24] A. K. A. d. Medeiros and C. W. Günther, “Process Mining: Using CPN
Tools to Create Test Logs for Mining Algorithms,” in Proceedings of
CPN 2005, ser. DAIMI, vol. 576. University of Aarhus, 2005, pp.
177–190.

[25] C. Di Ciccio, M. L. Bernardi et al., “Generating event logs through
the simulation of Declare models,” in Enterprise and Organizational
Modeling and Simulation. Springer, 2015, pp. 20–36.

197

Human readable Extended Finite State Machine
format

1st Alexander Nikitin
Computer science department

Higher school of economics
Moscow, Russia

alexnikleo@gmail.com

Abstract—Extended finite state machines (EFSMs) are widely
used in formal testing and formal verification of software and
hardware systems. EFSMs have a number of differences with
classical finite state machines FSMs. For instance, EFSMs can
have a predicate and/or update functions on every transition, and
a set of context variables, and thus, it helps to describe more
complex systems. However, despite the fact that there are many
scientific works which use EFSMs, there is no unified format
for EFSMs’ description. The aim of this paper is to propose
such format and to show its’ advantages and disadvantages in
applications to software formal testing.

Index Terms—formal testing, testing, extended finite state
machine, finite state machine, parser

I. INTRODUCTION

The number of critical systems rapidly increases during
last twenty years. We define critical systems as the systems
which have to always operate safe [1]. Critical systems include
aircraft software, connection protocols, medical equipment,
software for atomic energy stations, etc. Such systems have to
be thoroughly tested and verified to guarantee fault tolerance.
Many modern methods of testing and verification of such
systems use the model of Extended Finite State Machine
(EFSM) as an underlying model. For instance, generation of
the test sequences [2] and formal verification [3] can be done
using the EFSM system specification.

Because of the large number of researchers which are using
EFSMs it is important to have an unique readable format
together with corresponding tools for the EFSMs’ analysis,
which can be used among researchers. Consequently it can
result in the repository of EFSMs which can be reused by other
researchers. Previously, there were a few works with the aim
to parse an EFSM from HDL description, for example [4], but
obviously this approach could not be easily generalized to all
applications of the EFSMs. So the development of such format
could increase reproducibility of researches and productivity
of every single researcher. The main properties of the such
format should be:

• unification (any existing format could be replaced with
such format);

• compactness (ESFM representation should be short and
do not take much disk space);

• human readability (one should be able to edit EFSMs
represented in this format without any special tools, just
with a text editor);

• existence of a fast parser (format could be parsed in the
satisfactory time);

• scalability (should work with large EFSMs, that have the
number of transitions up to 108) ;

• tools (should exist open source tools for parsing, analysis
and visual representation).

The format proposed in this article possesses all these proper-
ties (besides open source tools, but creation of them is already
in progress).

The structure of the paper is as follows. In Section II,
Extended Finite State Machines (EFSMs) are defined and the
section contains main theoretical preliminaries. Section III
contains the description and specification of proposed format.
Section IV describes a parser and has an example of the
parser architecture. In Section V some experimental results
are presented and Section VI concludes the paper.

II. PRELIMINARIES

In this paper we will use slightly modified definitions from
[2].

Extended Finite State Machine (EFSM) is a triple
EFSM = (S, T, initial). Context variable are hidden vari-
ables, which are used in EFSMs. Set of the possible values of
the context variables is Dv . A context vector v ∈ Dv is called
a context of an EFSM.

A configuration of an EFSM is a pair (state, values of
context variables).
S is a set of states, T is a set of transitions and initial is

an initial configuration of the EFSM. Which includes initial
state and initial values of the context variables: initial ∈
S,Dv, whereDv is the set of possible context variables. Of-
ten EFSMs are defined without initial, we use initial for
convenience. Equivalence of these definitions is obvious.

T is a set of transitions t ∈ T where t =
(from, to, P, U, x, y).

Let Dinp−x be the set of possible input vectors, Dout be
the set of possible output vectors. X and Y are the sets of
possible inputs and possible outputs respectively.
Then,
from, to ∈ S – the initial and final states of a given transition;
x ∈ X – input;
y ∈ Y – output;
P ∈ Dinp−x ×Dv → {True, False} – predicate, sometimes

198

it is called guard;
U ∈ Dinp−x ×Dv → Dv – update function.
Given an input x ∈ X and a vector ρ ∈ Dinp−x, the pair (x, ρ)
is called a parameterized input. Parameterized input sequence
is a sequence of parameterized and non-parameterized inputs.
Given a parameterized input sequence of the EFSM we can
calculate the corresponding parameterized output sequence by
simulating the behavior of the EFSM under the input sequence
starting from the initial configuration. It can be done by simple
traversal of the EFSM.

We can see an example of the simple EFSM in Fig. 1. There
are three transitions and three states, transitions are represented
in the proposed format (see Section III). In the top left corner
initial values of the EFSM’s context variables are presented.

III. FORMAT SPECIFICATION

The format can be described with the pseudocode as fol-
lows:

s t a t e s : v1 , v2 , . . . , vn ;
i n i t : v i ;
c o n t e x t v a r s : {

c v a r s . x = 1 1 ;
c v a r s . y = 0 ;
};
t r a n s i t i o n s : [
{

from : v1 ;
t o : v2 ;
p r e d i c a t e : {

r e t u r n i n p u t . a == 1 and c v a r s . x = 2 ;
}
u p d a t e :

c v a r s . x = c v a r s . x + 1 0 ;
} ,
. . .
] ;

Listing 1. Pseudocode to describe .efsm file.

We now look at the config fields more precisely:
states is a list of the comma-separated state names;
init is a the initial state;
context vars are initial values of the context variables;
transitions are a list of transitions, every transition is described
inside braces;
Transitions are described by the following fields:

from - the initial state of a given transition;
to - the final state of a given transition;
predicate - a function written in any programming lan-

guage. For describing predicates, the current prototype uses
the Python syntax. Full specification can be found in the
Python’s standard documentation [5] with some additions: it
also can use input.{name of input variable} format to reference
input variables and c vars.{name of context variable} format
to reference output variables. It must return a boolean value
as the result;

update - similar to predicate it is a function, but the aim of
this method is to update context variables. The value of the
function is in the range of a corresponding context variable or
an output parameter.

Formally the format can be described with Backus-Naur
form (BNF) [6] Our grammar is shown in Listing 2.

p o s s i b l e c h a r s = ’A−Za−z0−9− . ˜ % + = * / ˆ () | ’
EXPR DELIM = ;
LIST DELIM = ,
s t a t e = p o s s i b l e c h a r s *
c o n t e x t v a r s = c v a r . (word)

p r e d i c a t e e x p r = PYTHON CODE;
u p d a t e e x p r = PYTHON CODE;

t r a n s i t i o n f r o m = from : i n t e g e r ;
t r a n s i t i o n t o = t o : i n t e g e r ;
t r a n s i t i o n i n p u t = i n p u t : {};
t r a n s i t i o n o u t p u t = o u t p u t : {};
t r a n s i t i o n p r e d i c a t e = p r e d i c a t e : p r e d i c a t e e x p r
t r a n s i t i o n u p d a t e = u p d a t e : d e l i m i t e d L i s t (u p d a t e e x p r)
t r a n s i t i o n = { t r a n s i t i o n f r o m + t r a n s i t i o n t o +

t r a n s i t i o n i n p u t + t r a n s i t i o n o u t p u t +
t r a n s i t i o n p r e d i c a t e + t r a n s i t i o n u p d a t e };

t r a n s i t i o n = ” t r a n s i t i o n s : [” d e l i m i t e d L i s t (t r a n s i t i o n) ”] ; ”

s t a t e s = ” s t a t e s : ” + d e l i m i t e d L i s t (s t a t e , de l im =LIST DELIM) + EXPR DELIM
i n i t = ” i n i t : ” + s t a t e + EXPR DELIM

grammar = s t a t e s + i n i t + t r a n s i t i o n

Listing 2. BNF of .efsm file.

It uses macro delimitedList in the pyparsing syntax [7].
Delimited list used to be short, but obviously it also can be de-
fined using pure Backus-Naur form (BNF). PYTHON CODE
is the Backus-Naur form (BNF) of the python programming
language [5], we do not expand it because of the large size.

IV. PARSER ARCHITECTURE

When constructing the EFSM system specification it is very
desirable to have a human readable format. However, this
format is not very efficient when performing some operations
over EFSMs such as for example, modeling an EFSM behavior
under a given parameterized input sequence. For these reasons,
we need a parser and its architecture is shown in Section III
Parser architecture can be shown in Fig. 2. It consists of the
two main components: a lexical parser and a syntactic parser.
Lexical parser takes .efsm file described in format shown in
Listing 2 and returns a stream of tokens. Stream of tokens
is given as an input to the syntactic parser which uses it to
produce an EFSM object, which than can be used to work
with EFSM (generate tests, perform verification, etc.). This
scheme is often used in compilers and translators [8] and can
be used for parsers which are written in different programming
languages, for example, Flex and Bison in C++, ANTLR in
Java, etc.

We use pyparsing [7] python library for the lexical parser in
the prototype and pure python implementation of the syntactic
parser.

V. EXPERIMENTAL RESULTS

A. Experimental setup

We conducted a number of experiments to check the
performance of the created parser and to create benchmarks
for the further works. We performed the series of experiments
measuring the working runtime. Experiments were performed
using a computer with the processor: 2,7 GHz Intel Core i5,
RAM: 16 Gb 1867 MHZ DDR3, time was measured with
Linux utility ”time” while the memory consumption was
analyzed with python library psutil [9].

199

Fig. 1. Example of a simple EFSM.

Fig. 2. EFSM parser scheme.

B. Time of the parser execution

In order to make a good benchmark we have to choose type
of the EFSMs for benchmark trials. We drew call-graph and
profiled source code with cProfile to find possible bottlenecks.
As we can see in Fig. 3, the most complex operation is the
edges’ parsing. Knowing that, we decided to create a set of
benchmarks of the EFSMs with N+1 states and N transitions
with transitions from the state i to the state i+1. Asymptotic
of the parser is O(n) but we also have to check how it will
perform in the computer to measure runtime.

For each number of transitions N we conducted 5 experi-
ments to calculate the mean and standard deviation to get rid
of the systematic error. All results are presented in the format

µ±σ where µ is a mean and σ is a standard deviation. Timings

TABLE I
TIME OF THE PARSER EXECUTION.

Number of transitions Execution time, seconds
10 0.072± 0.004
100 0.11± 0.004

1000 0.58± 0.004
10000 5.396± 1.147

100000 45.966± 3.779
1000000 521.96± 14.840

of the parser runtime trials are presented in Table I.
We also tested the parser on EFSM representations of

simplified real-world systems, e.g. fast real number power
algorithm, ATM specification and TCP specification. The
parser works several seconds and the size of the specifications
for these systems is less than dozen of Kb. It shows the
compactness and practical usefulness of the given format.

TABLE II
MEMORY CONSUMPTION OF THE PARSER.

Number of transitions Memory consumption, Mb
10 10

100 11
1000 15
10000 64

100000 550
1000000 4510

C. Memory consumption

Also we studied the memory consumption of the parser.
We used the same experimental setup as in the runtime
experiments. Detailed results are presented in Table II. The
parser consumes relatively much memory because of the large
size of the standard python data structures (e.g, strings and

200

Fig. 3. Call graph of EFSM parser run.

tuples), function objects and SmartObjects on the every edge
(SmartObject is a special object type developed in the parser
to allow addressing context variables and input symbols from
the predicate and update functions).

The storage of functions can be optimized by storing text
representations of some or every function by finding tradeoff
between performance and memory efficiency. SmartObjects
could be optimized with usage C structures or with a more
clever parsing of the python code. The parser’s memory
optimization needs additional research and is left for the future
works. If memory consumption is an issue in the practical
application of the given format we recommend to use C
implementation of the parser.

