

SYRCoSE 2019

Editors:

Alexander S. Kamkin, Alexander K. Petrenko, and

Andrey N. Terekhov

Preliminary Proceedings of the 13rd Spring/Summer

Young Researchers’ Colloquium on Software Engineering

Saratov, May 29-31, 2019

2019

Preliminary Proceedings of the 13rd Spring/Summer Young Researchers’

Colloquium on Software Engineering (SYRCoSE 2019), May 29-31, 2019 –

Saratov, Russian Federation.

The issue contains papers accepted for presentation at the 13rd Spring/Summer

Young Researchers’ Colloquium on Software Engineering (SYRCoSE 2019) held in

Saratov, Russian Federation on May 29-31, 2019.

The colloquium’s topics include software development frameworks, programming

languages, software and hardware verification, safety and security, automata and

Petri nets, information search, and others.

The authors of the selected papers will be invited to participate in a special issue of

‘The Proceedings of ISP RAS’ (http://www.ispras.ru/proceedings/), a peer-reviewed

journal included into the list of periodicals recommended for publishing doctoral

research results by the Higher Attestation Commission of the Ministry of Science and

Higher Education of the Russian Federation.

The event is sponsored by Russian Foundation for Basic Research (Project №19-07-20042).

Contents

Foreword ∙∙5

Committees ∙∙6

Tolerant Parsing using Modified LR(1) and LL(1) Algorithms with Embedded "Any" Symbol

A. Goloveshkin∙∙∙8

Development of a Software Framework for Real-Time Management of Intelligent Devices

T. Naumović, L. Živojinović, L. Baljak, F. Filipović∙∙20

Graphic DSL for Mobile Development

A. Gudiev, A. Grazhevskaya∙∙∙25

Graphical Modeling of Control Systems Based on Eclipse Technologies

M. Platonova∙∙28

Component-Based Software as a Tool for Developing Complex Distributed Heterogeneous Systems

D. Kulikov, V. Mokhin, S. Zolotov∙∙32

An Exploration of Approaches to Instruction Pipeline Implementation for Cycle-Accurate Simulators of

"Elbrus" Microprocessors

P. Poroshin, A. Meshkov∙∙36

Approach to Test Program Development for Multilevel Verification

P. Frolov∙∙42

Test Environment for Verification of Multi-Processor Memory Subsystem Unit

D. Lebedev, M. Petrochenkov∙∙46

Standalone Verification of IOMMU with Virtualization Supporting

A. Petrykin, I. Stotland, A. Meshkov∙∙51

Digital Modelling of Production Engineering for Metalworking Machine Shops

V. Kotlyarov, A. Maslakov, A. Tolstoles∙∙55

Reputation Systems in E-commerce: Comparative Analysis and Perspectives to Model Uncertainty Inherent

in Them

M. Nosovskiy, K. Degtiarev∙∙62

The Application of Machine Learning to Improve the Efficiency and Management of Oil Wells

Z. Aung, I. Mikhaylov∙∙∙74

Power Dispatcher Support System

D. Nazarkov, A. Prutik∙∙∙78

Applying High-Level Function Loop Invariants for Machine Code Deductive Verification

P. Putro∙∙83

Extracting Assertions for Conflicts in HDL Descriptions

A. Kamkin, M. Lebedev, S. Smolov∙∙90

Towards a Probabilistic Extension to Non-Deterministic Transitions in Model-Based Checking

S. Staroletov∙∙∙94

The Editor for Teaching the Proof of Statements for Sets

V. Rublev, V. Bondarenko∙∙99

Local Search Metaheuristics for Solving Capacitated Vehicle Routing Problem: A Comparative Study

E. Beresneva, S. Avdoshin∙∙109

3

The Generalized Traveling Salesman Problem: Modifications and Ways of Solving

M. Gordenko, S. Avdoshin∙∙119

Constructive Heuristics for Capacitated Vehicle Routing Problem: A Comparison Study

E. Beresneva, S. Avdoshin∙∙125

Solving the Generalized Traveling Salesman using Ant Colony Algorithm with Improvement Local Search

Procedures

A. Inkina, M. Gordenko∙∙131

Administration of Virtual Data Processing Center over OpenFlow

V. Solovyev, A. Belousov∙∙134

A Survey of Smart Contract Safety and Programming Languages

A. Tyurin, I. Tyulyandin, V. Maltsev, Ia. Kirilenko, D. Berezun∙∙140

Ethereum Blockchain Analysis using Node2Vec

A. Salnikov, E. Sivets∙∙152

A Tool for Identification of Unusual Wallets on Ethereum Platform

M. Petrov, R. Yavorskiy∙∙158

Vulnerabilities Detection via Static Taint Analysis

N. Shimchik, V. Ignatyev∙∙169

C# Parser for Extracting Cryptographic Protocols Structure from Source Code

I. Pisarev, L. Babenko∙∙177

Fabless-Companies Data Security While using Cloud Services

A. Akhmedzianova, A. Budyakov, S. Svinarev∙∙183

Artificial Intelligence in Web Attacks Detecting

M. Gromov, S. Prokopenko, N. Shabaldina, A. Sotnikov∙∙∙186

SQLite RDBMS Extension for Data Indexing using B-tree Modifications

A. Rigin, S. Shershakov∙∙190

Supporting Evolutionary Concepts to Organize Information Search in the Internet

A. Marenkov, S. Kosikov, L. Ismailova∙∙196

Deriving Test Suites with Guaranteed Fault Coverage against Nondeterministic Finite State Machines with

Timed Guards and Timeouts

A. Tvardovskii, N. Yevtushenko∙∙198

Simulating Petri Nets with Inhibitor and Reset Arcs

P. Pertsukhov, A. Mitsyuk∙∙206

Computing Transition Priorities for Live Petri Nets

K. Serebrennikov∙∙212

Method for Building UML Activity Diagrams from Event Logs

N. Zubkova, S. Shershakov∙∙∙217

"Life" in Tensors: Implementing Cellular Automata on Graphics Adapters

N. Shalyapina, M. Gromov∙∙∙223

Modeling of Angular Stabilization System on Processors with Scalable Architecture

D. Melnichuk∙∙230

4

Foreword

Dear participants,

It is our pleasure to meet you at the 13rd Spring/Summer Young Researchers’ Colloquium on

Software Engineering (SYRCoSE). This year’s colloquium is hosted by Saratov State University

(SSU), a major higher education and research institution in Russia. The event is organized by

Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS),

Saint-Petersburg State University (SPbSU), and SSU.

SYRCoSE 2019’s Program Committee (consisting of more than 50 members from more than 25

organizations) has selected 37 papers. Each submitted paper has been reviewed independently by

three referees. The authors and speakers represent well-known universities, research institutes and

companies: Bauman Moscow State Technical University, Demidov Yaroslavl State University,

Fraunhofer FOKUS, Higher School of Economics, INEUM, Institute YurInfor-MSU, ISP RAS,

Kazan Federal University, MCST, Moscow Institute for Physics and Technology, Moscow Power

Engineering Institute, Moscow State University, Peter the Great Saint Petersburg Polytechnic

University, Polzunov Altai State Technical University, Rapid Telecom System Labs, Rostov Law

Institute of the Ministry of Internal Affairs of the Russian Federation, Southern Federal University,

SPbSU, SSU, Tomsk State University, and University of Belgrade (4 countries, 11 cities, and 21

organizations).

We would like to thank all of the participants of SYRCoSE 2019 and their advisors for interesting

papers. We are also very grateful to the PC members and the external referees for their hard work

on reviewing the papers and selecting the program. Our thanks go to the invited speakers, Andrey

Belevantsev (ISP RAS), Jens Gerlach (Fraunhofer FOKUS), and Dmitry Koznov (SPbSU). We

would also like to thank our sponsors: Russian Foundation for Basic Research (Project №19-07-

20042) and Exactpro Systems. Our special thanks go to the local organizers, Dmitry

Andreichenko, Inna Batraeva, Antonina Fedorova, and Alexey Geraskin, for their invaluable help

in organizing the colloquium in Saratov.

Sincerely yours,

Alexander S. Kamkin

Alexander K. Petrenko

Andrey N. Terekhov

May 2019

5

Committees

Program Committee Chairs

 Alexander K. Petrenko – Russia
Ivannikov Institute for System Programming of RAS

 Andrey N. Terekhov – Russia
Saint-Petersburg State University

Program Committee

Mikhail B. Abrosimov – Russia
Saratov State University

Tiziana Margaria – Ireland
Lero – The Irish Software Research Centre

Dmitry K. Andreichenko – Russia
Saratov State University

Manuel Mazzara – Russia
Innopolis University

Elena Yu. Avdieva – Russia
Omsk State Technical University

Alexander S. Mikhaylov – Russia
RN-Inform

Sergey M. Avdoshin – Russia
Higher School of Economics

Alexey M. Namestnikov – Russia
Ulyanovsk State Technical University

Nadezhda F. Bahareva – Russia
Povolzhskiy State University of Telecommunications and Informatics

Yaroslav R. Nedumov – Russia
Ivannikov Institute for System Programming of RAS

Andrey A. Belevantsev – Russia
Ivannikov Institute for System Programming of RAS

Valery A. Nepomniaschy – Russia
Ershov Institute of Informatics Systems of SB of RAS

Pavel D. Drobintsev – Russia
Saint-Petersburg State Polytechnic University

Mykola S. Nikitchenko – Ukraine
Kyiv National Taras Shevchenko University

Liliya Yu. Emaletdinova – Russia
Kazan National Research Technical University

Sergey P. Orlov – Russia
Samara State Technical University

Victor P. Gergel – Russia
Lobachevsky State University of Nizhny Novgorod

Elena A. Pavlova – Russia
Microsoft

Susanne Graf – France
VERIMAG Laboratory

Ivan I. Piletski – Belorussia
Belarusian State University of Informatics and Radioelectronics

Efim M. Grinkrug – Russia
Higher School of Economics

Vladimir Yu. Popov – Russia
Ural Federal University

Maxim L. Gromov – Russia
Tomsk State University

Yury I. Rogozov – Russia
Taganrog Institute of Technology, Southern Federal University

Shihong Huang – USA
Florida Atlantic University

Rustam A. Sabitov – Russia
Kazan National Research Technical University

Iosif L. Itkin – Russia
Exactpro Systems

Nikolay V. Shilov – Russia
A.P. Ershov Institute of Informatics Systems of RAS

Alexander S. Kamkin – Russia
Ivannikov Institute for System Programming of RAS

Alberto Sillitti – Russia
Innopolis University

Andrei V. Klimov – Russia
Keldysh Institute of Applied Mathematics of RAS

Ruslan L. Smelyansky – Russia
Moscow State University

Vsevolod P. Kotlyarov – Russia
Saint-Petersburg State Polytechnic University

Valeriy A. Sokolov – Russia
Yaroslavl Demidov State University

Alexander N. Kovartsev – Russia
Samara State Aerospace University

Petr I. Sosnin – Russia
Ulyanovsk State Technical University

Dmitry V. Koznov – Russia
Saint-Petersburg State University

Veniamin N. Tarasov – Russia
Povolzhskiy State University of Telecommunications and Informatics

Vladimir P. Kozyrev – Russia
National Research Nuclear University “MEPhI”

Andrei N. Tiugashev – Russia
Samara State Aerospace University

Daniel S. Kurushin – Russia
State National Research Polytechnic University of Perm

Sergey M. Ustinov – Russia
Saint-Petersburg State Polytechnic University

Peter G. Larsen – Denmark
Aarhus University

Vladimir V. Voevodin – Russia
Research Computing Center of Moscow State University

Roustam H. Latypov – Russia
Kazan Federal University

Dmitry Yu. Volkanov – Russia
Moscow State University

Alexander A. Letichevsky – Ukraine
Glushkov Institute of Cybernetics, NAS

Mikhail V. Volkov – Russia
Ural Federal University

Nataliya I. Limanova – Russia
Povolzhskiy State University of Telecommunications and Informatics

Nadezhda G. Yarushkina – Russia
Ulyanovsk State Technical University

Alexander V. Lipanov – Ukraine
Kharkov National University of Radioelectronics

Rostislav Yavorsky – Russia
Higher School of Economics

Irina A. Lomazova – Russia
Higher School of Economics

Nina V. Yevtushenko – Russia
Ivannikov Institute for System Programming of RAS

Lyudmila N. Lyadova – Russia
Higher School of Economics

Vladimir A. Zakharov – Russia
Moscow State University

Vladimir A. Makarov – Russia
Yaroslav-the-Wise Novgorod State University

Sergey S. Zaydullin – Russia
Kazan National Research Technical University

Victor М. Malyshko – Russia
Moscow State University

6

Organizing Committee Chairs

Antonina G. Fedorova
Saratov State University

Alexander K. Petrenko
Ivannikov Institute for System Programming of RAS

Organizing Committee

Dmitry K. Andreichenko
Saratov State University

Alexey S. Geraskin
Saratov State University

Inna A. Batraeva
Saratov State University

Alexander S. Kamkin
Ivannikov Institute for System Programming of RAS

Referees

Dmitry Andreichenko
Manuel Mazzara

Diego F. Aranha
Alexander Mikhaylov

Sergey Avdoshin
Alexey Mitsyuk

Andrey Belevantsev
Yaroslav Nedumov

Sergey Chernenok
Valery Nepomniaschy

Mikhail Chupilko
Sergey Orlov

Andrey Gein
Alexander Petrenko

Susanne Graf
Alexey Promsky

Maxim Gromov
Alexander Protsenko

Alexander Kamkin
Natalia Shabaldina

Andrei Klimov
Nikolay Shilov

Vsevolod Kotlyarov
Alberto Sillitti

Alexander Kovartsev
Sergey Smolov

Dmitry Koznov
Petr Sosnin

Vladimir Kozyrev
Dmitry Tanana

Tomas Kulik
Andrei Tyugashev

Mikhail Lebedev
Mikhail Volkov

Irina Lomazova
Nina Yevtushenko

Hugo Daniel Macedo
Vladimir Zakharov

Victor Malyshko

7

Tolerant parsing using modified LR(1) and LL(1)
algorithms with embedded ”Any” symbol

Alexey Goloveshkin
I. I. Vorovich Institute for Mathematics,

Mechanics and Computer Science
Southern Federal University

Milchakova str. 8a, 344090, Rostov-on-Don, Russia
Email: alexeyvale@gmail.com

Abstract—Tolerant parsing is a form of syntax analysis aimed
at capturing the structure of certain points of interest presented
in a source code. While these points should be well-described in a
tolerant grammar of the language, other parts of the program are
allowed to be described coarse-grained, thereby parser remains
tolerant to the possible variations of the irrelevant area. Island
grammars are one of the basic tolerant parsing techniques.
”Islands” term is used as the relevant code alias, the irrelevant
code is called ”water”. Efforts required to write water rules are
supposed to be as small as possible. Previously, we extended
island grammars theory and introduced a novel formal concept
of a simplified grammar based on the idea of eliminating water
description by replacing it with a special ”Any” symbol. To
work with this concept, a standard LL(1) parsing algorithm was
modified and LanD parser generator was developed.

In the paper, ”Any”-based modification is described for LR(1)
parsing algorithm. In comparison with LL(1) tolerant grammars,
LR(1) tolerant grammars are easier to develop and explore due
to solid island rules. Supplementary ”Any” processing techniques
are introduced to make this symbol easier to use while staying
in the boundaries of the given simplified grammar definition.
Specific error recovery algorithms are presented both for LL
and LR tolerant parsing. They allow one to further minimize
the number and complexity of water rules and make tolerant
grammars extendible. In the experiments section, results of a
large scale LL and LR tolerant parsers testing on the basis of 9
open-source project repositories are presented.

Index Terms—tolerant parsing, robust parsing, lightweight
parsing, partial parsing, island grammars, simplified grammar,
LanD parser generator

I. INTRODUCTION

Tolerant parsing is a syntax analysis technique differing
from the detailed whole-language (so-called baseline) parsing.
The latter is performed by a full-featured compiler of a certain
programming language to ensure the program satisfies the
grammar and to prepare an internal program representation for
some further steps. Tolerant parsing performs deep structural
analysis only on certain parts of the program, passing other
parts with minimal effort. It is achieved by generating the
corresponding parser from a tolerant grammar, where these
parts of interest are described in details and some minimal
description of the irrelevant area is provided. From developer’s
perspective, tolerant parsing allows her to focus on the struc-
ture of the points valuable in the context of a current task,
without worrying about irrelevant code variations. Among

tolerant parsing use cases, the following ones are the most
frequently mentioned:

• Baseline grammar inaccessibility: Full version of the
language grammar can be inaccessible due to proprietary
issues or manual baseline parser writing [1]. Besides,
physical accessibility does not assume accessibility in
terms of grammar comprehension. Baseline grammar
usage requires intensive exploration to detect rules de-
scribing constructs of interest. Tolerant grammar structure
and mapping between its entities and language constructs
are transparent to the developer, as she writes it according
to her own knowledge of the task and the language.

• Language embedding: Some program artifacts assume
the usage of multiple languages in one source file. In this
case, a parser for the relevant language must be tolerant
to all the snippets written in other languages [2].

• Domain-specific idioms: In a certain project, some local
domain-specific patterns can be applied [1], [3]. They
represent a high-level abstraction layer which is not
presented in the language syntax and obviously is out of
scope of the whole-language parser. Nevertheless, tolerant
parsers can be strictly focused at these patterns, ignoring
the underlying structure.

According to the island grammars tolerant parsing paradigm
[1], [3], parts of the program that are well-described in the
grammar are called islands, others are called water. Detailed
grammar rules describing islands are named patterns, water
is presented with as few liberal productions as possible.
However, sometimes it is required to describe some water
parts in a fine-grained island-like style to avoid confusion with
proper islands. Water parts mistaken for islands are called
false positives, well-structured water productions are called
antipatterns. Island grammar development is always a finite
iterative process consisting of in-the-wild parser testing and
subsequent patterns and antipatterns refinement. Besides, some
situations, when program entity can be treated as an island
and as a water at the same time, are typically solved with
generalized parsing algorithms [4], [5].

The author of the current paper is interested in tolerant
parsing because of the long-term goal to develop a multi-
language tool for concern-based markup of software projects.

8

Talking about a program as a set of functionalities, so-called
concerns, we may notice that many of them are implemented
with pieces of code which are spread across solid program
elements, such as classes or methods [6], [7]. These concerns
are called vertical layers [8] or crosscutting concerns [9].
To work with this kind of concerns, it is vital to create
and manipulate some meta-information about their location,
this information should be sustainable with respect to code
changes, so it cannot rely on text line and text column
numbers. Abstract syntax tree is considered to be a more
appropriate structure for meta-information binding, so, there
must be a set of parsers for different languages, these parsers
must build abstract syntax trees in one unified format. These
trees should capture only the structure of program entities we
plan to bind to, therefore, tolerant parsing is an option. It also
should be easy to support new languages by developing ad-
ditional grammars and generating tolerant parsers. Previously,
to meet the requirements for parsers and trees, we developed a
tolerant parser generator called LanD. It uses a modified LL(1)
parsing algorithm which is theoretically and experimentally
proved to be correct [10].

The contributions of this paper are: 1) a modified LR(1)
parsing algorithm with incorporated notion of a special Any
token allowing parser to match implicitly defined token se-
quences; 2) supplementary Any processing techniques for
modified LL(1) and LR(1) parsing algorithms, filling the gap
between the simplified grammar formal definition and real
tolerant parsing use cases; 3) specific Any-based LL and LR
error recovery mechanisms aimed at elimination of water rules
and correct handling of possible ambiguities without parsing
algorithm generalization; complexity analysis is also carried
out; 4) lightweight LL(1) and LR(1) grammars for a broad
range of languages, namely, for C#, Java, PascalABC.NET
programming languages, Yacc and Lex specification formats,
XML and Markdown markup languages; 5) an experimental
evidence of the applicability of the generated tolerant parsers
for large-scale software projects analysis.

The remainder of the paper is organized as follows. In
Section II, main goals of the current research are listed. A brief
overview of the previous author’s research, along with closest
analogues analysis, is provided in Section III. In Section IV,
a modification of the standard LR(1) parsing algorithm aimed
at Any symbol processing is introduced, Any implementation
improvements and issues addressed are discussed, novel Any-
based error recovery algorithms are described. Section V
includes a sufficient volume of experimental data obtained by
applying generated tolerant parsers for C# and Java languages
to a number of real-world software repositories. In Section VI,
a brief summary of the contribution of the paper is provided
along with future work outlining.

II. PROBLEM STATEMENT

The first assumption of the current research is that the
concept of Any, previously successfully embedded into a top-
down parsing, can be embedded in a bottom-up parsing too,
making tolerant grammars more expressive and easy-to-write.

The second assumption is that ambiguities originated in islands
and water similarity can be resolved not only by adding special
antipatterns or by generalized algorithms usage, but also by
a special recovery mechanism embedded in a deterministic
parsing.

The key goals of the current research are:
1) to design an LR(1) parsing algorithm with built-in notion

of a special Any grammar symbol that provides skipping
the token sequences that are not explicitly described in
the grammar;

2) to introduce into the LanD parser generator additional
capabilities for correct Any processing in case Any
usage is not fully satisfies simplified grammar formal-
ization;

3) to design specific error recovery mechanisms for LL(1)
and LR(1) tolerant parsing, aimed at handling ambigui-
ties originating in water and island similarity;

4) to implement tolerant island grammars for a broad range
of languages;

5) to evaluate parser’s applicability through the analysis
of large-scale software projects written in C# and Java
languages.

III. RELATED WORK

A. ”Any” implementation

The concept of Any symbol is implemented in several
parser generators. Historically, the first tool with embedded
capability to match tokens from sets which are not directly
specified in a grammar is the Coco/R recursive-descent parsers
generator. According to the documentation [11, p. 14], devel-
oper can use a special symbol ANY, which denotes any token
that is not an alternative to that ANY symbol in the current
production. A set of admissible tokens for the position of a
particular ANY is precomputed to make the situation when
parser has to make a choice between ANY and some explic-
itly specified token unambiguously solvable in favour of the
explicit option. As shown in [10], these precomputed sets are
both incomplete due to the lack of nonterminal outer context
analysis and excessively restrictive due to a single restriction
applied to all the elements of the sequence corresponding to
the iteration of ANY. As a result, there are grammars for which
parsers generated by Coco/R do not parse programs valid from
the developer’s point of view. For example, a parser generated
by the grammar
A = a b c | {ANY} d.

is not capable to recognize the input string bad$ ($ denotes
the end of the input, {ANY} denotes zero or more Any
tokens).

Similar Any implementation is built into a tool for
lightweight LALR(1) parser development, called LightParse
[12]. LightParse grammar is not directly used to generate a
parser. Instead, it is transformed to the YACC-like format
supported by the standard LALR(1) parser generator GPPG.
In the transformed grammar, every entry of Any symbol is
presented as a separate rule with single-element alternatives,

9

by an alternative for each of the admissible terminal symbols.
To ensure these rules are valid in terms of GPPG, LightParse
imposes additional restrictions on Any usage. It only deepens
drawbacks inherited from Coco/R.

The most recent Any token implementation is introduced
by the author of the current paper for LanD parser generator
[10] aimed at LL(1) tolerant parsers generation by island
grammars. In terms of the island grammars paradigm, Any
symbol allows one not to specify the particular content of the
water area, writing Any instead. Unlike the ANY symbol in
Coco/R, our Any corresponds to a sequence of zero or more
tokens, not a single token. In its implementation, all the known
shortcomings are eliminated. The decision about the current
token’s admissibility at Any position is made dynamically at
the parsing stage and restricts the set of admissible tokens
no more than necessary to avoid ambiguities. LanD’s Any
implementation does not assume the grammar translation to
the form suitable for the standard parsing algorithm. Instead,
the standard LL(1) algorithm is modified to integrate the
notion of Any and make it possible to define admissible tokens
by the content of a parsing stack.

In the current paper, LanD parser generator is extended with
the capability to generate LR(1) parsers with embedded notion
of Any.

B. Formal definition of a simplified grammar

In [10], through the Any token, we formulate a formal
concept of the simplified grammar. We denote by lhs(p)
and rhs(p), respectively, the left and the right part of the
production p. Notation x ∈ rhs(p) for x ∈ N ∪ T means
that rhs(p) = α1xα2, where α1 ∈ (N ∪ T)∗, α2 ∈ (N ∪ T)∗.
SYMBOLS(γ) is used for the set of terminal symbols needed
to compose all the ω : γ ∗=⇒ ω, γ ∈ (N ∪ T)∗, ω ∈ T ∗.

Definition 1: Let G = (N,T, P, S) be a context-free
grammar, Any /∈ T . The grammar simplified with respect to
G is a grammar Gs = (Ns, Ts, Ps, Ss) defined as follows:

1) Ss = S;
2) Ps = {p ∈ f(P) | lhs(p) = Ss ∨ ∃p′ ∈ Ps : lhs(p) ∈

rhs(p′)}, where
f : P → {p = A→ α | A ∈ N,α ∈ (N∪T∪{Any})∗}
is the mapping that satisfies the following criteria:

a) ∃P ′ ⊆ P : P ′ = {p ∈ P | f(p) 6= p}, P ′ 6= ∅,
b) ∀p ∈ P \ P ′, f(p) = p,
c) ∀p ∈ P ′, ∃n ∈ N : p is representable

in the form A → α1γ1β1α2γ2β2...αnγnβn
and f(p) is representable in the form A →
α1Anyβ1α2Anyβ2...αnAnyβn, where ∀i ∈
[1..n], αiγiβi ∈ (N ∪ T)∗, and ∀i ∈
[1..n], ∀a ∈ FOLLOW(A), SYMBOLS(γi) ∩
FIRST(βiαi+1γi+1βi+1...αnγnβna) = ∅;

3) Ns = {A ∈ N | ∃p ∈ Ps : lhs(p) = A};
4) Ts = {a ∈ T | ∃p ∈ Ps : a ∈ rhs(p)} ∪ {Any}.
Intuitively, Ps contains productions for the start symbol

of Gs and productions for all the nonterminals which are
reachable from the start symbol. The definition of the mapping

f means that some of the strings generated by G contain
substrings which can be replaced with Any, then we obtain
strings generated by Gs. Symbol Any can be written instead
of the parts denoted by γi in production’s right hand side,
in case these parts satisfy the criterion 2c of the definition
1. Verification of this criterion is possible only when solving
a direct problem: when the grammar Gs is created on the
basis of some available G. In theory, G can correspond to the
baseline language grammar, as well as be a more tolerant ver-
sion of the baseline grammar, containing all the anti-patterns
described explicitly. In practice, it is usually not available or
does not exist, so direct problem is rarely considered. Writing
an island grammar for a certain programming language is
equivalent to solving an inverse problem. Developer writes
an initial approximation in the form of a simplified grammar
in which Any usage allows one to minimize the efforts to
describe a possible water content. Then she performs an
iterative refinement in accordance with parsing results, making
the grammar more and more corresponding to the language
generated by some baseline.

Compliance with the criterion 2c is crucial for correct
Any processing. At the same time, it is hard to maintain
while solving an inverse problem. In this paper, additional
Any processing mechanisms are offered. They allow grammar
developers to weaken the control over the consistency with the
formalization.

C. LL(1) parsing algorithm modification

In Figure 1, modified algorithms from [10] are rewritten
in the form more suitable for further discussion. The delta
between the standard algorithms and the modified ones is
highlighted with grey. As shown in Figure 1a, when no action
can be performed with a current token, parser tries to interpret
this token as the beginning of a sequence corresponding to
Any. FIRST’ set, a modified version of a standard FIRST,
is computed for the parsing stack content to get all the tokens
that are explicitly allowed in the current place. This non-static
approach is inspired in some sense by full-LL(1) parsing [13,
p. 247–251]. Set construction routine is shown in Figure 1c.
A modification is needed to handle the consecutive Any
problem defined in [10], this problem is explained in detail in
Section IV-B1 along with a more general solution. M denotes a
parsing table, Stack denotes a symbol stack which stores not
just the symbols that are expected to be matched, but nodes
of the syntax tree being constructed.

There are grounds for an analogy between the LL(1) parsing
modification given and well-known error recovery algorithms:
Any symbol looks similar to the error token denoting place
in the grammar where recovered parsing can be resumed,
FIRST’ set seems like the set of synchronization tokens.
Moreover, speaking in terms of the formal definition, a tolerant
parser is built by a simplified grammar Gs, and a program from
L(G) is actually needed to be parsed. In terms of Gs, this
program is erroneous. However, here also lies a fundamental
difference between Any processing and error recovery. Recov-
ery is performed for a program which is incorrect regarding to

10

Fig. 1: Modified LL algorithms: (a) LL(1) parsing algorithm, (b) ”Any” processing algorithm, (c) FIRST set construction,
(d) Auxiliary algorithms: alternative applying and FIRST set memorization

a baseline grammar G. While success is not guaranteed, the
main goal is to resume parsing at any cost, including the loss of
some significant results of the previous analysis and skipping
a significant part of the input stream, possibly containing some
points of interest. The goal of Any processing is to translate
a presumably valid L(G) program into the language L(Gs)
by replacing some token sequences with Any. The premise
that the program under consideration is correct with respect
to G, in conjunction with the observance of the criterion 2c,
makes input tokens skipping totally predictable. One can be
sure that the parts of the input stream replaced with Any
belongs to the water and can be discarded without loss of the
land. Furthermore, predictable and correct replacement with
Any is possible for a program that is incorrect with respect to
G, in case incorrectnesses are located in water areas.

IV. ALGORITHMS AND MODIFICATIONS

A. LR(1) parsing

Though the modified LL(1) parsing algorithm described in
Section III-C is enough to create reliable tolerant parsers,
describing a real programming language with LL(1) grammar
is a challenge even when this grammar is supposed to be

lightweight and tolerant. Constructs of interest, such as class
members, usually have a common beginning up to a certain
point, so they cannot be presented as solid alternatives for a
single nonterminal symbol in LL(1). Instead, we have to write
rule sequences in the style of taking the common factor out
of the brackets and making a separate rule for a tail:

entity = attribute* keyword* (class_tail | member_tail)
member_tail = type name (method_tail | property_tail)
method_tail = arguments Any (init? ’;’ | block)

As a result, the grammar structure is not transparent enough
for a newcomer because the connection between existing
island rules written in such a distributed manner and particular
language constructs is non-obvious.

This LL(1) limitation can be overcome through switching to
a more complex LR(1) parsing. A modification of the standard
LR(1) algorithm is shown in Figure 2a, modified areas are
highlighted with gray. Like in a standard case, two stacks exist
to keep parser state. SymbolsStack keeps the current viable
prefix [14, p. 256]. In fact, similar to LL(1) Stack, in our
implementation, it keeps not just symbols but nodes for a tree
to be build. StatesStack keeps the indices of the states
parser passed through to obtain the current viable prefix. An

11

Fig. 2: Modified LR algorithms: (a) Modified LR(1) parsing algorithm, (b) ”Any” processing algorithm, (c) Shift and reduce
algorithms

COMMENT : '//' ~[\n\r]* | '/*' .*? '*/'

STRING : '"' ('\\"'|'\\\\'|.)*? '"'

CHAR : '\'' ('\\\''|'\\\\'|.)*? '\''

MODIFIER : 'transient'|'strictfp'|'native'|'public'|'private'

 |'protected'|'static'|'final'|'synchronized'|'abstract'

 |'volatile'|'default'

ID : [_$a-zA-Z][_$0-9a-zA-Z]*

CURVE_BRACKETED : %left '{' %right '}'

ROUND_BRACKETED : %left '(' %right ')'

SQUARE_BRACKETED : %left '[' %right ']'

file_content = entity*

entity = enum | class_interface | method

 | field_declaration | water_entity

enum = common_beginning 'enum' name Any block ';'?

class_interface = common_beginning ('class'|'interface')

 name Any '{' entity* '}' ';'?

method = common_beginning type name arguments Any (';' | block)

field_declaration = common_beginning type field (',' field)* ';'

field = name ('['']')* init_value?

water_entity = AnyInclude('@interface', 'import', 'package')

 (block | ';')+

common_beginning = (annotation|MODIFIER)*

init_value = '=' init_part+

init_part = Any | type_parameter

name = name_type

type = name_type

name_type_atom = type_parameter? ID type_parameter?

name_type = name_type_atom ((('.'|'::') name_type_atom) | '['']')*

type_parameter = '<' (AnyAvoid(';') | type_parameter)* '>'

arguments = '(' Any ')'

annotation = '@' name arguments?

block = '{' Any '}'

Fig. 3: Java LR(1) tolerant grammar

element ACTIONS[s, t] of the ACTIONS table keeps the
knowledge of what action should be performed by the parser
if token t is met while s is the parser’s current state. There
are two basic types of action in LR algorithm: Shift and
Reduce, they are shown in Figure 2c. GOTO[s, X] contains
the index of a state to which parser must go from s state after
reducing some part of a viable prefix to X.

The essence of the parsing algorithm modification is similar
to LL(1) case: tolerant parser is responsible not only for
checking if the program can be derived from the start symbol,
but also for translating it from a baseline language into a
simplified one. In case an action for some actual combination
of parser state and input token is undefined, parser tries to
interpret the current token as the beginning of the subsequence
of the program from L(G) that corresponds to Any in the
corresponding program from L(Gs). In case there is an action
available for Any, parser calls SkipAny routine (Figure 2b),
where firstly all the possible Reduce actions are performed
and secondly Any token is shifted. Note that we consider
ACTIONS table to be cleared from Shift/Reduce conflicts in
favour of Shift action. Also there is no additional checking
if Shift action exists, because this existence follows from
the standard ACTIONS and GOTO construction algorithm.
Having moved Any to a viable prefix, parser looks for the
first token which is explicitly expected in L(Gs) program and
then continues parsing the usual way.

In Figure 3, there is an LR(1) tolerant grammar for Java
programming language written in the format supported by
LanD parser generator. As it can be seen, island entities,
such as enumerables, classes, methods and fields, are clearly
presented as solid rules. In comparison with a baseline Java
grammar, it is significantly shorter: the baseline grammar
implementation for ANTLR parser generator1 consists of 211
lines of lexer specification and 615 lines of parser description.

B. ”Any” processing improvements
1) Consecutive ”Any” problem: In Figure 1c, FIRST’

algorithm, which is the modified version of the standard

1https://github.com/antlr/grammars-v4/tree/master/java

12

FIRST, is presented. It is intended to solve the problem of
consecutive Any described in [10]. The problem manifests
itself when two or more Any tokens directly follow each other
at the beginning of the sentence which can be derived from the
stack. In this case, the subsequent Any hides some stop tokens
from the previous one. Consider the following grammar G:

A = (a|b)+ B C; B = d | ; C = (e|f)? c

It can be simplified to the following Gs:

A = Any B C; B = d | ; C = Any c

The string abc$ ∈ L(G) is supposed to be successfully
matched by the parser built for L(Gs), because the following
derivation may be performed:

A⇒ Any BC ⇒ Any C ⇒ Any Any c .

Having met the token a, the tolerant parsing algorithm starts
the first Any processing. If the standard FIRST is used to
find stop tokens, FIRST(Stack) set equals to {d, Any},
as a result, SkipAny skips all the input and returns an error.
Taking into account that Any is allowed to match an empty
sequence, FIRST’ modification looks beyond the second Any
and, in general, beyond all the subsequent Any symbols in
searching some explicitly specified tokens which may follow
a sequence corresponding to these Any tokens. Stop token set
found with FIRST’(Stack) equals to {d, c}, thus the
first Any captures a and b tokens and stops on c, the second
one matches an empty sequence, and abc$ string is admitted
to be correct.

This approach is proved to be enough to build working
parsers for real programming languages, such as C#, Java
or PascalABC.NET. It can also be implemented for LR(1)
through ACTION and GOTO static analysis. However, on closer
inspection it becomes clear that algorithms modified in this
way work correct only for a subclass of simplified grammars,
satisfying an additional constraint:

Definition 2: Let Gs = (Ns, Ts, Ps, Ss) be a grammar
simplified with respect to a context-free grammar G =
(N,T, P, S). Enumerate as Any1,Any2, ...Anyn all the Any
entries from the right-hand sides of productions from Ps,
which appeared as a result of replacement of the correspond-
ing γ1, γ2, ...γn subparts of the right-hand sides of produc-
tions from P in compliance with Definition 1. Derivation
Ss

∗
=⇒ αsAnykAny l...Anytbβs, where k, l, ..., t ∈ [1..n],

αs, βs ∈ (Ns ∪ Ts)∗, b ∈ Ts \ {Any}, is not acceptable in
Gs if b ∈ SYMBOLS(γkγl...γt).

Informally speaking, the token which is a stop token for the
last Any in a sequence is not allowed to appear in the area
corresponding to one of the preceeding Any, otherwise it will
cause premature completion of Any processing. Let G has a
different structure:

A = (a|b|c|d|e|f)+ B C; B = g | ; C = (h|i)+ a

It can be simplified to

A = Any B C; B = g | ; C = Any a

Herein, both replacements with Any are still satisfy the cri-
terion 2c, but the restriction from Definition 2 is not satisfied,
as a may follow the second Any, and at the same time it is
a valid element of the area corresponding to the first one. As
a result, while parsing abba$, the first Any is matched with
an empty token sequence because FIRST’([B, C]) equals
to {a, g}, the second Any also cannot include a, so, valid
input is not accepted.

In practice, the most common case of consecutive Any
appearance does not break the restriction mentioned: in gram-
mars we have developed, Any is often used as one of the
possible variants for an element of a list, so, all the Any
tokens in the derivation of such a list originate from a
single Any entry in the grammar, therefore, derivation can
be rewritten as Ss

∗
=⇒ αsAnykAnyk...Anykbβs, and the

corresponding condition b ∈ SYMBOLS(γk) is false in
accordance with Definition 1. To cover the general case, we
introduce a mechanism for passing an additional information at
Any processing stage. Any entry can be supplemented with
two options: Except and Include. For each of them, a
list of literals or token names can be passed as parameters.
The concept of AnyExcept initially appeared in LightParse
parser generator [15], but there it was intended to compensate
the lack of outer context analysis while constructing the set of
admissible tokens. Our intention is different: symbols specified
for Except option are supposed to compensate the lack of
information in consecutive Any problem: they are supposed
to be explicitly specified tokens that may follow the area
corresponding to Any in L(G). Include option allows one
to approach this problem from a different angle, specifying
tokens that shouldn’t be interpreted as stop tokens despite their
appearance in FIRST’(Stack). So, for the grammar above
we can use one of the following simplified analogues:
A = AnyExcept(g,h,i) B C; B = g | ; C = Any a
A = AnyInclude(a) B C; B = g | ; C = Any a

Having renamed stopTokens sets built in Figure 1b and
2b to stopTokensBasic, we transform stop token set
construction for both LL and LR algorithms to
stopTokens := anyExceptSet.Count > 0
? anyExceptSet
: stopTokensBasic.Except(anyIncludeSet);

where anyExceptSet and anyIncludeSet denote sets
of tokens passed as option parameters for Any currently
being matched. For error recovery purposes discussed in
Section IV-C, Any also supports Avoid option. Its arguments
are tokens the presence of which in the Any-corresponding
area signals about program incorrectness or wrong alternative
choice. To take Avoid into account, while loop condition
transforms to
t ∉ stopTokens and t ∉ anyAvoidSet and t ≠ $.

In case token skipping is interrupted because current token
equals to one of the Avoid arguments, this token passes to
Error routine as a second argument.

Unlike in LL(1), there can be a situation in LR(1) when
we do not know for sure what particular Any entry is being

13

processed at the moment. This information is needed to access
the corresponding options. To add support of Any options in
LR(1), we introduce an additional type of LR(1) conflict called
Any/Any conflict. It is reported when there is a state where
multiple items have a dot before Any, and is needed to be
resolved for successful parser generation.

2) Nesting level checking: While writing a tolerant gram-
mar, developer usually has to make an additional effort to
determine what bracketed areas may appear in the particular
water, and if they can influence Any processing. Intuitively,
such areas are perceived as a whole, and when Any is written
instead of some better-grained water description, it may be
missed that bracketed areas exist in that water in a real
program. These areas may contain something that also appears
right after that Any and therefore should be treated as a stop
token. For example, being interested in fields of a C# class,
we must capture a, b, c and d in the fragment
int a = 0, b = 1;
DateTime c = new DateTime(2019, 5, 29),

d = new DateTime(2019, 5, 31);

At the same time, we are not interested in initializers, so, the
first intention is to describe field declaration with the rules
fields = type name init? (’,’ name init?)* ’;’
init = ’=’ Any

Unfortunately, these rules work only for the first declaration.
The set {’,’, ’;’} is a stop token set for Any, and in the
second declaration, comma separates not only fields but also
arguments bordered with round brackets. Generally speaking,
Any does not satisfy the formalization in this case. At the
same time, simplicity is the crucial property of the tolerant
grammar, and the way in which water is described above is
more preferable than the following one:
init = ’=’ water
s_water = ’[’ (Any | s_water)+ ’]’
r_water = ’(’ (Any | r_water)+ ’)’
c_water = ’{’ (Any | c_water)+ ’}’
water = (Any | c_water | r_water | s_water)+

To return the first version of init rule to the boundaries
of the simplified grammar definition, we add to the parsing
algorithms a capability to take into account nested bracketed
structures. A pair of brackets is described like
ROUND_BRACKETED : %left ’(’ %right ’)’

and nesting level is tracked by lexical analyser. If several kinds
of pairs are described, it is believed that any pair can be nested
in any pair. When Any is processed, it is allowed to end only
at the same depth at which it begins. To control this situation,
SkipAny methods are modified uniformly both for LL and
LR. Firstly, at the beginning of a skip process, an additional
variable is initialized:
depth := Lexer.CurrentDepth();

Secondly, in-loop Lexer.NextToken() call is replaced
with Lexer.NextToken(depth). Passing the initial nest-
ing level to a lexer, we force it to read the input stream until
the depth of the next token equals the depth of the first token in

a (b) {b} b

Any { (a) b { b}{Any

Fig. 4: Possible ”Any” matching supported by nesting level
tracking

the sequence corresponding to Any. Thus, Any-corresponding
area is allowed to include stop tokens in nested structures
because these nested structures are invisible to the parsing
algorithm. Third modification is an additional checking to
prevent moving through the upper nesting level. In Figure 4,
there are two cases allowed by the first two modifications.
Token a is the beginning of Any area, and b is a stop token.
Obviously, the way Any symbol is matched on the right breaks
the semantic integrity of a bracketed area. We consider such
Any usage to be a bad practice, so, if lexer returns a token
denoting the end of some pair and rise to the level above the
initial, and this token is not a stop token, parser reports an
error which means that grammar should be refined.

C. Error recovery

1) Algorithms: As noted in Section I, in case water entities
look similar to islands, developer has to refine patterns and
to add some antipatterns to avoid false positives. For a deter-
ministic parsing, the problem of water and island similarity
may have unpleasant consequences not only when there is a
full match between island pattern and water entity, but even
if a water entity and an island have a number of common
starting tokens. In this case, parser starts analysing a water
entity as an island, finds a mismatch and fails to proceed
analysis. It is important to note that this parsing failure
indicates not the incorrect L(G) program but misinterpretation
of the program in terms of Gs. Generalized parsing algorithms
are able to process such a situation exploring both ways an
entity can be interpreted in and rejecting the failed one. To
get a similar benefit from our modified deterministic parsing
while preserving mostly linear complexity, we add special
Any-based error recovery routines in both LL(1) and LR(1)
algorithms. These routines are shown in Figure 5.

In the modified parsing algorithms, two types of error can
occur. The first one happens when LL(1) parser cannot match
the current token or apply some alternative and Any is not
acceptable at the point, or when LR(1) parser has no shift or
reduce action for the current token as well as for Any. The
second type occurs when Any processing starts and no stop
tokens are found till the end of the input or a token specified as
Avoid argument is met. Recovery initiated for the first type
does not influence the algorithm linearity as parsing is resumed
at the token where the error occured. Acting the same way for
the second type is meaningless, especially when the end of
the input is reached, because significant part of islands might
be uncontrollably skipped. Instead, a limited backtracking is
performed. In Figure 1b and 2b, Lexer.MoveTo(idx)
call shifts a token stream pointer to the token that triggered
Any processing, at this point recovery is tried to be carried
out. In Section IV-C2, the influence of this backtracking on
parsing algorithm time complexity is analysed. In both LL(1)

14

Error(stopTokens):

 if (Lexer.CurrentTokenIndex() � RecoveredIn) then

 return ERROR_TOKEN;

 end;

 RecoveredIn ∪= { Lexer.CurrentTokenIndex() };

 currentNode := Stack.Pop();

 do

 if (currentNode.Parent ≠ null) then

 maxChildIndex :=

 currentNode.Parent.Children.Count - 1;

 indexOfCurrent :=

 currentNode.Parent.Children.IndexOf(currentNode);

 for (i from indexOfCurrent + 1 to maxChildIndex) do

 Stack.Pop();

 end for;

 end if;

 currentNode := currentNode.Parent;

 while(currentNode ≠ null and (

 currentNode.Symbol ∉ RecoverySymbols or

 Any = GetDerivation(currentNode)[0] or

 IsUnsafeAny(stopTokens)

));

 if (currentNode ≠ null) then

 return SkipAny(false);

 else

 return ERROR_TOKEN;

 end if;

Error(stopTokens):

 if (Lexer.CurrentTokenIndex() ∈ RecoveredIn) then

 return ERROR_TOKEN;

 end;

 RecoveredIn ∪= { Lexer.CurrentTokenIndex() };

 lastMatched := �;

 // possible derivation items

 PDI := {};

 basePDI := {};

 do

 if (SymbolsStack.Count > 0) then

 lastMatched := SymbolsStack.Pop();

 end if;

 StatesStack.Pop();

 if (StatesStack.Count > 0) then

 s := StatesStack.Peek();

 basePDI := { i = X � �•Y� | i ∈ STATE[s], Y = lastMatched.Symbol,

 (PDI = {} ∨ ∃i' ∈ PDI : i' = X � �Y•�) };

 PDI := basePDI;

 do

 PDI ∪= { i = X � �•Y� | i ∈ STATE[s], ∃i' ∈ PDI : i' = Y � •�' };

 while (PDI changes);

 end if;

 while (StatesStack.Count > 0 and (

 | basePDI | = | PDI | or

 ∄i ∈ PDI \ basePDI : i = X � �•Y�, Y ∈ RecoverySymbols or

 Any = GetDerivation(lastMatched)[0] or

 IsUnsafeAny(stopTokens)

));

 if (StatesStack.Count > 0) then

 return SkipAny(false);

 else

 return ERROR_TOKEN;

 end if;

(a)

(b)

Fig. 5: ”Any”-based error recovery algorithms: (a) LL(1) algorithm, (b) LR(1) algorithm

and LR(1) error processing algorithms, RecoveredIn set
stores all the indices of tokens at which recovery was once
performed, so, it is guaranteed that from one recovery to
another parsing process moves at least one token forward.

Like in standard recovery algorithms [16, pp. 283–285],
a set of nonterminals at which recovery can be performed
is defined. These nonterminals are called recovery symbols.
Possible recovery symbols can be revealed through the static
grammar analysis. Given the grammar Gs = (Ns, Ts, Ps, Ss),
we formally define the set as follows:

RecoverySymbols = {n ∈ Ns | n
∗
=⇒ Any α∧

@n′ ∈ Ns : (n
∗
=⇒ n′Any α ∧ n′ ∗=⇒ ε)}, α ∈ (Ns ∪ Ts)∗.

Recovery symbols are pre-computed at parser construction
stage. Developer can disable recovery at all or specify par-
ticular nonterminals from this set which should be used for
recovery, otherwise, all the elements of the set are taken into
consideration when Error routine is called.

In the context of a deterministic tolerant parsing problem,
recovery symbols have specific semantics. They represent
decision points at which parser may choose the wrong alter-
native, try to match a water entity as an island, and provoke
an error. Recovery itself means returning to a decision point
through the grammar ancestors of the currently unmatched
token or unparsed nonterminal and changing the interpretation
of the part of the input that is already associated with a
recovery symbol’s subtree to water. More precisely, the part of

the input from the first token mistaken for an island part to the
first token at which the difference between an island pattern
and an actual water entity manifests itself is supposed to be the
beginning of the sequence corresponding to Any from which
the water alternative starts. Backtracking to the token a wrong
decision was made at is not needed in this interpretation. The
end of an Any-corresponding sequence is looked for with a
usual SkipAny call, then parsing continues in an ordinary
way. In Figure 3, entity is one of the recovery symbols. It
allows the parser to recognize classes, enumerables, methods,
and fields as islands, while annotation definitions, constructors,
initialization blocks, etc. are skipped as the water, sometimes
with the involvement of recovery mechanisms.

LL(1) error recovery algorithm is presented in Figure 5a.
We take advantage of the fact that at any stage of the top-
down-parsing a partially built syntax tree is available, and
blank nodes for what is expected are on the stack. Knowing
the tree node corresponding to the unparsed symbol, we may
find a recovery symbol node by moving through its ancestors.
The higher we go, the wider area will be reinterpreted.
Simultaneously with walking up the syntax tree, right siblings
of the currentNode should be removed from parsing stack
as they are unparsed parts of the interpretation being rejected.
The appropriate recovery symbol is considered to be found
if it satisfies two additional conditions. Firstly, the water
alternative should not be the alternative in favor of which
the decision was originally made, otherwise no reinterpreting

15

takes place as error actually occurred in the water. To check
it, GetDerivation is called. It takes the built part of
recovery symbol’s subtree and returns a leaf sequence which
is a partially revealed part of the L(Gs) program, derived from
this symbol. This sequence must not start with Any. Secondly,
in case error took place at Any skipping, IsUnsafeAny
prevents parsing resumption on Any from the recovery symbol
alternative if new skipping will lead to the same erroneous
situation. The decision is made on the basis of old and new
stop token sets comparison and Avoid options analysis.

For LR(1) algorithm, recovery is more complex and heuris-
tic due to the nature of a bottom-up parsing. Unlike in LL
case, we do not know for sure what are the exact entities
that are currently being analysed, so, we try to build a set
of possible candidates basing on the information stored on
the stacks. In Figure 5b, there is an LR(1) error recovery
routine. On each iteration of do-while loop, one of the
symbols already matched is popped along with the state parser
went to after this successful matching, then basePDI set is
constructed. It consists of the current state items having the
dot before the last popped symbol. Productions of the items
added to this set are possible participants of the erroneous
area derivation. Basing on basePDI, PDI set is constructed
in a way that looks like inverted CLOSURE [16, pp. 243–
245] algorithm. Additional PDI items capture the higher-level
grammar entities from which the area that is needed to be
reinterpreted may be derived.

Recovery algorithms presented simplify the process of
grammar extension and reduction. Recovery symbol alter-
natives become grammar building blocks: in case we are
not interested in some Java island its alternative can be
excluded from entity rule, then program areas previously
corresponding to that alternative are recognized as the water,
possibly through recovery algorithm application. Inversely, to
add a support for class constructors in the grammar in Figure 3,
we have write only one constructor rule and add this
symbol in entry alternatives list, then constructors stop being
interpreted as the water, because the rule appears allowing to
analyse them from beginning to the end with no error occurred.

2) Complexity analysis: As noted, errors happening on
Any processing require limited backtracking. The particular
increase in running time of the algorithm depends on number
and length of backtracked sequences. From the prohibition of
multiple recovery at the same token, it follows that there can
be only one backtracking to a particular position, so, the worst
case is when the following situation repeats sequentially for
each token except the first one: Any processing starts on the
token, fails by reaching the end of the input and backtracks to
that token, then recovery starts, the token matches successfully
with the help of the water alternative, and the next token
becomes the token under consideration. In this scenario, a
number of times the token is examined equals to its sequential
number counting from one. For the ith token, i−1 examinations
are occurred on Any skipping started at previous tokens and at
the current one, and 1 examination is for some final match. As
backtracking itself consists of a simple index reassignment, it

does not increase this counter. It can be shown that this worst-
case scenario takes place for inputs ac$, aac$, aaac$, etc.
and a parser generated by the following LL(1) grammar:
S = a Any b | Any S |

The total number of token examinations equals to 1
2n

2+ 1
2n,

it means that our algorithms are O(n2) in the worst case.
However, experiments show that the percentage of recoveries
required backtracking is insignificant in comparison with the
total number of recoveries and tokens: for example, in all
the Java projects from Section V-B taken together, there are
27393 files splitting at 26255589 tokens, while total number
of recoveries is 32683 for LL(1) and 31861 for LR(1), and
only 20 recoveries for each type of parsing were performed
after on-Any error.

V. EXPERIMENTS

To test the algorithms described in Section IV, tolerant
grammars for the following programming languages, markup
languages and specification formats are developed: C#, Java,
PascalABC.NET, XML, Markdown, YACC, Lex. All the
sources are available on GitHub2. For a large-scale testing,
C# and Java are chosen as the languages complex enough and
having a large number of well-known open-source repositories.
For both languages, LL(1) and LR(1) tolerant parsers are
generated with LanD parser generator on the basis of the
corresponding tolerant grammars.

As tolerant parsers are created to capture particular islands,
the purpose of the experiment is to evaluate precision and
recall of this capturing. Stages of the experiment are the
same for both languages. For each of the projects under
consideration, tolerant parser is firstly applied to parse all
the project files written in the corresponding language. By
traversing syntax trees built, types and names of the islands
are extracted in a report files, per report for each island type.
This extraction does not require some severe postprocessing:
island type is actually a node type, and name is stored in one
of this node’s children. Secondly, the same files are parsed
by a baseline parser. Roslyn is used as a baseline parser for
C#, and Java parser is generated with ANTLR from the full
grammar of the language3. Then information about program
entities that are specified as islands for our tolerant parsers
is extracted from trees built by these baseline parsers, so the
second group of reports is obtained. At the third stage, two
reports for the same type are compared in an automated way
to eliminate the human factor. Matches are excluded, so only
the information about entities found by one parser and not
found by another one remains. It is then explored manually.

For each of the languages, there is a table whose rows
correspond to projects parsed and columns correspond to
island types. There is also an additional ”Total files” column
allowing to estimate the scale of the project. In a table cell,
there is a number of islands of the corresponding type found
by our tolerant parser for the corresponding project. We have

2https://github.com/alexeyvale/SYRCoSE-2019
3https://github.com/antlr/grammars-v4/tree/master/java

16

...

CURVE_BRACKETED : %left '{' %right '}'

ROUND_BRACKETED : %left '(' %right ')'

SQUARE_BRACKETED : %left ('['|GENERAL_ATTRIBUTE_START) %right ']'

...

namespace = 'namespace' name '{' namespace_content '}'

entity = enum | class_struct_interface | method

 | field_decl | property | water_entity

enum = common 'enum' name Any '{' Any '}' ';'?

class_struct_interface =

 common ('class'|'struct'|'interface') name Any '{' entity* '}' ';'?

method = common type name arguments Any (init_expression? ';' | block)

field_decl = common type field (',' field)* ';'

field = name ('[' Any ']')? init_value?

property =

 common type name (block (init_value ';')? | init_expression ';')

water_entity =

 AnyInclude('delegate', 'operator', 'this') (block | ';')+

common = entity_attribute* modifier*

modifier = MODIFIER | 'extern'

init_expression = '=>' Any

init_value = '=' init_part+

init_part = Any | type

arguments = '(' Any ')'

block = '{' Any '}'

...

Fig. 6: Fragment of the C# tolerant grammar

obtained that these numbers are the same for LL(1) and LR(1)
parser, so we do not need two separate tables for a single
language. In case tolerant parser finds less island entities than
the baseline one, the number of entities missed is specified
in parentheses with a minus sign. In addition to the tables, a
detailed analysis of mismatches is provided.

A. C# tolerant parsing

For C# programming language, five open-source projects
from different domains are considered:
• Roslyn project includes C# and Visual Basic compiler

sources and lots of test files capturing different complex
and uncommon variants of a C# program;

• PascalABC.NET consists of the corresponding language
compiler and IDE sources, it has a relatively long his-
tory reflected in the legacy code written by differently
experienced contributors;

• ASP.NET Core refers to the web development domain:
it is a cross-platform .NET-based web framework;

• Entity Framework Core is an object-relational mapper
allowing to work with a database using .NET objects;

• Mono is an open source third-party implementation of
Microsoft’s .NET Framework including C# compiler,
Common Language Runtime virtual machine, lots of core
libraries and, again, a great number of test files.

Parsing results are presented in Table I, a fragment of the
tolerant LR(1) C# grammar is presented in Figure 6. Note
that classes, structures and interfaces correspond to a single
grammar entity, so their total number presented in a single
”Classes” column of the table. In the discussion below, foot-
notes contain paths to files relative to the root directory of the
corresponding project.

For Roslyn sources, there are 5 methods found by Roslyn
and missed by LanD. 4 of them are local4 methods5 (methods
declared inside other methods), this feature recently appeared

4src/Compilers/CSharp/Test/Emit/Emit/EndToEndTests.cs
5src/Compilers/CSharp/Portable/FlowAnalysis/NullableWalker.cs

in C# 7.0. In case this kind of methods is important for a
particular task, it is trivial to add their support in the grammar.
One needs to modify the grammar above by adding method
symbol as an alternative to Any inside the block. It is worth
noting, that Roslyn project is the only project where the usage
of this feature is revealed. The 5th lost method is from a test
file where the text of the program is saved in Japanese Shift-
JIS encoding6. The class name written in Japanese provokes an
error which does not affect the detection of the class itself but
stops parser from further class content analysis. We consider
the usage of national alphabets for entity naming to be a rare
case, but, if necessary, ID token can be adopted as needed.

2 properties from different files are not found by LanD, in
both cases it is caused by missing expression for expression-
bodied property preceding the uncaptured one. The expression
depends on external conditional compilation symbols and is
not substituted at all in case the isolated file is analysed.
In the following code, IsWindows is not recognized by
LanD, because it is interpreted as a part of expression for
Configuration:
public static ExecutionConfiguration Configuration =>
#if DEBUG

ExecutionConfiguration.Debug;
#elif RELEASE

ExecutionConfiguration.Release;
#else
#error Unsupported Configuration

#endif

public static bool IsWindows =>
Path.DirectorySeparatorChar == ’\\’;

This kind of inconsistency can be partially handled
by using AnyAvoid(MODIFIER) instead of Any in
init_expression grammar rule. For the example above,
this handling leads to loss of the information about
Configuration property, as it will be treated as water, but
protect the following entities starting with the one that starts
with the keyword.

For PascalABC.NET and ASP.NET Core, all the entities
found by Roslyn are also found by LanD. For Entity Frame-
work Core, the difference in number of fields and methods
is caused by the situation7 similar to the one presented in
the code above, and the difference in number of properties
is provoked by property types containing Greek letters8. The
latter refers us again to the national alphabets problem.

Voluminous results are obtained for Mono sources. Most
losses are concentrated in files that are incorrect in terms of
a full C# grammar: as an example, 26 files9 contain unclosed
conditional compilation directives and mismatch in the number
and type of opening and closing brackets, half of the 122
missed classes belongs to a group of files10 containing LINQ
to SQL code written in accordance with Visual Basic syntax,

6src/Compilers/Test/Resources/Core/Encoding/sjis.cs
7test/EFCore.SqlServer.FunctionalTests/Query/SimpleQuerySqlServerTest.

Where.cs
8test/EFCore.Tests/ModelBuilding/ModelBuilder.Other.cs
9mcs/errors
10mcs/tools/sqlmetal/src/DbLinq/Test

17

TABLE I: Number of entities found in C# projects

Project Total files Enums Classes Fields Properties Methods

Roslyn 8759 482 23705 20265 23127 (-2) 116312 (-5)
PABC.NET 2802 359 5522 16739 12023 37027
ASP.NET Core 7356 333 12604 10214 16301 44163
EF Core 2997 101 7783 4687 (-1) 16941 (-2) 26421 (-135)
Mono 37224 4928 (-1) 60187 (-122) 166958 (-67) 99167 (-36) 309580 (-670)

there are also files with .cs extension written in a specific
format, such as a skeleton file11 for jay parser generator,
where each line starts with a point. However, there is also
a group of missed entities that illustrates a real LanD draw-
back. These entities are contained in test-async12 and
test-partial13 groups of Mono test files. At grammar
design and refinement stage, we did not take into consid-
eration, that there are some keywords in C# that appeared
recently and were implemented as contextual keywords to
protect legacy code. It means that they still can be names
for classes, methods, etc. For example, the following code is
valid in C# (method bodies are omitted):
namespace async
{

partial class async
{ partial void partial(); }

partial class partial
{

// async method named ’async’
async Task<async> async() { ... }

// method named ’async’ returning
// an object of type ’async’
async async(async async) { ... }

}
}

Proper interpretation of a contextual keyword depends
on a heavy context analysis going far beyond LL(1)
or LR(1) parsing. In Roslyn sources, there is a special
ShouldAsyncBeTreatedAsModifier method checking
lots of specific conditions, each of which covers a partic-
ular async placement relative to non-contextual keywords,
predefined types, and partial keyword. Besides, up to 2
additional tokens are required to make a correct decision.

Fortunately, to meet contextual keywords used as identifiers
seems to be almost improbable. In our experiments, such cases
were revealed only in synthetically created testing files, not in
a real production code. Moreover, using async or partial
contextual keywords as public entity identifiers one breaks
general C# naming conventions14 which are usually used as
a basis for particular code style rules being applied inside a
developers team.

B. Java tolerant parsing
For Java programming language, the following projects are

considered:
11mcs/jay/skeleton.cs
12mcs/tests/test-async-*.cs
13mcs/tests/test-partual-*.cs
14https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/

capitalization-conventions

• Java Development Kit is a toolbox consisting of Java
compiler, core libraries and Java Runtime Environment;

• Elasticsearch is an engine for a full-text search;
• Spring Framework is a Java framework used to build

applications for different subject domains;
• RxJava is a library for composing asynchronous and

event-based programs.
Parsing results are presented in Table II, and a tolerant

LR(1) Java grammar is presented in Figure 3.
As it can be noted, there is the only difference between base-

line and tolerant parsing results. FIND_MASK, NEW_MASK
and RELEASE_MASK fields are missed by the tolerant parser
in the following code:

private final static int
CREATE_MASK = 1<<CREATE,
FIND_MASK = 1<<FIND,
NEW_MASK = 1<<NEW,
RELEASE_MASK = 1<<RELEASE,
ALL_MASK = CREATE_MASK|FIND_MASK
|NEW_MASK|RELEASE_MASK;

Unlike all the other types of brackets considered in Sec-
tion IV-B2, angle brackets cannot be defined as a pair in the
LanD grammar because they may appear in the program in
different meanings, some of which assume they can be used
separately from each other. However, in case they bracket
type parameters, it is important to match these parameters as
a whole to prevent inner commas from being interpreted as
field separators. It is hard to resolve this problem correctly
staying in the tolerant parsing boundaries and, actually, in
the boundaries of a context-free parsing and lexing too [17].
To make a correct decision, an analysis of the context angle
bracket appears at is needed. Recovery algorithm combined
with Avoid-based error triggering helps to handle inputs like

private static final long ADD_WORKER =
0x0001L << (TC_SHIFT + 15);

by interpreting all the angle brackets as opening for a
type_parameter in Figure 3, triggering an error on ;
token which is forbidden in type parameters, and reinterpreting
the outermost type parameter as Any from init_part water
alternative. However, this processing allows the loss of some
middle fields from the group of fields defined simultaneously.

C. Summary

As experiments show, both C# and Java tolerant parsers
using our modified LL(1) and LR(1) algorithms are viable
and allow one to find almost all the islands that can be found
with a baseline parser. Mismatches can not be considered as a
tolerant parsing disadvantage: the ones occurred in erroneous

18

TABLE II: Number of entities found in Java projects

Project Total files Enums Classes Fields Methods

JDK 7704 151 10590 46176 (-3) 88709
Elastic 10972 387 14914 36830 94722
Spring 7063 100 12060 18402 61515
RxJava 1654 36 2728 6258 19931

C# programs are not unexpected since our algorithms are
designed to work with correct programs, while for the most
part of the valid programs containing lost islands, possible
grammar fix can be easily suggested due to grammar simplicity
and extensibility. However, there is also a tiny group of valid
programs for which it is impossible to catch the missing
island without performing an additional context analysis. This
problem is actually not a tolerant parsing problem but a
context-free analysis problem in general.

VI. CONCLUSION

In the present paper, several algorithms and algorithm
modifications aimed at island-grammars-based deterministic
tolerant parsing are proposed. LR(1) parsing algorithm modifi-
cation is performed in accordance with the simplified grammar
formal definition previously developed by the author of the
paper. A special Any symbol is integrated into the algorithm
to add a capability to match token sequences which are not
explicitly described in the grammar. LR(1) tolerant grammars
tend to be shorted and more comprehensible than their LL(1)
analogues written for previously modified LL(1) algorithm.
Additional restriction defining simplified grammars subclass
for which LL(1) and LR(1) tolerant parsing algorithms are
always able to correctly handle consecutive Any problem
is revealed. Any processing mechanisms are introduced to
expand correct consecutive Any processing to entire simplified
grammars class. Nested bracketed structures tracking is im-
plemented to give the grammar developer a possibility not to
take into consideration the content of in-water bracketed areas
while replacing water description with Any. Error recovery
algorithms are proposed for LL(1) and LR(1) tolerant parsing.
Unlike the standard error recovery, they are designed not to
resume parsing for an incorrect program, but to find the area
which was mistakenly interpreted as an island and reinterpret it
as a water. Through the series of experiments with C# and Java
parsers generated by tolerant grammars developed for LanD
parser generator, modified LL(1) and LR(1) parsing algorithms
are proved to be able to successfully analyse the source codes
of industrial software products.

Though the current tolerant parsing implementation is
enough to work on solution of the crosscutting concerns
markup problem mentioned in Section I, an improvement
of parsing results for syntactically incorrect programs may
broaden the markup tool application opportunities. We have
an assumption that Any-based recovery responsibility area
may be explicitly specified for a particular grammar, and
outside of this area some other recovery algorithms aimed
at parsing resumption for an incorrect program can be used.
Thus, our tolerant parsers will be capable to capture constructs

of interest in such a program, like baseline parser successfully
does in Section V-A, instead of totally failing or interpreting
all of these constructs as a single water piece. Besides, as
performance was not the key goal until the present, we were
satisfied with the generally linear dependency between input
length and running time of the algorithms. However, basing
on the knowledge of LanD implementation details, we are
sure that performance can be improved (not in terms of
time complexity classes, but in terms of absolute values of
the algorithm running time). So, algorithms and structures
optimization is the second possible direction for further work
on tolerant parsing.

REFERENCES

[1] L. Moonen, “Generating robust parsers using island grammars,” in
Proceedings of the Eighth Working Conference on Reverse Engineering
(WCRE’01), ser. WCRE ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 13–22.

[2] A. Afroozeh, J.-C. Bach, M. van den Brand, A. Johnstone, M. Man-
ders, P.-E. Moreau, and E. Scott, “Island grammar-based parsing using
GLL and Tom,” in Software Language Engineering: 5th International
Conference, Revised Selected Papers, K. Czarnecki and G. Hedin, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 224–243.

[3] L. Moonen, “Lightweight impact analysis using island grammars,” in
Proceedings of the 10th International Workshop on Program Compre-
hension (IWPC). IEEE Computer Society, 2002, pp. 219–228.

[4] E. Scott and A. Johnstone, “GLL parsing,” Electron. Notes Theor.
Comput. Sci., vol. 253, no. 7, pp. 177–189, Sep. 2010.

[5] M. Tomita, Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems. Norwell, MA, USA: Kluwer Academic Publishers,
1985.

[6] A. Goloveshkin and S. Mikhalkovich, “LanD: instrumental’nyi kom-
pleks podderzhki posloinoi razrabotki programm [LanD: a framework
for layer-by-layer program development],” in Sovremennye informat-
sionnye tekhnologii: tendentsii i perspektivy razvitiya [Proceedings of
the 25th conference ”Modern information technologies: tendencies and
perspectives of evolution”], 2018, pp. 53–56, (in Russian).

[7] A. Goloveshkin, “Searching and analysing crosscutting concerns in
marked up programming language grammar,” University News. North-
Caucasian Region. Technical Sciences Series, no. 3, pp. 29–34, Sep.
2017.

[8] A. Fuksman, Tekhnologicheskie aspekty sozdaniya programmnykh sys-
tem [Technological Aspects of Program Design]. Moscow, Statistika,
1979.

[9] J. Conejero, J. Hernández, E. Jurado, and K. van den Berg, “Cross-
cutting, what is and what is not?: A formal definition based on a
crosscutting pattern,” Tech. Rep. 5/TR28/07, 2007.

[10] A. Goloveshkin and S. Mikhalkovich, “Tolerant parsing with a special
kind of any symbol: the algorithm and practical application,” Trudy ISP
RAN [Proc. ISP RAS], vol. 30, pp. 7–28, 2018.

[11] H. Mössenböck, “The compiler generator Coco/R,” 2014. [Online].
Available: http://ssw.jku.at/Coco/Doc/UserManual.pdf

[12] M. Malevannyy, “Legkovesnyi parsing i ego ispolzovanie dlya funktsii
sredy razrabotki [lightweight parsing and its application in development
environment],” Informatizatsiya i svyaz [Informatization and communi-
cation], vol. 3, pp. 89–94, 2015, (in Russian).

[13] D. Grune and C. J. Jacobs, Parsing Techniques: A Practical Guide (2Nd
Edition). New York, USA: Springer-Verlag New York, 2008.

[14] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2Nd Edition). Pearson Education, Inc., 2007.

[15] M. Malevannyy and S. Mikhalkovich, “Aspect markup of a source code
for quick navigating a project,” in Proceedings of the 11th Central and
Eastern European Software Engineering Conference in Russia, ser. CEE-
SECR ’15. New York, NY, USA: ACM, 2015, pp. 4:1–4:9.

[16] A. Aho and J. Ullman, “Translations on a context free grammar,”
Information and Control, vol. 19, no. 5, pp. 439 – 475, 1971.

[17] E. R. Van Wyk and A. C. Schwerdfeger, “Context-aware scanning for
parsing extensible languages,” in Proceedings of the 6th International
Conference on Generative Programming and Component Engineering,
ser. GPCE ’07. New York, NY, USA: ACM, 2007, pp. 63–72.

19

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Development of а software framework for real-time

management of intelligent devices

Tamara Naumović

Faculty of organizational sciences

University of Belgrade

Belgrade, Serbia

tamara@elab.rs

Luka Baljak

Faculty of organizational sciences

University of Belgrade

Belgrade, Serbia

lukabaljak@elab.rs

Lazar Živojinović

Faculty of organizational sciences

University of Belgrade

Belgrade, Serbia
lazar@elab.rs

Filip Filipović

Faculty of organizational sciences

University of Belgrade

Belgrade, Serbia
filipfilipovic@elab.rs

Abstract—The subject of this paper is development of

software framework for real-time management of intelligent

devices. The framework enables intelligent management of IoT

devices in cyber-physical systems using models based on

recurrence relations and differential equations. The platform

was developed using Python programming language, Django

framework and wide corpus of modules and libraries that

support continuous simulation. The software framework

incorporates application programming interface as well, for

specification of system behaviour, transmission of input

parameters and output results, and sending control actions via

web services to the IoT system.

Keywords—software framework, IoT, continuous simulation,

python

 INTRODUCTION

Cyber-physical systems (CPS for short) integrate devices,
networks, interfaces, computer systems, and others with
physical world. The fact that those elements are
heterogeneous, hybrid, distributed and numerous, makes
their analysis, design and implementation quite challenging
and complex. In addition, CPSs are real time by their nature.
Wide corpus of services, applications and interactions within
CPS as well as huge growth of Internet of things further
fuelled the need to change and improve existing approaches
to managing those systems [1][2]. One of the most
significant issues is to explore and model properties of CPS'
elements, their connections and behaviour [3][4]. CPS
immerged from the integration of devices with embedded
systems, smart objects, people and physical environment
typically connected via communication structure. Thus, it is
no surprise that smart environments and systems are among
the fields of CPS application.

Smart systems are integral part of CPS. The key
technology for developing cyber physical systems is Internet
of Things, IoT [5][6][7]. According to [8], cyber-physical
systems, Internet of things and big data are related concepts
of cooperative solutions, where people, autonomous devices
and the environment interact with one another to achieve a
certain goal. IoT technologies enable the connection of a
large number of users, devices, services and applications to
the Internet [9].Management of intelligent devices often
needs to be done in real-time. Real-time Control System
(RCS) is a reference model of architecture that defines the
types of functions needed for intelligent real-time control
[10]. RCS provides a comprehensive and basic methodology

for design, engineering, integration and testing of control
systems [11].

In RCS systems, the state of many variables changes
continuously over time, so the management of these systems
can be modelled using differential equations and recurrence
relations. Hence, simulation enables investigation of
behaviour of such dynamic systems by developing
appropriate models and using these models in experiments
designed to provide an insight into the future behaviour of
the system under specific conditions [12][13][14].
Simulation of CPS is becoming extremely important for both
academia and practice as results of simulations have huge
potential to be applied in research, business and engineering.
[15].

 The main idea of the research is to develop a
comprehensive platform that would enable modelling and
simulation of different smart environments. To achieve this
goal, it is vital to define a uniform formal model applicable
to any smart environment whose mathematical representation
can be mapped to its implementation as one-to-one
correspondence. The software framework for real-time
management of intelligent devices represents a cyber-
physical system incorporating IoT devices as the physical
component of the system and software framework
accompanied with required network infrastructure as the
cyber component. Having available information and input
data from intelligent devices in real-time allows the
simulation engine, as an integrated part of the solution, to
calculate and create a plausible outcome. On the other hand,
outcome created as the result of the simulation can be a
trigger dispatching control actions towards the IoT system.

 The formal model, implementation and example
illustrating the applicability of the presented mathematical
model will be explained further in the paper.

 FORMAL MODEL

A. Continuous system simulation in IoT context

Continuous system simulation refers to experimenting

with models whose states are changing continuously in time

[11]. These types of simulation systems are often described

by differential equitation. Time is independent variable in

most cases. Continuous simulation can be used in different

contexts and covers numerous types of real-world problems

[16]. Considering time as an independent variable, digital

computer has constraints solving differential equations,

20

mailto:tamara@elab.rs

which is why it was necessary to develop a specific

language to resolve this issue.

Different specialized languages for continuous

simulation were developed, such as: CSMP (Continuous

Simulation Modelling Programme) ESL (European

Simulation Language) ACSL (Advanced Continuous

Simulation Language) CSSL4 (Continuous System

Simulation Language, Simulink, Matlab, Modelica and

others that have been developed to simplify modelling, and

to minimize problems related to programming continuous

systems [16]. However, a majority of simulation tools have

limitations related to low level of flexibility and

adaptability, high costs, platform dependence, maintenance

difficulties, etc. [16]

CSMP/FON platform for continuous system simulation

was developed following these principles [17]:

 Minimize required hardware resources and

improve speed of execution

 Suitable and easy to use for educational purpose

 Simple and rich user interface

 Support for scientific research

 Saving costs

The CSMP/FON is an open source solution and can be

downloaded from the web site

https://elab.fon.bg.ac.rs/softver/csmp. It has been used for

many years in research and teaching within simulation

related courses at University of Belgrade.

Software framework for real – time management of

intelligent devices and IoT systems in general is a time

dependent system, which requires a tool that can overcome

any time – related performance issues. Ergo, using CSMP

simulation logic in the software development process can be

a way of introducing control mechanism in the system.

B. Formal model of a continuous simulation system

Formal model of a continuous simulation system can be
given as a tuple [18]:

M = (U, Y, S, δ, λ, S0) (1)

with the following meanings:

U – set of inputs

Y – set of outputs

S – set of state variables

δ – transfer function: δ: U × S →S

λ – output function: λ: U × S →Y

S0 – set of initial states

Function of a variable φ is a mapping of a non-empty set
X, of variables x, signed as domain, in non-empty set Y, of
variables y, signed as scope (or codomain, set of function
values) [18]:

ϕ: X →Y ,

a function of many variables is presented through mapping:

ϕ: X × X × X ×… × X →Y ,

a block is presented as ordered set of three elements

b = (ϕ, X, Y),

each x ∈ X is input, while y ∈Y is output from the block.

The process of continuous simulation is based on solving

differential equations and recurrence relations [17][18].
CSMP simulation language is a block-oriented language
designed for solving systems of differential equations. Each

block is specified by a set of inputs and parameters and a
graphic symbol [12]. The graphic display of elements in the
general form is presented in Figure 1

Fig1. Graphic display of an element [17]

C. Formal model of a hybrid IoT system for real-time

simulation

The current simulation model describes a system that
allows solving differential equation systems in the given time
with predefined variables and inputs [17][18]. The software
framework for real-time management of intelligent devices
requires a broaden model that will be suitable for use in real-
time IoT systems [19].