VI. CONCLUSIONS

In this paper, we described the EFSM format that can
be used in a number of applications. The format meets the
requirements indicated in Section I. We presented the parser
prototype to process EFSMs which are written in this format
and we prepared benchmarks to test EFSM parsers and profiled
the prototype. Also we ran the parser using some tests and
found out the limitations of the parser. The parser works
very fast and needs a relatively small amount of memory
and this illustrates the practical usefulness of the proposed
format. The performance of the parser can be improved and
methods to improve it are also mentioned. Main directions
of the future research include improvement of the parser’s
performance and check of the proposed format on the large
real-world systems. The predicates and update functions are
written in python now, but it could be easily replaced by
any other function description (other programming languages

or any formal function description). We really hope that the
EFSM repository could also be created in the nearest future
using the proposed format.

REFERENCES

[1] Ian Sommerville, “Software Engineering (7th Edition)”, 2004
[2] A. Petrenko, S. Boroday, R. Groz, “Confirming configurations in EFSM

testing”, IEEE Transactions on Software Engineering (Volume: 30,
Issue: 1, Jan. 2004)

[3] Giuseppe Di Guglielmo, Franco Fummi, Graziano Pravadelli, Stefano
Soffia, Marco Roveri, “Semi-formal functional verification by EFSM
traversing via NuSMV”, High Level Design Validation and Test Work-
shop (HLDVT), 2010 IEEE International

[4] S.A. Smolov, A.S. Kamkin, A method of extended finite state machines
construction from HDL descriptions based on static analysis of source
code, St. Petersburg State Polytechnical University, 2015 - mathnet.ru

[5] Full specification of python source code
https://docs.python.org/2/reference/grammar.html

[6] Backus, J. W. “The syntax and semantics of the proposed interna-
tional algebraic language of the Zurich ACM-GAMM Conference”,
Proceedings of the International Conference on Information Processing.
UNESCO, 1959, pp. 125-132.

[7] Pyparsing documentation http://pyparsing.wikispaces.com/Documentation
for the documentation

[8] Alfred V. Aho,Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman Compilers:
Principles, Techniques, and Tools (2nd Edition), 2007

[9] Documentation and source code of python library psutil,
https://github.com/giampaolo/psutil

201

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Criteria for software to safety-critical complex

certifiable systems development

Natalia Gorelits

Department 2100: Advanced Systems

and Avionics Integration

State Research Institute of Aviation

Systems (GosNIIAS)

Moscow, Russia
nkgorelits@2100.gosniias.ru

Aleksandra Gukova

Department 2100: Advanced Systems

and Avionics Integration

State Research Institute of Aviation

Systems (GosNIIAS)

Moscow, Russia
asgukova@2100.gosniias.ru

Evgeniy Peskov

Department 2100: Advanced Systems

and Avionics Integration

State Research Institute of Aviation

Systems (GosNIIAS)

Moscow, Russia
evpeskov@2100.gosniias.ru

Abstract— Nowadays there is an actual problem in aviation

industry – how to make the development of complex safety-

critical systems certifiable according to international and

domestic standards and regulations like DO-178C, DO-254, ARP

4754A, ARP 4761 etc. In the article configuration management

process from the development lifecycle of DO-178C is considered

as the main source of criteria for the development tool selection.

Selected criteria can be applied to software tool which supports

entire development lifecycle of aviation software, as well as to

software tools supporting some individual lifecycle processes. As

example of criteria using one of the most widely known in

industry software tool for requirements development and

management was analyzed for compliance with the chosen

criteria.

Keywords — DO-178C, Qualification requirements 178C,

software development, software analysis, software choosing,

certifiable systems, complex systems, complex systems development,

avionics, on-board equipment, lifecycle processes, lifecycle,

configuration management, system engineering

I. INTRODUCTION

This research was inspired by acquaintance and very
productive work communication with untimely gone Michael
Saburov. Michael Saburov participated in development of
Russian analogs of certification standards and regulations DO-
178B [1], DO-178C [2], DO-254 [3] and DO-330 [4]. Also
Michael Saburov participated in implementation of processes
from these regulation documents in several industry
enterprises. Michael Saburov took an active part in formation
of the concepts of research described in this article [5]. All
results and experience gained by us during work on this
research are dedicated to Michael Saburov.

Development and the following certification of complex
safety-critical systems in compliance recommendations of
regulation documents DO-178C, DO-254, ARP 4754A [6],
ARP 4761 [7] is an actual task and a big challenge for modern
Russian aviation industry.

Today among the software announced by its developers as
supporting lifecycle of complex systems development a huge
number of products are presented to allow software
development in accordance with international quality standards.

Nevertheless at the moment assessment of the capabilities
of each tool (or often it will be the whole product line of

expensive tools) and making a reasonable choice is rather
difficult problem.

Big quantity of existing software tools and systems
positioned by developers as tools which support lifecycle
processes of complex systems development don’t have well-
founded assessments.

Assessments and reviews about such software, based on
experience of practical usage in industry projects, are very
important – software market proposes a lot of software tools
and systems made by Russian and foreign developers. So that’s
why industrial enterprises have to make difficult choice of
software tools for development and the following certification
of their critical-safety systems.

It is difficult to choose instrumental environment for
support the entire development lifecycle – unfortunately
universal multipurpose tool, which would satisfy the
requirements of all standards of all industries, doesn’t exist yet.

In general most of the enterprises use separate tool for
support and automate each process of development lifecycle
(like requirements development process, configuration
management processes, verification etc.). The situation is
complicated because often all or the most parts of such
software suite have different manufacturers. If the project have
big set of weakly integrated software, then product
development becomes more and more complex both in atomic
tasks of individual specialist and in global meaning of the
whole project – labor intensity increases.

The organization of development landscape as a bunch of
software tools entails difficulties with tools integration, training
costs, implementation costs, purchase of licenses. All these
changes increase the amount of resources which are needed for
successful completion of the processes – human resources,
financial and time resources. In this case reaching project goals,
formulated before the beginning of work, become more and
more difficult task.

In conditions of State program of import substitution [8]
software tools and systems made by Russian developers cause
big interests. But usage experience of Russian software and
consequently number and reliability of assessments according
to requirements listed above standards and regulations are not
big enough.

202

mailto:nkgorelits@2100.gosniias.ru
mailto:asgukova@2100.gosniias.ru
mailto:evpeskov@2100.gosniias.ru

In this article we tried to understand and present what
mechanisms and features software tool should have to be useful
to simplify and systematize development of certifiable aviation
software. This article is a part of series of materials about
aviation standards research in context of choosing software
tools for certifiable aviation software development [9].

II. DO-178C PROCESSES AND THE ROLE OF

CONFIGURATION MANAGEMENT PROCESS AMONG THEM

Russian analogue of DO-178C - Qualification requirements
178C [10] – regulates processes of certifiable development of
aviation software. The heading of Russian document contains
important words – “Requirements to the software of on-board
equipment and systems at certification of aircraft”. These
words uniquely determine goals of recommendations, specified
in the document.

Certifiability of product – significant property, because the
purpose of most developments is the following release of end-
product the on relevant market. In the context of aviation
systems certifiability means that aircraft with system included
will receive type certificate [11].

Under certifiability assurance we mean the implementation
of the development processes in specific way –

 all necessary for certification activities are performed,

 all necessary for certification objectives are achieved,

 all necessary data is collected about development
process and its result,

 this data is stored and processed in such a way that
certification authority could receive any data at any
stage of project in order to examine the data and to trace
the history of their interactions and relationships.

Activities and objectives to airborne systems and equipment
development are described in document DO-178C (Russian
analogue – qualification requirements 178C). DO-178C
provides instructive materials and guidance to create airborne
systems and equipment. Implementation of activities and
objectives achievement listed in DO-178C give a chance to get
in the end the result which performs its intended function

with a level of confidence in safety that complies with
airworthiness requirements.

DO-178C describes a set of development lifecycle
processes for aviation systems and equipment. DO-178C
divides processes of the development lifecycle to three groups.
The first group includes only one process – software planning
process. The second group called software development
processes includes four processes – software requirements
process, software design process, software coding process and
integration process. The third group consists of four integral
processes – software verification process, software
configuration management process, software quality assurance
process, certification liaison process.

During software development processes directly creation of
software of aviation systems takes place along with all previous
and accompanying it measures for the design, coding,
integration etc. The main result of development processes is the

executable object code and its associated additional data are
produces and loaded into the target hardware for further
integration. This result is necessary to be achieved having
carried out all the measures described in qualification
requirements.

Integral processes play a role of enabling processes (by
analogy with enabling systems in the terms of System
Engineering [12]) - created and edited during development
processes data is stored and processes through mechanisms and
activities of configuration management process, required
reviews and analyses are made in the verification process and
so on. Data – development lifecycle artifacts or configuration
items – may be requirements with different levels of details,
software architecture, source code and executable object code
and different protocols, problem reports, and many other results
of activities.

Explanation the importance of integral processes
implementation is very simple – otherwise it is very difficult
almost impossible to collect necessary for certification data and
to control the development process. It means that it will be
difficult to provide necessary level of confidence in safety
that complies with airworthiness requirements.

Each of integral processes has its own role and importance
in the development lifecycle, it couldn’t be ignored or partially
abolished during lifecycle. Huge risks await developers who
dare not comply integral processes - certification authority will
not accept results obtained this way and will not give relying
certificate. Also final product may contain errors and defects of
varying degrees of critically. This situation will not allow
achieving the required level of confidence in safety and quality
of result in total, if the development process comes to an end
with the release of the working result.

In modern world of computers and upcoming information
technologies the whole software development lifecycle (and
aviation software is not an exception) passes through software
tools, information systems and therefore its databases and
repositories. These software tools and information systems for
all kinds of operations on data (creation, storage, editing etc.)
must be evaluated for their sustainability and compliance with
development according to certain standards and other
regulation documents.

If perform analyze requirements to development product,
which Qualification requirements 178C specifies and requires
developer, becomes obvious that the most restrictions and
requirements for software (in which aviation software will be
developed) come from configuration management process.
Activities of configuration management process provide
operations with development lifecycle data, its storage,
informational support to data exchange between other lifecycle
processes, logging the history of changes etc.

In this research we chose configuration management
process as the source of arguments or justifications for
choosing of software tools on which certifiable aviation
software will be developed. These substantiations are
formulated in the form of criteria. Criteria can be applied to
potentially interesting software tools and systems from the
market and help with assessment and reasonable choice of

203

some of them. There will be described below how to apply
selected criteria to the most widely used (worldwide and also in
Russia) software for requirements development in the industry.

III. BASIC CRITERIA TO TOOL FROM CONFIGURATION

MANAGEMENT PROCESS

Configuration management process in project must be
performed in accordance with the document “Software
Configuration Management Plan”. Software Configuration
Management Plan should be developed for each software
development project during Software Planning Process if
development corresponds to Qualification requirements 178C.
In this document configuration management environment
should be determined as well as configuration management
process activities which will be performed during software
development lifecycle.

Configuration management environment must support
activities from section 7.2 of Qualification requirements 178C.
The list of configuration management activities contains some
process regulations (which restrain project members within the
workflow) and requirements to the mechanisms of
configuration management environment. It would be very
useful if such mechanisms and methods will be implemented in
software which will be used for development because not all of
them could be replaced with some organizational regulations.

Configuration management plan contains some
requirements to configuration management activities follow-up.
As examples of these requirements can be listed: states of
configuration items, workflows of problem reports and change
requests, inspection procedures, baseline definition rules and
rules of versioning configuration items, organizational
restrictions, safety details etc. These requirements won’t be
considered in this article because its implementation can be
realized regardless of the instrumental part of configuration
management environment.

In this article we identified the basic principles and
mechanisms (basic criteria) determined by configuration
management environment and configuration management
activities according Qualification requirements 178C.