Figure 2 presents the concept of a hybrid IoT system for
real-time simulation. This model enables having values
measured in the environment in real-time included as
variables of the simulation systems. In addition, the model
enables managing the IoT system using variables obtained
through the simulation.

IoT

Simulation engine

UIoT

UM

YIoT

YM

SIoT SM

Inputs Outputs

Fig2. Hybrid IoT system for real-time simulation

For mathematical modelling of the hybrid IoT system for
real-time simulation, the presented formal model needs to be
extended with a set of state variables, inputs and outputs
from the IoT system:

S = SM ∪SIoT (2)

U = UM ∪UIoT (3)

Y = YM ∪ YIoT (4)

In order to have the set of state variables S in the
simulation model, it is necessary to get the values of state
variables from the IoT system (SIoT). This is done by
developing and providing API of the IoT system. This API
needs to implement the following functions:

ρ: SIoT(t) → S(t) (5)

ω: S(t) → SIoT(t) (6)

γ: YIoT(t) → Y(t) (7)

The operation ρ is the operation of reading the values of
variables from IoT system. These values then can be used in

21

the simulation system for calculations. The operation ω
enables writing the values of variables into the IoT system.
These values are calculated in the simulation engine and then
sent to the IoT system. These values can also be used for
triggering specific actions of the IoT system. The operation γ
enables reading the outputs of the IoT systems.

Having in mind that IoT systems are distributed, all these
operations for interaction between the simulation and IoT
systems need to be realized via web, using web services.
Depending on the scenario, both PUSH and POP methods
can be used.

After extending the formal model of continuous
simulation system with the IoT elements, the process of
continuous system simulation can be described with the
finite automata equations [18]:

S(t) = I × A1 ∙ {U(t), S(t)} (8)

Y(t) = A2 ∙ {U(t), S(t)} (9)

where A1 and A2 are matrix representation of algebraic
functions, and I is the matrix representation of the integration
operator (Fig 3).

IS

A1

A2

U

Y

Fig3. The structure of finite automata for simulation of
continuous systems [18]

 A more granular structure of continuous system
simulation is presented in the Figure 4.

Block b1

φ1(U,S,t)

Block biot

φiot(U,S,t)

Block bn

φn(U,S,t)

S'1

S1

Siot

Sn

S'iot

S'n

Siot, Sn

S1, Sn

S1, Siot

u1 um

u1 um

u1 um

Fig4. Block diagram of granular structure of continuous

systems

Figure 4 depicts the decomposition of the operator A1 to
its elementary and primitive functions, represented as
algebraic blocks. As explained later in section D, input of
every block is an element that can come from either a set of
inputs, a set of state variables or a set of the associated
variables that represent inputs of the preceding algebraic
blocks.

D. Orderliness

The essential feature of any non-trivial mathematical
model of the continuous simulation is the feedback. The
feedback occurs in the model as a result of a chain of cause-
and-effect that generates a loop [20]. Considering the case of
continuous simulation the model develops the feedback loop
if it is impossible to mark all blocks from the set that satisfy
a condition i < j, where block’s bi output is connected to
block’s bj input [17]. The feedback loop imposes a
compulsory requirement for computability of mathematical
model called “orderliness”, defined as:

 The set A of all countable algebraic blocks (blocks that
correspond to algebraic functions) of M models is called
“orderly” if all distinct objects aj ∈ A can be ordered (sorted)
in such linear list where inputs of every distinct object aj are
elements of some of the following sets [18]:

1) U – set of inputs
2) S – set of state variables
3) Subset Cˈ ⊂ C defined as :

Cˈ = {c ∈ C | ∀i < j, ∀ aj = (φi, Xi, Yi,): c ∈ Xi}

 MAPPING MATHEMATICAL MODEL TO

IMPLEMENTATION

Mapping the mathematical method given in equations 1-9
is represented through series of UML sequence diagrams,
where each method has its corresponding diagram.

The implementation of the software framework described
through this research will be based on the concurrent
computing and NoSQL concepts, such as threads and use of
the MongoDB document-oriented database program.

A. Simulation engine

Figure 5 illustrates the core simulation process depicted
in equations (8) and (9). The diagram represents a typical
continuous simulation process: begins with loading the
simulation object from the MongoDB database in the engine,
sorting the blocks, setting the primary conditions and starting
the calculation process.

The calculation process itself is a looped process where
series of computations are performed on every block in the
simulation model: block type analysis, output generation
through block function, output appending and call for next
computation. The block type analysis determines if the
current block is an IoT block. If it is, the engine provides a
call to the IoT service, which performs specific operations
based on the type of the call. Call types can be divided into
two groups: a) reading and b) writing.

The call is a software representation of functions
described through equations (5), (6) and (7). Depending on
the call type, the simulation system will process data sent
from the IoT system and embed them as a part of the
continuous simulation process, it will send a control action to
the IoT system as a result of the continuous simulation
process or it will read the output from the IoT system (Fig 6).

22

Fig5. UML sequence diagram of the core simulation
process

B. Mapping the values of state variables and output from

the IoT system

The call for executing operation ρ (5) – reading the

values of variables from IoT system, is illustrated in the
Figure 5, as a part of the calculation process, where
simulation engine should consider IoT values as the part of
the calculation.

The control actions, ω (6) – writing the values of
variables into IoT system, sent to the IoT system are, also, a
type of call. By connecting to the IoT system, the engine can
access its API, create a call to the function provided by the
user, send data from the simulation engine and thus begin the
given process on the IoT platform. Such call is illustrated in
the Figure 7.

Fig6. UML sequence diagram of processing calls to IoT
system

Fig7. UML sequence diagram of the operation ω –
writing the values of variables into IoT system

Through the connection made to IoT system, our engine
can retrieve IoT system outputs and display them though the
platform interface, which is directly correlated with

23

mathematical operation γ (7) – reading the outputs of the IoT
systems (Fig 8.).

Fig8. UML sequence diagram of the operation γ –
reading the outputs of the IoT systems

C. Example: Smart watering system simulation

The example of smart watering system simulation is an

illustration of the operation ω (6), where control actions and

variables are being sent to IoT system.

For this example it is necessary to create control actions

that will forward the data collected through the simulation

of the environment and air humidity by the simulation

engine, and signal the beginning of the IoT system actions.

Smart watering system is based on air humidity

predictions, provided as input parameters given by the

simulation engine. If the humidity is under the marginal

value set in the IoT system, the watering process begins.

CONCLUSION

Modelling hybrid IoT system for real-time simulation
presents a focal point of this research. Thus, successfully
mapping the values of state variables from the IoT system in
the implementation process is essential.

The autonomous performance of the simulation program
should be implemented using the concepts of concurrent
computing – threads:

1) servicing requests for the simulation process control
and error reporting,

2) servicing requests for configuration changes,
3) reading data and sending control actions to IoT

system,
4) servicing requests for simulation results,
5) execution of the simulation process

 Further research and work should be directed towards
execution of the proposed implementation, integration of the
platform in the students’ educational process and evaluation
and revision of the software performance. Upgrading the
existing model with new modules should be considered.

ACKNOWLEDGMENT

Authors would like to thank prof. dr Bozidar Radenkovic,
prof. dr Marijana Despotovic – Zrakic, prof. dr Zorica

Bogdanovic, prof. dr Dusan Barac and prof. dr Aleksandra
Labus for guidance and mentoring throughout this research
and software development.

REFERENCES

[1] E. A. Lee, S. A. Seshia. Introduction to Embedded Systems. A Cyber-
Physical Systems Approach, 2017, Second Edition

[2] Y.Z. Lun, A. D'Innocenzo, F. Smarra, I. Malavolta, M. Benedetto,
Maria. State of the Art of Cyber-Physical Systems Security: an
Automatic Control perspective. Journal of Systems and Software,
2018, vol. 149, pp. 174-216

[3] N. Canadas, J. Machado, F. Soares, C. Barros, L. Varela. Simulation
of cyber physical systems behaviour using timed plant models.
Mechatronics, 2018, vol. 54, pp.175-185

[4] J. Liu, J. Lin. Design Optimization of WirelessHART Networks in
Cyber-Physical Systems. Journal of Systems Architecture, 2019,
article in press

[5] K. Carruthers. Internet of Things and Beyond: Cyber-Physical
Systems. 2016. Available: https://iot.ieee.org/newsletter/may-
2016/internet-of-things-and-beyond-cyber-physical-systems.html

[6] L. Tan, N. Wang. Future Internet: The Internet of Things. In:
Proceedings of 3rd International Conference on Advanced Computer
Theory and Engineering, 2010, vol. 5, pp. 376- 380.

[7] M. Wu, T. J. Lu, F. Y. Ling, J. Sun, H. Y. Du. Research on the
architecture of Internet of Things. In: Proceedings of 3rd International
8 on Advanced Computer Theory and Engineering, 2010, vol.5, pp.
484-487.

[8] S. F.Ochoaa, G. Di Fatta. Cyber-physical systems, internet of things
and big data. Future Generation Computer Systems, 2017, vol. 75, pp.
82-84

[9] B. Radenković, M. Despotović-Zrakić, Z. Bogdanović, D. Barać, A.
Labus, Ž. Bojović. Internet inteligentnih uređaja. Beograd: Fakultet
organizacionih nauka, 2017

[10] Ј. S. Albus. A Reference Model Architecture for Intelligent Systems
Design. Springer, 1993. Available:
https://web.archive.org/web/20080916153507/http://www.isd.mel.nist
.gov/documents/albus/Ref_Model_Arch345.pdf

[11] F. E. Cellier, E. Kofman. Continuous System Simulation. Springer-
Verlag, 2006, First Edition.

[12] J. Banks. Handbook of Simulation: Principles, Methodology,
Advances, Applications, and Practice. John Wiley & Sons, 1998.

[13] J. S. Keranen , T. D. Raty. Model-based testing of embedded systems
in hardware in the loop environment. IET Software, 2012, vol. 6, no.
4, pp. 364-376.

[14] N. L. Celanovic, I. L. Celanovic, Z. R. Ivanovic. Cyber Physical
Systems: A New Approach to Power Electronics Simulation, Control
and Testing. Advances in Electrical and Computer Engineering, 2012,
vol.12, no.1, pp.33-38, 2012

[15] P. Garraghan, D. McKee, X. Ouyang, D. Webster, J. Xu. SEED: A
Scalable Approach for Cyber-Physical System Simulation. IEEE
Transactions on Services Computing, 2016, vol. 9, no. 2, pp. 199-212.

[16] M. Despotović-Zrakić, D. Barać, Z. Bogdanović, B. Jovanić, B.
Radenković. Software Environment for Learning Continuous System
Simulation. Acta Polytechnica Hungarica, 2014, vol. 11, no 2, pp.
187-202.

[17] B. Radenković. Program za simulaciju kontinualnih i diskretnih
Sistema CSMP/MICRO. Automatika, 1984, vol. 25, pp. 235-238

[18] B. Radenković, M. Stanojević, A. Marković. Chapter 6 Simulacija
kontinualnih sistema. Racunarska Simulacija, 2009, IV edition, pp.
89-110.

[19] T.Naumović, B. Radenković, M. Despotović-Zrakić, D. Barać,
A.Labus. A framework for real-time management of intelligent
devices: an educational perspective. International Conference on New
Horizons in Education, 2018, Proceedings Book Volume 1, pp 33-34

[20] A. Ford. Modeling the Environment: An Introduction To System
Dynamics Modeling Of Environmental Systems, 2010, Second
Edition.

24

https://web.archive.org/web/20080916153507/http:/www.isd.mel.nist.gov/documents/albus/Ref_Model_Arch345.pdf
https://web.archive.org/web/20080916153507/http:/www.isd.mel.nist.gov/documents/albus/Ref_Model_Arch345.pdf

Graphic DSL for Mobile Development
Artur Gudiev

Saint Petersburg State University,
7/9 University Embankment,

Saint Petersburg, 199034,
Russian Federation,

Email: arturgudiev93@gmail.com

Alexandra Grazhevskaya
Saint Petersburg State University,

7/9 University Embankment,
Saint Petersburg, 199034,

Russian Federation,
Email: sagrapro7@gmail.com

Abstract—Due to the increase in the number of platforms,
languages and methods which are used in mobile development,
the general technology elaboration problem is quite relevant
nowadays. Graphic domain-specific languages (DSL) facilitate
application development by use of concrete domain abstractions.

In this work, the developed mobile application architectural
template and the graphic DSL created on its basis are presented.
The provided DSL allows describing the main structure of the
mobile application in terms of controllers, states and transitions
between them. Besides, the automatic code generation for the
UbiqMobile platform is implemented.

I. INTRODUCTION

A large number of platforms, languages, and methods
are used in mobile application development. Existing mobile
development tools significantly differ from each other, and the
common technology implementation problem is still relevant.

There are various ways of the high-level description of mo-
bile application - architectural patterns mvc, pac, microkernel,
etc.[1] All these patterns were borrowed from other software
areas, are quite actively applied during mobile application
development, but not quite correspond to their nature. Mobile
applications differ from desktop and web programs.[2] Mobile
applications are commonly used for short sessions, more
focused on specific objectives performance.

Use of a suitable architectural pattern allows to increase
considerably application development efficiency, but a bigger
result can be achieved by graphic languages usage. DSL is the
programming language in terms of the concrete subject domain
which is applied to the solution of concrete type tasks[3].
Graphic DSL languages help to represent applications using
visual diagrams. The result code will be generated according
to these diagrams.

The purpose of this article is to develop an architectural
template for mobile applications and to create graphic DSL
based on it. DSL should allow describing the main logical ap-
plication structure in terms of states, controllers and transition
conditions between them.

II. TOOLS

The Modeling SDK technology is used for the graphic DSL
implementation.[4] Modeling SDK is the plugin for Visual
Studio intended for visual domain-specific languages develop-
ment. Visual DSL development happens in the following order.

At first, the metamodel (the set of all syntactically correct
diagrams) is developed and edited, the implemented classes are
generated. Then a DSL package compilation and debugging
take place in an experimental instance of Visual Studio.

For metamodel programming, the graphic editor of Mod-
eling SDK is used, but also it is possible to redefine or
add new methods to the generated partial classes of the C#
language. The T4 language is used for code generation. [5]
The Dsl and DslPackage projects are automatically created in
the new solution of Visual Studio. In the Dsl project, various
metamodel artifacts of the created DSL are stored. DslPackage
project contains the user interface settings.

III. CONTROLLERS AND STATES MODEL

An application state corresponds to some complete logic
fragment. The result of state change is data transfer which is
logically finished and clear to other states.

It is convenient to group states and transition conditions into
controllers by their logical connectivity, data community, UI
forms, transition frequency and data transfer between states.
Grouping states into controllers gives an opportunity to define
more strong transition logic, allowing transitions between
states in the controller and forbidding them between conditions
of unconnected controllers.

The main application cycle is run by the special mechanism
starting and switching controllers of states. Each controller has
an entry point and an opportunity to set input parameters when
an application switches to it. There can be several exits in a
state. An application can return to the caused controller, switch
to the next controller, etc. Execution logic is implemented
in terms of the finite-state machine in the controller. Each
controller has a set of the predefined states (in particular, initial
and final states), and it is possible to add new states.

Mobile application implementation by means of controllers
and states model allows to centralize its logical basis, the
structure of the code becomes evident. When using controllers,
the aim of the mobile application developer comes down to de-
scribing the necessary logical controllers, state and conditions
of transition.

IV. GRAPHIC DSL DESCRIPTION

The model of controllers and states was tested on mobile
applications of different classes and proved the efficiency. But

25

the best results can be achieved, having taken this model as a
basis of graphic DSL for mobile applications. (see Fig.1)

Fig. 1: Language implementation in Modelling SDK

Basic elements of the language are controllers and its
states. States are placed on the controller, can connect among
themselves and also to ports of the controller for the conditions
description of an entrance and an exit from it.

Each state opens in the separate diagram on which con-
ditions of an entrance, an exit from a state and its internal
logic are described. The logic of states includes a display of
UI forms, processing of their events, services calls, conditions
checking , etc.

There is a display of a UI form for each state in the
language. To connect the existing screen form with a state
the ShowForm element is used.

V. CODE GENERATION

The language of T4 templates is used for code generation.
The main components of the T4 language are directives,
blocks of the text and control units. For a generation of the
unchangeable code, text blocks are used, and dynamic parts
are implemented by means of control units.

As a result of generation, the controllers’ classes appear.
Each controller has several states presented in the transfer
type form. Process of work is implemented in terms of the
finite-state machine. On links between states, the template of
transitions are implemented. Controllers can also have ports.
Ports are used for transitions between controllers.

The resulting code is applied to UbiqMobile platform.[6]
UbiqMobile platform is aimed to cross-platform mobile de-
velopment. The main features of the platform are that the
business logic of all applications is executed on the server.
And mobile devices have only thick clients to represent the
result of application work.

VI. SAMPLES

The purpose of the first sample is to display the train
schedule for the user. The application consists of a single
controller and two states. In start state, the user can choose
departure and destination stations. (see Fig.2) After clicking
on the button, the application will switch the current state from
the first state to the second one. (see Fig.3)

The second sample allows the user to log in and receive
the code which then can be used later. (see Fig. 4) There
are two controllers in the application: LoginController and
MainController. There is also a switching between controllers

implemented by means of ports. In LoginController there is
only one state. At MainController there are two states: a state
with option selection and a state where a user can receive the
necessary code. The UbiqMobile UI forms, corresponding to
states of the application are given below. (see Fig. 5)

Fig. 2: Schedule application scheme

Fig. 3: Schedule application UI form

Fig. 4: Application with authorization scheme

26

Fig. 5: UbiqMobile screens

VII. CONCLUSION

Within this work, the following results were achieved. The
graphic DSL for mobile application development is imple-
mented. The code generation for UbiqMobile platform feature
is added. Demonstration samples are represented.

REFERENCES

[1] S. D. Plakalovic D., “Applying mvc and pac patterns in mobile applica-
tions.”

[2] H. K.Flora, “An investigation on the characteristics of mobile applica-
tions: A survey study.”

[3] D. Koznov. Domain-specific modelling
methodology and tools. [Online]. Available:
http://www.math.spbu.ru/ru/mmeh/AspDok/pub/2016/koznov.pdf

[4] Modeling sdk for visual studio - domain-specific languages. [On-
line]. Available: https://docs.microsoft.com/ru-ru/visualstudio/modeling/
modeling-sdk-for-visual-studio-domain-specific-languages

[5] Code generation and t4 text templates. [Online].
Available: https://docs.microsoft.com/ru-ru/visualstudio/modeling/code-
generation-and-t4-text-templates?view=vs-2015

[6] A. Terekhov and V. Onosovski. Ubiq mobile
platform for mobile development. [Online]. Available:
http://www.math.spbu.ru/user/ant/all articles/076 Terekhov Onos PlatformaUbiq.pdf

27

Graphical modeling of control systems
based on Eclipse technologies

Mariia Platonova
Department of Software Engineering

St. Petersburg State University
28 Universitetsky pr., Saint-Petersburg, 198504, Russian Federation

Email: platonova.maria@outlook.com

Abstract—Only a few years ago Russia took the path of
the digitalization and this trend is already taking active root
into various areas of society. Digitalization is closely related to
visualization, that is easily confirmed by the increasing popularity
of graphical representation of business processes.

This text describes the work on modeling and subsequent
execution of production processes, such as document circulation,
working with CNC machines and analysing production risks, by
using the Eclipse IDE and the BPMN standard.

Index Terms—digitalization, visualization, code generation,
business process, document circulation, CNC machine, bpmn,
eclipse

I. INTRODUCTION

Information revolutions that took place throughout the
whole history of humanity undoubtedly made considerable
changes in life of society, its culture and lifestyle [1].

For several years Russia has been confidently introducing
the use of digitalization capabilities in many areas of society
and showing great results, which are noticeable on the world
stage [2]. Moreover, it should be noted that such processes
involve the development of its own processing base, that has to
comply the requirements for quality and reliability of products.
In addition these processes in the near future will contribute
for Russian companies specializing in software development
to confidently enter the global market.

The application of digitalization, we think, begins with an
intuitive presentation of business processes as they are the
basis of the work of any company [3], and correspondingly
it is necessary to describe them in a convenient form to use.

It is worth considering a graphical representation of the pro-
cesses, because the visualization helps to reduce the efforts to
understand, discuss or modify any necessary information [4].
There is an international standard BPMN (Business Process
Model and Notation) intended for modeling business processes
[5]. With the help of it any process can be represented in the
form of a diagram, where its elements are any actions of this
process. In addition, the generation of an executable program,
which is necessary for many processes, becomes much easily
with the use of diagram.

The main goal of this work is to create a tool to visualize
processes with the subsequent generation of executable code.
Due to the differences of executable programs of various
processes, only three types of processes are considering in this

work: document circulation, working with computer numerical
control (CNC) machines and analysing production risks.

Similar study of creating a tool to visualize business
processes with a code generation feature has already been
conducted at the department of Software Engineering of St.
Petersburg State University (department of SE) [6]. This tool is
a part of the metaCASE technology based on QReal. However,
the use of this practice can be justified only in the case of
creating not one, but several products at once.

Based on previous experience the use of tools that are not
very common, complex or have many limitations can lead to
the problems with the development and support of the product,
moreover, comparing it with analogues can become more
complex. As IDE Eclipse was chosen, since it is a popular,
free, cross-platform system, that is regularly updated, and it
has large developer community, which can make it easier to
solve occurring issues. Moreover, it is important to consider
the differences between open-source licenses, while using
ready-made products. For example, General Public License
(GPL) involve the free access to source code of the product,
that based on any software under this license, so it can cause
some problems with commercial use [7]. On the contrary,
license Apache 2.0 does not put forward any requirements or
other limits for using and distributing [8]. Therefore, in this
work we decided to use only ready-made product under this
license.

In conclusion, it is necessary to pay attention to convenience
of use the developed tool. At the department of SE a study of
human-computer interaction has been conducted on the base
of visual programming tools [9].

II. GRAPHICS EDITOR

The main task of the graphical editor is to build diagrams
using BPMN notation, another requirements involve the con-
siderable expansion of its capabilities.

Full implementation of the editor is by no means easy, and
since there are various options of ready-made solutions, it
seemed to us wisely to select the appropriate editor from the
existing versions and remake it according to our demands.
Activiti-Designer (Activiti) was chosen from all of considered
options as it is popular and evolving application based on
Eclipse, that has a suitable license [10].

28

Activiti is represented by a canvas and an elements panel
(panel), which contains 42 items separated into 9 categories:
Start Event, End Event, Task, Container, Gateway, Boundary
Event, Intermediate Event, Artifacts and Connection. More-
over, the editor allows to align selected elements on canvas
as well as save the resulting diagrams as images. Fig. 1 is
presented as an example of a business process described with
this editor.

Fig. 1. Example of using Activiti.

Activiti has some drawbacks, for example, sometimes it
is not possible to change the name or other attributes of an
element by means of a diagram. Moreover, there is a problem
with immense amount of errors that related to the hierarchy
of the source code modules, the solution of this problem is
addition these modules in a specific order.

In addition, Activiti does not have all required and necessary
features, so it was decided to expand the capabilities of the
editor. Consider in more details main added features.

A. Quick Access

An important refinement of the application was addition of
the quick access feature, which allows to display any elements
on the canvas without moving them from the panel.

User is provided with a set of combinations CTRL + M
CTRL + N, where M is the number of a category of an
element, and N is the number of the element inside this
category. Thus, while using any key combination of the set,
the corresponding element is added to the diagram, where the
cursor is located.

B. Element Visibility

The element visibility feature is also a significant expansion
of the editor capabilities. It allows to hide or expand elements
of the container, that is useful in the case of large diagrams
and high nesting level.

The user is provided with two functions: minimize and
maximize. Depending on container visibility, one of these
functions is added to the context menu of the container. Thus,
while executing the minimize function, all elements of the
container are hiding and the container is representing as a
small rectangle. Moreover, this rectangle retains all external
connections presented on its full-size version. While executing

the maximize function, the container is getting its original
form with all necessary edges and nodes.

III. LOGICAL MODEL

A visual, that is, a user-created representation of a business
process is usually called a graphical model, and an internal
representation is a logical model, for example, in the form of
a graph of a special type needed to generate reports, executable
programs and etc.

In this work one of the main tasks is to realize a necessary
representation of a logical model. Convenient and fast access
to data greatly simplifies the subsequent actions according the
generation of an executable program and analyzing this model.

The main reason for storing data in the form of directed
graphs (graph) was the simplicity of converting user diagrams,
and moreover, it is convenient to retain any additional data on
their edges and nodes.

Due to the absence of any restrictions for diagrams, the
complexity of working with graphs is increasing. For example,
any cycles and loops make it difficult to determine the initial
and final nodes of the diagram, and this is also complicating
the analysis of the connections between elements. Therefore,
we have adopted some restrictions that are improving the
structure of the model.

In addition, a certain model of presentation was chosen,
according attributes of the required graph. Consider in more
details the resulting structure.

A. Base Item

Each element of the graph has unique identifier (id) and
additional information of this element (info). Id is setting
when the item is created and stored into info. In addition,
info contains name, type, and many other components of the
element. This data is definitely important for the model, and
that is why id and info are formed the base class - BaseItem.

B. Types of Items

Graph consists of 3 types of elements: Container, Node,
Edge. The corresponding classes provide all necessary infor-
mation of the elements and their connections with others.
The storage of all required information can be redundant
and inefficient, so only id is using for connections between
elements.

It is important to describe what a container is and what it is
for. The container is provided for storing any elements of the
graph and can also contains any number of other containers.
Moreover, the container can also be used as a node.

Each element of the diagram contains information of the
container where it is located (parent container). Edge can have
2 such containers, since its begin and end can be located in the
different containers. Base container is the diagram canvas, so
it means that all diagram elements are located in some parent
container.

29

C. Graph Description

Special classes are responsible for graph representation,
such as NodeUtil, EdgeUtil and ContainerUtil. These classes
are static, that allows to use the same instance for any
references to a class.

Each class is in charge for the current list of relevant
elements. Modification of the classes has to be occurred on
any diagram changes, for example, when adding, changing or
deleting element.

IV. APPLICATION EXAMPLES

A. Document Circulation

For any companies are important to track its documents
and check their status, that is, during the life cycle of a some
document, it is necessary to know where and in what condition
it is.

Such process is conveniently presented as a BPMN diagram,
for example, Fig. 2. The diagram provides simple to track
the document and its current status, as its movements occur
along the constructed graph. There is a hierarchy system in
many companies, and with this representation of the document
movements, it is simple to control that only employees with
the required authority can access to the document.

Fig. 2. Example of BPMN diagram for document circulation.

B. CNC Machines

Recent years many factories have been implementing into
their working process more and more CNC machines [11],
which significantly increase the automation of production and
also the quality of the result.

Full automation of such processes is becoming possible in
the case of using CNC machines along with industrial robots
(robot), for example, cylindrical robots, packaging robots and
etc. Their main task is transferring the necessary materials
from one machine to another.

The question is how to program CNC machines and control
the robots operations. It is important not only to specify the
entire sequence of actions, but also to describe the reaction to
the faulty situations, because robot can strayed or fall down

due to accidental rubbish or uneven surface, which can cause
the system malfunctions or the transported cargoes breakages.

Programs for CNC machines, as well as, operations of
robots can be described as BPMN diagrams, for example,
Fig. 3. In this way, it is convenient to set robots failure
branches, that allows to quickly react to any problems and
restore production process.

Fig. 3. Example of BPMN diagram for CNC machines.

C. Production Risks

Analysis of vendors and associated risks are important
for any companies, since supply disruptions can significantly
affect the production process, for example, it can cause in-
creasing budget or execution time. In addition, vendors form
a hierarchical structure, so it is necessary to control the whole
system, due to the problem can occur on any level of the
hierarchy.

One way to describe this structure is using BPMN diagrams.
This will allow to implement automatic data analysis and ac-
cumulating statistics for each vendor, which will significantly
reduce user actions and the influence of the human factor.

V. CODE GENERATOR

Executable programs of various types of production pro-
cesses can significantly differ by its structure and end result.
In this regard, code generators are implemented only for the
processes described in the previous section. Each process is
represented as a diagram, according to which a logical model
is built with the subsequent generation of the executable code.

The main step, that preceding code generation, is analysis of
the model. This intermediate step is necessary for identifying
the start and end nodes, cycles, loops and etc. Data which
obtained at that step is the input for code generator, so it is
certainly useful to be able to visualize them, since various
inaccuracies and errors can be detected that were missed
during the construction of the diagram.

The user is provided with the showModel function, which
executes by pressing the Show model button located in the
main menu. This function can be applied to any diagram, even

30

if code generation is not possible. Fig. 4 shows an example of
the diagram and Fig. 5 shows the visualization of its model.

Fig. 4. Example of diagram for model visualization.

Thus, while executing showModel function to a diagram, a
particular window opens where all its elements are displayed
in a specific form. Recall that a child node is the destination
of one of its edge and that a container can be used as a node,
that is, it can have children and can be a child.

For each container, including the base one, the window dis-
plays all the corresponding elements: nodes and their children.
Moreover, if the element is a container, then it is marked with
a square brackets ([]), and if the element is a Gateway, then
it is marked with a triangular brackets (〈〉). In addition, all its
containers, that located in the current, will be display singly
with all content. Relations between elements are represented
in a certain form: element1 -〉 edge -〉 element2.

Such presentation of a logical model provides easily gen-
erating code, as the task is reduced to simple linear graph
traversal with a code generation for each action.

Fig. 5. Example of diagram logical model visualization.

CONCLUSION

In this paper we presented a description of the work on
creation a tool for graphical representation of production
processes with the capability of generating an executable
program. The main part of the work, as the most part of the
text, was focused on the modification of the Activiti graphical
editor and the creation of a logical model.

REFERENCES

[1] Chusyainov T.M. Informacionnaya revolyuciya i transformaciya zany-
atosti. Nauka. Mysl’, 2017.

[2] Chakravorti Bhaskar, Chaturvedi Ravi S. Digital Planet 2017: How
Competitiveness and Trust in Digital Economies Vary Across the World.
Tufts University: The Fletcher School, 2017.

[3] Plotnikov V.A. Cifrovizaciya proizvodstva: teoreticheskaya sushchnost’
i perspektivy razvitiya v rossijskoj ehkonomike. Izvestiya UNECON,
2018.

[4] Afanas’ev A.A. Tekhnologiya vizualizacii dannyh kak instrument sover-
shenstvovaniya processa podderzhki prinyatiya reshenij. Inzhenernyj
vestnik Dona, 2014.

[5] Business Process Model And Notation. Object Management Group
(OMG), 2011.

[6] QReal:BP. QReal, 2013, url: http://qreal.ru/static.php?link=QRealBP.
[7] General Public License. Free Software Foundation, 2007.
[8] Apache 2.0. Apache Software Foundation, 2004.
[9] Kuzenkova A.S. Avtomatizirovannyj analiz povedeniya pol’zovatelya v

QReal:Robots. 2014.
[10] Activiti-Designer. Activiti Team. url: https://github.com/Activiti/Activiti-

Designer.
[11] Lovygin A.A., Teverovskij L.V. Osnovy chislovogo programmnogo

upravleniya. Sovremennyj stanok s CHPU i CAD/CAM sistema, 2015.

31

Component-Based Software as a tool for developing
complex distributed heterogeneous systems

Dmitry Kulikov
R&D Department

Rapid Telecom System Labs LLC.
Nizhny Novgorod, Russia

kulikov@ivc.nnov.ru

Vasilii Mokhin
R&D Department

Rapid Telecom System Labs LLC.
Nizhny Novgorod, Russia

mokhin@ivc.nnov.ru

Sergey Zolotov
R&D Department

Rapid Telecom System Labs LLC.
Nizhny Novgorod, Russia

sergey@ivc.nnov.ru

I. INTRODUCTION

Robotics is now one of the most sought-after and actual
areas of applied sciences. More and more people are interested
in this direction, thanks to which the software of robots does
not stand still and evolves in huge steps, starting from the
firmware of the device controllers and ending with the most
complex software packages designed to solve a wide range
of tasks. And, as in any software system, there can be many
problems, for example, problems of architecture, development
and debugging, etc. In this paper we will consider an example
of the implementation of the project of automatic control
system project with heterogeneous computing nodes the case
of a complex hybrid, distributed computing system created on
the basis of operating system based on the Linux kernel and
the ROS framework [1].

II. OBJECTIVE

The target of the project was to unite all the nodes of the
created heterogeneous system, in which the computing nodes
were used as part of a personal computer based on IBM
PC x86, single-Board computers based on ARM processor
(Raspberry PI3) and hardware-software based on the Atmega
controller(Arduino) into a single computer network capable
of receiving information in real time from various sensors,
processing it in a given period of time and transmitting
commands to other nodes.

III. CHOOSING A FRAMEWORK

First, it was necessary to choose a framework for heteroge-
neous system, because there are quite a large number of them
and almost all are suitable for the task. Among all the options
I chose the most common: ROS, MRDS, URBI, OROCOS,
Gazebo, studied them and created a comparative table below,
of the 11 most important criteria (see table I):

• open source;
• project examples;
• documentation;

• the activity of the community;
• license;
• application architecture;
• communication protocol;
• kernel;
• supported programming languages;
• supported OS;
• supported devices.

Based on the results of the studies given in the comparative
table it was concluded that ROS is the best choice for the
solution of the problem, because:

• it is open source;
• it has complete infrastructure;
• implemented a variety of ready-made solutions for a

variety of sensors, controllers, etc;
• focused on complex tasks;
• it is possible to work in real time;
• support for a wide range of Executive computing devices.

IV. THE CONCEPT OF ROS

ROS is a framework for robot developing, provides func-
tionality for distributed work and standard operating system
services such as hardware abstraction, low-level device con-
trol, implementation of commonly used functions, commu-
nication between processes, and package management [2].
ROS based on a graph architecture where data is processed
in nodes that can receive and transmit messages to each
other. ROS supports parallel computing, has good integration
with C++ and Python, can run on single-Board computers
such as Raspberry Pi, BeagleBone, as well as microcontroller
platforms running on the ATmega chip (such as Arduino).
The concept of ROS :

• node — is a process that performs calculations and is
able to communicate with other nodes;

• message — is a type of ROS data by which nodes can
communicate with each other;

• topic - is the name that is used to identify the content of
the message;

32

TABLE I
ROSOBOTS FRAMEWORKS COMPARISON

ROS MRDS URBI OROCOS GAZEBO
Opensource + - + + +

Project examples Exists an extensive
and open knowledge

base with ready-made
projects

Exists many examples
with MRDS projects

Exists many examples
of working with

URBO

Exists large set of
ready-made libraries

Exists many pre-made
components

Documentation Well documented Well documented Well documented Well documented Well documented
Community Active community Inactive community Inactive community No community Inactive community

License BSD(free for research
and commercial use)

Various(free for
research)

BSD(Free use, except
for the simulator,

which is not in the
URBI)

BSD((free for
research and

commercial use)

GNU General Public
License(free for

research)

Architecture Graph architecture Modular architecture Client-Server Not found Distributed
Protocol xmlrpc HTTP, DSSP Firmata Not found SDF
Kernel ReactOS KITL Urbi SDK Not found Not found

Supported languages Python, C++, Lisp
and experimental

libraries on Java and
Lua

C#, Visual Basic
.NET, JScript and

IronPython

urbiscript Not found C, C++, Java, Tcl and
Python

OS Currently, ROS only
works on Unix

platforms

Works only on
Windows OS

cross-platform Not found Linux, Mac OS X,
Solaris and BSD

Supported devices Atmega
microcontroller, ARM
family of processors,

etc.

Atmega
microcontroller, ARM
family of processors,

etc.

x86, ARM, MIPS,
PowerPC, etc.

Not found Atmega
microcontroller, ARM
family of processors,

etc.

• master — is a ROS name service that allows nodes to
discover each other, exchange messages, and call the
necessary services;

• rosout — is a live message output;
• roscore — Master + Rosout + parameter Server.
The main concepts of ROS are nodes, messages, themes,

services. Architecturally, all computing tasks are performed in
ROS nodes that communicate with each other via messages.
These message nodes are published to topics, which divide the
messages into groups of interest indeed when a node needs to
receive messages with specific data, that node subscribes to
a specific topic. To implement synchronous message passing,
which is necessary in certain cases, ROS defines services - a
mechanism that operates on a question - answer basis.

V. PRACTICAL PART

Thanks to ROS, it was possible to link all the equipment
into a single computer network with convenient debugging
and rapid prototyping without any problems. Each of the
microcontrollers was a separate node that received data,
performed the necessary calculations, made a decision
and could exchange data with other nodes at a specified
frequency(see Fig.2.).

To process such a large amount of information for ROS-
Master, a separate full-fledged computer(see Fig.1.), which
guaranteed minimal delays in the exchange and processing
of information between nodes [3]–[5]. ROS is very well
documented, has an active community and a lot of ready-made
examples to work with it, starting from examples of message
transmission and ending with the basic projects of working
with 3d SLAM, indeed it was not necessary to spend a huge

Fig. 1. Device layout.

amount of time searching for the necessary information, and
if there were any errors during compilation, then in ROS
community it was possible to find a solution to eliminate this
error, which contributed to a significant acceleration of the
development process.

VI. SAMPLE CODE FOR ROS
As an example of the implementation of heterogeneous

nodes on the ROS framework, we present several examples of
code written for different platforms (Arduino and Raspberry
Pi 3). On Raspberry Pi3 nodes were written on Python, and
on Arduino in C++.

A. Example code on Arduino(C++)

Using the rosserial arduino package allows you to use
ROS in conjunction with the Arduino IDE. rosserial uses a

33

Fig. 2. Device layout with nodes.

data transfer Protocol that works through the Arduino UART
(universal asynchronous transceiver). This allows Arduino to
be a full ROS node that can publish and subscribe to ROS
messages, publish TF (spatial) transformations, and receive
ROS system time. Linking ROS to Arduino is implemented
through the use of the Arduino library. To use the rosserial
libraries in your code, first of all, you need to connect them:

i n c l u d e <r o s . h>

After we should specify the type of message:

inc lude<s td msgs / I n t 3 2 . h>
s td msgs : : I n t 3 2 i msg ;

Tell the master that we are going to be publishing a message of
type std msgs/Int32 on the topic chatter. This lets the master
tell any nodes listening on chatter that we are going to publish
data on that topic:

r o s : : P u b l i s h e r c h a t t e r (” c h a t t e r ” , &i msg) ;

Subscribe to the pwm signal topic with the master. ROS will
call the msgCb() function whenever a new message arrives.

r o s : : S u b s c r i b e r sub (” pwm signal ” ,&msgCb) ;

NodeHandle::subscribe() returns a ros::Subscriber object, that
you must hold on to until you want to unsubscribe. When the
Subscriber object is destructed, it will automatically unsub-
scribe from the chatter topic:

nh . s u b s c r i b e (sub) ;

NodeHandle::advertise() returns a ros::Publisher object, which
serves two purposes: 1) it contains a publish() method that lets
you publish messages onto the topic it was created with, and 2)
when it goes out of scope, it will automatically unadvertised:

nh . a d v e r t i s e (c h a t t e r) ;

A ros::Rate object allows you to specify a frequency that you
would like to loop at. It will keep track of how long it has been
since the last call to Rate::sleep(), and sleep for the correct
amount of time:

r o s : : Ra te l o o p r a t e (1 0) ;

Now we actually broadcast the message to anyone who is
connected:

c h a t t e r . p u b l i s h (&i msg) ;

B. Example code on Raspberry Pi 3(Python)

You need to import rospy if you are writing a ROS Node,
this is a pure Python client library for ROS. The rospy client
API enables Python programmers to quickly interface with
ROS Topics, Services, and Parameters. The std msgs.msg
import is so that we can reuse the std msgs/Int32 message
type (a simple string container) for publishing:

import r o s p y
from s td msgs . msg import I n t 3 2

After this, you must write a section of code defines the
talker’s interface to the rest of ROS. declares that your node
is publishing to the chatter topic using the message type
Int32. The queue size argument limits the amount of queued
messages indeed any subscriber is not receiving them fast
enough. Rospy.init node tells rospy the name of your node
- as long as raspy does not have this information, it cannot
start communicating with the ROS wizard:

pub = r o s p y . P u b l i s h e r (’ c h a t t e r ’ , I n t 3 2 ,
q u e u e s i z e =10)
r o s p y . i n i t n o d e (’ t a l k e r ’ , anonymous=True)

This code declares that your node subscribes to the chatter
topic which is of type std msgs.msgs.Int32. When new mes-
sages are received, callback is invoked with the message as
the first argument:

r o s p y . i n i t n o d e (’ l i s t e n e r ’ , anonymous=True)
r o s p y . S u b s c r i b e r (’ c h a t t e r , I n t 3 2 , c a l l b a c k)

In this example, the program operation is a call to the
pub.publish(condition) that publishes Int32 in our chatter topic.
The loop calls rate.sleep(), which sleeps to maintain the
desired rate the loop:

whi le not r o s p y . i s s h u t d o w n () :
r o s p y . l o g i n f o (c o n d i t i o n)
pub . p u b l i s h (c o n d i t i o n)
r a t e . s l e e p (1 0)

rospy.loginfo (condition) allows you to:
• display messages on the screen
• automatically write messages to the host log file
• write messages to rosout

With using Rosout it is easier to debug because you can get
messages using rqt console, therefore, we may not to find and
use the console window with the logs of your node [6].
Based on the above code examples, it becomes clear that
using ROS with languages such as C++ and Python is quite
easy, because after reading the documentation in detail and
studying the ready-made solutions, you can easily make any
of the platforms supported by ROS many nodes that will be
combined into a single computer network.

34

VII. CONCLUSION

After analyzing all the currently available frameworks suit-
able for creating a distributed heterogeneous real-time network
focused on complex tasks and supporting work with a wide
range of computing devices, I came to the conclusion that ROS
is the most suitable for use in solving the task set before me.
ROS allows you to develop a flexible heterogeneous structure
suitable for rapid prototyping, modeling and testing of various
variants of real-time systems, which in turn accelerates the
process of developing the final device.
At this stage, the project is completely ready, the system de-
veloped by me has been tested and confirmed its performance
on an unmanned vehicle. The results obtained in the course of
these studies formed the basis for the creation of an automated
unmanned vehicle, and further refinement and expansion of its
functionality will allow to achieve in the future more efficient
use in various vehicles.

REFERENCES

[1] Aaron Martinez, Enrique Fernndez. Learning ROS for Robotics Program-
ming. Mumbai: Packt Publishing, 2013. ISBN 978-1-78216-144-8

[2] Jason M. OKane. A Gentle Introduction to ROS. Columbia: University of
South Carolina, 2014. ISBN 978-14-92143-23-9

[3] Yukihiro Saito, Futoshi Sato, Takuya Azumi, Shinpei Kato, Nobuhiko
Nishio . ROSCH:Real-Time Scheduling Framework for ROS . 2018 IEEE
24th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2018, pp. 52-58.

[4] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan, J. Tan. RGMP-ROS:
A real-time ROS architecture of hybrid RTOS and GPOS on multi-
core processor. 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 2482-2487.

[5] Y. Saito, T. Azumi, S. Kato, N. Nishio Priority and Synchronization
Support for ROS. 2016 IEEE 4th International Conference on Cyber-
Physical Systems Networks and Applications (CPSNA), 2016, pp. 77-82.

[6] H. Wei, Z. Shao, Z. Huang, R. Chen, Y. Guan, J. Tan, Z. Shao RT-ROS: A
real-time ROS architecture on multi-core processors. Future Generation
Computer Systems, 2016, vol.56, pp. 171-178.

35

An Exploration of Approaches to Instruction

Pipeline Implementation for Cycle-Accurate

Simulators of "Elbrus" Microprocessors

Pavel Poroshin

Department of Verification and Modelling

INEUM

Moscow, Russia

poroshin_p@mcst.ru

Alexey Meshkov

Department of Verification and Modelling

MCST, INEUM

Moscow, Russia

alex@mcst.ru

Abstract— Software simulation is of a big importance

during development of processors as they provide access to

hardware under development. Cycle-accurate simulators allow

software engineers to design and optimize high-performance

algorithms and programs with considerations of features and

characteristics of processors being in development. One of the

core aspects of a cycle-accurate simulator is the way it

simulates the pipeline of the target processor. A pipeline model

has high impact on an overall structure of a simulator and its

potential performance and accuracy. In this paper several

approaches to simulation of pipeline are described and theirs

applicability to cycle-accurate simulators of "Elbrus"

microprocessors are analyzed.

Keywords— simulation, pipeline, cycle-accurate simulator,

microprocessor, Elbrus

I. INTRODUCTION

Software based simulation of hardware is a very
important tool for development of computing systems. This
tool is especially important for software design, as simulators
can be used in place of actual still in development (or
unavailable for other reasons) hardware. Also simulators can
provide wide range of debugging facilities and other
information about inner workings of a system being
simulated.

One of the widely used classes of simulators is simulators
of microprocessors. Different tasks have different needs, so
there are simulators with various characteristics. Ones may
be oriented at simulation performance; others are aimed at
accuracy and precision.

Instruction set simulator (ISS) is a simulator of
microprocessor that mostly models a program visible
architecture state without considerations of microarchitecture
specifics and timings. And while for many tasks this is
enough, there is a need for simulators with much greater
degree of accuracy which can be used for performance
evaluation.

Cycle-accurate simulators (CAS) are such simulators.
They are important tools for code efficiency estimation
during development of performance critical software and
optimizing compilers. Ability to debug performance of code
is especially crucial for microprocessor architectures, which
achieve high performance not by invisible to programmer
microarchitectural features, but mainly by static planning of
instruction execution by smart compiler. The "Elbrus" family
of microprocessor architectures is such type of architectures.

Modern microprocessors achieve their high performance
and clock frequency through use of pipelining. Every cycle-

accurate simulator must somehow simulate this pipelining
logic to achieve accuracy of its timings. The way a pipeline
is represented in a simulator influences various aspects of a
simulator, how its components interact and its overall design
and characteristics. There are different ways to represent a
pipeline and to model it.

In this paper we describe several approaches that were
considered as a basis for implementation of the pipeline
model during development of the cycle-accurate simulator of
microprocessors belonging to the "Elbrus" family of
instruction set architectures.

The remainder of this paper has following structure.
Section II gives brief overview of the "Elbrus" instruction set
architecture and describes an existing instruction set
simulator used as base for the cycle-accurate simulator
implementation. Section III formulates desired properties and
requirements for the pipeline model being developed.
Section IV describes in detail several considered approaches
to pipeline model organization and explains its discovered
advantages and drawbacks. Section V gives brief evaluation
of described pipeline models. Section VI is dedicated to
other approaches to pipeline simulation that can be found in
literature. Section VII gives concluding remarks and briefly
describes plans for further work.

II. PREREQUISITES

In this section we give some details of the architecture
being simulated and of the available instruction set simulator
that influence some design decisions around the pipeline
model implementation.

A. "Elbrus" Family of Instruction Set Architectures

The "Elbrus" family of instruction set architectures is
VLIW (Very Long Instruction Word) type of architectures
[1]. Performance of this type of architectures is achieved by
extracting ILP (Instruction Level Parallelism) through
packing in one instruction several sub-operations, which are
executed by hardware in parallel. "Elbrus" microprocessors
are in-order and have no support of speculative execution (at
least in the traditional sense).

In case of the "Elbrus", the packing format is not fixed
and there are many ways several sub-operations can be
packed in an instruction. Each of these sub-operations can
belong to different kinds of operations: arithmetic and logical
operations, control flow operations, predicate calculations,
memory accesses and so on. And, while generally sub-
operations observe only effects of previous instructions,
there are several possible interactions of sub-operations

36

within one instruction, for example, in case of a predicated
execution.

Another important consideration is the way pipeline stalls
work. Firstly, it is worth noting, that in case one sub-
operation stalls (for example, because its arguments is not
ready yet), the whole instruction stalls, which is a natural
result for a VLIW architecture. Secondly, which is more
specific for the "Elbrus" architectures, there are a mechanism
of prolonged stalls. In simple terms, in some cases
(determined by a stall cause and a current pipeline stage) an
instruction is not immediately stopped, but effectively after
several cycles its results are discarded (as invalid) and it is
returned several stages back for its repeated execution in
hopes that the original stall will not occur again. This process
affects not only the instruction that is not ready for
execution, but also several instructions immediately after it.
There are two types of such stalls: a 2-cycle one and a 4-
cycle one. Moreover, it is possible for several such stalls to
interleave, and for such situation there is special pipeline
control logic.

Later in this paper we will refer to the pipeline stages of
the "Elbrus" microprocessors by following names: F, D, B,
R, E0, E1, E2 etc.

B. Instruction Set Simulator

Our cycle-accurate simulator was not developed
completely from the ground up. An existing instruction set
simulator for the "Elbrus" architecture was used as a basis
and a starting point for the development of its cycle-accurate
version.

This instruction set simulator supports wide range of the
various "Elbrus" microprocessors of different architecture
iterations via compile time configuration. It also supports
both a user mode simulation (with emulation of system calls)
and a full system simulation (with MMU logic, peripheral
devices etc.). All of this is implemented in a shared code
base.

An important feature of the instruction set simulator to
consider is how it executes individual (wide) instructions.
Execution is divided in two separate steps, conventionally
called "read phase" and "write phase". The "read phase"
prepares some intermediate data and is mostly side-effect
free. Then the "write phase" uses this intermediate data to
complete instruction execution. This way of organization of
instruction execution greatly simplifies support of precise
exceptions and of some interactions of sub-operations.

III. REQUIREMENTS TO CAS AND ITS PIPELINE MODEL

There are multiple valid ways to implement a cycle-
accurate simulator and its pipeline model, and each design
have its trade-offs. So it is important to define scope and
requirements to the cycle-accurate simulator being
developed, including its pipeline model implementation. We
define following requirements:

 Support of a user mode simulation. At this stage of
development it is planned that the cycle-accurate
simulator will be used mainly as a tool for
debugging performance problems during software
and compiler development. For such purposes a user
model simulation are used.

 Code reuse with the instruction set simulator. The
existing instruction set simulator implements major

parts of the "Elbrus" microprocessors, and it would
be wasteful to reimplement this functionality
separately.

 Configurability. It should be possible to configure
the simulator to support the various "Elbrus"
microprocessors (like the instruction set simulator)
and to enable or disable its different components (for
example, for the sake of performance).

 Flexibility. It should be reasonable easy to support
new features of next iterations of the "Elbrus"
microprocessors. And also, when need arises, it
should be possible to adapt the pipeline model for a
full system simulation mode.

 Reasonable performance. The cycle-accurate
simulator should not be too slow compared to the
instruction set simulator. We aim at no more than
tenfold slowdown.

 Reasonable accuracy. Of course, exact timing
accuracy is not achievable. But the pipeline model
design should not prevent possibility of further
accuracy improvement and support of various
microarchitectural aspects.

Some of these requirements are conflicting, and we do
not expect to simultaneously meet all of them fully, but to
achieve some balance between them.

IV. PIPELINE SIMULATION OF “ELBRUS” MICROPROCESSORS

In this section we explore several approaches to the
pipeline simulation and describe theirs advantages and
disadvantages.

A. Naïve “Direct Correspondence” Pipeline Model

The first approach that we tried to implement was based
on the simple idea of direct and faithful representation of the
real pipeline stages in the simulator. These stages would be
responsible both for the timing related logic and for the
purely algorithmic logic of the corresponding instruction.

We implemented this approach by transforming the
"read" and "write" phases of the instruction set simulator into
functions representing pipeline stages. During this
transformation the "read" and "write" phases were split in
parts and the missing pipeline related logic was added to
them. To meet the requirement of code reuse, we made code
of the new cycle-accurate simulator as base, and
implemented the original instruction set simulator by
"glueing" stages together into the "read" and "write" phases
and removing the pipeline related logic, all of this at compile
time and through configuration.

Processing of such pipeline model is straightforward:

 Iterate through each pipeline stage.

 For each stage determine which instruction is at this
stage and execute functions corresponding to all of
the sub-operations of this instruction.

 If there are no stalls - advance instruction to the next
stage. Otherwise not advance and propagate stall as
necessary. In case of the prolonged stalls simulate
related pipeline control logic.

37

Fig. 1. Simplified illustration of pipeline stage processing in case naïve
“direct correspondence” pipeline model.

This pipeline model representation should facilitate direct
and straightforward support of the various microarchitectural
features, as this software model is close to the actual
hardware. But, although this idea is conceptually simple,
during its implementation we discovered its several major
drawbacks:

 Splitting of phases of the instruction set simulator
into stages and glueing them back together introduce
a major disturbance to the original instruction set
simulator functionality. There is no clear way to
avoid that. Attempts to fully restore original phases
introduce much ad hoc logic, which adds fragility to
the whole system. This means there is no easy way
to achieve code reuse with this approach.

 In the instruction set simulator there are many
unobvious interactions between phases of different
sub-operations. These interactions are not easily
preserved during splitting of phases.

 While for the most of the operations there is a clear
correspondence of phases to pipeline stages, there
are exceptions, which add complexity to the glueing
process.

 Keeping track of all pipeline stages adds
considerable performance overhead, although for
most operations only small subset of all pipeline
stages are nontrivial (at least in the context of
timings).

 Splitting phases into multiple pipeline stage related
functions also inhibits compiler optimizations, which
impact overall simulator performance.

After this implementation attempt it became clear that for
meeting our code reuse requirement we should minimize
changes to the instruction set simulator.

B. Smart “Direct Correspondence” Pipeline Model

Next considered approach is a modification of previous
one. Its improvements are based on the following key
observations:

1. Algorithmic behavior of an operation (which is defined
by an instruction set architecture and is considered by an
instruction set simulator) can influence only an algorithmic
behavior of operations of later (or in some cases current)
instructions.

2. Algorithmic behavior of an operation determines its
timing behavior.

3. Algorithmic behavior of one operation does not
directly influence timing behavior of other operation.

4. Timing behavior has no direct influence on an
algorithmic behavior (except in some limited number of
special cases).

5. Timing behavior of one operation can influence timing
behavior of other operation (but usually only in specific
ways).

6. Simulator has more information about the execution
process than hardware it simulates.

7. Not all details and inner workings of hardware
contribute to its timing characteristics.

First six of these observations let us justify the separation
of algorithmic and timing logic and moving of the
algorithmic logic to the beginning of the instruction
processing (right before its pipeline related processing). But
we should uphold following conditions:

 Algorithmic simulation of the instruction must occur
before the algorithmic simulation of the next (in
program order) instruction (based on the observation
1).

 Pipeline simulation of the instruction must occur
after its algorithmic simulation (based on the
observation 2).

 Pipeline simulation of different instructions must
occur in order determined by the pipeline state
(based on the observation 5).

All of these are satisfied by this approach.

Last observation let us simplify the timing logic by
removing all microarchitectural details that are not directly
necessary for correctly calculating timing information, as we
are interested not in inner workings of hardware, but in
timing details.

These transformations should not reduce accuracy of our
simulator (except in some rare special cases, which are
briefly considered later in this paper).

The algorithm to process such pipeline is very similar to
the previous approach. The only difference is that in the
beginning of the processing of the first pipeline stage of the
instruction we do all algorithmic simulation of this
instruction.

Fig. 2. Simplified illustration of pipeline stage processing in case smart
“direct correspondence” pipeline model.

38

This approach let us use functionality of the instruction
set simulator (for the algorithmic simulation of instructions)
with minimal modifications, which remedy many major
drawbacks of the previous approach. But we still have to
address the performance concerns, as in this approach the
simulator still keeps track of all pipeline stages, even if they
are trivial, and the timing logic is still split into multiple
independent functions.

C. “Fully Speculative” Pipeline Model

The next approach to the pipeline simulation is based on
the assumption of stronger the observation 5:

5*. Timing behavior of operation of one instruction can
influence timing behavior only of operations of the same or
next instructions.

With this modified observation first five observations can
be summarized as follows:

 Behavior (algorithmic and timing) of an operation of
an instruction cannot depend on the behavior
(algorithmic or timing) of operations of next
instructions.

This assumption let us simulate all of the instruction's
behavior in one go before even considering next instructions.
It is just necessary to remember all effects (algorithmic and
timing) of the instruction that can influence next instructions.
And this is what we do in this approach.

The simulation of pipeline in this approach is as follows:

 Simulate algorithmic behavior of the instruction
using the instruction set simulator functionality.

 "Speculatively" simulate timing behavior of the
instruction by processing each of its nontrivial stages
one by one from first to last, remembering in the
process all information about produced effects and
their moments in time for use by next instructions (at
the same time using such information from previous
instructions).

 Move to the next instruction.

Fig. 3. Simplified illustration of pipeline stage processing in case “fully
speculative” pipeline model.

Such pipeline organization is expected to be more
performant, as it has less overhead related to keeping track of
the individual pipeline stages, better processes trivial stages,
and in general has more optimization opportunities.

At the same time, with this approach it is necessary to
transform the pipeline representation in the new form that
supports "speculative" accumulating of effects. This was
possible in our case, but may be difficult to achieve in others.

Also, such pipeline model is more complicated and
unintuitive. For example, it has no reasonable notion of the
current moment in (simulation) time. Time becomes in some
sense distributed around the whole pipeline model.

Pipeline is not sole contributor to timing behavior, and it
must interact with other components of microprocessor, such
as L1 and L2 caches, IB (Instruction Buffer, the component
responsible for the fetch of instructions) and others. It may
be unfeasible to simulate these components in such
"speculative" fashion, and the only reasonable way is the
cycle-by-cycle type of simulation. And without a clear
"current moment" concept, it is not obvious, when such
cycle-by-cycle simulation must occur.

Let's consider L1 cache as a concrete example. Its cycle-
by-cycle simulation must occur after all its inputs are
available but before its results can influence simulation of the
other components (including the pipeline). After careful
study of possible interactions of the L1 cache model and the
pipeline model we identified that such cycle-by-cycle
simulation should occur right after the simulation of the stage
R of the instruction. By similar reasoning the cycle-by-cycle
simulation of the IB should be placed right after the
simulating of the stage F of the instruction. Additional
considerations must be made in case of stalls, but overall
idea is the same.

Now let's consider interactions between the IB and the L1
cache. In principle, it is possible to the IB request of the
future instruction to interfere with the L1 cache state
observed by the current instruction. So it is possible to the
timing behavior of the future instruction to influence the
timing behavior of the current instruction, which is a
violation of our earlier assumption. It means that in this
approach we cannot accurately simulate some interactions
between various microprocessor components.

Another example of violation of our assumption is the
complex interactions during the interleaving of prolonged
stalls, where stall of the next instruction can influence stall
latency of the current instruction.

Overall, while this approach promises performance
improvement, it sacrifices accuracy and flexibility and
introduces additional complexity.

D. “Hybrid” Pipeline Model

The last approach to the pipeline simulation considered in
this paper is a combination of second and third approaches.
This pipeline model tries to retain accuracy of the smart
"direct correspondence" model and to achieve some of the
performance benefits of the "fully speculative" model. It is
based on the two additional observations:

8. Pipeline behavior of an instruction interacts with
pipeline behaviors of other instructions and other
components at specific pipeline stages.

9. There are continuous sequences of stages that executed
uninterrupted (without stalls and influence from other
instructions and components).

For example, after the stage E2 there is no possibility of
any stall and all further timing behavior of the instruction is
predetermined. So it is possible to simulate such continuous
uninterrupted sequences of stages speculatively in a manner
similar to the "fully speculative" approach, but without the
risk of decreasing timing accuracy. And after the instruction

39

reached the pipeline stage E3, we can stop keeping track of
it, as its timing behavior is completely simulated (partly
normally and partly speculatively) at this point. This
significantly decreases the pipeline simulation performance
overhead and the overhead of dealing with trivial stages.

Processing of such pipeline model is very similar to the
smart "direct correspondence" approach:

 Iterate through each pipeline stage.

 For each stage determine which instruction is at this
stage.

 If it is a new instruction, then simulate its
algorithmic behavior.

 If it is the first stage of an uninterrupted sequence,
then speculatively simulate all stages of this
sequence.

 If there are no stalls, then advance the instruction to
the next stage. Otherwise not advance and propagate
stall as necessary. In case of prolonged stalls
simulate related pipeline control logic.

Fig. 4. Simplified illustration of pipeline stage processing in case “hybrid”

pipeline model.

Overall, this approach let us partially get performance
gain of the "fully speculative" approach without its major
drawbacks of sacrificing accuracy.

Unfortunately, all described approaches (except the naive
one) do not cover the special case of the timing behavior
influencing the algorithmic behavior. Example of such
situation is operations that generate a predicate based on
readiness of its arguments. Researching of ways to address
this is part of our future work, and we hope it will be
possible to implement a solution within the "hybrid"
approach.

V. EVALUATION

Although the cycle-accurate simulator is still in
development and there is work to be done (for example,
memory subsystems are not fully implemented yet and are
greatly simplified), it is worth to do some preliminary
evaluation of the pipeline model implementations described
in this report.

Here we will consider only the "fully speculative" and the
"hybrid" models, as the "direct correspondence" models were
abandoned much earlier in the development and it is hard to
make a fair comparison of them to the other models.

We compare the relative performance and the total
number of the simulation cycles that were needed for the test
completion. The instruction set simulator is used as a
baseline. Individual test cases consist of the executing on the

simulator part of one of the SPEC CPU95 benchmarks.
Results presented in Table 1.

At this stage of the development we do not have a
reasonable cycle count reference that we can use, because,
for example, our simulators do not do proper simulation of
various memory accesses. Nevertheless, we hope to get
rough estimate of contribution of the more detailed
simulation of the pipeline by the “hybrid” model to the total
cycle count.

Results show that on average the "hybrid" model is
slower than the "fully speculative" model by ~20%. At the
same time, average difference in total cycle count is around
0.5% with one significant outlier “146.wave5” with the cycle
count difference of 6.1%. We expect that this is because less
accurate simulation of the prolonged stalls in the "fully
speculative" pipeline model.

It is possible to optimize both models and the
performance difference after optimizations can change, but
we expect that the "hybrid" model will always be slower.
Despite this overall we consider the "hybrid" model as a
better approach as it is more fully meets our requirements of
accuracy and flexibility, and in a need of performance it
should be possible to configure the "hybrid" model
accordingly.

TABLE I. PERFORMANCE AND TOTAL CYCLE COUNT RELATIVE TO

INSTRUCTION SET SIMULATOR

Test

"Hybrid" CAS "Fully speculative" CAS

Relative

Performance

Relative

cycle count

Relative

Performance

Relative

cycle count

099.go 0,192 1,747 0,218 1,747

101.tomcatv 0,271 1,415 0,323 1,424

102.swim 0,329 1,983 0,407 1,981

103.su2cor 0,277 1,415 0,322 1,420

110.applu 0,218 1,999 0,266 2,001

124.m88ksim 0,243 1,151 0,299 1,151

126.gcc 0,291 1,376 0,341 1,378

129.compress 0,222 1,522 0,286 1,539

130.li 0,195 2,102 0,224 2,104

132.ijpeg 0,218 1,738 0,261 1,749

134.perl 0,252 1,541 0,301 1,553

141.apsi 0,248 2,364 0,286 2,379

146.wave5 0,328 1,734 0,398 1,840

147.vortex 0,250 1,600 0,308 1,601

VI. RELATED WORK

Cycle-accurate simulation of modern microprocessors is
a very active area of research. But only small portion of this
research is focused on simulating of general purpose VLIW
microprocessors, let alone on the "Elbrus" architecture. And
many of the available approaches do not quite translate to the
"Elbrus" specifics.

Approaches of simulating a pipeline of VLIW
microprocessors, similar to the "direct correspondence"
approaches, are described in [2][3][4]. But they do not

40

address the issue of code reuse in the presence of an
instruction set simulator.

All of the approaches described in this paper are
execution-driven. Trace-driven simulation is one of the
alternatives [5][6][7][8][9]. The basic idea of the trace-driven
approach is a separation of the whole simulation process in
two phases: generation of some data (trace), that represents
an execution path, and using that data as an input for a cycle-
accurate simulation of some microprocessor aspect. Trace
can be generated by real hardware or other simulator (for
example, an instruction set simulator). This approach gives
benefits, similar to ones we aim to achieve by separation of
algorithmic logic and timing logic introduced in our second
approach, but makes extremely difficult to account for a
possible dependence of an algorithmic behavior on a timing
behavior (which we are planning to address in future work in
our approach), as these interactions cannot be captured in
trace during its generation before cycle-accurate simulation.

The pipeline representation, similar to our "fully
speculative" approach, is used in [10]. Authors describe in
details various aspects of the pipeline simulation (occupancy
of stages, operand dependencies and control flow
considerations), but do not discuss limits of this approach
and complexities of interaction of such pipeline model with
other components of microprocessor.

VII. CONCLUSIONS AND FUTURE WORK

Software based simulation of microprocessors is a very
important tool. There are many possible ways to implement
such simulators, each of them with its own set of advantages
and disadvantages.

In this paper we explored several approaches to the
pipeline simulation in the context of the cycle-accurate
simulation of the "Elbrus" microprocessors. We made
several simple, but general and powerful observations, which
were used as the foundation for the design of the various
pipeline models and for the analysis of their advantages and
drawbacks. We described several of such approaches that
were considered and at least partially implemented during
development of our cycle-accurate simulator.

The cycle-accurate simulator described in this paper is
still in active development. In the future work we are
planning to address the issue of dependence of the
algorithmic behavior of the instruction on the timing
behavior and to explore additional ways to optimize
performance of the simulation.

REFERENCES

[1] Ermakov S. G., Kim A. K., Perekatov V. I. Mikroprocessory i
vychislitel'nye kompleksy semejstva "Elbrus" [Микропроцессоры и
вычислительные комплексы семейства "Эльбрус"], 2012 (in
Russian).

[2] Cuppu, Vinodh. "Cycle accurate simulator for TMS320C62x, 8 way
VLIW DSP processor." University of Maryland, College Park (1999).

[3] Barbieri I. et al. Flexibility, Speed and Accuracy in VLIW
Architectures Simulation and Modeling //Simulation. – Т. 10. – №.
11. – С. 12.

[4] Barbieri I., Bariani M., Raggio M. A VLIW architecture simulator
innovative approach for HW-SW co-design //2000 IEEE International
Conference on Multimedia and Expo. ICME2000. Proceedings. Latest
Advances in the Fast Changing World of Multimedia (Cat. No.
00TH8532). – IEEE, 2000. – Т. 3. – С. 1375-1378

[5] Uhlig R. A., Mudge T. N. Trace-driven memory simulation: A survey
//ACM Computing Surveys (CSUR). – 1997. – Т. 29. – №. 2. – С.
128-170.

[6] Joshua J. Y. et al. The future of simulation: A field of dreams
//Computer. – 2006. – Т. 39. – №. 11. – С. 22-29.

[7] Agarwal A., Huffman M. Blocking: Exploiting spatial locality for
trace compaction. – ACM, 1990. – Т. 18. – №. 1. – С. 48-57.

[8] Cho S. et al. TPTS: A novel framework for very fast manycore
processor architecture simulation //2008 37th International
Conference on Parallel Processing. – IEEE, 2008. – С. 446-453.

[9] Lee H. et al. Two‐phase trace‐driven simulation (TPTS): a fast
multicore processor architecture simulation approach //Software:
Practice and Experience. – 2010. – Т. 40. – №. 3. – С. 239-258.

[10] Böhm I., Franke B., Topham N. Cycle-accurate performance
modelling in an ultra-fast just-in-time dynamic binary translation
instruction set simulator //2010 International Conference on
Embedded Computer Systems: Architectures, Modeling and
Simulation. – IEEE, 2010. – С. 1-10.

41

Approach to test program development for
multilevel verification

Pavel Frolov
JSC MCST, PJSC INEUM

Moscow, Russia
Email: Pavel.V.Frolov@mcst.ru

Abstract—Development of system-on-chips or network-on-
chips requires verification of standalone units (peripherals and
commutators) and a system as a whole. An approach to test
development for verification of programmable standalone units
is presented. The tests are written in C++ using a specific API to
program the device-under-test (DUT) and the test environment.
The implementation of access to a DUT depends on the test
environment structure: a standalone device, a device as a part
of controllers block or a device as a part of the whole SoC.
This approach gives an opportunity to use the same test both
for standalone and for system-level verification (when the test
is compiled as a program for execution on SoC general-purpose
core). The implementation of this approach and its application to
verification of microprocessors of the Elbrus family are described.

Index Terms—hardware verification, simulation-based verifica-
tion, test system, standalone verification, system-level verification

I. INTRODUCTION

Typical test scenarios for programmable standalone units
(peripherals and commutators) are based on estimated work
patterns of the designed chip operating. Such test scenarios
are an indispensable part of a standalone verification testplan.
They also must be included in a device integration test
suite for system-level verification to check considered device
interaction with other units.

This paper describes an approach to test development for
verification of programmable standalone units which allows
using the same test both for standalone and system-level
verification. The presented approach also enables tests run in
different execution environments (via an RTL simulator, an
FPGA-based prototype or a manufactured chip).

The rest of paper is organized as follows. Section 2 reviews
the existing techniques considering the same tests reuse for
different execution environments. Section 3 introduces the
structure of the framework for test development, implementing
presented approach. Section 4 describes API provided by
the framework for tests use. Sections 5 and 6 present test
transformation for system-level and standalone verification
respectively. In Section 7, results are presented and in Section
8, possible/planned future work is mentioned.

II. RELATED WORK

The main target of presented approach is to reduce verifi-
cation effort through the unit-level test reuse for system-level
simulation.

Review works on SoC verification suppose high level of the
verification components reuse [1] [2], but there is not much
information about practical approaches for the test programs
reuse. The problem of the stimulus reuse for different execu-
tion targets and environments is targeted by The Portable Test
and Stimulus Standard (PSS) [3], but this standard provides
only language for a test intent description [4].

Typical approach to unit-level verification is transaction-
based verification, implemented, for example, in UVM (Uni-
versal Verification Methodoly) standard [5]. Such tests are
written in SystemVerilog and commonly use constraint-
random stimuli generation, implemented via external tools
(RTL-simulator, for example). The reuse of such a test for
system-level verification requires its additional adaptation. For
example, the work [6] describes an approach which allows
to get a system-level test based on the unit-level one for the
separate IP-block (GPU) of the heterogeneous SoC. A trace
of DUT interactions with the testbench is logged during unit-
level simulation and then is compiled into assembly, ready for
execution on the CPU at SoC level. The approach copes with
register polling through the test driver library instumentation
but DUT interrupts handling isn’t described.

III. TEST DEVELOPMENT FRAMEWORK

In the presented approach, a test is written in C++, so it can
be translated to different host CPU architectures:

• to PLI-application [7] (PLI is for Program Language
Interface) interacting with a simulator modeling the RTL
description of the standalone unit (or the block of con-
trollers including this unit);

• for system-level execution on one of the general-purpose
cores of the verified SoC.

The system-level test runs without an operating system and
this restricts usage of standard C++/C library: no explicit usage
of externally linked functions is allowed. Instead, the test
development framework provides a common standard API for
different test execution environments. The API is described
in header files as a list of C++ function prototypes. For
every supported test execution environment the framework
provides a corresponding environment library implementing
these functions.

Advantages of C++ as a test implementation language
mainly address system-level test execution. Firstly, C++ allows
to transfer some calculations to the compilation stage via

42

contexpr specifier (since C++11 [8] version of language
standard). Secondly, C++-templates allow wrap of specific
assembly instructions into inline functions to avoid function
call overhead while preserving test portability. Besides, parts
of device drivers or BIOS, commonly written in C, can be
relatively simply ported for test use and vice-versa.

IV. ENVIRONMENT LIBRARY API

A typical programmable controller implements three kinds
of interaction with a system: it provides access to the internal
registers and memory for configuration (PIO, programmed
input/output), can initiate DMA-transactions (Direct Memory
Access) to the system memory and send interrupt messages.
Thus the environment library API must provide means to
perform, control and observe these interactions.

The API contains a description of typical operations:
• access to the registers and the internal memory of the

device under test,
• system memory handling operations (allocation, pattern

filling, data comparison),
• device interrupts handling,
• address translation for DMA-transactions programming,
• simulated time measuring and timeout setup,
• debug test output,
• other auxiliary procedures.

V. SYSTEM-LEVEL VERIFICATION

For system-level verification the test program is translated
for execution on a general-purpose core of the verified SoC as
well as the standard environment library. The framework also
provides a bootstrap program for basic system initialization
required for the test to run. The test and the library are
linked into a single executable image (the system-level test).
To run the test the execution environment places this image
in the memory of the SoC (DRAM and/or NVRAM) and
transfers control to the entry point of the environment library,
which in turn calls the test function. After the test execution
the environment library handles the exit code and provides
diagnostic information.

The framework allows executing the same unit test with
different system settings, providing comprehensive unit inte-
gration check. System settings programming is performed by
the bootstrap part of the environment library; their values are
described in additional files and are transmitted to the system-
level test either via compilation macro definitions or as object
files with initialized C-structures during linkage.

Examples of system settings to vary range from separate
bits in different control registers of the verified SoC to modes
which require additional nontrivial setup. For example, DMA-
transactions from the tested device can work directly with
system physical addresses or can be additionally redirected
via IOMMU (Input/Output Memory Management Unit).

The environment library implements API with functions
executed in super-user mode. Read/write access to the device
registers is implemented with load/store instructions with spe-
cific attributes (memory type specifiers). In microprocessors of

Fig. 1. Typical test algorithm

the Elbrus family registers of external programmable devices
are placed within PCI-address spaces: memory, I/O and PCI-
configuration space. The test defines a target device address
in a PCI-configuration space and allocates necessary address
ranges in PCI I/O or memory spaces via according API
functions.

The environment library provides simple heap manager
without deallocation implementation. The test program allo-
cates data arrays in the heap for use as RAM regions accessed
from the tested device by DMA-transactions.

Virtual addresses for DMA-transactions are written to the
device registers and/or to descriptor tables in RAM. In the
simplest case the virtual address is equal to the physical ad-
dress: so-called transparent translation, but DMA-transactions
from the tested device can be redirected via IOMMU, so the
environment library provides functions for IOMMU configu-
ration and in-test address translation functions. The test uses
that functions for getting virtual addresses from physical ones,
which are returned from the heap allocation-function.

The environment library implements functions for the sys-
tem interrupt controller configuration and test-defined interrupt
handling. The test configures interrupts to be sent by the tested

43

unit and registers callback functions handling those interrupts.
During the test execution the environment library catches
interrupts from the device and calls registered handlers.

Simulated time measuring is implemented via reading of
the clock-counting register or programming local timer to send
interrupts in defined time intervals.

The system-level test can be compiled for different exe-
cution environments: a functional model, a simulated RTL-
description of the tested SoC, an FPGA-based emulator or a
manufactured chip. The target execution environment deter-
mines the bootstrap procedure and the debug print support
linked to the test.

The functional model allows fast execution with high ob-
servability (instruction execution trace, units programming
trace), so it is used for the test and the environment library
debug.

VI. UNIT-LEVEL VERIFICATION

The structure of the unit-level testbench is presented on
Fig. 2. The testbench consists of the environment library and
the test linked to the testbench as PLI-application, adaptor for
the DUT-system bus interface and, possibly, a specific imitator
of an external device.

The interface of the device-under-test which connects it to
the rest of the SoC requires appropriate adapter for interaction
with the testbench. It provides an interface-specific implemen-
tation for DUT registers access operations and redirects DUT-
initiated transactions to the environment library.

There are two separate address spaces in the test: ”internal”
for direct access from the test and ”external” for DMA-
transactions. Memory manager returns to the test pointers with
”internal” addresses for memory allocation requests and all
library functions for on-core memory processing work with
”internal” addresses.

Addresses to be targeted by DMA-transactions are wrapped
by translation functions that convert internal pointers to ex-
ternal ones and record this translation. DMA-requests are
transferred by the adaptor to the memory manager that checks
DMA destination addresses against previously recorded trans-
lations. If there is an appropriate record of translation, the
memory manager writes data from DMA-transactions or reads
it for return to the adaptor. Otherwise an error is detected.

Interrupt messages issued by the device are registered within
the environment library; when the test calls library functions,
pending interrupts are handled and a user-defined callback is
executed.

Simulated time measuring is implemented by means of
functions DPI-exported from the part of the library written
in SystemVerilog.