First of all we would like to highlight single and unified
storage for all lifecycle data as basic configuration management
principle. It means that project should have unified
configuration management system for registration, storage and
delivery all software development lifecycle data.

Let’s enumerate basic mechanisms of configuration
management environment:

 Identification of configuration,

 Configuration status accounting,

 Change management and control,

 Traceability,

 Versioning,

 Registration of inconsistencies and corrective actions,

 Storage, retrieval and release.

Described mechanisms (further: criteria) are based on text
Qualification requirements 178C and are advisory in nature.
These criteria can be used as an additional informational source
while choosing software tool for certifiable aviation software
development.

Elements of the criteria list will be considered in more
detail below.

1) Identification of configuration and its configuration

items
Procedure of identification of the configuration item (and

the whole configuration in general) includes assigning an
identifier to the configuration item and registering it in the
configuration management system. The identifier of
configuration item is a designation uniquely distinguishes one
configuration item from another. Identifier of configuration
item could not be changed ever. Identifier of configuration
together with its version makes Unique identifier of
configuration item in a particular configuration. Version of
configuration item will be described below in one of the
criteria.

An example of attributes that we suppose useful for
registration of configuration item:

 Configuration item identifier (doesn’t change ever after
registration),

 Mnemonics (designation which will help user identify
configuration item),

 Configuration item name,

 Purpose of configuration item (type),

 Kind of configuration item (atomic, composite –
configuration index),

 Version (number, sign if it is baseline or not),

 Data control category (Control Category 1 or Control
Category 2),

 Link to the configuration item source.

Note: software lifecycle data can be classified to Data
Control Category 1 or to Data Control Category 2 (section 7.3
of Qualification requirements 178С).

2) Configuration status accounting
Status accounting of developing software configuration

should be conducted in order to provide the certification
authority all necessary information (like configuration index,
history of configuration etc.). That’s why it is necessary to
ensure that registration of the actions performed on the
configuration units is automatic.

An example of data which we suppose to necessarily
register when performing any action on the configuration item:

 Date and time of making changes to the configuration
item,

 Number of version of the configuration item,

204

 User id – who made changes to configuration item or
created version of configuration item,

 Status of version of configuration item including the
history of this status changes,

 For configuration items from Control Category 1: link
to the change request for this configuration item.

3) Versioning, baselines
Rules of naming and versioning for configuration items

should be defined.

Note: for example, configuration item’s version is denoted
as an integer (1, 2, 3 etc.). New value of configuration item’s
version is obtained by increasing the value by 1. If it was 2, the
next value will be 3.

Rules for baseline formation and baseline appointment
mechanism should be defined. Also restrictions on the
baseline’s modification should be defined.

Note: baseline is approved and registered version of
configuration item which will be used as basic for further
development. Baseline can consist of one or several
configuration items.

4) Configuration items traceability
Traceability requirements and mechanisms should be

defined for link different types of configuration items and
related data. Configuration items can be connected with each
other, also with reason of creation (source), with dependent
items, with history of configuration item’s changes etc.

Note: as example of connections we may mention links
between low level requirements with its parent high level
requirements, low level requirements with executable object
code, problem report with configuration item, problem report
with change request and with task for making approved
changes etc.

Configuration items traceability is very important in the
context of developing software certification. It is necessary for
configuration items to trace links with source of its creation,
with maked to configuration items changes and with reason to
making changes etc.

Traceability of links should work in both directions.
Changes in configuration items should trace to sources of
changes (for example to change request, which in its turn refers
to parent problem report) and back.

It is always useful for users to analyze some visualized
view of data. As a variant of useful and intuitive view of links
and traces may be a traceability matrix. Traceability matrix
shows how configuration items are connected to each other and
their relations type is displayed. Type of relations between
configuration items can be presented both in simple form with
only displaying link presence or absence, and in the various
types of links and communication.

Table 1 illustrates an example of configuration item’s
baseline formation.

TABLE I. AN EXAMPLE OF TRACEABILITY MATRIX: LINKS BETWEEN

CONFIGURATION ITEMS

Configuration items CI1 CI2 CI3 CI4 …

CI1 X

CI2 X

CI3

CI4

…

 – not applicable

Х – connection exists

 , , – certain type of connection exists

5) Change management and control
The change management of the configuration items must be

implemented. Change management activities are responsible
for the reaction to recording, evaluating, solving problems
through the whole lifecycle of each configuration item.

Any change of configuration item should only be done by
creating a new version of changing configuration item.
However all previous versions should remain unchanged.
Previous versions should be stored in repository and be
accessible.

Changing of configuration items from Control category 1 is
possible only through special procedure of change
management. Problem report should be created and approved,
detailed change requested and tasks should be created from this
problem report. Changes to configuration items from change
request should be also approved and only then changes may be
applied to configuration items. All related information about
changes must be stored forever – who, when, for what reason
have changed that version of configuration item. Changes to
configuration items with Control category 2 don’t require
complex procedure with approvals and reviews of changes.

6) Registration of inconsistencies and corrective actions
Once inconsistencies or defects are detected, it is necessary

to determine procedure and mechanisms of its registration.
Also corrective actions should be established, impact analysis
of the proposed changes should be done and making of the
approved changes to configuration item should be strictly
controlled.

Any project member who discovered an inconsistency or
defect or any other type of error, should be able to write it in
special configuration item – problem report.

An example of attributes which we suppose to necessarily
register when registering a problem report for any
configuration item:

 Link to configuration item – source of detected
inconsistencies,

 Link to index of configuration which includes
configuration item with inconsistence or to process or
workflow if inconsistence is more global,

 Inconsistence description,

205

 Problem report’s author id,

 Steps to reproduce the problem,

 Problem report state,

 Link to corrective actions (for example: change
request).

An example of attributes which we suppose to necessarily
register when registering a corrective action for any problem
report (for example: change request):

 Link to problem report (change request source),

 Link to configuration items in which it is necessary to
make changes,

 Impact analysis of proposed changes to the rest
configuration items of lifecycle data.

7) Storage, retrieval and release
Method and proof of data integrity should be determined

during its storage and retrieval from backups. Rights to release
data should also be defined. Tools for creation, retrieval and
integrity control of backups should be implemented according
to chosen method.

Note: the need for backup creation can be both for the
entire repository and for a separate development project or for
separate configuration.

The realization of instrumental support for the creation,
retrieval and data integrity control is very important and in
demand because it allows to minimize time costs for these
procedures and to reduce the risk of data distortion or loss.

Note: using of a checksum mechanisms for backups
creation may be a good example of data integrity control
realization.

IV. CONFIGURATION MANAGEMENT TOOLS, ANALYSIS

The experience of cooperation with Russian developers of
avionics system demonstrates that most of them try to create
on-board software in compliance with the requirements of the
document Qualification requirements 178B/C and then certify
their software products.

At the same time there are situations when the software
development process is produced without detailed requirements
(in fact without requirements at all - only high-level technical
specification are used), without configuration management,
without reviews or inspections. Software testing is conducted,
but unfortunately its completeness can be insufficient by reason
of the absence or incompleteness of requirements.

Realizing their unpreparedness for further certification
without using of specialized software, aviation enterprises are
implementing various tools. An example of such tools can be
IBM Rational DOORS, IBM Rational Change + Synergy, IBM
Rational Team Concert, Siemens Team Center Requirements,
LDRA and others. In this case often overlooked that without
understanding the processes (and not having the described
processes on a paper at least) it is almost impossible to get the
effect of the implementation of the tool.

It is necessary to apply the certification process with a
complex approach to achieve the best result. It means - to
develop the processes, to provide their support by tools, to
develop plans and standards (Plan for Software Aspects of
Certification, Software Development Plan, Software
Verification Plan, Software Configuration Management Plan,
Software Quality Assurance Plan; Software Design Standards,
Software Code Standards, Software Requirements Standards)
and to conduct development in full compliance with these plans
and standards.

Often enterprise of the aviation industry implement only
tool for writing and storage requirements. Typically, this tool
has minimal change management capabilities. Developers try
to manage requirements ignoring or paying low attention to the
configuration management process – this approach is
fundamentally incorrect.

Below we put a list of the most widely used tools to support
the software development lifecycle, implemented in Russian
aviation enterprises.

To support requirements management processes are
often used: Microsoft Excel / Word, IBM Rational DOORS,
Siemens TeamCenter Requirements Management (mainly in
those enterprises where Siemens TeamCenter PLM was
previously implemented in the design department) and even
more rare - 3SL Cradle.

Due to the State program of import substitution, products of
Russian developers arouse great interest. Among the most
ambitious it is possible to highlight product which supports the
entire development lifecycle of systems - Devprom.

To support lifecycle data change management processes
are often used: IBM Rational Change + Synergy (tools are not
supported by the vendor, but are still in use in some
enterprises), IBM Rational Team Concert, and the most popular
project and task management tools - Redmine and Attlassian
Jira.

In situation when the software product Redmine or Jira are
used to manage changes to the lifecycle data, the integration
between these tools is rather nominal – all tools supported
development lifecycle work independently, links between
change requests and requirements are fixed in a text file.

This approach does not contradict the principles of
configuration management prescribed in Qualification
requirements 178C, but not only doesn’t simplify the
development process, but also makes the process management
even more difficult (dependence on the human factor, the
inability to track changes (the absence of a change marker), the
lack of quick switch from a change request to the changed data,
etc.)).

To support configuration management processes are
often used: GitHub - the most popular and freely distributed
tool among code developers and SVN (Subversion) - a
traditionally used repository for file sharing in enterprises in
Russia (also distributed under the conditionally free Apache
license).

The functionality of these tools when it used as
configuration management systems does not allow you to fully

206

support all activities of the configuration management section
7.2 of Qualification requirements 178C. Moreover, the use of
all the functionality of this software may be considered as a
violation of some of them. It is almost impossible to restrict the
functionality of tools that are useful to traditional code
developers in order to comply with the process specified in the
Configuration Management Plan.

For example, GitHub does not store intermediate versions
when you merge code branches (or other files when you use
this tool as a configuration management environment) and you
cannot track changes that precede the merge.

Quote from DO-178C (section 7.2.4 e): “Throughout the
change activity, software life cycle data affected by the change
should be updated and records should be maintained for the
change control activity”.

For the analysis for compliance with the criteria described
in the previous section, we present the summarized results of
the requirements management tool IBM Rational DOORS use
in State Research Institute of Aviation Systems (GosNIIAS)
and the results of the analysis of the entire IBM Rational
product line for lifecycle management [13].

We can analyze requirements management tools for
conformity by Configuration Management process criteria,
because the requirement is one type of configuration items and
recommendation of section 7.2 of Qualification requirements
178C about its storage and handling must be observed.

To evaluate the criteria, the following values (weight) were
selected:

 0 – criteria is not supported;

 0.5 – criteria is partially supported;

 0.75 – criteria is supported through tool configuration,
adaptation or any integration;

 1 – criteria is fully supported.

The analysis results are shown in the figure below on Fig.1.

Fig. 1. Tools analysis

V. CONCLUSION

Configuration management process – is the main source of
criteria for choosing the tools which support aviation software
development lifecycle. Configuration management process acts
as unifying “input-output bus” for all lifecycle data. Therefore
tools with support of the software development lifecycle should
focus on the mechanisms, embedded in the configuration
management process, in order to be able to interact closely (be
integrated). Such a close relationship (integration) through the
configuration management process can significantly help with
the development process, provide a predictable (and positive, if
the tool was chosen correctly) result of aviation software
development and help with preparing to the certification. It is
important to note, that the purchase of the software tools and
instruments doesn’t ensure success in passing the certification –
methodological support is also needed.

The task to select software tools for development lifecycle
support is not easy, because it is rather difficult to determine in
advance whether all requirements of chosen for this project
lifecycle process will be supported by software tool, system or
a set of tools. Analysis of configuration management process
and selecting criteria from it to tools allows to define the
boundaries of necessary for the project systems and tools.
Analysis gives as result formulated requirements to the tool,
which can be applied for choosing and buying suitable tool or
in case of independent development such instrumental
environment. In case of buying these requirements and criteria
will help to choose exactly that product whose functions are
necessary and sufficient for development goals without
spending a lot of money for buying disparate software tools of
different manufacturers which will complicate the solution as a
whole.

These conclusions are confirmed by the above analysis of
one of the tools. Using of the set of tools extending the
functional brings the environment closer to the reference state
of configuration management process. Also there are
difficulties: often the cost of licensing significantly increases
(you have to buy additional tools), the time for installation,
integration and implementation of the process increases,
number of tools used in the project is growing and requires
management efforts. As a result the total complexity of
development increases.

REFERENCES

[1] Software Considerations in Airborne Systems and Equipment
Certification (RTCA DO-178B), 1992.

[2] Software Considerations in Airborne Systems and Equipment
Certification (RTCA DO-178C), 2011.

[3] Design Assurance Guidance for Airborne Electronic Hardware (RTCA
DO-254), 2000.

[4] Software Tool Qualification Considerations (RTCA DO-330), 2011.

[5] M.A. Saburov, “SCM-178C”, unpublished (in Russian)

[6] Aerospace recommended practice. Guidelines for development civil
aircraft and systems (SAE ARP 4754A), 2010

[7] Guidelines and Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipment (SAE ARP 4761), 1996

[8] The Order of the Ministry of Industry and Trade of the Russian
Federation of March 31, 2015 № 663 “About the approval of the

207

industry plan of actions for import substitution in branch of civil aircraft
industry of the Russian Federation” (with changes and additions)

[9] N. Gorelits, E. Peskov, “Requirements management as efficiency
measure for software development in aviation industry”, Proceedings
VIII International conference “IT-Standard 2017”. Moscow, 2017,
pp.105-113 (in Russian)

[10] Qualification requirements part 178C, IAC, 2014 (in Russian)

[11] M.A.Saburov, Yu.A.Solodelov, N.K.Gorelits, “Development of the
certifiable avionics software by the example of JetOS real time operation
system”, Proceedings of Third All-Rus. Scient.-Techical Konf.
“Navigation, guidance and control aircraft”, Moscow, 2017, pp.241-243
(in Russian)

[12] System engineering — System life cycle processes (ISO/IEC/IEEE
15288:2015), 2015

[13] I.V.Koverninsky, A.V.Kan, V.B.Volkov, Yu.S.Popov, N.K.Gorelits,
“Practical experience of software and system engineering approaches in
requirements management for software development in aviation
industry”, Proceedings ISP RAS 28(2), Moscow, 2016, pp.173-179

208

Formalizing Metamodel of Requirement Management System
Kildishev Denis Stepanovich
Ivannikov Institute for System

Programming of the RAS
Moscow, 109004, Russia

kildishev@ispras.ru

Khoroshilov Alexey Vladimirovich
Ivannikov Institute for System

Programming of the RAS
Moscow, 109004, Russia
khoroshilov@ispras.ru

Abstract—Requirements play an important role in the process
of safety-critical software development. To achieve reasonable
quality and cost ratio a tool support for requirements
management is required. The paper presents a formal definition
of a metamodel that is used as a basis of Requality requirements
management tool. An experience of implementation of the
metamodel is discussed.

Keywords—requirement, model, requirements management

 I. INTRODUCTION

The development of the big and complex system is always
a sophisticated task. It is ever more right for safety-critical
systems where the cost of error is definitely high. This leads us
to question on how to ensure that system is safe. One of
solution for that is precise and accurate requirements’
management.

Modern software development is based on requirements in
different forms — from plain texts on natural language to some
specific DSLs. The development of avionics systems tends to
be based on some standards like ARINC. Those standards
provide requirements in form of a structured document but this
form may be not so suitable for the development of end system.

So from one side, we need to manage some requirements in
form of semi-structured standards and from another, we must
support more formalized specification for development and
further activities [1]. In this case, we need a tool that can
manage requirements in both forms. Moreover, we need to
support the relations between those requirements and other
development artefacts like tests and code and we have to
support precise changes management.

The paper presents a formal definition of a metamodel that
is used as a basis of Requality requirements management tool.
Implementation details of support of the metamodel in the tool
are discussed.

 II. RELATED WORKS

The problem of requirements management is not a new one.
This activity was known as very important for years. As an
example we may cite some publication from 1997:

"The inability to produce complete, correct, and
unambiguous software requirements is still considered the major
cause of software failure today" [2].

But the requirements engineering task is still the subject of
different investigations. One of them defines some methodology

[3], model [4] or framework [5]. Also, there are papers
presenting development story of some tools, like [6].

Some papers describe both requirements model and its
application in a specific tool. For example [7] designs a tool for
management of requirements in form of specific models or [8]
that defines some details about a feature management tool for
product lines. Another paper [9] defines requirements as
constraints and examine core concepts related to its
implementation in a real tool.

There are many commercial requirements management tools,
whose developers do not publish academic papers with
architecture and implementation details. There are mostly
marketing papers available for them. There only a few open
source tools are known and cited in publications like ProR [10]
or ReqLine [11].

None of the papers on the tools discusses its core model in a
formal way. Some approaches and models are listed in [1] but it
specifies mostly methodological aspects.

 III. BASE MODEL

 A. Preliminaries

The process of software development can be made in
different ways. There are some general views on requirements
management tool’s functions but the set of requirements for
this tool in specific areas may be different.

One of the ways to deal with such problem is to develop a
model for that tool. This approach can be found in [7] or [8].
The model helps to define core concepts of the tool and prove
some theorems over its functions.

We need to provide some terminology before starting a
model. First, we will define what the requirement is. In this
paper, requirement means a limitation or definition of some
system’s or component’s functional. For our model
requirements are unique objects that may have a specific
description written by natural language and are placed in some
tree structure defined in III.

 B. Base model

Definition 1. A tree G is a triple (V, E, r0), where:

• V - a set of vertices.

• E⊂V x V - a set of edges that is an asymmetrical
relation on V.

209

• r0∈V - a root of the tree.

• There are no incoming edges for r0 and there are no
more than one incoming edge for the other vertices.

• All vertices are reachable from r0.

If (v1, v2) E then v∈ 1 is denoted as a parent(v2), while v2 is
called a child of v1. We define relation reachableE(v1, v2) as a
transitive and reflexive closure of the relation E.

Definition 2. Attributed tree AT = (G, Key, Value, attrs)
consists of:

• a tree G = (V, E, r0);

• a set of attribute keys Key;

• a set of attribute values Value;

• a functional relation attrs: V → (Key → Value) that
provides each vertex with a set of attributes.

A set of all possible attributed trees is denoted as ATrees.

An attributed tree is a convenient framework to represent
requirements [12] with the following semantics. If a vertex
v ∈ V represents a requirement for a target system and there
are children v1, … vn of v, then the children represent a
decomposition of the requirement v. In other words, if a system
satisfies to requirement v then it satisfies to all requirements
v1, … vn and vice versa.

Attributes of vertices contain various information about the
requirements, for example a unique identifier, description of
the requirements in natural language, its representation in a
formal notation, version, etc.

An interesting particular case is the attributes, whose value
is a vertex v V or a set of vertices vs V. It allows to define∈ ⊆
and to manage relations between different vertices. For
example, such attributes can be used to represent traceability
links between high level and low level requirements. Formally,
this case is achieved if V ∪ (V) Value.⊆

 IV. DECLARATIVE MODEL

 A. The extension of the base model

The base model of requirements catalogue is an attributed
tree, where each requirement has a particular set of attributes.
This model is convenient for analysis of the catalogue, e.g. for
formal analysis, analysis of test coverage, traceability analysis,
etc. At the same time, it is difficult to manage such model
manually because there are usually many interdependencies
between elements and its attributes. Here and after term vertex
(element of set V) and elements of requirements catalogue are
used interchangeably.

That is why we introduce a declarative model of
requirements catalogue that allows us to automate the handling
of such dependencies. The purpose of the declarative model is
to store requirements catalogue in more compact and
manageable way.

The declarative model is defined stepwise. Each step is
accompanied by definition of the transformation of the
declarative model to the raw basic model.

 B. Predicates

If requirements are developed for a product line, there is a
number of requirements shared between different variations of
the product. A natural wish is to have a single requirements

catalogue for the product line and the ability to build a specific
one for a particular version of the product. That means there is
a need to delete a subset of requirements from the catalogue if
the subset is not applicable to the target product.

The similar situation happens when a catalogue is used to
represent requirements of several revisions of a standard or to
represent requirements of a standard with optional elements.

To introduce such ability we propose to choose especial key
predicate Key, whose values are boolean. If an element∈
has attribute predicate with value false, this element and all
its children are removed from the catalogue during
transformation.

The first declarative model DM1 is an attributed tree
((V, E, r0), Key {⊔ predicate}, Value, pattrs) that is
transformed to the base model ((V', E', r0), Key, Value, attrs)
according the following rules:

• V' = {v V: v' V reachable∈ ∀ ∈ E(v',v)
 predicate ∉ pattrs(v') ∨
 pattrs(v')(predicate) ≠ false };

• E' = E ∩ (V' × V');

• ∀ v V' attrs(v) = {(k,val) pattrs(v): k ≠ ∈ ∈ predicate}

 C. Calculated attributes

It is an often situation when attribute value depends on
values of the other attributes of the same element or even on
attributes of the other elements. To express such dependencies
explicitly we propose the second declarative model DM2 that is
an attributed tree (G, Key, FValue, fattrs), where

• FValue = Func × Value;

• Func = ATrees × V × Key × Value → Value.

The declarative model DM1 corresponding to the model
DM2 is an attributed tree (G, Key, Value, attrs):

∀ v ∈ V (k,val) attrs(v) iff ∈

 (k, (func,fval))∃ ∈ fattrs(v): val = func(AT, v, k, fval)

To build such requirements model it is required to solve a
set of equations defined by fattrs. A simple approach is to apply
fixed point iteration, while some additional implementation
details will be considered in section V. There are declarative
models that define a set of equations with no solutions or with
non-unique solutions. A simple but reasonable limitation that
allows avoiding such models is a prohibition of cyclic
dependencies between attributes.

A particular case when an attribute has a constant value val
is represented in the declarative model DM2 as a pair (prj4, val),
where prj4 is a projection function by the fourth argument:
prj4(AT, v, k, val) = val. Please note that in DM2 predicate is
considered as a regular element of the set Key.

 D. Attribute scope

Another often situation happens when an attribute is
applicable to the whole subtree and it has the same value for all
elements. Or a similar case is when an attribute is applicable to
all children of the particular element.

To handle such situations we propose the third declarative
model DM3 that is an attributed tree (G, Key, SValue, sattrs),
where SValue = FValue × Scope, Scope = {SL, SDC. SS} with
an element having the following semantics:

210

Picture 1. Attribute scopes

r
o

V
1

V
2

V
3

S
L S

DC
S

S

• SL – an attribute is available only in the element where
it is defined.

• SDC – an attribute is available in the element where it is
defined and in all its direct children.

• SS – an attribute is available in the element where it is
defined and in all its successors.

An example of
attribute scope can be
seen in Picture 1. White
rectangles are Vs.
Arrows mean child-
parent relation. Attribute
with some scope is
defined in r0. Grey
rectangles represent
different possible scopes
of A and the subtrees
where it will be
accessible.

A transformation of
declarative model DM3 to the model DM2 is straightforward:
DM2 is an attributed tree (G, Key, FValue, fattrs), where
fattrs(v) = {k → fval} such that

(1) {k → (fval, anyscope)} sattrs(v)∈

(2) {k → (fval, SDC)} sattrs(parent(v)) if rule (1) is not∈
applicable,

(3) {k → (fval, SS)} sattrs(v') if rules (1) and (2) are not∈
applicable reachable∧ E(v',v) ∧
∀ v'' ∈ V ∀ val ∈ Value (reachableE(v'',v) reachable∧ E(v',v''))

 {k → (val, ⇒ SS)} sattrs(v'').∉

It is interesting to note that nonconstant scoped attributes
can get different values in different elements because its
function can depend on the vertex as a third argument.