Different devices with one programming interface can be
tested by the same test program even if they have different bus
interfaces; different bus interfaces require different adaptors
to be implemented. The tested controller can be connected to
the adaptor not directly, but through the root commutator of
the block of controllers including the unit in consideration
(Figure 3). That variant of the DUT allows verification of

Fig. 2. Unit-level verification testbench. 1 – pending interrupts check. 2 –
internal/external address translation.

interaction between system commutator and the tested con-
troller (intermediate-level verification). Test scenarios with
simultaneous work of several controllers can be implemented.

Fig. 3. DUT for intermediate-level verification

VII. RESULTS AND USE EXPERIENCE

The described approach to test development has been ap-
plied to the verification of peripheral interfaces controllers of
standalone southbridge ASICs developed in MCST [9], such
as HD Audio, SATA, USB 2.0, PCI and PCI-e bridges, and
multiple low-speed controllers. Now it is used for verification
of embedded IOHubs being developed for a new generation of
the Elbrus microprocessors. Standalone and embedded south-
bridges have different in-house interfaces to transfer packets
based on PCI Express transaction layer packets [10], therefore
different adaptors have been implemented in order to reuse the
same set of tests.

44

MCST designs computing systems based on CPU of Elbrus
and SPARC instruction set architectures, thus the environ-
ment library for system-level tests is implemented for both
architectures and for different microprocessor models (starting
from Elbrus-4C [13] for Elbrus-based microprocessors and
R-1000 [14] for SPARC-based ones).

The typical test development and use flow consists of the
following subsequent stages:

• system-level build for functional model execution and test
logic debug;

• unit-level build for standalone unit verification;
• unit-level build for verification of the unit as a part of the

southbridge;
• system-level build for test execution on full system-on-

chip (RTL or FPGA-based prototype [11]).

The system-level environment library supports simultaneous
execution of several tests for different controllers on multi-
core systems. Tests are executed on different cores; shared
resources are distributed between tests based on static planning
[12].

VIII. FUTURE WORK

The described approach for unit-level verification was
implemented mainly for southbridge controllers of MCST
projects. The future work is supposed to embrace adaptation
of system-level tests for north-bridge integrated graphics cores
to unit-level verification. It requires further development of
internal system bus interface adapters for different target CPU
models.

There is also an endeavor to use already developed system-
level tests for verification of hardware I/O virtualization
support in new microprocessors of Elbrus family. The test
program is supposed to run as a simple guest OS while the en-
vironment library functions are executed in hypervisor mode.
Different modes of virtual I/O support are to be implemented:
emulation mode and direct device assignment.

REFERENCES

[1] Anil Deshpande. Verification of IP-Core Based SoCs. 9th International
Symposium on Quality Electronic Design, 2008, pp.433436. DOI:
10.1109/ISQED.2008.4479771

[2] G. Mosensoson. Practical approaches to SoC verification. Proceedings
of DATE User Forum. 2002.

[3] The Portable Test and Stimulus Standard.
https://www.accellera.org/downloads/standards/portable-stimulus
[Accessed: 11-May-2019].

[4] Bryon Moyer. Portable Stimulus Intent. Accelleras New Stan-
dard Goes to Early Adopters. EEJournal, July 31, 2017. Avail-
able: https://www.eejournal.com/article/portable-stimulus-intent [Ac-
cessed: 11-May-2019].

[5] Standard Universal Verification Methodology.
http://accellera.org/downloads/standards/uvm [Accessed: 11-May-
2019].

[6] Narendra Kamat. IP Testing for Heterogeneous SOCs. 14th International
Workshop on Microprocessor Test and Verification, 2013, pp. 5861.
DOI: 10.1109/MTV.2013.19

[7] IEEE Standard for SystemVerilog. IEEE Std 1800-2009.
[8] ISO International Standard ISO/IEC 14882:2011(E) Programming Lan-

guage C++.

[9] A.K. Kim, M.S.Mikhailov, V.M.Feldman. Podsistema vvoda-vyvoda
dlya sistem na kristalle MCST-4R i Elbrus-S na osnove mikroskhemy
kontrollera periferiinykh interfeisov. Voprosy radioelektroniki, seriya
EVT, vypusk 3, 2012.

[10] Petrochenkov M. V., Mushtakov R. E., Stotland I. A. Verification of 10
Gigabit Ethernet controllers. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 4, 2017, pp. 257-268. DOI: 10.15514/ISPRAS-2017-29(4)-17

[11] F. Budylin, I. Polishyk, M. Slesarev, S. Yurlin. The experience of
prototyping MCST CJSC microprocessors. Voprosy radioelektroniki,
2012, no. 3.

[12] Frolov P.V. System-level test integration based on static resource allo-
cation. Voprosy radioelektroniki, 2018, no. 2, pp. 7680.

[13] ’Centralnyj processor Elbrus-4C’. [Online]. Available:
http://www.mcst.ru/elbrus-4c [Accessed: 11-May-2019].

[14] ’Centralnyj processor Elbrus-R1000’. [Online]. Available:
http://www.mcst.ru/r1000 [Accessed: 11-May-2019].

45

Test environment for verification of multi-processor

memory subsystem unit

Dmitriy Lebedev

Department of Verification and Modeling

MCST

Moscow, Russia

lebedev_d@mcst.ru

Mikhail Petrochenkov

Department of Verification and Modeling

MCST

Moscow, Russia

petroch_m@mcst.ru

Abstract — Ensuring the correct functioning of the memory

subsystem is one of the cornerstones of modern microprocessor

systems. Functional verification is used for this purpose. In this

paper, we present some approaches for verification of memory

subsystem units of multi-core microprocessors. Some

characteristics of memory subsystems that need to be taken into

account in the process of verification are described. General

scheme of test environment for stand-alone verification of memory

subsystem parts is presented. Classification of checking models

types and their advantages and disadvantages are described. The

approach of construction a standalone verification environment

using Universal Verification Methodology (UVM) is presented in

the paper. Some restrictions that should be taken into account

when verifying memory subsystem unit are listed. Generation

stimulus algorithm stages are presented. Method of using “hints”

from design under verification for elimination of nondeterminism

is used for implementation of checking module. Some other

techniques for checking the correctness of memory subsystem

units, which can be useful at different stages of projects, also

reviewed. An experience of applying the suggested approaches for

verification of Home Memory Unit of microprocessors with Elbrus

architecture is considered. The results and further plan of the test

system enhancement are presented.

Keywords — multicore microprocessors, cache memory,

coherence protocols, test system, model-based verification, stand-

alone verification.

I. INTRODUCTION

With the development of microprocessor technology and
growth of the number of computational cores and CPUs in
systems processor performance increases rapidly.
Unfortunately, the speed of memory access is not growing as
fast as the speed of the processor [1]. Thus, one of the biggest
bottleneck elements become the memory subsystem. To level
the difference in speed, designers of microprocessor systems
implement a complex memory subsystem that includes cache
hierarchy. State of the art microprocessor systems usually
include 3-4 levels of cache memory. This approach is able to
reduce the number of accesses to main memory, and, therefore,
reduce memory access instructions average execution time.

In the multicore systems if multiple cores are
simultaneously allowed to contain copies of a single memory
location, the problem of maintaining memory consistency
arises. A mechanism must exist to ensure that all copies remain
consistent when the contents of that memory location are

modified. Coherence protocols support such mechanism.
Usually we have higher-level caches shared between cores and
lower-level caches served by a single core. Complex systems
that combine several multi-core processors may also have cache
memory to speed up other processors' access to their memory.

A large number of processors and processor cores and
complexity of system data exchange organization makes
coherence protocol very complicated. An implementation of
cache coherence protocol is a complex and error-prone task.
Errors of this kind are critical and difficult to detect on system-
level verification. Thus, a memory subsystem and
implementation of coherence protocols in HDL (Hardware
Description Languages) models must be thoroughly verified
[2].

There are two main methods for verification of memory
subsystem: a simulation-based verification and formal
verification [3]. Formal verification is used to mathematically
prove the correctness of a DUV (Device Under Verification)
model with respect to its specification. It is widely known that
main advantage of formal methods is their exhaustiveness.
Many works are devoted to this method [4-6]. Disadvantages of
these methods are complexity of development and high
specification requirements. Simulation-based methods are not
exhaustive, but they can be applied at earlier stages of
development and they are much simpler.

Verification of a memory subsystem, as a part of whole
microprocessor, can be provided by means of system
verification [7]. However, it is essential to mention that some
of the components of a memory subsystem are invisible from
the point of view of a testing program and it is hard to recreate
necessary conditions for verification with proper quality. To
overcome these drawbacks, a stand-alone verification of the
memory subsystem is usually used.

There are a number of methods to implement a standalone
functional verification of a memory subsystem. One of them is
C++TESK Testing ToolKit created in ISP RAS [8]. It is an
open-source C++ based toolkit intended for automated
functional testing of RTL (HDL) models of digital hardware (in
Verilog and VHDL). The tool included a library of C++ classes
and macros that define facilities for all parts of a verification
environment. Some of disadvantages of this tool are high
complexity of the application and needs documentation and
checking reference model high accuracy.

46

Another tool name is Alone-env created in the "MCST".
The Alone-env provides a wrapper-class over Verilog
description of the verified module. The Alone-env too has some
disadvantages: the lack of collecting coverage means, high
requirements for the checking reference model and the inability
to reuse the test system.

Nowadays the most widespread verification methodology is
Universal Verification Methodology (UVM). This is a standard
verification methodology from the Accellera Systems [9].
UVM designed to enable creation of robust and reusable
testbenches and their components. UVM is a class library helps
to bring much automation to the SystemVerilog language.
Disadvantages of UVM is learning curve is very high for new
users and it takes a lot of code to create basic UVM testbench
classes. Nevertheless, our team already have a number of test
systems, basic classes and libraries written and debugged.
Therefore, we choose UVM for developing the stand-alone
verification environment of memory subsystem modules.

The rest of the paper is organized as follows. Section 2
reviews the existing techniques for standalone verification of
the memory subsystem. Section 3 describes a case study
suggests an approach to the problem of developing test system.
Section 4 describes additional used approaches. Section 5
reveals results and Section 6 concludes the paper.

II. STANDALONE VERIFICATION METHODS OF MEMORY

SUBSYSTEM

In a stand-alone verification we implement test system that
allows to select a single part of the whole system and examine
its behavior in the test environment that behaves in a way
similar to the “real” system. Correct mechanisms of interaction
with DUV are defined in its specification. One of the main
advantages is that it is easier to explore edge and corner cases
in the verified module.

When verifying a part of the memory subsystem with
included cache, we need to take into account some features
while developing the test system:

● it consists of cache lines that are fixed size blocks used
to transfer data between two nodes of the system;

● logic to locate and transfer requested data;

● cache line also hold service information;

● may be several requesters which work with different
cache lines

● if two or more requesters want to refer to the same cache
line such request have to be serialized and completed in
the same order as they received;

● controller support some of implementations of a
coherence protocol;

● due to the limited amount of a memory, one of the data
eviction algorithms is implemented.

Test environment (or testbench) for verifying the memory
subsystem usually includes:

● generator of input stimulus;

● checker of collected reactions correctness;

● module collecting coverage information.

Generator of input stimuli is responsible not only for
primary requests that perform operations with memory, it also
collects reactions from verified device and generate answers
from test environment - secondary requests. Generalized
scheme of test environment shown on Fig. 1. Generation of
stimulus can be simplified by using TLM [10] (Transaction
Level Modeling) to communicate with DUV. TLM allows
focusing more on the functionality of the data transmission and
less on its actual implementation.

Fig 1. Generalized scheme of test environment

If the verified device has a complex structure and many
states, the easiest way to check correctness of reactions is
building the separate checking module. Checking module is
based on the external to the test environment reference model
usually written in high-level language (C, C++ or some specific
languages for verification of hardware, such as SystemVerilog,
SystemC or «e»). All requests and reactions from the verified
device sent to the checking module where then made a
conclusion about the correctness of the behavior.

The reference models could be divided into three types:
cycle-accurate, discrete-event with time accounting and event
models [11]. First two of them require a very accurate
specification. It is hard to support design changes that happen
very often on the first steps of the development. Furthermore,
the similarity of the implementations of the model and the DUV
can lead to duplication of errors. To check correctness of
memory subsystem, it is reasonable to use event models
because they require less time to develop and more flexible for
changes of the design. Data interchange of the test system with
reference model occurs instantly by calling appropriate
functions. For some devices, there are several correct scenarios
of the operation for the same input stimulus. We call those
devices non-deterministic. There are two methods allowing
using behavioral event models for verification of these devices
[12].

The first method is dynamic refinement of transaction level
model. A general approach is as follows. When a reference
model gets a request and there is several possible ways to react

47

to the request, the model creates additional instances and
executes the requests in each of them. Then the models are
waiting for the reactions from the device under verification. The
reaction contents service information (such as a response type,
a direction of sending, etc) which helps to exclude impossible
states. Absence of suitable state for reaction signals about an
error. The sign of a successful completion is comparison all the
reactions of the DUV and removal of all unnecessary states.
The complexity of this approach is that the number of possible
states potentially grows exponentially with a number of stimuli.
However, this method can be implemented efficiently for
memory subsystem units because all requests to a single cache
line are serialized and requests to different cache lines are
independent.

Second method is identification of a single correct state
using hints from the verified device or a "gray box" method.
This method replaces usual “black box” method. When we
cannot predict the “real” sequence of interactions, we access
inner interfaces of the verified device. Information from these
interfaces have to be transferred to the test environment and
helps to determine a single possible execution scenario and
eliminate nondeterminism. This method imposes additional
requirements to the device specification, but, as a result, it is
quite simple to implement.

Coverage collection module extract information of
functional code coverage. This information is used to identify
unimplemented test cases and helps to improve stimuli
generation by adding new test scenarios.

III. USING GRAY BOX APPROACH FOR VERIFICATION OF

HOME MEMORY UNIT

Home Memory Unit (HMU) is a part of memory subsystem
of 16-core “Elbrus” microprocessor responsible for the
coherent and non-coherent access to the RAM from different
requesters. HMU contains a global directory (MOSI protocol of
coherence), which monitors the requests of other processors to
its memory and a DMA directory which is a full copy of the
DMA caches of all processors (supports the extended coherence
protocol MOI). Total volume of the directory in HMU is 2.5
MB, size of entry of a cache line is 80 B, number of banks –
128, bank associativity – 16. Main functions of HMU include:

● serialization of all requests to RAM;

● reduction of coherence traffic and access time to RAM;

● support of interprocessor coherence by sending coherent
requests;

● collecting short coherent responses and coherent
responses with data;

Test system for stand-alone verification of the coherence
protocol implementation and other functionality of HMU based
on UVM. UVM helps to generate pseudo-random constrained
input requests to cover possible states of the verified device.

We have to note some restrictions for generation primary,
secondary stimuli and answers. The first of them is limited
amount of space in input buffers. Due to process of verification,
it is important not to lose some data. When generating random
system settings, it is necessary to take into account that the

some setup combinations may be incorrect and lead to errors.
There are several types of requesters in the test system. Each of
them has special identifier and a set of possible operation codes.
The specific implementation of the coherence protocol also
imposes restrictions on the used operation codes. Sending an
inappropriate operation code may result in undefined results.
Address generation is also a non-trivial task. The address have
to fit the interleaving conditions. In addition, each requester
have to wait for the completion of previous request when
working with same cache line.

Stimuli generation is divided into several stages:

1. randomization of device configuration registers. This
allows to switch different ways for handling requests
and determine request routing;

2. creating list of addresses for current configuration of
device with respect to routing setup;

3. choosing random requester and cache line address;

4. checking cache line availability and presence of
resources needed for request transfer;

5. choosing random operation code constrained by the
current state of cache line;

6. sending primary request, collecting reactions from the
device under verification, sending secondary requests;

7. collecting all of necessary reactions and completion of
current request;

8. transferring transaction information to checking
module;

To simplify handling of requests and reactions we create
models of each used cache line. Model of cache line is an object
that stores information about primary request, collected
reactions, data and some auxiliary functions. For generation of
correct requests we created an associative memory storing
current states for each cache line. The choice of the next request
type is made according to the limitations imposed by the
coherence protocol and the current state of the cache line. For
example, one of these rules is there cannot be two requesters in
a modified (M) state for a single cache line. Another feature,
which was necessary to pay attention, is that one address tag
corresponds to two-neighbor cache lines information. This
mechanism allows increasing the ratio of the directory coverage
(the ratio of the cache memory covered by the directory to the
cache memory of the directory).

As noted before, there are two ways of building checking
module. The choice of “gray box” method is determined by
following sources of a nondeterminism inherent to HMU:

● HMU contains two input queues of primary requests
what means exponential growth of possible device states
size (2n+m, where n, m – number of requests inside
input queues);

● cache eviction algorithm in the global directory.

HMU has two cache memories responsible for different
functions of a memory subsystem: the global and DMA
directories. The global directory has information only about

48

data belonging to the own processor and used by other
processors. Along with that there is no information about
presence of this cache line in cache of own processor. Such
information located in the L3 cache. DMA writes are also
coherent requests. For a fast and correct handling of DMA
writes sent by DMA controllers the special DMA cache
directory is present inside HMU. This cache directory supports
extended coherence protocol MOI with substates. Its main
function is processor notification about cache lines captured by
DMA controllers and storing their states.

The device under verification connected with other parts of
the system by means of network-on-chip and has two input
channels for primary requests. All generated primary requests
are sent to the DUV and the checking module simultaneously.
The checking module (implemented in C++) receives requests
and reactions from the verified device by means of DPI
(Directed Programming Interface). Using of the DPI is
necessary to match the types and classes of the test environment
written in SystemVerilog hardware description language with
the reference model interface functions. Inside checking
module, all requests are received into two queues. Requests to
the same cache line can get into the different queues. It is
impossible to predict which of these requests will be handled
first. Getting a sequence hint from the device under test
eliminates the nondeterminism of the current state. Stable and
well-described inner interfaces to the point where all request are
serialized, made it possible to build simple checking module in
the short time. In a similar way, an access to the eviction
mechanism interface was obtained. In addition, the checking
module and its behavior model may be modified if it will be
needed in the future projects. Structure of the test environment
with proposed “gray box” method shown in Fig. 2.

Fig 2. Simplified version of the test environment using the “gray box”

method

IV. ADDITIONAL VERIFICATION METHODS

A. Management of transaction flow

To check if the verified device operates correctly, it is
necessary to achieve multiple edge and corner cases. This
involves filling all input and output primary and secondary
requests queues, delaying some necessary types of answers and
blocking of transactions from some modules [13]. HMU
supports the credit-exchange mechanism, which indicates the
devices ability to accept certain type of requests. We added the
special configuration module that randomizes time delays of
sending requests and credits. Management of delays setup
allows to create different test scenarios with overflowing
requests and responses buffers. This mechanism helps to detect
livelocks and deadlocks. These types of system behavior are
hard to implement during system testing.

B. Applying assertions

SystemVerilog Assertions (SVA) is an important subset of
SystemVerilog [14]. The assertions are used to specify the
behavior of the system. The assertions work as follows: we add
some piece of verification code to the test system that monitors
a design implementation for compliance with the specifications.
In addition, the assertions can be used to flag that input stimuli
do not conform to assumed requirements. In the beginning of
the project, it may help to find more bugs and locate them faster.

In HMU verification process the assertions are used for
checking for uncertain and unconnected states of signals. Usage
of coherence protocols in the DUV involves certain restrictions
on the stimuli generation and the state of the cache lines for
different requesters. Thus, additional function of the assertions,
which was used in the test system, is detection of the
discrepancy between coherence protocol specification and
generated requests types in the certain cache lines states. The
disadvantage of this approach is the limitation of the properties
of the verified device that can be checked by assertions.

C. On-the-fly ECC errors insertion

ECC bits are stored in a cell that describing the state of the
cache line. Special submodules of HMU encode the data written
to the RAM and decode data read from RAM. Using ECC bits
allows to detect single, double, parity errors and to correct
single errors. This mechanism is a potential source of errors in
the device. The special module with flexible configuration was
developed to insert single and double errors. This module is
managed by the test system. Frequency and type of error
insertion can be regulated. Detecting and correcting ECC errors
additionally loaded computing logic of verified device.

V. RESULTS

The approaches described in this paper were applied for
standalone verification of Home Memory Unit of 16-core and
2-core with 6 integrated graphic boosters microprocessors with
“Elbrus” architecture.

There are some difference in operating with memory
subsystem in the microprocessors. The 16-core
microprocessor’s HMU has a global directory and DMA cache,
sends coherent requests with accordance to the state in the
global directory, and collects short coherent answers and
coherent answers with data for write operations. For read

49

operations, requester (DMA or L3 cache) collects all the
answers.

The 2-core microprocessor does not have a global directory
in HMU but include DMA cache. HMU provides inter-core
coherence. Coherence requests are sent broadcast to the cores
and DMA. HMU also collects all the answers for write
operations and for read operations only when requester is not
DMA. Integrated graphic boosters are not snooped.

Due to the specificity of the test system construction, some
part of MC controller (the MC adaptor) was also added to the
verified system. Generator of responses from MC controller
with randomized setups was also developed.

In the process of the standalone verification of the Home
Memory Unit we found 28 errors that have not been found by
other means of verification. All errors were corrected. The
distribution of the number of bugs in different subsystems of
the HMU are presented in Table 1. Code and functional
coverage was carried out and 94% coverage was extracted.
Total result indicates about effectiveness of the proposed
methods of standalone verification.

TABLE 1. TYPES OF FOUND BUGS AND ITS QUANTITY

Type of bugs Number of bugs

Coherence protocol implementation 21

Configuration registers 2

Parity checker 1

Performance improvement 2

MC adaptor 3

Total: 28

VI. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

Memory subsystem is one of the most important parts of
microprocessors. Its parts that support coherence protocols are
especially complicated and error-prone. Verification of these
types of devices is time-consuming and labor-intensive work.
The stand-alone verification designed to simplify this task. The
approaches mentioned in this paper can be applied for stand-
alone verification memory subsystem parts regardless of their
implementation.

The proposed approaches have been applied in the
verification of the Home Memory Unit as a part of multi-core
microprocessor memory subsystem with “Elbrus” architecture
developed by "MCST". Test environment and test scenarios
made it possible to detect and correct a number of logical errors
that were not detected by other verification methods.

In the future, it is planned to adopt the test environment for
the forthcoming projects and possible changes in coherence
protocols.

REFERENCES

[1] Hennessy J.L., Patterson D.A. Computer Architecture: A Quantitative
Approach. Fifth Edition. Morgan Kaufmann, 2012. 857 p.

[2] A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test
Oracles for Memory Subsystems of Multicore Microprocessors. Trudy
ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160.

[3] W.K. Lam. Hardware Design Verification: Simulation and Formal
Method-Based Approaches. Prentice Hall, 2005, 624 p.

[4] Burenkov V.S. A Technique for Parameterized Verification of Cache
Coherence Protocols. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4,
2017, pp. 231-246.

[5] Ivanov, Lubomir & Nunna, R. (2001). Modeling and verification of cache
coherence protocols. 129 - 132 vol. 5. 10.1109/ISCAS.2001.922002.

[6] P. A. Abdulla, M. F. Atig, Z. Ganjeiy, A. Reziney and Y. Zhu,
Verification of cache coherence protocols wrt. trace filters, 2015 Formal
Methods in Computer-Aided Design (FMCAD), Austin, TX, 2015, pp. 9-
16.

[7] I.A. Stotland, V.N Kutsevol, A.N. Meshkov. Problems of functional
verification of Elbrus microprocessor L2-cache. Voprosy
radioelektroniki [Issues of radio electronics], ser. EVT., 2015, no. 1, pp.
76-84 (in Russian).

[8] C++TESK Testing ToolKit review
https://forge.ispras.ru/projects/cpptesk-toolkit (12.05.2019).

[9] Standard Universal Verification Methodology
http://accellera.org/downloads/standards/uvm (12.05.2019).

[10] Kamkin A., Chupilko M. A TLM-based approach to functional
verification of hardware components at different abstraction levels. Proc.
of the 12th Latin-American Test Workshop (LATW), 2011, pp. 1-6.

[11] Kelton W., Law A. Imitatsionnoe modelirovanie [Simulation modeling]
// Klassika CS. 3-e izd. SPb.: Piter, 2004.

[12] Petrochenkov M., Stotland I., Mushtakov R. Approaches to Stand-alone
Verification of Multicore Multiprocessor Cores. Trudy ISP
RAN/Proc.ISP RAS, vol. 28, issue 3, 2016, pp. 161-172. DOI:
10.15514/ISPRAS-2016-28(3)-10.

[13] Lebedev D.A., Stotland I.A. Construction of validation modules based on
reference functional models in a standalone verification of
communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue
3, 2018, pp. 183-194. DOI: 10.15514/ISPRAS-2018-30(3)-13.

[14] 1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware
Design, Specification, and Verification Language
https://standards.ieee.org/standard/1800-2017.html (12.05.2019).

50

Standalone verification of IOMMU with

virtualization supporting.

Anton Petrykin1, Irina Stotland2, Aleksey Meshkov3

Department of Verification and Modeling

MCST

Moscow, Russia

petrykin_a@mcst.ru1, stotl_i@mcst.ru2, alex@mcst.ru3

Abstract — This article presents an approach to standalone

verification of I/O Memory Management Unit with virtualization

supporting. We presented the base architecture of the test

system. One of the key problems encountered during verification

was the formation of translation table pages. The number of

translation tables depends on the mode of CPU operation. As a

solution of this problem the approach to the dynamic generation

of translation tables is proposed. The problem of validating the

translation of a virtual address into a physical one using two-level

translation tables is solved. The features of the reference model

implementation are considered. Reference model and test system

which have been used for verification of «Elbrus-12c»

microprocessor IOMMU are discribed. The methods of

communication between test system and IOMMU model are

presented. The results of IOMMU verification are considerd.

Keywords — I/O Memory Management Unit, test system,

reference model, «Elbrus – 12C»

I. INTRODUCTION

 An I/O Memory Management Unit (IOMMU) is a
hardware device that translates virtual address received from
the I/O subsystem requests to proper machine physical address.
IOMMUs have long been used for prohibiting devices from
DMA’ing into the wrong memory and for performance
optimization. With the hardware support of operating system
virtualization IOMMU is also used for extending the protection
and isolation properties of Vms(Virtual Machines) for I/O
operations, supporting isolation of interrupts from devices and
external interrupt controllers and recording of DMA and
interrupt errors to system software that may corrupt memory or
impact VMs isolation[1][2]. Therefore, modern IOMMUs are
quite complex devices that have many modes of operation and
their verification is an important step in the development of the
microprocessor system.

 In the paper we present a case study for functional
verification IOMMU with virtualization supporting of «Elbrus-
12C» microporocessor developed by MCST. The paper
addresses the problem and methods of standalone verification
of IOMMU with virtualization supporting.

 The rest of the paper is organized as follows. Section 2
considers the problems arising from the verification of
IOMMU. Section 3 suggests an approach to the problem of
developing page table lines generator. Section 4 presents a

common approach to the design a test system and describes its
components. Section 5 reveals results. And section 6 concludes
the paper.

II. IOMMU VERIFICATION CHALLENGES.

For hardware support of operating system virtualization,
the translation of a virtual address into a physical one occurs
according to a scheme that includes a two-level page structure.
At the first level, the virtual guest OS address (GVA) is
translated into the physical guest OS address (GPA) using its
translation tables. At the second level, the resulting address is
translated to the physical address (PA) of the hypervisor using
the hypervisor translation tables. Information about the
broadcast address for each device is stored in the device table.
The table consists of Device Table Entry(DTE) elements. Еach
DTE contains information about the Domain ID, host page
table root pointer (HPTP) and guest page table root
pointer(GPTP). In the IOMMU of Elbrus-12C processor, DID
field has an extension and is called EDID. In addition to the
domain number, it contains information about whether the
device belongs to the guest or the hypervisor.

The pages number of translation tables depends on the
mode of device operation and the size of the page themselves.
«Elbrus-12C» processors support three page sizes: 4KB, 2MB
and 1GB. For guest virtual address translation through 4KB
pages, the number of memory hits can reach twenty-five. Each
memory hit takes a long time to process. Therefore, as part of
IOMMU can be used a lot of different caches[1].

It follows from the above that the main goal of IOMMU
verification is to check the correctness of all translation modes
and check the following:

 Translation on pages with various size.

 Error handling.

 Caches correctness.

 Translations for the greatest possible number of
addresses.

 Absence of suspensions

 Absence of unknown logic value (X-state) on output
signals.

51

There are several main problems encountered during the
IOMMU verification of Elbrus-12C processors:

 The large number of translation tables and different
page size.

 Large size of the entire address space.

 Different virtual addresses can be translated into one
physical.

To solve these problems, it was necessary to create the
translation page tables. But their formation for the entire
address space would require a large amount of computing
resources. In paper [3] is presented the approach based on
constraint-random generation page table entries (PTEs) which
we used for IOMMU verification as a part of northbridge of
our previous microprocessor. However the availability of
hypervisor and guest translation caches as well as a large
number of translation pages required for guest virtual address
translation does not allow to use the approach described in [3].
The traditional approach is to generate a static table for a
limited set of addresses which is used for verification
Translation Lookaside Buffer(TLB) of MMU[4]-[6]. But with
using of this approach, it is difficult to verify error handling
and virtual address translation over various size pages.
Therefore, for functional verification of the IOMMU
of«Elbrus-12C» processor, it was decided to develop a
dynamic generator of translation table pages, which generates
rows of translation tables for any virtual address.

III. GENERATOR OF TRANSLATION TABLE PAGES.

The formation of pages in the generator depends on the
translation mode, which is specified directly in the tests and
translation request. The algorithm of the generator work could
be represented in the form of several consecutive steps:

1) Receiving request for translation;

2) Translation request and mode analysis;

3) DTE formation.

4) Translation pages entry.

 Translation modes are divided into single-level or native
translations and two-level translations. In turn, native
translations can take place in the same domain or split into
different domains. Native translations in the same domain
doesn’t require DTE. For the rest of translation modes DTE
formation is necessary. Since a unique translation identifier in
Elbrus-12c processors is an EDID, each DTE element is stored
in an associative array indexed by it. The formation of a DTE
begins with the selection of a random EDID for a given device,
after which the presence of a DTE for a given EDID in the
array is checked and if it is missing, the remaining fields are
formed.

 Translations tables have a 4-level structure and consist of
512 elements. Each line of the table contains information about
the access rights to it and whether it is the last in the translation
structure. In addition, there is a field named ppn(Physical Page
Number), that indicating the line from the next translation
level, in case the line is on the last translation level, it contains

the physical address. Hereinafter the pages of hypervisor and
guest translations will be called HP(Host Page) and GP(Guest
Page), respectively.

For native translation, the address of the first line is formed
from the host page table index (hptp) contained in the DTE,
and a part of the translated virtual address. Physical page
number for each page level is calculated as follows:

 ppn(n) = hptp + 512*(5 - n) +VA(n), 

where n - host page level, VA(n) – the part of translated

virtual address on level n , hptp - table root pointer.

The full list of pages for native translation is presented in

Table 1.

Page level Addres of page Physical Page Number

HP_L4 hptp, VA(4) hptp + 512 + VA(4)

HP_L3 ppn_L4, VA(3) hptp + 512 * 2 + VA(3)

HP_L2 ppn_L3, VA(2) hptp + 512 * 3 + VA(2)

HP_L1 ppn_L2, VA(1) hptp + 512 * 4 + VA(1)

Table. 1. List of pages for native translation.

When generating rows of a two-level table for guest virtual
address translation, the generator first calculates the guest
physical address(GPA) for first guest page(GP_L4) according
to the formula:

 GPA(4) = GPTP + VA(4) 

After that, the pages necessary for the translation of this

GPA to HPA are written in the same way as the recording of

the pages of translation VA to PA in the native mode. The list

of pages for that translation may be seen at Table 2.

Page level Addres of page Physical Page Number

HP_L4 hptp, GPA(4) hptp + 512 + GPA(4)

HP_L3 ppn_L4, GPA(3) hptp + 512 * 2 + GPA(3)

HP_L2 ppn_L3, GPA(2) hptp + 512 * 3 + GPA(2)

HP_L1 ppn_L2, GPA(1) hptp + 512 * 4 + GPA(1)

Table. 2. List of pages for guest physical addres translation into host physycal

address.

Then the GP_L4 page itself is written and after that the
guest physical address of the next page level(GPA_3) is
calculated as the sum of HP_L1 page ppn and part of virtual
address:

 GPA_3 = ppn + VA(3), 

 And so on to get the GPA of the original GVA. For the
obtained GPA, the pages of the last hypervisor translation are
formed, which give the desired HPA. In order to avoid writing
identical lines at different translation levels, guest pages
addresses and ppns are configured as followed:

 addr(x) = {ppn, GPA_x(0)}, 

52

 ppn(x) = hptp + 512 * (9-x) + GPA_x(1), 

 where x – guest page level, GPA_x(0) - the part of the
guest physical address that is not translated by hypervisor
structures

 The list of guest pages for two-level translation is presented in
the Table 3.

Page level Addres of page Physical Page Number

GP_L4 ppn, GPA_4(0) hptp + 512 * 5 + GPA_4(1)

GP_L3 ppn_L4, GPA_3(0) hptp + 512 * 6 + GPA_3(1)

GP_L2 ppn_L3, GPA_2(0) hptp + 512 * 7 + GPA_2(2)

GP_L1 ppn_L2, GPA_1(0) hptp + 512 * 8 + GPA_1(1)

Table. 3. List of guest pages in two-level translation.

To verify the error handling on each level of table can be
prescribed a row of the page table that causing an error. That
table level can be set via test parameters or randomly. In the
same way, translation page sizes can be set through the PS
field in a line of translation table. To verify the error handling
on each level of table can be prescribed a row of the page table
that causing an error. That table level can be set via test
parameters or randomly. In the same way, can be setted the
translation page sizes through the PS field in a line of
translation table.

IV. TEST SYSTEM STRUCTURE.

Test system was implemented with using of SystemVerilog
langueage[7] and Universal Verification Methodology[8]. Use
of this language allows for an easy interface with Verilog and
SystemVerilog devices, and UVM describes a general test
system structure and provides a library of basic verification
components.

The test system includes a set of basic components which
are presented below.

A. Apb (Advanced Peripheral Bus) agent

Apb agent is used to entrance the set of configuration
registers in IOMMU whose access interface is implemented
according to the APB protocol.

B. Register model

A register model is an entity that encompasses and
describes the hierarchical structure of class object for each
register and its individual fields. Every register in the model
corresponds to and actual hardware register in the design.

C. Translation agent

This is the agent in which the translations are generated and
then sent on the DUT(Design Under Test) query interface and
generator of table pages. Translation generation is based on
constrained randomization. To specify some test scenario, one
must define specific constraints for transactions that will be
issued. SystemVerilog offers a native support for constrained
randomization constructs. Translation agent is also receives the
results of the translation from the response interface.

D. Generator of translation table pages and system memory.

Each request received from the translation agent is
processed by the generator as described in Section 3. All lines
of translation pages are stored in system memory.

E. Page table entries(PTE) agent

PTE agent collects information about requested and
received by the device PTEs from system memory. If for any
reason the requested PTE is missing, the system memory will
randomly generate it.

F. Model

The IOMMU reactions were tested using its reference

event model. For reconciling the types and classes of the test

system written in SystemVerilog with the C++ language in

which the reference model is developed the DPI(Directed

Programming Interface) was used. The reference model

accepts input stimuli and generates output responses, which

are then sent to scoreboard.

G. Scoreboard

 Scoreboard receives transactions from transaltion and page
table entries interfaces. After that, they are compared with the
corresponding transactions received from the model. If a
mismatch is detected, the module reports an error in the test
system. Test system structure is presented in Fig.1.

Fig. 1. Structure of a test system.

Model

D
P

I

Scoreboard

System Memory PTE agent

Generator of

translation table

pages

Translation agent

Apb agent

Register model
Translation request

DUT

53

V. RESULTS.

The approaches described above were applied to

standalone verification of the IOMMU of Processor «Elbrus –

12C». Due to standalone verification of the device, 58 errors

in the RTL description that have not been found by other

means of verification were found and corrected. Total result

indicates about effectiveness of standalone verification of I/O

memory management unit.

VI. CONCLUSION.

I/O memory management units are among the important

parts of modern microprocessor systems have to be thoroughly

tested. In this article, we presented a method of translation

table pages forming. The main advantages of the described

approach are:

 no need to create tables for the entire address space.

 the ability to dynamically set the page size.

 convenience of exception checking due to dynamic
generation of page table row fields.

 ease of obtaining maximum coverage, due to the
possibility of calls to any address.

The principles described in the paper do not depend

mainly on the IOMMUs implementation and allow their full

standalone verification.

The proposed approaches have been applied in the

verification of IOMMU as a part of microprocessor «Elbrus –

12C», developed by "MCST". The developed test system and

tests made it possible to detect and correct a number of logical

errors that were not detected by other test methods

REFERENCES

[1] Intel Virtualization Technology for Directed I/O Architecture
Specification. Intel, 2018.

[2] AMD I/O Virtualization Technology (IOMMU) Specification. AMD,
2016.

[3] Lebedev D.A., Stotland I.A. Construction of validation modules based
on reference functional models in a standalone verification of
communication subsystem. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 3, 2018, pp. 183-194.

[4] Alkassar E., Cohen E., Kovalev M., Paul W.J. (2012) Verification of
TLB Virtualization Implemented in C. In: Verified Software: Theories,
Tools, Experiments. VSTTE 2012. Lecture Notes in Computer Science,
vol 7152, pp 209-224. Springer, Berlin, Heidelberg

[5] Alkassar, E., Cohen, E., Hillebrand, M., Kovalev, M., Paul, W.:
Verifying shadow page table algorithms. In: Formal Methods in
Computer Aided Design (FMCAD) 2010. pp. 267-270. IEEE, Lugano,
Switzerland (2010).

[6] Kamkin A., Kotsynyak A.. (2016) Specification-Based Test Program
Generation for MIPS64 Memory Management Units. In: Trudy ISP
RAN/Proc, vol. 28(4), 2016. pp. 99-114.

[7] IEEE Standard for SystemVerilog — Unified Hardware Design,
Specification, and Verification Language. IEEE Std 1800-2012M.
Young, The Technical Writer’s Handbook. Mill Valley, CA: University
Science, 1989.

[8] 1800.2-2017 - IEEE Standard for Universal Verification Methodology
Language Reference Manual.

54

Digital Modelling of Production Engineering for
Metalworking Machine Shops

Vsevolod Kotlyarov
Peter the Great St.Petersburg Polytechnic University

29 Politekhnicheskaya Str., Saint Petersburg
194064, Russian Federation

vpk@spbstu.ru

Alexey Maslakov
Peter the Great St.Petersburg Polytechnic University

29 Politekhnicheskaya Str., Saint Petersburg
194064, Russian Federation
alex.maslakov.ftk@gmail.com

Alexey Tolstoles
Peter the Great St.Petersburg Polytechnic University

29 Politekhnicheskaya Str., Saint Petersburg
194064, Russian Federation

gmlaletol@gmail.com

Abstract—Currently, the engineering industry solves the prob-
lem of implementation of efficient production methods for satis-
faction of small and diverse orders. The key to the solution is to
create automated, adaptable small-scale production sites, which
corresponds to the paradigm of Industry 4.0. The bottleneck of
the development of small-scale production is the preparation of
its technological processes and their documentation.

The technologist and the workers in the workshop use a set
of technological documentation which describes the necessary
technological equipment (workpieces, machines, cutting tools,
mounting fixtures, etc.) and sequences of actions for the manu-
facturing of details.

This article presents a modular approach that reduces the
labor costs for the technological preparation of small-scale met-
alworking production. Its idea is to formalize the technological
processes, allowing generating them and their documentation
from pre-prepared parameterized templates stored in the special
database. Any manufactured detail or its part can be represented
as the structure of its basic geometric components, such as cylin-
ders, cones, parallelepipeds, etc., that require special processing
procedures. For the template of machining operations for each
component, symbolic parameters are fixed, defining the type
and the material of the workpiece used, cutting tool options,
machining modes, etc. The template also records restrictions on
the parameters of sequences of operations used, on the usage of
processing modes depending on the characteristics of instrument,
etc.

The result of formalization is an automatically generated
technological route in the form of an MSC diagram encoding it as
a sequence of macro-operations for the machinery with symbolic
parameters. This symbolic model is adapted to a specific instance
of the detail being manufactured by replacing the symbolic
variables with specific values set by the technologist.

The MSC diagram is supplemented with the results of cal-
culating the time and cost of technological routes, which allows
selection of the most efficient one.

The correctness of the technological routes is ensured in the
process of symbolic verification by checking the permissible
ranges of parameters of the MSC diagram, as well as checking
the correctness of order and compatibility of operations in the
sequence.

The results of the whole process obtained from the MSC
diagram are the set of technological documentation of preproduc-
tion, which, in particular, includes a set of operating cards, and

the fine-tuned schedule of production after its digital modeling
with the real resources of the workshop taken into account.

According to technologists, by applying the described automa-
tion, the time to prepare documentation for details of medium
complexity is reduced from several weeks to 1-2 days.

Index Terms—adaptive manufacturing, production engineer-
ing, small-scale metalworking manufacturing preparation, au-
tomation of the preparation of technological documentation

I. INTRODUCTION

Comprehensive automation of technological processes
based on information technology provides:

• Reduction of the time of pre-production.
• Optimization of labor costs and funds for the manufacture

of products.
• Operational implementation of changes in the process un-

der the external conditions (replacement of technological
equipment, material, cutting tools, etc.) with automatic
recalculation of the process characteristics.

Technological preparation of production (TPP) includes the
following activities:

• Setting of technological problems.
• Selection of the workpiece based on its parameters.
• Development of technological processing routes.
• Selection of technological equipment.
• Formation of technological operations.
• Development of a set of technological documentation.

Fields of automation of technological preparation of produc-
tion include:

• Development of technological documentation.
• Development of control programs.
• Development of technological processes.

The tasks of operational planning and automated production
management are carried out by the manufacturing execution
systems (MES) [1]. They occupy an intermediate place in
the hierarchy of enterprise management systems between the
level of information collection from equipment in workshops

55

done by supervisory control and data acquisition (SCADA)
systems [2] and the level of operations over a large amount
of administrative, financial and accounting information done
by enterprise resource planning (ERP) [1] systems. The key
processes for MES are as follows [3]:

1) Based on the external demand for production (which,
in turn, is based on customer orders, sales plans, etc.),
as well as previous production programs, taking into
account all sorts of nuances and specifics of production
at a particular enterprise, a detailed optimized production
schedule of works and operations for machine tools,
equipment, personnel is produced. In addition, automatic
generation of all the documentation necessary for the
work: production programs, outfits, limit maps, tables
and equipment loading diagrams, etc. is also done.

2) In the course of the direct implementation of production
programs, full dispatching of all operations and their
results (both positive and negative - rejects, delays, etc.)
is carried out.

3) If deviations from the planned programs are identified
due to the external reasons, or when new demand
(orders, etc.) appears, real-time re-planning is performed
with all components corrected accordingly.

It should be noted that there exists an imbalance between
production time and preparation time in single or small-
scale productions in case of re-scheduling of the work of a
production site, because it should be performed for the small
batch of the details and not for the whole series of them.

Nowadays on the Russian market there are three most
popular largest solutions, the products of many years of work
of three scientific centers for developing systems of this class:
PHOBOS system, YSB.Enterprise.Mes system and PolyPlan
system. PHOBOS is traditionally used in large and medium-
sized machine-building enterprises. YSB.Enterprise.Mes orig-
inated from the woodworking industry and focuses on the
sector of medium and small enterprises. The PolyPlan system
has a smaller set of MES functions, but is positioned as
an operational scheduling system for automated and flexible
manufacturing in engineering [3].

However, with all the attractiveness of such systems, due to
the extensive set of functions provided and deep integration
into the production processes in the enterprise at all stages,
their practical implementation is a whole complex and expen-
sive project in itself that not all enterprises, especially small-
scale and individual productions, can afford. In addition to
this, in order to work effectively with MES, high qualification
of its operator is required. The automated workplace of the
technologist given in this article is designed to solve a nar-
rower class of problems - to simplify the TPP for small-scale
machine-building production, it does not require interactions
with other systems, and the results in the form of the required
schedule of work distribution and a set of operating cards can
be obtained in a couple of days of work of a technologist.

Fig. 1. Input detail drawing.

II. FORMALIZATION OF THE TECHNOLOGICAL PROCESS

Let’s look through the features of formalization based on an
illustration of a specific example of work with the developed
system of an automated workplace for a technologist.

The main input information for the technologist is the detail
drawing. It can be done in any graphical design program, for
example, in KOMPAS-3D [4]. The example of the drawing
is demonstrated in the Fig. 1

To manufacture a part technologist chooses a workpiece
for it. Several such workpieces may be selected; to determine
the best fitting of them, all calculations of time and cost of
production must be made for each selected one and compared
to each other.

The next action of the technologist is the splitting of a
given drawing into a set of sketches of elementary surfaces
(ES), the parts of the detail. This step sets the way for the
modular approach to the production technology [5]. Each of
the surfaces is characterized by geometrical parameters and the
number of stages required to process it. The processing stage is
the smallest atomic operation, for example, turning, drilling or
milling. The parameters of the processing stage are the types
of machines on which it can be performed, the cutting tools
to do so and the selected workpiece in the very beginning.
The form for setting information about the processing stages
manually is shown in the Fig. 2. The description of fields and
tables of the form is as follows, from left to right and from
up to down:

• The type of the elementary surface encoded by two digits.
• The unique number of the elementary surface used to

distinguish between the surfaces of the same type.
• The geometrical parameters of the elementary surface,

here the diameter and length are listed.
• The amount of the processing stages to be performed.
• The processing stages, divided into the following

columns: the number of the stage, the name of it (here:
turning), the codes of the applicable machinery for it, the

56

Fig. 2. Processing stage information form.

Fig. 3. The window for setting the information about an elementary surface.

codes of the applicable cutting tools for it (which are
described in the table under this one), the amount of the
overmeasure (here: determined by the chosen workpiece)
and the name of the selected workpiece (here: the first
one).

• The cutting modes, divided into the following columns:
the code of the cutting tool, the type of it (here: cutter),
the three technical characteristics of each cutting tool with
maximum and minimum values and the minimum and
maximum durabilities of the cutting tool.

To translate it into a digital form, a developed solution
is used, the set of user interface screens of which forms
an automated workplace for the technologist (Fig. 3). The
fields and tables on the right are essentially the same, the left
side shows the sorted list of the already loaded surfaces by
types: inner surfaces of revolution, outer surfaces of revolution,
mounting holes and flat contour. There is also a place for the
sketch of the surface in the middle.

Each cutting tool added by the technologist is characterized
by its cutting modes. The parameters of cutting modes affect
the running time and its cost. Usually, data for the cutting tool
is taken from reference catalogs in *.pdf format [6]. The user
interface allows the technologist to simplify entering data from
catalogs through the use of hotkeys: after selecting data in the
document and pressing the CTRL + SHIFT + C combination,
the data is copied directly into the table. This approach reduces
the labor intensity of the manual data transfer and helps to

Fig. 4. The window for creating blocks of elementary surfaces.

Fig. 5. The nesting hierarchy of elementary surfaces.

avoid the human factor such as errors or typos.
To determine the order of processing of elementary surfaces,

further formation of blocks of elementary surfaces from them
takes place. Each block is characterized by its own positioning
data on the machine. The window for creating blocks of
surfaces is shown in Fig. 4. The left side of it shows the list
of the blocks with the button ”Create new block” at the very
bottom of it, the rows on the right side consist of the surfaces
corresponding to each block.

The next step of the formalization of technological process
is the formation of groups of elementary surfaces inside blocks
of elementary surfaces. Such group is a part of the block
that can be processed in one operation without reinstalling
the workpiece into the machine. Thus, the nesting hierarchy
is created (Fig. 5). The operation on a group of surfaces
made up from initial operations on each surface is called
a machining step, each one of them has its own physical
meaning, for example, turning the outer surface of revolution,
drilling through hole or boring the hole. All cutting tools for
all elementary surfaces within a group must be the same.
The window for creating groups is shown in the Fig. 6. The
three tabs on the left are created for each block, they hold
lists of groups of surfaces within the block. The right side
shows the elementary surfaces of each selected group with
their parameters.

In addition to the windows for filling in the information, the
user interface has a menu containing Help section. There is a
reference catalogs searching tool which works in conjunction
with a system application for viewing files in *.pdf format and
is capable of two types of searches:

• The window for keyword search in catalogs is shown
in Fig. 7. After entering keywords in the top field and
selecting catalogs for search in the list, by pressing the
leftmost button a search is performed on the selected
documents. For each catalog, the following sequence of

57

Fig. 6. The window for creating groups of elementary surfaces.

Fig. 7. Keywords search user interface.

actions is carried out:
1) One page of document is read from disk.
2) Search for keywords is performed on this page.
3) If at least one of the keywords is detected, the page

is copied into the resulting pdf document.
4) If the keywords are not found, proceed to the next

page.
As soon as all pages of all catalogs are processed, a
resulting document with search results is written to disk
and opened in the standard pdf document viewer in the
system. The right button cancels the search, the bottom
one allows technologist to add a catalog to the list.

• Search by image, in contrast to search by keywords,
is possible only for catalogs formatted in advance. Its
interface is shown in Fig. 8. After selecting a pdf catalog
from the drop-down list, if the necessary markup infor-
mation exists for it, images, for example, of surfaces to be
processed, are shown. By clicking on them a document
containing information related only to the selected images
is formed and, alike to the search by keywords, is opened

Fig. 8. Image search user interface.

Fig. 9. Database fragment.

in a standard pdf documents viewer. The button on the
right allows technologist to add a catalog to the list.

The usage of these searching tools, especially in conjunction
with copying data into tables with hotkeys, achieves a signifi-
cant reduction in the complexity of data entry for elementary
surfaces.

A special database based on PostgreSQL database manage-
ment system [7] is used to store information entered by the
technologist in the user interface [8]. The Fig. 9 shows a
fragment of its tables, where:

• ”public.tb methods” table stores information for calculat-
ing the time and cost of processing methods for elemen-
tary surfaces.

• ”public.tb app machines” is dedicated to applicable ma-
chines for processing methods.

• ”public.tb processing steps” stores the parameters of the
processing methods;

• ”public.tb app tools” holds information about the appli-
cable cutting tools and cutting modes.

• The four lowest tables are used for linkage between other
tables.

To formulate the resulting technological route for the pro-
cessing of the whole detail technologist must determine all the
groups of elementary surfaces that can be processed together.
There can be several routes constructed this way, the choice

58

of the one is made based on which machinery and which tools
are available and should be used. In the approach presented
here we use the MSC language [9] for the encoding of
the route. MSC is a standardized language for describing
behaviors using message exchange diagrams between parallel-
functioning objects (machines, robots). The main unit of the
diagram is a line starting with a name of a processing stage of
elementary surface followed by its parameters. To construct
such line, only the index parameters of the stage are used,
insofar as all other necessary data can be obtained from the
database based on them. Such index parameters include:

• The number of the processing stage.
• The code of the type of the elementary surface, in two

digits.
• The number of the elementary surface within the same

type.
• The codes of the applicable machinery for the processing

stage.
• The codes of the applicable tools for the processing stage.
• The code of the workpiece used.
• The number of the block of elementary surfaces which

this elementary surface corresponds to.
• The index number of the elementary surface within the

block.
• The number of the group of elementary surfaces within

the block.
• The index number of the elementary surface within the

group.

The resulting parameterized line takes the following
form, for example: Turning(stageNumber, surfaceType1,
surfaceType2, surfaceNumber, [machine1, machine2,
machine3, machine4, machine5], [cuttingTool 1 1,
cuttingTool 1 2, cuttingTool 1 3], workpieceParams.code,
blockParams.number, numberInBlock, groupNumber,
numberInGroup); The diagram comprises a set of these
lines in order set by technologist earlier. The correctness
of the technological routes is ensured in the process of
symbolic verification, which checks the acceptable ranges of
parameters of the diagram, as well as the correctness of order
of the whole sequence [10]. The actual data is taken from
the database and substituted instead of parameters.

III. THE USAGE OF THE FORMALIZED TECHNOLOGICAL
PROCESS

The MSC diagram of the route is supplemented with the re-
sults of calculating the time and cost of each processing stage.
The calculations use formulas stored in the database, they are
partially shown in Table I and Table II5. The individual results
for each processing stage of the route are summarized, which
gives an estimate of the total time and cost of the technological
route. By changing the route parameters and recalculating the
measurements, technologist can choose the most effective one.

The selected technological route thus meets the criteria for
the time and cost but yet does not take into account the
conditions and resources of the workshop in which it will be

TABLE I
FORMULAS FOR TURNING TIME CALCULATIONS.

Formulas Parameters description
Tm = L

n·s · i Tm - machining time
L - estimated length of processing in mm

n - workpiece rounds per minute
s - cutter feed per round in mm

i - the number of passes of the cutter
L = l + l1 + l2 l - the length of the workpiece

in the feed direction, mm
l1 - cutting-in length of the tool
l2 - the length of the tool exit, mm

n = 1000·v
π·d v - the speed of the cutting, mm per minute

d - the diameter of the processed workpiece, mm
i = h

t
h - the amount of overmeasure in mm

t - cutting depth in mm

TABLE II
FORMULAS FOR DRILLING TIME CALCULATIONS.

Formulas Parameters description
Tm = L

n·s Tm - machining time
L - estimated length of processing in mm

n - workpiece rounds per minute
s - cutter feed per round in mm

L = l + l1 + l2 l - the length of the hole, mm
l1 - cutting-in length of the tool
l2 - the length of the tool exit, mm

l1 = dt
2

· ctg(φ) drilling in the solid material
φ - the main angle in the plan, grad

dt - the diameter of the tool
n = 1000·v

π·dt
v - the speed of the drilling, mm per minute

dt - the diameter of the tool, mm

implemented. For this, it is necessary to use simulation mod-
eling of its performance on the equipment in the workshop.
To use the developed simulation algorithm, technologist inputs
three files describing:

• The composition of workshop resources (CNC machines,
robots, maintenance personnel, etc.). The types of oper-
ations for each machine that it can perform are defined.

• The planned technological routes. The number of man-
ufactured parts and the sequence of operations with the
amounts of time of their execution are determined for
each route.

• The priorities of the routes and resources used, as well
as the initial state of the workshop equipment.

The result of the simulation is a timing diagram of the distri-
bution of operations by each machine in the form of a Gantt
chart, a fragment of it is shown in the Fig. 10. Modeling allows
technologist to take into account equipment downtime, the ad-
ditional cost of transporting parts and machine changeover. As
a result, the estimation of the time and cost of the technological
route becomes more realistic. By changing the priorities of
the technological routes technologist obtain several options
for implementing the technological process of the workshop.
By applying a hierarchy of criteria measuring the success
of the work such as time, cost, equipment loading, material
savings, etc. various problems of multicriteria optimization can
be solved [11].

59

Fig. 10. Timing diagram fragment.

Fig. 11. Operating card.

For each selected optimized version of the technological
route, technological documentation of production preparation
is automatically generated in the form of the operating card
[12], its example is shown in Fig. 11 [13].

IV. CONCLUSION

The paper considers the problem of technological prepa-
ration of single and small-scale production, which area is
characterized by imbalance of work between preparation and
implementation of production. The approach to its automation
based on modular technology is proposed. The important
properties of automation system are demonstrated:

1) The ability to adapt to specific production conditions
such as different equipment, resources, orders and sup-
port staff.

2) Significant reduction of the complexity of creating a
technological route for an order using a special auto-
mated workplace for the technologist

3) Operational planning and scheduling of the technologi-
cal process of the workshop.

4) Selection of the optimal characteristics of production
processes during hierarchical multi-criteria optimization.

According to existing estimates the platform provides a multi-
ple increase in productivity and a reduction in labor intensity
and in amount of time of the preparation of technological
documentation for engineering production.

V. ACKNOWLEDGMENTS

The work was financially supported by the Ministry of
Education and Science of the Russian Federation in the
framework of the Federal Targeted Program for Research
and Development in Priority Areas of Advancement of the
Russian Scientific and Technological Complex for 2014-2020
(14.584.21.0022, ID RFMEFI58417X0022).

REFERENCES

[1] Frolov E.B. Zagidullin R.R-b. MES-sistemy, kak oni est’ ili evolyut-
siya sistem planirovaniya proizvodstva (chast’ II) [MES as they
are or the evolution of the production planning systems (part
II)]. URL: http://www.fobos-mes.ru/stati/mes-sistemyi-kak-oni-est-ili-
evolyutsiya-sistem-planirovaniya-proizvodstva.-chast-ii.html (Retrieved
01.04.2019) (in Russian).

[2] Davidyuk Y. SCADA-sistemy na verkhnem urovne ASUTP
[SCADA systems at the top level of advanced process control
systems]. Intelligent Enterprise, 2001, vol. 30, no. 13. - URL:
https://www.iemag.ru/platforms/detail.php?ID=16479 (Retrieved
01.04.2019) (in Russian).

[3] Garaeva Y. Zagidullin R.R-b. Tsin S.K. Rossiiskie MES-sistemy, ili Kak
vernut’ proizvodstvu optimizm [Russian MES or how to return optimism
to production]. SAPR i grafika [CAD and graphics], 2005, vol. 11. -
URL: https://sapr.ru/article/14614 (Retrieved 01.04.2019) (in Russian).

[4] Statsenko D. Prilozheniya i rabota bez napryazheniya [Applications and
work without stress]. Stremlenie [Tendency], 2017, vol. 1, no. 18. -
URL: https://kompas.ru/source/articles/3.pdf (Retrived 01.04.2019) (in
Russian).

[5] Bazrov B.M. Modul’naya tekhnologiya v mashinostroenii [Modular
technology in mechanical engineering], Moscow ”Mashinostroenie”
[”Mechanical engineering”], 2001, 366 pp. (in Russian)

[6] SANDVIK COROMANT Instrument i osnastka dlya tocheniya na
stankakh [Tools and equipment for turning on machines], 2015,
1253 pp. - URL: http://www.lab2u.ru/katalog-sandvik-coromant-2015-
metallorezhushchii-tokarnyi-instrument-i-instrumentalnaia-osnastka-
dlia-tocheniia-obrabotki-kanavok-otrezki-rezbonarezaniia-reztcy-so-
smennymi-rezhushchimi-plastinami-iz-tverdogo-splava-kompanii-
sandvik-koromant-lab2u.html (Retrived 01.04.2019) (in Russian).

[7] The PostgreSQL Global Development Group Postgres
Pro Standard 11.2.1 Documentation, 2019. - URL:
https://postgrespro.ru/docs/postgrespro/11/index (Retrived 01.04.2019)

[8] Cherepovskii D.K., Eizenakh D.C., Kotlyarov V.P. Arkhitektura bazy
dannykh dlya sozdaniya tekhnologicheskikh marshrutov melkoseriinogo
proizvodstva [The database architecture for the creation of the technolog-
ical routes for the small-scale production], Sovremennye tekhnologii v
teorii i praktike programmirovaniya [Modern technologies in the theory
and practice of programming] conference proceedings, Saint-Petersburg,
2019, 3 p. (in Russian).

[9] Recommendation ITUT Z. 120. Message Sequence Chart (MSC),
11/2000.

[10] Baranov S., Kotlyarov V., Letichevsky A., Drobintsev P. The Technology
of Automation Verification and Testing in Industrial Projects. Proc.
of St.Petersburg IEEE Chapter, International Conference, May 18-21,
St.Petersburg, Russia, 2005 - pp. 81-86.

[11] Voinov N., Chernorutsky I., Drobintsev P., Kotlyarov V. An approach
to net-centric control automation of technological processes within
industrial IoT systems. Advances in Manufacturing, 2017, vol. 5, no.
4, pp. 388-393.

[12] Eizenakh D.S., Cherepovskii D.K., Kotlyarov V.P. Sistema generatsii
operatsionnoi karty tekhnologicheskogo protsessa dlya melkoseriinogo
mashinostroitel’nogo proizvodstva [The system for generation of the op-
erating card for the technological process for a small-scaled mechanical
engineering production], Sovremennye tekhnologii v teorii i praktike
programmirovaniya [Modern technologies in the theory and practice of
programming] conference proceedings, Saint-Petersburg, 2019, 46 p. (in
Russian).

[13] GOST 3.1404-86 Edinaya sistema tekhnologicheskoi dokumentatsii
(ESTD). Formy i pravila oformleniya dokumentov na tekhnologich-
eskie protsessy i operatsii obrabotki rezaniem [Unified system for
technological documentation (USTD). Forms and rules for paper-
work on technological processes and machining operations]. - URL:

60

http://docs.cntd.ru/document/1200012135 (Retrieved 01.04.2019) (in
Russian).

61

Reputation Systems in E-commerce: Comparative
Analysis and Perspectives to Model Uncertainty

Inherent in Them

Nosovskiy Mikhail M., Degtiarev Konstantin Y.
School of Software Engineering

National Research University Higher School of Economics
3 Kochnovsky Proezd, Moscow, Russia

mmnosovskiy@edu.hse.ru, kdegtiarev@hse.ru

Abstract — E-commerce is a runaway activity growing at an
unprecedented rate all over the world and drawing millions of
people from different spots on the globe. At the same time, e-
commerce affords ground for malicious behavior that becomes
a subject of principal concern. One way to minimize this threat
is to use reputation systems for trust management across users
of the network. Most of existing reputation systems are
feedback-based, and they work with feedback expressed in the
form of numbers (i.e. from 0 to 5 as per integer scale). In
general, notions of trust and reputation exemplify uncertain
(imprecise) pieces of information (data) that are typical for the
field of e-commerce. We suggest using fuzzy logic approach to
take into account the inherent vagueness of user’s feedback
expressing the degree of satisfaction after completion of a
regular transaction. Brief comparative analysis of well-known
reputation systems, such as EigenTrust, HonestPeer, Absolute
Trust, PowerTrust and PeerTrust systems is presented. Based
on marked out criteria like convergence speed, robustness, the
presence of hyperparameters, the most robust and scalable
algorithm is chosen on the basis of carried out sets of computer
experiments. The example of chosen algorithm’s (PeerTrust)
fuzzy version is implemented and analysed.

Keywords — E-commerce, Reputation system, Peer-to-peer
computing, Trust management, Uncertainty, Fuzzy logic,
Linguistic variable

I. INTRODUCTION

E-commerce is a buying-selling runaway activity, which
is widening at an unprecedented rate all over the world and
inveigling into fascination of various e-stores people of all
ages. Ever-growing number of various websites and apps
focusing on e-commerce domain makes it simple and
alluring to find and to buy immediately almost anything
whatever client’s heart desires [23].

There is no doubt that e-commerce sales opportunities
are rapidly progressing day by day. Owing to Internet, many
businesses bring their products and services to customers
literally in eyewink. The e-commerce share of total retail
sales in the United States amounted to 10% in 2018, in
expectation of attainment of 12.4% by 2020 with further
strengthening its ground [28]. With such perspectives in
mind it is easy to realize why e-commerce entrepreneur

position becomes so attractive. With an estimated 95% of
purchases that will be made online by 2040 and expected
growth of year to year sales standing at the level of 15%, the
opportunity to find a niche for selling products online has
massive indisputable potential [22]. During the last 5 years
the amount of retail sales raised from $1.3 billion to $2.8
billion. The latter is expected to nearly double (up to $4.8
billion) by the end of 2021 [20].

One of the most growing types of e-commerce is online
marketplace that can be defined as a website or app that
facilitates shopping from many different sources [7].
Among well-known and successful examples of online
marketplaces eBay, Amazon, Rakuten (worldwide) and
Avito, Ozon (in Russia) can be mentioned. Online
marketplace acts as a platform integrating buyers and
sellers. Being a peer-to-peer (P2P) network, it allows buyers
to purchase any goods or services offered by sellers through
this online platform. Usually, peers (people or businesses)
communicating through online marketplace remain in the
status ‘strangers’ with respect to each other. They don’t
have at their disposal reliable information about alter peer,
whether it is a buyer or a seller. Therefore, peers must
manage the risk associated with transactions on condition
that no prior experience and knowledge concerning mutual
reputation of sides exists [25]. It becomes possible to
address this problem by means of developing a system on
top of the network that should help peers to evaluate their
past experience with other peers and to manage trust
between them as well as reputation of each peer involved.
This kind of systems is called reputation systems.

Various implementations of reputation systems exist
starting with very simple to more complex ones designed
mostly for P2P file-sharing networks [6,10,11,27]. No doubt
that such systems have a positive impact on peer’s
experience as they help to distinguish trustworthy peers
from ill-intentioned and unreliable opponents. For example,
in reputation system used by eBay, one of e-commerce
leaders, buyers and sellers have a chance to rate each other
with numeric scores +1, 0 or -1 after each carried out
transaction. The overall reputation of a participant is
calculated as a sum of scores earned over the last six months

62

[10]. At that all such systems rest upon notions of trust and
reputation. Trust (or, local trust) represents personal
experience (attitude) of a user regarding another user, while
reputation constitutes an aggregate of these individual trust
values on the scale of the whole community. In the long run
calculation of local trust and corresponding aggregates
underlies implementations of all known reputation systems.

Despite the practical effectiveness of these systems,
there is a substantial drawback inherent in them, viz. none
of them can handle uncertainty “hidden” in online
marketplace’s data. The latter means data that relate to all
transactions accomplished on the marketplace along with
data collected from users after each transaction and
metadata concerned with every user in the marketplace.

The primary concern of the paper is to provide the
overview of best known reputation systems and to undertake
their general comparative analysis on the basis of several
key factors (criteria) – they are speed of convergence,
complexity of calculations, use of hyperparameters
expressing user’s preferences, robustness and general
system’s suitability to handle imprecision and uncertainty of
data. In the first place these factors are chosen to convey the
requirements of key stakeholders who are owners and
developers of a marketplace as well as its users. For the first
group of stakeholders general system’s effectiveness
becomes important, and it is attributed above all to the
efficiency of its functioning, computational resources
needed to perform the work and ability for customization.
Users are mostly interested in reliability of system’s output
and how well it suits each given user. The last factor
mentioned above reflects how naturally specific
implementation of the system can be extended to handle
data uncertainty and imprecision, since the latter being an
inherent part of virtually any system reveals itself in
different forms. The recognition of such manifestation forms
of uncertainty becomes a task of prime importance to
represent appropriately (model) its distinctiveness.
Consequently, fuzzy logic is getting one of pivotal theories
that captures naturally the phenomenon of imprecision and
uncertainty [34].

The rest of the paper is organized as follows: in section
II notions of trust and reputation, difference between them,
are considered. Uncertainty in the marketplace and verbal
assessments that are inherent in reputation systems form the
contents of section III. Some basic terms and definitions
relating to the field of fuzzy sets and logic are covered in
section IV. Section V is devoted to the brief comparison of
well-known reputation systems (EigenTrust, Absolute Trust,
HonestPeer, PowerTrust and PeerTrust) and stressing their
key differences as well as intrinsic similarities. Setup of
computer-based experimental part of the work (parameters
and their values used) constitutes the material of section VI,
whereas the results of carried out experiments are discussed
in section VII. Thereafter, the transition from crisp to fuzzy
PeerTrust algorithm (basic example and analysis of such
transition’s outcome) is presented in last but one section
VIII. Concluding remarks and observations are drawn in
section IX.

II. TRUST AND REPUTATION. WHAT IS THE DIFFERENCE
BETWEEN THESE TERMS?

Trust and reputation are the main concepts underlying
vast majority of reputation systems. In order to clearly
recognize the purpose of reputation systems, we need to
define what do trust and reputation in terms of online
marketplace stand for. Diverse sources give different
definitions of the term ‘trust’. The basic definition presented
in Oxford English Dictionary reads as follows: “Trust is a
firm belief in the reliability, truth, or ability of someone or
something” [29]. However, such definition cannot lay claim
to completeness, since notions of trust and reputation as
applied to peculiarities of Internet-based activities must be
defined in a more context-specific way. Among other
things, Alam & Paul define trust as “a belief, the trusting
agent has in the trusted agent’s willingness and capability
to deliver the services that they are mutually agreed on in a
given context and in a given time slot” [1]. In addition,
Wang & Vassileva associate term ‘trust’ with “a peer’s belief
in another peer’s capabilities, honesty and reliability based
on its own direct experiences” [24]. Starting from
individual judgments and predictions, Gambetta state that
“… trust is a subjective probability that relies on context
and reputation, it describes how secure a situation is even
though risk is associated with it” [5]. It can be noticed that
trust is mainly linked to belief that peers (agents) mentally
possess in malicious P2P environment. Thus, trust can be
viewed as a soft factor of the system that is difficult to
express precisely and in complete form. It is tied to
distinction of numerous generally inhomogeneous
interactions between peers, organization of the network, in
which humans play a pivotal role.

For reputation term situation seems resembling, i.e. there
is also no conventional definition that most of sources agree
on. According to [24], reputation is defined as “peer’s belief
in another peer’s capabilities, honesty and reliability based
on recommendations received from other peers”. On the
other hand, already cited above Alam & Paul propose to
consider reputation as “aggregation of all recommendations
provided by the third-party recommendation agents about
the quality of the trusted agent” [1]. Abdul-Rahman & Hailes
define reputation as “an expectation about an agent's
behavior based on information about its past behavior” [2].
Kreps & Wilson link reputation to characteristic or attribute
“ascribed to one person by another person (or community)”
[3]. A complete (at least, voluminous) overview of
definitions relating to trust and reputation can be found in
[8]. In the present work we use definitions for terms ‘trust’
and ‘reputation’ from [24] since both definitions agree with
basic concepts of reputation system and interaction within
P2P community.

Even though trust and reputation are very closely related
concepts, and many sources simply use them virtually as
synonyms, still there is a major difference to emphasize.
While trust is subjective in nature, and it expresses the local
attitude of a peer regarding another agent on basis of his/her
own past experience, reputation serves as a global and
public perception of a given peer in the midst of other peers.
With this point in mind, we may list those important (or,
core) characteristics of trust and reputation that must be

63

taken into consideration when considering reputation
systems – namely, they are:
(1) Context awareness (sensitivity) – trust or reputation of a
peer is dependent on what the context of communication is.
For instance, a peer can be really trustworthy in delivering
books, but unreliable in selling electronic accessories,
(2) Multi-faceted nature (diversity) – even in the same
context, peer can evaluate the quality of communication
with another peer on the strength of several aspects. In the
case of online marketplaces delivery time, quality and price
of goods (services) can be mentioned. While the context-
sensitivity of trust underlines the fact that the trust in the
same agent may vary with reference to different situations,
the multi-faceted nature characteristic stands for
manifoldness of trust. It definitely plays a substantive role in
deciding whether an agent is trustworthy to interact with or
not [24],
(3) Dynamism – apparently, levels of both trust and
reputation increase or decrease in view of gaining
experience (direct interaction). Such changes may alternate
in due course depending on arising situation in the system,
with a clear-cut declining tendency observed with time [24],
(4) Imprecision and uncertainty – it is not very habitual for
humans to operate with estimates of trust and reputation in
the form of numbers. Without a doubt, it is not difficult to
perform relatively simple calculations even in passing, but
explanations and interpretations are usually based on verbal
forms (words, phrases and short sentences in natural
language). The peer can be classified as “very trustworthy”,
“not too trustworthy” or in some likewise manner. Thus, we
express gradations (imprecise estimates) of the extent, to
which the peer is reputed as trustworthy or not. The bounds
of gradations (verbal granules) are inexact, but nevertheless
linguistic forms are easily perceived and processed by
specialists and ordinary people in talks, reasoning and
decision-making process. Observing definitions above, we
may conclude that trust is a subjective category, and being
apparently fuzzy it can be associated with verbal assessment
values (granules). The vagueness of the trust is linked
outright to uncertainty of reputation as well.

III. UNCERTAINTY IN MARKETPLACE DATA. VERBAL
ASSESSMENTS ARE VERY NATURAL IN REPUTATION

SYSTEMS

The paper is focused on reputation systems as applied to
e-commerce field (and specifically online marketplaces).
Because of that it is essential to consider what kind of data
concerning peers and their transactions are available, and
what sort of data peer’s feedback about fulfilled transaction
contains. In online marketplaces there are two types of peers
– they are sellers and buyers; every transaction implies
participation of one seller and one buyer. It is important to
distinguish these types of ‘players’, because they gain trust
and reputation that differ by their gist. In the present work
we consider three types of marketplace data:
(1) Peer data, i.e. a set of general data pieces that relates to
peer itself (personal data, registration date, etc.),
(2) Transaction data – general data about transaction held
between seller and buyer (delivery time, payment time, total

sum of transaction, date of transaction, etc.),
(3) Feedback data refer to data collected from both seller
and buyer after completion of each transaction (goods
quality, communication quality, shipping service reliability,
etc.).

Most of the existing reputation systems work only with
peer’s feedback [6,10,11,16,27]. In general, feedback
provides some subjective assessment of experience that a
peer has with another peer in the course of transaction’s
realization. But in certain cases, such experience cannot be
thoroughly expressed in terms of integers -1, 0 and +1 as it
occurs in eBay system. Why do we think so? Firstly,
regarding feedback as a number means neglecting diverse
aspects of experience such as those mentioned above.
Secondly, and this fact was also underlined earlier, it is more
natural for humans to think of evaluating experience in
terms of some ordinal scale stretching from “very bad” label
to “very good” instead of using “good”, “neutral” or “bad”
plain marks as linguistic equivalents of -1, 0 and +1. It
should be emphasized that in case of extended scale’ use, its
grades may overlap with each other, since each label or
grade stands not for a single value, but for a range of values
instead. For instance, there is no clear-cut border line
between values (labels) “very bad” and “bad”, but almost all
people may differentiate these values mentally while talking
about them, impacting information chunks to others.

Similar situation comes to pass with reference to
transaction data. For example, let us consider delivery time
of basic electronic accessories from Moscow to Saint-
Petersburg. We know that they are normally delivered
within N days. Is it “quickly”, “slowly” or “neither slowly,
nor quickly” for a client? Maybe it is a little bit slowly, but
not too much? What can be said about N+2, 2N days or
even 5N days? At some point it becomes obvious that
delivery time can be associated with label “slowly” or even
“very slowly”. But what do we mean by that some point?
For different people it occurs at different moments, which
are not fixed (crisp), and this is when imprecision and
uncertainty (fuzziness) of these data reveal themselves.

IV. FUZZY LOGIC THEORY. SOME BASIC TERMS AND
DEFINITIONS USED IN THE STUDY

Taking into account uncertainty inherent to notions of
trust and marketplace data, we need to consider its formal
representation for a possible use in trust management and
reputation systems (models). The concept of uncertainty is
many-sided and rich; furthermore, uncertainty
‘accompanies’ any interactions of humans with real world
[34]. In this connection, reputation systems exemplify active
communication of peers based on the exchange of
information that is often a matter of human perceptions and
interpretations to a various extent. Much depends here on
cognition and verbal assessments expressed in the natural
language. Such perceived units can be mostly seen as
granules with ‘soft’ bounds rather than exact quantities
having unified meaning and interpretation by all parties
involved into the process. The theory of fuzzy logic (FL)
extends the ontology of mathematical research in the context
of formation of a composite methodology that leverages
quality and quantity [9]. It provides ample means to model

64

the “perceived meaning of words/phrases conveying the
expert opinions (estimates) in a graded fashion” [30]. The
following is a quick glance at main concepts and definitions
concerned with fuzzy logic as used in the present study.

Definition 1. Linguistic variables (LV) – variables whose
values are words, phrases or sentences (linguistic terms)
expressed in natural or artificial language [26]. In short, we
can state that LV constitute a form of information
granulation serving as a base for further transition of those
granules to computable counterparts [31]. For example, if
we consider the case of delivery time from point A to point
B, the label (term) “quickly” is one of possible linguistic
values assigned to the variable Delivery Time. Its whole
term-set can be represented as T(Delivery Time) = “quickly” +

“very quickly” + “slowly” + “more or less quickly” + … ,
where sign ‘+’ denotes the aggregate of linguistic granules
rather than arithmetic sum operation.

Linguistic variable Delivery Time is defined on the
universal set U (realistic range of numeric values
representing the delivery time in particular situation), i.e.
each element stands for the time (minutes, hours, etc.)
that can be associated as a result of human’s perception
(judgment) with corresponding terms to various degrees.
Definition 2. Let U be a set of elements (objects) that are
denoted generically as x (U={x}); fuzzy set is a set
of ordered pairs , where mapping

 is a (type-1) membership function of a fuzzy
set A. Value is a degree (grade) of membership of x
in the set A, and U is a problem’s domain (universal set).
Membership function (fuzzy set) represents possibility
distribution of x-values over domain U. It can be expressed

as aggregation or union of pairs

, , in continuous and discrete cases,
correspondingly.
Definition 3. Let A be a fuzzy set on U, then a-cut of A is a
crisp (non-fuzzy) set composed of all , whose
grades of membership in A are greater or equal to a [26].
Formally, can be expressed as . A fuzzy
set A may be decomposed into and restored from a-cut sets

through the resolution identity [12, 13], i.e. , or

, .

An integral part of any formal modeling approach is closely
related to the use of functions. Along with pervasive
processing of non-vague objects, fuzzy quantities in last
three decades became wide-spread in algorithms covering
enormous circle of application domains. The need to extend
the possibility for functions to operate with arguments
having the form of fuzzy sets has led to formulation of
extension principle [26,32,33]. As its name speaks for itself,
it is directed to spreading nonfuzzy mathematical concepts
to fuzzy ones [4]. It is specifically what is required to handle
aspects of uncertainty (fuzziness) with reference to existing

reputation systems.
Definition 4. Assume is a mapping from universal set U
to set V, and A is a fuzzy set defined on U (for the sake of
simplicity we may consider finite representation of such set,
i.e.). Relying
on the extension principle, the image of A under
mapping is obtained as follows:

.

In other words, the image of A under can be deduced
from the knowledge of the images .
Definition 5. The process of representing initial data (e.g.
linguistic values) as membership functions is called
fuzzification; most of applications require to perform at final
stages the opposite translation from fuzzy functional forms
to crisp values – this is achieved through defuzzification
procedures [30,32,34,37].

V. BRIEF COMPARISON OF EXISTING REPUTATION
SYSTEMS – THEIR DIFFERENCES AND INTRINSIC

SIMILARITIES

The number of publications devoted to trust
management and reputation systems is pretty imposing, and
it is growing from year to year [10,11,16,17,24,25,27]. In
the paper we wittingly touch upon (just brief overview
augmented with performance considerations) the most
significant systems that proved themselves as effective,
robust and applicable to online marketplace reputation
management. It is worth mentioning that only those systems
that do not use basically fuzzy logic concepts are reviewed
in the paper. For instance, systems that utilize fuzzy
inference schemes or other fuzzy-logic related notions
[9,18,19] constitute an interesting research topic, but on
level with other relevant cases it is outside of the scope of
the present paper.

Results of the conducted analysis of existing sources
provided a basis for selection of those criteria that can be
classified as crucial from the viewpoint of systems’
comparison. They can be described concisely as follows:
(1) Speed of convergence – iterative algorithms form a core
of nearly all reputation systems. Thus, one of important
aspects of such algorithms is how fast they converge and
produce a result. This feature is covered as a principal one
in most of papers related to reputation systems
[10,11,25,27],
(2) Robustness, i.e. the criterion concerned outright with the
main purpose of every reputation system, namely, the
prevention of malicious attacks. Therefore, it becomes
essential to measure how well a given system is able to hold
out against malicious peers’ activities. Such experiments are
covered by S.D. Kamvar, M.T. Schlosser, H. Kurdi, N. Chiluka,
N. Andrade, Y. Wang, L. Xiong, et al. in [10,11,16,24,25,27];
however, it is important to mention that papers referenced here
cover different types of malicious behavior,
(3) Hyperparameters – their presence is an important point
to consider in the process of system’s deployment, since

Îx U

ÍA U
{ }A(x,μ (x))

Aμ : x [0,1]®

Aμ (x)

μ ()

Î
ò A

x U

x
x

μ ()

Î
å A

x U

x
x

(),μ()x x μ() [0,1]Îx

αA Îx U

αA { }|μ () α³Ax x

1

α
0

α= òA A

α
α
α=åA A α [0,1]Î

f

1 1 2 2μ () μ () ... μ ()= + + +A A A n nA x x x x x x
()f A

f

()1 1 2 2() μ () μ () ... μ ()f f= + + + =A A A n nA x x x x x x

1 1 2 2μ () () μ () () ... μ () ()f f f= + + +A A A n nx x x x x x
f

1 2(), (),..., ()f f f nx x x

65

they show the extent, to which the system is customizable.
But at the same time, factor of their presence is a ‘double-
edged sword’, inasmuch as, on the one hand, tuning of
hyperparameters may lead to better performance of a
specific system. On the other hand, it enhances significantly
the complexity of deploying the system,
(4) Handling data imprecision and uncertainty. Most of
hypothetical or artificial systems do their work in the
presence of uncertainty. The latter is often linked to human
factor being an integral part of a system in the context of
verbally defined and/or interpreted data. The latter are
elicited from active discussions with stakeholders and
estimations commonly used as inputs in calculations
provided for algorithms underlying system’s work specifics.
Those pieces of information are often ‘soft’ (imprecise) in
their nature, and it opens manifest way for the use of fuzzy
logic theory in models of reputation systems. Hence, the
comparison of algorithms can be performed in the view of
how well system (algorithm) adapts fuzzy logic extension.

A. EigenTrust Algorithm
 EigenTrust system is originally proposed for a P2P file-
sharing network by S.D. Kamvar, M. Schlosser and H. Garcia-
Molina in the paper that became one of the most cited papers
on reputation systems [10]. EigenTrust calculates a global
trust value for each peer based on his/her past behavior by
incorporating opinions of all peers in the system [16].
Opinions concerning a particular peer are represented as a
local trust value. After each communication peer assesses
his/her experience by the value from restricted set
comprised by integers -1, 0 or 1. The local trust value is an
aggregation of all communication experience assessments. It
was shown how to normalize local trust values in a way that
leads to elegant probabilistic interpretation similar to the
Random Surfer model and efficient algorithm to aggregate
these values [10,14]. Pre-trusted peers that can be seen here
as a hyperparameter (it must be chosen in advance for the
whole system to operate) are used to guarantee convergence
and breaking up malicious collectives. What is more, the
choice of pre-trusted peers is important, and it can
compromise the quality of system to a marked degree [10].
As also shown in [10], for a network with 1,000 peers the
algorithm converges after completion of less than 10
iterations. Theoretical base for fast convergence of
EigenTrust algorithm is discussed by T.H. Haveliwala and
S.D. Kamvar in [21]. Robustness of the system is evaluated
under several threat models, and the system shows good
overall performance in all cases [10]. For both Individual
malicious peers and Malicious collectives threat models,
EigenTrust system outperforms non-trust-based systems
showing five to eight times better results with fraction of
inauthentic downloads (FID) less than 0.2 for every setting.
For Malicious collectives with camouflage case (model 3),
system shows slightly less impressive results, but still
Malicious Spies threat model (fourth model) tends to be the
best strategy for malicious peers to attack trust-based
network [10].

As already mentioned earlier, EigenTrust system uses
aggregated local trust values that must be normalized
beforehand to avoid system’s ‘demolition’ due to

assignment of very high and very low local trust values [10].
Normalized local trust value can be calculated as
follows:

where is a local trust value. The shown way of
normalization isn’t free of drawbacks. For one thing,
normalized values don’t draw a distinction between a peer
with whom a given peer i did not interact and a peer with
respect to whom peer i has had a poor (negative) experience.
Secondly, values are relative, and they cannot be
interpreted easily in the absolute sense [10]. Thus, an
attempt can be made to extend EigenTrust algorithm with
fuzzy logic notions to obtain transparent and interpretable
modification of the original computational scheme.
Particularly, calculation of local trust value may be altered
to accumulate different types of marketplace data, but
further study that concerns the impact of fuzzification on
probabilistic interpretation of EigenTrust algorithm is
required.

B. HonestPeer Algorithm
 HonestPeer as an enhanced version of EigenTrust
algorithm is discussed by H. Kurdi [11]. The algorithm
endeavors to address one of the major problems with
EigenTrust system, viz. pre-trusted peers. HonestPeer
minimizes the dependency on that pre-trusted set of peers by
choosing one honest peer dynamically for every
computation step of global trust value (GTV). This honest
peer, i.e. the peer having the highest global trust value, plays
a crucial role in further computations of GTV. The speed of
HonestPeer’s convergence is almost the same as for
EigenTrust algorithm, despite the need to perform additional
calculations. Following [11], two benchmarks are
considered – they are EigenTrust algorithm and no
algorithm. Performance of HonestPeer algorithm is
estimated under different experimental settings embracing
variable number of users and files as well as number of pre-
trusted peers and with the examination of percentage of
inauthentic file downloads by good peers and success rate of
good peers (success rate of good peers equals the ratio of
#valid files received by good peers to #transactions
attempted by good peers).
 HonestPeer algorithm surpasses EigenTrust in
effectiveness and capability to ‘help’ good peers to
download valid safe files. This fact can be attributed to the
ability of HonestPeer to choose honest peers dynamically
after each round, while in case of EigenTrust pre-trusted
peers are chosen statically irrelative of their performance
[11]. Since HonestPeer is basically an enhancement of
EigenTrust algorithm, the use of fuzzy logic may be
appropriate and explicable as a practical matter to address
those forms of uncertainty that are typical for system under
consideration.

C. PowerTrust Algorithm
 The reputation system PowerTrust, which is based on
power-law distribution of peer feedbacks discovered after
examination of 10,000+ eBay users’ transaction traces, is

ijc

max(,0) max(,0)ij ij ij
j

c s s= å

ijs

ijc

66

covered by R. Zhou and K. Hwang [15,27]. In PowerTrust
system a few power nodes are selected dynamically
according to their reputation. These nodes can be
dynamically replaced, if they become less active or
demonstrate unacceptable behavior. Good reputation of
power nodes is accumulated from the operation history of
the system – functional modules of PowerTrust system as
well as flow scheme that relates to collection of local trust
scores and global reputation aggregation are visually
demonstrated in [27]. Without going into particulars, it
should be mentioned that raw data input for PowerTrust is
treated as local trust scores, which are then aggregated to
obtain global reputation score of each peer. The Regular
Random Walk module supports the initial reputation
aggregation, while Look-ahead Random Walk (LRW)
module is used to update the reputation score periodically.
LRW also works with Distributed Ranking Module to
identify power nodes. The system leverages power nodes to
update Global Reputation Scores (vector V) [27].
 The experimental performance of PowerTrust in terms
of reputation convergence overhead to measure aggregation
speed, ranking discrepancy to measure the accuracy, and
root-mean-square (RMS) aggregation error to quantify
system’s robustness to malicious peers shows that
PowerTrust algorithm outperforms EigenTrust by more than
factor 1.5 in case of convergence speed [27]. Under all
settings PowerTrust exhibits its robustness against collusive
peer groups of various sizes.
 In much the same way as for both EigenTrust and
HonestPeer, the point of fuzzy logic’s application to
PowerTrust algorithm is a local trust value. Several
linguistic terms may be defined on [0,1] interval to be used
consequently for computation of global reputation. It is of
definite interest to research whether the use of fuzzy logic
may affect properties of PowerTrust algorithm or not.

D. Absolute Trust Algorithm
 The algorithm for aggregation of trust among peers in
P2P networks (Absolute Trust algorithm) was presented by
S.K. Awasthi and Y.N. Singh [17]. Most of reputation
systems are built upon scenario when all peers evaluate
other peers by way of assigning foregoing local trust values
that are a subject for further aggregation aimed at obtaining
peers global reputation scores. In general, three different
types of evaluation scenarios (one-to-many, i.e. one person
is evaluating many persons, many-to-one scheme, under
which many persons are evaluating one person, and one-to-
one case, which implies that one person is evaluating
another person) can be identified. In an effort to strengthen
feedback’s reliability in many-to-one evaluation scheme,
any evaluation provided must allow for the competence of
evaluator (evaluating party in the system) in computations
via proportional weight’s factor. Global trust of j-th peer can
be used by way of weight in aggregation of local trust scores
in calculation of any given i-th peer’s global trust. Thus, a
set of peers communicating (providing services) to the i-th
peer can be reduced to just one virtual representative. It
results in obtaining one-to-one evaluation scheme, and the
trust of a set will be dominated by peers having higher
global trust [17].
 The existence and uniqueness of global trust vector as an

outcome of aggregation approach is proven in [17]. The
closed-form peer’s global trust expression lays a basis for
direct comparison of global trust values calculated for any
two peers in the system (network with N nodes). There is no
theoretical explanation of fast algorithm’s convergence, but
experiments show that it converges fast (about 7 iterations
for 100 peers in the network) [17].
 Robustness of Absolute Trust algorithm is evaluated
regarding behavior of EigenTrust and PowerTrust systems.
Several network configurations are considered in [17] such
as the ones under the presence of pure malicious peers,
peers with unpredictable behavior as well as malicious
collectives (groups of peers whose familiarity positively
affects their own reputation values diminishing
corresponding values of persons outside such groups). It
was shown that for first two configurations the performance
of Absolute Trust improves significantly as compared to
counterparts (by appr. 2% to 4% of authentic transactions
that relate to exchanging files between peers, respectively).
As concerns malicious collectives, performances of
algorithms are almost identical, with marginal superiority of
Absolute Trust over its aforesaid rivals.
 The local trust metric in this algorithm can be defined in
many ways, and it forms prospects to develop a fuzzy local
trust metric. It is worth mentioning that aggregation
procedure used in the algorithm can be practically retained.
The customizable local trust metric allows to use fuzzy logic
approach to extend the algorithm in relatively easy and
natural way.

E. PeerTrust Algorithm
 PeerTrust is another example of P2P reputation system
designed specifically for e-commerce communities that are
characterized by distinctive problems and risks [25]. L.
Xiong and L. Liu identify five important factors that relate
to evaluation of peer’s trustworthiness as regards supplying
other peers with corresponding services. These factors are
feedback obtained by a peer, feedback scope (e.g. total
number of transactions occurred between peers), credibility
of feedback source, transaction context aimed at drawing
distinction between extremely crucial and less important or
uncritical transactions, and community context to address
community-wide characteristics and vulnerabilities. Based
on formalization of these parameters, the authors proposed a
peer’s j trust value (metric) consisting of two parts
[25]. The first one is a weighted multiplicative combination
of amount of satisfaction peer obtained after realization of
each transaction, adaptive transaction context for i-th
transaction of a peer and credibility of the feedback received
from peers. Community context factor constituting the
second part of ’s expression increases or decreases the
impart of the first part to trust value owing to allowance of
distinctive community’s features.
 As it is emphasized in [25], the proposed metric

should be considered as a general form, in which
corresponding parts can be ‘tuned’ in terms of parameters
and factors used. Every part of the metric can be
implemented differently – alternatives of possible credibility
measure metrics (trust value/TVM, personalized
similarity/PSM) are presented by L. Xiong and L. Liu in

()T j

()T j

()T ×

67

their paper.
 Speed of convergence and complexity of PeerTrust
algorithm appreciably depend on metrics definitions and
specific implementation strategies. In general, the
performance of system under PSM metric is a bit worse than
in case of TVM, but on the other hand, the former provides
better results as the number of peers in the network is
increasing. System’s robustness is assessed on the grounds
of effectiveness against malicious behavior of peers
comparing to conventional algorithm, in which the average
of the ratings is used to measure the trustworthiness of a
peer without taking into account the credibility factor. The
trust computation error as a root-mean-square error (RMSE)
of the computed trust value of all peers and the actual
likelihood of peers performing a satisfactory transaction is
computed to evaluate the performance of the algorithm.
PeerTrust with PSM metric ensures striking results as
calculated RMSE does not exceed the value of 0.05, and
transaction success rate attains virtually unity.
 It must be admitted that PeerTrust system is very
flexible over the existing possibility to choose local trust
metric. Therefore, it seems that the practical application of
fuzzy logic approach to handle naturally nascent uncertainty
(vagueness) of certain parameters and characteristics in the
algorithm looks justified enough. The system also possesses
a great potential to incorporate all types of marketplace data,
especially through transaction and community context parts
of the general metric that afford means of broad
coverage of manifold system’s peculiarities.

VI. EXPERIMENTAL PART – SETUP STAGE

For the experimental part of the study, we implemented
a simulator (in Python 3.7), and the section describes the
general simulation setup, including the community setting,
peer behavior pattern, and trust computation.

We assume that hypothetical (simulated) community
consists of N peers, for which two peer types are defined,
namely, they are honest and strategic, or malicious, peers
[35]. The first one embraces those commitment long-run
players focused on cooperation, since the latter maximizes
player’s lifetime payoffs, if the player consistently sticks to
action in long-range outlook. In contrast, opportunistic
player who cheats whenever the occasion is beneficial for
him is bound to a strategic type [25]. The percentage of
malicious peers in the community we denote by K. It is
reasonable that behavior pattern of good peers is to always
cooperate and provide honest feedback after each
transaction. However, a correct modeling of malicious peers
behavior is a bit challenging task that may require certain
simplifications. In particular, we may consider that
malicious peers always cheat during transactions and give
dishonest ratings to other peers, i.e. they rate negatively a
peer who cooperates and provides good rating to a peer who
cheats. In case of EigenTrust and HonestPeer algorithms
there are also pre-trusted peers that play an important role
from the standpoint of algorithm’s consistency. Respective
PRE_TRUSTED parameter stands for the percentage of pre-
trusted peers that relate to good peers only. In general,
behavior pattern of peers is a topic on a slippery ground, i.e.
it can be placed among those aspects of models of reputation

systems that require close scrutiny. Why? Potentially, the
above cited pattern is definitely not unique, so in order to
make models viable other feasible options must be addressed
hereafter with great care.

We may also assume that community has CAT
categories of services that are provided by peers. From
amongst these categories each peer is interested only in a
specific subset having the cardinality not less than S. Each
category is associated with at least P percent of peers in the
community. When a peer queries a service of a specific
category, only peers associated with this category can
respond to such query. At that, two transaction settings are
simulated – they are random and trusted. Random (or,
simple) setting means that a peer, which responds to the
query, is selected randomly (uniform distribution is used)
from a set of all peers that can provide queried category of
service. In trusted setting the responder is also selected
randomly from all peers that can respond to the query, but it
is done with respect to their reputation, i.e. a peer with
higher reputation has better chances to be chosen. If there
are peers with zero reputation, then there is a 10% chance
that the responding peer will be chosen uniformly from
those peers. It efforts the opportunity for new peers to start
building up their reputation.

Binary feedback system is used to evaluate peer after
each completed transaction. It means that values 0 and 1 are
practised for PeerTrust and Absolute Trust algorithms, -1
and 1 are used in cases of both EigenTrust and HonestPeer
approaches. Local trust and reputation computation steps as
such depend on the algorithm in use. Some algorithms have
their own hyperparameters that must be specified. Default
values of parameters are listed in Table I. Simulation session
(cycle) consists of SIM_NUM transactions. Global
reputation is updated after every UPDATE_NUM
transactions. Experimental results are averaged by 5 cycles
of simulation. Although we simulate online marketplace
community – usually it is big enough, dozens to hundreds of
thousands of peers – experiments are performed under the
presence of modest number of peers. It may be considered
as a perceptible limitation, however, the main aim of
simulation is to obtain those prior results that lay down the
ground for further analysis of weak/strong points of models
considered here in terms of deeper understanding of their
potential to incorporate formal representation of uncertainty
(imprecision) factors into these models. In real-life
environment it seems highly unlikely that the major part of
marketplace peers are malicious as it was defined earlier.
Therefore, we don’t consider in simulation a malicious peers
share exceeding 35%.

VII. EXPERIMENTAL PART – RESULTS AND THEIR
COMPARISON

We introduce a metric that shows the effectiveness of
the reputation system as a rate of unsuccessful transactions
(RUT). The unsuccess of transactions is bound up with the
outcome of those transactions, in which responding peer
happens to be malicious. It is obvious that the less value of
the metric is the better. Besides, for the time being we do not
consider PowerTrust algorithm in the empirical study, since
it requires more close inspection and implementation cycle.

()T ×

68

A. Effectiveness against malicious behavior
The objective of conducted experiments is to evaluate

the robustness of the reputation systems against peers with
malicious behavior. In the first experiment we alter the
percentage of malicious peers in hypothetical community
from 10% to 35% with other parameters keeping their
default values (Table I). As is easy to see in Fig. 1, the rate
of unsuccessful transactions grows almost linearly with the
increase of values (axis x) for simple setting; trusted settings

TABLE I. PARAMETERS AND THEIR VALUES USED IN EXPERIMENTS

show better results though. EigenTrust, HonestPeer and
PeerTrust algorithms show extremely moderate growth of
RUT with the increase of malicious peers’ percentage.
Absolute Trust algorithm demonstrates quite disappointing
results characterized by negligible gain (within appr. 2.1%
on average) as compared to simple (random) system’s case.

B. Speed of convergence and scalability
In this set of experiments, we take aim at evaluating the

general speed of algorithms convergence and their
scalability with regard to the increase of number of peers
(Fig. 2). As will readily be observed, algorithms PeerTrust
and Absolute Trust generally need not more than 2 iterations
to converge, while EigenTrust and HonestPeer need to go
through 4+ iterations. More than twofold difference on very

small values practically equalizes rivals under the conditions
of experiment. Thus, all algorithms seem to be quite
scalable concerning the number of iterations needed to
converge, since the latter does not grow substantially with
the increase (from 1,000 to 3,500) of number of peers in the
community.

Fig. 1. The growth of rate of unsuccessful transactions depending on the
increase of malicious peers’ percentage (from 10% to 35%) for different

algorithms

We also evaluate how consistent corresponding systems

are against the background of increasing number of peers
under “freezing” of other parameters (Fig. 3). It can be seen
that situation remains almost indistinguishable be it small or
bigger community – the rate of unsuccessful transactions
mostly remains unchanged in the context of the same
malicious peers percentage.

Fig. 2. The speed of convergence (number of iterations needed) of

algorithms depending on the number of peers (in the range from 1,000 to
3,500)

C. Choice of the “best” (most feasible) system
According to the results of experiments summarized

above as well as constraints and assumptions put forward,
PeerTrust model appears the most robust and effective

Affiliation
with… Parameter Description Default

value

Community
setting

N number of peers 1000

K percentage of
malicious peers 15

CAT number of
categories 10

S
minimal number of
categories for each
peer

3

P
minimal percentage
of peers associated
with each category

5

Simulation
setting

SIM_NUM number of queries in
a simulation 10000

UPDATE_NUM

number of
transactions in
reputation update
cycle

100

EigenTrust
&

HonestPeer
PRE_TRUSTED percentage of pre-

trusted peers 5

Absolute
Trust

GOOD_W
weight of good
transactions in local
trust

10

BAD_W
weight of bad
transactions in local
trust

1

a

trade-off parameter
between speed of
convergence and
quality

1/3

69

reputation system among alternatives. It is quite stable
regarding the growth of percentage of malicious peers in the
community and scalable enough to handle evenly larger
number of peers. What is more, local trust metric in
PeerTrust system is highly customizable, and this fact
simplifies the possibility to extend it with fuzzy factors in
here in reputation systems. In a wide sense we can talk
about marketplace data uncertainty that requires much
attention in further development of the topic and elaboration
of formal aspects of models. Thus, in this instance we opt
for PeerTrust system with the object of its modification on
the basis of Zadeh’s extension principle.

Fig. 3. The robustness (rate of unsuccessful transactions) of algorithms
depending on the number of peers (in the range from 1,000 to 3,500)

VIII. TRANSITION FROM CRISP PEERTRUST SYSTEM TO
FUZZY PEERTRUST SYSTEM. IS IT WORTHY OF NOTICE?

In order to implement fuzzy reputation system, we need
to understand above all what data will be represented by
fuzzy sets (numbers). In non-fuzzy version of PeerTrust
algorithm binary feedback system is used. We suggest
utilizing a broader scale to express degrees of satisfaction
concerning transaction. It naturally arises from peculiarities
of human’s perception of information (comments,
judgments) – it is not a very convenient and alluring way for
humans to think in terms of zeros and ones (or, any other
numbers). For the human mind such terms as “bad”,
“normal” and other resembling options look more
understandable and well-suited for interpretation and
processing. Being guided by this observation, the new
algorithm’s feedback can be represented by five verbal
degrees of satisfaction, namely, they are “very bad”, “bad”,
“normal”, “good” and “very good”. More fine granulation
does not look preferable here, because it may lead to certain
confusion in view of human perception of satisfaction’s
shades – the magic number 7±2 and the seminal paper
(1956) by American psychologist George A. Miller on limits
on our capacity for processing information straight away
cross our mind.

Such verbal terms are treated as linguistic values of the
variable “degree of satisfaction” or “transaction quality”;
each value can be formally represented by trapezoidal

membership function on universe of discourse U=[0, 1] as
shown in Fig. 4. The type (e.g. Gaussian, bell-shaped, etc.)
and the location of fuzzy sets on U may vary noticeably
depending on estimates provided by expert group with
reference to characteristic features and implicit shades of
model under consideration [26]. The rest of the algorithm
remains unchanged, and all specified operations are carried
out with fuzzy numbers (intervals) instead of crisp values
till the attainment of the defuzzification stage. Defuzzified
reputation values are used to choose the responding peer
exactly in the same way as described above. In the paper
centroid method (COA) is used to obtain those values, but
effectiveness and performance of the algorithm may depend
distinctly on the chosen defuzzification approach [30,32].

Fig. 4. Linguistic values (trapezoidal membership functions) of the variable

‘Transaction quality’ (universe of discourse U=[0,1])

Fig. 5. The growth of rate of unsuccessful transactions depending on the

increase of malicious peers percentage (from 10% to 35%) for EigenTrust,
PeerTrust and Fuzzy PeerTrust algorithms

Here, special attention should be paid to the following:

in the paper we consciously consider only one type of data
falling under fuzzification, viz. the feedback regarding a
buyer. Primarily it is connected with the amount of required
modifications and scope of computational experiments to be

70

covered by the text of the limited size. But we are aware that
other foregoing types must be addressed thoroughly in the
course of the ongoing empirical study.

In conditions of maintenance of community and
simulation settings (see the details of conducted experiments
described above), but under the imprecision (vagueness)
taken into account in the feedback system, we compare the
experimental components of Fuzzy PeerTrust with original
PeerTrust and EigenTrust algorithms.

A. Effectiveness against malicious behavior (fuzzy case)
In the first place, we want to evaluate the robustness of

fuzzy modification of PeerTrust system. Experiment settings
are retained, the percentage of malicious peers is changing
within the range from 10% to 35%. The results as shown in
Fig. 5 lead to the conclusion that Fuzzy PeerTrust algorithm
is definitely more robust in comparison with Simple system.
Under small percentage values (appr. interval [10%,17%])
of malicious peers, the performance’s characteristic of
Fuzzy PeerTrust is close enough to original PeerTrust and
EigenTrust. However, it demonstrates worse results than
crisp algorithms over the whole range of x-axis values
concerned.

B. Speed of convergence and scalability
Another set of experiments was aimed at estimation of

the speed of convergence of Fuzzy PeerTrust and its
scalability in view of the community’s growth. As expected,
the speed of convergence remains the same as for original
PeerTrust with two iterations on average to converge, and it
differs essentially from corresponding characteristic (appr.
4.61 on average) of EigenTrust algorithm (Fig. 6). In terms

Fig. 6. The speed of convergence (number of iterations needed) of

EigenTrust and Fuzzy PeerTrust algorithms depending on the number of
peers (in the range from 1,000 to 3,500)

of robustness Fuzzy PeerTrust can also be pronounced
scalable, since it does not show significant decrease in
quality with the growth of the number of peers in the
community (Fig. 7). We observe here smooth fluctuations of
RUT at the level of 0.064. It is worth mentioning that all
properties of crisp algorithm remain intact in comparison
with its fuzzy counterpart.

Computational procedure starts with default trust vector

, where N – the number

of peers in the community, is a default trust value of a
peer v, [25]. Reputation of a peer v in the form of
fuzzy set (number) is denoted as ;

stands for a feedback of peer v concerning j-th transaction, it
is also represented as a fuzzy number; signifies the
reduction of a fuzzy argument to crisp value (deffuzzification
step). To calculate the product of fuzzy number

 and crisp number as well as the
sum (1) of thus obtained fuzzy numbers, Zadeh’s extension
principle is used [4,36,37]. As a result, steps to be performed
(pseudocode) can be expressed as follows:

 Repeat

 (1)

 (2)

 Until diff £ e

As already mentioned, it is significant to put special
emphasis on the choice of defuzzification method to use in
(2). It may become a subject of separate research in the
future.

Fig. 7. The growth of rate of unsuccessful transactions depending on the

number of peers (in the range from 1,000 to 3,500) for EigenTrust,
PeerTrust and Fuzzy PeerTrust algorithms

At the same time, an important point of the algorithm

shown is that certain aforesaid attributes of trust and
reputation like context-awareness (sensitivity), decrease (of
the level) with time, their multifaceted nature (diversity) are
not taken into account. We may regard this version of the
algorithm as basic one (or, F-basic if we consider factor of

()
T

T0 0 0 0
1 2 N

1 1 1, ,..., , ,...,
N N N

t t t t æ ö= = ç ÷
è ø

0
vt

1,Nv =

()i 1
vfuzzy t + ()(, j)fuzzy S v

()defuzz !

()(, j)fuzzy S v I()i i
j kk 1

vt t
=å

For 1 to N do v =

() ()
i

I() ji 1
I()j 1 i

kk 1

(, j)v
v v

t
fuzzy t fuzzy S v

t
+

=

=

= ×å
å

()i 1 i
v vt defuzz t+ =

i 1 idiff t t+= -

71

fuzziness in its core); it paves a ‘wide’ way for algorithm’s
further revision and improvement.

The results attained enable to speak decidedly about the
existing perspectives of fuzzy logic approach’s application in
reputation systems (corresponding algorithms). Even despite
somewhat higher computational costs compared to original
crisp algorithms, greater transparency, better perceptibility
by humans and flexibility from a viewpoint of verbal
expression and formalization of the scores provide a basis for
further studying of the topic. The present paper can be
considered as a mere first step in this direction.

IX. CONCLUSION

E-commerce is a fast-growing market that implies
continual and utterly active communication between users
being ‘strangers’ to each other on numerous occasions.
Because of that it is essential to establish reputation systems
to better handle available online information with the object
to more accurately discern trustworthy and non-trustworthy
players in systems creating grounds for peers to be more
careful about their reputation. By the far-famed example of
eBay reputation system, even relatively simple ones show
themselves as very helpful from the viewpoint of malicious
behavior’s limitation and trustability increase. Online
marketplaces that became immensely popular in the last 10-
15 years as sites offering wide enough range of reasonably
priced goods from various sources can be also considered as
P2P networks. There is a vast range of reputation systems
developed for P2P networks (mostly aimed at file-sharing)
that can be adapted to e-commerce.

The main problem that is covered in the paper relates to
the fact that none of these systems work with uncertainty
(blurriness) of marketplace data and vagueness typical for
notions of trust and reputation. Uncertainty in different
forms of its manifestation is definitely inherent in reputation
systems, and some of those forms can be addressed by fuzzy
logic. This very inhesion, but not disconfirmed artificial
desire, has served as an impellent factor to start this study.

Most likely, it can be argued that it is difficult to identify
on the basis of several singled out key criteria unconditional
leader among analyzed systems (algorithms EigenTrust,
Absolute Trust, HonestPeer, PowerTrust and PeerTrust),
since each of them has positive aspects as well as drawbacks.
All algorithms, except PowerTrust, were implemented
(Python 3.7) under the same conditions discussed in detail in
the paper with the purpose of comparing fairly their relative
performance. For reasons partially covered in the paper,
Absolute Trust and PeerTrust systems were prudently
regarded from the standpoint of their robustness and
scalability as front-runners, i.e. candidates for fuzzification.
Besides undertaking comparative analysis of those five
significant and most popular reputation systems, the paper
makes a mark for transition from crisp system (by the
example of PeerTrust algorithm) to its fuzzy counterpart.

Corresponding fuzzy model (we call it provisionally F-
basic algorithm) considers now only one characteristic of
trust and reputation, namely, it is transaction quality or
degree of peer’s satisfaction. Other important attributes like
context-awareness (sensitivity) or decrease of trust’s level
with time were not scrutinized yet. Nevertheless, initial

experimental results attained in line with the fact of constant
presence and active use of verbal assessments in reputation
systems confirm the need to continue research in this field.
Verbal forms are both habitual and convenient for human’s
perception despite of their intrinsic vagueness. That is why,
fuzzy logic approach, to the opinion of authors, has good
prospects for use in reputation systems.

At the same time, it should be mentioned that there are
immediate tasks related to fuzzy models that require primary
attention. The choice of membership functions and their fine
tuning (shape and location on the universe of discourse), the
switch from the case having dealings with marketplace data
vagueness (so-called type-1 fuzzy sets used in the paper) to
the case that represents uncertainty (interval type-2 fuzzy
sets) and the choice of defuzzification strategy are amongst
the most topical ones.

REFERENCES

[1] Alam F., Paul, A., 2016. A Computational Model for Trust and Reputation
Relationship in Social Network // Proc. 5th International Conference on Recent
Trends in Information Technology, 1-6.
[2] Alfarez A.-R., Hailes, S., 2000. Supporting Trust in Virtual Communities // Proc.
33rd Annual Hawaii International Conference on System Sciences, 1-9.
[3] Kreps D.M., Wilson, R., 1982. Reputation and Imperfect Information // Journal of
Economic Theory, vol. 27, 253-279.
[4] de Barros L.C., Bassanezi R.C., Lodwick W.A., 2017. The Extension Principle of
Zadeh and Fuzzy Numbers. In: A First Course in Fuzzy Logic, Fuzzy Dynamical
Systems, and Biomathematics (Studies in Fuzziness and Soft Computing), vol. 347,
Springer, Berlin-Heidelberg
[5] Gambetta D., 1980. Can We Trust Trust? Chapter - Trust: Making and Breaking
Co-operative Relations, 213–237, Dept. of Sociology, University of Oxford
[6] eBay, 2019. web-resource: www.ebay.com (access date 15.03.2019).
[7] Forbes.com, 2017. What Are Online Marketplaces and What Is Their Future?
web-resource: https://www.forbes.com/sites/richardkestenbaum/2017/04/26/what-
are-online-marketplaces-and-what-is-their-future/#704431c13284 (access date
06.02.19).
[8] Hussain J.K., Hussain O.K., Chang E., 2007. An Overview of the Interpretations
of Trust and Reputation // Proc. IEEE Conference on Emerging Technologies and
Factory Automation (EFTA-2007), 826-830.
[9] Zhang J., 2009. Trust Management Based on Fuzzy Sets Theory for P2P
Networks // Proc. WRI World Congress on Software Engineering, 461-465.
[10] Kamvar S., Schlosser M., Garcia-Molina H., 2003. The EigenTrust Algorithm
for Reputation Management in P2P Networks // Proc. 12th Int. Conference on World
Wide Web, 640-651.
[11] Kurdi H., 2015. HonestPeer: An Enhanced EigenTrust Algorithm for
Reputation Management in P2P Systems // Journal of King Saud University -
Computer and Information Sciences, vol. 27, no. 3, 315-322.
[12] Zadeh L.A., 1972. Fuzzy Languages and Their Relation to Human and Machine
Intelligence // Proc. Int. Conference on Man and Computer, 130-165.
[13] Zadeh L.A., 1971. Similarity Relations and Fuzzy Orderings // Information
Sciences, vol. 3, no. 2, 177-200.
[14] Page L., Brin S., Motwani R., Winograd T., 1998. The PageRank Citation
Ranking: Bringing Order to the Web, Technical Report, Stanford Digital Library
Technologies Project.
[15] Faloutsos M., Faloutsos P., Faloutsos C., 1999. On Power-Law Relationship of
the Internet Technology // Proc. ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM-1999), 251-262.
[16] Chiluka N., Andrade N., Gkorou D., Pouwelse J., 2012. Personalizing
EigenTrust in the Face of Communities and Centrality Attack // Proc. IEEE 26th Int.
Conference on Advanced Information Networking and Applications, 503-510.
[17] Awasthi S.K., Singh Y.N., 2016. Absolute Trust: Algorithm for Aggregation of
Trust in Peer-to-peer Networks, web-resource: http://arxiv.org/abs/1601.01419 (access
date 17.03.2019).
[18] Rao S., Wang Y., Tao X., 2010. The Comprehensive Trust Model in P2P Based
on Improved EigenTrust Algorithm // Proc. Int. Conference on Measuring
Technology and Mechatronics Automation, 822-825.
[19] Song S., Hwang K., Zhou R., Kwok Y.-K., 2005. Trusted P2P Transactions with

72

Fuzzy Reputation Aggregation // IEEE Internet Computing, vol. 9, no. 6, 24-34.
[20] Statista, 2018. Global Retail E-commerce Market Size 2014-2021, web-resource:
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
(access date 08.02.19).
[21] Haveliwala T.H., Kamvar S.D., 2003. The Second Eigenvalue of the Google
Matrix, Technical Report, Stanford University.
[22] The Next Scoop, 2018. 2019 E-commerce Trends, Statistics and Metrics, web-
resource: https://thenextscoop.com/ecommerce-trends-statistics-and-metrics-2019/
(access date 14.02.19).
[23] The Next Scoop, 2018. E-Commerce is Growing at an Unprecedented Rate All
over the Globe - The Next Scoop, web-resource: https://thenextscoop.com/e-
commerce-is-growing-at-an-unprecedented-rate-all-over-the-globe/ (access date
17.02.19).
[24] Wang Y., Vassileva J., 2003. Bayesian Network Trust Model in Peer-to-Peer
Networks // Int. Workshop on Agents and P2P Computing (Lecture Notes in
Computer Science, vol. 2872, 23-34).
[25] Xiong L., Liu L., 2004. PeerTrust: Supporting Reputation-Based Trust for Peer-
to-Peer Electronic Communities // Proc. IEEE Transactions on Knowledge and Data
Engineering, vol. 16, no. 7, 843-857.
[26] Zadeh L., 1975. The Concept of a Linguistic Variable and Its Application to
Approximate Reasoning – I // Information Sciences, vol. 8, no. 3, 199-249.
[27] Zhou R., Hwang K., 2007. PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing // Proc. IEEE Transactions on Parallel
and Distributed Systems, vol. 18, no. 4, 460-473.
[28] Statista, 2018. E-commerce Share of Total Retail Sales in United States from

2013 to 2021, web-resource: https://www.statista.com/statistics/379112/e-commerce-
share-of-retail-sales-in-us/ (access date 26.02.19).
[29] English Oxford Living Dictionaries, web-resource:
https://en.oxforddictionaries.com/ (access date 04.03.19).
[30] Semenkovich S., Kolekonova O., Degtiarev K., 2017. A Modified Scrum Story
Points Estimation Method Based on Fuzzy Logic Approach // Proc. of the Institute for
System Programming, vol. 29, no. 5, 19-38.
[31] Zadeh L. A., 1994. Fuzzy Logic, Neural Networks and Soft
Computing // Communications of the ACM, vol. 37, no. 3, 77-84.
[32] Zimmermann H.-J., 2001. Fuzzy Set Theory – and Its Applications,
4th ed., Springer Science+Business Media, LLC.
[33] Zadeh L.A., 1965. Fuzzy Sets // Information and Control, vol. 8, no. 3,
338-353.
[34] Çelikyılmaz A., Türkşen I.B., 2009. Modeling Uncertainty with Fuzzy Logic.
With Recent Theory and Applications (Studies in Fuzziness and Soft Computing, vol.
240), Springer-Verlag Berlin Heidelberg.
[35] Dellarocas C., 2003. The Digitization of Word-of-Mouth: Promise and
Challenges of Online Reputation Mechanism // Management Science
(Special Issue on E-Business and Management Science), vol. 49, no. 10,
1407-1424.
[36] Klir G., Yuan B., 1995. Fuzzy Sets and Fuzzy Logic Theory and
Applications, Prentice-Hall/Upper Saddle River.
[37] Ross T.J., 2010. Fuzzy Logic with Engineering Applications, 3rd ed.,
John Wiley & Sons.

73

THE APPLICATION OF MACHINE LEARNING TO IMPROVE THE
EFFICIENCY AND MANAGEMENT OF OIL WELLS

Zayar Aung
Applies Mathematics and Informatics

National Research University
Moscow Power Engineering Institute (MPEI)

Moscow, Russian
zayaraung53@gmail.com

Mihailov Ilya Sergeevich
Applies Mathematics and Informatics

National Research University
Moscow Power Engineering Institute (MPEI)

Moscow, Russian
fr82@mail.ru

Abstract: The article deals with the application of the method of

data mining - support vector machine (SVM) to solve the practical
problem of evaluating the efficiency of oil wells. This nonlinear meth-
od shows better analysis results than the linear regression (LR) meth-
od, which is also a machine learning method. The paper presents and
analyzes the principles of solving the classification problem using
logistic regression methods and support vector machines. The experi-
ments calculated and compared the accuracy of these two algorithms
under the same conditions.

Key words: machine learning; data mining; support vector ma-
chine; oil wells.

I. INTRODUCTION
The development of digitalization of the parameters of oil

wells, as sources of values of steam meters for mass production,
and methods of data collection in real time, allows to optimize
the process of oil production [1]. The use of machine learning
for cleaning, integration, data transformation, application devel-
opment and optimization of oil well data analysis is a new scien-
tific approach to solving the problem of oil well performance
analysis. Currently, the parameters of oil wells used in the data
analysis algorithm are relatively simple, provided there are no
parameters that depend on other groups of parameters, and
standard methods for calculating the data evaluation [2-3]. The
article proposes a nonlinear algorithm of SVM classification,
construction of the structure of the data development system and
the model of polyphyletic parameters recognition using SVM
through the map of the space of features of high dimension and
optimized hyper plane classification to solve the problem of non-
linear parameters analysis of oil wells and pattern recognition of
parameters values sets of wells, reflecting their current state.

 II. POLYPHYLETIC MODEL PARAMETERS OF PATTERN
RECOGNITION OF OIL WELLS

In the process of oil production, the monitoring centre col-
lects, transmits, analyses and provides real-time data on liquid
and gas consumptions of oil well production, production water
cut, pressure, temperature, electrical voltage, electric current and
load, as well as other primary parameters, which helps the ad-
ministrator to understand the operating conditions of the oil well
and ensure its operation in the mode of high efficiency and low
operating consumption [4-5]. As a rule, these parameters also
include peak values of electric current and voltage, pump pres-
sure, back pressure, oil pressure and pressure in the annular
space of the well. This data is transmitted to the automated con-
trol system in real time. After performing a linear approximation
and prediction of the data, the decision maker can assess the

state of the well at the moment and predict its behaviour in the
future, to take appropriate compensating control actions.

Figure. 1. Model recognition pattern of the state oil wells

Figure 1 shows the recognition process of the current situa-

tion in the oil well.

III. NONLINEAR SVM
The kernel method allows solving the problem of nonlinear

classification by means of nonlinear transformation [6]. Provided
that the input space is a Euclidean space and the feature space is
a Hilbert space, the kernel method means the product of the fea-
ture vectors obtained by converting the input data from the input
space to the feature space.

Using the method of kernels to explore non-linear data with
the aim of obtaining the nonlinear SVM. The whole procedure is
a work of the linear SVM method in a multidimensional feature
space.

The kernel method is shown in figure 2.

74

Figure. 2. Using the kernel method to solve a nonlinear problem

 The General idea is to use a nonlinear transformation to
change the input space into a feature space that can transform a
hyper surface model in the source space into a hyper plane in the
feature space. This means that the nonlinear classification prob-
lem in the source space it is transformed into a problem that can
be solved by a linear SVM in the feature space.

IV. SUPPORT VECTOR MACHINE
The General idea of an SVM is to solve the problem of cor-

rectly classifying a set of data and maximizing a geometric field.
There can be multiple separating hyper planes, but there is only
one separating hyper plane with maximum geometric indenta-
tion. A direct explanation for maximizing the geometric field is
that the hyper plane with the maximum geometric indentation
derived from the classification is equal to classifying the training
data by a sufficient certainty factor [7]. It is necessary not only
to classify correctly, but also to separate the nearest points with a
sufficient coefficient of reliability. This process can provide cer-
tain data with a good predictive ability called generalization abil-
ity.

When solving a nonlinear problem after converting to multi-
dimensional space, it is usually difficult to find a hyper plane
that can completely separate the data points, which means that
there are some special points. But after removing these special
points, most of the points become linearly separable. To solve
this problem, we import the sliding variable into the training
sample. In a soft-edged situation, the SVM learning task will
look like:
𝑚𝑖𝑛!,!,!

!
!
| 𝑤 |! + 𝐶 𝜀! .!

!!! (1)

 s.t. 𝑦! 𝑤𝑥! + 𝑏 ≥ 1 − 𝜀! . (2)

 Where C is the penalty parameter. Increasing C also increases
the penalty for classification errors. You must adjust the target
function to minimize the number of singular points while max-
imizing the offset from the hyper plane.

V. LINEAR LOGISTIC REGRESSION ALGORITHM
The linear logistic regression algorithm is a classical classifi-

cation method in the study of statistics related to the linear loga-
rithmic model [8-9]. This classification model is a conditional
probability distribution P (Y / X), which is a judgment model. It
can be obtained from the linear regression model hw (x)=

W
T

X
and the sigmoid curve:

𝑃 𝑌 = 1 𝑋 = !
!!!!!"

. (3)

 Where X is the input, Y is the output, W is the weighted coef-
ficient, and WX is the internal product. The logistic regression
distribution function and density function are shown in figure 3.

Figure. 3. Logistic regression distribution function and density
function

Logistic regression compares the difference between two

conditional probabilities and classifies the training example x
into a larger probabilistic group. For the training set of data you
can use maximum likelihood to estimate the parameters of the
model to obtain the logistic model. The following assumptions
are introduced.

𝑃(𝑌 = 1𝑥) = 𝑓(𝑥),𝑃(𝑌 0 = 𝑥) 1 = 𝑓(𝑥) (4)

Likelihood function

[𝑓 𝑥!]!![1 − 𝑓 𝑥]!!!! .!
!!! (5)

Logarithm likelihood function

 𝐿 𝑤 = [𝑦! 𝑙𝑜𝑔 𝑓(𝑥!) + (1 − 𝑦!)𝑙𝑜𝑔(1 − 𝑓(𝑥!))]!
!!! . (6)

VI. IMPLEMENTATION AND RESULTS OF THE EXPERIMENT
The research main goal is to assess the efficiency of oil well

planning.
The efficiency of the system is the most important factor in

the quality of the production system. The efficiency of the pro-
duction system is the ratio of the useful amount of produced liq-
uid to the power consumption per unit of time, which is a signif-
icant factor in production. As a result of the experiment, the effi-
ciency of the system was chosen as the target factor. It is as-
sumed that the value of system efficiency above 45% is positive,
less than 45% - negative.

In data mining, parameters such as pump load, temperature,
and electrical voltage are suitable for solving the classification
problem in the evaluation model. When analyzing the efficiency
of the pumping system, the factors that affect it, listed in table 1
and table 2, are considered.

Table 1. Oil well parameters

Parameter Unit Parameter Unit
Depth [m] Reactive power [KW]
Period of work [/] Oil pressure [MPa]
Max load [KN] Max pressure [MPa]
Min load [KN] Min pressure [MPa]
Production pressure [MPa] Power factor [1]
Active power [KW] Voltage [V]
Max active power [KW] Current [A]

75

Table 2. Oil well production parameters

Parameter Unit Parameter Unit
Liquid Consumption [m3/day] Doppler velocity

(array)
[Hz]

Gas Consumption [m3/day] Gas void fraction
(array)

[%]

Water cut [%] Sound velocity [m/s]
Temperature [̊C] Fluid Pressure [MPa]

The primary data was obtained on the Perm region oil fields,

on the oil wells and booster pump stations during the long period
of their work.

The first data block, shown in table 1, was relatively easy to
acquire, because these parameters are measured directly by the
corresponding sensors. Data, shown in table 2, are the measures
results of innovative ultrasonic multiphase flowmeter. It was
installed on the oil wells and booster pump stations and it con-
sists of vertical measuring pipe with two different calibrated
crossections, four Doppler sensors, four gas void fraction (GVF)
sensors, two sound velocity sensors, the thermometer, the gauge
and the calculating unit with multilayer mathematical model.
This model sets the line between primary data (Doppler velocity,
GVF, sound velocity, temperature, pressure) and calculated data
(liquid consumption, gas consumption, and water cut).

Liquid, gas consumption and water cut are the main oil well
production efficiency parameters. However, using primary pa-
rameters the mixture flow regime can be deremined. There are
four main flow regime types: bubble, slug, dispersed annular,
dispersed [10]. The flow regime shows the operation oil well
stability and it is also must be considered in the efficiency esti-
mation.

In order to reduce feature space the Doppler velocity and
GVF integral values can be calculated as the arithmetic mean of
four corresponding parameters. Parameters are measured in the
four points of two different calibrated crossections of the pipe: in
the center of the minor crossecton, on the periphery of the minor
crossection, in the center of the major crossecton, on the periph-
ery of the major crossection.

According to flowmeter mathematical model liquid con-
sumption depends on primary data twelve parameter. Neverthe-
less, as an example, on the figure 1 it is shown dependence be-
tween liquid consumption and integral Doppler velocity.

Figure. 4. Dependence between liquid consumption and integral

Doppler velocity

It follows from the figure 4, that the Doppler velocity in-

creases, the liquid consumption increases. However, liquid con-
sumption also correlates from other parameters such as GVF,
water cut, temperature, pressure and others. And the main corre-
lation between liquid consumption and integral Doppler velocity
is blurred by the influence of these parameters.

On the figure 2 it is shown dependence between gas con-
sumption and integral gas void fraction.

Figure. 5. Dependence between gas consumption and integral

gas void fraction

It follows from the figure 5, that the GVF increases, the gas

consumption increases. However, gas consumption also corre-
lates from other parameters such as fluid velocity, water cut,
temperature, pressure and others. The main correlation between
gas consumption and GVF is also blurred by the influence of
these parameters. Moreover, the more is the absolute value of
GVF, the more is the gas consumption variation.

Therefore, after analyzing cross correlations in the training
set it was determined, that all of the parameters have to be used
in the research.

To improve the results of the work performed in accordance
with the obtained data, the following actions were performed.

1) With the aim of improving the efficiency of data was col-
lected with all possible related information.

2) Data set was pre-processed by smoothing, normalization
and noise reduction methods.

3) An evaluation model has been created to solve real prob-
lems.

4) Evaluation of the obtained models was performed.
5) Produced an optimal modular scheme.
6) The results are compared with real data and the model is

updated.

VII. CLASSIFICATION RESULTS
The experiment was conducted in python on the example of

oil wells data using SVM and LR algorithms [11]. Five years of
measuring experience and obtained primary and calculate data
where systematized and cleaned. 1980 examples of oil wells and
boosting pump stations data were selected as the training set, and
the 20 examples - as the test sample. According to experience,
the penalty parameter C was set to 0.8, the RBF evaluation func-
tion and the standard deviation 0.5 for the SVM model; the pen-
alty parameter C=1 for LR. A comparison of projected and actu-
al performance is shown in table 3.

76

№ Real
values

Forecast
LR

Forecast
SVM № Real

values
Forecast

LR
Forecast

SVM

1 0 1 0 11 0 0 1

2 0 0 0 12 0 0 0
3 0 0 0 13 0 0 0

4 0 0 0 14 0 0 0
5 0 0 0 15 0 0 0

6 0 1 1 16 1 1 1

7 1 0 1 17 0 1 0
8 1 1 1 18 0 0 0

9 0 1 1 19 0 0 0
10 1 1 1 20 1 1 1

Using the logistic model, 15 correct classification results
were found, which means that the accuracy reaches 75%. Within
the framework of the SVM model, 18 correct classifications with
an accuracy of 90% were found that satisfy the prediction condi-
tions. By using the PCA dimensionality reduction method, data
dimension were reduced from 17 to 2.

The result deviation forecast from real values diagram is
shown in figure 6.

Figure.6. Results of the SVM and LR experiment

On the figure 6 the deviation between the efficiency real val-
ue and LR forecast is shown by triangles and deviation between
the efficiency real value and SVM forecast is shown by circles.

In this case current flow regime of oil well production is con-
sidered automatically by the combination of primary data lead-
ing to lower or higher values of liquid and gas flow rates and to
lower or higher efficiency values, without direct classifying oil
wells by this parameter. However, it would be very useful to
develop such classification for providing forecast of oil well
behavior and to prevent emergencies.

In the subject area of oil wells, the distribution of data is
complicated by the high dimension of the data space, which can
have a great impact on the collection of primary data. In this
situation, the possible error collection of one or more types of
data, as well as uneven distribution of data. Classical manual
analysis, such as the use of charts, linear analysis, or logistic
regression, does not achieve high quality classification. In this
case, the support vector machine using the kernel method is bet-
ter suited for nonlinear complex data processing.

VIII. CONCLUSION
The paper presents a theoretical analysis of the support vec-

tor machine and logistic regression. It is shown, that the nonline-
ar SVM algorithm works better than the linear LR algorithm in
the analysis of the oil well system and forecasting their efficien-
cy.

In the future research, based on current survey, it is necessary
to develop a method of multiple classification based on the sup-
port vector machine, which allows the classification of the origi-
nal data set into several classes with the ability to assess the de-
gree of proximity to each of these classes.

It is very important for the oil field technological service to
determine the multiphase (oil-water-gas) stream flow regime
because, for example, even high liquid flow rate in the not corre-
sponding regime can lead to feed failure of the pump and to
emergency stop of oil well. However, if this situation could be
classified at the early stage, it can provide to avoid accident situ-
ation and thus to maintain oil well operating efficiency.

Literature
[1] Bashmakov, A. I., Bashmakov, I. A. Intellectual information
technologies. Benefit // –M.: Publishing MGTU im. N.Uh. Bau-
man, 2005.
[2] Yeon Su Kim. Evaluation of the effectiveness of classifica-
tion methods: comparative modeling. Expert systems with appli-
cations, 2009, 373 p.
[3] Hanuman Thota, Raghava Miriyala, Siva Prasad Akula, K.
Mrithyunjaya RAO, Chandra Sekhar Vellanki, et al.. Perfor-
mance comparison in classification algorithms using real data
sets. Journal of computer science and systems biology, 2009, 02-
01.
[4] Hung Linh AO, Junsheng Cheng, Yu Yan, Dong Khak Chu-
ong. The method of optimization of parameters of support vec-
tors is based on the algorithm of optimization of artificial chemi-
cal reactions and its application for diagnostics of malfunctions
of roller bearings. Journal of vibration and control.2015 (12).
[5] Rimjhim Agraval, Thukaram Dhadbanjan. Identification of
the fault location in distribution networks using multi-Class sup-
port vector machines. International journal of emerging electric
power systems.2012 (3).
[6] Snehal A. Mulay, P. R. Devale, G. V. Garje. Intrusion detec-
tion system using support vector machine and decision tree. In-
ternational journal of computer applications.2010 (3).
[7] Wang Liejun, Lai Huicheng, Zhang Taiyi. Improved least
squares support vector machine algorithm. Journal Of Infor-
mation Technologies.2008 (2).
[8] R. Cogdill And P. Dardenne. Least squares support vectors
for Chemometrics: an introduction to andevaluation. Journal of
near infrared spectroscopy.2004 (2).
[9] Ke Lin, Anirban Basudhar, Samy Missoum. Parallel con-
struction of explicit boundaries using support vector machines.
engineering calculation.2013 (1).
[10] Brill James P., Mukherjee Hemanta. Multiphase Flow in
Wells. // –M.: Publishing Institute of computer research. 2006.
384 p.
[11] Ashkan Mousavian, Hojat Ahmadi, Babak, Sakhaei, Reza
Labbafi. Support vector machine and K-nearest neighbor for
unbalanced fault detection. Journal of quality in the field of
maintenance.2014 (1).

77

Power dispatcher support system
Dmitri Nazarkov

BMSTU
Moscow, Russia

nazarkovdmitriy@mail.ru

Alexey Prutik
BMSTU

Moscow, Russia
alexeyprutik@gmail.com

Abstract — This paper is devoted to development of power
dispatcher support system prototype which main purpose is to
notify dispatcher in case of detecting any unplanned deviations
from nominal operation mode of power equipment. System
uses informational model in CIM XML/RDF format as source
of knowledge about nominal operation modes.

Keywords — power dispatcher, telemetry, CIM, XML-RDF,
operational information complex, operational information
complex new generation, Golang, gRPC, Redis.

I. INTRODUCTION
 The operational information complex (OIC) is embedded
and used in the dispatch centers of the System Operator of
Unified power system (Sistemnyj operator Edinoj
ehnergeticheskoj sistemy). On its platform implemented a
significant count of automated subsystems to solve
operational technological tasks. Analysis of the OIC
subsystems’ load showed that the complex has reached their
limit in terms of increasing amount of processed data. In
addition, present OIC architecture does not allow to improve
existing technological problems solutions and to introduce
new approaches.

 Currently, some work as part of the unification of
information models in all dispatch centers of the System
Operator is carried out to put into operation information
models based on IEC 61970, 61968 (Common Informational
Model) standards [1]. These standards would be used for
calculating power equipment’s established states [2].

 In connection with the above, the System Operator is
working on the implementation of a new generation
operational information complex (OIC NG). Implementation
of the OIC NG requires modification of most automated
systems that using information from the old OIC. Due to the
lack of a ready solution which can replace the old OIC and
its associated automated systems is necessary to organize the
long-term work on the phased development and
implementation of the subsystems of the new generation
operational information complex and the adaptation of
existing automated systems.

II. POWER DISPATCHER SUPPORT SYSTEM
 As part of the transition to the OIC NG, a prototype of
the power dispatcher support system (DSS) is being
developed, which uses common information model of the
power system as a source of information necessary for
estimating its state, and an Automated Integration Platform
(AIP) as the telemetry source. Figure 1 shows the place of
the developed support system in the described problem
domain.

Fig. 1. The structural scheme of the subject area of the problem

 Sensors are installed on the power equipment that send
telemetry to the OIC NG’s storage. DSS receives
information from the AIP, processes it using algorithms
similar to the algorithms implemented in the previous
generation OIC, aimed at monitoring a certain equipment
parameter (for example, the amperage in an overhead power
line). During the telemetry processing DSS is guided by the
CIM model of the power system.

III. ORGANIZATION OF STORING AND ACCESS TO COMMON
INFORMATIONAL MODEL IN DISPATCHER SUPPORT SYSTEM

System operator unifies information models based on
CIM standards. Common Information Model (IEC 61970-
301) is a standard in the field of electric power industry,
designed to standardize the process of exchanging
information about the electric power system between
software products [1]. CIM-standard puts one or several
objects of its classes in compliance with a real power
equipment object [3].

78

One of the reasons for the transfer of System operator to
OIC NG is the achievement of the limit of the amount of
information processed by the previous generation OIC.
Therefore, when developing DSS, it is necessary to pay
special attention to the system performance criterion, use
solutions and technologies that differ from analogues for the
better according to this criterion.

Guided by these considerations, the Go (Golang)
programming language was chosen as the main system
development language, since, due to its focus on use in
highly loaded multiprocessor systems, it is able to provide
speed and parallelization of incoming telemetry processing.

Golang’s limitation, as a language applicable to the
problem, is its library for working with the XML format,
which does not allow direct processing of the CIM
XML/RDF file of the power system model. Therefore, the
model needs to be converted to a format suitable for work in
the DSS written in Go.

CIM standard represents a logical model of power
systems. This model can be implemented in software and
stored in different forms which depends on amount of data,
how frequently data is accessed and whether the model of
power system will change in the future [4].

As a rule, relational databases are used to store CIM
despite the fact that CIM, as a standard, is based on an
object-oriented model. This fact means that some principles
of an object-oriented approach, such as inheritance or many-
to-many relationships, firstly cause difficulties in designing
relational database schemas, and, secondly, lead to
performance problems that is critical for DSS [5]:

• Database is overloaded with a large number of tables
describing the parent classes, which leads to an
increase in the number of join operations.

• Tables that correspond to root classes, for example,
PowerSystemResource, contain too many records,
which also makes difficulties to index and query
them.

Another factor influencing speed when working with
information model is memory in which it is stored. The
fastest type of memory is RAM. It can be used as a memory
for storing the information model, since at present the full
CIM of the Russia unified power system has a size of 5 GB.

The Redis DBMS was chosen as the information model
storage for the following reasons:

• Stores data in RAM [6].

• Provides non-blocking data reading [7].

• Designed to be used as fast data storage which can
handle thousands of simultaneous queries [8].

• Uses main memory to persist data operating when
system restarts.

• Has library for Go.

Primary format for storing data in Redis is the key-value
format. Each information model object has a unique GUID:

 <cim:CurrentLimit rdf:about="#_e9a2cbc5-
6a3e-4112-8a28-40e41df3dc3b"> (1)

We will use it as a key entry in Redis. As an entry string
value is necessary to store information model object. In order
to provide reverse deserialization of the string in the Go
structure, JSON format will be used.

Fig. 2. Block diagram of the CIM XML / RDF file transformation process

Task of recording the information model in CIM was
solved using the PyCIM Python open source library [9]. The
library provides ability to read XML tree of the information
model in the dictionary of objects: <GUID, CIM-object>.
After processing file with the information model in this way,
we serialize each object into the structure of the format
indicated in Figure 2, and write it as a value to Redis. Using
structures of such format eliminates problems of storing CIM
in relational databases described above. Also, data in this
format can be stored in single table of relational DB but this
approach won’t be optimal at least because Redis is
specialized tool to keep key-value data oriented on high
performance.

In the structure, we explicitly indicate the type of
serialized data to simplify deserialization into the Go
structure.

IV. EXCHANGING INFORMATION WITH AUTOMATED
INTEGREATION PLATFORM

Interaction of the support system with Automated
Integration Platform (AIP) is built using remote procedure
call framework - gRPC. This framework was chosen based
on the following considerations:

• Uses binary protobuf format, which allows to
minimize size of the transmitted message in
comparison with standard text-based XML or JSON
formats [10].

• Uses HTTP / 2 as a transport. It supports bidirectional
streaming.

• Supports TLS / SSL encryption of transmitted data.

• Supported in Go.

79

Fig. 3. Diagram of the telemetry and temperature transmission process
from the automated integration platform to the power dispatcher support
system

Information exchanging via HTTP / 2 protocol implies
the presence of a client and a server. In the current scheme,
DSS is the server, and the AIP is the client, since the AIP
transmits telemetry as it changes, and DSS does not request it
independently. Since the AIP is a client, there is an issue
here: it must “know” about all systems that request telemetry
to call their remote procedures. The set of remote procedures
is constant and it is described in the protobuf-contract.
Consequently, it is necessary to solve the issue, which is to
organize update/add information about IP-addresses and
ports of such systems.

The permanent connection is established between the
support system and the platform to transfer information.
Within this connection, bidirectional flows are created in
which the following data are transmitted:

• Telemetry of power equipment.

• Ambient temperature.

V. IMPLEMENTATION OF AMPERAGE CONTROL IN OVERHEAD
POWER LINE

Number of algorithms were implemented in the previous
generation of OIC aimed to estimate operating modes of
power equipment. One of them is amperage monitoring of
overhead power line.

There are three types of amperage load:

• Normal amperage - the highest amperage at which the
equipment can operate indefinitely.

• Long valid amperage - amperage at which long-term
operation of equipment is possible.

• Emergency amperage – this is an amperage above
which the operation of the equipment is unacceptable.

 In order to illustrate the operation of the support system,
we consider the processing of telemetry in the order that it
goes through the relevant procedures and functions of DSS.

The structure and relationships of Go-packets containing
telemetry processing functions are shown in figure 5.

A. Receive
The receive packet in the support system receives

telemetry from the automated integration platform. In case of
successful data acceptance, a lightweight goroutine is
created, within which further evaluation of the equipment
operation mode by the check package will be carried out.
Processing is carried out in a separate thread, so as not to
block the main stream, which receives data from the AIP. In
the near future, it is planned to refuse the way of creating
new goroutine for each incoming telemetry value by
implementing the queue and goroutine pool mechanism,
since the current mechanism theoretically can cause “10
thousand connections” problem [11], despite the fact that
DSS testing in its current form is able to handle the load.

B. Check
The check package directly estimates operation mode of

the power equipment, based on the readings of telemetry. To
monitor the current load of the power line, two types of
verification are implemented:

• If there are information about the ambient
temperature and any amperage dependence of
particular power line from ambient temperature in
the CIM model (Figure 4), which appears in the
descendant of the Curve class. DSS estimates
operation mode using current temperature and
amperage in the line with the corresponding
dependency point.

Fig. 4. Example of amperage dependence on temperature

• In the absence of temperature or amperage
dependencies, the state is estimated with the set of
limitations (OperationalLimitSet classes) on
amperage in CIM.

The result of check is a decision on further DSS actions.
When an emergency case is detected, system DSS must
inform the dispatcher. If the current amperage value
corresponds to the maximum permissible value, it is
necessary to start the countdown. If more than one day has
passed since the beginning of the countdown without
reducing the current in the direction of the normal value, the
dispatcher also must be notified. The schedule package, also
pictured on the diagram in figure 5, is responsible for
planning such tasks. Support system has a background thread
that checks once a minute for tasks which time has come.

80

C. Model
Package model is the point of interaction with the CIM of

power system. When handling request from the outside,
functions of the package perform a request to Redis, which
stores in memory information model. Receiving a CIM
object in JSON format, using the developed library,
functions convert it into a Go structure and returns it as a
result. In order to reduce the number of requests to Redis
cache is introduced in the package storing frequently
requested model objects.

D. Notify
Package notify contains program code intended to

transmit the result of the check to the dispatcher.

Fig. 5. Package structure and connections of the power dispatcher support
system

VI. INTEGRATION TESTING OF POWER DISPATCHER SUPPORT
SYSTEM

In order to organize DSS testing process following set of
tools was developed:

• Test version of Automated Integration Platform. It is
a Golang-service with a set of test scenarios. A
connection is established between the service and
DSS, which allows to call remote DSS procedures for
transmitting telemetry and the ambient temperature.

• Test version of power dispatcher’s software. It is also
a Golang-service that communicates with DSS via
gRPC. Through the connection, the support system
transmits the results of telemetry processing. After
receiving incoming message from DSS, Golang

service sends it to Centrifugo - a message server [12],
which is connected via a websocket to a web page
that simulates the dispatcher’s interface.

Fig. 6. Diagram of the test infrastructure of the dispatcher of the power
system dispatcher

The DSS testing process is an imitation of the real mode
of operation, during which the AIP transmits telemetry and
temperature by calling the DSS remote procedures with the
appropriate arguments. DSS receives data, processes it and,
if necessary, sends a signal to the dispatcher, which is
displayed in the interface.

VII. RESULTS
Main result of solved task is a prototype of the power

dispatcher support system, designed to integrate into the OIC
NG.

At the moment, monitoring of the equipment amperage
and voltage at the control points of the power system is
implemented in the DSS prototype. In near future, it is
planned to implement control over flows and restrictions in
sections.

Preparation work to move to OIC NG (DSS prototype is
part of it) currently is carried out. It will operate with old
generation OIC in parallel when work will be completed.
Transition period can last for one year and more. Duration of
transition period and its events are determined by System
Operator’s clause «About commissioning and
decommissioning of information management systems and

81

IT assets within JSC SO UPS» («O vvode v ekspluataciyu i
vyvode iz ekspluatacii informacionno-upravlyayushchih
sistem i IT-aktivov v OAO SO ЕES»). Transition period is
intended to find defects in new system and testing it. System
can be put into operation after all defects are eliminated.

Since structure and topology of power systems can
change, their CIM-models also change. Currently, updating
model in DSS is possible by following procedure of
processing new CIM XML/RDF file described in section III.
This procedure is obviously not optimal, as it will require
complete rewrite of the model in Redis. It is necessary to
solve problem of this process optimization. Problem is to
determine changed parts of the model and update them in
DBMS.

REFERENCES

[1] International Electrotechnical Commission, “Energy management
system application program interface (EMS API) – Part 301:
Common Information model (CIM) base”, 6th ed, p. 36, December
2016.

[2] EMS for the 21st Century. System Requirements. Working Group
D2.24. February 2011. ISBN: 978-2-85873-141-1., p. 6

[3] Mathias Uslar, Michael Specht, Sebastian Rohjans, Jörn Trefke, José
M. González,The Common Information Model CIM: IEC
61968/61970 and 62325 – A practical introduction to the CIM, p. 23,
2012

[4] Rahul Khare, Mostafa Khadem, Sainath Moorty, Kittipong
Methaprayoon, Jun Zhu «Patterns and Practices for CIM
applications», 2011 IEEE Power and Energy Society General
Meeting, p.5.

[5] A.W. McMorran, R.W. Lincoln, G.A. Taylor, E. M. Stewart,
«Addressing Misconceptions about the Common Information Model
(CIM)», 2011 IEEE Power and Energy Society General Meeting, p.2.

[6] Redis [Online]. Available: https://redis.io/ [Accessed: 31- Mar- 2019]
[7] Blocking commands in Redis modules [Online]. Available:

https://redis.io/topics/modules-blocking-ops [Accessed: 31- Mar-
2019]

[8] How fast is Redis? [Online]. Available:
https://redis.io/topics/benchmarks [Accessed: 30- Apr- 2019]

[9] PyCIM [Online]. Available: https://github.com/rwl/PyCIM
[Accessed: 31- Mar- 2019]

[10] gRPC A high-performance, open-source universal RPC framework
[Online]. Available: https://grpc.io/ [Accessed: 31- Mar- 2019]

[11] The C10K problem [Online]. Available:
http://www.kegel.com/c10k.html [Accessed: 31- Mar- 2019]

[12] Centrifugo [Online]. Available:
https://github.com/centrifugal/centrifugo [Accessed: 31- Mar- 2019]

82

Applying High-Level Function Loop Invariants for
Machine Code Deductive Verification

Pavel Putro
Software Engineering Department

Ivannikov Institute for System Programming of the RAS
Moscow, Russia

pavel.putro@ispras.ru

Abstract—The existing tools of deductive verification allow
us to successfully prove the correctness of functions written in
high-level languages such as C or Java. However, this may not
be enough for critical software because even fully verified code
cannot guarantee the correct generation of machine code by the
compiler. At the moment, developers of such systems have to
accept the compiler correctness assumption, which, however, is
extremely undesirable, but inevitable due to the lack of full-
fledged systems of formal verification of machine code. It is
also worth noting that the verification of machine code by a
person directly is an extremely time-consuming task due to the
high complexity and large amounts of machine code. One of
the approaches to simplify the verification of machine code is
automatic deductive verification reusing the formal specification
of the high-level language function. The formal specification of the
function consists of the specification of the pre- and postcondition,
as well as loop invariants, which specify conditions that are
satified at each iteration of the loop. When compiling a program
into machine code, pre- and postconditions are preserved, which,
however, cannot be said about loop invariants. This fact is one
of the main problems of automatic verification of machine code
with loops. Another important problem is that high-level function
variables often have projections’ to both registers and memory at
the machine code level, and the verification procedure requires
that invariants be described for each variable, and therefore the
missing invariants must be generated. This paper presents an
approach to solving these problems, based on the analysis of
the control flow graph, and intelligent search of the locations of
variables.

Index Terms—deductive verification, formal methods, machine
code

I. INTRODUCTION

In the 1960s Floyd [1] and Hoare [2] put forward their
theories that the full correctness of the program code can be
proved mathematically. The proposed methods are called de-
ductive verification, but could not immediately gain popularity
due to the lack of automation, as well as low performance
and the high cost of hardware computing resources. However,
in recent decades, these methods are experiencing a rebirth
due to the rapid development of methods for solving the
SMT [3] problem, and growing performance of hardware
devices. Technological leap in this area allowed to verify the
application and system software by means of personal comput-
ers. In this paper, the author adheres to the use of methods of
deductive verification, because unlike other methods of formal
verification, such as for example model checking, deductive

verification allows proving full correctness, but not only the
absence of a certain class of errors.

Increasing the availability of formal verification methods
has led to the fact that now formal verification is becoming
a standard in the creation of systems designed to work with
safety- and security-critical infrastructure. These systems are
verified and tested carefully, but industrial verification tools
work only at source code level when testing can’t guarantee
that are no errors in the program. Here we can notice a security
hole when compilation of the correct code introduces errors
that can’t be detected by the testing system. Without anyways
for solving this problem developers have to make ”The
assumption of the correctness of the compiler”. According to
a study [4] conducted in 2016, the total number of bugs found
in GCC+LLVM are more than 50000. This is one of the main
reasons why this assumption may not be sufficient for critical
systems. There are only two ways that can allow developers to
abandon this assumption: the first is to create a fully formally
verified compiler, and the second is to formally verify machine
code. There are some tries in recent 15 years that aimed
to verify machine code or to create fully formally verified
compiler but there is still no generally accepted industrial
solution in machine code verification.

In this paper we consider an approach of deductive veri-
fication of machine code obtained by compiling the source
code, the correctness of which has been proved by methods of
deductive verification. The approach proposes to use a number
of techniques designed to reuse the function specification in a
high-level language to prove the correctness of the compiled
machine code.

The process of deductive verification of machine code has
several serious differences from deductive verification of code
in high-level languages. The first difference is that in machine-
independent high-level programming languages, the set of
basic operations amounts to several tens, and the size of
instruction sets of modern processors amounts to hundreds
and may even exceed a thousand different instructions. In
addition, many of these instructions can have side effects,
such as setting processor flags or storing the result in a
predefined register. This variety of instructions does not allow
to effectively generate state-change formulas during parsing of
machine code and requires a definition of the processor model
and its instruction set. The second difference is that machine

83

code is always a sequence of instructions with operands and
does not have the complex syntax that is present in modern
programming languages. This feature allows you to automate
the parsing of the machine code of different processors using
only one tool. The third difference is that in machine code
there is no explicit design to indicate the loops, such as
operators ”for” or ”while” in languages C/C++. Instead, loops
are organized by using a set of conditional and unconditional
branches. However, the presence of such instructions does not
mean that there are loops in the program because they are
also used to organize any branching. This difference requires
the construction and analysis of the control flow graph of
the program. In this case, the control flow graph extractor
should be able to distinguish branches from other processor
instructions, be able to determine the target of the transition
and the condition under which it will be done. If there is a
control flow graph, the problem of finding loops in the program
can be reduced to the problem of finding the components of
strong connectivity in the oriented graph. The last significant
difference is the absence of a direct connection between the
names and positions of local variables in a high-level language
program and their location in memory or in the registers of the
program in machine code. It is necessary when we try to reuse
specifications of the high-level function. A similar dependence
exists when mapping function parameters to registers and
stack and is determined by the target processor ABI. Using
information about ABI allows you to automatically map the
parameters and the result of the function to the appropriate
positions in the machine code. However, the process of proving
loop invariants involves the use of local variables. As a result,
when trying to prove the invariants of a high-level function
at the machine code level, there is a problem associated with
the absence of the ability to directly associate high-level local
variables with machine code. There are also other differences
related to program function calls, system calls, and exception
handling, but these are beyond the scope of this paper. As you
can see the first two considered differences are common and
observed in the processing of any machine code, while the
second two appear only in the case of processing functions
with loops. In this paper, the most attention is paid to the
solution of the problems caused by the second two differences
while the previous author’s paper is devoted to the first two [5].

II. RELATED WORK

In [6], the HOL4 proof assistant [7] is used to verify
machine programs in subsets of ARM, PowerPC, and x86
(IA-32). These ISAs were specified independently: the ARM
and x86 models [8], [9] were written in HOL4, while the
PowerPC model [10] was written in Coq [11] and then manu-
ally translated to HOL4. There are four levels of abstraction.
Machine code (level 1) is automatically decompiled into the
low-level function model in HOL4 (level 2). A user describes
the high-level function model (level 3) as well as the functional
specification (level 4). By proving the equivalence between the
levels, the user ensures that the machine code complies with
the functional specification. In our opinion, automation can be

increased by using specialized ISA description languages and
SMT solvers. For proving the correctness of the programs with
loops, it uses loops to recursive functions translation technique.
This technique is available only for interactive provers due
to efficiency problems of automatic solvers while processing
programs with loops.

An interesting approach aimed at verifying machine code
against ACSL [12] specifications is presented in [13]. The
general scheme is as follows: first, the ACSL annotations are
rewritten as an inline assembly; second, the modified sources
are compiled into assembly language; third, the assembly code
is translated into a Why program; finally, the Why environment
generates verification conditions and proves them with external
solvers. The approach looks similar to the proposed one; how-
ever, there some distinctions. E.g., there are separate primitives
for storing/loading variables of a different type (32- and 64-
bit integers, single and double floating-point numbers, etc.),
which leads to certain limitations in dealing with pointers. It
is also worth noting that verification at the assembly level does
not allow us to abandon the compiler correctness assumption,
as the assembly code is an intermediate form and needs
additional translation. This approach relies on the compiler
while processing programs with loops, as compiler places
rewritten as inline assembly loop invariants into the beginning
of the loop and automatically bind local variables to the
registers or memory.