 E. Reuse of subtrees

The next item to consider is a situation when there are
several subtrees of requirements that are very similar each other
up to some limited number of details. In this case, it would be
ideal to have a single copy of the subtree and the ability to
clone it with some modifications. This approach is usually
called reuse [13].

The fourth declarative model DM4 is an attributed tree
((V, E, r0), Key {⊔ cp}, SValue, cpattrs) with especial key cp
that satisfies the following constraints:

• ∀ v ∈ V ∀ value ∈ Value ∀ s ∈ Scope
cp ∈ cpattrs(v) cpattrs(v)(∧ cp) = ((prj4,val), s) ⇒
val∈ V v' V (v, v') E;∧ ∀ ∈ ∉

• E {(v, cp(v))| v∪ ∈ CC(DM4)} does not contain
loops, where CC(DM4) = {v ∈ V| cp ∈ cpattrs(v)}
and cp(v) - val∈ V from the constraint above.

The transformation of the model DM4 to the model DM3 =
((V', E', r0), Key, SValue, sattrs) is performed by the following
algorithm:

1. curDM4 := DM4

2. If CC(curDM4) is empty, take DM3 = curDM4 with
removing cp from the Key set and finish.

3. Let curDM4 is ((V, E, r0), Key {⊔ cp}, SValue,
cpattrs).

4. Choose any v0 ∈ CC(curDM4) such that
∄ v ∈ CC(curDM4) reachableE(cp(v0),v). Existence of
such element follows from lack of loops in E ∪
{(v, cp(v))| v ∈ CC(DM4)}.

5. Assume without loss of generality v V (v∀ ∈ 0,v) V.∉

6. Build newDM4 = ((V', E', r0), Key {⊔ cp}, SValue,
cpattrs'), where

• V' = V {(v∪ 0,v') | v' V reachable∈ ∧ E(cp(v0),v') }

• E' = E { (v∪ 0,(v0,cp(v0))) } ∪
{ ((v0,v'), (v0,v'')) | (v',v'') ∈ E ∧
 reachableE(cp(v0),v')}

• ∀ v ∈ V\{v0} cpattrs'(v) = cpattrs(v)

• cpattrs'(v0) = {(k,val) cpattrs(v∈ 0): k ≠ cp}

• cpattrs'((v0,v')) = cpattrs(v')

Please note that newDM4 satisfies both constraints of
the fourth declarative model.

7. curDM4 := newDM4 and goto step 2.

Lemma 1. The algorithm terminates for any DM4
satisfying the constraints.

The proof is based on the fact that the cardinality of
CC(curDM4) is decreased every iteration because of the choice
of the v0 at step 4 that guarantees that elements with attribute
cp are not cloned, while one such element loses that attribute.

Lemma 2. The result of transformation does not depend on
the order of the selection of elements at step 4.

The idea of the proof is that transformations that can be
chosen in non-deterministic order make modifications in non-
intersecting subtrees.

Interesting to note that combination of reuse and predicate
transformation can be used to define a generic subtree that is
instantiated several times with different arguments using reuse
transformation and the original generic subtree is eliminated
with predicate transformation. Also, predicate transformation
can be useful to eliminate unneeded elements from the cloned
subtrees.

 V. IMPLEMENTATION DETAILS

 A. Identification

One of the important aspects of requirements management
is requirements identification. One of the common approaches
it to assign a unique identifier to each object, for example,
some number or string.

In addition to that it is possible to provide each element
with a qualified identifier QID defined recursively on top of
identifiers ID that are unique within children of the same
parent: r0 has QID = '/ID', child v has QID = 'QID(parent)/ID'.

Let us take some example of requirements for some system.
If we use QID we can have a human-readable path for each
requirement. For example, we may have an element with QID
= "Functional requirements/Ports/req001". As seen from the
path it has a parent "Functional requirements/Ports/" and its ID
is req001.

211

 B. Calculated attributes

There are two objects related to attributes in the
implementation. The first one, attribute definition A_DEF
represents a pair (func,fval) from the formal declarative mode,
where func is of type ATrees × V × Key × Value → Value. The
second one, attribute A, represents a value of the attribute in
the base model. A_DEF is used to calculate an actual value A
when it is required.

There are several kinds of functions supported in attribute
definitions.

The first kind is the constant functions prj4 that always
returns fval value stored in attribute definitions.

The second kind is template functions that stores in fval
value a string with parameters encoded in curly brackets, e.g.
"Hello, {K}". The value of the parameters to be used for
substitution is taken from attribute with the encoded name, 'K'
in the example above, of the same element.

The third kind is formula value generator that stores in fval
value a string with an expression in a subset of JavaScript
language that has access to attributes of the same element.

The fourth kind is virtual attributes that are implemented in
Java. They have no stored fval value at all, but they have access
to the whole context of the element including the complete
attributed tree.

For example, Label attribute can take value of user-defined
Name attribute if there is one or return system-defined
identifier otherwise. Another example could be QID that
calculates qualified identifier of the element as a concatenation
via '/' of parent's QID with a Name of the target element.

An important additional information that the tool is able
extract from attribute definition is a set of attribute keys which
values are required to calculate the actual value for the given
attribute by the corresponding function.

 C. Attributes life-cycle

For each attribute stored data includes function kind and
fval. The pair (funckind,fval) is denoted A_ST. System-defined
virtual attributes have no stored data, they are added to
elements on the fly.

Let us describe a common process of attributes loading for
some requirement.

1. Set of A_ST is loaded from storage to A_DEFS.

2. Set of scoped attributes that are applicable to the
target one is taken from its parent and is added to
A_DEFS.

3. The A_DEFS set is handled by Attribute_Calculation
procedure described below.

If attributes are changed by the user using GUI session, the
tool has the same A_DEFS set that contains a subset of
changed attribute definitions. Then the tool applies the same
Attribute_Calculation procedure as follows.

1. A_DEFS set is extended with attributes of the target
element that depends on any attribute already
belonging to A_DEFS.

2. The order of evaluation of attributes from A_DEFS is
calculated. The order can be defined as ORDER =
(K1..Kn) where Ki is the key of the attribute.

- Ki,Kj∀ ORDER ∈ if Kj depends on Ki then i<j.

The algorithm is described in the next section.

3. For each A_DEF in the A_DEFS value of A is
calculated and placed to AS.

After this procedure AS contains an actual state of
attributes after provided changes.

 D. Order extraction algorithm

As an input of order extraction, we have KEYS = (K1.. Kn)
that is set of attributes name in some random order and DEPS =
(Ki → (Kj1..Kjm)) - a map of attributes dependencies. The
algorithm is as follows:

1. ORDER is set to empty collection.

2. OSET is the set of handling nodes.

3. Extract revert dependencies DEPS_R. DEPS_K=(Kj

→ (Ki1.. Kil)). If Ki depends on Kj then DEPS_K
contains Ki → Kj record.

4. Place KEYS to OSET.

5. Set flag MOD is to False.

6. In OSET look for candidate KK with DEPS_K[KK]
= KSET that complies one of following rules:

◦ KSET is empty.

OR

◦ ! K∃ i KSET: Ki OSET.∈ ∈

7. If KK was found then:

1. MOD set to True.

2. KK removed from OSET.

3. KK added to ORDER.

8. If MOD = True & |SET|!= 0 then go to step 4.

At the end of execution, the ORDER will contain the order
in which A’s values calculation.

 E. Attribute change management

The introduction of scope and calculated attributes requires
the management of attributes changes to keep all dependent
attributes up-to-date.

There are two possible strategies to deal with attribute
updates. The first approach is to commit all changes at runtime.
The second one is to collect changes in AS and then apply them
all by request. Immediate commit is tending to be simpler but
more computing - intensive. Late updates require fewer
calculations but need more memory. For our tool, we use the
second approach because we have large catalogues with a
possibility of complex relationships between its elements.

Late changes can be defined in form of new object —
changes set CS=(K → OP, K→ AOLD, K→ ANEW) where K is
the key of attribute, OP (remove, create, modify) is the∈
operation over attribute, AOLD is the value of attribute in AS
before operation, ANEW is the new attribute value after
operation.

For attribute changes change set needs to store A_DEFS, so
minimal CS = (K, K→ AOLD, K→ ANEW). To use these changes
set we need to extend the model of attributes set of A.

When all attribute modifications are collected we need to
apply all that changes to calculate actual values of attributes. It

212

is implemented in the same way as it was described in section
V.C.

One more problem with attribute changes is that some of
the changes need to be propagated from one requirement to
another. To deal with this problem we define a concept of
change propagators. If A_DEF (virtual attributes only for now)
depends on attributes from the external element it registers a
function-change propagator that is called when some change
set is applied to attributes of that element. The change
propagator evaluates if the changes impact the target attribute
and initiate its recalculation if it is required.

 F. Lazy loading

When we speak about a model of requirements in some
common application like avionics we need to take into account
the number of distinct requirement. Sometimes the number of
artefacts for such models tends to be in the thousands or tens
thousands. In that case, direct management of requirements
may require a lot of resources.

To solve this problem we use the lazy loading principle.
That means that AT will contain only those Vs that are
requested during the usage of the model. In most cases that
means that in G we have a subtree GL G ∈ that contains r0 and
some subtrees that are used during the current working session.

But laziness of model leads to some difficulties. First of all,
we need to overlook AT instead of ATL if we need to assure
that V with given ID exists. This problem can be solved by
caching id-related information in CacheStore that is always
available.

 G. Attribute types

 In practice, the value of an attribute may have one more
property – a type. One possible set of types includes Integer,
Boolean, String, Float. Also, we may define types for
Collection and Enumeration. In most cases, the value still is
the simple constant.

But some attribute types cannot be defined as a single value
and need to store and manage some additional data. For
example, Collection type may use specific object LIST = (TV,
V1..Vn) where TV is the type of collection's value and (V1..Vn)
are the values stored in the collection.

One more specific type is Enumeration. First, enumeration
requires definitions of its values. It can be made by means of
ENUM_DEF = (VT, V1...Vn) that is similar to LIST one. But to
define an attribute with one selected enumeration value we need
to define one more object ENUM = (KB, VS) where KB is the key
of A with ENUM_DEF and VS is the selected value. But in a
case we introduce an ENUM, we need to ensure that for every
ENUM we will have an AD where T = ENUM_DEF and VD will
contain VS.

 H. References

One more problem is the implementation of relations
between elements of the catalogue. Some tools manage them as
the set of specific objects placed in the distinct set.

In our model relations are presented in form of specific
attribute type REFERENCE. For this type we introduce value
object REF_VALUE (REF, V, ERR) where REF is a string that
can be resolved to V, usually containing some kind of
identifier, V is the corresponding element if there is any
matched by identifier, ERR is a string with an error message if
REF cannot be resolved or contains incorrect value.

In this case, REF_VALUE initially contains only REF field.
If someone requires the result of REF_VALUE resolution then
the tool tries to resolve the REF and then fills V or ERR.

References are also required some additional handling to
support its consistency. In a case REF or target V is changed
we may need to track its changes and update related
REF_VALUE.

One more specific problem is reverted links. If we have a
relation V1 → V2 we may need to know for V2 that it has a
relation to V1. This kind of relations is called "reverse
references".

If links are stored in AT then we may use one more
function (V2, LN) → V1 to store reverse relations. If we define
a new type of attributes or the specific state of REF_VALUE
then we face a problem of keeping it up-to-date.

In our model, we store reverts links in the cache in form of
(V2, LN) → (V1… Vn) function. That allows us to easily get
revert links on V2 if the state of cache is valid.