In [14], there have been demonstrated the possibility of
reusing correctness proofs of high-level programs for the
related machine code verification. The approach is illustrated
on the example of a Java-like source language and a bytecode
target language. The paper describes a scenario of using such
a technology in the context of proof-carrying code (PCC) and
shows (in a particular setting) that compilation preserves proof
obligations, i.e. source code proofs (built either automatically
or interactively) can be transformed to the machine code
proofs. The problem we are solving is different (though some
ideas may be useful); moreover, we would like to make our
solution architecture and compiler independent. In the case of
the processing of the programs with loops, if loop invariants
are preserved by compilation, their proving will be a trivial
process.

III. USING THE CONTROL FLOW GRAPH FOR VC
GENERATION

In deductive verification of programs in high-level lan-
guages, various syntactic constructions allow determining the
presence of loops in the program, their contents, as well
as the conditions of exit from the loop. However, when
processing the machine code such structures do not exist,
and to search for loops and other branch operations need to
build a control flow graph (CFG). As part of the study for
the processing of machine code used MicroTESK toolkit [15]
(full justification for the use of MicroTESK for deductive
verification of machine code is given in article [5]). The use of
this tool, in particular, allows to describe the processor model
in the language of nML [16], and on the basis of this model to

84

automatically analyze the binary code and build its behavior
model in the logical language SMT-LIB [17]. In addition, CFG
extractor has been added to this tool over the past year.

A. The format of the CFG

MicroTESK toolkit is able to determine whether the in-
struction described in nML is a branch instruction, determine
the branch condition and the target address. In addition,
MicroTESK has an advanced algorithm for calculating the
target address of the transition, which allows it to calculate
indirect targets, such as in a situation where the target address
is preloaded into the register and the branch is carried out
already on the register. Such capabilities in combination with
the use of nML processor models allow you to automatically
generate CFG for any processor modeled using nML. The
generated CFG is saved in JSON format [18], and has the
following format:

1) All basic blocks are placed in the list with the name
”blocks”.

2) Each basic block has an index in the ” blocks” list and
has the following format:

a) The ”range” list that includes the sequence number
of the first and last instruction of the base block in
the context of the entire function being analyzed.
Used for extraction of the SMT-LIB representation
of the block from the SMT-LIB representation of
machine code.

b) The ”asm” list that contains instructions of a basic
block in the assembler language of the target
processor.

c) The ”vars start” list, which contains the SMT-LIB
versions of the main variables of the nML model
of the processor such as registers and memory, but
not temporary and auxiliary variables. Versions are
specified for the entry point of the basic block.

d) The ”vars end” list, contains values similar to the
list of ”vars start”, however, the version specified
for the exit point of the basic block.

e) The field ”condition” contains the branch condi-
tion. The MicroTESK nML internal representation
syntax is used to write the condition. ”true” for
unconditional branches and in the case when there
is no branch in the block.

f) The field ”condition smt” same as ”condition”,
however, is recorded using SMT-LIB.

g) The field ”target taken” containing the index of
the basic block in the ”blocks” list, which will be
passed to the control in the case when ”condition”
is met. ”null” for blocks in which is the function
exit point.

h) Optional field ”target ntaken” containing the index
of the basic block in the ”blocks” list, which
will be passed to the control in the case when
”condition” is not met. Defined only for blocks
with a conditional branch.

This structure of the graph contains all the necessary in-
formation for generating verification conditions. Below is an
example of the extracted CFG for the function of calculating
the sum of numbers from 0 to N (Table I).

{
"blocks": [
{
"range": [0, 8],
"vars_start": ["MEM!1","XREG!1"],
"vars_end": ["MEM!37","XREG!15"],
"asm": [
"addi sp, sp, -48",
"sd s0, 40(sp)",
"addi s0, sp, 48",
"addi a5, a0, 0",
"sw a5, -36(s0)",
"sw zero, -20(s0)",
"addi a5, zero, 1",
"sw a5, -24(s0)",
"jal zero, 0x10"
],
"condition": "true",
"target_taken": 1
},
{
"range": [16, 20],
"vars_start": ["MEM!53","XREG!27"],
"vars_end": ["MEM!53","XREG!36"],
"asm": [
"lw a4, -24(s0)",
"lw a5, -36(s0)",
"addiw a4, a4, 0",
"addiw a5, a5, 0",
"bge a5, a4, -22"
],
"condition": "i1 sge i64 a5, a4",
"condition_smt": "op_20_instruction.operation.action.block_0!1",
"target_taken": 2,
"target_ntaken": 3
},
{
"range": [9, 15],
"vars_start": ["MEM!37","XREG!15"],
"vars_end": ["MEM!53","XREG!27"],
"asm": [
"lw a4, -20(s0)",
"lw a5, -24(s0)",
"addw a5, a4, a5",
"sw a5, -20(s0)",
"lw a5, -24(s0)",
"addiw a5, a5, 1",
"sw a5, -24(s0)"
],
"condition": "true",
"target_taken": 1
},
{
"range": [21, 25],
"vars_start": ["MEM!53","XREG!36"],
"vars_end": ["MEM!53","XREG!45"],
"asm": [
"lw a5, -20(s0)",
"addi a0, a5, 0",
"ld s0, 40(sp)",
"addi sp, sp, 48",
"jalr zero, ra, 0"
],
"condition": "true",
"target_taken": null
}
]
}

B. Joining basic blocks for verification conditions generation

The basic blocks themselves are not suitable targets for
generating verification conditions (VC), as they may not
contain specific targets, but only state change formulas. There

85

ACSL-ANNOTATED C CODE ASSEMBLY CODE BINARY CODE

/*@ axiomatic Sum {

*@ logic integer sum(integer n);

*@ axiom sum_init:

*@ \forall integer n;

*@ n <= 0 ==> sum(n) == 0;

*@ axiom sum_step_dec:

*@ \forall integer n;

*@ n > 0 ==> sum(n) == sum(n-1) + n;

*@ }

*/

/*@ requires 0 <= n <= 65535;

*@ ensures \result == sum(n);

*/
int sum(int n) {
int s = 0;

/*@ loop invariant l <= i <= n+1;

*@ loop invariant s == sum(i-1);

*@ loop variant n-i;

*/
for(int i = 1; i <= n; i++) {
s += i;
}
return s;
}

addi sp, sp, -48
sd s0, 40(sp)
addi s0, sp, 48
addi a5, a0, 0
sw a5, -36(s0)
sw zero, -20(s0)
addi a5, zero, 1
sw a5, -24(s0)
jal zero, 0x10
lw a4, -20(s0)
lw a5, -24(s0)
addw a5, a4, a5
sw a5, -20(s0)
lw a5, -24(s0)
addiw a5, a5, 1
sw a5, -24(s0)
lw a4, -24(s0)
lw a5, -36(s0)
addiw a4, a4, 0
addiw a5, a5, 0
bge a5, a4, -22
lw a5, -20(s0)
addi a0, a5, 0
ld s0, 40(sp)
addi sp, sp, 48
jalr zero, ra, 0

fd01 0113
0281 3423
0301 0413
0005 0793
fcf4 2e23
fe04 2623
0010 0793
fef4 2423
0200 006f
fec4 2703
fe84 2783
00f7 07bb
fef4 2623
fe84 2783
0017 879b
fef4 2423
fe84 2703
fdc4 2783
0007 071b
0007 879b
fce7 dae3
fec4 2783
0007 8513
0281 3403
0301 0113
0000 8067

TABLE I
EXAMPLE: ACSL-ANNOTATED C CODE, RISC-V ASSEMBLY CODE, AND BINARY CODE GENERATED BY GCC FOR RISC-V

are several types of verification conditions in deductive verifi-
cation. The first and foremost is the postcondition. Also as VC
can be used various custom asserts or conditions for checking
the security of the program execution, such as for example the
absence of indexing out of range of the array. Also, as VC uses
invariants of loops. In this case, each invariant can be further
divided into checking the initialization of this invariant that
is, checking the condition of the invariant before the execution
of the loop code, as well as checking the preservation of the
invariant - the preservation of the compliance of the invariant
for the next iteration of the loop, provided that all the invariants
are compliances on the current one. Therefore, the basic blocks
must be joined and marked so that one or more of these
conditions can be matched to each of them. Accordingly, the
algorithm for combining the base blocks can be defined as
follows. In the first step, using the fields ”target taken” and
”target ntaken”, the array of edges of the CFG is selected
from the set of basic blocks. In the second step, to search for
loops in the program, the graph uses an algorithm to search for
strongly related components in a directed graph. The author’s
implementation uses Tarjan’s algorithm [19] implemented by
the ocaml-containers library [20]. To find nested loops, this
step must be repeated recursively for all found base block
sets, and the relationship between the first and last base block
in the loop must be broken. In the third step, you need to
depth-first search the graph for marking and joining blocks.
The traversal must start from the zero base block the program
entry point. At the input, there is a set of basic blocks, as well
as a set of chains of strongly related component - loops. The
output is a set of joined and marked basic blocks suitable for
VC generation.

1) If the block has two targets, they must be processed
separately, and the results combined.

2) If the current block and its target is not in the loop it
is necessary to ”join” these blocks and proceed to the
processing of the joined block.

3) If the current block is not included in the loop, and its
target is included in the loop, it must be marked as the
loop entry point. Next, proceed to the processing of its
target.

4) If the block and its target are in the same loop and do
not make a loop, they must be joined and proceed to the
processing of the joined block.

5) If the block and its targets are in the same loop and thus
make a loop, they must be combined and the result is
returned.

6) If the unit is part of the loop, and its target is included
in a nested loop it is necessary to mark as a loop entry
point and proceed to the processing its target.

7) If the block is included in the nested loop, and its target
in the outer loop, then the block must be marked as the
loop exit point and joined with the target and proceed
to the processing of the joined block.

8) If the block in the loop but its target is no, then the
block must be marked as the exit point of the loop and
joined with the target and proceed to process the joined
block.

9) If the block target is null, the result must be returned.

The procedure of joining blocks is the base for the graph
traversal and is carried out according to the following rules:

1) The procedure allows you to create a new block based
on two existing ones.

86

2) Joining is possible if the target (”target taken” or ”tar-
get ntaken”) of the first block is the second block. In
all other cases, the result of the join is not determined.

3) The targets of the joined block will be the targets of the
second block.

4) Condition (”condition smt”) of the joined block will be
the condition of the second block.

5) If the second block is a loop exit point, the initial state
”vars start” of the combined block will be the initial
state of the second block, otherwise the initial state of
the first block.

6) If at least one of the joining blocks is marked as the
loop exit point, the joined block must also be marked
as the loop exit point.

7) If the second block is marked as the loop entry point,
the result should be marked as the loop entry point.

8) If the second block ”closes” the loop, i.e. its target is
the first block, its SMT-LIB representation should be
changed so that all elements of the final state ”vars end”
of the second block should get new unique names.
Any other conflicts between any variables in SMT-LIB
representations of the joining blocks must be resolved
in the same way.

9) SMT-LIB the representation of the joined block must be
obtained by concatenating the SMT-LIB representations
of the merged blocks. In this case, if the condition
”condition” of the first block is not empty (”true”), it
must be added as SMT-LIB assert to the representation
code of the joined block. Also, if the join follows the
”target ntaken” branch, the condition must be inverted.
Also, if the blocks do not follow each other in the
program, the final state of the first block also needs to
be associated with the initial state of the second block
at the level of the SMT-LIB representation.

As a result of following this algorithm, in most cases, you
can create a set of code blocks on which you can directly
prove various verification conditions. The algorithm allows
processing machine code with loops, nested loops, sequential
loops, as well as code generated by the presence of the brake
and continue statements in the program, but is not able to
cope with tasks when, for example, several entries to one
loop and other non-trivial situations caused by the use of
transition instructions are detected in the control flow graph.
However, such situations cause difficulties already at the stage
of verification of the source code, and the construction of an
algorithm that allows you to automatically deductively verify
any machine code is an unsolvable task.

If we apply the algorithm to the CFG function of the sum
of the numbers presented above, we will be able to allocate
three blocks to prove VC. The first block will have index 0,
have loop entry status and be used to prove the correctness
of the initialization of the loop invariants. The second block
will be a join of blocks 1 and 2 and will be used to prove the
preservation of loop invariants. The third block will be a join
of blocks 1 and 3 and will be used to prove the postcondition

provided the invariants are correct.

IV. AUTOMATIC BINDING OF HIGH- AND LOW-LEVEL
LOCAL VARIABLES

In general, to describe loop invariants, high-level functions
use local variable names that are not available when working
with machine code. In general, information about binding local
variables to specific positions on the stack or registers is not
available. Of course, you can require the user to manually
provide this data and even give examples where such require-
ments will have a positive impact on system performance.
However, in most cases, manual mapping of local variables
to their positions will be a bottleneck in the performance
of the verification system, as well as reduce the degree of
automation. From the above, we can conclude that the system
should automatically determine the location of local variables,
and the possibility of their manual input should be optional.
To determine the positions of local variables, the author has
developed an algorithm for efficient search of positions in the
VC generation, which includes the following steps:

1) All potential positions of local variables are calculated.
This can be done both by means of machine code
analysis (similar to those used by modern disassemblers
and debuggers) and with the help of an existing logical
model of machine code and SMT-solver. The author
proposes to use the second option because it is a more
universal approach. In this approach, for each memory
write instruction it is required to prove by solver that
there are no positions on the stack that could change as
a result of the operation. If solver managed to generate
a counterexample, the position found is a potential
position for the local variable. This algorithm allows
you to find positions for local variables, but it can be
difficult if there is an array on the stack. In this case, if
solver fails to determine which position of the array was
recorded, the result may not be determined and the user
will have to specify the position himself. Similarly, you
can calculate the registers to which the local variable
can be mapped.

2) Each local variable is assigned a potential positions set,
which may depend on its size in bytes.

3) For each invariant from the list of invariants for the
proof, the ”cost” of proving its correct initialization
should be calculated. Here, the cost is the number of
all possible combinations of potential positions of local
variables involved in the description of this invariant.
Here it is necessary to take into account that each
variable has its own unique memory location, there-
fore, combinations of potential positions should consist
only of unique values. It is also worth noting that
this step should be carried out only when proving the
initialization of the invariants, since the initialization of
the invariant is proved independently of the other loop
invariants, and the proof of preserving the loop invariant
must be proved given that all other invariants must be
satisfied. Thus, when proving the correct initialization of

87

the invariant, it is possible to reduce the number of local
variables necessary for binding, and, as a consequence,
the ”cost” of the proof may differ for different invariants.
If it is necessary to prove the loop invariant preservation
the cost of all invariants should be considered equal to.

4) For the least cost invariant, it is necessary to try to prove
correctness for each possible combinations of potential
positions of local variables on which the invariant de-
pends. The results (”unsat”/”unknown”/”sat” verdicts)
should be saved in a separate list.

5) If there was no one verdict is ”unsat”, it is necessary
to mark the invariant unproven. If at least one verdict
”unsat” has been obtained, then the invariant should be
considered proved and the potential positions of local
variables on which the proved invariant depends should
be filtered, leaving only those positions that consist
in combinations of potential positions for which the
invariant has been proved (the ”unsat” verdict).

6) Remove the proved invariant from the list of invariants
for the proof and (if there are still invariants in the list)
proceed to step 3.

Using this algorithm, it is possible in some cases to signif-
icantly reduce the number of generated targets relative to a
complete search. As an example, let’s take a function with 3
different local variables with values s = −1, i = 0, n = 90 at
the loop entry point and three potential positions on the stack:
sp−0x10, sp−0x18, sp−0x24, respectively. For simplicity,
the size of variables and positions will be considered equal to
4 bytes. Initially, the correspondence between the positions
of local variables is not known. Based on these data, we
try to prove the initialization of the following invariants:
”0 <= i < 100”, ”s == 2 ∗ i − 1” and ”s < n + i”.
According to the algorithm, we calculate the cost of proving
the invariants, which will be equal to 3, 6 and 6, respectively.
Next, try to prove the correctness of the first invariant with the
cost of 3 and will find two potential positions (sp− 0x18 and
sp − 0x24) for the variable i (we will also be able to prove
the invariant for variable n). Second, we perform filtering
to remove the position of the sp − 0x10 for the variable i.
Recalculate the costs of the remaining invariants: the result of
4 and 4 (the cause of reducing the cost is reducing the number
of potential positions for the variable i, on which the invariants
depend). When proving the correctness of the initialization of
the second invariant, only one set of potential positions for the
variables s and i is sp − 0x10 and sp − 0x18, respectively,
will be selected. We filter and proceed to the proof of the
last invariant. It is possible to select only one target for it
the position for n will be selected by the elimination method.
We prove the invariant, perform filtering and get the same
correspondence between variables and their positions on the
stack, which was set by the compiler.

V. EVALUATION

At the time of writing, the approach proposed by the
author was partially implemented in the system of deductive
verification of machine code [5]. Using this approach, the

machine code of the function of the sum of numbers from
0 to N (Table I), as well as some other functions with loops,
was successfully verified. For each generated VC, a verdict
was obtained confirming its correctness. In addition, the po-
sitions of local variables on the function stack were strictly
determined by the computer during the verification process.
More complex testing is planned after the full implementation
of the approach.

VI. CONCLUSION

Verification of functions with loops is one of the main
stumbling blocks in the verification of machine code. Various
research groups have proposed various solutions that however
impose serious limitations, such as the need to use interactive
proof assistants or the introduction of dependency on the target
compiler. However, due to the high complexity of the machine
code structure, the use of interactive proof assistants can
significantly slow down the verification process and require
very experienced staff. Dependency on the target compiler
also reduces the universality of the approach and requires its
integration into the source code compilation process, which
can cause some difficulties. In contrast to these works, the
author proposes to use a compiler-independent approach based
on the use of automatic SMT-solvers. To implement the
approach, we propose to use two main algorithms, as well as
a tool for CFG extraction. The first algorithm allows the basic
blocks of the function CFG to be joined in such a way that
they become suitable for VC proving. The second algorithm
allows restoring the lost links between the local variables of
the high-level function and their positions in memory or on
the processor registers at the machine code level. Using this
approach allows in most cases to generate such VC, which will
be sufficient for deductive verification of the machine code of
the function with loops.

The work is in progress. At the moment, the approach
has been partially implemented in the system of deductive
verification of machine code. Its full implementation and
testing is the nearest direction for further work. Also among
the possible areas for further research can be identified the
study of problems arising in the proof of the correctness of
functions containing calls to other functions or system calls.
There is a separate issue with the security check of the machine
code execution, i.e. the absence of exceptions at the processor
level, incorrect memory readings or stack overflows. Also
of great importance is the study of the applicability of the
machine code deductive verification system for solving real
industrial problems.

REFERENCES

[1] R.W. Floyd. Assigning Meanings to Programs. Mathematical Aspects of
Computer Science. Proceedings of Symposia in Applied Mathematics,
19, 1967. P. 19-32. DOI: 10.1090/psapm/019/0235771.

[2] C.A.R. Hoare. An Axiomatic Basis for Computer Programming.
Communications of the ACM, 12(10), 1969. P. 576-585.
DOI: 10.1145/363235.363259.

[3] C Barrett, R Sebastiani, S Seshia, and C Tinelli. Satisfiability Modulo
Theories. Handbook of Satisfiability, vol. 185 of Frontiers in Artificial
Intelligence and Applications, (A Biere, M J H Heule, H van Maaren,
and T Walsh, eds.), IOS Press, Feb. 2009, pp. 825885.

88

[4] C. Sun, V. Le, Q. Zhang, Z. Su Toward understanding compiler bugs in
gcc and llvm. ISSTA 2016, pp. 294-305.

[5] Putro P.A. Combining ACSL Specifications and Machine Code. Trudy
ISP RAN/Proc. ISP RAS, vol. 30, issue 4, 2018. pp. 95-106. DOI:
10.15514/ISPRAS-2018-30(4)-6

[6] M.O. Myreen. Formal Verification of Machine-Code Programs. Ph.D.
Thesis. University of Cambridge, 2009. 131 p.

[7] K. Slind, M. Norrish. A Brief Overview of HOL4. Theorem Proving in
Higher Order Logics (TPHOLs). Lecture Notes in Computer Science
(LNCS), 5170, 2008. P. 28-32. DOI: 10.1007/978-3-540-71067-7 6.

[8] A. Fox. Formal Specification and Verification of ARM6. Theorem
Proving in Higher Order Logics (TPHOLs). Lecture Notes in Computer
Science (LNCS), 2758, 2003. P. 25-40. DOI: 10.1007/10930755 2.

[9] K. Crary, S. Sarkar. Foundational Certified Code in a Metalogical
Framework. Technical Report CMU-CS-03-108. Carnegie Mellon Uni-
versity, 2003. 19 p.

[10] X. Leroy. Formal Certification of a Compiler Back-End or: Program-
ming a Compiler with a Proof Assistant. Principles of Programming
Languages (POPL), 2006. P. 42-54, DOI: 10.1145/1111037.1111042.

[11] Y. Bertot. A Short Presentation of Coq. Theorem Proving in Higher
Order Logics (TPHOLs). Lecture Notes in Computer Science, 5170,
2008. P. 12-16. DOI: 10.1007/978-3-540-71067-7 3.

[12] P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy,
V. Prevosto. ACSL: ANSI/ISO C Specification Language. Version 1.13,
2018. 114 p.

[13] T.M.T. Nguyen, C. Marché. Hardware-Dependent Proofs of Numerical
Programs. Certified Programs and Proofs (CPP), 2011. Lecture Notes
in Computer Science 7086. P. 314-329. DOI: 10.1007/978-3-642-25379-
9 23.

[14] G. Barthe, T. Rezk, A. Saabas. Proof Obligations Preserving Compila-
tion. Formal Aspects in Security and Trust (FAST), 2005. Lecture Notes
in Computer Science 3866. P. 112-126. DOI: 10.1007/11679219 9.

[15] MicroTESK Framework – http://www.microtesk.org
[16] M. Freericks. The nML Machine Description Formalism. Technical

Report TR SM-IMP/DIST/08, TU Berlin CS Department, 1993. 47 p.
[17] C. Barrett, P. Fontaine, C. Tinelli. The SMT-LIB Standard Version 2.6.

Release 2017-07-18. 104 p.
[18] JavaScript Object Notation – https://www.json.org/
[19] R. E. Tarjan, Dep-first search and linear graph algorithms SIAM J.

Comput., vol. 1, no. 2, pp. 146-160, June 1972.
[20] ocaml-containers library – https://github.com/c-cube/ocaml-containers

89

Extracting Assertions for Conflicts in HDL

Descriptions

Alexander Kamkin1, 2, 3, 4, Mikhail Lebedev1, Sergey Smolov1
1Ivannikov Institute for System Programming of the Russian Academy of Sciences

2Lomonosov Moscow State University
3Moscow Institute for Physics and Technology

4National Research University Higher School of Economics

E-mail: {kamkin, lebedev, smolov}@ispras.ru

Abstract—Data access conflicts may arise in hardware

designs. We propose a static analysis based approach to data

conflicts extraction from HDL descriptions. Conflicts are

formulated as conditions on variables. Bounded model checking

is used to check whether these conditions are reachable. If true,

counterexamples are generated and then translated to HDL

testbenches. The proposed approach was applied to several open

source HDL benchmarks.

Keywords—hardware design; hardware description language;

functional verification; static analysis; test generation; data access

conflict; guarded action; model checking.

I. INTRODUCTION

Modern hardware designs contain multiple modules and

processes operating on the common set of internal variables.

In this case conflicts, i.e. illegal accesses from different

processes to the same data, may appear. Requirements on how

to operate with modules and avoid conflicts in a

communication protocol can be described both in formal

(machine-readable) and informal (human-readable) ways.
In this paper a formal verification based approach to

conflict extraction is proposed. The idea is to analyze an HDL
description aimed at finding data access conflicts [1]. Both the
conflicts and the target description are then automatically
translated into the input format of a model checking tool. The
tool generates counterexamples for the feasible conflicts.

II. RELATED WORK

In [1] several categories of data conflicts are described:

read after write (RAW), write after read (WAR) and write

after write (WAW). The HOL verification system [2] was

used to check a RISC processor’s pipeline. The formal

specification of pipeline was implemented manually that is

hard to be done for modern processors because of their

complexity.
In [3], a GoldMine methodology is presented for automatic

generation of hardware assertions. The method uses a
combination of data mining and static analysis techniques.
First, the HDL design is simulated to generate data about the
design's dynamic behavior. Then, the generated data are mined
for “candidate assertions” that are likely to be invariants. The
data mining technique used is a decision-tree-based supervised

learning algorithm. The candidate assertions are then passed
through the Cadence Incisive Formal Verifier [4] tool to filter
out the spurious candidates. The disadvantages of GoldMine
are: 1) usage of commercial tool; 2) invariants’
incompleteness because of random simulation usage at an
early stage.

III. ASSERTION EXTRACTION METHOD

We propose a new approach to data access conflicts

extraction in HDL descriptions. Our goal is to detect conflicts

and provide proofs that they may happen. The method is

aimed at conflicts of the following types:

1) read-write (RW): on the same clock tick one process

writes the variable and the other process reads it;

2) write-write (WW): on the same clock tick at least two

processes write the same variable;

3) write-read-write (WRW): we assume that a variable

should be read between two writes;

4) undefined (UNDEF): variable is read before it was

written.

The method consists of the following steps: 1) Control

Flow Graph (CFG) extraction; 2) transformation to Guarded

Actions Decision Diagram (GADD); 3) process invariants and

conflict assertions extraction; 4) invariants and assertions

translation into an input format of a model checking tool; 5)

counterexample generation. All method steps are made

automatically. The CFG representation is built for every

process of the HDL model using an abstract syntax tree

traversal compiler-like approach [5]. From the structural view,

CFG is a directed graph. Nodes of the graph contain HDL

operators; edges of the graph mean control flows. On the left

side of Fig. 1 the fragment of Verilog code is shown; the

related CFG is shown on the right side. Branch operators are

shown as diamond nodes and called as 𝐶𝑖. Basic block

operators are shown as rectangles and called as 𝐵𝑖 . Graph

edges contain the values that the branch conditions should be

equal to for edges to be passed. CFG is supposed to be acyclic:

HDL loops with constant numbers of iteration are unrolled

into sequences of operators.

90

if (state_bank3[inst_addr] > 1) // C1

 prediction[3] <= 1; // B1

else
 prediction[3] = 0; // B2

if (state_bank2[inst_addr] > 1) // C2

 prediction[2] <= 1; // B3

else
 prediction[2] <= 0; // B4

if (state_bank1[inst_addr] > 1) // C3

 prediction[1] <= 1; // B5

else
 prediction[1] <= 0; // B6

Fig. 1. Control Flow Graph Example

The next step is the transformation of the CFG to a GADD

that is a labeled DAG of guarded actions. A pair {𝛾, 𝛿}, where

𝛾 is a guard and 𝛿 is an action, is called a guarded action

(GA) [6]. The main idea of the CFG-GADD transformation

method is in extraction of branch-free sub-paths from the

CFG. Every such sub-path (GA) contains a condition (guard)

and a sequence of assignment operators (action). For action to

be executed the guard should be satisfied. Actions are

represented in the static single assignment (SSA) form [7]. To

connect subsequent GAs into a complete CFG path an

auxiliary phase variable is used.

To illustrate this step of the approach, let us take the

previous example (see Fig. 1). The CFG model contains the

following execution path: 𝐶1 → 𝐵1 → 𝐶2 → 𝐵4 → 𝐶3 → 𝐵5.

Path nodes are grey-colored in the Fig. 1; path edges are

highlighted too. The following GAs can be extracted from the

path: {𝐶1, 𝐵1}, {𝐶2, 𝐵4}, {𝐶3, 𝐵5}. Every GA corresponds to a

unique value of the phase variable. The phase variable

changes its value upon moving from one GA to another. On

Fig. 1 related values of the phase variable are shown in

brackets (the initial phase value is 0). Fig. 2 shows the

example of GADD model from the previous example:

Fig. 2 GADD example

The main advantage of GADD model is path number

reduction in comparison to CFG. In worst case (when CFG is

a sequence of branch operators) the GADD has 𝑂(𝑛) paths,

where 𝑛 is the number of branches, but the CFG has 𝑂(2𝑛).

Then the GADD is transformed into the invariants of the

processes, which represent the cycle-accurate behavior of the

processes. The invariant is a logical formula and is a kind of a

SSA representation of the whole process. Every GA of the

GADD contains a unique phase variable value assignment.

These unique values can be used as SSA version values of the

variables. The phase variable is removed from the resulting

formula because it does not affect the process behavior.

Each variable that is defined in a GA is labeled by the

corresponding phase value. Each variable that is used in the

GA is labeled by the set of phase values of the preceding GAs.

For guards intermediate variables are introduced. To

determine the values of the used variables, a backward search

of the GADD is used: it is obvious that the variable value was

defined in one of the preceding GAs or did not change from

the previous cycle. After that the process invariant formula is

built as a conjunction of equality expressions representing

each GA’s guards and actions.

Let us see how a process invariant is built using a small

example. Fig. 3 shows a part of the GADD and represents

three guarded actions.

Fig. 3. Original part of the GADD

The guard conditions are: 𝑧 == 𝑎, 𝑏 and 𝑐 respectively,

and the actions contain definitions of variables 𝑥, 𝑦 and

unique definitions of 𝑝ℎ𝑎𝑠𝑒. A set of the preceding phase

values is {𝑖, 𝑗}; 𝑧 is a variable; 𝑎, 𝑏 and 𝑐 are constants; 𝑓, 𝑔

and ℎ are functions defining the values of 𝑥 and 𝑦; 𝑉 is a set

of process variables.

On the first step we label the variables by the

corresponding phase values. The result of that is shown on

Fig. 4.

Fig. 4. GADD part with labeled variables

The used variables are now labeled by the preceding phase

values {𝑖, 𝑗} and the defined variables are labeled by the

corresponding phase values 𝑘, 𝑚, 𝑛. Phase definitions are

removed.

B
1

B
2

B
3

B
4

B
5

C
1

C
2

C
3

[1] [2]

[3]

[5][4]

[6]

[7]

B
6

[8]

phase

C
1 C

2
C

3

B
1

B
2

B
5

B
6

B
3

B
4

[0] [3] [6]

[1] [2] [7][4] [5] [8]

phase

x := f(V)

phase := k

y := g(V)

phase := m

x := h(V)

phase := n

... ...

z

{i,j}

a
b

c

phase

x
(k)

 := f(V
 (i,j)

) y
(m)

 := g(V
 (i,j)

) x
(n)

 := h(V
 (i,j)

)

... ...

z
 (i,j)

{i,j}

a
b

c

91

Then we introduce and define a variable for each guard.

The guard variable definition consists of a guard expression

and a link to the preceding guards. This helps us restore the

path from the beginning of the process to the corresponding

guarded action. For example:

𝑔𝑢𝑎𝑟𝑑(𝑘): = (𝑧(𝑖,𝑗) == 𝑎) & (𝑔𝑢𝑎𝑟𝑑(𝑖) | 𝑔𝑢𝑎𝑟𝑑(𝑗))
When all the variables in all the GAs are labeled by phases,

the remaining unknown used variables values can be

determined. Let us determine the value of 𝑧(𝑖,𝑗). So we

traverse the GADD backward using the preceding phase

values, starting from 𝑖 and 𝑗 (Fig. 5). When a definition is

found on some path (denoted 𝑑𝑒𝑓 on Fig. 5), the traversal of

this path completes and the definition value is collected. If the

beginning of the process is reached, the variable preserves its

value from the previous cycle.

Fig. 5. Version value search (CFG view).

In the example on Fig. 5 the variable 𝑧 is defined on phases

𝑠 and 𝑡 or may not change its value. So the value of 𝑧(𝑖,𝑗) can

be determined as follows:

𝑧(𝑖,𝑗): = 𝑔𝑢𝑎𝑟𝑑(𝑠) ? 𝑧(𝑠): 𝑔𝑢𝑎𝑟𝑑(𝑡) ? 𝑧(𝑡): 𝑧
As the guard variables s and t are linked to their preceding

phases, their corresponding conditions are incompatible and

𝑧(𝑖,𝑗) gets the proper value.

On the final step the invariant formula is built. As it was

mentioned, it is a conjunction of equality expressions for

every labeled variable of the process including the guard

variables:

𝑥(𝑘) == 𝑓(𝑉(𝑖,𝑗)) & 𝑦(𝑚) == 𝑔(𝑉(𝑖,𝑗)) & 𝑥(𝑛) == ℎ(𝑉(𝑖,𝑗))
& 𝑔𝑢𝑎𝑟𝑑(𝑘) == ((𝑧(𝑖,𝑗) == 𝑎) & (𝑔𝑢𝑎𝑟𝑑(𝑖) | 𝑔𝑢𝑎𝑟𝑑(𝑗)))
& 𝑔𝑢𝑎𝑟𝑑(𝑚) == ((𝑧(𝑖,𝑗) == 𝑏) & (𝑔𝑢𝑎𝑟𝑑(𝑖) | 𝑔𝑢𝑎𝑟𝑑(𝑗)))
& 𝑔𝑢𝑎𝑟𝑑(𝑛) == ((𝑧(𝑖,𝑗) == 𝑐) & (𝑔𝑢𝑎𝑟𝑑(𝑖) | 𝑔𝑢𝑎𝑟𝑑(𝑗)))

& 𝑧(𝑖,𝑗) == (𝑔𝑢𝑎𝑟𝑑(𝑠) ? 𝑧(𝑠): 𝑔𝑢𝑎𝑟𝑑(𝑡) ? 𝑧(𝑡): 𝑧) & …
After the process invariant is built, the definition and usage

conditions can be collected. They are collected only for

internal and output variables of the HDL model, because input

variables can be only used.

If a variable is defined (used) in the action of a GA, its

definition (usage) condition equals the guard variable that

corresponds to this GA. If a variable is used in the guard

condition of a GA, its usage condition equals the disjunction

of the corresponding guard variables of the preceding GAs.

The variable definition (usage) condition of the whole process

is the disjunction of the variable definition (usage) conditions

of the GAs.

In our example, the definition conditions for variables 𝑥

and 𝑦 are:

𝑑𝑒𝑓(𝑥) = 𝑔𝑢𝑎𝑟𝑑(𝑘) | 𝑔𝑢𝑎𝑟𝑑(𝑛)

𝑑𝑒𝑓(𝑦) = 𝑔𝑢𝑎𝑟𝑑(𝑚)

The usage condition for variable z is:

𝑢𝑠𝑒(𝑧) = 𝑔𝑢𝑎𝑟𝑑(𝑖) | 𝑔𝑢𝑎𝑟𝑑(𝑗)
Then the conditions are transformed into the assertions of

conflict types described above. The assertions are represented

as the Linear-time Temporal Logic (LTL) [8] formulas and

state that the abovementioned conflicts never happen.

If, for example, a variable 𝑣 is defined and used both in

processes 𝑝1 and 𝑝2, the corresponding RW conditions are:

! 𝑭 (𝑑𝑒𝑓𝑝1(𝑣) & 𝑢𝑠𝑒𝑝2(𝑣))

! 𝑭 (𝑑𝑒𝑓𝑝2(𝑣) & 𝑢𝑠𝑒𝑝1(𝑣))

The corresponding WW condition:

! 𝑭 (𝑑𝑒𝑓𝑝1(𝑣) & 𝑑𝑒𝑓𝑝2(𝑣))

The corresponding WRW condition:

𝑭 ((𝑑𝑒𝑓𝑝1(𝑣) | 𝑑𝑒𝑓𝑝2(𝑣))

& (𝑭 (𝑢𝑠𝑒𝑝2(𝑣) | 𝑢𝑠𝑒𝑝1(𝑣)) 𝑼 (𝑑𝑒𝑓𝑝1(𝑣) | 𝑑𝑒𝑓𝑝2(𝑣))))

The corresponding UNDEF condition:

𝑮 (! (𝑢𝑠𝑒𝑝2(𝑣) | 𝑢𝑠𝑒𝑝1(𝑣)) 𝑼 (𝑑𝑒𝑓𝑝1(𝑣) | 𝑑𝑒𝑓𝑝2(𝑣)))
Invariants and assertions are then translated into the SMV

model. Their translation is rather straightforward. It is only
important to define the variable value in the next state of the
model using the keyword next. This value equals the last
version of the variable before the end of the process. For
example, if the final phase values of a process are 𝑘, 𝑙, 𝑚, then
the next state value of a variable v is defined as:

𝑛𝑒𝑥𝑡(𝑣) ∶= 𝑣(𝑘,𝑙,𝑚)

The SMV model is checked by the nuXmv [9] tool using
bounded model checking. If an assertion is violated, a
counterexample is generated and a potential conflict is found.
The counterexamples may be later translated into test
scenarios for the original HDL description.

IV. CASE STUDY

The method was implemented in the Retrascope [10] tool.

It was applied to a range of Verilog designs from the Texas-

97 [11], VCEGAR [12] and Verilog2SMV VIS [13]

benchmarks and the 16-bit MIPS processor [14]. Table I

contains the results of the method’s application: benchmark

descriptions and generated assertions amount. Here N means

total amounts of top level modules. Most of the assertions

denote only suspicious situations, so the results should be

analyzed by a verification engineer to filter out the real data

conflicts.

92

TABLE I. Benchmark descriptions and potential conflicts.

Bench N LOC
Assertions

RW WW WRW UNDEF

Texas’97 17/58 69539 408 26 211 211

VCEGAR 20/34 15144 315 25 167 167

Verilog2SMV 12/20 4494 78 0 62 62

mips16 5/12 1007 10 0 9 9

Example of a RW situation, which is not a conflict

(mips16/ID_stage.v):

module ID_stage

…

wire [2:0] ir_dest_with_bubble;

wire [2:0] write_back_dest;

assign ir_dest_with_bubble = (instruction_decode_en) ?

ir_dest : 0;

 assign write_back_dest = ir_dest_with_bubble;

Signal ir_dest_with_bubble is defined in one process and is

used in the other process at the same time.

Example of a WW situation, which seems to be a real

conflict (Texas97/MPEG/prefixcode.v):

module start_code_prefix(start,done…);

…

reg monitor;

…
always @(posedge read_signal) begin

 monitor=start;

…

end
always if(start==0) begin

…

 monitor=0;

end

Variable monitor is defined simultaneously, if read_signal

rises and at the same time start equals 0.

Example of an UNDEF situation, which is also not a

conflict (mips16/ID_stage.v):

module ID_stage

…

reg [15:0] instruction_reg;

…

always @(posedge clk or posedge rst) begin

 if (rst) begin

 instruction_reg <= 0;

 end

 else begin

 if (instruction_decode_en) begin

 instruction_reg <= instruction;

 end

 end

end

assign ir_op_code = instruction_reg[15:12];

Register instruction_reg is undefined from the start of

simulation until the clk or rst rising edge.

V. CONCLUSION AND FUTURE WORK

In this paper the approach to data access conflicts

extraction from HDL descriptions has been proposed. We

extract assertions from the source code and automatically

translate them into the input format of the model checker. The

tool generates counterexamples that are proofs of conflicts’

reachability. We have implemented the approach in the

Retrascope toolkit and applied it to several open source HDL

benchmarks.
One direction for future research is to propagate assertions

from internal variables’ to interface variables. Such assertions
can be used to improve protocols of unknown third-party
modules or even to reconstruct protocols. Another direction is
the generation of checkers, i.e. HDL wrappers for target
modules that check their behavior through simulation.

REFERENCES

[1] S. Tahar, R. Kumar. “Formal Verification of Pipeline Conflicts in RISC
Processors”, Proceedings of the European Design Automation
Conference (EURO-DAC), 1994, pp. 285-289.

[2] M. Gordon, T. Melham. “Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic”, Cambridge University Press,
1993, 492 p.

[3] S. Hertz, D. Sheridan, S. Vasudevan, “Mining Hardware Assertions
With Guidance From Static Analysis”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 32, No. 6, 2013,
pp. 952-965.

[4] Cadence Incisive Formal Verifier.
https://community.cadence.com//CSSharedFiles/forums/storage/22/1007
8/IncisiveFV_ds.pdf

[5] A. V. Aho, R. Sethi, J. D. Ullman, “Compilers: principles, techniques,
and tools”, 1986, 796 p.

[6] J. Brandt, M. Gemunde, K. Schneider, S. Shukla, and J.-P. Talpin,
“Integrating system descriptions by clocked guarded actions”,
Proceedings of Forum on Design Languages (FDL), 2011, pp. 1-8.

[7] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, F.K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph”, ACM Transactions on Programming Languages
and Systems, 1991, pp. 451-490.

[8] A. Pnueli, “The temporal logic of programs”, 18th Annual Symposium
on Foundations of Computer Science, 1977, vol. 00, pp. 46-57.

[9] nuXmv model checker. https://nuxmv.fbk.eu

[10] Retrascope toolkit. https://forge.ispras.ru/projects/retrascope

[11] Texas-97 Verification Benchmarks.
https://ptolemy.berkeley.edu/projects/embedded/research/vis/texas-97

[12] VCEGAR benchmark collection. https://www.cprover.org/hardware

[13] Verilog2SMV tool. https://es-static.fbk.eu/tools/verilog2smv

[14] Educational 16-bit MIPS Processor.
https://opencores.org/projects/mips_16

93

https://community.cadence.com/CSSharedFiles/forums/storage/22/10078/IncisiveFV_ds.pdf
https://community.cadence.com/CSSharedFiles/forums/storage/22/10078/IncisiveFV_ds.pdf
https://nuxmv.fbk.eu/
https://forge.ispras.ru/projects/retrascope
https://ptolemy.berkeley.edu/projects/embedded/research/vis/texas-97
https://www.cprover.org/hardware
https://es-static.fbk.eu/tools/verilog2smv
https://opencores.org/projects/mips_16

Towards a Probabilistic Extension to
Non-Deterministic Transitions in Model-Based

Checking

Sergey Staroletov
Polzunov Altai State Technical University,
Lenin avenue 46, Barnaul, 656038, Russia

Email: serg soft@mail.ru

Abstract—The more the software systems complexity in-
creases, the harder to describe models for them; in addition,
these models should be adequate. For many types of systems, we
can create models by replacing complex algorithms of interaction
with occurrences of certain non-deterministic events. The paper
is considered a problem of modeling probabilistic transitions
in Promela language (SPIN verification tool) and a technique
of enhancing its grammar for the purpose of probabilistic
verification. The extension is based on non-deterministic choice
operator in Promela.

Keywords—Model Checking, Promela, Probabilistic Model
Checking

I. RESEARCH OBJECTIVES

Software engineering world has already developed a suffi-
cient amount of testing technologies as processes of searching
inconsistencies between programs and requirements for them,
and they are applicable well when creating typical desktop
applications or web sites with their business logic. However,
for systems that need to work in the critical industries such
as embedded control systems, aircraft management entities,
operating system components, the testing process does not
guarantee sufficient output quality of the product and the
appearance of an error can lead to costly consequences. It
is because the testing is not able to prove the absence of
errors over all possible states and can only show their lack
at a particular test.

Formal verification process (in comparison with testing)
enables us to prove the infallibility of some formal model in
relation to system requirements, expressed in a predicate logic,
and we can talk about the correctness of the model on all
data inputs and all specified methods of interaction of model
entities.

This study applies formal models in Promela (”protocol
meta-language”) for SPIN verification tool (”simple Promela
interpreter”) [1], [2], and the system requirements are defined
in terms of linear time temporal logic (LTL).

The more the software systems complexity increases, the
harder to describe models for them; in addition, these models
should be adequate. For many types of systems, we can create
models by replacing complex algorithms of interaction with
occurrences of certain non-deterministic events.

The goal of the paper is to move from the non-determinism
to probabilities. The two words mean some variations of

unpredicted behaviour, but when we talk about the last one, we
operate with probability values as guards of program actions,
and they can be either a priori and a posteriori (pre-defined
before the execution and calculated after some cases of it).

Promela modeling language already includes non-
deterministic transitions in the IF clause, but in the
simulation mode the corresponding actions are selected
randomly and equiprobably. It can lead to a problem of
simulation of complex protocols, distributed and network
software, with given initial requirements with probabilities.

In this work, an approach to extend Promela language with
probability-based constructions is presented for simulating
behaviours with given probabilities in the system description.
To solve this problem, some SPIN verifier internals are studied
and described. Moreover, a method to probability driven
programming is shown, and some further steps to move to
Probabilistic model checking are described.

II. RELATED WORK

A. Background of the proposed method

In the articles [3], [4] we considered creating a model of
interoperational programs on different levels of abstraction:
from the code level to the logical level as the interaction
between components of a distributed system, constructed with
a goal to its verification and testing. As well as we proposed
methods of software development (according to the Model-
driven developing approach), when the development begins
with a model, then the code is generated and can be verified
subsequently. For the verification, we provided methods for
transforming extended automata models into Promela lan-
guage. This language was chosen because the programs in it
are created in accordance with the ”Actors” approach [5] that
involves the interoperation between low coupling processes
that interact through messages. This approach allows modeling
distributed systems, multi-threaded systems, multi-component
systems that interact through API calls.

The developed model has probabilistic transitions between
states of an extended finite state machine. In Promela language
there are not probabilistic transitions explicitly, but there
are non-deterministic conditions, which became the basis for
creating the technology proposed here for transformation of the
non-deterministic model into probabilistic one. In [3] it was
considered a way to generate an additional duplicated code to

94

satisfy a given guard probability in the simulation mode, but
it is a very naive approach.

B. Probabilistic model checking

According to [6], the Probabilistic model checking problem
is stated as follows:
Given a property φ, the Problem consists of checking whether
a stochastic system satisfies φ with a probability greater than
or equal to a certain threshold θ.

Herein we consider to LTL properties φ. For an example to
understand the problem, refer to the Roundabout Maneuver [7]
– is a behavior of two aircraft to make Collision Avoidance,
and it is a subject to cooperation in air traffic control. The
avoidance of collision is achieved by an agreement on some
common angular velocity ωxy and common centre cxy around
which both can fly by the circle safely without coming close
to each other not more than Rsafe [7]. There is the following
precondition to the entry procedure of the Maneuver and the
safe property to verify:

isSafe ::= (x1 − y1)2 + (x2 − y2)2 6 R2
safe (1)

where x = (x1, x2) is a first planar position, y = (y1, y2) is a
second planar position.

Model checking approach can be applied to this problem by
specifying an LTL property (for example, in SPIN notation):

[] (isSafe == 1) (2)

where ”[]” is the ”Globaly” LTL operator and 1 is an alias
for true. Statement (2) in natural language means ”during the
execution in all the states of the program model, the rule (1)
will be preserved as true”.

When we move to the Probabilistic model checking, we
can specify a PLTL property as

[] θ>90% (isSafe == 1) (3)

and here we like to verify that the system satisfies the safe
property with probability of 90% or higher (that means the
system will be safe in 90% cases for some reasons when it
start working from an initial state and finish in a final state;
or: in 10% cases or less two aircraft can be closer than Rsafe).

C. Probabilistic languages and models to verify

In the work [8] the Probabilistic model checking problem
was faced and an approach was presented to ensure that a
given labeled Markov chain satisfies a given LTL property with
a given probability. In [9] the approach is extended to verify
these things effectively using an LTL-BDD representation of
formulas.

The authors of the publications [10], [11] state that
Markovs’ models cannot be useful at the system description
level since they are not able to describe parallel processes.
So, to evaluate aspects such as the probability of system
failure they construct Discrete Time Markov Chain (DTMC)
models from the composition of the Probabilistic Component

Automata (PCA) representations of each component and then
analyse them in tools such as PRISM [12].

In the work [13] the SMC (Statistical model checking)
approach has been introduced, and the tool Uppaal [14] has
been extended to check system properties using an extended
automaton model. The tool offers probabilistic simulation and
verification by specifying in the user interface probability
distributions that drive the timed behaviors, and the engine
offers computing an estimate of probabilities and comparison
between estimated probabilities without actually computing
them.

In the book [16] the author decided to implement classes
in Scala language to allow developers to make complex
probabilistic and statistical programs.

In the paper [17] the authors decided to implement from
scratch a language similar to Promela with some probabilistic
additions to satisfy the probabilistic model checking goals.
They used SOS-rules in the Plotkin style [15] to describe the
language formally. For example, this language offers to write
code with PIF (probability IF clause):

PIF [p1]⇒ P1...[pn]⇒ Pn FIP (4)

That means: probabilities p1..pn lead the code P1..Pn to
execute. In the current paper, we are going to follow this
approach, but without creating a ”yet another” language and
a new tool, because now Promela language and SPIN tool
are well-designed and community-approved, and new language
creation instead of extension of an existing one should be well
justified. Of course, it is possible to declare some inductive
rules for a theorem prover for making the evidence of particular
problems like it is done in [18], but extending a modeling
language to some conventional structures and rules can involve
additional engineers to the formal proof process of software.

D. How to create non-deterministic transitions in Promela

It is known that the programs in Promela are modeled in the
form of instructions in a special language, which at the same
time looks like C and also like functional languages such as
Erlang (it refers to ”Actors” approach). The language contains
conditions in the form

i f
: : b o o l e a n e x p r e s s i o n 1 −> a c t i o n s 1
: : b o o l e a n e x p r e s s i o n 2 −> a c t i o n s 2

: : b o o l e a n e x p r e s s i o n N −> a c t i o n s N
f i

It is considered that in order to perform a certain action, it is
necessary that the corresponding logical expression was true.
However, if multiple logical expressions are true in the same
if construction, it is considered that the next step is one of the
non-deterministic choices of them. Refer to the code snippet
in Promela, modeling the Leader Selection algorithm (Dolev,
Klawe & Rodeh [19]):

i f /∗ non−d e t e r m i n i s t i c c h o i c e ∗ /
: : I n i [0] == 0 && N >= 1 −> I n i [0] = I
: : I n i [1] == 0 && N >= 2 −> I n i [1] = I
: : I n i [2] == 0 && N >= 3 −> I n i [2] = I

95

: : I n i [3] == 0 && N >= 4 −> I n i [3] = I
: : I n i [4] == 0 && N >= 5 −> I n i [4] = I
: : I n i [5] == 0 && N >= 6 −> I n i [5] = I

f i

with N equal to, for example, 3 and the zero value of Ini,
it has four variants of non-deterministic steps in the Promela
model to continue at this point. In the SPIN simulation mode,
a necessary option can be selected by a user in the interactive
dialog or enabled by using a random number generator with a
given initial value.

If there is a software system that works in some way and
we have calculated the probabilities of certain events in it, for
example, transitions to different states, then to simulate such
a system in Promela we can propose using a technology to
increase the likelihood in the simulation mode: for events that
are more likely we can proceed to simply increase the number
of identical conditions and actions.

For example in this case the probabilities of both actions
are identical (50 and 50 percents):

i f
: : b o o l e a n e x p r e s s i o n 1 −> a c t i o n s 1
: : b o o l e a n e x p r e s s i o n 2 −> a c t i o n s 2

f i

If we want to increase the likelihood of action1, the following
code

i f
: : b o o l e a n e x p r e s s i o n 1 −> a c t i o n s 1
: : b o o l e a n e x p r e s s i o n 1 −> a c t i o n s 1
: : b o o l e a n e x p r e s s i o n 2 −> a c t i o n s 2

f i

does not change the logic of the transition, it changes the
likelihood of the first step in the model. And the probabilities
of selection this actions equal to 66.(6) and 33.(3) percents.
To check this assumption, we can write a program in Promela,
which counts the number of execution of one of the branches
into p variable:

mtype = { s1 , s2 , s3 } ;
a c t i v e proctype main () {
mtype s t a t e ;
i n t p = 0 ;
i n t c o u n t = 0 ;
do
: : {

s t a t e = s1 ;
do : : {

i f
: : (s t a t e == s1) −> {

i f
: : t rue −> { s t a t e = s2 ; p = p + 1}
: : t rue −> { s t a t e = s2 ; p = p + 1}
: : t rue −> s t a t e = s3
f i

}
: : (s t a t e == s2) −> s t a t e = s3 ;
: : (s t a t e == s3) −> break ;
f i ;}

od
c o u n t = c o u n t + 1 ;
}
: : (c o u n t >= 100) −> goto f i n ;

od
f i n :
p r i n t f (” p = %d ” , p) ;
}

As a result, starting the model execution with different values
of the random number generator, we will receive the value of
p = 60 ... 70.

In the current SPIN implementation, a next running node
in a non-deterministic transition is selected using seed-based
random generator, see run.c:

/∗ CACM 3 1 (1 0) , Oct 1988 ∗ /
Seed = 16807∗ (Seed %127773) − 2836
∗ (Seed / 1 2 7 7 7 3) ;
i f (Seed <= 0) Seed += 2147483647;
re turn Seed ;

If we need to create some emulation of probabilistic
transition with a given probability, it is possible to generate
a large number of repetitive conditions [3]. However, the
disadvantages of this approach are: duplicated code, generation
a large number of conditions, difficulties with manual testing
this code.

III. THE PROPOSED SOLUTION

We propose first to extend the Promela grammar with an
annotation of probabilistic transition:

i f
: : [p rob = v a l u e %] c o n d i t i o n −> a c t i o n s

. . .
f i

where the ”prob value” (probability value) is an integer of
[0..100]. In this case, we can get rid of unwanted repetitive
conditions, and perform the transition with a probability within
the SPIN code of the analysis of transitions with using abstract
syntax tree.

SPIN is shipped in the open source code, now available
in Github repository. Promela language parser is implemented
using Yacc tools. A fragment of the grammar is introducing
the changes described here (modified source from spin.y):

options : option
| option options
;
option : SEP
prob
sequence OS
;

prob :/* empty */
| ’[’ PROB ASGN const_expr ’%’ ’]’
;

96

where prob – is the new grammar rule for probability transi-
tion, SEP is the ”::” terminal, PROB – is the new terminal sym-
bol ”prob”, ASGN is the assignment (”=”) and const expr is
Promela’s non-terminal (grammar rule) for constant expression
that is calculated at the parsing time. This grammar extension
can now allow the previous code snippet as well as usual
Promela constructions.

Further, we propose to extend this idea, putting the prob-
ability of not only as a constant number but the value of
a variable. In this case, the probability may dynamically be
recalculated during program execution on Promela. So, the
following Promela grammar addition is presented:

prob :/* empty */
| ’[’ PROB ASGN const_expr ’%’ ’]’
| ’[’ PROB ASGN expr ’]’
;

where expr – is a grammar rule for the Promela expression.

Thus we will be able, for example, simulate and verify
various training and recognition algorithms. A new probability
value will be received from a different process, changed in
code based on a given probabilistic transition or other different
cases. So, with simple grammar additions and some changing
to semantic of SPIN code, we can speak of ”Probability driven
programming” in Promela.

To continue this idea, we can propose some ”syntactic
sugar” for probabilistic actions with Promela channels. To
simulate some networking protocols it is required to specify
a loss/reliability value for a channel, that means: with a
given probability a channel lose/guarantee some messages and
protocols should correctly handle this. Our new additions for
the channels in the grammar:

one_decl: vis TYPE chan_loss osubt var_list
...
;
chan_loss : /* empty */
| ’[’ LOSS ASGN const_expr ’%’ ’]’
| ’[’ RELY ASGN const_expr ’%’ ’]’
;
Special : varref RCV

rargs
| varref SND msg_loss

margs
;
msg_loss : /* empty */
| ’[’ LOSS ASGN const_expr ’%’ ’]’
| ’[’ RELY ASGN const_expr ’%’ ’]’
| ’[’ RELY ASGN expr ’]’
| ’[’ LOSS ASGN expr ’]’
;

where chan loss is the new grammar rule to define channels,
msg loss – is the new rule to annotate the message send
Promela operator (SND terminal); LOSS – is our terminal
symbol ’loss’ (to specify channel loss values after it) and
RELY – is our terminal symbol ’rely’ (to specify channel
reliability values after it).

So, after the modifications, the extended Promela grammar
should accept the following test code with the new annotations:

mtype = { s1 , s2 , s3 } ;
i n t c o u n t = 0 ;
/∗ now d e f i n e a normal chan ∗ /
chan a = [1] of { s h o r t } ;
/∗ now d e f i n e a chan w i t h 30% l o s s v a l u e ∗ /
chan [l o s s = 30%] b = [1] of { s h o r t } ;
/∗ now d e f i n e a chan w i t h 70% r e l y
v a l u e (or 30% l o s s) ∗ /
chan [r e l y = 70%] c = [1] of { s h o r t } ;

i n t pp = 7 0 ;

a c t i v e proctype main () {
mtype s t a t e = s1 ;
c o u n t = pp − 1 0 ;
/∗ send t o a normal chan ∗ /
a ! 1
/∗ send t o a 30% l o s s chan ∗ /
b ! c o u n t ;
/∗ send t o a chan w i t h re−d e f i n e d 10%
l o s s ∗ /
c ! [l o s s = 10%] 3 ;
/∗ send t o a chan w i t h 70% r e l i a b i l i t y ∗ /
c ! 2 ;
/∗ send t o a chan w i t h re−d e f i n e d 99%
r e l i a b i l i t y ∗ /
c ! [r e l y = 99%] 4 ;
/∗ send t o a chan w i t h re−d e f i n e d l o s s
w i t h c o u n t v a l u e ∗ /
b ! [l o s s = c o u n t] 1 ;
i f

: : t rue −> s t a t e = s2 ;
/∗ 10% prob t r a n s i t i o n ∗ /
: : [p rob = 10%] t rue −> s t a t e = s3 ;
/∗ dynamic prob t r a n s i t i o n ∗ /
: : [p rob = pp] t rue −> s t a t e = s3 ;
/∗ f o r t h e o t h e r s prob w i l l be ∗ /

c a l c u l a t e d as 100% − a l l
s p e c i f i e d p r o b s ∗ /

: : t rue −> s t a t e = s2 ;
: : t rue −> s t a t e = s3 ;

f i
p r i n t f (” s t a t e = %d ” , s t a t e) ;

}

IV. STATUS AND PERSPECTIVES OF THE SOLUTION

Currently, we implemented the extension to the grammar
with a goal to extend the semantics and understanding of
the SPIN internal logic. The advanced program simulation in
Promela as well as verification code generation are in progress.
Adding probabilities to the transitions and channels with losses
will allow SPIN users to model some complex interactions and
probabilistic algorithms. We are making some additions on
internal nodes (at the parsing time), and some – on dynamic
values calculation after SPIN processes are scheduled.

With regard to verification, making the addition to Promela
with transitions for a given value of probability should allow
us to use probabilities in the system requirements as LTL

97

predicates, after which it would be possible to prove the
statements of the forms ”if the transition probability is given,
it satisfied the requirement ...”, ”if a requirement is satisfied,
then the probability is ...”; moreover, it is possible to show a
counterexample as a sequence of states that can be performed
too frequently or too infrequently.

Of course, it is easy to implement our approach with
probabilities as given constants in the code - however, much
more interesting is to represent the implementation of proba-
bility values, given by the variables in run time. We would
like to experiment with it after doing some programming
stuff with SPIN sources, and we are going to compare the
resulting approach with existing probabilistic model checking
approaches which have been mentioned in the paper.

The advantage of this approach is an attempt to solve prob-
lems of Probabilistic model checking by using such existing
community-approved verification and simulation instrument
with relatively little efforts of its improvements; this approach
also allows verification engineers to extend the class of veri-
fiable systems with the SPIN verifier.

REFERENCES

[1] Holzmann, Gerard J. ”The model checker SPIN.” IEEE Transactions on
software engineering 23.5 (1997): 279-295.

[2] Spin - Formal Verification. http://spinroot.com
[3] S. Staroletov. Model of a program as multi-threaded stochastic automaton

and its equivalent transformation to Promela model. Ershov informatics
conference. PSI Series, 8th edition. International workshop on Program
Understanding. Proceedings.At: Novosibirsk, Russia. 2011

[4] S. Staroletov. Model Driven Developing & Model Based Check-
ing: Applying Together / Tools & Methods of Program Analy-
sis TMPA-2014:Kostroma, 2014. - pp. 215-220. ISBN 975-5-8285-
0719-1. Presentation: http://www.slideshare.net/IosifItkin/model-driven-
developingmodelbasedchecking

[5] Hewitt, Carl, Peter Bishop, and Richard Steiger. ”Session 8 formalisms
for artificial intelligence a universal modular actor formalism for artifi-
cial intelligence.” Advance Papers of the Conference. Vol. 3. Stanford
Research Institute, 1973.

[6] Clarke, Edmund, Alexandre Donz, and Axel Legay. ”On simulation-
based probabilistic model checking of mixed-analog circuits.” Formal
Methods in System Design 36.2 (2010): 97-113.

[7] Platzer, André, ”Differential dynamic logic for hybrid systems”, Journal
of Automated Reasoning, vol. 41, no. 2, pp. 143-189, 2008

[8] Courcoubetis, Costas, and Mihalis Yannakakis. ”The complexity of
probabilistic verification.” Journal of the ACM (JACM) 42.4 (1995): 857-
907.

[9] J. Eliosoff. Calculating the probability of an LTL formula over a labeled
Markov chain. McGill University, Montreal, 2003

[10] Rodrigues, Pedro, Emil Lupu, and Jeff Kramer. ”LTSA-PCA: Tool
support for compositional reliability analysis.” Companion Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014.

[11] Lupu, E. C., P. Rodrigues, and Jeff Kramer. ”Compositional reliability
analysis for probabilistic component automata.”

[12] M. Kwiatkowska, G. Norman, and D. Parker, ”PRISM 4.0: Verification
of probabilistic real-time systems,” in CAV11, ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, pp. 585591.

[13] Sen, Koushik, Mahesh Viswanathan, and Gul Agha. ”Statistical model
checking of black-box probabilistic systems.” International Conference
on Computer Aided Verification. Springer, Berlin, Heidelberg, 2004.

[14] David, Alexandre, et al. ”Uppaal SMC tutorial.” International Journal
on Software Tools for Technology Transfer 17.4 (2015): 397-415.

[15] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus Univer-
sity, 1981.

[16] Pfeffer, Avi. Practical probabilistic programming. Manning Publications
Co., 2016.

[17] Baier, Christel, Frank Ciesinski, and M. Grosser. ”PROBMELA: a mod-
eling language for communicating probabilistic processes.” Proceedings.
Second ACM and IEEE International Conference on Formal Methods
and Models for Co-Design, 2004. MEMOCODE’04.. IEEE, 2004.

[18] Shishkin, Evgeniy. ”Construction and formal verification of a fault-
tolerant distributed mutual exclusion algorithm.” Proceedings of the 16th
ACM SIGPLAN International Workshop on Erlang. ACM, 2017.

[19] Dolev, Danny, Maria Klawe, and Michael Rodeh. ”An O (n log n)
unidirectional distributed algorithm for extrema finding in a circle.”
Journal of Algorithms 3.3 (1982): 245-260.

[20] Hahn, Ernst Moritz, et al. ”PARAM: A model checker for parametric
Markov models.” International Conference on Computer Aided Verifica-
tion. Springer, Berlin, Heidelberg, 2010.

98

The editor for teaching the proof of statements
for sets

Vadim Rublev1 and Vladislav Bondarenko2

1 Department of Theoretical Computer Science, Demidov Yaroslavl State University,
Yaroslavl, 150000, Russia,

roublev@mail.ru,
ORCID 0000-0002-0252- 9958

2 Department of Theoretical Computer Science, Demidov Yaroslavl State University,
Yaroslavl, 150000, Russia,
bondarencko40@gmail.com

Abstract. One of the problems of developing a computer system for
teaching proof of statements for sets is the development of software that
allows a student to independently conduct step-by-step proving, starting
from determining initial premise and targeted statement, and which at
the same time controls at each step of proof the correctness of determin-
ing the premises of elementary conclusion of step and The correctness of
the text entered by the conclusion of the step. We called this software the
Editor for learning to prove assertions for sets. Namely, the solution of
the problems of extracting an elementary step of proof, syntactic control
of the input text and logical control of the correctness of the conclusion
were the main ones in the development of the Editor. It is intended to
develop an automated learning system (ALS) "Elements of set theory",
the purpose of which will be to teach algebra of sets and the ability to
carry out evidence with the help of the Editor.

Keywords: computer training, proving statements for sets, editor for
teaching the proof, step by step proof, control of step correctness

1 Introduction

At present, the problems of teaching the bulk of students in mathematical and
computer Sciences are associated with underdevelopment of thinking caused by
the low quality of school education. A significant mass of school graduates do
not know how to read (understand what they read), do not know how to reason,
because they were not taught enough. These problems can be solved only by
individual training, but this approach requires a huge additional time from the
teacher, exceeding several times the hours allocated by the curriculum. There-
fore, it suggests a solution in the development of computer automated learning
systems (ALS), with which you can not only control the knowledge, but to con-
duct training. Basically, many computer systems control the testing of student
memory, and therefore can teach some definitions, but not their use. A similar

99

2 Vadim Rublev, Vladislav Bondarenko

solution Stepik has a disadvantage in that the choice of the correct answer is
always the only one (which allows you to guess, but not know), and the solu-
tion is not controlled by the system step by step, which does not give reason
to consider it even testing knowledge. ALS for the exact Sciences should teach
data analysis, formalization, analysis, reasoning and transformation. The use of
computer algebra [1][2] underlies the construction of such systems. For example,
one of the authors of this paper used this to construct ALS of computational
complexity of algorithms [3].

In this paper, models of computer-based learning to prove statements for sets
are considered. These models can be divided into 2 groups: proof-of-statement
models for sets and training models that prepare a student for the first group
models. The models of the first group are described in the proof of statements
editor for sets and the study of models of the second group related to the training
of using models of the first group is supposed to be.

2 The problem of constructing a proof editor of
statements for sets

To solve the problem specified in the headline, select the following task sequence:

1. Limitations on the type of statements for sets for whose prove you need to
build an editor.

2. Equivalent transformation of the sets included in the statement.
3. Splitting the basic statement into an equivalent set of simple statements.
4. The choice of the method of proving a simple statement and the selection of

an initial set of premises in it.
5. Definition of the elementary step of the proof.
6. Control of the correctness proof by the editor.

2.1 Statement type constraints for sets

In the general case of the statement we will consider some universal set U and
its subsets X1, X2, . . . , Xn. The statement uses formulas for these subsets, con-
structed with operations complement, intersection, union, and brackets, chang-
ing the order of these operations, if necessary.

We restrict ourselves to statements for sets of the following form

< Сonstriction of the set relation > {→ | ↔} < Сonstriction of the set relation >

So in example (1)

X1 ∩X2 ∪X3 = (X2 ∪X3) ∩X1 ↔ X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 (1)

it is argued that the equality of two sets given by expressions takes place if and
only if the intersection of the subsets is empty and the second subset is included
in the union of the other two.

100

The editor for teaching the proof of statements for sets 3

2.2 Equivalent transformation of sets included in the statement

To simplify the process of a proof conducted by a student, it is recommended
to simplify the complex expressions of some sets of statements. In this case, we
mean the representation of a complex expression in the form of a union of sets
(or their intersections) in some cases or as the intersection of sets (and their
unions) in other cases. So in example (1) transformation of the set on the left
side of the set equality (it by A) denote

A ≡ X1 ∩X2 ∪X3 = (X1 ∪X2) ∩X3 = X1 ∩X3 ∪X2 ∪X3 (2)

gives both views (2). The set of the right part of the equation (it by B) denote
is already represented in (1) by an intersection, and the union is obtained by the
following transformation

B ≡ (X2 ∪X3) ∩X1 = X2 ∩X1 ∪X3 ∩X1. (3)

The reason why such representations of the set are important is the possibil-
ities of simplifying the conduct of the proof. The representation of a set as a
union of its subsets allows us to divide the further proof into separate branches,
where the membership of an element to a set becomes easier by dividing it into
cases of belonging to a particular subset, and the proof for each such branch is
simplified and can be conducted separately. The representation in the form of
an intersection simplifies the proof of the conclusion that the element does not
belong to the intersection of sets, because it is sufficient to obtain a result about
its non-belonging to one of the sets belonging to the intersection.

2.3 Splitting the basic statement into an equivalent set of simple
statements

If there is an equivalent operation in the basic statement, the statement can be
replaced by a conjunction of two statements with implications in one direction
and the other. So the statement example (1) can be replaced by the conjunction
of the following statements (with the replacement of the parts of the set equality
by the introduced notations A and B):

A = B → X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 (4)

X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 → A = B (5)

Note that statement (4), having in conclusion the conjunction, can be spitted
into 2 statements. In statement (5), the relation of equality of 2 sets at the end of
the implication can be replaced by the conjunction of 2 inclusion, and therefore
the statement (5) can also be divided into 2. As a result, we obtain the following
partition of the basic statement (1):

A = B → X1 ∩X2 ∩X3 = ∅ (6)

101

4 Vadim Rublev, Vladislav Bondarenko

A = B → X2 ⊆ X1 ∪X3 (7)

X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 → A ⊆ B (8)

X1 ∩X2 ∩X3 = ∅ ∧ X2 ⊆ X1 ∪X3 → B ⊆ A (9)

An example of reducing the proof of the basic statement (1) to the proof of 4
simple statements (6)-(9) shows that this can be done in other cases of the basic
statements.

2.4 The choice of a method of proving a simple statement and the
selection of the initial set of premises in it

In a simple statement, when performing the premises of the left part of the
implication, it is necessary to prove the truth of the right part of the implica-
tion(call it a target statement). There are 2 methods of proof when the target is
the inclusion relation of sets:

– direct method when we prove for an arbitrary element of the universal set,
that from the belonging of an element to the included set follows its belonging
to the including set (call it a target conclusion), that is, the accuracy of the
inclusion.

– indirectmethod, when we assume the opposite in the target statement(exists
an element of the universal set that belongs to the included set of the target
relation of the inclusion of sets, but does not belong to the including set) and
by a consistent conclusion come to a contradiction with the conjunction of
premises left part of the implication to this simple statement.

For example, in simple statements (7)-(9) both methods are possible. However,
for statement (7) it is more rational to apply the method (perhaps indirect fewer
steps of proof), and for statements (8)and (9) the direct method is more rational.

If the target statement is the equality of a set to an empty set or to a universal
set, then only the indirect method is rational. In this case, the existence of its
element is opposite for an empty set, and the existence of an element that does
not belong to this set is opposite for the equality of a certain set to a universal
set. For a simple statement (6) you need to use an indirect method and show
the contradiction with the premises of the statement.

The proof of any method begins with sequential steps, each of which is based
on a premise. The initial premise in the direct method of proof is that an ar-
bitrary element of the universal set belongs to the included set of the target
statement. For example, for statement (8), the initial premise
is the expression ∀x : x ∈ A.

The initial premise in the indirect method of proof is the denial of the target
statement, which is expressed by the existence of an element that contradicts
the target statement. For example, for (6), the initial statement premise is the
expression ∃x : x ∈ X1 ∩ X2 ∩ X3, and for (7) – statement ∃x : x ∈ X2, x /∈
X1 ∪X3.

102

The editor for teaching the proof of statements for sets 5

In addition to the initial premise, conclusions can be based on assumptions
statement related to the conditions (left side of the implication).The statement
system prepares them as the initial set of premises, adding to it the initial
premise. Meanwhile

1) to the equality of sets (for example, C = D) there correspond 4 premises
(in the example, x ∈ C → x ∈ D, x ∈ D → x ∈ C, x /∈ C → x /∈ D,
x /∈ D → x /∈ C);

2) to the inclusion case (for example,X2 ⊆ X1∪X3) there correspond 2 premises
(in the example, x ∈ X2 → x ∈ X1 ∪X3 and x /∈ X1 ∪X3 → x /∈ X2);

3) to the equality of a set to the empty set (for example, X1 ∩ X2 ∩ X3 = ∅)
there correspond 1 premise (in the example, x /∈ X1 ∩X2 ∩X3);

4) and the equality of a set to the universal set (for example, X1∪X2∪X3 = U)
also matches 1 premise (in the example, x ∈ X1 ∪X2 ∪X3).

For each elementary conclusion of the proof, if it is true, the system adds the
conclusion as a premise to the set of premises of the proof or branch of the proof
(more on that in the next section).

2.5 Definition of the elementary step of the proof

The proof is conducted with the help of a sequence of steps, at each of which
an elementary conclusion is drawn, based on the indicated premises for conclu-
sion. For educational purposes, we limit ourselves to only elementary conclusions
based on no more than 2 premises. For elementary conclusions, the following
ideas are used:

1. If an element belongs to a certain set (for example, premises x ∈ C), the
conclusion can be its belonging to any set, covering the set of the premises
(in the example, the conclusion x ∈ C ∪D).

2. If an element belongs to two sets (for example, 2 premises x ∈ C and x ∈ D),
the conclusion can be an element belonging to the intersection of these sets
(in the example conclusion x ∈ C ∩D).

3. If an element belongs to a set (for example, x ∈ C ∩D), it belongs to each
part of it (in the example , 2 conclusions x ∈ C and x ∈ D).

4. If an element belongs to a intersection of sets (for example, the premise
x ∈ C), it does not belong to its complement (in the example the conclusion
x /∈ C).

5. If an element does not belong to a set (for example, premise x /∈ C), it
belongs to its complement (in the example, the conclusion x ∈ C)).

6. If an element does not belong to two sets (for example, 2 premises x /∈ C
and x /∈ D), it does not belong to the union of these sets (in the example
the conclusion x /∈ C ∪D).

7. If an element does not belong to a union of sets (for example, the premise
x /∈ C ∪D), it does not belong to any of these union sets (in the example,
the conclusion x /∈ C and the conclusion x /∈ D).

103

6 Vadim Rublev, Vladislav Bondarenko

8. If an element belongs to a union of sets (for example, the premise x ∈ C∪D),
it can belong to one of these union sets (in the example, the conclusion x ∈ C
and the conclusion x ∈ D) – this conclusion is called the splitting of the cases.

Note that the splitting into cases can be conducted in different ways. A partition
where the sets of cases do not intersect is called alternative. As an example of the
premise x ∈ C∪D you can write the following division into cases: the conclusion
x ∈ C and the conclusion x ∈ D ∩ C. This is especially important when for one
case, the further conclusion is easily built. Then, for the second case, additional
information is obtained, which can help in the further conclusion. If the first
case is also difficult, it can be divided into 3 cases: the conclusion x ∈ C ∩ D,
the conclusion x ∈ C ∩D and the conclusion x ∈ D ∩ C.

Note also that the division into alternative 2 cases of belonging to a certain
or set non-belonging to this set can always be done without relying on premises
(for example, the conclusion x ∈ C and the conclusion x /∈ C form 2 cases and
do not require a premise).

Each conclusion, if made correctly, is added as a premise to the preceding
set of premises. But when cases appear, each of them is associated with its own
independent branch of proof and many premises of this branch, which is formed
from the previous set of premises by adding a new premise – the case conclusion.

Each branch of the proof must end with either a white square denoting
the receipt of the target conclusion, or a black square denoting the receipt of
a contradiction. If all branches of the proof from the opposite ended with a
contradiction, the proof of the statement was successful. If in the direct method
the proof of all branches ended, but there are branches that ended in success (a
white square), the proof was successful.

2.6 Editor control of the proof

The system allows the trainee to build a proof of the basic statement. But the
system has to control all his or her actions, starting from splitting into simple
statements, selecting the method of proof with the organization of an initial
premise, performing each elementary step of the proof up to the completion of
each branch of the proof.

To this purpose, the system, at the end of the above actions (by pressing a
button Verify), builds a Boolean function corresponding to a statement for sets
(simple statements into which the basic statement is splitted, or statements of
the original premise, or the statement of an elementary step, as implications of
conjunctions of the premises and conclusion of the elementary step or implication
of the premise and disjunction of the conclusion of cases) and verifies its identity
truth (truth on any argument sets). This Boolean function (let us call it BIF
Boolean Identification Function) is constructed as follows:

1. Each set Xi is replaced by a boolean variable yi, whose value is equal to the
truth of the statement that the element x belongs to this set (yi ≡ (x ∈ Xi)).
Other are replaced in the same way. For example, the set A is replaced by

104

The editor for teaching the proof of statements for sets 7

a boolean variable a, whose name is a lowercase letter, corresponding to the
set name and its true value coincides with the value of the statement of the
belonging of an element x to this set, i.e. a ≡ (x ∈ A).

2. Operations on sets of complement, intersection and union are replaced ac-
cordingly by operations of negation, conjunction and disjunction for the cor-
responding subsets of statements.