In a case of completely loaded AT the problem is not so
difficult to solve because we always have the actual state of
every V. But we cannot guaranty the V’s state in case of a
partially loaded AT that happens in case of lazy loading.

If we have some loaded ATL⊆AT, relation (V1, LN) → V2,
V1 AT V∉ ∧ 2 AT ∈ then if we need to get revert links on V2 we
may need to load the whole AT to be sure that all possible V1

were found.

In our case, this problem is solved by storing reverse links
in the cache. But in this case, we still have one necessary
problem. Let us introduce some link L(V1, V2, LN). If we
already resolve this link then the record in cache tends to be
present. But what if we introduce V2 in the model when V1 is
loaded and the link is resolved was not found? The situation
takes place when V2 is loaded by the lazy method, created or
modified.

In the worst case, we need to track changes of the whole
AT for all links. A better solution is to manage some kind of
scope for which link tends to be resolved. That is not
implemented yet, but it is in our plans.

Relations can be used for some specific activities. One of
them is changes management. Changes management is
performed when some V1 with links (L1..Ln) is changed. In this
case, some operations will be performed on V’s obtained from
L1..Ln. The nature of such operation can be different. For some
tools, those Vs will be marked in a model with the specific flag.
In other cases, the models can define additional actions
depending on the kind of change.

CONCLUSION

We presented a formal metamodel that is used as a basis for
building Requality requirements management tool. We covered
different difficulties related to its implementation. But the
experience demonstrates that the model allows handling quite
big requirements catalogue with many relations between its
elements.

The future work includes analysis and implementation of
new kinds of functions for calculated values and development of
user-friendly patterns for solving common user tasks on top of
the semantics defined in the paper.

REFERENCES

213

[1] S. Hallerstede, M. Jastram, L. Ladenberger "A method and tool for
tracing requirements into specifications" Science of Computer
Programming 82, 2014, pp. 2–21.

[2] R. Thayer. M. Dorfman "Software Engineering" IEEE Computer Society
press, 1997.

[3] M. Palumbo "Requirements Management for Safety Critical Systems"
unpublished.

[4] P. Roques "How modeling can be useful to better define and trace
requirements" The Magazine for RE Professionals from IREB Issue
2015-02, 2015.

[5] Open Group Standard "Dependability through Assuredness™ (O-DA)
Framework", The Open Group Releases, 2013.

[6] A. Nordin, A. Ikhwan Omar, M. Usamah Megat Mohamed Amin, N.
Salleh "Development of scenario management and requirements tool
(SMaRT): towards supporting scenario-based requirements engineering
methodology" International Journal of Engineering & Technology 7,
2017, pp 62-65.

[7] D. Lozhkina, S. Staroletov "An online tool for requirements engineering,
modeling and verification of distributed software based on the MDD

approach" Proceedings of the 11th Spring /Summer Young Researchers’
Colloquium on Software Engineering, 2017, pp. 23-28.

[8] T. von der Maßen, H. Lichter "RequiLine: A Requirements Engineering
Tool for Software Product Lines", Software Product-Family
Engineering, 2003, Heidelberg, pp. 168-180.

[9] N. W. Mogk "A Requirements Management System based on an
Optimization Model of the Design Process", Conference on Systems
Engineering Research (CSER 2014), 2014, pp 21-22

[10] "ProR Requirement Engineering Platform". [Online].
http://www.eclipse.org/rmf/pror/. [Accessed: 2-Apr-2018].

[11] "ReqLine Download (ReqLine.exe)." [Online]. Available:
http://downloads.informer.com/reqline/. [Accessed: 3-Apr-2018].

[12] Alexey Khoroshilov “On formalization of operating systems behaviour
verification”. // In Proceedings of 11th International Conference on
Computer Science and Information Technologies (CSIT-2017), pp. 168-
172, September 25 - 29, 2017, Yerevan, Armenia. DOI:
10.1109/CSITechnol.2017.8312164.

[13] W. Frakes, C. Terry "Software Reuse: Metrics and Models". ACM
Computing Surveys Vol. 28, No. 2, 1996.

214

Extracting architectural information from source code
of ARINC 653-compatible application software using

CEGAR-based approach

Sergey Lesovoy
Ivannikov Institute for System Programming of the RAS

25 Alexander Solzhenitsyn Str., Moscow, 109004, Russian Federation
lesovoy@ispras.ru

Abstract. The paper describes an algorithm of extracting
architectural information from source code of ARINC 653-
compatible application software. The extracted architectural
information can be further used for creation the architecture
models of the system. Architecture models are used in model-
based development process for creation of the complex systems
such as Integrated Modular Avionics (IMA) systems. For
extracting architectural information from source code CEGAR-
based approach is used. Counterexample-guided abstraction
refinement (CEGAR) is a technique widely used in software
model checking. The algorithm is implemented in CPAchecker
tool.

Keywords: architectural information, architecture models,
ARINC 653, IMA, CEGAR.

I. INTRODUCTION

The purpose of using architecture models is to analyze the
system’s static and dynamic features during the development
process. These features may include real-time performance,
resources consumption, reliability etc. This aspect is extremely
important while developing complex systems that include both
software and hardware components produced by the different
suppliers. Using model-based approach at the early stages of
the development of the project will help to avoid a waste of
time and money for correction of system defects when the
system is created. For creation of the architectural models
various modeling languages can be used. The most popular
ones used for architecture modelling are SysML[1] and
AADL[2,3].

The model-based development process includes two major
project steps. At the first step the system model is being
created. There are different levels for representation of the
system model. The primary focus of this paper is the
architectural models. On the second step of the project the
system model will be used as input for detailed design and
system implementation. This step may also include the model
transformations to some intermediate formats used in system
design and implementation. In the ideal case the system model
can be transformed to the source code of the system.

It may be useful to analyze and reuse some components of
legacy systems during development of new systems. By using a
model-based approach it is possible to build an architecture
model from the existing source code of the legacy system. This
model can be used as for system analysis as well as for reusing
some components of the legacy system in the new design. In
many cases it will allow to avoid creation of a new system from
scratch.

A process of model creation for existing system is called a
model-driven reverse engineering (MDRE). If the source code
of a legacy system is available then it is possible to build a
system model from its source code. This process contains two
steps. The first step is source code analysis. The second step is
model transformations to the target output format. This paper
describes the first step – source code analysis for application
software that is based on Integrated Modular Avionics (IMA)
architecture and ARINC 653 specification. The goal of source
code analysis is to extract architecture information that is
necessary for creation of the architecture model of the system.

The rest of the paper is organized as follows. Section 2
provides an overview of IMA architecture and ARINC 653
specification. It also contains a simple example of source code
to be used for further analysis. Section 3 describes the concept
of architectural information in source code, a general approach
and a particular algorithm used for extracting architectural
information from source code. Section 4 describes the results
and outlines the future research and development tasks.

II. INTEGRATED MODULAR AVIONICS AND ARINC 653

IMA architecture is widely used in avionics industry for
implementation the safety critical applications. In IMA systems
multiple avionics applications can share resources of a single
hardware platform (core module) without any mutual influence.
ARINC 653 [4] is a set of documents that define the
requirements for software components of IMA systems. The
key concept of ARINC 653 is a partition. ARINC 653
compatible Operating System (OS) provides a dedicated
portion of memory and predefined time slot within a fixed
schedule for each partition. It prevents any affect from software
executing in one partition to software in other partitions.

215

ARINC 653 specification defines that IMA system may
include the following software components: core software,
application partitions and system partitions. Core software
consists of OS and APplication/EXecutive (APEX) interface.
The APEX interface defines a set of services provided by the
OS for application software. In each application partition can
be allocated only one application. System partitions contain
system software that can directly interact with the OS without
using APEX interface.

Communications between applications allocated in different
partitions is called the interpartition communication. The
interpartition communication is only available via
communication channels. To access a communication channel
the application can use the ports created inside a partition.
ARINC 653 supports two port types: sampling ports and
queuing ports.

An application software compliant with ARINC 653
specification has a typical structure. Such a software can be
located in a single partition or in multiple partitions. To access
the various services of ARINC 653 based OS an application
software uses function calls defined in the APEX interface. For
each partition several processes can be created. One process is
responsible for partition initialization. This process creates
other processes and various objects. Finally, when the
initialization of partition has been finished this process sets the
partition to NORMAL state using SET_PARTITION_MODE
function call. Since this moment a scheduling for all processes
created inside a partition is started. It is important to note that
after the initialization of partition has been finished there is no
way to create any new processes and objects.

An ARINC 653 process is quite similar to a POSIX thread.
To create a process, it is necessary to create a structure that
contains the process’s attributes and pass it to
CREATE_PROCESS function. ENTRY_POINT is an attribute
of the process that contains the address of the function that will
be called when the process is started. This function implements
the application logic of the process and its communication
procedures with other processes.

Communications between processes within a single
partition is called intrapartition communication. Buffers and
blackboards are used for communication between processes
inside a partition. Semaphores, events and mutexes are used for
process synchronization. Any objects for communication and
synchronization can be created using function calls defined in
the APEX interface. The processes located inside the same
partition can also communicate via global variables.

At the end of this section a simple example of application
software will be demonstrated and explained. The source code
fragment of the application software compliant with ARINC
653 specification is shown in Fig.1. Source code fragment in
Fig.1 includes three functions: Run_10_Hz, Run_Monitor
and main. In function main two processes, one event and three
sampling ports are created.

static void Run_10_Hz(void) {
 …
 while (1) {
 SET_EVENT (wakeup, ret);
 READ_SAMPLING_MESSAGE(port_raw_data,
 (MESSAGE_ADDR_TYPE)&sensor_data,
 &len, &validity, &ret);
 // Some operations with data …
 WRITE_SAMPLING_MESSAGE(port_data_out,
 (MESSAGE_ADDR_TYPE)&output_data,
 &len2, &ret);
 PERIODIC_WAIT(&ret_pause); }
}
static void Run_Monitor(void) {
 while (1) {
 WAIT_EVENT (wakeup, TimeOut, ret);
 RESET_EVENT (wakeup, ret);
 // Some operations with data …
 WRITE_SAMPLING_MESSAGE(port_status,
 (MESSAGE_ADDR_TYPE)&status_data,
 &len, &ret); }
}
void main(void) {
 PROCESS_ATTRIBUTE_TYPE Proc_10_Hz_Attributes;
 Proc_10_Hz_Attributes.ENTRY_POINT = Run_10_Hz;
 Proc_10_Hz_Attributes.PERIOD = 100000000LL;
 strncpy(Proc_10_Hz_Attributes.NAME, "Proc_10_Hz",
 sizeof(PROCESS_NAME_TYPE));
 CREATE_PROCESS(&Proc_10_Hz_Attributes, &pid_p0,
 &ret);
 START(pid_p0, &ret);

 PROCESS_ATTRIBUTE_TYPE Proc_Monitor_Attributes;

 Proc_Monitor_Attributes.ENTRY_POINT = Run_Monitor;

 Proc_Monitor_Attributes.PERIOD =
 INFINITE_TIME_VALUE;
 strncpy(Proc_Monitor_Attributes.NAME, "Proc_Monitor",
 sizeof(PROCESS_NAME_TYPE));
 CREATE_PROCESS(&Proc_Monitor_Attributes, &pid_p1,
 &ret);
 START(pid_p1, &ret);

 EVENT_NAME_TYPE EventName;
 strncpy(EventName, "Wakeup", …);
 CREATE_EVENT (EventName, wakeup, ret);
 …
 CREATE_SAMPLING_PORT("RAW_DATA",
 port_size, DESTINATION, period, &port_raw_data, …);
 CREATE_SAMPLING_PORT("DATA_OUT",
 port_size, SOURCE, period, &port_data_out, …);
 CREATE_SAMPLING_PORT("STATUS", port_size,
 SOURCE, period, &port_status …);

 SET_PARTITION_MODE (NORMAL, &ReturnCode);
 return 0;
}

Fig. 1. Source code fragment with APEX calls.

216

For process creation, APEX call CREATE_PROCESS is
used. The first argument of CREATE_PROCESS has a type
PROCESS_ATTRIBUTE_TYPE. It is a structure that contains
attributes for the created process. The ENTRY_POINT
attribute is equal to Run_10_Hz for the first process and is
equal to Run_Monitor for the second one. Run_10_Hz and
Run_Monitor are the function’s names that are called when the
processes are started.

Below in the main function, APEX call CREATE_EVENT
is used to create an event object. An event object has a name
Wakeup. Then APEX calls CREATE_SAMPLING_PORT are
used to create three sampling ports. These ports have the
following names: RAW_DATA, DATA_OUT and STATUS.
In the end of the main function APEX call
SET_PARTITION_MODE is used to set the partition to the
NORMAL state. After that, OS will invoke functions
Run_10_Hz and Run_Monitor.

A function Run_10_Hz is called periodically with period 10
milliseconds. This value for period was set in PERIOD
attribute during the creation of the first process. Each time
when the function Run_10_Hz is called, it activates the event
Wakeup, reads a message from sampling port RAW_DATA,
performs some operations with data and writes a message to
sampling port DATA_OUT.

Function Run_Monitor belongs to the second process that is
an aperiodic. This function waits for event Wakeup, resets it,
performs some operations with data and writes a message to
sampling port STATUS.

III. SOURCE CODE ANALYSIS

A. Architectural information in source code

The main goal of source code analysis in the paper is to
extract the architectural information from it. Architectural
information in source code of application software compliant
with ARINC 653 specification includes the processes in each
partition and their attributes, all objects created for
interpartition and intrapartition communications and their
attributes. It also includes the ways of communications and
synchronizations between processes located inside the same
partition or in different partitions. If the global variables are
used for communication between processes inside partition
then these variables also should be considered as architectural
information.

The source code fragment in Fig.1 contains the following
architectural information: two processes, one event and three
sampling ports. Attributes of each process and each object
(event, port) are also important architectural information. For
synchronization between two processes the event object is
used. In the first process APEX call SET_EVENT is used to
activate an event. The second process uses APEX call
WAIT_EVENT for receiving this event. Sampling ports are
used in both processes to communicate with external
environment, i.e. with processes allocated in other partitions or
with external devices.

The source code of real avionic application can contain
hundreds of processes communicating with each other and with
external environment via large number of the objects.
Extracting such architectural information from source code can
be time consuming task. This paper proposes a way to do it
automatically. The next sections describe a general approach
and a particular algorithm used for source code analysis.

B. General approach for source code analysis

For source code analysis an approach based on
Counterexample-guided abstraction refinement (CEGAR)
algorithm is used. In CPAchecker tool [5] the basic predicate-
based CEGAR algorithm has been extended for explicit-value
analysis [7]. CPAchecker is a tool for configurable program
analysis (CPA) [5,6] that combines the traditional program
analyses and software model checking. In this paper the
extended for explicit-value analysis CEGAR algorithm is
applied for the task of extracting architecture information from
source code. The algorithm is implemented in CPAchecker
tool.

The algorithm presented in this paper uses a Control-Flow
Automata (CFA) as intermediate representations of the
program to be analyzed. CFA is a directed graph containing
nodes and edges. A node corresponds to a program location.
An edge corresponds to a certain operation of the program, for
example, an assignment statement, a conditional branch or a
function call. During the analysis, the algorithm constructs an
Abstract Reachability Graph (ARG) using a program CFA.
ARG is also a directed graph but its nodes correspond to
abstract states of the program. Each abstract state contains a
program location, a data state and a call stack. A data state is a
mapping between program variables and their values. In data
state some program variables may not have the values.

ARG represents possible execution paths of the program. It
means that ARG can contain both feasible (real) program paths
as well as the infeasible (spurious) paths. The program path is
feasible if it can be executed at runtime otherwise it is
infeasible. A path in ARG is a sequence of abstract states
connected by edges. An abstract state is reachable if there is a
feasible program path that contains this state.

C. Extracting APEX calls from source code

Before starting the algorithm description, it is necessary to
explain some important concepts used by the algorithm. The
algorithm constructs the ARG by sequentially adding the new
abstract states to it. For the current state the algorithm gets the
list of all its successors and adds each of them to ARG. There
is an edge between the current state and each its successor.

Target states.
Some edges may correspond to a function call in source

code. If this function is defined in APEX interface, the
algorithm will need to collect additional information about this
function call.

An abstract state in ARG which immediately follows such
a function call is called the target state. Any target state has
an incoming edge with APEX call. For each target state there
is a path in ARG from the initial state to it. The algorithm
performs a feasibility check for these paths.

217

Precision.
Explicit-value analysis tracks values for the program

variables. In many cases it is enough to track only a part of
program variables that are important for a particular analysis.
A set of program variables that are being tracked for the
current abstract state is called a precision. Different abstract
states may have different precisions. The empty precision
means that no variables are being tracked. The full precision
means that all variables are being tracked. As described in [6]
the value analysis algorithm implemented in CPAchecker can
change a precision during the analysis depending on some
conditions. It is called a precision adjustment.

An edge in ARG can correspond to a program operation
that changes a value of a program variable. For example, an
assignment operation changes the value of the left-hand
operand, for a function call the values of arguments are
assigned to function's parameters, etc. When the algorithm
handles an edge between the current state (predecessor) and
next state (successor) it uses a precision of the predecessor. If
precision of the predecessor contains the current variable, then
the algorithm evaluates and stores its new value in abstract
state. The algorithm of analysis can use the values of variables
stored in abstract states for different purposes.

Fig. 2 presents a pseudocode of the main algorithm for
extracting the architectural information from source code. This
algorithm implements a classical CEGAR cycle extended for
explicit value analysis [7] and is applied for the task of
extracting architectural information from source code.

CFA of the program is used as an input data for the
algorithm. The algorithm uses two variables to store the
abstract states: “reached” and “waitlist”. A variable “reached”
contains the set of abstract states that have been explored
already. A variable “waitlist” contains the set of abstract states
that have to be explored on the next steps of the algorithm.

At the beginning the algorithm takes the initial state from
CFA and put it to “waitlist”. After that the external loop of the
algorithm begins. The algorithm takes and removes the current
state from waitlist. Further the algorithm gets all reachable
successors for the current state using function
“getAbstractSuccessors”. A pseudocode for the function
“getAbstractSuccessors” is shown on Fig.3. The first operation
of the function gets all successors (CFA nodes) of the current
state. Then the function consecutively handles the edges
(function “handleEdge”) between the current state and each its
successor. The function “handleEdge” takes two parameters.
The first parameter is an edge to be explored. The second
parameter is a precision. The precision is taken from the edge
predecessor. Depending on the operation in source code that
the edge corresponds to, the function “handleEdge” performs
the following actions:

 For an assignment operation, the algorithm evaluates
a new value for this variable. The new value for a variable will
be stored in abstract state if this variable is contained in the
precision.

 For a function call the function’s arguments are
assigned to function’s parameters.

 For a conditional branch a logical value for a
condition is evaluated. If the logical value of a conditional

branch is equal to FALSE then the function “handleEdge”
return FALSE. It means that this successor is not reachable. In
all other cases the function returns TRUE and the current
successor is added to the list of reachable successors. So,
function “getAbstractSuccessors” returns for the current state a
list of all its reachable successors.

FUNCTION main
INPUT
 CFA of the program;
OUTPUT
 Architectural information
VARIABLES
 reached – a set of states that have been reached;
 waitlist – a set of states to be explored;
BEGIN
 initState = getInitialState(CFA);
 addStateToWaitlist(initState);
 // Traverse through all CFA nodes.
 LOOP WHILE waitlist ≠ 0 // External loop.
 curState = getAndRemoveStateFromWaitlist();
 // Get all reachable successors of the current state.
 successors = getAbstractSuccessors(curState);
 // Traverse through all reachable successors.
 FOR EACH nextState IN successors // Internal loop.
 IF isTargetState(nextState)
 path = getPathToState(nextState);
 IF isPathFeasible(path) = FALSE
 // Refine the path.
 performRefinementForPath(path,
 reached, waitlist);
 BREAK // Go to external loop.
 END IF
 END IF
 merge(nextState, reached);
 update(reached);
 addStateToWaitlist(nextState);
 END FOR EACH
 END LOOP
END

Fig. 2. The main algorithm for extracting the architectural information from
source code.

Further in internal loop the main algorithm traverses
through all reachable successors for the current state. At this
part of algorithm, a successor is called as a “nextState”. The
algorithm checks whether a nextState is a target state. If it is a
target state, the algorithm calculates a path in ARG from the
initial state to the current target state and checks its feasibility
using function “isPathFeasible”. In a classical CEGAR
algorithm a path in a program to be explored is called a
counterexample and it means a path to the error state. In the
current algorithm it is just a path to the target state we need to
explore.

The algorithm of function “isPathFeasible” is shown in
Fig. 4. To check the path feasibility the algorithm
consecutively passes through all edges of the path, starting
from the initial state. The algorithm analyses the operations for

218

each edge. To track all program variables, for each state on the
path the full precision is set, i.e. the algorithm performs the
feasibility check for a path with the full precision.

FUNCTION getAbstractSuccessors
INPUT
 curState // Current state.
RETURN
 reachableSuccessors // All reachable successors.
BEGIN
 // Get all successors of the current state.
 allCFASuccessors = getAllSuccessors(curState);
 FOR EACH successor IN allCFASuccessors
 edge = getEdge(curState, successor);
 precision = getPrecisionForState(curState);
 IF handleEdge(edge, precision) = TRUE
 // Add successor to reachableSuccessors.
 addToSet(reachableSuccessors, successor);
 END IF
 END FOR EACH
 RETURN reachableSuccessors;
END

Fig. 3. The algorithm of function getAbstractSuccessors.

Each edge on the path is handled with the function
“handleEdge” that was already described above. For a
conditional branch the function “handleEdge” may return
FALSE if logical condition is not satisfied. The path is not
feasible if for any edge on the path the logical condition is not
satisfied. In this case the function “isPathFeasible” returns
FALSE. In all other cases the path is feasible. If the path is
feasible then at the last state of the path the values for all
program variables assigned on this path are known. The last
edge and the last state of the path is passed to a function
“handleApexCall”.

FUNCTION isPathFeasible
INPUT
 path
RETURN
 TRUE – path is feasible;
 FALSE – path is not feasible;
BEGIN
 // Traverse through all edges.
 FOR EACH edge IN path
 precision = FULL;
 IF handleEdge(edge, precision) = FALSE
 RETURN FALSE
 END IF
 IF isLastEdge(edge, path) = TRUE
 lastState = getSuccessor(edge);
 handleApexCall(edge, lastState);
 END IF
 END FOR EACH
 RETURN TRUE
END

Fig. 4. The algorithm of function isPathFeasible.

The last edge contains the information about the APEX
call. The last state contains values for all program variables on
the path. The function “handleApexCall” extracts all
architectural information including the function name for the
last APEX call, values for its argument and call stack. It is
important to note that the algorithm extracts architecture
information only from the APEX calls that belong to a feasible
paths. The algorithm collects the architectural information for
each APEX call and uses it as output data. The format of the
output data will be described in the next section.

If the algorithm has detected that a path is infeasible, then
it will refine this path. During refinement procedure the
precision for some abstract states of the path are changed by
adding variables for tracking. The refinement procedure is
described in detail in [7]. Finally, the algorithm will update the
ARG in such a way that will eliminate the infeasible path or its
part for the further analysis.

At the end of the internal loop the algorithm tries to merge
the nextState with already reached states, updates reached
states and adds the last explored state (nextState) to “waitlist”.
These steps are described in details in [7] (see section
“Reachability Algorithm for CPA”).