3. The equality for sets is replaced by the equivalence operation of the corre-
sponding statements.

4. The inclusion for sets is replaced by the operation of implication of the
corresponding statements.

5. The equality of a set to the empty set is replaced by the negation of the
corresponding statement for the set.

6. The equality of a set to the universal set is replaced by the corresponding
statement for the set.

So in the considered example (2) of identical representations of the set A we
obtain the following BIF fa = (y1 ∧ y2 ∨ y3 ↔ (y1 ∨ y2) ∧ y3) ∧ (y1 ∧ y2 ∨ y3 ↔
(y1 ∧ y3) ∨ (y2 ∧ y3)) and since it is identically true, then by the theorem on
the connection of expressions of the algebra of sets and the algebra of statements
and its consequences (see, for example [5]) the system confirms the correctness
of transformations of the set A.

Next, for a simple statement (6), the BIF will look as follows:

f6 ≡ (y1 ∧ y2 ∨ y3 ↔ (y2 ∨ y3) ∧ y1)→ y1 ∧ y2 ∧ y3.

Its identical truth also confirms the correctness of the simple statement (6).
When conducting the proof from the contrary of this statement, the student

receives the initial premise. ∃x : x ∈ X1 ∩ X2 ∩ X3 from the negation of the
proved statement X1 ∩X2 ∩X3 = ∅ and BIF for verification gets the following
expression: fu1 ≡ y1 ∧ y2 ∧ y3 ↔ y1 ∧ y2 ∧ y3, and since it is identically true, the
initial premise is correctly built by the student.

From the received initial premise follows a conjunction of 3 elementary con-
clusions. x ∈ X1 ∧ x ∈ X2 ∧ x ∈ X5, what is verified by the identical truth of
BIF of the function of implication of the function of premise and conjunction of
functions of elementary conclusions y1 ∧ y2 ∧ y3 → y1 ∧ y2 ∧ y3.

3 Editor interface for proving assertions for sets

The editor interface is a constructor. Using a dialog with a choice of actions
(Fig. 1), the trainee chooses which elements he will need for further work. Such
elements will appear in the main program window (Fig. 2). Another single win-
dow is the input toolbar (Fig. 3). The proof process is divided into several stages:

1. Initially, at launch, a dialog is called up with the choice of action (Fig. 1),
where learner selects one of the items he needs for the proof.

2. “Enter the basic statement” creates a field for input.

105

8 Vadim Rublev, Vladislav Bondarenko

3. “Inputting identical transformations for some sets” (they are given the names
A and B create two input fields with buttons for checking the transforma-
tions).

4. “Splitting the basic statement” creates a split number, an input field and a
validation button.

5. “The choice of the statement to be proved” creates a dialog window in which
the previously entered splits of the basic statement are displayed.

6. “Entering the initial premise and step of proving” creates verify button and
input field.

After entering the text of the elementary conclusion or the initial premise into
the scheme of the proof, one or several buttons are displayed in the form of a
red square, pressing one of them will form a field for entering the text of the
next elementary conclusion. The choice of an elementary conclusion of a white
or black square, if correct, leads to the completion of the proof of the statement
or its branch.

Fig. 1: Choose dialog

106

The editor for teaching the proof of statements for sets 9

Fig. 2: A window for entering the required statements and premises of evidence

107

10 Vadim Rublev, Vladislav Bondarenko

Fig. 3: Window of tools required for proof

4 Conclusion

All the tasks of developing an editor for proving statements for sets are achieved,
and we hope that this will allow us to complete the development of the ALS,
where this editor will be the central construction teaching this material.

References

1. Davenport J.H., Siret Y., Tournier E.: Computer algebra: systems and algorithms
for algebraic computation / - Academic Press, 1988. ISBN 978-0-12-204230-0

2. Joachim von zur Gathen; Jürgen Gerhard. Modern Computer Algebra, Third Edi-
tion. — Cambridge University Press, 2013. — 808 p. — ISBN 978-1-107-03903-2.

3. Rublev V.S., Yusufov M.T.: Automated system for teaching computational complex-
ity of algoritm cours, Convergent Cognitive Information Technologies (Selected Pa-
pers of the First International Sientific Conference Convergent Cognitive) Moscow,
Russia, November 25-26, 2016 (http://ceur-ws.org/Vol-1763/). (ISSN 1613-0073
VOL-1763 urn.nbn.de: 0074-1763-4)

108

Local search metaheuristics for Capacitated Vehicle
Routing Problem: a comparative study

Ekaterina N. Beresneva
Faculty of Computer Science

National Research University Higher School of Economics
Moscow, Russia

eberesneva@hse.ru

Scientific Advisor: Prof. Sergey Avdoshin
Software Engineering School

National Research University Higher School of Economics
Moscow, Russia

savdoshin@hse.ru

Abstract — This study is concerned with local search
metaheuristics for solving Capacitated Vehicle Routing Problem
(CVRP). In this problem the optimal design of routes for a fleet of
vehicles with a limited capacity to serve a set of customers must be
found. The problem is NP-hard, therefore heuristic algorithms
which provide near-optimal polynomial-time solutions are still
actual. This experimental analysis is a continue of previous
research on construction heuristics for CVRP. It was investigated
before that Clarke and Wright Savings (CWS) heuristic is the best
among constructive algorithms except for a few instances with
geometric type of clients’ distribution where Nearest Neighbor
(NN) heuristic is better. The aim of this work is to make a
comparison of best-known local search metaheuristics by criteria
of error rate and running time with CWS or NN as initial
algorithms because there were not found any such state-of-the-art
comparative study. An experimental comparison is made using 8
datasets from well-known library because it is interesting to
analyze “effectiveness” of algorithms depending on type of input
data. Overall, five different groups of Pareto optimal algorithms
are defined and described.

Keywords — capacitated vehicle routing problem, local search
metaheuristics, LKH-3, variable record-to-record travel, simulated
annealing, guided local search, tabu search.

I. INTRODUCTION
The Vehicle Routing Problem (VRP) is one of the most

widely known challenges in a class of combinatorial
optimization problems. VRP is directly related to Logistics
transportation problem and it is meant to be a generalization of
the Travelling Salesman Problem (TSP). In contrast to TSP,
VRP produces solutions containing some (usually, more than
one) looped cycles, which are started and finished at the same
point called a “depot”. As in TSP, each customer must be
visited only by one vehicle. The objective is to minimize the
cost (time or distance) of all tours. Despite the fact that both
problems belong to the class of NP-hard tasks, VRP has higher
solving complexity than TSP for the identical types of input
data.

This work is aimed at analysis of VRP subcase, which is
called Capacitated Vehicle Routing Problem (CVRP), where
the vehicles have a limited capacity. A new constraint is that
the total sum of demands in a tour for any vehicle must not
exceed its capacity. In the paper we will use CVRP abbreviation

having in mind the mathematical formulation that was
described in our previous work [1].

There are three types of algorithms that are used to solve any
subcase of CVRP: exact algorithms, constructive heuristics and
metaheuristics.

• Exact algorithms. These algorithms find an optimal
solution but take a great time for solving large instances. State-
of-the-art exact methods can provide optimal solution for some
SCVRP instances with up to 100 nodes, but it takes 30-40
minutes at average [2]. Due to these restrictions, researchers all
over the world concentrate on heuristic methods.

• Constructive heuristics. They build an approximate
solution iteratively, but they do not include further
improvement stage. These heuristics are usually used for
generation of an initial solution for improvement algorithms. A
lot of experiments show that classical heuristics work much
faster than to exact methods. For example, an instance of 100-
150 nodes can be solved up to a few (1-2) seconds [2].

• Metaheuristics. These algorithms take as input some
approximate initial solution and try to iteratively improve it.
According to [3], metaheuristics are divided into two groups:
metaheuristics based on local search and metaheuristics based
on population, or natural inspired ones. The first group look for
new solutions by moving at each iteration from a current state
to another state in its neighborhood, while the second group
works on a basis of a population of solutions which may be
combined together in the hope of generating better ones, like in
nature. Certain limitations are inevitable in any research, hence
in this work we concentrate only on the first group of
metaheuristics, because one of the most perspective algorithms
for TSP – LKH-3 – belongs to this group, and it is very
interesting for us to compare it with its “closest” alternatives.

Capacitated vehicle routing problems CVRP form the core
of logistics planning and are hence of great practical and
theoretical interest. There is no doubt that actuality of research
and development of heuristics algorithms for solving CVRP is
on its top, because in a real word there can be up to one
thousand clients in a delivery net, that is why it is especially
important to explore heuristic algorithms that allow to quickly
generate near optimal solution in a polynomial time.

109

There are a lot of articles related to CVRP local search
metaheuristics, but no works were found which compare
improvement heuristics using the same input data of different
types and sizes. We will compare these algorithms under
criteria of quality, or error rate, and running time. Under the
error rate we mean the percentage of difference in the obtained
value of the solution with the optimal (or best-known) solution
for the problem.

The aim of this work is to make a comparison of best-known
local search metaheuristics by criteria of solution quality and
running time with CWS or NN as initial algorithms as there
were not found any such state-of-the-art comparative study. In
addition, it is important to define sets of Pareto optimal
metaheuristics for different types of input data.

The paper is structured as follows. In the second part, a
general local search approach is described. After that, in the
third section, some notes on a most popular local search
metaheuristics are provided, including short description of
chosen algorithms to be intercompared. The fourth part presents
design of experiments on local search metaheuristics. of
experimental results. The fifth and the sixth sections describe
results of solution qualities and computing times of algorithms,
respectively. The seventh part consists of definition of Pareto
optimal metaheuristics and five such sets are presented. In the
last part we summarize our findings and suggest areas for future
work.

II. LOCAL SEARCH APPROACH
Local search algorithms take as input some approximate

initial solution and try to iteratively upgrade it with local
improvements. These changes can either improve a single route
(intra-route optimization) or change more than one routes
simultaneously in such a way that the overall solution is
improved (inter-route optimization).

Intra-route and inter-route optimization strategies consist of
different schemes, which are fully described in [5]. In this
research we will use the most-known and simplest but still
effective local improvement heuristics: 1-point move, 2-point
move and 2-opt.

The set of all solutions that can be obtained by applying the
local improvements on a solution 𝑠 is called the neighborhood
𝑁(𝑠). Of course, the bigger neighborhood is, the more likely it
contains a new solution that can improve current one. However,
to have large neighborhoods means to have inevitably higher
computational complexity since more solutions need to be
generated and evaluated [6]. At the same time, local search
methods must deal with the problem of being stuck in a local
optimum. Thus, a lot of methods to escaping the local optimum
are applied, they will be described in the next section.

So, basically, local search approach consists of the following
main steps:

1. Taking as input some initial solution 𝑠.
2. Generation of a neighborhood 𝑁(𝑠).

3. Selection of the best solution 𝑠∗ from 𝑁(𝑠) using some
acceptance criteria.

4. Make a new 𝑠 equal to	𝑠∗.
5. Checking for exceeding different limits. If stop criteria

is satisfied then terminate, otherwise continue with the
step 2.

III. CVRP LOCAL SEARCH METAHEURISTICS
 Local search metaheuristics are used to solve a wide range

of combinatorial optimization problems. Among heuristic
methods for solving TSP there is one, which is the best – it is
local search metaheuristic, proposed by Lin, Kernighan and
Helsgaun [7]. Also, local search algorithms are key part of most
known methods for solving most subcases of VRP [3] [8] [9]
[10] etc.

The most well-known schemes for solving CVRP that
include local search steps are different variants of tabu search,
forms of deterministic and simulated annealing, variable
neighborhood search, guided local search [11]. Recently a new
adoption of LKH for TSP called LKH-3 was proposed by one
of the original authors, Helsgaun [12] . Also, in a recent study
it was stated that improved version of record-to-record travel
heuristic analyzed [13] is “… a well-performing metaheuristic”,
which combines strategies of deterministic annealing, tabu
search, variable neighborhood search and both intra-route and
inter-route optimizations described later. It was proposed by Li
and others [14].

Of course, there are a lot of other metaheuristics for finding
CVRP solution, however it was decided to concentrate on a set
of several reputed local search algorithms that were honorably
mentioned in recent studies.

As it was stated earlier, for all metaheuristics an initial
solution must be obtained. For most input problems Clarke and
Wright Savings (CWS) heuristic [4] is used, which is the best
among construction algorithms except for a few instances with
geometric type of clients’ distribution. For these especial input
files Nearest Neighbor (NN) heuristic is applied instead of
CWS.

Thus, in this study we will intercompare following local
search metaheuristics for solving classical CVRP.

A. A set of optimization operators (OPT)
As it was stated above, in this research the most-known and

simplest local improvement heuristics are used. They are
1-point move, 2-point move and 2-opt.

In a tour of 𝑁 vertices 1-point move operator (or relocate
heuristic) moves some vertex 𝑣(, 𝑖 ∈ 𝑁 after another vertex
𝑣,, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 at the same tour. Another 2-point move
operator (or exchange heuristic) swaps locations of two
different vertices 𝑣(, 𝑖 ∈ 𝑁 and 𝑣,, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗. And the main
idea of 2-opt heuristic is to remove two edges (𝑣(, 𝑣,), 𝑖, 𝑗 ∈ 𝑁
and (𝑣/, 𝑣0), 𝑥, 𝑦 ∈ 𝑁 from the solution and replace them with
two new edges (𝑣(, 𝑣/) and (𝑣,, 𝑣0). It is important to note that

110

all mentioned operators can be applied for each of intra-
optimization and inter-optimization as it is shown in Fig. 1.

Fig. 1. Intra-route 2-opt (above) in compare to intre-route 2-opt (below).

B. Guided local search (GLS)
The guided local search metaheuristic is used to avoid local

minima. It was initially proposed by [15] and later applied to
CVRP by [16]. According to [17], this method is memory-
based as it determines and penalizes “ineffective” edges by
increasing its cost to a new 𝑐∗4𝑣(, 𝑣,5 = 𝑐4𝑣(, 𝑣,5 +
𝜆𝑝4𝑣(, 𝑣,5𝐿, where 𝑝4𝑣(, 𝑣,5 counts the number of penalties of
edge 4𝑣(, 𝑣,5, 𝐿 is a proxy for the average cost of an edge,
computed as the costs of the starting solution divided by the
number of customers, and λ controls the impact of penalties
(authors suggest to always set λ = 0.1).

C. Tabu search (TS)
Tabu search originally was proposed by Glover and others

[18]. The main idea of TS is as follows. If some solutions in
𝑁(𝑠) cannot be improved for several iterations or they violate
the rules, they are made forbidden (or tabu) in order to prevent
being in a stack of local minimum. Such forbidden solutions are
put into a tabu-list, so this heuristic is also memory-based like
GLS. The duration that a solution remains tabu is called its
tabu-tenure and it can vary over different intervals of time.

We use recent TS algorithm that provides good results
described in [19] as it was stated in [5].

D. Simulated annealing (SA)
This classical algorithm was developed in 1983 by [20]. It

is based on an analogy from the annealing process of solids,
where a solid is heated to a high temperature and gradually
cooled in order for it to crystallize in a low energy configuration
[21]. In this research we used adopted version of SA for CVRP
by [22]. In SA some solution 𝑠∗ from 𝑁(𝑠) at iteration 𝑖 is

chosen to be a new	𝑠 = 	 ;
𝑠∗	with	probability	𝑃(𝑠, 𝑠∗, 𝑖)

𝑠		with	probability	1 − 𝑃(𝑠, 𝑠∗, 𝑖)

accordingly to the probabilistic function 𝑃(𝑠, 𝑠∗, 𝑖) =
exp L− M(N)OM(N∗)

PQ
R ,	where	𝑓(𝑠)	is a length of solution 𝑠, 𝑄(is an

element of an arbitrary decreasing, converging to zero, positive
sequence, which specifies an analogue of the falling
temperature in the crystal.

E. Lin-Kernighan-Helsgaun heuristic for CVRP (LKH-3)
LKH-3 is proposed by Helsgaun in 2017 [12]. The

implementation of LKH-3 builds on the idea of transforming
the problem into classical symmetric TSP. After that algorithm
uses the principle of 2-opt algorithm and generalizes it. In this
heuristic, the 𝑘-Opt, where 𝑘 = 2. . √𝑁YYYYYYYY, is applied, so the
switches of two or more edges are made in order to improve the
tour. This method is adaptive, so decision about how many
edges should be replaced is taken at each step [7] [23].

This algorithm was not developed by us as original source
code of LKH-3 is free of charge for academic and non-
commercial use and can be downloaded at [24].

F. Variable record-to-record travel heuristic (VRTR)
Li and others suggested a variable record-to-record travel

heuristic, which is based on classical record-to-record travel
algorithm (RTR). RTR combines approaches of deterministic
annealing (which is a variant of simulated annealing heuristic)
and tabu search. The main differences between VRTR and RTR
are as follows. Firstly, VRTR considers 1-point, 2-point and 2-
opt moves not only within individual routes as RTR does, but
also between them. Secondly, “VRTR uses a variable-length
neighbor list that should help focus the algorithm on promising
moves and speed up the search procedure” [14].

IV. DESIGN OF EXPERIMENTS
All algorithms from section III were implemented as

sequential algorithms in C/C++, no multi-threading was
explicitly utilized. They were executed on an Intel Core i5
clocked at 1.3GHz with 4 GB RAM running the macOS 10.14.3
operating system.

The computational testing of the solution methods for CVRP
has been carried out by considering eight sets of test instances
from the next well-known database [25]. Total number of
instances in sets A, B, E, F, G, M, P, X is 211. All instances
inside one set have its own characteristics and a way of
generation: cluster-based / uniform / geometric distribution of
clients, real-world / imitative cases etc. The integer Euclidean
metric is used for all instances. The naming scheme and data
format for each instance is described here [26]. Shortly, the first
letter in names shows the name of used set, the figure after letter
‘n’ shows the number of nodes and the figure which stands after
letter ‘k’ presents the number of vehicles.

Experiment starts with choice of a local search metaheuristic
M from set {OPT, GLS, SA, TS, LKH-3, VRTR}. After one
dataset D is selected from a list of all mentioned benchmark
datasets, an instance file F from chosen dataset D is taken. Next,
the following steps are repeated 51 times on instance F: chosen
metaheuristic M is executed on a basis of initial solution
obtained by CWS or NN (as it was explained in a previous
chapter). During all iterations, except the first one, solution
qualities ε[\(M, F) and computing times t[\(M, F) (in seconds)
are calculated for algorithm M on test F. The first run is not
taken into account in calculations because of specifity of C++

111

compiler. Solution quality (or percent above best-known, or
gap) is calculated using the next formula [11]:

𝐹(𝑆a) − 𝐹bcd(𝑆)
𝐹bcd(𝑆)

∙ 100%,

where 𝐹(𝑆a) is a length of obtained solution and 𝐹bcd(𝑆) is
a length of optimal solution or best-known one.

Also we calculate minimal value εh[i(M, F)	among all
figures ε[\(M, F) and sample mean 𝑋Yd(M, F) =
k
la
∑ 𝑡(d(M, F)la
(dok among all figures t[\(M, F). And finally,

among all εh[i(M, F) from one dataset average sample mean
𝑋Yp(M, D) =

k
|s|
∑ εh[i(M, F) , ∀F ∈ D is calculated, which

shows average gap for algorithm M on dataset D. And among
all 𝑋Yd(M, F) from one dataset average sample mean 𝑋Yd(M, D) =
k
|u|
∑𝑋Yd(M, F) , ∀F ∈ D is calculated, which shows average

computing time of algorithm M on dataset D. |D| is a number
of input files in dataset D.

The plan of experiment on local search metaheuristics is
described in Fig. 2.

 Input: local search metaheuristics, datasets
1: foreach local search metaheuristic M
2: foreach dataset D from datasets
3: foreach instance file F from D
4: for it ∈ {0…50} // number of runs
5: init_sol = run CWS	or	NN on F
6: final_sol = run M on F with init_sol
7: if (it != 0) // if not the first run
8: calculate ε[\(M, F), t[\(M, F)
9: calculate εh[i(M, F)
10: calculate th[i(M, F)
11: calculate thz{(M, F)
12: calculate 𝑋Yd(M, F)
13: calculate 𝑠d(M, F)
14: calculate 𝑋Yp(M, D) // average gap on dataset
15: calculate 𝑋Yd(M, D) // average computing time

Fig. 2. Plan of experiment on constructive heuristics.

Each metaheuristic is subsequently launched on all instances
from every mentioned dataset, so no input file is missed.

V. COMPUTATIONAL RESULTS ON SOLUTION QUALITY
Results about the best (= minimal) solution qualities

εh[i(M, F) of metaheuristics available from experiments for set
A are presented in Fig. 3. The horizontal axis represents the
name of instance data. The vertical axis shows the solution
quality. Results for other sets cannot be presented here as
detailed as for set A, because of its size, but they are aggregated
in Table 1, where average gaps 𝑋Yp(M, D) for all metaheuristics
and all datasets are given. Figure 4 is a visual representation of
this table. These general figures can show an approximate
overall effectiveness of algorithms by criterion of solution
quality. Analysis of Fig. 4 indicated a group of top-3 algorithms
by criterion of solution quality: they are LKH-3, VRTR, SA.
Let’s take a closer look at their results.

Fig. 3. Solution quality of local search metaheuristics, set A.

TABLE I. AVERAGE GAP 𝑋Yp(𝑀, 𝐷) IN THE DATASET, %.

Average gap
𝑋Yp(M, D) in
the dataset

Local search metaheuristics
CWS

or
NN

OPT GLS TS SA LKH-3 VRTR

Se
t (

its
 si

ze
)

A (26) 5,0% 4,5% 3,0% 2,1% 0,9% 0,2% 0,6%
B (23) 4,4% 3,9% 3,1% 2,5% 1,0% 0,2% 0,6%
E (11) 7,1% 5,3% 4,1% 3,6% 0,8% 0,4% 0,8%
F (3) 4,4% 2,7% 3,3% 3,0% 1,8% 0,1% 1,9%

G (20) 11% 10% 8,1% 9,7% 5,2% 2,1% 2,4%
M (4) 4,7% 2,8% 2,6% 2,1% 0,5% 0,2% 0,5%
P (24) 8,0% 6,6% 3,5% 4,5% 0,7% 0,5% 0,9%
X(100) 5,9% 5,4% 4,9% 4,0% 4,1% 2,0% 1,7%

Fig. 4. Average gap of local search metaheuristics in the datasets (%).

It is clearly seen that in 7 out of 8 sets LKH-3 produces
solutions with the least (= the best) solution qualities.
Experiment results that are not shown here because of their
large size reveal that LKH-3 produces not the best solutions in:

⎼ 3 input files out of 26 for set A (≈12%);
⎼ 1 input files out of 23 for set B (≈4%);
⎼ 2 input files out of 11 for set E (≈18%);
⎼ 1 input files out of 3 for set F (≈33%);
⎼ 6 input files out of 20 for set G (30%);
⎼ 0 input files out of 4 for set M (0%);
⎼ 6 input files out of 24 for set P (≈25%);
⎼ 61 input files out of 100 for set X (61%);

Totally, LKH-3 was not the best in quality criterion for 80
input files out of 211 (≈38%). Only 6 times SA was the best,
while all other times VRTR was “the winner”.

112

It is important to mention that LKH-3 tends to produce best
solution for instances with no more than ≈100 clients in a
delivery net regardless of type of distribution in the dataset.
There are 86 instances with less than 102 clients, and solutions
obtained using LKH-3 are the best in 86% (in 74 files).

In addition, it should be noted that LKH-3 is the best for
input problems with cluster-based distribution of clients, when
the number of clusters is a bit smaller than the amount of
available vehicles (sets B and M). On the contrary, this
algorithm is not the best for 61% of files from set X that consists
of very different instances. Despite the fact that there are
several files with cluster-based distribution, the amount of
clusters is much less than the number of vehicles, and, as
experiments showed, LKH-3 does not suits well for such cases.

VRTR nearly always takes “the second place in this race”
except for set X. It can be noticed that VRTR works in a best
way for instances with more than ≈320 clients in a delivery net
for non-geometric distributions. There are 53 instances with
more than 321 clients in set X, and solutions obtained using
VRTR are the best in 89% (in 47 files). Nevertheless, if we take
a range of ≈ [100; 320] clients, results show that either VRTR
or LKH-3 are the best in nearly 50% of cases, so for this
diapason both these algorithms can be admitted being equal.

For most of input files SA produces solutions which are
nearly equal to other ones generated by VRTR. However, the
situation is different for sets G and X, where SA is always worse
than its closest “competitor”. So, we can come to the conclusion
that with SA it is better to use non-geometric input data with no
more than 100 clients in a delivery net. Nevertheless, only 6
times out of 211 SA is better than LKH-3 – this fact shows
superiority of LKH-3 over SA.

Other three local search metaheuristics – TS, GLS and OPT
(listed in increasing size of average gaps) – were nearly always
worse than top-3 group.

TS was better than LKH-3 only 3 times out of 211, better
than VRTR or SA in 6 input files out of 26 from set A, in 2
input files out of 23 from set B, in 1 input file out of 24 from
set P. Also, TS is slightly more effective than SA for set X,
however, the difference in solution qualities between LKH-3
and TS is significant in general.

Roughly speaking, GLS is usually worse than TS, except for
sets G and P. Also, GLS is better than LKH-3 only in one file,
thus, it cannot compete with the algorithms from top-3 group
seriously.

And the last one and the least effective by criterion of
solution quality metaheuristic is OPT. It nearly always
produces solutions which are better than ones obtained by
simple initial algorithm but worse than other local search
metaheuristics.

VI. EXPERIMENTAL RESULTS ON COMPUTING TIME
Results about average running times 𝑋Yd(M, F) of

metaheuristics available from experiments for set A are
presented in Fig. 5. The horizontal axis represents the name of

instance data. The vertical axis shows the running time in
seconds. Results for other sets cannot be presented here as
detailed as for set A, because of its size, but they are aggregated
in Table 2, where average computing times 𝑋Yd(M, D) for all
metaheuristics and all datasets are given. Figure 6 is a visual
representation of this table. These general figures can show an
approximate overall effectiveness of algorithms by criterion of
running time.

Fig. 5. Running time of local search metaheuristics, set A.

TABLE II. AVERAGE COMPUTING TIME 𝑋Yd(𝑀, 𝐷) IN THE DATASET (IN
SECONDS).

Average gap
𝑋Yp(M, D) in
the dataset

Local search metaheuristics
CWS or

NN OPT GLS TS SA LKH-
3 VRTR

Se
t (

its
 si

ze
)

A (26) 0,0003 0,004 0,540 2,411 0,635 1,692 0,554
B (23) 0,0006 0,027 0,291 2,578 0,505 1,487 0,611
E (11) 0,0008 0,016 0,311 2,172 0,857 1,930 0,851
F (3) 0,0003 0,024 0,953 4,240 1,621 2,154 1,270

G (20) 0,0468 0,569 7,979 16,34 15,78 8,563 9,748
M (4) 0,0025 0,044 0,883 4,386 4,046 2,370 2,469
P (24) 0,0008 0,023 0,367 2,216 0,566 2,166 0,554

X (100) 0,041 0,62 7,088 65,15 56,74 37,41 9,998

Fig. 6. Average computing time of local search metaheuristics in the datasets.

It can be seen from Table 2 and Fig. 4 that metaheuristics,
which are listed in increasing size of average running times, are
as follows: OPT, GLS, VRTR, SA, LKH-3, TS. Let us discuss
their results in this order.

Analysis reveals that the “fastest” local search metaheuristic
for all 211 instances is OPT as it was expected. Its running time
is approximately 25 times bigger than computing time of initial

113

algorithm, however, even for 1000 clients in a delivery net the
maximum running time does not exceed 3 seconds.

Next algorithm is GLS, which is approximately 300 times
slower than initial one. In sets B, E, F, P, M and X it nearly
always (94%) ranks #2 just after OPT. Of course, there are cases
when GLS works slightly slower than others, but the number of
such situations is not very significant and the difference
between obtained values does not exceed 1 second. However,
in sets A and G GLS works with mixed results: computing
times of GLS, SA, VRTR or LKH-3 (depending on dataset) are
fluctuated and too close to each other, so it is impossible to find
a leader.

Average computing time of VRTR steadily goes at the third
plays, except for set G with geometric instances and several rare
cases from other datasets. VRTR has smooth growth of speed,
and no special aspects of its work are found apart from not very
stable work with geometric-inspired instances.

Next one is SA. In comparison with VRTR, SA has bigger
growth of speed and the plot of its running time is more
fluctuated. In sets A, B, E, F and P this algorithm executes
quicker than LKH-3 but slower than VRTR. However, in sets
G, M and X it shows much worse effectivity, when the number
of clients in a delivery net becomes more than 100. It means
that SA is better to use for instances with up to one hundred
delivery points.

LKH-3 is slower than other mentioned metaheuristics
(except for TS) for all datasets apart from sets G, M and those
instances from set X with 322 and more delivery points. The
main unique feature of LKH-3 is its variability. Linear chart of
running times of LKH-3 has a lot of drastic jumps and slumps.
That is why this metaheuristic has not very positive computing
time rate. Nevertheless, LKH-3 can work very quickly,
especially when there are no more than 50-80 clients in a net.

Last one metaheuristic to be discussed concerning its
computing time is TS. As LKH-3, linear chart of running times
has a lot of drastic jumps and slumps. In average, this is the
slowest algorithm in this group, however, in a third of cases it
can compete with LKH-3 or SA but not very significant
speeding up can be noticed.

VII. PARETO OPTIMAL LOCAL SEARCH METAHEURISTICS

The algorithm 𝑚a ∈ ℳ is Pareto optimal if (∀𝑚 ∈ ℳ)
L(𝑚 ≠ 𝑚a) ⇒ 4	𝑋Yp(𝑚,𝐷) > 𝑋Yp(𝑚a, 𝐷)5 ∨ 4𝑋Yd(𝑚,𝐷) > 𝑋Yd(𝑚a, 𝐷)5R
Thus, our aim is to find a sets of Pareto optimal algorithms for
different types of input data.

Figures from 5 to 14 are plotted using values from Table
1 and Table 2. The horizontal axis represents average
computing time 𝑋Yd(M, D) in seconds. The vertical axis shows
average solution quality 𝑋Yp(M, D).

Fig. 7. Average solution quality vs. average running time, set A.

Fig. 8. Average solution quality vs. average running time, set B.

Fig. 9. Average solution quality vs. average running time, set E.

Fig. 10. Average solution quality vs. average running time, set F.

114

Fig. 11. Average solution quality vs. average running time, set G.

Fig. 12. Average solution quality vs. average running time, set M.

Fig. 13. Average solution quality vs. average running time, set P.

Fig. 14. Average solution quality vs. average running time, set X.

Fig. 15. Average solution quality vs. average running time, set X, part I.

Fig. 16. Average solution quality vs. average running time, set X, part II.

To sum up information presented in Figures from 5 to 14,
Table 3 is formed.

TABLE III. INVOLVEMENT OF ALGORITHMS IN PARETO OPTIMAL GROUPS
FOR DIFFERENT DATASETS

Involvement of
algorithms in

Pareto optimal
groups

Local search metaheuristics

OPT GLS TS SA LKH-3 VRTR

Se
t (

its
 si

ze
)

A (26)
B (23)
E (11)
F (3)

G (20)

M (4)

P (24)
X (100)
X, part I

(47)
X, part
II (53)

Table 3 shows involvement of local search metaheuristics
in Pareto optimal groups for different datasets. Algorithms that
belong to a group of Pareto optimal heuristics for some set are
marked with a big tick. SA is marked by a small tick for set A
as this metaheuristic can be in optimal by Pareto group as the
difference between it and VRTR is too close, so it can be
neglected. Also, it should be mentioned that two more rows are

115

added – they are “set X, part I” which consists of instances with
up to 322 clients and “set X, part II” which is vice versa has
instances with 322 and more delivery points inside input files.
This division is connected with the big size of set X and with
the fact that was described in section V – VRTR works in a best
way for instances with more than ≈320 clients in a delivery net
for non-geometric distributions but LKH-3 produces good
results for instances with no more than ≈100 clients regardless
of type of distribution in the dataset.

The following conclusions are made on a base of results
from Table 3:

1. Sets A, B, E and P can be aggregated together because a
group of Pareto optimal algorithms is the same for all these
sets. We will name this aggregation as Group_1. It
represents two different types of inputs. The first one is with
clients’ coordinates and demands that are formed from a
uniform distribution with some outlying cases. The second
one is with nodes that are formed into clusters, and the
number of clusters is equal or greater than number of
available vehicles. Demands are also formed from a uniform
distribution with some outlying cases. All input files from
Group_1 have 101 clients in a delivery net as maximum.

2. Set F forms a second group Group_2 with only 3 instances
obtained from real goods deliveries. Number of delivery
points varies from 45 to 135.

3. Group_3 is formed of sets G and M that also have the same
Pareto optimal metaheuristics. Number of delivery points
varies from 100 to 483. Set G has instances with locations
in a form of concentric squares, pointed stars and rays, while
set M consists of only 4 input files with locations that are
grouped into clusters, and the number of clusters is equal or
smaller by 1 than number of available vehicles.

4. Group_4 is formed of the first part of set X. There are 47
instances in it, and the number of instances is up to 322
clients. Group_4 is a mix of input data types: it has different
combinations of demand distribution (unitary demands,
small/large values, small/large variance), depot positioning
(central, eccentric, random) and customer positioning
(practical cases, uniform distribution, cluster-based).

5. Group_5 is formed of the second part of set X. There are 53
instances in it, and the number of instances is from 322 to
1001 clients. Other characteristics of this group are the same
as Group_4 has.

Above-mentioned conclusions are outlined in Table 4 with
information about involvement of algorithms in Pareto optimal
groups depending on types of input data. All algorithms are
listed in increasing order of average computing times (from best
to worst) and in decreasing order of average solution qualities
(from worst to best).

TABLE IV. INVOLVEMENT OF ALGORITHMS IN PARETO OPTIMAL GROUPS
DEPENDING ON TYPES OF INPUT DATA

 Number
of
delivery
points

Distribution of
delivery points

Distribut
ion of
demands

Pareto
optimal
algorith
ms

Group_1 Up to
101

1. Uniform (with some
outlying cases).

2. Cluster-based, the
number of clusters is
equal or greater than
number of available
vehicles.

Uniform
(with
some
outlying
cases)

OPT
GLS
SA
VRTR
LKH-3

Group_2 Up to
135

Real-world Real-
world

OPT
SA
VRTR
LKH-3

Group_3 From
100 to
483

1. Geometric
(concentric squares,
pointed stars and
rays).

2. Cluster-based, the
number of clusters is
equal or smaller by 1
than number of
available vehicles.

Constant
or
uniform

OPT
GLS
LKH-3

Group_4 From
100 to
322

Mixed Mixed OPT
GLS
VRTR
LKH-3

Group_5 From
322 to
1001

Mixed Mixed OPT
GLS
VRTR

VIII. CONCLUSIONS

As it was expected, unfortunately, there is no one universal
metaheuristic that takes the first places by both criteria of
solution quality and running time. Overall, the next
recommendations should be given to people who are interested
in metaheuristics solving CVRP.

1. For uniform (with some outlying cases) or cluster-based
distribution of clients’ locations, where the number of
clusters is equal or greater than number of available vehicles
it is better to apply Set of optimization operators, Guided
local search, Simulated annealing, Variable record-to-
record travel algorithm or Lin-Kernighan-Helsgaun
heuristic for CVRP depending on desired solution quality
and available time for calculations. Here and elsewhere the
algorithms are listed in increasing order of average
computing times (from best to worst) and in decreasing
order of average solution qualities (from worst to best).

2. For real-world instances it is better to use following local
search metaheuristics: Set of optimization operators,
Simulated annealing, Variable record-to-record travel
algorithm or Lin-Kernighan-Helsgaun heuristic for CVRP.

3. For geometric (with concentric squares, pointed stars and
rays) or cluster-based distribution of clients’ locations,
where the number of clusters is equal or smaller by 1 than
number of available vehicles, it is better to apply Set of

116

optimization operators, Guided local search or Lin-
Kernighan-Helsgaun heuristic for CVRP.

4. Finally, for mixed up combinations of demand distribution,
depot positioning and customer positioning there are two
recommendations. If there up to approximately 350 clients
in a delivery net, it is better to use Set of optimization
operators, Guided local search algorithm, Variable record-
to-record travel algorithm or Lin-Kernighan-Helsgaun
heuristic for CVRP. Otherwise, if there are nearly 320
delivery point and more then LKH-3 stops being so
effective, so it is better to use following local search
metaheuristics: Set of optimization operators, Guided local
search algorithm or Variable record-to-record travelling
algorithm.

Also experiments revealed absolute inefficiency of Tabu
search as it is not in any of Pareto optimal groups.

In future we are planning to extend our study by conducting
experiments using:

1. Population-based or nature-inspired metaheuristics as
there are a lot of productive algorithms, too.

2. Other input data sets, including the most recent one with
thousands of nodes in each instance. It is important to
check local search metaheuristics on problems with
extra-large dimensions to analyze their effectiveness.

REFERENCES

[1] E. Beresneva and S. Avdoshin, "Analysis of Mathematical
Formulations of Capacitated Vehicle Routing Problem and Methods for
their Solution," Trudy ISP RAN/Proc. ISP RAS, vol. 30, no. 3, pp. 233-
250, 2018.

[2] K. Braekers, K. Ramaekers and I. Nieuwenhuyse, "The vehicle routing
problem: State of the art classification and review," Computers &
Industrial Engineering, vol. 99, pp. 300-313, 2016.

[3] B. Golden, S. Raghavan and E. Wasil, The vehicle routing problem:
Latest advances and new challenges, New York: Springer, 2008.

[4] P. Toth and D. Vigo, Vehicle Routing Problems, Methods, and
Applications, Philadelphia: SIAM, 2014.

[5] F. Arnold, M. Gendreau and K. Sorensen, "Efficiently solving very
large-scale routing problems," Computers and Operations Research,
vol. 107, pp. 32-42, 2019.

[6] K. Helsgaun, "An effective implementation of the Lin–Kernighan
traveling salesman heuristic," EJOR, vol. 12, pp. 106-130, 2000.

[7] E. Zachariadis and C. Kiranoudis, "An open vehicle routing problem
metaheuristic for examining wide solution neighborhoods," Computers
& Operations Research, vol. 37, no. 4, pp. 712-723, 2010.

[8] E. Taillard, G. Laporte and M. Gendreau, "Vehicle routeing with
multiple use of vehicles," Journal of the Operational Research Society,
vol. 47, no. 8, p. 1065, 1996.

[9] S. Ropke and D. Pisinger, "An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows,"
Transportation Science, vol. 40, no. 4, p. 455–472, 2006.

[10] P. Toth and D. Vigo, "An overview of vehicle routing problems," in The
Vehicle Routing Problem, SIAM, 2002.

[11] K. Helsgaun, "An Extension of the Lin-Kernighan-Helsgaun TSP
Solver for Constrained Traveling Salesman and Vehicle Routing
Problems," Roskilde University, 2017.

[12] P. Schittekat and K. Sorensen, "Deconstructing record-to-record travel
for the capacitated vehicle routing problem," Operational Research and
Management Science Letters, vol. 1, no. 1, pp. 17-27, 2018.

[13] F. Li, B. Golden and E. Wasil, "Very large-scale vehicle routing: new
test problems, algorithms, and results," Computers & Operations
Research, vol. 32, p. 1165–1179, 2005.

[14] G. Laporte and F. Demet, "Classical Heuristics for the Capacitated
VRP," in The Vehicle Routing Problem, SIAM, 2002, pp. 109-128.

[15] C. Voudouris, E. Tsang and A. Alsheddy, "Guided local search," in
Handbook of metaheuristics, 2010, pp. 321-361.

[16] D. Mester and O. Braysy, "Active-guided evolution strategies for large-
scale capacitated vehicle routing problems," Computers & Operations
Research, vol. 34, no. 10, p. 2964–2975, 2007.

[17] F. Arnold and K. Sorensen, "Knowledge-guided local search for the
Vehicle Routing Problem," Computers and Operations Research, vol.
105, pp. 32-46, 2019.

[18] F. T. E. Glover, "A user’s guide to tabu search," Operations Research,
vol. 41, no. 1, pp. 1-28, 1993.

[19] E. Zachariadis and C. Kiranoudis, "A strategy for reducing the computa-
tional complexity of local search-based methods for the vehicle routing
problem," Computers & Operations Research, vol. 37, p. 2089–2105,
2010.

[20] S. Kirkpatrick, C. Gelatt and M. Vecchi, "Optimization by simulated
annealing," Science, vol. 220, no. 4598, p. 671– 680, 1983.

[21] NEO, "Simulated Annealing," [Online]. Available:
http://neo.lcc.uma.es/vrp/solution-methods/metaheuristics/simulated-
annealing/. [Accessed 27 02 2019].

[22] I. Osman, "Metastrategy simulated annealing and tabu search
algorithms for the vehicle routing problem," Annals of Operations
Research, vol. 41, pp. 421-451, 1993.

[23] S. Avdoshin and B. E.N., "The Metric Travelling Salesman Problem:
The Experiment on Pareto-optimal Algorithms," Trudy ISP RAN/Proc.
ISP RAS, vol. 29, no. 4, pp. 123-138, 2017.

[24] K. Helsgaun, "LKH-3," 2. [Online]. Available:
http://akira.ruc.dk/~keld/research/LKH-3/. [Accessed 01 2019].

[25] I. Xavier, "CVRPLIB," [Online]. Available: http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/. [Accessed 09 05 2018].

[26] Heidelberg University, "TSPLIB," [Online]. Available:
https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/. [Accessed 09 05
2018].

117

118

The Generalized Traveling Salesman Problem:
modifications and ways of solving

Mariia Gordenko
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia

mgordenko@hse.ru

Sergey Avdoshin
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia

savdoshin@hse.ru

Abstract— The Generalized Traveling Salesman problem
(GTSP) is an expansion of classical Traveling Salesman
problem, where vertices separated into clusters and the route
should traverse each cluster once. Like TSP, GTSP has many
potentially useful applications such as postal routing, material
flow system design and etc. The mathematical formulation of
GTSP and examples of potentially useful application are
described. The GTSP has several modifications, which
correspond to real tasks. In paper existing modifications are
presented, also the new formulations of problem are proposed.
Then the algorithms and approaches for solving GTSP are
listed. There are four main approaches: exact algorithms,
heuristic algorithms, reduction and transformation algorithms.
In paper a focus placed on transformation and reduction
algorithms. Existing algorithms for exact and non-exact
transformations are described. The new modification of existing
non-exact transformation based on finding center mass of graph
are presented. Then the algorithm and example of reduction
algorithm can be founded. The results of testing new center mass
approach are also presented.

Keywords— Generalized Traveling Salesman problem,
Traveling Salesman problem, Routing problem

I. THE MATHEMATICAL FORMULATIONS OF GENERALIZED
TRAVELING SALESMAN PROBLEM

The Generalized Traveling Salesman problem (GTSP) is a
modification of classical TSP. In the given complete graph 𝐺
with the set of vertices 𝑉 and the set of edges 𝐸 all vertices is
separated into 𝑚 clusters 𝐶&, 𝐶(, …𝐶*. It is needed to find the
route (also called g-route) 𝑠, which traverse each cluster and
has minimal weight. Such problem is known as NP-hard [1].

The distance (weight function) 𝑑(𝑣0, 𝑣1) from one vertex
𝑣0 to another vertex 𝑣1 , where 𝑣0, 𝑣1 ∊ 𝑉 represent the edge
𝑒01 ∊ 𝐸, which satisfies the triangle inequality (𝑣0, 𝑣1, 𝑣5 ∈ 𝑉
and 𝑑7𝑣0, 𝑣18 ≤ 𝑑(𝑣0, 𝑣5) + 𝑑7𝑣5, 𝑣18).

Let ⋃ 𝐶0 = 𝑉*
0>& . If some clusters 𝐶0 and 𝐶1 are intersect

then 𝐶0 ∩ 𝐶1 ≠ ∅, otherwise, if 𝐶0 ∩ 𝐶1 = ∅ then they are non-
intersecting.

The path 𝑣0& → 𝑣0(→ ⋯ → 𝑣0D → 𝑣0& is a g-tour if 𝑙 = 𝑚
and for all ℎ ∈ [1,𝑚] 𝐶J ∩ {𝑣0, 𝑣0&, 𝑣0(, … , 𝑣0D} ≠ ∅ . The
length of g-tour can be calculated as 𝑠 =
∑ 𝑑(𝑣05, 𝑣05N&)DO&
5>& + 𝑑(𝑣0D, 𝑣0&). It is needed to find

𝑠,: 𝑓(𝑠,) = min
U∈V

𝑓(𝑠) [2].

Problem defined above is a classical GTSP, where cost
functions between vertices are symmetry and only one vertex
from each cluster should be visited. Sometimes, such problem
called E-GTSP (Equality Generalized Traveling Salesman
Problem), Set-TSP or group TSP [3]. The example of classical
GTSP is pictured on Fig. 1.

Fig. 1. The example of classical GTSP

The problem has practical useful applications, for
example, airplane routing, computer file sequencing, postal
delivery [4], location-based problems, urban planning,
logistics problems, telecommunication problems, and railway
track optimization problems.

II. APPLICATIONS OF THE GENERALIZED TRAVELING
SALESMAN PROBLEM

There are a wide range of applications which can be
formulated mathematically as GTSP.

In article by Gilbert Laporte the five examples of
applications were introduced. The problems such as location-
routing, design of loop material flow systems, post-box
collection or postal routing, stochastic vehicle routing and arc
routing were mentioned [5].

In paper by Daniel Karapetyan such applications as
“warehouse order picking with multiple stock locations,
sequencing computer files, postal routing, airport selection
and routing for courier planes” were listed [6]. In another
article it is said that “GTSP offers a more accurate model than
the TSP” [2]. This may be due to the fact that it is not
necessary to visit all vertices. In some situations, it is
necessary to visit only some key vertices among their small
concentrations. One example is a meeting with dealers in
different countries. If there are several cities in the country
where dealers are present, it is not necessary to visit all of
them. It is enough to visit one dealer, and he will transfer the
information to the other dealers in country.

Almost the same situation occurs when somebody plans
the location of the main mailboxes in the area. The main
mailbox refers to the mailbox, the extraction of letters from
which occurs daily. From the rest of the mailboxes, extracting
letters can be done once a week. In order to understand where
to place the main mailbox, the GTSP problem should be
solved. Also, often there are real tasks associated with routing
sites, load distribution across servers from different sites, etc.
Almost all of such tasks can be solved as GTSP [2].

A wide range of situations can be modeled as a GTSP.
Some situations were separates into subclasses of GTSP [5]:

119

• The Covering Tour Problem;
• Material Flow System Design;
• Post-box collection;
• Stochastic vehicle routing;
• Arc routing.

III. THE TYPES OF THE GENERALIZED TRAVELING SALESMAN
PROBLEM

Previously, the classical variant of GTSP was defined.
However, there are real applications which require some
modifications of classical GTSP. In this section all known
types of GTSP are listed. The several new modifications of
GTSP are proposed.

A. Generalized Traveling Salesman Problem with
intersecting clusters
It is a less-known modification of GTSP, which defined

in [7]. The definition of problem is similar to GTSP, but
𝐶&, 𝐶(, … , 𝐶* sets may intersect, so 𝐶0 ∩ 𝐶1 ≠ ∅ for some
𝑖, 𝑗 ∈ [1,𝑚] and 𝑖 ≠ 𝑗. The example is presented on Fig. 2.
The vertex 𝑣Y lies in 𝐶Z and 𝐶[cluster simultaneously.

Fig. 2. The example of GTSP with intersecting clusters

B. Asymmetric Generalized Traveling Salesman Problem
(A-GTSP)
If the distance function is asymmetry, so 𝑑7𝑣0, 𝑣18 ≠

𝑑7𝑣1, 𝑣08 for some 𝑣0, 𝑣1 ∊ 𝑉 , the problem called A-GTSP
(Asymmetric Generalized Traveling Salesman Problem).

C. Generalized Traveling Salesman Problem with many
vertices in clusters (Many-GTSP)

 In various articles, there is a mention of the problem of
GTSP, where in the route
𝑠	 = 	 7𝑣0], 𝑣0^, . . . , 𝑣0_8, 𝑙 ∈ [𝑚, |𝑉|], where from each cluster
more than one vertex can appear. However, algorithms that
solve problem in this formulation were not found. There is an
assumption that the problem is solved by classical methods
with some modifications.

D. Dynamic Traveling Salesman (Dynamic GTSP)
 The less well-known, but potentially useful problem is a
Dynamic Generalized Traveling Salesman Problem
(Dynamic GTSP). It is a variant of Dynamic Routing
Problems and Generalized Traveling Salesman Problems at
the same time. The Dynamic GTSP is a problem, where new
vertices are added or deleted during the traveling. This is the
main difference from the classical GTSP [8].
 In the research [8] four types of Dynamic GTSP were
presented. There are very few works that are devoted to this
problem. In [8] the multi-agent-based approach to modeling
and solving dynamic generalized traveling salesman problem
is given.

E. Multi-objective Generalized Traveling Salesman
Problem (MO-GTSP)

 This problem is also very similar to the classical GTSP
problem. However, there is some expansion. In GTSP only
one characteristic is assigned to the edge, but in MO-GTSP
several characteristics (for example, time, cost) are attributed
to each arc, which should be minimized together [9]. The
example is presented on Fig. 3.

Fig. 3. The example of MO-GTSP with two functions to optimize:

cost and time

F. Clustered Traveling Salesman Problem
 It is an extension of TSP which has similarities with
GTSP. All vertices are divided into non-intersecting clusters
and solution consists of all vertices 𝑉, but vertices from one
cluster should be traversed together. The example of problem
and solution is presented on Fig. 4.

Fig. 4. The example of Clustered Traveling Salesman Problem

G. k-Generalized Traveling Salesman Problem (k-GTSP)
 Previously, k-GTSP was not defined. However, other
routing problem (for example, Chinese Postman problem or
Traveling Salesman problem) have “-k” definition, which are
very different.

Fig. 5. The example of k-GTSP (k-GTSP with k salesmen). On

figure there are 2 salesman and 2 tours (green and red)

 It is possible to imagine that more than one salesman will
traverse the route. Moreover, the start vertex for each
salesman may be different. If the 𝑘 salesman are defined, it is
needed to find route with minimal weight 𝑠 = 𝑡& ∪ …∪ 𝑡5 ,
where 𝑡0 is route of 𝑖 salesman. For all 𝑖 ∈ [1,𝑚] |𝑠 ∩ 𝐶0| =
1. The example is shown on Fig. 5. In future, I will call such
problem as k-GTSP with 𝑘 salesmen. There is a similar

120

formulation for another routing problem k-CPP (k-Chinese
Postman Problem) [10].
 For TSP also was defined the k-TSP problem. The main
idea to find the minimal weight cycle traverses exactly 𝑘
vertices without repetitions [11]. Such problem can be
generalized for the GTSP. In given complete graph 𝐺 with
the set of vertices 𝑉 and the set of edges 𝐸 it is needed to find
minimal weight route 𝑠 traverses only 𝑘 clusters. The
example is depicted on Fig. 6. Such problem will call k-GTSP
with decreasing number of vertices.

Fig. 6. The example of k-GTSP with decreasing number of vertices

 It should be mentioned that problem defined above may
be practically useful. For example, on the map of clusters it
is necessary to choose 𝑘 clusters such that the cost of
traversing will be minimal. This can be useful, for example,
if the supplier wants to choose the stores with minimal costs
of deliver the goods.
 In the literature, another formulation of the 𝑘-problem can
be found. Such problems are called finding the 𝑘 − best
solutions and widely know for polynomial solvable
problems. However, there is a 𝑘-TSP problem. The main idea
consists of finding 𝑘 − best solutions. Such problem can be
generalized to GTSP. It is needed to find the set of 𝑘 solutions
with minimal weight. The example is shown on Fig. 7. In my
future work I will call such problem as k-GTSP with k best
solutions.

Fig. 7. The example of k-GTSP with k best solutions (3 solutions

are depicted)

IV. THE WAYS OF SOLVING THE GENERALIZED TRAVELING
SALESMAN PROBLEM

 The GTSP is NP-hard problem and exact solution is very
time expensive because requires complete search of all
possible variants. Even for small tasks (for example, 20
clusters) on a personal computer, calculating the optimal
route can be very time consuming.
 After analyzing the sources, several groups of algorithms
and approaches for solving GTSP can be distinguished:

• Exact algorithms (such as branch and bound, branch
and cut algorithms, etc.);

• Heuristic algorithms (random-key genetic algorithm,
mrOX genetic algorithm, BIO-inspired algorithms,

generalized nearest neighbor heuristic, memetic
algorithm, 2-opt local search algorithm, generalized
initialization, insertion and improvement heuristic,
LKH heuristic, neighborhood heuristics, etc.);

• Algorithms for transforming GTSP into related
problems (exact and non-exact transformations);

• Algorithms for reduction GTSP dimension.
 Below the description of transformation and reduction
some algorithms are presented.

A. Transformation GTSP with intersecting clusters to GTSP
with non-intersecting clusters (I-N transformation)

 Suppose we are dealing with a GTSP with intersecting
clusters, for some 𝑖, 𝑗 ∈ [1,𝑚] 𝐶0 ∩ 𝐶1 ≠ ∅ . Such type of
GTSP instance 𝐺 can be transformed into 𝐺′ with non-
intersecting clusters. The algorithm was mentioned by Y.N.
Lien in [2]. The main idea of transformation is copying the
vertices, which simultaneously lie in different clusters 𝑝
times (𝑝 is a number of clusters, where vertex lies). Let 𝑆h	be
a set of clusters in which the 𝑣 vertex lies, 𝑞h = |𝑆h|. Then it
is needed to find g-tour in 𝐺′. Between copies of each vertex
it is needed to construct random route. After that from g-tour
in 𝐺′ the g-tour in 𝐺 can be obtained by deleting from g-tour
copies of vertices. The correctness of algorithm was proved
[2]. The cost of g-tours in 𝐺 and 𝐺′ are similar [2]. If some
vertex should be marked as start it marked as 𝑣, and placed
into non-intersected special cluster 𝐶, . If there is no such
restriction, then such a cluster is not allocated.

Fig. 8. The example of I-N transformation (g-tour is green, yellow

route is the route between duplicated vertices)

 The example of algorithm’s working is presented. The
Fig. 8, Table I and Table II show how the transformation is
occurred.

TABLE I. I-N TRANSFORMATION. THE VERTEX DISTRIBUTION

 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 𝑺𝟗 𝑺𝟏𝟎 𝑺𝟏𝟏 𝑺𝟏𝟐 𝑺𝟏𝟑

 𝑪𝟏 𝑪𝟏 𝑪𝟏,
𝑪𝟑

𝑪𝟏,
𝑪𝟐,
𝑪𝟒

𝑪𝟐,
𝑪𝟒

𝑪𝟐,
𝑪𝟒 𝑪𝟑 𝑪𝟑 𝑪𝟑 𝑪𝟒 𝑪𝟒 𝑪𝟒 𝑪𝟐

𝒒𝒗 1 1 2 3 2 2 1 1 1 1 1 1 1

TABLE II. I-N TRANSFORMATION. THE VERTEX DISTRIBUTION
INTO CLUSTERS

Cluster Vertices
𝑪𝟏 𝑣&, 𝑣(, 𝑣Z, 𝑣[
𝑪𝟐 𝑣[, 𝑣Y, 𝑣x, 𝑣&Z
𝑪𝟑 𝑣Z, 𝑣y, 𝑣z, 𝑣{
𝑪𝟒 𝑣Y, 𝑣x, 𝑣&,, 𝑣&&, 𝑣&(

121

B. Transformation GTSP with non-intersecting clusters into
standard TSP) (S-N transformation)

 The GTSP with non-intersecting clusters can be
transformed into standard instance of TSP [2]. Suppose we
are dealing with a GTSP with non-intersecting clusters, for
all 𝑖, 𝑗 ∈ [1, |𝑉|] 𝐶0 ∩ 𝐶1 = ∅.
 It is needed to mark the start vertex as 𝑣, and put it in
individual cluster 𝐶, . In related 𝐺| problem create 𝐶′
clusters, which consist of replicas of vertices:

• 𝑣, ∈ 𝐶, copies as 𝑎,,, and 𝑐,,, into 𝐶,′ cluster.
• For all nodes from each clusters the three replicas

𝑎, 𝑏, 𝑐 should be created in 𝐺′ (see Fig. 9).
• For each cluster vertex 𝑒 added.

 After copying and doubling vertices transformation of
edges are required.
 The edges transform in the following ways:

• In the cluster 𝐶, the 𝑐,,, vertex connects with 𝑎,,, by
edge with zero cost.

• All vertex in each transformed cluster 𝐶0′ connect by
edges with zero cost in the following way: 𝑎0,, →
𝑏0,, → 𝑐0,, → 𝑎0,& → 𝑏0,& → 𝑐0,& → ⋯ → 𝑎0,|��| →
𝑏0,|��| → 𝑐0,|��| → 𝑎0,, . All 𝑏 vertex connects with
corresponding 𝑎 vertex. All 𝑐 vertices connect with
all 𝑒	vertex in each cluster and 𝑒 vertex connects with
all 𝑏 vertices in cluster by zero cost edges.

• All intercluster edges are copies with the same cost of
traverse.

 The 𝐺′′ problem is not presented on complete graph.
After finding the solution on 𝐺′′ for transforming g-tour to 𝐺′
it is needed to remove incluster cycles in g-tour. The
correctness of algorithm was proved [2].

Fig. 9. The example of S-N transformation [3]

C. T-Transformation of GTSP into A-TSP
 T-transformation doubles up the number of vertices [12,
13] and consists of the following steps:

• For every vertex in each cluster 𝑣1 ∈ 𝑉0, 𝑖 ∈ [1, 𝑘]
define two vertices 𝑣1 (entering) and 𝑣1| (leaving).
Each pair of such vertices is joined by an arc from 𝑣1
to 𝑣1| with very high cost.

• Join all 𝑣1 ∈ 𝑉0| vertices in increasing order and 𝑣1| ∈
𝑉0| in decreasing order with zero cost.

• Edges between 𝑉0 copied with the same cost.
 The proof of correctness such transformation is given in
[12]. The example of T-transformation is shown on Fig. 10

D. Noon-Bean transformation of GTSP into ATSP
 It is a way of transformation without adding any vertex.
Here the cost of traversing is changed. The big constant M
adds to each intercluster edges. It is guarantee that firstly the

all vertices into cluster would be traversed and then the route
goes to another cluster. After such solution some vertices
from tour should be deleted (after the first vertex of the
cluster is met, the rest should be removed). Received route is
the g-tour. The correctness, proof and some computational
results on GTSPlib are presented in [14] and an example of
transformation is presented in my previous research [15].

Fig. 10. The example of T-transformation

E. Spatial Transformation of GTSP to TSP
GTSP can be solved in the following way [3]:

• From each cluster 𝑉0 the vertex 𝑣0� should be selected.
• Calculate the Hamiltonian cycle in the subgraph 𝐺′,

constructed on the selected vertices from step 1.
 Step 1 and 2 doing until all possible options for selecting
vertices are completed. Then the smallest route is selected.
However, such solution requires a lot of processing power
and memory, especially on large-scale problems.
 In article [3] the five different types of selecting vertices
from clusters are shown:

1) E-Search
 E-Search is known as Euclidian-Search. The main idea of
this method is constructing a line connecting the first and last
vertex from the original data. After that, from each cluster
select only one vertex which is closest to the line.
Computational time is 𝑂(𝑉) [3]. The process of E-Search is
shown on Fig. 11.

Fig. 11. The example of E-Search (yellow line - line between the

first and last vertices, red vertices were selected)

Fig. 12. R-Search example

2) R-Search
 R-Search is known as Radial-Search. It is needed for the
first and last vertex in the original data find from each cluster
radially the nearest vertices. So, there are 25	TSP instance, it

122

is needed to solve both and select the best. Computational
time is 𝑂(𝑉) of selecting 25 instances [3]. The process of R-
Search is shown on Fig. 12.

3) RE-Search
 It is a combination of R-Search and E-Search. Firstly, it is
needed to find two vertices most radially nearest to start and
end vertex in the original data. Then, for selected vertices the
E-Search applied. Computational time is 𝑂(𝑉) [3].

4) D-Search
 D-Search is known as Dijkstra-Search. The main idea of
this method is constructing a route connecting the first and
last vertex from the original data using Dijkstra algorithm.
After that, from each cluster select only one vertex which is
closest to the route. Computational time is 𝑂(𝑉() [3].

5) RD-Search
 It is a combination of R-Search and D-Search. Firstly, it
is needed to find two vertices most radially nearest to start
and end vertex in the original data. Then, for selected vertices
the D-Search applied. Computational time is 𝑂(𝑉() [3].
 The approaches presented above have advantages and
disadvantages. One of the disadvantages is the strong
dependence of the minimum route weight on chosen starting
and ending vertices. I propose the following search method
CM-Search based on finding vertices closest to the “center of
mass”.

6) CM-Search
 CM-Search is a Center of Mass Search. The main idea of
this method is to find the center of mass of the graph 𝐺 (let
the mass of each vertex is equal). After that, from each cluster
select only one vertex which is closest to the center mass.
Computational time is 𝑂(𝑉).
 However, method also has a disadvantage. The situation
where all vertices are concentrated in one place, but there are
several vertices that are far away from them is possible. In
this case, the center of mass is shifted, and non-optimal
vertices can be selected. The example of bad case shown on
Fig. 13. It can be seen that the selection 𝑣Z and 𝑣[instead of
𝑣(and 𝑣Y is more optimal. One solution of such problem is
to assign big mass to the vertices from the clusters with a
larger number of vertices. This method is new and requires
testing on test data.

Fig. 13. CM-Search (the star is the center of mass). Bad case.

F. The Reduction Algorithm for GTSP
 It is known that GTSP problems (real or, for example,
from GTSPlib) have big size (several hundred of vertices).
Some of vertices and edges between them are redundant.
There is algorithm with running time 𝑂(𝑁Z) which can
reduce size approximately to 10-15% [6].
 Let 𝑛 = |𝑉| the number of vertices in graph 𝐺. If graph 𝐺
consists of 𝑚 clusters then only 𝑚 vertices should be
traversed, another 𝑛 −𝑚 vertices are redundant. In article by

Gregory Gutin the definition of redundant vertex is presented.
“Let 𝐶 be a cluster, |𝐶| > 1. We say that a vertex 𝑟 ∈ 𝐶 is
redundant if for each pair 𝑥, 𝑦 of vertices from distinct
clusters different from 𝐶 , there exists a vertex 𝑠	 ∈ 	𝐶\{𝑟}
such that 𝑑(𝑥, 𝑠) 	+ 	𝑑(𝑠, 𝑦) 	≤ 	𝑑(𝑥, 𝑟) 	+ 	𝑑(𝑟, 𝑦)” [6].
 The example of GTSP with three clusters is defined in
Table III (different colors match to different clusters). This
example can be reduced.
 We can define differences table as shown in original
research [6]. The differences can be calculated as
𝑑𝑖𝑠𝑡(𝑥, 𝑠) − 𝑑𝑖𝑠𝑡(𝑥. 𝑟). For the example from Table III the
Differences table (Table IV) and Comparison distances table
(Table V) can be calculated - 𝑑𝑖𝑠𝑡(𝑥, 𝑟) + 𝑑𝑖𝑠𝑡(𝑟, 𝑦) −
𝑑𝑖𝑠𝑡(𝑥, 𝑠) − 𝑑𝑖𝑠𝑡(𝑠, 𝑦).

TABLE III. THE EXAMPLE OF GTSP PROBLEM

 𝑣& 𝑣(𝑣Z 𝑣[𝑣Y 𝑣x 𝑣y 𝑣z
𝑣& - 1 2 10 7 6 7 8
𝑣(1 - 3 8 8 7 10 11
𝑣Z 2 3 - 11 10 7 6 5
𝑣[10 8 11 - 1 2 1 2
𝑣Y 7 8 10 1 - 1 3 1
𝑣x 6 7 7 2 1 - 2 1
𝑣y 7 10 6 1 3 2 - 2
𝑣z 6 11 5 2 1 1 2 -

TABLE IV. THE DIFFERENCES TABLE FOR 1 CLUSTER AND 𝑟 = 𝑣&

𝑠/𝑟 𝑣[𝑣Y 𝑣x 𝑣y 𝑣z
𝑣(2 -1 -1 -3 -3
𝑣Z -1 -3 -1 1 3

TABLE V. THE TABLE FOR COMPARISON DISTANCE THROUGH
𝑟 = 𝑣& AND 𝑠

 𝑠 = 𝑣(𝑠 = 𝑣Z
𝑣[→ 𝑣U → 𝑣y -1 0
𝑣[→ 𝑣U → 𝑣z -1 2
𝑣Y → 𝑣U → 𝑣y -4 -2
𝑣Y → 𝑣U → 𝑣z -4 0
𝑣x → 𝑣U → 𝑣y -4 0
𝑣x → 𝑣U → 𝑣z -4 2

 The Comparison distances in Table V shows that vertex
𝑟 = 𝑣& is not redundant.
 The same calculations may be done for vertex 𝑣(. The
calculations shown in Table VI and Table VII.

TABLE VI. THE DIFFERENCES TABLE FOR 1 CLUSTER AND 𝑟 = 𝑣(

𝑠/𝑟 𝑣[𝑣Y 𝑣x 𝑣y 𝑣z
𝑣& -2 1 1 3 3
𝑣Z -3 -2 0 4 6

TABLE VII. THE TABLE FOR COMPARISON DISTANCE THROUGH
𝑟 = 𝑣(AND 𝑠

 𝑣& 𝑣Z
𝑣[→ 𝑣U → 𝑣y 1 1
𝑣[→ 𝑣U → 𝑣z 1 3
𝑣Y → 𝑣U → 𝑣y 4 2
𝑣Y → 𝑣U → 𝑣z 4 4
𝑣x → 𝑣U → 𝑣y 4 4
𝑣x → 𝑣U → 𝑣z 4 6

 The Comparison distances in Table VII shows that vertex
𝑟 = 𝑣(is redundant and can be removed. The transformed
GTSP is presented in Table VIII.

123

 After removing redundant vertices from GTSP the
calculations should be done again. Again, perform the
calculation for the vertex 𝑟 = 𝑣& (see Table IX and Table X).

TABLE VIII. THE EXAMPLE OF GTSP PROBLEM

 𝑣& 𝑣Z 𝑣[𝑣Y 𝑣x 𝑣y 𝑣z
𝑣& - 2 10 7 6 7 8
𝑣Z 2 - 11 10 7 6 5
𝑣[10 11 - 1 2 1 2
𝑣Y 7 10 1 - 1 3 1
𝑣x 6 7 2 1 - 2 1
𝑣y 7 6 1 3 2 - 2
𝑣z 6 5 2 1 1 2 -

TABLE IX. THE DIFFERENCES TABLE FOR 1 CLUSTER AND 𝑟 = 𝑣&

 𝑣[𝑣Y 𝑣x 𝑣y 𝑣z
𝑣Z -1 -3 -1 1 3

TABLE X. THE TABLE FOR COMPARISON DISTANCE THROUGH
𝑟 = 𝑣& AND 𝑠

𝑠/𝑟 𝑣Z
𝑣[→ 𝑣U → 𝑣y 0
𝑣[→ 𝑣U → 𝑣z 2
𝑣Y → 𝑣U → 𝑣y -2
𝑣Y → 𝑣U → 𝑣z 0
𝑣x → 𝑣U → 𝑣y 0
𝑣x → 𝑣U → 𝑣z 2

 Nothing changes in Table IX and X, the vertex 𝑣& is not
redundant. The reduction can be continued, but, further
results of calculations showed that it is meaningless.
 In the same way, the reduction of number of edges can be
done [6].

V. THE RESULTS OF COMPUTATIONAL EXPERIMENTS
 The transformation approach CM-Search E for spatial
transformation of GTSP to TSP were tested on standard
GTSPLib by D. Karapetyan [16]. The transformation
algorithms were implemented in C++ and tested on a
computer with 2,6 GHz Intel Core i5 processor. After CM-
Search transformation the LKH-heuristic for finding solution
were used [18]. In paper [3] was shown that the applying R-
Search transformation on real-world dataset and solving
transformed TSP gives the average error 8.8% (for five
presented Searches it is the lowest). The main disadvantage
of R-Search is computational time. The R-Search gives 2*
variants and then each variant should be solved.
 The testing of CM-Search shows that the average error is
8.1%, and computational time (in average) reduced on 83%
by reducing the dimension (compared to using the LKH
algorithm on non-reduced problem).

VI. CONCLUSION
 In paper the existing modifications of GTSP were listed
and described. Three new modifications which have real
applications were proposed. In next research the methods for
solving 𝑘 -GTSP with 𝑘 salesmen, 𝑘 -GTSP with 𝑘 best
solutions and 𝑘-GTSP with decreasing number of vertices
will be proposed.

 Various approaches for solving the GTSP were presented.
Particular attention is paid to the algorithms for reducing the
dimension and transformation algorithms. The new
transformation non-exact approach CM-Search for spatial
transformation of GTSP to TSP were presented and tested.
Testing shown that the CM-Search significantly reduces
computation time with a permissible error.

REFERENCES
[1] M. Gordenko and S. Avdoshin, "The mixed chinese postman

problem," Trudy Instituta sistemnogo programmirovaniya RAN, vol.
29, no. 4, 2017.

[2] Y. N. Lien, E. Ma and B. W. S. Wah, "Transformation of the
Generalized Traveling-Salesman Problem into the Standard

Traveling-Salesman Problem," Information Sciences, Vols. 74 (1-2),
pp. 177-189, 1993.

[3] M. Zia, Z. Cakir and D. Z. Seker, "Spatial Transformation of
Equality–Generalized Travelling Salesman Problem to Travelling

Salesman Problem," ISPRS International Journal of Geo-
Information, vol. 7, no. 3, p. 115, 2018.

[4] U. Palekar and G. Laporte, "Some applications of the clustered
travelling salesman problem," Journal of the Operational Research

Society, vol. 53, no. 9, pp. 972-976, 2002.
[5] G. Laporte, A.-V. Ardavan and C. Sriskandarajah, "Some

Applications of the Generalized Travelling Salesman Problem," The
Journal of the Operational Research Society, vol. 12 (47), pp. 1461-

1467, December 1996.
[6] G. Gutin and D. Karapetyan, "Generalized traveling salesman

problem reduction algorithms," arXiv preprint arXiv:0804.0735,
2008.

[7] E. Ma, B. W. -S. Wah and Yao-Nan Lien, "Transformation of the
generalized traveling-salesman problem into the standard traveling-
salesman problem," Information sciences, vol. 74, no. 1-2, pp. 177-

189.
[8] A. Baykasoğlu and Z. D. U. Durmuşoğlu, "A multi-agent based

approach to modeling and solving dynamic generalized travelling
salesman problem," Journal of Intelligent & Fuzzy Systems, vol. 31,

no. 1, pp. 77-90, 2016.
[9] J. Pinxten, "Online Heuristic for the Multi-objective Generalized

Traveling Salesman Problem," Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 822-825, 2016.

[10] A. Osterhues and F. Mariak, "On variants of the k-Chinese Postman
Problem," Operations Research and Wirtschaftsinformatik, vol. 30,

31 August 2005.
[11] A. Horbach, "Combinatorial relaxation of the k-traveling salesman

problem," Manuskripte aus den Instituten für
Betriebswirtschaftslehre der Universität Kiel, vol. 599, 2005.

[12] V. Dimitrijević and Z. Šarić, "An efficient transformation of the
generalized traveling salesman problem into the traveling salesman
problem on digraphs," Information Sciences, vol. 102, no. 1-4, pp.

105-110, 1997.
[13] G. Laporte and F. Semet, "Computational evaluation of a

transformation procedure for the symmetric generalized traveling
salesman problem," INFOR: Information Systems and Operational

Research, vol. 37, no. 2, pp. 114-120, 1999.
[14] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo and A. Zverovitch,

"Transformations of Generalized ATSP into ATSP," Operations
Research Letters, vol. 31, no. 5, pp. 357-365, 2003.

[15] M. Gordenko and S. Avdoshin, "Transformation of the Mixed
Chinese Postman Problem in multigraph into the Asymmetric
Travelling Salesman Problem," International Journal of Open

Information Technologies, vol. 5, no. 6, pp. 6-11, 2017.
[16] D. Karapetyan, "GTSP Instances Library," [Online]. Available:

http://www.cs.nott.ac.uk/~pszdk/gtsp.html. [Accessed 21 March
2019].

124

Constructive heuristics for Capacitated Vehicle
Routing Problem: a comparative study

Ekaterina N. Beresneva
Faculty of Computer Science

National Research University Higher School of Economics
Moscow, Russia

eberesneva@hse.ru

Scientific Advisor: Prof. Sergey Avdoshin
Software Engineering School

National Research University Higher School of Economics
Moscow, Russia

savdoshin@hse.ru

Abstract— Vehicle Routing Problem (VRP) is concerned with
the optimal design of routes to be used by a fleet of vehicles to serve
a set of customers. In this study we analyze constructive heuristics
for a subcase of VRP, where the vehicles have a limited capacity –
Capacitated Vehicle Routing Problem (CVRP). The problem is
NP-hard, therefore heuristic algorithms which provide near-
optimal polynomial-time solutions are still actual. The aim of this
work is to make a comparison of constructive heuristics as there
were not found any such classification. Finally, the leader by a
criterion of quality is admitted being a Clarke and Wright Savings
heuristic; however, this algorithm cannot find the solution for all
used instances. This fact and other ones are discussed in the paper.
Our future goal is to make an experimental comparison of the
most common and state-of-the-art metaheuristics using well suited
constructive heuristic to build a suboptimal solution.

Keywords— capacitated vehicle routing problem, mathematical
formulation, classical heuristics, constructive heuristics.

I. INTRODUCTION
The Vehicle Routing Problem (VRP) is one of the most

widely known questions in a class of combinatorial
optimization problems. VRP is directly related to Logistics
transportation problem and it is meant to be a generalization of
the Travelling Salesman Problem (TSP). In contrast to TSP,
VRP produces solutions containing some (usually, more than
one) looped cycles, which are started and finished at the same
point called “depot”. The objective is to minimize the cost (time
or distance) for all tours. For the identical type of input data,
VRP has higher solving complexity than TSP. Both problems
belong to the class of NP-hard tasks.

This work is aimed at analysis of VRP subcase, which is
called Capacitated Vehicle Routing Problem (Capacitated
VRP, CVRP), where the vehicles have a limited capacity. It
means that there is a physical restriction on transportation more
than determined amount of weight for each machine.
Capacitated vehicle routing problems form the core of logistics
planning and are hence of great practical and theoretical
interest.

There are three types of algorithms that are used to solve any
subcase of CVRP:

• Exact algorithms. These algorithms find an optimal
solution but take a great time for solving large instances. Such

methods include Branch-and-Bound, Branch-and-Cut, cutting
plane, column generation, cut and solve, Branch-and-Cut-and-
Price, Branch-and-Price, and dynamic programming
techniques. It was shown in [1] that Branch-and-Bound
algorithm was able to solve random CVRP instances with up to
300 customers and four vehicles within 1000 CPU seconds in
2002. However, according to the same source some real-world
CVRP instances with up to 47 vertices only were successfully
solved within 1000 CPU seconds. Current situation does not
differ a lot. State-of-the-art exact methods can provide optimal
solution for some SCVRP instances with up to 100 nodes, but
it takes 30-40 minutes at average [2]. Due to these restrictions,
researchers all over the world concentrate on heuristic methods.

• Classical heuristics. These algorithms build an
approximate solution iteratively, but they do not include further
improvement stage. Different scientific works reveal that, in
comparison to exact methods, classical heuristics work much
faster. For example, an instance of 100-150 nodes can be solved
up to a few (1-2) seconds [2]. Heuristics are divided into two
groups that include constructive heuristics and improvement
heuristics.

• Metaheuristics. Such type of algorithms is also called a
framework for building heuristics. According to [3],
metaheuristics either explore the solution space by moving at
each iteration from a solution to another solution in its
neighbourhood (metaheuristics based on local search) or evolve
a population of solutions which may be combined together in
the hope of generating better ones (metaheuristics based on
population, natural inspired).

Actuality of research and development of heuristics
algorithms for solving VRP is on its top, because such
approximate algorithms can produce near-optimal solutions in
a polynomial time. It is especially important in real-world tasks
when there are more than one hundred clients in a delivery net.
Among the best-known algorithms for CVRP there are
metaheuristic proposed by Pisinger and Ropke [4], Nagata and
Braysy [5], and Vidal et al [6].

There are a lot of articles related to CVRP heuristics, but no
works were found which compare solution quality, or gap, of
classical heuristics using the same data bases. Solution quality
is calculated as the percentage of difference in the obtained

125

value of the solution with the optimal (or best-known) solution
for the problem.