The described above steps of internal loop are being
repeated for each reachable successor of the current state.

Then the algorithm leaves the internal loop and continues
its execution by taking the first step on the main loop. It takes
the next state from “waitlist” variable and repeats all steps
already described above. The algorithm terminates when all
ARG abstract states have been processed.

D. Output format

The algorithm keeps the collected architectural information
in the internal format. For further processing the architectural
information has to be transformed to the external
representation. The export format depends on the tool that is
used for creation the architecture models. The architectural
information can also be exported to human-readable format. In
Fig.5 the architectural information extracted by the algorithm
from the source code fragment in Fig.1 is presented in a
human-readable format. The presented architectural
information is divided onto sections. The first section contains
information about ARINC653 processes. There are two
processes with names Proc_10_Hz and Proc_Monitor. Below
the process name there are the list of its attributes. On the Fig3
there are only three attributes are presented: PROCESS_ID,
ENTRY_POINT and PERIOD. PROCESS_ID is a serial
number of the process inside a partition. ENTRY_POINT is a
name of the function that is being called when the process is
started. PERIOD shows the period’s duration in milliseconds.
INFINITE_TIME_VALUE in source code corresponds to
aperiodic process. The next sections contain the information
about other ARINC653 objects created in the source code.

ARINC653_SAMPLING_PORTS section shows three
sampling ports and its attributes.

ARINC653_SAMPLING_MESSAGES section shows
what processes are using sampling ports for sending (WRITE
subsection) and for receiving (READ subsection) messages.

219

For example the port DATA_OUT is used by the first process
(function Run_10_Hz) for sending messages.

ARINC653_EVENTS contains information about the
events that have been created and used in the source code.

ARINC653_EVENTS section has three subsections:
SET_EVENT, WAIT_EVENT and RESET_EVENTS. The
name of the subsection corresponds to the APEX call. For
example, a subsection SET_EVENT corresponds to APEX call
SET_EVENT that activate an event.

==ARINC653_PROCESSES==
Proc_10_Hz
 PROCESS_ID: 0
 ENTRY_POINT: Run_10_Hz(0)
 PERIOD = 100 ms
 …
Proc_Monitor
 PROCESS_ID: 1
 ENTRY_POINT: Run_Monitor(1)
 APERIODIC
 …
==ARINC653_SAMPLING_PORTS==
1) RAW_DATA
 MAX_MESSAGE_SIZE = 128
 PORT_DIRECTION = DESTINATION
 REFRESH_PERIOD = 1000
…
2) DATA_OUT
…
3) STATUS
…
==ARINC653_SAMPLING_MESSAGES==
=WRITE=
1) PORT_NAME=DATA_OUT;
 ENTRY_POINT=Run_10_Hz(0);
2) PORT_NAME=STATUS;
 ENTRY_POINT=Run_Monitor(1);
=READ=
1) PORT_NAME=RAW_DATA;
 ENTRY_POINT=Run_10_Hz(0);

==ARINC653_EVENTS==
=SET_EVENT=
1) EVENT_NAME=Wakeup;
 ENTRY_POINT=Run_10_Hz(0)
=WAIT_EVENT=
1) EVENT_NAME=Wakeup;
 ENTRY_POINT=Run_Monitor(1)
=RESET_EVENTS= ...

Fig. 5. The architectural information in human-readable format.

In the analyzed source call there is only one such a call for
event with a name Wakeup. The ENTRY_POINT string
contains a name of the ENTRY_POINT function where this
call was made. In the real code the ENTRY_POINT function
is determined using a call stack information. The serial number
of the process is shown in parentheses. In the Fig.3 we can see
that event Wakeup was set in function Run_10_Hz that

belongs to the process with PROCESS_ID equal to 0
(Proc_10_Hz). From the section WAIT_EVENT we can
understand that the function Run_Monitor waits for the event
Wakeup using APEX call WAIT_EVENT. The function
Run_Monitor belongs to process Proc_Monitor. So, we can
see that the event Wakeup is used by two processes for
synchronization.

The representation of architectural information in the
human-readable format is presented only for explaining the
content of such information and is useful mainly for debug
purposes. As it was mentioned above for further processing the
architectural information should be transformed to the format
that is supported by the external tools.

IV. RESULTS AND CONCLUSIONS

The algorithm presented in the paper allows extracting
architectural information from source code of ARINC 653-
compatible application software. The main contribution of this
paper is the application the ideas of counterexample and path
feasibility check for the task of extracting the architectural
information from source code. In the presented algorithm the
task of extracting architectural information from source code
has been solved by transforming it into the task of path
feasibility check.

The work of the algorithm is demonstrated on the simple
example. By this moment the algorithm has been tested on the
several software applications that are compatible with ARINC
653 specification. These applications contained up to 50
ARINC 653 process and up to 30 objects for communications.

The next task to be done is to extend the algorithm for
extracting from source code the global variables that are used
for communication between processes inside partition. It is also
necessary to implement the algorithm of transformation of the
architecture information to the architecture model.

REFERENCES

[1] OMG Systems Modeling Language (OMG SysML™) Version 1.5, 2017.

[Online]. Available: http://www.omg.org/spec/SysML/1.5/

[2] SAE International standard AS5506C, Architecture Analysis & Design
Language (AADL), 2017. [Online]. Available:
http://standards.sae.org/as5506c/.

[3] Feiler P., Gluch D., Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley, 2012.

[4] ARINC Specification 653P1-4. Avionics Application Software Standard
Interface Part 1 – Required Services. Published by SAE-ITC, Maryland,
USA. August 21, 2015.

[5] [Online]. Available: https://cpachecker.sosy-lab.org/

[6] D. Beyer, T. A. Henzinger and G. Theoduloz, Program Analysis with
Dynamic Precision Adjustment, 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, L'Aquila, 2008, pp.
29-38. doi: 10.1109/ASE.2008.13

[7] Beyer D., Löwe S. (2013) Explicit-State Software Model Checking
Based on CEGAR and Interpolation. In: Cortellessa V., Varró D. (eds)
Fundamental Approaches to Software Engineering. FASE 2013. Lecture
Notes in Computer Science, vol 7793, pp 146-162. Springer, Berlin,
Heidelberg [Online]. Available: https://doi.org/10.1007/978-3-642-
37057-1_11

220

https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://cpachecker.sosy-lab.org/
http://standards.sae.org/as5506c/
http://www.omg.org/spec/SysML/1.5/

	01_title
	02_annotation
	03_content
	04_foreword
	05_committee
	SYRCoSE_2018_paper_01_26
	SYRCoSE_2018_paper_02_78
	SYRCoSE_2018_paper_03_48
	SYRCoSE_2018_paper_04_24
	SYRCoSE_2018_paper_05_11
	SYRCoSE_2018_paper_06_61
	SYRCoSE_2018_paper_07_10
	Introduction
	DeepAPI model
	Dataset
	Dataset collection
	Obtaining list of relevant repositories
	Downloading repositories
	Extracting data

	Data preprocessing
	Language detection
	Leaving only distinct pairs
	Repetition contraction
	Vocabulary filtering
	Stemming

	Transfer learning for API mining
	Alternative dataset
	Applying transfer learning for model improvement

	Model training
	Evaluation
	Metrics
	BLEU
	FRank
	Precision@N

	BLEU evaluation
	Transfer Learning evaluation
	Human evaluation
	Limitations

	Related work
	API usage pattern mining
	Generating source code from natural language
	Deep neural machine translation and source code

	Conclusion
	References

	SYRCoSE_2018_paper_08_22
	Introduction
	State of the art
	Basic I/O Introduction
	Intercepting the I/O
	Proposed approach
	With write-only page support
	Without write-only page support

	Evaluation
	Conclusion
	References

	SYRCoSE_2018_paper_09_50
	SYRCoSE_2018_paper_10_40
	SYRCoSE_2018_paper_11_16
	Introduction
	Linux driver verification
	Shape analysis
	Symbolic memory graphs
	Linux specific extensions for SMG
	Bit precise model
	Predicate extension
	Memory on demand

	Configurable Program Analysis
	Experimental results
	Related work
	Conclusions and future work
	References

	SYRCoSE_2018_paper_12_45
	SYRCoSE_2018_paper_13_44
	SYRCoSE_2018_paper_14_30
	SYRCoSE_2018_paper_15_76
	I. Introduction
	II. Product data and transactions
	A. EXPRESS language
	B. Formalisation of models, data and transactions

	III. Validation
	A. Complete validation
	B. Incremental validation
	C. Dependency graph construction
	D. Example of a dependency graph

	IV. Conclusion
	References

	SYRCoSE_2018_paper_16_79
	Introduction
	Infrastructure
	Transformations
	Instruction shuffling
	Single basic block
	Single function

	Conversion of a preconditional loop into a postconditional loop
	Function inlining and outlining

	Evaluation
	Related work
	Conclusion and Future Work
	References

	SYRCoSE_2018_paper_17_64
	SYRCoSE_2018_paper_18_08
	SYRCoSE_2018_paper_19_18
	SYRCoSE_2018_paper_20_81
	SYRCoSE_2018_paper_21_83
	SYRCoSE_2018_paper_22_82
	Introduction
	Singular points
	Related works
	Description of the experiment
	Dataset
	Model
	Training
	Result

	Conclusion

	SYRCoSE_2018_paper_23_73
	SYRCoSE_2018_paper_24_72
	SYRCoSE_2018_paper_25_04
	I. Introduction
	II. Classical CVRP
	III. Solution Methods
	IV. Extensions of CVRP
	A. Open VRP (OVRP)
	B. Distance-Constrained CVRP (DCVRP) [13]
	C. VRP with Time Windows (VRPTW)
	D. VRP with Bachhauls (VRPB)
	E. VRP with Bachhauls and Time Windows (VRPBTW)
	F. VRP with Pickup and Delivery (VRPPD)
	G. VRP with Simultaneous Pickup and Delivery (VRPSPD)
	H. VRP with Mixed Pickup and Delivery (VRPMPD)
	I. VRP with Pickup and Delivery and Time Windows (VRPPDTW)
	J. Multi-depot VRP (MDVRP)
	K. VRP with Multiple Use of Vehicles (VRPM) or Multi-Trip VRP (MTVRP)
	L. Periodic VRP (PVRP)
	M. Split Delivery VRP (SDVRP)
	N. Cumulative CVRP (CCVRP)

	V. Conclusion
	References

	SYRCoSE_2018_paper_26_12
	SYRCoSE_2018_paper_27_84
	SYRCoSE_2018_paper_28_19
	I. Introduction
	II. related work
	III. Data Collection
	IV. Word embeddings
	A. Text Pre-processing
	B. Word2Vec

	V. Baseline model
	VI. Convolutional Neural Network
	A. CNN Architecture
	B. Supervised Training

	VII. Results
	References

	SYRCoSE_2018_paper_29_25
	SYRCoSE_2018_paper_30_06
	SYRCoSE_2018_paper_31_77
	SYRCoSE_2018_paper_32_63
	SYRCoSE_2018_paper_33_07
	SYRCoSE_2018_paper_34_49
	SYRCoSE_2018_paper_35_52
	I. Introduction
	II. Related works
	III. Base model
	A. Preliminaries
	B. Base model

	IV. Declarative model
	A. The extension of the base model
	B. Predicates
	C. Calculated attributes
	D. Attribute scope
	E. Reuse of subtrees

	V. Implementation details
	A. Identification
	B. Calculated attributes
	C. Attributes life-cycle
	D. Order extraction algorithm
	E. Attribute change management
	F. Lazy loading
	G. Attribute types
	H. References
	Conclusion
	References

	SYRCoSE_2018_paper_36_43
	I. Introduction
	II. Integrated Modular Avionics and ARINC 653
	III. Source code analysis
	A. Architectural information in source code
	B. General approach for source code analysis
	C. Extracting APEX calls from source code
	D. Output format

	IV. Results and conclusions
	References