It is important to analyze classical heuristics since
constructive heuristics are usually used in order to provide an
initial (suboptimal) solution to improvement methods and to
metaheuristics that allow to iteratively get near optimal
solutions. So, we will discuss only algorithms from the first
group.

The paper is structured as follows. In the second part a
mathematical formulation of CVRP is given. In the third
section, some notes on a classification of most popular
constructive heuristics are provided, including description of
chosen algorithms. The fourth part consists of design of
experiments and their results. And, finally, in the fifth part
conclusions and future goals are given.

II. CLASSICAL CVRP MATHEMATICAL MODEL
In the paper we will use CVRP abbreviation having in mind

the mathematical formulation that was described in a previous
work of authors [7].

Let a complete weighted oriented graph 𝐺 =< 𝑉, 𝑉 ×
𝑉 > is given. Let 𝐼 = {0, 1, … ,𝑁}, where 𝑁 + 1 = |𝑉|. Graph
vertices are indexed as 𝑖𝑛𝑑 = 𝑉 → 𝐼, (∀𝑣 ∈ 𝑉)(∀𝑤 ∈ 𝑉) 	
𝑣 ≠ 𝑤 ⟹ 𝑖𝑛𝑑(𝑣) ≠ 𝑖𝑛𝑑(𝑤). Thus, 𝑉 = {𝑣?, 𝑣@, … , 𝑣A} is the
set of vertices, here 𝑖 = 𝑖𝑛𝑑(𝑣B), 𝑖 ∈ 𝐼. Let 𝑣?	be the depot,
where vehicles are located, and 𝑣B be the destination points of a
delivery, 𝑖	 ≠ 0.

The distance between two vertices 𝑣B and 𝑣C is calculated
using a distance function 𝑐E𝑣B, 𝑣CF. Here a real-valued function
𝑐(∙,∙) on 𝑉 × 𝑉 satisfies ∀𝑖, 𝑗, 𝑔 ∈ 𝐼 [8]:

1. 𝑐E𝑣B, 𝑣CF ≥ 0 (non-negativity axiom).
2. 𝑐E𝑣B, 𝑣CF = 0 if and only if 𝑣B = 𝑣C (identity axiom).
3. 𝑐E𝑣B, 𝑣CF = 𝑐E𝑣C, 𝑣BF (symmetry axiom).
4. 𝑐E𝑣B, 𝑣KF ≤ 	𝑐E𝑣B, 𝑣CF + 𝑐E𝑣C, 𝑣KF (triangle inequality

axiom).

Each destination point 𝑣B, ∀𝑖 ∈ 𝐼, is associated with a known
nonnegative demand, 𝑑B, to be delivered, and the depot has a
fictitious demand 𝑑? = 0. The total demand of the set 𝑉′ ⊆ 𝑉
is calculated as 𝑑(𝑉′) = ∑ 𝑑BP

|QP|
BPR@ .

Let 𝐾 be a number of available vehicles at the depot 𝑣?.
Each vehicle has the same capacity – 𝐶. Let us assume that
every vehicle may perform at most one route and 𝐾 ≥ 𝐾UBV,
where 𝐾UBV is a minimal number of vehicles needed to serve all
the customers due to restriction on 𝐶. Clearly, next condition
must be fulfilled – (∀𝑣B 	∈ 𝑉)	𝑑B ≤ 𝐶,	∀𝑖 ∈ 𝐼, which prohibits
goods transportation that exceed maximum vehicle capacity.

Let introduce 𝑉? = {𝑣?},	where 𝑣? ∈ 𝑉. Let us divide 𝑉
in 𝐾 + 1 sets: 𝑆 = {𝑉?, 𝑉@, … , 𝑉X}, each subset, except for 𝑉?,
represent a set of customers to be served for one vehicle.
𝑆YZZ = 	{𝑆} is a set of all possible partitions of 𝑉. Let
𝐽 = {0, 1, … , 𝐾} be a set that keeps indexes. Then
(∀𝑗 ∈ 	𝐽)	\𝑉C\ ≥ 	1. There should be no duplicates in any of

subsets from 𝑆:	(∀𝑔 ∈ 𝐽)(∀𝑗 ∈ 𝐽)(𝑔 ≠ 𝑗 ⇒ 𝑉K ∩ 𝑉C = ∅).
Also, all subsets from 𝑆 must form set 𝑉. Thus,
𝑉 = ⋃ 𝑉CX

CR? . In this notation, 𝑉?a = 𝑉? ∪ 𝑉a, ∀𝑘 ∈ 𝐽\{0}. It
is obvious that 𝑑(𝑉ea) ≤ 𝐶.

Let introduce 𝑀a = {1,𝑁@ … ,𝑁a}, 𝑁a = |𝑉a|,
∑ 𝑁aX
aR@ = 𝑁. Then let 𝑀?a = {0} ∪ 𝑀a. Let 𝐼a =

⋃ {𝑖	|	𝑖 = 𝑖𝑛𝑑(𝑣), ∀𝑣 ∈ 𝑉a}X
aR@ be a set of vertex indices from

𝑉a. Then 𝐼?a = {0} ∪ 𝐼a,	∀𝑘 ∈ 𝐽\{0}.

Let 𝐻a = {𝑝a:	𝑀?a → 𝐼?a|	𝑝a(0) = 0	&	(∀𝑥 ∈ 𝑀?a)	
(∀𝑦 ∈ 𝑀?a)	𝑥 ≠ 𝑦	 ⟹ 𝑝a(𝑥) ≠ 𝑝a(𝑦)} be a set of codes of all
possible permutations ℎa = n𝑣op(?), 𝑣op(@), … , 𝑣opEApFq	of
𝑉?a. These permutations represent all possible Hamiltonian
cycles of graph 𝐺?a < 𝑉(?a), 𝑉(?a) × 𝑉(?a) >, ∀𝑘 ∈ 𝐽\{0}.

Weight of ℎa ∈ 𝐻a can be found according to the
formula 1:

𝑓(ℎa) = 𝑐 n𝑣op(?), 𝑣opEApFq +	 s 𝑐E𝑣op(t), 𝑣op(tu@)F
Apv@

tR?

 (1)

Let 𝑆′ be a set of {𝑉?@, 𝑉?w, … , 𝑉?X}. In this notation the
weight of 𝑆′ is calculated as 𝐹(𝑆y) = ∑ 𝑓(ℎa)aR@..Xzzzzz , ∀𝑘 ∈
𝐽\{0}.

Overall, the formulation of CVRP is to find:
𝑆?: 𝐹(𝑆?) = min

~∈	~���
𝐹(𝑆) (2)

III. CONSTRUCTIVE HEURISTICS
In this section the most popular constructive heuristics are

described.

A. Sequential Insertion algorithm (SI)
Sequential Insertion algorithm [9] constructs routes

subsequently, one after another.

In the first step, a new tour 𝑡𝑜𝑢𝑟a, 𝑘 ≤ 𝐾, is initialized with
a random unrouted node 𝑣B, 𝑖 ≠ 0,	and the depot 𝑣?. Thus, a tour
(𝑣?, 𝑣B, 𝑣?) is obtained.

In the second step, another unrouted vertex 𝑣C, 𝑗 ≠ 0, is
chosen, such that its incorporation in the current tour gives the
least increase in a tour length and demand of a potential node
𝑣C does not exceed vehicle capacity. So, the next two formulae
must be hold:

⎼ argmin
��	∈	�e��p,
����	∈	�e��p,
		��	∉	�e��p

𝑐E𝑣Y, 𝑣CF + 𝑐E𝑣C, 𝑣Yu@F − 𝑐(𝑣Y, 𝑣Yu@);

⎼ 𝐷�e��p + 𝑑C ≤ 𝐶, where 𝐷�e��p is a total demand of
current 𝑡𝑜𝑢𝑟a.

If all conditions hold then this unrouted vertex 𝑣C, 𝑗 ≠ 0 is
inserted in a tour 𝑡𝑜𝑢𝑟a between 𝑣Y and 𝑣Yu@.

The second step is repeated until no more unrouted vertex
𝑣C, 𝑗 ≠ 0, can be feasibly inserted. In this case a new tour
𝑡𝑜𝑢𝑟a, 𝑘 ≤ 𝐾, is initialized, and the procedure starts from the
first step.

126

B. Improved Parallel Insertion algorithm (PI)
Parallel Insertion Improved algorithm [10] builds routes

simultaneously. This method is a modification of Sequential
Insertion algorithm.

In the first step, the minimum number 𝐾UBV of feasible
routes is defined as 𝐾UBV = ∑ 𝑑BB∈|Q| /𝐶. All these routes
𝑡𝑜𝑢𝑟a ∈ 𝑇𝑜𝑢𝑟𝑠	are initialized with 𝐾UBV different closest to 𝑣?
unrouted nodes 𝑣B, 𝑖 ≠ 0. Thus, 𝐾UBV tours (𝑣?, 𝑣B, 𝑣?) are
obtained.

In the second step, a random unrouted node 𝑣C, 𝑗 ≠ 0, is
inserted in some route 𝑡𝑜𝑢𝑟a at its best insertion position. The
next two conditions must be hold – incorporation of 𝑣C in this
tour gives the least increase in a tour length among all other
tours and demand of a potential node 𝑣C does not exceed vehicle
capacity. So:

⎼ argmin
��∈�e��p,
����∈�e��p,
		��∉�e��p

𝑐E𝑣Y, 𝑣CF + 𝑐E𝑣C, 𝑣Yu@F − 𝑐(𝑣Y, 𝑣Yu@);

⎼ 𝐷�e��p + 𝑑C ≤ 𝐶, where 𝐷�e��p is a total demand of
current 𝑡𝑜𝑢𝑟a.

If all conditions hold then this unrouted vertex 𝑣C, 𝑗 ≠ 0 is
inserted in a tour 𝑡𝑜𝑢𝑟a between 𝑣Y and 𝑣Yu@.

The second step is repeated until no more unrouted vertex
𝑣C, 𝑗 ≠ 0, can be feasibly inserted in some route 𝑡𝑜𝑢𝑟a. In this
case a new tour 𝑡𝑜𝑢𝑟a, 𝑘 ≤ 𝐾, is initialized as (𝑣?, 𝑣C, 𝑣?) and
adds to set of all tours 𝑇𝑜𝑢𝑟𝑠, and the procedure continues.

C. Nearest Neighbour heuristic (NN)
Nearest Neighbour heuristic constructs routes subsequently,

one after another, in a greedy way.

In the first step, an unrouted node 𝑣B, 𝑖 ≠ 0,	which is closest
to the depot 𝑣?, is chosen. A new open tour 𝑡𝑜𝑢𝑟a, 𝑘 ≤ 𝐾, is
initialized with 𝑣B and 𝑣?. Thus, a tour (𝑣?, 𝑣B) is obtained.

In the second step, another unrouted vertex 𝑣C, 𝑗 ≠ 0, is
chosen, which is the nearest to the last added vertex and a
demand of a potential node 𝑣C does not exceed vehicle capacity.
So, the next two formulae must be hold:

⎼ argmin
��	∈	�e��p,			��	∉	�e��p

𝑐E𝑣B, 𝑣CF;

⎼ 𝐷�e��p + 𝑑C ≤ 𝐶, where 𝐷�e��p is a total demand of
current 𝑡𝑜𝑢𝑟a.

If all conditions hold then this unrouted vertex 𝑣C is added in
the end of 𝑡𝑜𝑢𝑟a after 𝑣B, and since that time it turns to be the
last added vertex.

The second step is repeated until no more unrouted vertex
𝑣C, 𝑗 ≠ 0, can be feasibly inserted. In this case a new tour
𝑡𝑜𝑢𝑟a, 𝑘 ≤ 𝐾, is initialized, and the procedure starts from the
first step.

D. Clarke and Wright Savings Heuristic (CWS) [9]
In the first step, all vertices 𝑣B ∈ 𝑉, 𝑖 ≠ 0, must form |𝑉 − 1|

routes. Thus, |𝑉 − 1| tours (𝑣?, 𝑣B, 𝑣?) are obtained.

In the second step, ∀𝑣B ∈ 𝑉, ∀𝑣C ∈ 𝑉, 𝑖 ≠ 0, 𝑗 ≠ 0, 𝑖 ≠ 𝑗,
saving 𝑠E𝑣B, 𝑣CF is calculated as 𝑠E𝑣B, 𝑣CF = 𝑐(𝑣B, 𝑣?) +
𝑐E𝑣?, 𝑣CF − 𝑐(𝑣B, 𝑣C). All savings are put in a list of 𝑆̅, �̅� must
be sorted in a non-increasing order.

In the third step, the first unused saving in a list is taken.
Then, existence of two routes 𝑡𝑜𝑢𝑟� and 𝑡𝑜𝑢𝑟�, 𝑥 ≠ 𝑦, having
the next conditions, is checked:

⎼ there is an edge (𝑣B, 𝑣?) in route 𝑥 and edge (𝑣?, 𝑣C) in
tour 𝑡𝑜𝑢𝑟�;

⎼ 𝐷�e��� + 𝐷�e��� ≤ 𝐶.

If there are such routes then 𝑡𝑜𝑢𝑟� and 𝑡𝑜𝑢𝑟� are combined
by removing edges (𝑣B, 𝑣?), (𝑣?, 𝑣C) and introducing edge
(𝑣B, 𝑣C). After that, despite of ability or absence these routes, the
current saving is skipped and the next one in the list is checked.

The last step works until 𝐾 tours are left.

E. Variant of Clarke and Wright Savings Heuristic (CWS_2)
Classical variant of Clarke and Wright Savings algorithm

forms good tours in the first part of its work mostly. However,
it was noticed that it tends to produce less competitive tours
towards the end because of periphery nodes addition. Thus,
Yellow [11] and Gaskell [12] suggested improved form of
savings calculation. It is 𝑠E𝑣B, 𝑣CF = 𝑐(𝑣B, 𝑣?) + 𝑐E𝑣?, 𝑣CF −
𝜆𝑐(𝑣B, 𝑣C). Here 𝜆 is a parameter which responds for measuring
the distance between the vertices to be joint. In one report [13]
it was mentioned that the best value of 𝜆 is 0.4.

F. Two-phase methods
Two-phase methods are based on the decomposition of the

CVRP solution process into two separate stages – clustering
and routing. In the clustering stage, a partition of the customers
into routes is made, and in the routing stage, the sequence of the
customers on each subset is obtained.

1) Subgroup of Cluster-First-Route-Second heuristics
In Cluster-First-Route-Second methods, nodes are first

partitioned into different subsets called clusters and then routes
are determined by sequencing the customers within each subset.

a) Sweep
This Cluster-First-Route-Second method can be applied

only for planar instances [9].

Clustering stage
Let us define 𝑣B ∈ 𝑉 as 𝑣B = (𝑥B; 𝑦B), where 𝑥B and 𝑦B are

the Cartesian coordinates of point 𝑣B.

In the first step, new normalized vertices 𝑣By =
(𝑥By; 𝑦B′) = (𝑥B − 𝑥?; 𝑦B − 𝑦?) are introduced, where the
depot 𝑣?′ has new Cartesian coordinates (0; 0), ∀𝑖 ∈ |𝑉|.

127

Let 𝑣�′zzz = (𝜃B, 𝑟B) be a vertex with polar coordinate of 𝑣B′,
where 𝑟B = 𝑥Byw + 𝑦Byw and 𝜃B is calculated using formula 3:

𝜃B =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑎𝑟𝑐𝑡𝑔 ¦

𝑦B
𝑥B
§ , 𝑥B > 0, 𝑦B ≥ 0

𝑎𝑟𝑐𝑡𝑔 ¦
𝑦B
𝑥B
§ + 2𝜋, 𝑥B > 0, 𝑦B < 0

𝑎𝑟𝑐𝑡𝑔 ¦
𝑦B
𝑥B
§ + 𝜋, 𝑥B < 0

𝜋
2 , 𝑥B = 0, 𝑦B > 0
3𝜋
2 , 𝑥B = 0, 𝑦B < 0

 (3)

In the second step, a list 𝑉z of all 𝑣�′zzz = (𝜃B, 𝑟B), ∀𝑖 ∈
|𝑉|, 𝑖 ≠ 0, is calculated and is sorted in increasing order by
parameter 𝜃B.

In the next step, a new cluster is initialized with {𝑣?} and
maximum number of first 𝐿 vertices from 𝑉z , such that
∑ 𝑑B«v@
BR? ≤ 𝐶. Parameter 𝐿 is not a constant, it can be other

for different clusters depending on weights of demands and
total capacity. Then these used vertices are removed from
𝑉z , and the procedure is repeated until 𝑉z = ∅.

Routing stage
At this stage for each cluster TSP Cheapest Insertion

heuristic is applied which forms a cycle.

b) Fisher and Jaikumar algorithm [14]
In contrast to Sweep algorithm, this Cluster-First-Route-

Second method can be applied not only for planar instances.
Instead of using a geometric method to form the clusters, it
solves a Generalized Assignment Problem (GAP).

Clustering stage
In the first step ∀𝑘 = 1. . 𝐾zzzzzz a vertex 𝑣¬­­®(a) ∈ 𝑉\{𝑣e} is

chosen. These 𝐾 vertices form 𝐾 clusters.

In the second step the cost 𝑐𝑜𝑠𝑡��
a of allocating each node

𝑣B ∈ 𝑉, 𝑖 ≠ 0, to each cluster k is calculated as
𝑐𝑜𝑠𝑡��

a = 𝑐(𝑣e, 𝑣B) + 𝑐E𝑣B, 𝑣¬­­®(a)F − 𝑐E𝑣¬­­®(a), 𝑣?F.

In the third step the algorithm solves GAP with 𝑐𝑜𝑠𝑡��
a ,

𝑑B and 𝐶, which determines a minimum cost assignment of
items to a given set of bins of capacity 𝐶. The GAP can be
solved using either exact or heuristic techniques.

Routing stage
The final routes are determined by solving a TSP on each

defined cluster.
According to this work [15], this algorithm gives way to

the algorithms described above and provides solutions with
more solution quality. That is why it will not be considered
in later comparison study as it was already done.
2) Subgroup of Route-First-Cluster-Second heuristics
In contrast to Cluster-First-Route-Second methods, these

constructive heuristics at first solve TSP for all nodes and only
then break built cycle to	𝐾 routes. Unfortunately, many studies

showed than these heuristics are applicable only if there is no
constraint on the number of vehicles. In addition, they are not
competitive with other constructive heuristics in general [9].

IV. EXPERIMENTS AND RESULTS
All algorithms are implemented as sequential algorithms in

C++. The computational testing of the solution methods for
CVRP has been carried out by considering eight sets of test
instances from the next well-known database [16]. Total
number of instances in sets A, B, E, F, G, M, P, X is 211. All
instances inside one set have its own characteristics and a way
of generation: cluster-based / uniform / geometric distribution
of clients, real-world / imitative cases etc. The integer
Euclidean metric is used for all instances. The naming scheme
and data format for each instance is described here [17].
Shortly, the first letter in names shows the name of used set, the
figure after letter ‘n’ shows the number of nodes and the figure
which stands after letter ‘k’ presents the number of vehicles.

Experiment starts with the choice of a constructive heuristic
H from the set {SI, FI, NN, CWS, CWS_2, Sweep}. After that
one dataset D is selected from the list of all benchmark datasets.
Then an instance file F from the chosen dataset D is taken as
input for the algorithm H and the heuristic is executed (only 1
time because all these algorithms do not use random
generations, so all obtained solutions are the same). After that
we report solution quality ε(H, F)	found for the algorithm H on
the test F. Solution quality 𝜀 (or percent above best-known, or
gap) is calculated using formula 4 [18]:

𝐹(𝑆?) − 𝐹eo�(𝑆)
𝐹eo�(𝑆)

∙ 100%, (4)

where 𝐹(𝑆?) is a length of obtained solution and 𝐹eo�(𝑆) is a
length of optimal solution or best-known one. And finally,
among all ε(H, F) from one dataset sample mean 𝑋z¶(H, D) =
@
|¸|
∑ ε(H, F)|¸|
¹R@ is calculated which shows average gap for the

algorithm H on the dataset D, where |𝐷| is a number of input
files in dataset D.

The plan of experiments on constructive heuristics
described in Fig. 1.

Input: constructive heuristics, datasets
1: foreach constructive heuristic H
2: foreach dataset D from datasets
3: foreach instance file F from D
4: solution = run H on F
5: calculate ε(H, F)
6: calculate 𝑋z¶(H, D) // average gap on

dataset
Fig. 1. Plan of experiment on constructive heuristics.

It should be mentioned that each algorithm is subsequently
launched on all 211 instances from 8 datasets, so no input file
is missed.

A criterion of running time was not considered because all
instances were solved in a time which does not exceed 1 second.

128

It is thought to be insignificant in comparison with time-
consuming metaheuristic work.

Figures 2, 3 and 4 represent the results of experiments
conducted over algorithms using sets B, P and G of widely
different types. The horizontal axis represents the name of
instance data. The vertical axis shows the solution quality.

Fig. 2. Solution quality of constructive heuristics, set P.

Fig. 3. Solution quality of constructive heuristics, set P.

Fig. 4. Solution quality of constructive heuristics, set G.

Average gaps 𝑋z¶(H, D) of each algorithm on different data
sets are presented in Table 1 and Figure 5. These general figures
can show an approximate overall effectiveness of algorithms.
On the basis of Table 1, all Figures 2, 3, 4, 5 and other results
which cannot be shown here because of their large volume, it
can be easily seen that CWS algorithm (its column is made bold
in the table) is a leader for all input files, except some instances
from dataset G. Its average gap varies from 3,4% till 11,0%.

The closest competitor is its variant CWS_2, which has average
solution quality in a range [9,8%; 20,6%]. CWS_2 algorithm is
able to construct the best solutions only for some instances in
set B. In all other cases this algorithm nearly always takes
second place and goes behind classical CWS.

TABLE I. AVERAGE GAPS OF ALL HEURISTICS FOR EVERY SET, %.

Average gap
𝑋z¶(H, D) in
the dataset

Constructive heuristic

SI PI NN CWS CWS_
2 Sweep

Se
t (

its
 si

ze
)

A (26) 68,7% 33,2% 39,7% 5,0% 12,7% 40,2%
B (23) 82,3% 34,0% 41,2% 4,3% 9,8% 31,7%
E (11) 70,4% 30,0% 41,5% 6,4% 17,5% 36,4%
F (3) 42,5% 48,5% 74,6% 4,4% 20,6% 71,9%

G (20) 24,8% 15,6% 16,3% 11,0% 18,4% 142,4%
M (4) 83,0% 35,5% 44,6% 3,4% 12,0% 89,2%
P (24) 66,0% 25,6% 32,2% 6,9% 11,3% 31,4%

X
(100) 99,7% 23,3% 27,4% 5,9% 11,9% 82,9%

Fig. 5. Average gap of constructive heuristics in the datasets.

There is only one algorithm that have a problem with
finding an answer to the given problems – it is Sweep. This
heuristic is not able to construct a set of routes without
exceeding the number of vehicles for some input files. All the
others coped with the task – they are NN, SI, PI, CWS and
CWS_2. Table 3 shows the percentage and the number of
unsolved instances for all sets. In average, Sweep algorithm
cannot solve the instance without over limit in more than 50%
cases. It can be explained by the fact that the next vertex to be
added is chosen by criteria of distance (polar angle, for real) but
not the capacity.

TABLE II. PERCENTAGE OF UNSOLVED INSTANCES FOR EVERY SET, %.

Percentage
of unsolved
instances in

the set

Constructive heuristic

SI PI NN CWS CWS_
2 Sweep

Se
t (

its
 si

ze
)

A (26) 0% 0% 0% 0% 0% 69,0%
B (23) 0% 0% 0% 0% 0% 50,0%
E (11) 0% 0% 0% 0% 0% 43,5%
F (3) 0% 0% 0% 0% 0% 63,6%

G (20) 0% 0% 0% 0% 0% 66,7%
M (4) 0% 0% 0% 0% 0% 90,0%
P (24) 0% 0% 0% 0% 0% 50,0%

X
(100) 0% 0% 0% 0% 0% 58,3%

129

It was mentioned earlier that CWS is not a leader for some
instances from dataset G. There are 8 instances when NN finds
the best solutions but not CWS (Fig. 4). This interesting change
of the leader is connected with the type of customers’
distribution – these instances have a form of rays going from
the center. If we look at Fig. 6, where a solution for the instance
is presented, we can see that the idea of nearest neighbor works
here the best way.

Fig. 6. Solution for instance G-n200-k5.

V. CONCLUSIONS

Overall, the next recommendation should be given to the
problem which has described variant of mathematical model of
CVRP. In general, for all types of clients’ distribution the best
algorithm to be applied is Clarke and Wright Savings, however,
in case of having input data in form of concentric rays (like in
Fig. 6) it is better to use Nearest Neighbor algorithm. Also, a
few instances were solved best of all by Clarke and Wright
Savings 2 algorithm, so it is important to have this algorithm in
mind, however the difference between it and CWS is not very
significant (no more than 1%).

One more conclusion is that it is unreasonable to use Sweep
heuristic as it is not able to construct a set of routes without
exceeding the number of vehicles for more than 50% of input
files.

Finally, for our research it means that for all instances,
except those 8 from set G, CWS heuristic will be used as initial
algorithm for metaheuristic, otherwise – we will apply NN.

REFERENCES

[1] P. Toth and D. Vigo, "Branch-and-Bound algorithms for the capacitated
VRP," in The Vehicle Routing Problem, Philadelphia, SIAM, 2002, pp.
29-51.

[2] K. Braekers, K. Ramaekers and I. Nieuwenhuyse, "The vehicle routing
problem: State of the art classification and review," Computers &
Industrial Engineering, vol. 99, pp. 300-313, 2016.

[3] B. Golden, S. Raghavan and E. Wasil, The vehicle routing problem:
latest advances and new challenges, New York: Springer, 2008.

[4] P. Pisinger and S. Ropke, "A general heuristic for vehicle routing
problems," Computers & Operations Research, vol. 34, no. 8, pp. 2403-
2435, 2007.

[5] Y. Nagata and O. Braysy, "Edge assembly-based memetic algorithm for
the capacitated vehicle routing problem," Networks, vol. 54, no. 4, pp.
205-215, 2009.

[6] T. Vidal, T. Crainic, M. Gendreau, N. Lahrichi and W. Rei, "A hybrid
genetic algorithm for multi-depot and periodic vehicle routing
problems," Operations Research, vol. 60, no. 3, pp. 611-624, 2012.

[7] E. Beresneva and S. Avdoshin, "Analysis of mathematical formulations
of Capacitated Vehicle Routing Problem and methods for their
solution," Trudy ISP RAN/Proc. ISP RAS, vol. 30, no. 3, pp. 233-250,
2018.

[8] M. Reed and B. Simon, Methods of modern mathematical physics,
London: Academic Press, 1972.

[9] G. Laporte and F. Demet, "Classical heuristics for the Capacitated
VRP," in The Vehicle Routing Problem, SIAM, 2002, pp. 109-128.

[10] G. Laporte, Y. Nobert and M. Desrochers, "Optimal routing under
capacity and distance restrictions," Operations Research, vol. 33, no. 5,
p. 1050–1073, 1985.

[11] P. Yellow, "A computational modification to the savings method of
vehicle scheduling," Operational Research Quarterly, no. 21, pp. 281-
283, 1970.

[12] T. Gaskell, "Bases for vehicle fleet scheduling," Operational Research
Quarterly, no. 18, pp. 281-295, 1967.

[13] B. Golden, T. Magnanti and H. Nguyen, "Implementing vehicle routing
algorithms," Networks, no. 7, pp. 113-148, 1977.

[14] M. L. Fisher and R. Jaikumar, "A generalized assignment heuristic for
vehicle routing," Networks, vol. 11, no. 3, pp. 109-124, 1981.

[15] T. Sultana, M. Akhand and M. Rahman, "A variant Fisher and Jaikuamr
algorithm to solve capacitated vehicle routing problem," The
Proceedings of the 8th International Conference on Information
Technology (ICIT), no. 1, pp. 710-716, 2017.

[16] I. Xavier, "CVRPLIB," [Online]. Available: http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/. [Accessed 09 05 2019].

[17] Heidelberg University, "TSPLIB," [Online]. Available:
https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/. [Accessed 09 05
2019].

[18] P. Toth and D. Vigo, "An overview of vehicle routing problems," in The
Vehicle Routing Problem, SIAM, 2002.

130

Solving the Generalized Traveling Salesman using
Ant Colony algorithm with improvement local

search procedures
Anastasia Inkina

School of Software Engineering
National Research University Higher School of Economics

Moscow, Russia
aninkina@edu.hse.ru

Mariia Gordenko
Department of Software Engineering

National Research University Higher School of Economics
Moscow, Russia

mgordenko@hse.ru

Abstract— The paper presents the research in progress in
Generalized Traveling Salesman problem (GTSP) solved with
ant colony algorithm. Firstly, the overview of GTSP is
presented. Next, the formulation of GTSP is written. The ant
colony algorithm, also, is shown. Algorithms of local search,
which can improve the solution obtained by Ant Colony
algorithm are identified. Test plans for algorithms and current
results are provided in the next section. In conclusion, there are
plans for future research.

Keywords— Generalized Traveling Salesman problem, arc
routing problem, local search algorithm, ant colony algorithm

I. INTRODUCTION
The Generalized Traveling Salesman problem (GTSP) is a

routing problem. Most routing problem is NP-hard. In general,
GTSP is NP-hard problem. The problem defined on graph and
each vertex associate with cluster. It is needed to find the route
with minimal weight, which traverse each cluster exactly
once. It was shown, if the sequence of clusters visiting is
defined that it is polynomial problem [1].

There are a lot of real-life problem, which can be solved
as GTSP. For example, postal routing, airplane routing,
finding optimal point for postal box and etc.

There are various algorithms for solving the GTSP. They
can be divided into two big groups: exact algorithms and
heuristic algorithms. Exact algorithms (such as branch-and-
cut) give optimal solution, but, have exponential
computational complexity, whereas, heuristic algorithms can
solve GTSP in polynomial time with solution close to optimal.

In paper, the ant colony algorithm is described. The
formulation on future experiments of ant colony algorithm for
GTSP with using local search procedures (2-opt, 3-opt, tabu-
search and etc.) are presented.

II. DEFENITION OF GENERALIZED TRAVELING SALESMAN
PROBLEM

The Generalized Traveling Salesman problem is defined
in complete graph 𝐺 = (𝑉, 𝐸).

Let 𝑉 be a set of vertices, |𝑉| = 𝑛; 𝐸 be a set of edges
between vertices from 𝑉, |𝐸| = 𝑚.

Let 𝑒,- be an edge between 𝑣,, 𝑣- ∈ 𝑉. The weight
𝑑(𝑣,, 𝑣-) is a cost of traversing from 𝑣, to 𝑣- . If 𝑑2𝑣,, 𝑣-3 =
𝑑(𝑣-, 𝑣,) for each vertex 𝑣,, 𝑣- ∈ 𝑉 then problem is defined as
symmetric, otherwise, asymmetric. In paper, we work we
symmetric GTSP.

All vertices are separated into 𝑘 clusters 𝐶6, 𝐶7, … , 𝐶9 ,
𝐶6 ∪ 𝐶7 ∪ …∪ 𝐶9 = 𝑉. If 𝐶, ∩ 𝐶- = ∅ for all 𝑖 ≠

𝑗,		where 	𝑖, 𝑗 ∈ [1, 𝑘] then problem is called as GTSP with
non-intersecting clusters. The problem with intersecting
clusters can be presented as GTSP with non-intersecting
clusters, it was shown in research by Lien [1].

It is needed to find the route 𝑔, which traverse each cluster
exactly once and has minimal possible length. Let 𝑔 =
2𝑣EF, 𝑣EG, … , 𝑣EH, 𝑣EF3, for each 𝑖 ∈ [1, 𝑘] | 𝐶, ∩
I𝑣EF, 𝑣EG, … , 𝑣EH, 𝑣EFJ| = 1. The length 𝐿 =
∑ 𝑑2𝑣EM, 𝑣EMNF3 + 𝑑 P𝑣EH, 𝑣E6Q
9R6
,S6 . If 𝐻 = {𝑔6, 𝑔7, … } , it is

needed to find 𝑔W = min𝑔,,	where 𝑔, ∈ 𝐻.

III. ANT COLONY ALGORITHM
There is a nature-inspired metaheuristic such as

evolutionary algorithms (EA), particle swarm optimization
(PSO), ant colony optimization algorithm (ACO). In research
the ACO algorithm is described and tested (not all test
implemented yet). It should be note, that the first mention of
nature-inspired metaheuristic algorithms dates back to mid-
2000.

The idea for using ACO for solving arc routing problem is
not new. In previous research by Brezina Jr I. and Čičková Z.
the ACO were used for solving Traveling Salesman problem
[3]. In paper the impact of different parameters of algorithm
on solution is shown. The computational results also were
provided. The result for different amount of ant looks very
interesting. If author uses 100 ants, then difference of solution
from optimal is 17%. When the number of ants increases to
10000 the deference is falls to 0,83%.

In research by Camelia-M. Pintea, Petric ̆a C. Pop,
Camelia Chira how to apply ACO for solving GTSP were
shown. However, for solving the GTSP authors choose
parameters (𝑏 = 0.5, 𝑝 = 0.5, 𝑞` = 0.5, they will be defined)
based on their experience. However, for such an algorithm,
fine tuning parameters is very important and can improve the
solution. This is the first task of the current research. The
second task is trying to use for improving the solution various
local search algorithms.

The ACO algorithm can be defined as follows (author calls
it as Reinforcing Ant Colony System (RACS)) [3]:

• Let ℎ - the number of ants. It needed randomly put ℎ
ants into vertices.

• In each iteration (𝑡 + 1) every ant should be moved
into another unvisited vertex and update parameters,
which characterize the solution.

131

• Let 𝜏,-(𝑡) is a trail intensity of 𝑒,- at 𝑡 time. Ant
moved to the next vertex based on trail intensity and
visibility of next vertex, calculates as 𝜂,- =

6
eMf

.

• It should be note, that trail intensity reduced each time
(the process called as evaporation). It is needed for
stopping unbounded increasing of trial intensity. Let
𝑝 ∈ [0,1] be an evaporation rate.

• The selection of next vertex based on probability
function:

𝑝,g9 (𝑡) =
𝜏,g(𝑡)(𝜂,g(𝑡))h

∑ 𝜏,`(𝑡)(𝜂,`(𝑡))h`∈iM
H

where 𝑏 – importance of edge weight in ant choice,
𝑝,g9 (𝑡) – is a probability for choosing next vertex 𝑢 ∈
𝑉9,
𝐽,9 – is unvisited vertices for 𝑣, by ant 𝑘.
• Let 𝑞 be a randomly chosen number from 0 to 1,

and 𝑞W is the rate of acceptance (temperature
level). If 𝑞 > 𝑞W we choose vertex 𝑢, defined in
previous stem, otherwise vertex should be chosen
in following way:

𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛	 P𝜏,g(𝑡)2𝜂,g(𝑡)3
h
Q , 𝑢 ∈ 𝐽,9

 TABLE I. RESULTS OF ACO TESTING

Name Length Optimal Error rate Name Length Optimal Error rate Name Length Optimal Error rate

3burma14 1805 1805 0% 20rat99 587 497 18% 56a280 1395 1079 29%

4br17 31 31 0% 20rd100 4064 3650 11% 60pr299 31548 22615 40%

4gr17 1309 1309 0% 21eil101 273 249 10% 64lin318 27856 20765 34%

4ulysses16 4539 4539 0% 21lin105 8687 8213 6% 65rbg323 777 471 65%

5gr21 1765 1740 1% 22pr107 28868 27898 3% 72rbg358 985 693 42%

5gr24 353 334 6% 24gr120 3247 2769 17% 80rd400 8971 6361 41%

5ulysses22 5308 5307 0% 25pr124 41094 36605 12% 81rbg403 1460 1170 25%

6bayg29 757 707 7% 26bier127 86674 72418 20% 84fl417 12362 9651 28%

6bays29 827 822 1% 26ch130 3375 2828 19% 87gr431 133414 101946 31%

6fri26 518 481 8% 28gr137 44035 36417 21% 88pr439 75711 60099 26%

7ftv33 476 476 0% 28pr136 50651 42570 19% 89pcb442 30405 21657 40%

8ftv36 525 525 0% 29pr144 51339 45886 12% 89rbg443 1065 632 69%

8ftv38 538 511 5% 30ch150 3282 2750 19% 99d493 27488 20023 37%

9dantzig42 432 417 4% 30kroA150 13343 11018 21% 107ali535 178369 128639 39%

10att48 5645 5394 5% 30kroB150 16521 12196 35% 107att532 18612 13464 38%

10gr48 1924 1834 5% 31pr152 59826 51576 16% 107si535 18461 13502 37%

10hk48 6800 6386 6% 32u159 31938 22664 41% 113pa561 1489 1038 43%

11berlin52 4221 4040 4% 35si175 6832 5564 23% 115rat575 3287 2388 38%

11eil51 197 174 13% 39rat195 1061 854 24% 115u574 24324 16687 46%

12brazil58 16644 15332 9% 40d198 13479 10557 28% 131p654 33975 27428 24%

14st70 334 316 6% 40kroa200 18369 13406 37% 132d657 30933 22498 37%

16eil76 232 209 11% 40krob200 17391 13111 33% 134gr666 206406 163028 27%

16pr76 69540 64925 7% 41gr202 31809 23301 37% 145u724 22852 17272 32%

20gr96 33544 29440 14% 45ts225 78855 68340 15% 157rat783 4594 3262 41%

20kroA100 11238 9711 16% 45tsp225 2288 1612 42% 200dsj1000 12668019 9187884 38%

20kroB100 11529 10328 12% 46gr229 92661 71972 29% 201pr1002 162079 114311 42%

20kroC100 11283 9554 18% 46pr226 86880 64007 36% 207si1032 25100 22306 13%

20kroD100 10917 9450 16% 53gil262 1490 1013 47% 212u1060 150344 106007 42%

20kroE100 10759 9523 13% 53pr264 38080 29549 29% 217vm1084 182367 130704 40%

132

• After choosing the vertex the pheromone
intensity trail should be updated 𝜏,-(𝑡 + 1) =
(1 − 𝑝)𝜏,-(𝑡) +

E
pq

, where 𝐿 – current best tour.

• After iteration the pheromone should be updated
𝜏,-(𝑡 + 1) = (1 − 𝑝)𝜏,-(𝑡) + 𝑝∆𝜏,-(𝑡).

 After working of algorithm, we find sub-optimal
solution 𝐿

LOCAL SEARCH IMPROVEMENT ALGORTIHMS
The ants can find non-optimal solution and methods of

local search can be applied for improving solution after using
ACO.

The following local search procedure can be applied:

• 2-opt heuristic. In current tour 𝑔 , two edges
between vertices 𝑣,, 𝑣- and 𝑣9, 𝑣s	 should be
removed and connected in another way. If
obtained tour has lowest length, then 𝑔	 is
changed. It is repeated for all pair of vertices.

• 3-opt heuristic. The heuristic is similar to 2-opt,
but in 3-opt three edges should be removed, and
vertices should be reconnected and if possible,
for 𝑔 tour more optimal solution should be
assigned.

• tabu-search heuristic. It this method the
neighborhood solution is used and check for
optimality (if length is lower).

• Lin-Kernighan heuristic. It is a complex
heuristic, which can be implemented by Keld
Helsgaun [4].

• In future another local search improvement
heuristics can be added.

IV. PLANS FOR EXPERIMENTS
 Experiments consists of two steps:

• Testing ACO algorithms with different parameters
𝑏, 𝑝, 𝑞W, 𝑘.

• Testing ACO with local search improvement
heuristics.

 The 𝑏, 𝑝, 𝑞W, 𝑘 firstly will be chosen in empirical way,
after testing the results we be analyzed and method for
improving and fine tune parameters will be chosen.

 For testing ACO with local search improvement
algorithms for each test the ACO will be applied and after
that each local search algorithm will be done.
 Each test should be done 10 times and we write the
resulting solution and its length, considering the deviation
from the optimal result:

𝑒(𝐿) =
𝐿 − 𝐿W
𝐿W

where 𝐿 is current obtained length and 𝐿W is know best
solution.
 For testing the GTSPLib by D. Karapetyan [16] will be
used.
 The code of algorithms is written on C#.

V. CURRENT RESULTS
In Table I the results of ACO algorithm are presented. For

testing the parameters 𝑏 = 1, 𝑝 = 1, 𝑞` = 1 were used. It can
be seen that the average.

The next step find the dependence between parameters and
results and then find the best parameters.

VI. CONCLUSION
 In research in progress the methods and plans for future
research are presented. The methods are described, and the
experiments are written.

In plan, find the optimal fine tuning of parameters for
ACO and using them for testing ACO with local search
heuristic.

REFERENCES

[1] C. M. Pintea, P. C. Pop и C. Chira, «The generalized traveling
salesman problem solved with ant algorithms» Journal of Universal

Computer Science, #13, № 7, pp. 1065-1075, 2007.
[2] Y. N. Lien, E. Ma и B. W. S. Wah, «Transformation of the

Generalized Traveling-Salesman Problem into the Standard
Traveling-Salesman Problem» Information Sciences, Т. 1/274 (1-2),

pp. 177-189, 1993.
[3] J. I. Brezina и Z. Čičková, «Solving the travelling salesman problem

using the ant colony optimization» Management Information Systems,
т. 6, № 4, pp. 10-14, 2011.

[4] K. Helsgaun, «An extension of the Lin-Kernighan-Helsgaun TSP
solver for constrained traveling salesman and vehicle routing

problems» Technical Report, Roskilde University, 2017.
[5] D. Karapetyan, «GTSP Instances Library». Available:

http://www.cs.nott.ac.uk/~pszdk/gtsp.html.

133

V. M. Solovyev, A. S. Belousov. Administration of Virtual Data Processing Center over
OpenFlow

УДК 004.75

ADMINISTRATION OF VIRTUAL DATA PROCESSING CENTER
OVER OPENFLOW

V. M. Solovyev1, A. S. Belousov2

1Soloviev Vladimir Mikhailovich, Ph.D. in Technical Sciences, assistant professor of the
department of mathematical cybernetics and computer science, head of Centre of New
Information Technologies in Volga Region, Saratov State University, svm@sgu.ru.
2Belousov Aleksandr Aleksandrovich, Bachelor in Informatics and Computer Engineering,
student of the Master’s Degree in Applied Mathematics and Computer Science at the
Saratov State University for the faculty of Computer Science and Information Technologi,
tortyt1@gmail.com.

Abstract: This paper researches the building principles and administration of virtual data
processing centers based on hyper-converged systems over OpenFlow. We provide the
implementation features of these virtual centers on the basis of software-defined networking
that is managed by a dedicated controller (server). We suggest the graph administration model
of hyper-converged system resources compliant with required performance on one level and
economic requirements on another level. Based on the proposed model, the implementation
variation of greedy control algorithm of virtual data processing center over OpenFlow was
examined. This algorithm assigns the requests to physical resources by using of dedicated server
software. The advantages of such hyper-converged system model on performance issues were
outlined, e.g., multi-threaded routing and security, elimination of the most current threats. We
summarize the possibilities of transition to network infrastructure in these virtual data processing
centers. Such infrastructure is focused on data and using of blockchain technology providing
high reliability and content protection.

Key words: Converged Infrastructure (CI), Hyper-converged Infrastructure (HCI), Software
Defined Networks (SDN), OpenFlow, Virtual Data Center (VDC), Service Level Agreement
(SLA), Multi-Threaded Routing (MRT), Quality of Service (QoS), Data Oriented Network
Architecture (DONA), Blockchain.

Virtual data processing center (VDPC) refers to hyper-converged infrastructure (HCI)
that allows us to create virtual machines, data warehouses, switchers and routers, and
communication channels. The main task of VDPC is to accept a client connection (tenant1)
and update it with the help of virtualization technology in network topology. The basis of
the mechanism of VDPC resources administration refers to a model extended for HCI tasks
[1]. The network topology in this model is represented by graph T = (C ∪ M ∪ K ∪ L),
C is a plurality of computing nodes, M is a plurality of data warehouses, K is a plurality
of switching elements, L is a plurality of communication channels. Each of plurality has its
own vectors of scalar argument defined. This argument sets up the parameters: of computing

1A tenant represents the requests for virtual machines, data warehouses, switchers, routers, communication
channels, and all virtual communication channels.

1134

ИНФОРМАТИКА

nodes - c ∈ C, of data (memory) warehouses - m ∈ M, of crosspoints - k ∈ K and of
communication channels respectively - l ∈ L.

fct(c) = (ct1(c), ct2(c), . . . , ctn(c)),

fmt(m) = (mt1(m),mt2(m), ...,mtn(m)),

fkt(k) = (kt1(k), kt2(k), ..., fkn(k)),

f lt(l) = (lt1(l), lt2(l), ..., ltn(l)).

(1)

In this model VDPC resources are specified by graph R = (V ∪ S ∪D),V is a plurality
of applications deployed in virtual machines, S is a plurality of virtual data warehouses, D
is a plurality of communication channels between virtual machines and data warehouses.
Each of plurality has its own vectors of scalar argument defined. This argument sets up the
parameters: of virtual machines - v ∈ V, virtual data warehouses - s ∈ S, communication
channels including switching elements that provide required service level agreement (SLA2)
- d ∈ D respectively:

fvr(v) = (vr1(v), vr2(v), ..., vrn(v)),

fsr(s) = (sr1(s), sr2(s), ..., srn(s)),

fdr(d) = (dr1(d), dr2(d), ..., drn(d)).

(2)

The parameters (2) providing SLA coincide with corresponding parameters (1) and are
represented by mapping of resource requests to HCI topology:

O : R→ T ∪ {�} = {V → C ∪ {�}, S →M ∪ {�}, D → K ∪ {�}, L{�}}. (3)

Resource requests from the expression (3) determine three relationship types between
request parameters ri and physical resources ti, based on HCI topology:

- the requested resources correspond to resources identified by topology ri = ti,
- overload of physical resources ri > ti that violates SLA,
- underload of physical resources ri < ti that requires a topology reconfiguration for

economic reasons.
In the last case available resources can be represented by residual graph

Tres = (С ∪M ∪K ∪ L) that redefines the parameters as follows:

fctres(c) = fct(c)−
∑
v∈V

fvr(v), fmtres(m) = fmt(m)−
∑
s∈S

fsr(s),

fktres(k) = fkt(k)−
∑
d∈D

fdr(d), f ltres(l) = flt(l)−
∑
l∈L

fdr(d).
(4)

Automatic migration of HCI structures managed by controllers over OpenFlow enables
us to meet both SLA and economic requirements. Migration is carried out even if it is not
possible to assign the warehouse on demand, and data is added to multiple warehouses. In
that case, one part of the applications can work with data warehouse, meanwhile the other
part can work with data located in another physical storage. In accordance with migration
plan, virtual structure relocation should comply with the following requirements:

2SLA (Service Level Agreement) represents a commitment about level of provided network services. This
formal contract between a service provider and a client sets out agreed service quality, service description and
rights of the parties. Such agreement serves as an assessment tool for quality of provided network services.

2
135

V. M. Solovyev, A. S. Belousov. Administration of Virtual Data Processing Center over
OpenFlow

- there is no SLA violation during relocation;
- relocation is implemented at given time constraints. Automatic operation of controllers

enables us to achieve it.
Input to migration is a plurality of incoming requests Z = {Ri}, a plurality of queried

requests W = {Ri}, a graph of remaining resources Tres, and time constraint on migration τ .
During migration, a new node s′ and a virtual communication channel between nodes s and
s′ are added to graph of re quested resources R.

The administration of VDPC over OpenFlow is based on a greedy algorithm3 of request
assignment to physical resources, with the use of controller (server) software. Expression (4)
describes such a greedy algorithm. As an optimization criterion, the most compact allocation
of request elements (2) is applied. A similar approach is widely used in data processing centers
and by cloud providers [2, 3]. The quality of VDPC administration depends on selected greedy
criteria: next request - KR, virtual node - KV , physical node - KC . Criteria KV and KC rely
on cost function defined as a weighted sum of required parameters considering the resource
deficit. This function represents as follows: d(i) = (

∑
R

∑
e∈R rr,i−

∑
c∈C rc,i)/

∑
R

∑
e∈R re,i.

Then the cost function of an assignment of element e will appear as r(e) =
∑n

i=l d(i)re,i. In
this equation the selected element HCI is characterized by a vector of values of required
resource parameters (re,1, re,2, . . . , re,n). To calculate the measure of the resource deficit,
firstly, it is necessary to subtract the values of available physical resources for the required
resource parameter from the common value of this resource parameter in all requests. Then
the measure is calculated as a quotient of this difference by total sum of required resources.
We can define the cost function as weighted sum of required resource parameters considering
the resource deficit. According to criterion KV , the HCI virtual element with maximum cost
function is chosen. This allows us to assign primarily the most resource-deficient elements
and then assign all the other virtual elements. According to criterion KС, the HCI physical
element with minimum cost function is chosen. By this, we can ensure maximal utilization
(loading) of computing resources. According to criterion KС, the query with the maximum
weighted sum of requested resources is chosen.

The general framework of administration algorithm will be as follows.

1. Scheduler4 analyses incoming requests of resources Z = {Ri}.

2. If plurality {Ri} /∈ � is not empty, the program selects another request Ri according
to greedy criterion KR. Otherwise, algorithm terminates its functioning.

3. Using the elements of request Ri, the program forms a plurality of virtual nodes
U = {V ∪ S}. Where it is not possible to form a plurality of virtual nodes U , it
proceeds to step 14.

4. Scheduler selects another element N from formed plurality of virtual nodes U on the
basis of greedy criterion KV . Then this element is placed in queue Q which contains
the elements awaiting an assignment.

3The greedy algorithm means optimization algorithm based on locally optimal decision that are made at
each stage. Whereby, we assume that the final decision will also prove optimal.

4Scheduler is a program (service) driven by controller software. The principal scheduler function is to start
other programs.

3
136

ИНФОРМАТИКА

5. Using the elements Ci, scheduler forms a plurality of physical nodes {Ci} /∈ �. It
is possible to assign the element N to these nodes based on correct accomplishment
of mapping (3). Otherwise, if {Ci} ∈ �, program calls the procedure of limited
enumeration.

6. The program selects a physical resource from the formed plurality of physical nodes on
the basis of greedy criterion KC . It redefines the values of physical resources parameters
according to functions (4).

7. Scheduler selects all virtual channels Di that link element N to elements of request Ri

to be assigned.

8. Scheduler sorts a plurality of channels {Di} /∈ � by value of the capacity in ascending
order.

9. The program selects a virtual channel Li from a plurality of channels {Di}. It should
ensure the shortest route that links element N to elements of request Ri. Where it is
not possible to plot the route, it calls the procedure of virtual channel assignment on
a physical resource. It redefines the values of physical resources according to functions
(4).

10. Scheduler adds to queue Q the virtual nodes linked with N . By this, it follows the order
of virtual channels from sorted plurality {Di}. These channels connect the nodes.

11. Scheduler deletes N from U and Q.

12. If Q is not empty, program proceeds to step 4.

13. If U is not empty, program proceeds to step 3. Otherwise, if U is empty, program
proceeds to step 1.

14. The program cancels all assignments of the elements of request Ri and removes the
request from a plurality Z = {Ri}. Then it proceeds to step 2.

This algorithm contains two procedures described in [2]. The first one is a procedure of
limited enumeration; the second one refers to a procedure of virtual channel assignment on a
physical resource. A scheduler calls the procedure of limited enumeration if it is not possible
to assign the next virtual node N from a plurality of requests to any physical resource. This
procedure analyses a subset of a plurality of physical nodes {Ci} from a graph of physical
resources. Specified enumeration depth determines the subset capacity; the quantity of viewed
subsets is limited. The program views only subsets whose total quantity of nodes’ remaining
resources allows us to assign the current element N . The procedure ensures the execution of
step 5 if the program changes (selects) the enumeration depth and quantity of viewed subsets.
Scheduler calls the procedure of virtual channel assignment on a physical resource when it is
not possible to plot the route that links elementN to element of requestRi via virtual channel.
The route searching mechanism is based on modified Dijkstra’s algorithm [4]. However, it
can include only switching elements and communication channels of physical network to
which ratios of mapping accuracy are applied (3). If it is not possible to assign a virtual

4
137

V. M. Solovyev, A. S. Belousov. Administration of Virtual Data Processing Center over
OpenFlow

channel that connects the storage element, the storage search is accomplished. This storage
should have the resources to create storage element replication. The replication requires the
quantity of resources equivalent to quantity of storage element resources. All storages selected
for replication creation are considered in increasing order of total route length. Furthermore,
the possibility of creation of communication channel l for replication is considered. This
channel provides capacity and required data-flow intensity. If the communication channel l
can not provide the required parameters, program considers another variation of replication
mapping. The result is the route that provides coherence between element N and replication.
The parameter variations of route and communication channel provide favorable result. The
same approach to virtual machines has been widely recognized and studied [5].

Analyzed HCI control algorithm over OpenFlow enables us to plan the computing
resources, resources of data storage and network resources of self-organizing cloud platform
(VDPC), by using of SDN technological solutions. This algorithm mechanism also complies
with SLA. The algorithm allows us to use physical resources rationally by eliminating
their segmentation, with the help of virtual resources migration. The algorithm enables us
to administrate the hyper-converged system by specifying the data flows routing policies.
Whereby, it uses the virtual network control functions of virtual and physical devices from
different manufacturers. We refer to devices that support OpenFlow protocol. The proposed
solution allows us to integrate different networks administrated over OpenFlow and transfer
data flows between them effectively, by means of multi-threaded routing (MRT).

We can consider hyper-converged systems as applied to any computing platforms (e.g.,
hard, programming, cloud, neuromorphic, quantum) which provide user access to various
services. These systems should be user-friendly and support multiple infrastructure layers,
surely including layers of safety, reliability, communication services providing QoS for various
data. Furthermore, the network behind HCI should have the opportunities to work with
different types of terminals (mobile, desktop, active network, advanced UX/UI5 etc.). This
network also should have single management platform (controller, server) for the full package
of services, applications, hardware, and data transfer channels. Whereby, it should select data
transfer channel in real time based on QoS and applications needs for capacity and nature
of traffic. Convergent technologies are not the endpoint in evolution of the next-generation
computing systems. These technologies already allow us to take a content-centric approach
onto prevalidated HCI infrastructure. They enable us to create computing systems that
leapfrog over end-to-end paradigm toward content or data addressing paradigm (Information
Centric Networking, or ICN). This paradigm implies data organization, regardless of
location (server, host), through distributed network caching. Expected benefits of this
approach include more efficient use of expensive network resources, scalability of computing
systems and their adaptability to volatile QoS. The paradigm is based on the primitives
publish/subscribe, that is to publish the content (make it available) and declare about it.
These primitives are realized in Data Oriented Network Architecture (DONA). It works
as follows: the element of such system receives a request from a similar element or host.
Whereby, two scenarios are possible. If the element contains required data in cash, it will
implement the request. If the DONA element does not contain the content, it will request
similar elements which have data. When it gets a response, it caches the content and

5UX/UI (User Experience/User Interface) refers to interface design that meets current requirements

5
138

ИНФОРМАТИКА

implements the request. This universal mechanism is applicable to any protocol, forming
a global single mechanism of caching and content delivery. In addition, this mechanism is
supported by all network nodes and aimed at all users, not just ICN users. Such a network
ensures content security, not security of its delivery. It relies on a content-based model and
draws on the concept of reputation, because the provider must sign the content, so users
can always define it. Data Oriented Network Architecture interacts well with blockchain6

technology that provides the high reliability of content storage and protection. Network entry
is protected cryptographically. Unauthorized entry requires enormous computing resources
proportional to the network size. It allows us to exclude human or machine error, missed
operations, unauthorized entry etc. In future, over the course of evolution, HCI will employ
other network technologies.
References

1. By Charles Clos. A Study of Non-Blocking Switching Networks (Manuscript
received October 30, 1952). Accessed July 4, 2017, available at
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6770468.

2. Zotov I. A., Kostenko V. A. Resource Allocation Algorithm in Data Centers with a Unified
Scheduler for Different Types of Resources, // Izvestiya Akademii Nauk. Teoriya i Sistemi
Upravleniya, 2015, № 1, pp. 61-71.

3. Meng Xiaoqiao, Pappas Vasileios, Zhang Li. Improving the Scalability of Data Center
Networks with Traffic-aware Virtual Machine Placement // IBM T.J. Watson Research
Center 19 Skyline Drive, Hawthorne, NY 10532. Accessed July 4, 2017, available at
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5461930.

4. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. Introduction to Algorithms. Cambridge
MA: MIT Press and McGrawHill, 2001. pp. 595–601.

5. Zhao Ming, Figueiredo Renato J. Experimental Study of Virtual Machine Migration in
Support of Reservation of Cluster Resources // Advanced Computing and Information Systems
Laboratory (ACIS) Electrical and Computer Engineering, University of Florida. Accessed July
4, 2017, available at http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5483380.

6The revolutionary technology of blockchain was created by Satoshi Nakamoto. This technology helps
to allocate the digital content without its copying. Pertinently, it resembles a digital book whose data and
their modifications are duplicated in network for several thousands of times and are regularly updated. This
distributed database without central storage node is stored in network. It provides its users the hosting,
such as Google Docs during collective work. Each group of blockchain transactions is a block, and miners
conduct the audit of them (digital content). Therefore, this technology operates with chain of blocks created
by complex cryptographic algorithms.

6
139

A Survey of Smart Contract Safety and
Programming Languages

Alexey Tyurin∗, Ivan Tyulyandin†, Vladimir Maltsev‡, Iakov Kirilenko¶ and Daniil Berezun∥

Mathematics and Mechanics Faculty
Saint Petersburg State University

University Embankment, 7, 199034
Saint Petersburg, Russia

∗a.tyurin@2016.spbu.ru, †i.tyulyandin@2015.spbu.ru, ‡v.maltsev@2016.spbu.ru,
¶y.kirilenko@spbu.ru, ∥danya.berezun@gmail.com

Abstract—Blockchain technologies are gradually being found
an application in many areas, especially in FinTech. As a result,
a lot of blockchain platforms have emerged with the support of
smart contracts that are intended to automate party interactions.
However, it has been shown that they are prone to attacks and
errors which lead to money loss. To date, there has been a
wide range of approaches for making smart contracts safer that
included analysis tools, reasoning models, and safer and more
rigorous programming languages.

In this paper, we provide an overview of smart contract
programming languages design principles, related vulnerabilities,
and future research areas. The provided overview is meant to
outline the to date state of languages and to become a possible
basis for future proceedings.

I. INTRODUCTION

Initially, blockchains were designed for cryptocurrency
management based on transactions. Further such systems in-
volved smart contracts usage to enhance transactions, making
them more sophisticated. This enabled to move part of an
application logic into the blockchain, thus allowing to provide
customizable redeeming conditions [1], develop crowdfunding
systems [2], and other applications based on blockchain tech-
nology [3]. Fundamentally smart contracts are programmable
objects beyond blockchain, intended to represent automatable1

and enforceable2 agreements [4].
Since smart contracts are essentially programs that are

executed within blockchain and written in some programming
language, bugs and errors are possible. Erroneous transaction
behavior can lead to a financial damage. For example, a not-
reentrancy of a function has caused $40 million loss [5].
Moreover, due to the immutable nature of the blockchain, it is
often impossible to fix a contract with a bad3 behavior that is
already on the chain, i.e. contracts are irrevocably committed.
One possible approach to detect such unwanted behaviors and
minimize the number of vulnerabilities is to provide a way to
formalize smart contracts properties and vulnerabilities. It will

1 “Automatable” rather than “automated” since parts of an agreement may
require some human input.

2 Enforceable either by law or by tamper-proof computer code.
3 Here, by a “bad” contract behavior, we mean any behavior that is

unexpected or undesirable by the contract owner, caused by any reason.

help to specify vulnerabilities sources and facilitate reasoning
about smart contracts.

In [6] provided by IOHK research4, an ontology that
provides a set of basic conceptual primitives is specified. It
can be used to construct desired propositions about smart
contracts. It is not intended to be the only true ontology,
rather the useful one. According to the ontology, blockchain
based smart contracts can be considered as computations over
blockchain state, that include the changing over time state
itself as well as a transition function. And we will further
refer to modality properties as to relationships between states,
possibility or necessity properties that should be maintained
throughout transitions.

These concepts allow thinking about smart contract behavior
abstractedly over details. For example, consider a Deadline-
dependent Transfer, a smart contract controlling property
transfer between recipients5. Only Recipient 1 may transfer
the Item during some time interval prior to the deadline, while
only Recipient 2 may transfer the Item once deadline has
been passed. A modality property can be formulated in the
following way. There always should be a blockchain state
where at least one system participant who controls the Item,
being transferred, exists, i.e. the absence of dead states in the
blockchain.

Unfulfillment of those properties in blockchain based smart
contracts may lead to money loss and malicious attacks. For
example, a vulnerable sequence of smart contract library calls
in PARITY wallet led to $150 million freezes on wallets [7].

State inconsistency and weaknesses may be caused by
a number of different reasons such as blockchain-specific
behavior, execution environment bugs, a model of underlying
programming language that is not amenable to proof con-
structions, non-intuitive representation of programs in lan-
guages with good models, unintuitive semantics of underlying
programming language for people who lack programming
experience etc [8]. Also, some modality properties may never
be proved because of possible non-termination of a program,
which basically depends on a certain programming language.

4 IOHK company is one of the main customers of research in peer-to-peer
networks. See https://iohk.io/about/ for details.

5Between users or other smart contracts

140

https://iohk.io/about/

Thereby, to make smart contracts secure it is desirable
to be able to specify the intended behavior and properties
that they should fulfill. These properties fulfillment can be
provided with machine-checkable proofs and facilitated with
more intuitive programming languages accompanied by tools
for static analysis and formal verification to reduce the number
of errors.

To date, various approaches, languages, and tools have been
proposed: extensive type systems and various programming
paradigms [9], programming languages that have easily
checked termination conditions [10, 11], high-level languages
that encourages safer programming via abstractions [12, 13],
and intermediate and low-level languages that ease formal
verification and compilers development [14–16].

Smart contract programming languages design is influenced
by domain ontology, encountered vulnerabilities and ease of
reasoning about modality properties. So, in this paper, we
concentrate on the incorporation of known approaches used
in design and development of smart contracts programming
languages, proceed through vulnerabilities and domain specific
concepts that have been considered during design process,
provide a classification of current efforts, and emphasize topics
for future research.

The paper is organized as follows. Section II provides a
short evaluation of similar works. Section III gives a brief
summary of blockchain architecture principles relevant to lan-
guages and tools design. Section IV describes known vulnera-
bilities of smart contracts, classifying them for future analysis.
Section V provides a survey of smart contract programming
languages and their design ideas and principles, according to
known vulnerabilities and blockchain architectures. In sec-
tion VI we discuss possible research gaps and future work.
Section VII concludes the paper.

II. RELATED WORK

Surely this paper is not the only one surveying smart
contract programming languages, and we are aware of a couple
of similar works.

So, [17] provides an overview of smart contracts program-
ming languages, security properties, and verification methods
along with some classification of them. However, despite a
good coverage, the proposed survey is rather superficial in
a sense that it describes languages through specification of
their features, not going deep into design foundations that have
provided the features.

Another work [18] gives an overview of some distributed
ledger systems, smart contracts languages, and technologies
that might facilitate safety and performance, or make new
applications possible. The paper is not aimed entirely at
languages, hence it leaves the description without design foun-
dations and any classification according to whether desirable
properties or design principles.

[15] also contains some overview of existing languages and
their features, but the survey is performed from the perspective
of comparison between them and the language proposed in the
paper.

In contrast, this work is intended to enhance language
coverage, provide foundations and intuition for reasoning,
classification of languages, properties, and design fundamen-
tals along with vulnerabilities that have influenced them.

III. BACKGROUND

Since smart contracts are computations on a blockchain,
underlying blockchain protocol basically sets the path for
language and tools design. In this section, we review a
few protocol details that influence further development of
languages. Substantially there are two widespread blockchain
architectures on top of which smart contracts are built to
date — UTxO-based and account-based blockchains, that
allow stateless and stateful smart contracts respectively.

A. UTxO

Unspent transaction output, UTxO, model was introduced
with the emergence of BITCOIN blockchain. A typical BIT-
COIN transaction contains a list of inputs that specifies the
funds that the transaction issuer can transfer and a list of
outputs, that represent the way these funds are intended to be
transferred. Each output can be used as an input for another
transaction. For example, an issuer can set the amount of
currency for each output or specify conditions, under which
a possible receiver of funds can spend them, also they can
specify themselves as the receivers to get so-called change. A
set of UTxO consists of all transactions outputs that have not
been yet used as inputs.

Redeeming conditions for transaction outputs in BITCOIN
are defined with programs written in BITCOIN SCRIPT [10].
These programs describe properties that must be satisfied for
the redeemer to be able to use these transaction outputs as
their transaction inputs in order to spend the credits. The
spender should provide input values to each locking script of
referenced outputs of previous transaction such that all scripts
evaluate to t r u e , e.g. they may provide their wallet address
and transaction signature to verify authority.

Such scripts are stored within transactions and are being
maintained only during a transaction, thus they have no state.
Further scripts have limited access to blockchain data and
essentially they are pure stateless functions of transaction
data, i.e. of input parameters. Despite limitations, scripts
along with transaction signatures can express complex re-
deeming conditions such as multi-signature payments, deposit
providing, escrow, and dispute mediation, access to external
data using oracles, time-locks, payment channels, cross-chain
atomic trades etc [19]. Throughout the paper, we regard these
scripts as stateless smart contracts.

B. Account-based blockchains

Account-based blockchains maintain an explicit state
throughout transactions. A state is a mapping between account
addresses and balances. Within these blockchain systems, each
transaction is a mapping between the states. Basically, these
systems are transaction-based state machines.

141

ETHEREUM is an example of such a system [20]. In
ETHEREUM smart contracts are similar to users’ accounts in
a sense that they have their own address and a balance. Smart
contracts are stored inside the blockchain and essentially these
contracts are lists of functions that can be invoked through
users’ transactions or other contracts messaging. These func-
tions are defined with bytecode of the corresponding execution
environment called Ethereum Virtual Machine, EVM. Since
any smart contract has a balance, it is a stateful function of a
data transaction (or a message) and blockchain state, in which
the transaction takes place, so they can write to blockchain
state or read from it. Contracts state typically involves a stored
amount of currency. However, in general, it can have arbitrary
persistent storage that is maintained throughout the transitions
of the blockchain.

C. Preventing the Denial-of-service attacks (DOS)

Despite the underlying blockchain model, smart contracts
are computations that are replicated over blockchain via
consensus protocol. To prevent DOS-attacks the number of
computations for every program representing a smart contract
should be restricted beforehand. Restriction mechanism de-
pends on the underlying programming languages properties.
One of the main properties in the context of smart contracts
is halting, i.e. whether every program that has been written
in it terminates or not. BITCOIN SCRIPT program always
terminates since language is not Turing-complete and it does
not have loops, or recursion, or any other mechanism that
provides infinite computations. However, the size of a program
also affects the performance of the system behind it. Thus
BITCOIN SCRIPT programs are limited by the stack size and
number of computationally heavy instructions, i.e. transactions
that contain a script that does not satisfy restrictions are
rejected.

For programs written in languages that do not guarantee
program termination, e.g. EVM bytecode, program execution
is limited via a gas system. Gas is basically an amount of
cryptocurrency specified for contract execution. Fixed units
of gas are charged to a miner for every instruction being
executed. If the specified amount of gas is expired, execution
of the contract stops. Furthermore, EVM contracts also have
a limited stack size.

IV. SMART CONTRACT WEAKNESS

In this section, programming language-level vulnerabilities
that may cause unfulfillment of modality properties and possi-
ble mistakes are classified. It is worth to notice, that the most
common property arising in distributed systems is that results
of computations should be deterministic. While many smart
contract programming languages have been designed with de-
terminism in mind, sometimes general purpose programming
languages are used for development [21]. A detailed overview
of potential risks of non-determinism and causes can be found
in [22].

We consider SOLIDITY language for stateful contracts, since
it is the most popular smart contract programming languages

and generally it was one of the first languages that revealed
such weaknesses, unfortunately on its own instance. Despite
originally being known as unsafe, the language is evolving
and to date its compiler is able to warn about code that might
misbehave. However, Solidity has provided the foundation for
the design of other languages. The most famous errors that
have caused contracts failure are DAO [5] and PARITY [23].

SOLIDITY vulnerabilities are classified in the following
subsections based on what level they occur on and the reasons
that cause them. Code examples of the weaknesses could be
found in [20, 24–28]. Possible attacks are discussed in [29].
Also, it is worth to mention, that SOLIDITY is a Turing-
complete language, meaning that in general fulfillment of
particular modality properties can not be proved, even despite
guaranteed termination due to gas limit.

A. Block content manipulation

Block of transactions in blockchains is formed by one of the
participants who have the ability to influence block content.
Thus, careless blocks handling may cause a number of errors.

Front-Running (Transaction-ordering dependence): It is im-
portant to be careful of transactions order. For example, Alice
has deployed contract with possibility to sell a product and set
a price for it. Bob wants to buy the product, and Alice wants
to set a higher price. Let’s assume, they want to do it at the
same time. If Bob’s request is the first, Alice loses money. In
another case, Bob’s transaction can be rejected, or Bob will
spend more money than he expected.

Weak sources of randomness: Random values should be
deterministic for all nodes in the network due to consensus
considerations. One way to get randomness is to use pseudo-
random values. Variables of contract, even the private ones,
meta-variables of a block, or a hash of a previous and
next block cannot be used as a source of entropy. In some
blockchains (including ETHEREUM) it is possible to have
influence over these variables during the validation process. A
pseudo-random value in smart contract code can be predicted
by a malefactor. Precalculation can be done via code analysis.

B. Contract interaction

A smart contract should be able to interact with other
contracts. The following vulnerabilities appear due to the fact
that smart contracts cannot rely on of each other’s behavior.

Unchecked return values for low-level calls: There are
three functions to send ether [30] from account to account in
ETHEREUM: send () and c a l l () that return f a l s e if an error
occurs but the transaction execution continues, and t r a n s f e r
() that rolls back the transaction in case of error. Low-
level functions c a l l c o d e () and d e l e g a t e c a l l () behave in
the same way as functions send () and c a l l () . Thus handling
of f a l s e value of corresponding functions is needed to avoid
undesirable behavior of contract. According to Luu et al. [31],
27.9% of smart contracts in ETHEREUM blockchain do not
check returned values.

142

Reentrancy: An external contract can call back functions of
a caller contract before the first invocation has finished. It can
lead to undesirable recursive function interactions and allow
the callee contract to take over the control flow. The example
of this vulnerability is a famous DAO smart contract [5].

Callstack bound: A failure may occur when an external call
is made, but the program stack has reached its limit. Stack
overflow is possible in smart contract languages. In EVM call
stack is limited to 1024 stack frames. If the exception is not
properly handled by a contract, the malefactor can use it to
attack.

C. Resource limits

If the smart contract language is Turing-complete, there is
a need in metering6 mechanism to prevent infinite execution.
ETHEREUM charges a fee, named gas. Amount of gas is
proportional to the number of executed commands by EVM.
Every transaction in bounded with maximum amount of gas
as well as blocks.

Infinite loops: Mistakes and misprints in operators usage
may keep contracts syntactically correct but strongly affect
their logic. For example, writing =+ instead of += in a loop ter-
minating condition may lead to unexpected program behavior
and even to an infinite loop. Moreover, in this case, excessive
gas consumption may occur. It also includes situations when
the number of memory addresses being used are significantly
increase, e.g. when the number of elements in a map grows,
it becomes too expensive to iterate over it.

D. Arithmetics

In SOLIDITY arithmetics is available on unsigned integers
only and the language does not provide any arithmetic op-
erations check for correctness. This class of mistakes mostly
refers to common programmer errors. In the case of smart
contracts, they may lead to a huge loss of assets. Thus, it is
common to consider them as vulnerabilities in order to attract
programmers attention.

Overflow and underflow: These vulnerabilities arise be-
cause numbers can have a fixed size. In case of ETHEREUM,
maximum value for u i n t (u i n t 2 5 6) is 2256 − 1 and mini-
mum — 0. A programmer has to manually checks overflow
and underflow.

Floating points and precision: SOLIDITY does not have
fixed and floating point types. Instead, a programmer has to
emulate them via integers. All integer divisions are rounded
down. Careless handling of such operations may cause unex-
pected program behavior.

E. Storage access

The following vulnerabilities are caused by negligent mem-
ory usage and access.

Uninitialized storage pointer: Local structures, arrays, and
maps link to storage zero address by default. Using of these
object without initialization will lead to overwriting whatever
is in zero address.

6Metering is a way to limit and charge the execution of a smart contract.

Write to an arbitrary storage location: A smart contract can
store some data and wrong variable assignment can break it.
SOLIDITY has reference types. Mistake with references can
lead to internal state corruption. If an array index is out of
range, the exception will be thrown, and the smart contract
will be reverted.

F. Internal control flow

This class of vulnerabilities is caused by a complex control
flow graph structure and an ability to manipulate it.

Using of inherited functions and variables: It is possible to
use inheritance in smart-contracts languages with the object-
oriented paradigm. SOLIDITY allows multiple inheritance. If
several super-classes have a method or variable with the same
name, their behavior in sub-class depends on the inheritance
order. It could shadow previously defined values or functions
and lead to undesirable results.

Using of built-in functions: Programmers should be aware
of using built-in functions and their behavior. E.g., someone
would like to use assertions to check program invariant.
SOLIDITY a s s e r t () function is intended for this purpose. In
case of failure, this method throws an exception and does
not return the remaining gas. Thus, to check for changing
values, such as input data, it is recommended to use r e q u i r e
() statement which in the same case does transaction rollback
and returns remaining gas.

Using of deprecated functions: It is not clear what new
compiler versions do with deprecated functions. Therefore, it
is not recommended to use these objects.

Locked assets: Contracts should provide a way to manage
assets. Suppose in the example the contract has a method to
take assets but does not have code to give them back. Due
to smart contract code immutability in blockchain history, it
is impossible to upgrade or fix this contract. It will cause
property loss.

G. Authorization

Authorization is a major part of a person identification
mechanism, designed to verify the permission for actions.
Incorrect or insufficient authorization can lead to the following
vulnerabilities.

Incorrect initialization: When smart contract was deployed
to a blockchain, it should be initialized. Often initialization
contains sensitive operations such as a setting contract’s owner.
An error in this action may violate the logic of the smart
contract. In SOLIDITY, the constructor is a special function,
which is called once to set contract’s state. In new SOLIDITY
versions, constructors are denoted by a special keyword that
made the definitions more obvious. But in earlier versions (less
than 0.4.22) constructor is just a function with the same name
as the class has. Thus, a typo in constructors’ name makes it a
usual function, which can be called by anybody since default
modifier for function is public.

143

Function default visibility: Incorrect access modifiers usage
or a lack of them can lead to undesirable behavior. For
example, calling the function that changes the contract owner
with public access modifier allows everyone to become its
owner. Default modifier for SOLIDITY is p u b l i c . Thus, it is
strongly recommended to explicitly define visibility for all
functions and variables.

V. SMART CONTRACT LANGUAGES

In this section, smart contract languages are considered
with respect to their main features, paradigms, and common
properties such as Turing-completeness, metering mechanism,
reasoning, type system, code analyzers, etc. To reduce the
number of subsections we have classified languages with
respect to their level of usage.

Low-level languages: These languages are designed for
direct execution by the underlying execution environment.
Most concepts and principles of formal semantics, computa-
tional model, metering, logic for reasoning about programs,
and typing are often introduced on that level. Furthermore,
to date, smart contracts are mostly stored on the blockchain
in low-level bytecode, which imposes suitability considera-
tions. Examples of such languages are BITCOIN-SCRIPT [10],
EVM [32], MICHELSON [33].

High-level: Languages with the idea of making the writ-
ing of contracts easier for developers via readability and safer
high-level syntactic constructs enhanced by a type system that
provides machine services abstractions. Safety aspect appears
here and refers to the languages ability to guarantee the
integrity of these abstractions and abstractions introduced by
the programmer using definitional facilities of the language. In
a safe language, such abstractions can be used abstractly while
in an unsafe language they cannot: in order to completely
understand how a program may (mis-) behave, it is necessary
to keep in mind all sorts of low-level details such as the layout
of data structures in memory and the order in which they will
be allocated by the compiler. [34]. The semantics of both levels
should be considered here7 Examples of such languages are
SOLIDITY [35], FLINT [12], and LIQUIDITY [36].

Intermediate-level: Languages that present a compromise
between a high-level source and low-level target languages. As
a general rule, they are designed in order to simplify program
verification or static analysis, relying on the computation
model, type system, reasoning, semantics, etc. Furthermore,
they allow unification of compilation, i.e. providing a language
that can be compiled for different platforms. SCILLA [15] is
an example of such a language.

It is also useful to emphasize some desirable language prop-
erties that affect language design.

• Reasoning — language behavior model should allow to
specify modality properties and facilitate proving of their
(un-) fulfillment. Underlying calculus model and type
system are aimed at this.

7 Fundamentally safeness spreads to other levels since low-level language
is an abstraction of its implementation, e.g. a virtual machine.

• Safety — language abstractions should hold integrity
property. Rigorous semantics promotes this.

• Expressivity — basically language should be expressive
to fit possible various range of use cases.

• Readability — language representation of a contract be-
havior should be intuitive, i.e. be easy to inspect and write
with.

Every smart contract language has domain specific instruc-
tions or/and types, e.g. cryptographic primitives, assets types,
messaging instructions. So we will not emphasize this aspect
much. Notable features and models of several languages with
respect to desirable properties are discussed below while a
summary of a more expanded set of languages is presented in
the table on the Fig. 1.

A. Low-level languages

1) BITCOIN SCRIPT: is an untyped8 stack-based low-level
language for stateless smart contracts development in BITCOIN
and handles transaction verification process. It is intentionally
non-Turing-complete with the restricted instruction set where
some opcodes are removed e.g. multiplication, division, strings
operations, bitwise logic, due to possible overflow vulnerabil-
ities and implementation bugs. Everything is allocated on the
stack of limited size words while a program has access to
some transaction fields e.g. a hash of transaction data, time
field. Thus every program is a pure function of transaction
data, i.e. transactions are self-contained.

To our knowledge, BITCOIN SCRIPT has no formal seman-
tics, which makes metering ad-hoc and does not enforce formal
verification. Furthermore, its stack-based nature and bytecode
make smart contracts less auditable since only bytecode is
stored inside transactions. Metering is performed via expensive
operators counting and script size evaluation. However script’s
input is arbitrary, hence BITCOIN SCRIPT allows specifica-
tion of redemption properties like signature checking, pay-to-
public-key-hash, pay-to-script-hash, multisignature checking,
and arbitrary data storage inside transactions [1, 10, 48].

2) SIMPLICITY: is designed for extending BITCOIN
SCRIPT capabilities. It is intended to enhance expressiveness,
while enabling static analysis that allows to efficiently bound
the number of computations, maintaining BITCOIN SCRIPT
design of self-contained transactions, and providing formal se-
mantic to facilitate reasoning about programs. It is anticipated
to be used as a compilation target for high-level languages
and deployed to sidechains [49]. SIMPLICITY is a typed non-
Turing-complete combinator-based language with terms based
on Gentzen’s sequent calculus. Every SIMPLICITY type is
finite: it contains finitely many values. Hence SIMPLICITY
does not support recursive types and can express only finitary
functions.

The core of SIMPLICITY consists of nine combinators
for term construction with a corresponding denotational se-
mantics. The language is formalized in COQ as well as a

8 More precisely stack operates with byte vectors, which can be interpreted
depending on opcode.

144

Language Level Current
state

Project Paradigm / in-
fluence

Analyzers Metering Turing-
completeness Main features

Bamboo high-level alpha
(experi-
mental)

Ethereum functional EVM bytecode
analyzers1

gas
system yes program behaves as a state

automata

Bitcoin
Script

low-level under de-
velopment

Bitcoin stack-based,
reverse-polish

no2 script size no Forth-like syntax, any pro-
gram always terminates

Chaincode high-level stable Hyperledger
Fabric

general
purpose
languages

no2 timeout yes GO, NODE.JS and JAVA
extensions for smart con-
tracts

EOSIO high-level stable EOS.IO object-
oriented,
statically
typed

no2 bound
system3

yes C++11 library

EVM
bytecode low-level stable Ethereum stack-based EVM bytecode

analyzers1

gas
system yes well researched

Flint high-level alpha Ethereum contract-
oriented, type
safe

EVM bytecode
analyzers1

gas
system yes Swift-like syntax, safety

IELE low-level prototype Ethereum register-based tools generated
by K [37]

gas
system yes generated from formal

specification, LLVM
IR-like syntax, safety

Ivy high-level prototype
(experi-
mental)

Bitcoin imperative no2 gas
system no can be compiled to Bit-

coin Script

Liquidity high-level under de-
velopment

Tezos fully-typed,
functional

under
development

gas
system yes OClaml-like syntax, com-

piled to Michelson ac-
cording to formal seman-
tics, safety

LLL intermediate-
level

under de-
velopment

Ethereum stack-based EVM bytecode
analyzers1

gas
system yes Lisp-like syntax, a wrap-

ping over EVM bytecode

Logikon high-level expe-
rimental Ethereum logical-

functional
EVM bytecode
analyzers1

gas
system yes translated to Yul

Michelson low-level under de-
velopment

Tezos stack-based,
strongly typed

Typecheck
system

gas
system yes programs can be verified

with Coq

Plutus
(PlutusCore) high-level

(low-level)
under de-
velop

Cardano functional no2 gas
system yes Haskell-like syntax, for-

mal specification

Rholang high-level under de-
velopment

RChain functional no2 rule reduc-
tion system4

yes concurrent, Scala-like
syntax, based on rho-
calculus

Scilla intermediate-
level

under de-
velopment

Zilliqa functional Scilla-checker gas system no5 embedded in Coq, formal
specification

Simplicity low-level under de-
velopment

Bitcoin functional,
combinator-
based, typed

Bit Machine Bit Machine
cell usage

no formal denotational and
operational semantics

Solidity high-level stable Ethereum statically
typed, object-
oriented

EVM bytecode
analyzers1,
SmartCheck [38],
ZEUS [39],
Solidity* [40]

gas
system yes JavaScript-like syntax,

popularity

SolidityX high-level beta Ethereum secure-
oriented

EVM bytecode
analyzers1

gas
system yes compiled to Solidity

Vyper high-level beta Ethereum imperative EVM bytecode
analyzers1

gas
system no Python-like syntax, safety

Yul intermediate-
level

under de-
velopment

Ethereum object-
oriented

EVM bytecode
analyzers1

gas
system yes intermediate language for

future Solidity

Fig. 1. Smart contract languages
1 Programs can be translated to EVM bytecode, and then OYENTE [31], SECURIFY [41], EVM* [40], KEVM [42], MYTHRIL [43], VANDAL [44], RATTLE [45],

MANTICORE [46] can be applied.
2 To our knowledge there is no analyzer, which works with that smart contract language.
3 Based on the amount of EOS tokens, more tokens — more computation power.
4 Applying one reduction rule of rho-calculus [47] costs some value, paid by user.
5 Any in-contract computation within a transition terminates, however non well-founded recursion in SCILLA can be implemented with contracts calling

themselves or via explicit continuations, i.e. blockchain level interaction. Loops constructs are planned to be implemented via well-founded recursive
functions.

145

correctness of some functions built up from combinators, e.g.
half-adder or SHA-256 function. Generally, the completeness,
i.e. the notion that any function between SIMPLICITY types
can be expressed with combinators, is verified in COQ.

Further, operational semantics of SIMPLICITY is defined
within the abstract machine called BIT MACHINE, intended to
ease bounding of the number of computations, i.e. metering.
It is designed to crash at anything that resembles undefined
behavior. BIT MACHINE is an abstract imperative machine
which state consists of two non-empty stacks of data frames
formed by an array of cells. The machine has a set of
instructions that manipulate the two stacks and their data
frames, and corresponding operational semantics is defined
by translating a SIMPLICITY expression into a sequence of
BIT MACHINE instructions. It allows computational resources
measuring with respect to cells and frames, e.g. the number
of executed instructions, copied cells, maximum cells in both
stacks at the given point, the number of frames in both stacks.
Operational semantics correctness and its correspondence to
the denotational semantics are verified in COQ. Furthermore,
the set of core combinators can be extended for implementing
a signature checking that requires transaction data, thus SIM-
PLICITY programs can be built to implement the pay-to-script
hash scheme [50].

Summarizing, SIMPLICITY stateless nature and rather sim-
ple functional semantics without recursion and unbounded
loops facilitate equational reasoning, avoiding complex logic.
It provides means for formal verification of programs as
well as static analysis more capable to effectively bound the
number of computational resources. To date SIMPLICITY has
a HASKELL implementation under development [51].

3) EVM: is a bytecode language for Ethereum Virtual
Machine. It is designed to support and execute arbitrary
computations over ETHEREUM account-based blockchain, i.e.
programs with loops and recursion.

EVM is a stack-based, Turing-complete machine of 256-
bit words with memory model of word addressed byte array.
The machine also has a persisted storage which is maintained
between transactions and is a part of the blockchain state. It
is a word-addressable word array. Program code is separated
from data. Access to and modification of data in different types
of memory is charged differently from storage — the most
expensive to stack and memory being equally charged. The
formal execution model and the environment is specified in
ETHEREUM Yellow paper [32].

There are efforts on specifying formal semantics for EVM
in OYENTE [31], F* [52], KEVM [42], and LEM [53] that
focus on formal verification tools and detecting and avoiding
insecure features of EVM, e.g. delegatecall, overflows, unde-
fined call/return. Also, the poor human-readability of bytecode
is a flaw. ETHEREUM includes many implementations of
EVM, e.g. in JAVA SCRIPT, C++, PYTHON, and a promising
WEBASSEMBLY implementation [54].

4) IELE: is a language defined within K-framework9 [14].
It was designed to overcome EVM drawbacks with an idea of
correctness by construction and formal verification in mind.
It is intended to be secure and human-readable and to serve
as a compilation target for high-level languages, thus unifying
compilers construction.

IELE is a register-based untyped10 language: instructions
operate on and store their output in infinite number of virtual
registers and have access to a persistent storage — the
unbounded sparse array of arbitrary-precision signed integers.
The language implementation is generated from its formal
specification defined in K-framework, which provides genera-
tion of verification tools, debugger, interpreter, model checker,
etc. IELE has functions and defines a call/return convention
where a called function expects a specific number of parame-
ters and returns a specific number of values or corresponding
error status.11 Furthermore, IELE avoids some insecure EVM
features, e.g. by introducing delegatecall functionality and
maintains arbitrary-precision arithmetic. Its operational seman-
tics specifies contracts internal state, blockchain state, and
transition rules, i.e. contract’s code, intra-contract call stack,
remaining gas, and the state of the local memory and virtual
registers, storage content, balances, etc. Thus IELE makes
formal verification less tedious, enhances human-readability,
eliminates undefined, and implementation-defined behaviors,
i.e. it is considered to be safe12.

Gas costs for computation time are based on instructions
asymptotic and the gas cost for memory is based on peak
memory consumption. Gas model is designed to allow arbi-
trarily large valued instructions and to avoid artificial limits
on the size of data or call stacks while preserving the existing
goals of the EVM gas model. However, while arithmetics may
cause overflows in EVM, in IELE it may cause out-of-gas
exception, starting from some input size. Gas formulas are
also specified in K.

5) MICHELSON [33, 55]: is a typed stack-based language
designed to be on-chain code for stateful smart contracts in
TEZOS. It is intended to be a more readable compilation target
and more amenable for formal verification.

A MICHELSON program supports high-level types (e.g.
map, list, set, etc.) and receives an input stack with parameters
and storage being pushed on. It evaluates to a result stack with
an output value and new storage, or can fail. The language does
not support closures in a sense that every functions has empty
environment. Messaging with other contracts is performed
through passing a storage and not maintains the stack between
calls. The types are predefined13 and monomorphic, further

9Framework used to produce implementation derived from formal specifi-
cations, based on logic rules.

10 Arbitrary-precision signed integers is the main datatype.
11For reference, in EVM caller sends an arbitrary byte stream containing

the call arguments values since functions are represented as a set of JUMP
labels.

12 IELE is stated to be the first real-world language, that is designed and
implemented using formal semantics, with a zero gap between the formal
specification and the implementation.

13 A programmer can not define their own types.

146

types of input, output, and storage of a contract are fixed
and it is statically ensured that resulting storage type is
preserved. MICHELSON has a builtin type for cryptocurrency
and operations defined for this type are mandatory checked
for underflow/overflow. Typing is done via types propagation.

Due to its computation model, MICHELSON has a straight-
forward semantics, based on rewriting rules defined on stack
and syntax. Also, it defines what is considered as well-typed
stacks and the resulting outputs. MICHELSON is currently
implemented in OCAML via GADT with an interpreter de-
fined corresponding to the semantics while leaving the type
checking to OCAML. It is anticipated to replace current im-
plementation with a one verified with either COQ or F* [56].

6) PLUTUS CORE: is a typed language designed for use as
a transaction validation language in UTxO-based blockchain
systems. Fundamentally it is eagerly-reduced higher-order
polymorphic λ-calculus extended with iso-recursive types,
higher kinds, and a library of basic types and functions, hence
it has a straightforward operational semantics. The language
is meant to be a compilation target, since it is difficult to write
and read but it is intended to be formally verifiable in proof-
assistants.

PLUTUS CORE program is a closed term, and its execution
is performed by (possibly non-terminating) reduction of well-
typed terms. All types can be normalized and normalization
process always terminates. Further, operations on types allow
to deal with sized types, i.e. sized integers or bytestrings, that
allows them to be tracked in the type system to facilitate
charging for the appropriate amount of gas and detecting
overflows at the type level. The language has a specified
abstract machine intended to be amenable for a verification
reference implementation. Moreover, PLUTUS CORE has its
formal specification defined in K [57, 58].

Transaction validation is performed similarly to BITCOIN
SCRIPT. Validation is successful if the PLUTUS CORE program
reduces to a non-error value within an allotted number of steps.
But it is more extended in a sense that a program has a read-
only access to world state passed through a monad [59, 60].

PLUTUS CORE is an on-chain language for CARDANO
blockchain and is embedded into HASKELL. Furthermore the
blockchain system itself is implemented in HASKELL as well
as off-chain computations, e.g. wallets, it allows type checking
on the level of the interaction between off-chain applications
and on-chain code.

B. High-level languages

1) SOLIDITY: is a very rich and expressive high-level
object-oriented Turing-complete language [35] for writing
smart contracts for EVM with a syntax similar to JAVASCRIPT
and C++. It has static types, inheritance, libraries, complex
user-defined types supporting, and other features. As a conse-
quence, that causes its prevalence as well as a large number
of potential vulnerabilities (see section IV).

2) SOLIDITYX: is a high-level language [61] which com-
piles to SOLIDITY. SOLIDITYX is a secure-oriented language,
which means that it has a defense from some vulnerabilities

by default, for example, all access modifiers are private by
default. However, SOLIDITYX is in beta development now
and it is not recommended to be used in production.

3) VYPER (aka VIPER): is a high-level language for im-
plementing smart contracts for the EVM [13]. It is PYTHON3
derived programming language. VYPER is an alternative to
SOLIDITY that is aimed at code security, clarity, and unam-
biguity, for example, it excludes constructions that can lead
to misleading code. To achieve this VYPER does not support
modifiers, class inheritance, inline assembly, function over-
loading, operator overloading, recursive calling, infinite-length
loops, binary fixed point. The language also leverages overflow
checking, array bounding, and limited state modification.

4) FLINT: is a high-level statically-typed contract-oriented
language aimed to write robust smart contracts on EVM [12].
FLINT provides a mechanism to specify actors that can interact
with a contract, immutability by default, assets types, and safer
semantics with overflows causing revert of a transaction and
explicit states.

5) BAMBOO: is a high-level language compiling to the
EVM [62]. Its compiler is implemented in OCAML thus
BAMBOO is well amenable to formal verification. BAMBOO
creates clarify state transitions and avoids reentrancy problems
by default. However, it does not support loops and assignments
into storage variables, except array elements, which improves
the ability of contracts to be verified but complicates their
development.

6) LOGIKON: is a high-level logical-functional language
compiled to YUL [63]. LOGIKON program represents a set of
logical constraints statically and formally verified.

7) IVY: is a language [64], designed to simplify program-
ming of stateless smart contracts for BITCOIN. Compare to
BITCOIN SCRIPT, in IVY program it is possible to use named
variables, named clauses, domain-specific types, syntax sugar
for function calls.

8) LIQUIDITY: is a functional, statically and strongly typed
language, compiled down to MICHELSON. It has OCAML
syntax and keeps safety guaranteed by MICHELSON, while
providing high-level constraints. LIQUIDITY has a formal
specification of the compilation semantics[65] and supports
decompilation back from MICHELSON, based on graph pro-
duced by symbolic execution that is eventually transformed
into LIQUIDITY AST. This feature greatly enhances readability,
since stack-based MICHELSON code is rather hard to inspect
manually.

9) CHAINCODE: is a smart contract program, written for
HYPERLEDGER FABRIC [21] blockchain. CHAINCODE can
be developed with GO, NODE.JS or JAVA. The code should
implement a special interface to interact with the blockchain
network. Unlike ETHEREUM smart contracts, CHAINCODE
does not have account address or associated assets, but the
smart contract can have a mapping of the real assets to the
internal state. CHAINCODE has similar conception to database
stored procedures. When a transaction is created, CHAINCODE
is called to perform operations according to the transaction
data. Possible operations are: read, update or delete data,

147

stored in the ledger. Also, it is possible to invoke or read
the state of another CHAINCODE, if the caller has enough
permissions.

C. Intermediate-level languages

1) YUL (JULIA or IULIA): is an intermediate lan-
guage [66]. It can be compiled to a number of backends:
EVM 1.0, EVM 1.5 and eWASM. It is planning to use YUL
as an intermediate language in the future versions of the
SOLIDITY compiler. YUL can be used for "inline assembly"
inside SOLIDITY.

2) RHOLANG: is a functional, concurrent, based on rho-
calculus [47] language [67], used in project RCHAIN. A
smart contract in terms of RCHAIN is a process, which
has persistent state, its own code, and associated address.
Execution of code is done by applying the reduction rule of
rho-calculus. RHOLANG has behavioral types [68], reflection,
reactive API, asynchronicity. Synchronization primitives for
parallel execution of transactions are messages and channels.
Messages are the way to communicate smart contracts with
each other, sending values through channels. A user has to pay
a cost in special tokens, named Phlogiston, to the node in the
system for computational resources, These tokens will be used
for executing smart contract’s code. Rate-limiting mechanism
looks like the gas system in ETHEREUM. Unlike EVM, where
gas metering is done on the VM level, manipulations on
Phlogistons are injected in smart contract’s source code by
RHOLANG compiler.

3) SCILLA: is intended to be an intermediate level language
as a translation target for high-level languages to facilitate
program analysis and verification before compiling to exe-
cutable bytecode. SCILLA is a typed language built on stateful
smart contracts, i.e. contracts that have a state represented
with a storage and that can communicate either with other
contracts via messages or with the off-chain world by raising
events or with blockchain explicitly reading blockchain data.
The language design is aimed to facilitate formal reasoning
providing clear and principled semantics.

Specifically, its semantics is based on communicating au-
tomata that separate contract specific computations called
transitions and blockchain-wide interactions, i.e. messaging
with other contracts, thus making transitions atomic. Atomicity
is achieved through allowing only tail-calling communications
which eliminate reentrancy problems. However non-tail calls
are needed for some computations e.g. passing and saving
some value back from the callee, it is implemented with
explicit continuations mechanism. Nevertheless, possible non-
terminating execution can be caused by non well-founded
recursion, which is going to be handled with gas usage.
Further, SCILLA specifies pure, i.e. that change the state and
impure transitions and those reading blockchain data, e.g.
block number with OCAML based syntax.

SCILLA has been shallow-embedded in COQ, specifying
such properties as contract terminology, contract state, and
transitions along with blockchain states, which allows proper-
ties verification in isolation. So its design implies leveraging

of formal reasoning to prove different modality properties, e.g.
safety14, liveness15 or termination for well-founded recursive
functions. It is anticipated to enhance support for automating
the proofs of safety/temporal properties.

4) LLL: is a Lisp-like language [69] for EVM. Main
purpose of LLL is to provide a little bit higher level of
abstraction upon EVM bytecode, i.e. programmer has more
high-level constructions to work with stack. Also language
has more functionality over the base set of EVM opcodes,
such as multiary operators (they can be applied to one or
more arguments, result of following code (+ 1 2 3 4 5) is
15), including files, control structures, and macro definitions.
LLL has an analog of variables, it makes automatic memory
management for saving values.

VI. DISCUSSION

We briefly described notable approaches for specification of
smart contracts intended behavior and analysis of behavioral
properties. However, this survey is nevertheless incomplete.
The area of blockchain and smart contracts is under ac-
tive research. The community tries to apply different ap-
proaches and ways in the area of smart contract languages
and their execution environments development. Some of them
are Turing-completeness, paradigm (e.g. imperative, object-
oriented, functional), level of abstraction, a way to limit code
execution (metering systems such as ETHEREUM gas, time
bounds, number of instructions) and a formal theory on which
a language is based.

In the rest of the section, we discuss contributions that have
not been classified in previous sections, propose aspects that
may worth future researching and related work, and summarize
possible pros and cons of provided aspects.

Recall that most smart contracts in blockchains are irre-
versible, i.e. they are hard to fix once they are deployed.
One approach to mitigate this is a design pattern provided
in [70, 71] that leverages using delegatecalls. It suggests
deploying contracts with another dispatcher contract. The
increased number of messages makes analysis and reasoning
more complicated, since dispatcher contracts should be robust
and safe then. Another approach is platforms that allow
upgradable contracts [72].

Arguable concept is the representation in which contracts
are deployed to a blockchain. Most of the systems included
in our survey store on-chain code in a some low-level form.
Such form hardens auditability, while also may serve as
a uniform compilation target. That facilitates the develop-
ment with different languages. There are platforms where
contracts are stored as programs written in high-level safe
languages [72]. Another possible approach for this is a de-
compilation from low-level byte code to more high level code
like in MICHELSON and LIQUIDITY case. However, to our
knowledge, only this couple of languages have formalized
semantics of compilation, while none of the known works

14 These are invariants that hold through the lifetime of a contract, exposing
that nothing should go wrong.

15 Basically, it states that something should eventually happen.

148

provides the correctness of interpretation and interpretation
after compilation at all, i.e. the correctness of the compiler or
the commutativity of the implied diagram.

One more problem is a metering system for smart contracts,
such as ETHEREUM gas and its analogues. Gas estimation is
in general undecidable. It could be useful to find mechanisms
to predict gas consumption. Improper estimation may lead
to vulnerabilities (e.g. DoS-attacks), or to fails during code
execution (e.g. ETHEREUM out-of-gas exception). Gas con-
sumption depends on many factors such as memory usage and
blockchain state. Various adaptive methods like type system
are already surveyed PLUTUS [58], rigorous semantics with
asymptotic analysis as in IELE [14], or dynamic adjustment as
adaptive gas cost mechanism in [73] may be promising, as well
as methods based on symbolic paths exploration and resource
analysis [74, 75]. For example, PLUTUS design of unbounded
integers allows metering statically due to its type system,
while unbounded integers in IELE allows only dynamic gas
evaluation. One may apply techniques like RAML [76]. Gas
reducing optimization are also worth considering. 16

Since smart contracts use cases are yet to be researched,
it is undesirable to restrict either statefulness of contracts or
Turing-completeness of languages they are written in. The
compromise between an ability to run arbitrary computations
on the blockchain and amenability to reasoning defines future
research topics. For instance, in [9] dependent types within
IDRIS language are leveraged for writing provable smart
contracts, that are compiled down to run on ETHEREUM.
Languages based on models, which better describe interaction
between contracts based on message passing may become
future research objectives, e.g. languages based on process
calculus [77]. Extensive type systems in such systems also
worth researching, e.g. behavioral type systems or linear epis-
temic ones [78]. Type annotating while writing a contract with
such languages is often non-trivial as well as robust and safe
contracts development in general. There are researches aimed
at domains formalizing, e.g. finances and at the design of
simpler languages that are embedded in some safe language for
only domain purposes [79]. Such domain specific languages
tend to be visual to ease the development process for non-
experts in programming. Approaches aimed at actors behavior
are as well interesting. There is a DSCP contracting protocol
for trading proposed in [80]. The protocol was verified using
game theory and statistical models, such as Markov decision
processes.

There is still another point about properties to consider.
It is modality properties formulating, an i.e. specification of
such a property a smart contract should satisfy. If the property
unfulfillment can be proved, it would prevent some exploit, e.g.
already mentioned DAO. Some such properties can be seen in
[81]. It propose BITML — Bitcoin Modelling Language that
leverages process calculus to describe interactions between
participants and generate BITCOIN transactions according to

16 Due to safety considerations, such optimization should be proven to be
semantically equivalent. However we are not aware of any related results.

symbolic semantics. In [82] EVM is formalized in LEM
for modeling smart contracts behavior with some properties
defined.

To outline the discussion, it it worth to notice that many
researches avoid the infrastructure around the language, i.e.
development environments, testing and deployment tools, ex-
tensive API libraries. However, these are essential components
of successful development and a field for a plenty of practical
studies, since to date only ETHEREUM has a rather complete
infrastructure.

VII. CONCLUSION

As smart contracts platforms are intended to reasonably
automate the economy, smart contracts should be safe and
robust. In this paper, we have presented an overview of a
to date state of smart contract programming languages. We
have classified weaknesses and vulnerabilities smart contracts
are prone to. Languages calculus models, semantics, and
type systems have been surveyed as well as other properties
according to reasoning, safety, expressiveness, and readability.
At the end we have summarized related work and possible
future research topics.

REFERENCES

[1] Bitcoin contract. URL: https://en.bitcoin.it/wiki/Contract (Date:
2019-01-30).

[2] Solidity-example-crowdfunding. URL: https://github.com/
zupzup/solidity-example-crowdfunding (Date: 2019-01-30).

[3] D. Macrinici, C. Cartofeanu, and S. Gao, “Smart contract ap-
plications within blockchain technology: A systematic mapping
study,” Telematics and Informatics, vol. 35, no. 8, pp. 2337 –
2354, 2018.

[4] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract tem-
plates: foundations, design landscape and research directions,”
CoRR, vol. abs/1608.00771, 2016.

[5] A 50 million hack just showed that the dao was
all too human. URL: https://www.wired.com/2016/06/
50-million-hack-just-showed-dao-human/ (Date: 2019-01-30).

[6] D. McAdams. An ontology for smart contracts.
URL: https://cryptochainuni.com/wp-content/uploads/
Darryl-McAdams-An-Ontology-for-Smart-Contracts.pdf
(Date: 2019-02-07).

[7] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks
on ethereum smart contracts sok,” in Proceedings of the 6th
International Conference on Principles of Security and Trust -
Volume 10204. New York, NY, USA: Springer-Verlag New
York, Inc., 2017, pp. 164–186.

[8] G. Destefanis, A. Bracciali, R. Hierons, M. Marchesi, M. Ortu,
and R. Tonelli, “Smart contracts vulnerabilities: A call for
blockchain software engineering?” ResearchGate, 2018.

[9] Safer smart contracts through type-driven develop-
ment. URL: https://publications.lib.chalmers.se/records/fulltext/
234939/234939.pdf (Date: 2019-01-30).

[10] “Bitcoin script,” 2019-01-30. URL: https://en.bitcoin.it/wiki/
Script

[11] R. O’Connor, “Simplicity: A new language for blockchains,”
CoRR, vol. abs/1711.03028, 2017.

[12] Flint. URL: https://github.com/flintlang/flint (Date: 2019-01-
30).

[13] Vyper. URL: https://github.com/ethereum/vyper (Date: 2019-
01-29).

[14] T. Kasampalis, D. Guth, B. Moore, T. Serbanuta, V. Ser-
banuta, D. Filaretti, G. Rosu, and R. Johnson, “Iele: An

149

https://en.bitcoin.it/wiki/Contract
https://github.com/zupzup/solidity-example-crowdfunding
https://github.com/zupzup/solidity-example-crowdfunding
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://cryptochainuni.com/wp-content/uploads/Darryl-McAdams-An-Ontology-for-Smart-Contracts.pdf
https://cryptochainuni.com/wp-content/uploads/Darryl-McAdams-An-Ontology-for-Smart-Contracts.pdf
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
https://publications.lib.chalmers.se/records/fulltext/234939/234939.pdf
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Script
https://github.com/flintlang/flint
https://github.com/ethereum/vyper

intermediate-level blockchain language designed and imple-
mented using formal semantics,” University of Illinois, Tech.
Rep. http://hdl.handle.net/2142/100320, July 2018.

[15] I. Sergey, A. Kumar, and A. Hobor, “Scilla: a smart contract
intermediate-level language,” CoRR, vol. abs/1801.00687, 2018.

[16] Plutus core specification. URL: https://github.
com/input-output-hk/plutus/tree/master/plutus-core-spec (Date:
2019-01-30).

[17] D. Harz and W. J. Knottenbelt, “Towards safer smart contracts:
A survey of languages and verification methods,” CoRR, vol.
abs/1809.09805, 2018.

[18] P. L. Seijas, S. Thompson, and D. McAdams, “Scripting smart
contracts for distributed ledger technology,” Cryptology ePrint
Archive, Report 2016/1156, 2016, https://eprint.iacr.org/2016/
1156.

[19] Contract. URL: https://en.bitcoin.it/wiki/Contract (Date: 2019-
01-30).

[20] Ethereum contract security techniques and tips. URL: https:
//github.com/ethereum/wiki/wiki/Safety (Date: 2019-01-29).

[21] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Chris-
tidis, A. De Caro, D. Enyeart, C. Ferris, G. Laventman,
Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen,
M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,
M. Vukolić, S. W. Cocco, and J. Yellick, “Hyperledger fabric: A
distributed operating system for permissioned blockchains,” in
Proceedings of the Thirteenth EuroSys Conference, ser. EuroSys
’18. New York, NY, USA: ACM, 2018, pp. 30:1–30:15.

[22] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Po-
tential risks of hyperledger fabric smart contracts,” in 2019
IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), 2019, pp. 1–10.

[23] 300m in cryptocurrency accidentally lost forever due to
bug. URL: https://www.theguardian.com/technology/2017/nov/
08/cryptocurrency-300m-dollars-stolen-bug-ether (Date: 2019-
01-30).

[24] Smart contract weakness classification and test cases. URL:
https://smartcontractsecurity.github.io/SWC-registry/ (Date:
2019-01-29).

[25] Decentralized application security project. URL: https://dasp.co
(Date: 2019-01-29).

[26] Security considerations. URL: https://solidity.readthedocs.io/en/
latest/security-considerations.html (Date: 2019-01-29).

[27] Vulnerabilities description. URL: https://github.com/trailofbits/
slither/wiki/Vulnerabilities-Description (Date: 2019-01-30).

[28] Smart contract weakness classification and test cases. URL:
https://smartcontractsecurity.github.io/SWC-registry/ (Date:
2019-01-22).

[29] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks
on ethereum smart contracts sok,” in Proceedings of the 6th
International Conference on Principles of Security and Trust -
Volume 10204. New York, NY, USA: Springer-Verlag New
York, Inc., 2017, pp. 164–186.

[30] Ether — the crypto-fuel for the ethereum network. URL:
https://www.ethereum.org/ether (Date: 2019-01-30).

[31] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: ACM, 2016, pp.
254–269.

[32] D. G. Wood. Ethereum: A secure decentralised
generalised transaction ledger. URL: https://ethereum.github.io/
yellowpaper/paper.pdf (Date: 2019-01-31).

[33] Michelson language. URL: https://www.michelson-lang.com/
(Date: 2019-01-31).

[34] B. C. Pierce, Types and Programming Languages, 1st ed. The
MIT Press, 2002.

[35] Solidity. URL: https://github.com/ethereum/solidity (Date:

2019-01-29).
[36] Liquidity. URL: https://github.com/OCamlPro/liquidity (Date:

2019-01-29).
[37] G. Rou and T. F. erbnut, “An overview of the k semantic

framework,” The Journal of Logic and Algebraic Programming,
vol. 79, no. 6, pp. 397 – 434, 2010, membrane computing and
programming.

[38] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis
of ethereum smart contracts,” in Proceedings of the 1st Interna-
tional Workshop on Emerging Trends in Software Engineering
for Blockchain, ser. WETSEB ’18. New York, NY, USA: ACM,
2018, pp. 9–16.

[39] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts,” 01 2018.

[40] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-
Pinote, N. Swamy, and S. Zanella-Béguelin, “Formal verifica-
tion of smart contracts: Short paper,” in Proceedings of the 2016
ACM Workshop on Programming Languages and Analysis for
Security, ser. PLAS ’16. New York, NY, USA: ACM, 2016,
pp. 91–96.

[41] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli,
and M. Vechev, “Securify: Practical security analysis of smart
contracts,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’18. New
York, NY, USA: ACM, 2018, pp. 67–82.

[42] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian,
D. Guth, B. Moore, Y. Zhang, D. Park, A. Stefanescu, and
G. Rosu, “Kevm: A complete semantics of the ethereum virtual
machine,” in 2018 IEEE 31st Computer Security Foundations
Symposium. IEEE, 2018, pp. 204–217.

[43] Mythril. URL: https://github.com/ConsenSys/mythril-classic
(Date: 2019-01-29).

[44] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis
framework for smart contracts,” CoRR, vol. abs/1809.03981,
2018.

[45] Rattle. URL: https://github.com/trailofbits/rattle (Date: 2019-
01-30).

[46] Manticore. URL: https://github.com/trailofbits/manticore (Date:
2019-01-30).

[47] L. G. Meredith and M. Radestock, “A reflective higher-order
calculus,” Electr. Notes Theor. Comput. Sci., vol. 141, pp. 49–
67, 2005.

[48] Bitcoin weaknesses. URL: https://en.bitcoin.it/wiki/Weaknesses
(Date: 2019-01-30).

[49] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timó́n, and P. Wuille, “Enabling
blockchain innovations with pegged sidechains,” 2014.

[50] Mediawiki. URL: https://github.com/bitcoin/bips/blob/master/
bip-0016.mediawiki (Date: 2019-02-5).

[51] Simplicity. URL: https://github.com/ElementsProject/simplicity
(Date: 2019-02-5).

[52] Grishchenko I., Maffei M., Schneidewind, C.: A semantic
framework for the security analysis of ethereum smart
contracts - technical report (2018). URL: https://secpriv.tuwien.
ac.at/tools/ethsemantics. (Date: 2019-01-30).

[53] Formalization of ethereum virtual machine in lem. URL:
https://github.com/pirapira/eth-isabelle (Date: 2019-01-30).

[54] Ewasm: design overview and specification. URL: https:
//github.com/ewasm/design (Date: 2019-01-30).

[55] Michelson: the language of smart contracts in tezos. URL: http:
//www.liquidity-lang.org/doc/reference/michelson.html (Date:
2019-01-30).

[56] Why michelson? URL: https://www.michelson-lang.com/

150

https://github.com/input-output-hk/plutus/tree/master/plutus-core-spec
https://github.com/input-output-hk/plutus/tree/master/plutus-core-spec
https://eprint.iacr.org/2016/1156
https://eprint.iacr.org/2016/1156
https://en.bitcoin.it/wiki/Contract
https://github.com/ethereum/wiki/wiki/Safety
https://github.com/ethereum/wiki/wiki/Safety
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
https://www.theguardian.com/technology/2017/nov/08/cryptocurrency-300m-dollars-stolen-bug-ether
https://smartcontractsecurity.github.io/SWC-registry/
https://dasp.co
https://solidity.readthedocs.io/en/latest/security-considerations.html
https://solidity.readthedocs.io/en/latest/security-considerations.html
https://github.com/trailofbits/slither/wiki/Vulnerabilities-Description
https://github.com/trailofbits/slither/wiki/Vulnerabilities-Description
https://smartcontractsecurity.github.io/SWC-registry/
https://www.ethereum.org/ether
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.michelson-lang.com/
https://github.com/ethereum/solidity
https://github.com/OCamlPro/liquidity
https://github.com/ConsenSys/mythril-classic
https://github.com/trailofbits/rattle
https://github.com/trailofbits/manticore
https://en.bitcoin.it/wiki/Weaknesses
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/ElementsProject/simplicity
https://secpriv.tuwien.ac.at/tools/ethsemantics.
https://secpriv.tuwien.ac.at/tools/ethsemantics.
https://github.com/pirapira/eth-isabelle
https://github.com/ewasm/design
https://github.com/ewasm/design
http://www.liquidity-lang.org/doc/reference/michelson.html
http://www.liquidity-lang.org/doc/reference/michelson.html
https://www.michelson-lang.com/why-michelson.html

why-michelson.html (Date: 2019-02-5).
[57] Plutus core semantics. URL: https://github.com/kframework/

plutus-core-semantics (Date: 2019-01-30).
[58] Plutus implementation and tools. URL: https://github.com/

input-output-hk/plutus (Date: 2019-01-30).
[59] The extended utxo model. URL: https://github.com/

input-output-hk/plutus/tree/master/docs/extended-utxo (Date:
2019-02-5).

[60] Is it smart to use smart contracts? URL: https://plutusfest.io/
presentations/Philip-Wadler/Wadler30.pdf (Date: 2019-02-5).

[61] Solidityx. URL: https://solidityx.org/ (Date: 2019-01-30).
[62] Bamboo. URL: https://github.com/pirapira/bamboo (Date:

2019-01-30).
[63] Logikon. URL: https://github.com/logikon-lang/logikon (Date:

2019-01-31).
[64] Ivy: Bitcoin smart contracts. URL: https://github.com/ivy-lang/

ivy-bitcoin (Date: 2019-01-30).
[65] Çagdas Bozman, M. Iguernlala, M. Laporte, F. L. Fessant, and

A. Mebsout, “Liquidity: Ocaml pour la blockchain,” Journées
Francophones des Langages Applicatifs 2018, 2018.

[66] Yul. URL: https://solidity.readthedocs.io/en/latest/yul.html
(Date: 2019-01-30).

[67] Rchain and rholang. URL: https://www.rchain.coop/platform
(Date: 2019-01-30).

[68] D. Ancona, V. Bono, and M. Bravetti, Behavioral Types in
Programming Languages. Hanover, MA, USA: Now Publishers
Inc., 2016.

[69] G. Wood. LLL. URL: https://lll-docs.readthedocs.io/en/latest/
index.html (Date: 2019-01-30).

[70] Upgradable contract with solidity. URL: https://gist.github.com/
Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f (Date: 2019-01-
30).

[71] Proxy libraries in solidity. URL: https://blog.zeppelin.solutions/
proxy-libraries-in-solidity-79fbe4b970fd (Date: 2019-01-30).

[72] The pact smart-contract language. URL: http://kadena.io/docs/
Kadena-PactWhitepaper.pdf (Date: 2019-01-30).

[73] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H.
Au, and X. Zhang, “An adaptive gas cost mechanism for
ethereum to defend against under-priced dos attacks,” CoRR,
vol. abs/1712.06438, 2017.

[74] E. Albert, P. Gordillo, A. Rubio, and I. Sergey, “GASTAP: A
gas analyzer for smart contracts,” CoRR, vol. abs/1811.10403,
2018.

[75] M. Marescotti, M. Blicha, A. E. J. Hyvärinen, S. Asadi, and
N. Sharygina, “Computing exact worst-case gas consumption
for smart contracts,” in International Symposium on Leverag-
ing Applications of Formal Methods ISoLA 2018: Leveraging
Applications of Formal Methods, Verification and Validation.
Industrial Practice, Springer. Cyprus: Springer, 2018.

[76] J. Hoffmann, A. Das, and S. Weng, “Towards automatic re-
source bound analysis for ocaml,” CoRR, vol. abs/1611.00692,
2016.

[77] J. Baeten, “A brief history of process algebra,” Theoretical
Computer Science, vol. 335, no. 2, pp. 131 – 146, 2005, process
Algebra.

[78] H. Deyoung and F. Pfenning, “Reasoning about the conse-
quences of authorization policies in a linear epistemic logic,”
05 2012.

[79] S. Thompson and P. L. Seijas, “Marlowe: Financial contracts on
blockchain,” in ISoLA 2018: Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice, ser.
Lecture Notes in Computer Science. Switzerland: Springer-
Verlag Berlin, October 2018. URL: https://kar.kent.ac.uk/69846/

[80] G. Bigi, A. Bracciali, G. Meacci, and E. Tuosto, “Validation of
decentralised smart contracts through game theory and formal
methods,” in Essays Dedicated to Pierpaolo Degano on Pro-
gramming Languages with Applications to Biology and Security

- Volume 9465. New York, NY, USA: Springer-Verlag New
York, Inc., 2015, pp. 142–161.

[81] M. Bartoletti and R. Zunino, “Bitml: A calculus for bitcoin
smart contracts,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser.
CCS ’18. New York, NY, USA: ACM, 2018, pp. 83–100.

[82] Y. Hirai, “Defining the ethereum virtual machine for interactive
theorem provers,” in Financial Cryptography and Data Security.
Cham: Springer International Publishing, 2017, pp. 520–535.

151

https://www.michelson-lang.com/why-michelson.html
https://github.com/kframework/plutus-core-semantics
https://github.com/kframework/plutus-core-semantics
https://github.com/input-output-hk/plutus
https://github.com/input-output-hk/plutus
https://github.com/input-output-hk/plutus/tree/master/docs/extended-utxo
https://github.com/input-output-hk/plutus/tree/master/docs/extended-utxo
https://plutusfest.io/presentations/Philip-Wadler/Wadler30.pdf
https://plutusfest.io/presentations/Philip-Wadler/Wadler30.pdf
https://solidityx.org/
https://github.com/pirapira/bamboo
https://github.com/logikon-lang/logikon
https://github.com/ivy-lang/ivy-bitcoin
https://github.com/ivy-lang/ivy-bitcoin
https://solidity.readthedocs.io/en/latest/yul.html
https://www.rchain.coop/platform
https://lll-docs.readthedocs.io/en/latest/index.html
https://lll-docs.readthedocs.io/en/latest/index.html
https://gist.github.com/Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f
https://gist.github.com/Arachnid/4ca9da48d51e23e5cfe0f0e14dd6318f
https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd
https://blog.zeppelin.solutions/proxy-libraries-in-solidity-79fbe4b970fd
http://kadena.io/docs/Kadena-PactWhitepaper.pdf
http://kadena.io/docs/Kadena-PactWhitepaper.pdf
https://kar.kent.ac.uk/69846/

Ethereum Blockchain Analysis using Node2Vec
Aleksander Salnikov

Higher School of Economics
Moscow, Russia

salnikovsas@gmail.com

Evgenia Sivets
Higher School of Economics

Moscow, Russia
evgeniasivets@gmail.com

Abstract—In this work we apply Node2Vec[19] to obtain struc-
tural information from Ethereum network transaction graph[11],
[12]. Given the large amount of data that is stored in the
blockchain, we make use of the Google BigQuery service to
extract only a small relevant subset of nodes and reconstruct
transaction graph. After that the Node2Vec was used to embed
this graph into a high-dimensional vector space. The space of
embeddings is used to clusterize Ethereum addresses.

The Ethereum network was chosen thanks to the property
of its addresses to represent a long-term entity, in contrast to
Bitcoin[1] and many other blockchains where it is not possible
to establish such relationship between entities (users, etc...) and
addresses[2], [3], [4], [5]. This makes us think of trying to classify
Ethereum users according to their activity[6], [7], based solely
on the blockchain data.

I. INTRODUCTION

A. The purposes of blockchain data analysis overview

Blockchain technology has been becoming more and more
popular and complex recently. Simply speaking, blockchain
can be seen as a very specific type of database — a distributed
ledger. Because of blockchain being a public database that
anyone can write to (following a certain set of rules) and
the record will persist forever in its state, the blockchain
data, as a result, implicitly contains valuable financial and
social information about its users. Which ultimately draws
attention of both data scientists and government regulators,
giving a boost to developing blockchain analysis techniques
and motivating research teams to explore the data from many
different perspective.

The blockchain state has been conceptualized through
graph-based data models, providing researchers with a rich
toolbox of different approaches. Graph theory has been already
successfully applied to solve many practical and theoretical
network-related problems, which, by the way, may explain the
wide adoption of network mental model towards blockchains
as well. Much progress has been achieved in the field of
random graph analysis, so it was just a matter of time for
this ideas to make their way into blockchain state research.

The first widely adopted blockchain system was Bitcoin.
Being designed to preserve privacy of its users, while pre-
serving all information about every single transaction on the
network, it expectedly became a target for researches aiming
to extract users’ private information from blockchain data. It
has been shown that the blockchain data contains much more
private information that has been previously assumed and led
to deeper understanding of the privacy problem in distributed

systems. Despite not being ultimately private, Bitcoin is still
the first and the most popular cryptocurrency in the world.

While some subsequent developments tried to challenge the
uncovered privacy-related issues in order to archive the level
of privacy that Bitcoin initially expected to provide, others
focused on exploring another unique properties of emerged
technology. In particular, they enriched identity management
functionality: making the user to be represented as an on-
network entity, capable of interacting with other entities —
users or special kind of programs, living in the network, named
”smart-contracts”. Ethereum appeared to be the first widely-
adopted blockchain system that implemented these concepts,
although formerly it was presented as a system for general-
purpose distributed computations. Without a design decisions
aiming at achieving privacy, the Ethereum data explicitly
contains information about the sender and recipient for each
transaction, making it more suitable for conducting research.

B. Ethereum network transaction graph model

For the purpose of our study, Ethereum network can be
represented as a directed graph, where nodes represent network
entities (addresses), whereas edges reflect transactions between
them.

Each edge of this graph has at least the following set of
attributes: transacted value and transaction time[13]. Over time
new edges may be added to the graph but cannot be removed
or modified[20]. Accounting for both incoming value and
outgoing value that has been transacted to/from a particular
node determines the node’s balance at any particular moment
of time.

Besides the financial transactions there are another kind
of transactions related to smart-contract functionality that
Ethereum provides. Smart-contract can be seen as applications
that are running inside the network and may enjoy the same
security guarantees that the ordinary transactions do. They
facilitate the exchange of messages between network entities,
with each message being a transaction carrying arbitrary app-
specific data[8], [10], [11], [9]. This opens up great opportu-
nities for a further research.

C. Obtaining Data and Data-set preparation

We used Google’s BigQuery service to obtain only inter-
esting subset of data through querying block-chain data with
SQL. Google maintains the up-to-date complete Ethereum
block-chain data on their servers and provides a structural

152

query service to allow data scientists analyze the data without
the overhead of downloading gigabytes of data and keeping it
up-to-date.

SQL allows to easily fetch required data. For example, to
obtain every transaction that ever happened, we may write:

1 SELECT from_address, to_address, value
2 FROM `bigquery-public-data

.crypto_ethereum.transactions`↪→

This query will return each transaction separately.
For the sake of simplicity, we will bring individual transac-

tions into aggregated ones based on pair of sender and receiver.
The corresponding query reads:

1 SELECT from_address, to_address,
SUM(value)↪→

2 FROM `bigquery-public-data
.crypto_ethereum.transactions`↪→

3 GROUP BY from_address, to_address

To obtain list of every address, involved in transactions we
can use the following query:

1 SELECT from_address
2 FROM `bigquery-public-data.

crypto_ethereum.transactions`↪→

3 GROUP BY from_address
4 UNION DISTINCT
5 SELECT to_address
6 FROM `bigquery-public-data.

crypto_ethereum.transactions`↪→

7 GROUP BY to_address

Using full Ethereum-addresses during the calculation step
would require a huge amount of memory. Since the set of
network addresses is fixed and known beforehand, we may
mitigate this issue by enumerating them at the pre-processing
step and using integers as identifiers instead. The mapping
(stored as a Python dictionary) can be easily used to resolve
the network address when needed.

Also there is some interest in transaction analysis that
happened over a specific period of time.

D. Nodes embedding

Let
G = (V,E),

where V — the set of all network entities, E — a set of
aggregated transactions between them.

Our primary goal is to process this data using various
machine learning algorithms in order to categorize them into
distinct groups according to the type of their activity on the
network.

Solving this problem directly on the graph model is a
very hard task. Instead, one of the recent approaches – graph

embedding – suggests representing network vertices into a
low-dimensional vector space [16]:

f : V → Rd,

chosen so that preserving information about network topology
structure[18]. Here d is the number of dimensions of our fea-
ture representation. The above requirement can be expressed in
terms of maximizing the likelihood of network neighborhoods
preserving:

max
f

∑
u∈V

logP (NS(u)|f(u)).

The objective can be efficiently optimized using stochastic
gradient descent (SGD) [14]. The idea behind an embedding
is that the neighborhood (the context) of each node to much
extend determines the properties of the node itself.

Here we used the notion of node’s neighborhood [17],
that must be clearly specified before we may continue. More
formally, we have to define a sampling strategies.

Definition 1. For each node u ∈ V , its network neighborhood
NS(u) ⊂ V is generated through a neighborhood sampling
strategy S.

The simplest such strategies are, for instance, Breadth-first
Sampling (BFS) and Depth-first Sampling (DFS), but being
deterministic they represent single node’s neighborhood, fail-
ing to preserve a complex structure of a node’s neighborhood.
Instead, the node2vec approach, that we will work with, solves
this by using randomized procedure to sample many different
neighborhoods for a single node.

E. Random Walks

For each node u, consider the following random walk of
the fixed length ` with the following distribution [15]:

P (ci = x|ci−1 = v) =

{
πvx/Z if (v, x) ∈ E
0 otherwise

Here Z is the normalizing constant, πvx is transition proba-
bility between nodes v and x, defined as:

αpq(t, x) =


1/p if dtx = 0

1 if dtx = 1

1/q if dtx = 2

where dtx denotes the shortest path distance between nodes t
and x.

The two parameters have the following meaning:

1) return parameter p — controls the likelihood of returning
to the same node

2) in-out parameter q — defines if random walk should go
towards node t (when q > 1) or away from it (q < 1).

153

Figure 1. Illustration of the random walk procedure in node2vec. The walk
from t to v is evaluating the next step.

F. Classification of addresses based on extracted features

After the feature representations has been constructed using
node2vec, we can use it to estimate roles of involved entities.
For the constructed features to be useful and meaningful, we
need to keep the number of features as small as possible.

Using unnecessarily high number of dimensions for a fea-
ture space inherently implies ambiguities and the observed
feature vectors is largely determined by random factors, mak-
ing it harder or even impossible to come up with a meaningful
interpretations for them.

In our case, the optimal size of feature space is appeared
to be 3, leading to highly reproducible identifiable patterns in
the results as shown on the scatterplot matrix below.

Figure 2. Scatterplot matrix for 3 dimensional embedding. The color of a
node is defined by the number of other nodes it connects to: green nodes has
at most 2 neighbours, red — up to 8, others are depicted blue.

The nodes on the plot are colored based on the number of
connections to another nodes. An interesting pattern can be
observed about how the most connected nodes are distributed
over the feature space.

Figure 3. Scatterplot matrix for 3 dimensional embedding showing only nodes
with a high number of connections

These nodes are connected to both red nodes with the latter
mostly distributed around them in the feature space and green
nodes cluster positioned at the center, The green nodes that
connects to red ones, in contrast, distributed close to them.

That brings us the following intuition about the role of the
nodes:

1. Blue nodes represents exchange hot wallets, and con-
stantly have to interact with users. 2. Users are red nodes
having moderate number of connections, mostly with an
exchange, but also rarely between themselves. 3. Some of the
green nodes are also users, which happen to have quite a few
transactions from explored substate. 4. But the central green
cluster is the internal addresses, used by blue nodes to do some
financial manipulation behind the scene.

G. Clustering

On the applicability of k-means method
At first we tried to use k-means to do clustering. The

results were more than questionable and highly problematic
to interpret. We thoroughly investigated the structure of data
to found out the underlying reason why that didn’t work.
k-means method can be expressed as optimization problem:

n∑
i=0

min
µj∈C

(||xi − µj ||2),

where µj — clusters centers.
The basic idea is that at each iteration the center of mass

is recalculated for each cluster obtained in the previous step,
then the vectors are divided into clusters again according to
which of the new centers was closer in the selected metric.

The algorithm terminates when at some iteration there is
no change in the distance inside the cluster. This happens in a

154

finite number of iterations, since the number of possible par-
titions of a finite set is finite, and at each step the total square
bias of V decreases, therefore looping is impossible. Using
a different distance function other than (squared) Euclidean
distance may stop the algorithm from converging.

But k-means clustering requires the number of clusters as
a parameter. To determine an optimal number of clusters, we
should use Silhouette analysis.

The silhouette of a data represent how well data is matched
within its cluster but not of the neighbouring cluster. When
Silhouette coefficients is near +1, the sample is separated
from the neighboring clusters, whereas a 0 value would mean
that sample is too close to the boundary and might have been
assigned to the wrong cluster.

But the converging property doesn’t mean the quality of
clustering will be acceptable. Such proprety can be misleading,
however. Another well known property of k-means is faliure
to match clusters with complex geometry.

The warning sign could be too many clusters given as a
result of Silhouette analysis. This step is required to determine
an optimal number of clusters, since it is a parameter of
k-means. The silhouette of a data represent how well data
is matched within its cluster but not of the neighbouring
cluster. When Silhouette coefficients is near +1, the sample
is separated from the neighboring clusters, whereas a 0 value
would mean that sample is too close to the boundary and might
have been assigned to the wrong cluster.

Our data gives the following values of Silhouette coeffi-
cients:

Number of clusters 5 10 15 20 27
Silhouette coefficient 0.247 0.277 0.281 0.315 0.323

Table I
SILHOUETTE COEFFICIENTS

Figure 4. Silhouett analysis for K-means clustering on sample data with n
clusters = 27.

And the optimal number of clusters were 27. The next
warning sign was that we had to use t-SNE (t-distributed
stochastic neighbor embedding) method to visualize that many
clusters. It’s a nonlinear dimension-reduction technique, that
is designed for visualization high-dimensional data in a low-
dimensional space of two dimensions. It maps each high-

dimensional object to a two-dimensional point, so that sim-
ilar objects get mapped to points nearby. Dissimilar objects,
instead, map to distant points with high probability.

The t-SNE algorithm consists of two steps:
• Constructing a probability distribution over pairs of

high-dimensional objects. For given a set of N objects
x1, . . . , xN t-SNE first computes probabilities pij , that
are proportional to the similarity of objects xi and xj :

pi|j =
exp(−‖xi − xj‖2)/2σ2

i∑
k 6=i exp(−‖xi − xk‖2)/2σ2

i

,

pij =
pj|i + pi|j

2N

• t-SNE aims to learn a d-dimensional map y1, y2, . . . , yN
that reflects the similarities pij . It measures similarities
qij between two points in the map yi, yj . The locations
of the points yi in the map are determined by minimizing
the Kullback–Leibler divergence

KL =
∑
i 6=j

pij log
pij
qij

The resulting figure is shown below.
Here we need to make some notes:
1. On the correct picture we see that there exist simple

feature representation, where all addresses are located on the
sphere or very close to it.

2. Addresses were distributed unevenly, mostly in a small
circle area on the surface of the sphere. The central part of that
area is populated with addresses having just a few transactions.

3. K-means failed to detect correctly these clusters: the
circle cluster of highly active nodes has been recognized as
many small clusters instead, leading to a completely incorrect
result.

4. Using t-SNE can even further lead to a misperception,
since it deforms cluster geometry, making the case of circle
cluster broken down into many small ones harder to recognize.

Figure 5. 16-dimensional data as returned by node2vec mapped to 2-
dimensional plane.

On the figure we can see the clustered structure.

155

H. Technical details

We get the data about the addresses with maximum balance.

Figure 6. DataFrame of transactions

Using networkx we find the maximal connected component.
The result was about 25000 nodes.

1 g = nx.from_pandas_edgelist(df,
2 source="from_address",
3 target="to_address")
4 Gc = max(
5 nx.connected_component_subgraphs(g),
6 key=len)

These nodes were then consecutively numbered to obtain
much more concise integer ID, which will be used instead of
20-byte long addresses.

1 Gc_numbered =
2 nx.relabel.convert_node_labels_\
3 _to_integers(
4 Gc, label_attribute="address",
5 ordering="decreasing degree")
6 df_connected_numbered =
7 nx.to_pandas_edgelist(Gc_numbered)

They were processed using node2vec to learn continuous
feature representations. Running the node2vec program with
training parameters dimention (d) = 16, length of walk per
source (l) = 20, number of walks per source (r) = 5, context
size for optimization (k) = 5:

1 ../../snap/examples/node2vec/node2vec
2 -i:df_connected_numbered.csv
3 -o:node2vec_embedding.txt
4 -d:16 -l:20 -r:5 -k:5 -v

For 24936 nodes 1GB Ram is Used and real 0m31.538s
Then we read embedding results into pandas DataFrame.

1 df_node2vec = pd.read_csv(
2 "node2vec_embedding.txt",
3 sep=" ", skiprows=1, header=None)

To analyse the results we need convert back numbered id
to string type and so we change number of node into address
name.

1 df_node2vec_address = df_node2vec.copy()
2 #create a new dataframe for renaming
3 #back node ids to addresses

1 df_node2vec_address =
2 df_node2vec_address.astype({0: str})
3 #convert id to str type and change
4 #node_id to address
5 for i, line in
6 df_node2vec_address.iterrows():
7 node_id = int(line[0])
8 address =
9 Gc_numbered.nodes[

10 node_id]["address"]
11 df_node2vec_address.at[i,0] =
12 address

Then we determine how many clusters is optimal for
clustering and silhouette analysis. Then we use the standard
procedure for silhouette analysis and t-SNE to get graphic
interpretation of clusters.

I. Results and Further research

We have studied various methods to learn feature represen-
tation. While some methods didn’t appear to be acceptable
for the task, the analysis of arising issues and its underlying
reasons have led us to the rigid, scaling and performant
approach. We are going to continue research in this direction.

REFERENCES

[1] Nakamoto, Satoshi. ”Bitcoin: A peer-to-peer electronic cash system.”
(2008).

[2] F. Reid, M. Harrigan, An analysis of anonymity in the bitcoin system,
In: Proc. of IEEE Third International Conference on Privacy, Security,
Risk and Trust, 2012, pp. 1318-1326.

[3] P. Koshy, D. Koshy, P. McDaniel, An analysis of anonymity in bitcoin
using p2p network traffic. In Proc. of Financial Cryptography and Data
Security, 2014, pp. 469-485.

[4] A. Biryukov, D. Khovratovich, I. Pustogarov, Deanonymisation of clients
in bitcoin p2p network. In: Proc. of Computer and Communications
Security, 2014, pp. 15-29.

[5] Monero, Monero-secure, private, untraceable, (https://getmonero.org/),
accessed on Jan. 21, 2018.

[6] V. Monaco, Identifying bitcoin users by transaction behavior, In: Proc.
of Biometric and Surveillance Technology for Human and Activity
Identification XII, 9457(2015):945704.

[7] C. Zhao, Graph-based forensic investigation of bitcoin
transactions, Master’s thesis, Iowa State University, 2014, doi:
https://doi.org/10.31274/etd-180810-3797.

[8] A. Kosba, A. Miller, E. Shi, Z. Wen, C. Papamanthou, Hawk: The
blockchain model of cryptography and privacy-preserving smart con-
tracts, In: Proc. of Security and Privacy (S&P), 2016, pp. 839-858.

[9] C. K. Frantz, M. Nowostawski, From institutions to code: Towards
automated generation of smart contracts, In: Proc. of Foundations and
Applications of Self* Systems, 2016, pp. 210-215.

[10] F. Zhang, E. Cecchetti, K. Croman, A. Juels, E. Shi, Town crier: An
authenticated data feed for smart contracts, In: Proc. of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 270-282.

[11] Wood, Gavin. ”Ethereum: A secure decentralised generalised transaction
ledger.” Ethereum Project Yellow Paper 151 (2014): 1-32.

[12] ” The Ethereum Nodes Explorer”. Accessed April 28, 2018. https://
www.ethernodes.org/network/1/nodes

[13] ”Etherchain - The Ethereum Blockchain Explorer”. Accessed April 28,
2018. https://www.etherchain.org/charts/averageBlockUtilization

156

https://www.ethernodes.org/network/1/nodes
https://www.ethernodes.org/network/1/nodes
https://www.etherchain.org/charts/averageBlockUtilization

[14] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. In NIPS, 2011.

[15] L. Backstrom and J. Leskovec. Supervised random walks: predicting
and recommending links in social networks. In WSDM, 2011.

[16] S. Cao, W. Lu, and Q. Xu. GraRep: Learning Graph Representations
with global structural information. In CIKM, 2015.

[17] L. A. Adamic and E. Adar. Friends and neighbors on the web. Social
networks, 25(3):211–230, 2003.

[18] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75 – 174, 2010.

[19] Grover, Aditya and Leskovec, Jure node2vec: Scalable feature learning
for networks 2016, Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining

[20] Buterin, Vitalik and others A next-generation smart contract and
decentralized application platform

157

A Tool for Identification of Unusual Wallets on
Ethereum Platform

Mikhail Petrov1 Rostislav Yavorskiy2

National Research University Higher School of Economics
Myasnitskaya 20, Moscow, Russia

mishanayrus@gmail.com1 ryavorsky@hse.ru2

Abstract. We present a tool for identifying the most suspicious Ethereum
wallets by finding atypical vertices of the transactions graph. We inspect
different characteristics of the wallets and the transactions they were
involved in during a week. First, we identify ”typical” groups of nodes.
Then the nodes which are far different from all these groups are consid-
ered to be suspicious.

Keywords: Ethereum platform · cryptocurrency transactions · trans-
actions graph.

1 Introduction

Anomaly detection is an area that has been receiving much attention in recent
years. It has a wide variety of applications, including fraud detection, network
intrusion detection, medical diagnosis and other fields. Usually research in this
area is using attribute-value data as the medium from which anomalies are to be
extracted. Some works are focused on anomaly detection in graph-based data. In
our paper we are going to combine these approaches for the goal of identification
of suspicios wallets in a cryptocurrency community.

1.1 Cryptocurrencies and Ether

The area of cryptocurrency is quite young. The first appearance of Ether, the
transactions graph of which will be analyzed in this article, appeared in 2013. By
now the analysis of the Ether community has progressed very little. One can find
quite many articles on the analysis and prediction of cryptocurrencies rates, but
so far few research has been focused on the analysis of exchange communities
for the cryptocurrencies.

It is known that the semantics of transactions of blockchain systems can be
captured by a transaction graph, see e.g. [1]. Such a graph generally consists of
the states and the transactions as transitions between the states, together with
conditions for the consistency and validity of transactions.

Detailed overview of cryptocurrencies could be found in [4].

158

2 M. Petrov, R. Yavorskiy

1.2 Overview of anomaly detection methods

In [8] a comprehensive survey of recent anomaly detection systems and hybrid in-
trusion detection systems is provided, and recent technological trends in anomaly
detection are also discussed. In [2] existing techniques are grouped into different
categories based on the underlying approach adopted by each technique. For
each category key assumptions are identified, which are used by the techniques
to differentiate between normal and anomalous behavior. In [7] two techniques
for graph-based anomaly detection are introduced. The authors suggest a new
method for calculating the regularity of a graph, with applications to anomaly
detection. Experimental results are provided which use both real-world network
intrusion data and artificially-created data. In [5] several information-theoretic
measures, namely, entropy, conditional entropy, relative conditional entropy, in-
formation gain, and information cost for anomaly detection are used.

1.3 Networks analysis

As it was already mentioned, see [7], some anomaly detection method use graph-
based analysis. Besides standard graph analysis library networkx, we are also
using statistical properties of social networks, see [3, 6].

1.4 Structure of the remaining text

The rest of the paper is organized as follows. Section 2 describes the data we
worked with. Section 3 describes the methods we used to analyze transaction
data. Section 4 presents a description of how the points for the strangeness rating
were calculated. Section 5 shows the top 5 vertices as a result of calculating the
suspiciousness rating with the rating values.

2 The data analyzed

In this paper data on all transactions for a week was downloaded using the open
etherium API. Significant characteristics for the community analysis were cho-
sen, and an ether exchange graph was constructed based on them. The vertices
of this graph are the participants in the platform and also the edges are the
transactions between these participants. Further in the received graph, the char-
acteristics of the vertices were calculated, clusters were found, and associative
rules based on them were constructed. As a result, taking into account the data
on graph vertices, clustering, and associative rules, the suspiciousness rating of
vertices was constructed.

Since in this paper we were focused on identifying suspicious and untypical
members in the ether exchange community, only those characteristics that were
useful for analyzing and constructing the graph were extracted from the set of
parameters.

159

A Tool for Identification of Unusual Wallets on Ethereum Platform 3

2.1 Ethereum API

Ethereum API provides information about each block, all transactions and every
members of the network. JSON RPC API of the Ethereum platform currently
supports four programming languages: C++, Go, Python, and Parity. Also there
is an option to access the data via web interface at https://etherscan.io, which
we used.

For our study all transactions executed during a particular week have been
downloaded. That was done using the timestamp field of the blocks and the
method eth getBlockByNumber().

Totally information about 3,382,252 transactions were collected.

2.2 Format of Ethereum transaction data

All transactions were selected from each block and then the following four pa-
rameters were saved for each transaction:

– address of the sender;
– address of the receiver;
– date and time of the transaction;
– the amount of the internal currency (wei) that is transferred.

These characteristics of transactions allow us to construct the graph of an ether
exchange. The vertices in this graph are the addresses of wallets which are either
senders or receivers of these transactions, the edges correspond to the transac-
tions themselves.

In this paper we analyze only total amount sent from node A to node B and
ignore details about the number of transactions and distribution of the amount
between them.

In addition to the total volume transmitted between a pair of wallets, the
frequency of interactions between participants (the number of transactions sent)
could be considered too.

2.3 Transactions graph

The resulting set of transaction on ether exchange was processed and presented
as a graph. The first step to getting the graph was renaming vertices, since
addresses do not make any sense. In order to save memory and more clarity,
they were numbered with the help of natural numbers, and the dictionary with
addresses mapping in the vertex numbers was saved in the file.

Next, we summed the weights of the edges between identical pairs of sender
and receiver, recorded the graph as an adjacency list with edge weights and
the total number of transactions between vertices. As a result, we obtained
an undirected graph with positive and negative edge weights. The graph has
1,577,010 vertices and 4,963,980 edges. To analyze this graph we used networkx,
a common library of the Python language. All further operations for calculating
the various characteristics of the graph have been done with the help of this
library.

160

4 M. Petrov, R. Yavorskiy

3 Analysis

Our anomaly detection analysis consists of the following four parts:

1. Graph connectivity analysis. During this step we put off wallets for
which too few information is available, so no meaningful analysis could be
conducted for them.

2. Analysis of the vertex characteristics. Here we compute degree, cen-
trality and containing k-core for each vertex of the transaction graph.

3. Cluster analysis. The clustering is performed based on the vectors obtained
in the previous section.

4. Association rules are used to find patterns that can be traced in this
graph.

After each part all the vertices are ranged according to their suspiciousness,
and then these ratings are merged into one.

3.1 Connectivity analysis

The next step was to analyze the connectivity components of the obtained graph.
The graph has 35,628 connectivity components. These components can be di-
vided into three groups:

– The main component of a large community. In this component there are
1,474,024 vertices. Most likely, it is a graph of the interaction of people of
some large service or exchange, but the exact meaning is not yet clear. This
component has the biggest interest for analysis and will continue to be the
first in priority.

– The second type is a small groups of ten to a thousand people. Most likely,
these groups are small companies in which payment occurs in the cryptocur-
rency, or small communities that pay cryptocurrency for some services. This
group also deserves attention for analysis, but to a lesser extent.

– The third class includes groups of up to ten people. These are some local
exchanges of money, betting between people. This group has no interest for
analysis, since it does not contain any meaningful information.

As was mentioned above, the first group has the greatest interest for ana-
lyzing, therefore it will be analyzed in the future. The remaining connectivity
components are stored in separate files and their analysis is possible in future
work.

3.2 Vertex Characteristics

Since the main purpose of the work is to distinguish atypical and suspicious
vertices, then we must determine the typical aspects of the obtained community.
Taking into account that the received connectivity component can have multiple
chains of elements with a degree equal to two, therefore the graph has many

161

A Tool for Identification of Unusual Wallets on Ethereum Platform 5

vertices that are just a link in the chain of transmission of the cryptocurrency, it
was decided to allocate the k-cores of the graph of this component. A k-core of
a graph G is a maximal subgraph of G in which all vertices have degree at least
k. To do this, we run a search of the value of k-cores from 1 to 50 and used the
method k core for each value. If the k-core was not found for the value of n, then
it will not be found for n + 1, since any k+1-core is also a k-core. Therefore, if
such a situation arises in searching the k-cores, then the search can be stopped.

The algorithm stopped at k equal to 15, which means that the k-kernels from
1 to 14 were found. Since the sizes of k-cores beginning with k equal to 8 are
already sufficiently small and the 3-core is quite large, 4, 5, 6, and 7 core were
chosen as an optimal from the point of view of time for analyzing the graph.
Based on the selected k-cores we can calculate new characteristics of the vertices.
Three kinds of centrality were calculated for each vertex in the core: betweenness
centrality, closeness centrality and degree centrality. Also we add vertex degree
as a characteristic. On the basis of the obtained data, we can form a vector
that will describe the vertices of the graph (participants of the cryptocurrency
community), split each characteristic into groups of segments and create binary
vectors for deriving associative rules.

As a result, we obtained a 5-dimensional vector characterizing the vertices
of the graph: 3 kinds of centralities; number of the k-core, which vertex belongs;
degree of a vertex. Also, the dimensionality of these vectors could be increased
by adding distance to the hubs for each of the characteristics, but this operation
is planned for the next stages of the work. The resulting vectors can be clustered
now.

3.3 Clustering

Based on the vectors obtained in the previous section, clustering is performed
using the standard k-means method. Since for this method it is necessary to
initially know the number of clusters we must first determine this number. To
determine the optimal number of clusters all numbers from 0 to 200 in steps
of 10 were chosen, clustering was performed and the result were checked with
Silhouette and the shoulder methods.

162

6 M. Petrov, R. Yavorskiy

Table 1. The Silhouette Coefficients

Number of clusters

Coefficient value

10 20 30 40

0.6768368853142156 0.7095846965311733 0.8111177029982155 0.8702494303581093

50 60 70 80

0.9146516160235698 0.9293358278581296 0.9387072507702181 0.9478746102234425

90 100 110 120

0.9505421030096185 0.950768946865395 0.7874773068611389 0.7884553347797727

130 140 150 160

0.7698049042610146 0.7467290976039868 0.7992449839069017 0.7467532658132512

170 180 190

0.7044007926707637 0.6867901637311503 0.665831212711668

As you can see, this method shows that the most optimal number of clusters
is n = 100, but not too far from 50 to 100. The result of the shoulder method is
shown below:

This chart shows that the optimal amount is n = 30. Since the optimal
number of clusters depends very much on the type of data, both methods do
not always correctly indicate the right result, so the combined solution of the
two methods was chosen as the right answer. As a result, the optimal number
of clusters was chosen to be 50 and clustering was performed for it using the k-

163

A Tool for Identification of Unusual Wallets on Ethereum Platform 7

means method. Distribution of the cluster size can be seen in the figure number
3:

It can be seen from the distribution diagram that one strongly dominant in
terms of the size of the elements cluster, two clusters slightly above the average
level, about 15 clusters of medium size and the other clusters of a very small size
were obtained. These results will be used in the next chapter to build associative
rules.

3.4 Association Rules

Now based on all of the characteristics of the community we can try to find
patterns that can be traced in this graph. For example, it may happen that if
the vertex belongs to the 4-core, then its degree must necessarily be higher than
7. To do this, it is necessary to generate binary vectors in which the element
at the i-th position will report whether this element belongs to a certain group
or not. Having formed such vectors, we can find patterns, but on first step
we need to form the groups themselves. For this, it is necessary to analyze
the distribution of the characteristics of the vectors. To achieve this, we should
construction distribution histograms for each of the characteristics. The first and
third graphs of distributions are strongly shifted to the left, and the thresholds

164

8 M. Petrov, R. Yavorskiy

between the groups are not visible, so we need to look at the left parts closer:

From the received observations it is possible to break each of the character-
istics into ranges of values into which approximately equal number of elements
will fall. These ranges will also form groups for finding associative rules. The
result is the following groups:

Table 2. Groups

Degree centrality Betweenness centrality Closenness centrality

0 < x ≤ 0.005 0 < x ≤ 0.0005 0 < x ≤ 0.2

0.005 < x ≤ 0.015 0.0005 < x ≤ 0.001 0.2 < x ≤ 0.3

0.015 < x 0.001 < x 0.3 < x ≤ 0.4

0.4 < x

Generation of binary vectors is now carried out. To search for associative
rules we used the mlxtend library, which is the apriori method to search for
frequent sets of attributes, and then search for associative rules. In our script
the rules with a minimum support = 0.8 are taken so that the existing patterns
are highly probable. As a result of the launch, two associative rules were found:

165

A Tool for Identification of Unusual Wallets on Ethereum Platform 9

Table 3. New rules table

Number Antecedants Consequents Antecedent support Consequent support

0 1 deg. cen. group 1 bet. cen. group 0.997946 0.994034

1 1 bet. cen. group 1 deg. cen. group 0.994034 0.997946

Support Confidence Lift Leverage Conviction

0.993876 0.995922 1.001899 0.001884 1.463008

0.993876 0.999841 1.001899 0.001884 12.922448

To get more associative rules, we need to decrease the support threshold, but
then there will be less probabilistic associative rules, which will contradict the
goal of finding typical signs of this community.

4 Top strangeness rating

Now, when there is a whole set of characteristics of the vertices (clustering
results, clustered vectors, associative rules), we can start isolating their typical
values and finding all the values that will go beyond this framework. For each
overshoot of these boundaries points are entered, which will award the vertices
with these atypical characteristics. For each ”suspicious” characterization points
from 1 to 100 will be given depending on the criticality. At the end, the promised
rating of the suspicious vertices of the community graph will be obtained.

Let’s start with the simplest - associative rules. Here everything is simple,
because if a vector does not obey this rule, then it is atypical for this community.
Here, the scores in the scores will be determined by the value of the support of
the associative rule multiplied by one hundred.

The next will be the scoring of vertices whose vectors are too far from the
center of their clusters. We can calculate the average distance to the center of
each cluster and the variance. Accordingly, if the distance of the vector does not
fall within the range of the mean ± variance, then this vector is atypical. Points
will be calculated according to the following formula:

|mean− distance|
differencemax

,

mean is the average distance to the center in the cluster
distance - the point to the center of a particular windbreaker

differencemax is the maximum difference between the average and the
distance from the vector to the center inside the cluster

Next will be scoring the vertices, whose characteristics of the vectors also go
beyond the limits of the mean ± variance. Here the same normalized formula
will be used, as well as with distances.

The last will be awarded for belonging to atypical small clusters. Since the
sizes of some clusters reach even one, this clearly indicates the atypicality of

166

10 M. Petrov, R. Yavorskiy

the vertices in such clusters. Here we can not use the metric, as in the previous
two cases, because the dimensions are too scattered, the average is quite heavily
shifted to the left and the variance is several times larger than the average, which
moves the left border to the minus. With a normal distribution, the segment of
the mean ± variance covers approximately 68 percent of the values and for a
given number of clusters equal to 50 these 68 percent are 34. Therefore, it was
decided to score points to the vertices contained in the 16 smallest clusters.
Since the number is 16 the vertice that hit the latest one will get 6.25 points;
which falls in the second from the end - 12.5 and so on up to 100. As a result
of summation of the values on the vertices we get the rating of the suspicious
vertices of the community graph for the exchange of ether.

5 Conclusion

5.1 Result

As a result of this work the open API Ethereum platform was used to download
data on all transactions for the week. A community graph on ether exchange was
built for the week. Further, the analysis of the obtained graph, the separation
of the characteristics of vertices, clustering of vertices according to the selected
characteristics and the derivation of associative rules were carried out. The re-
sult of the work is the algorithm for constructing the rating of the suspicious
vertices of the community graph. Since the algorithm generates a rating based
on deviations from the standard values inside the similar wallets groups, the
algorithm finally reveals the most suspicious wallets that differ from the general
background. These wallets most likely have large transaction volumes on the
balances or passing through them.

After summing up all the points by the nodes the rating of the suspicious
vertices for the exchange of the Ether was obtained. Below are the top of 5 values
of this rating:

Table 4. Top 5 suspicious vertices

Value Node number

499.66345040230755 311861

488.3862740302283 633953

481.4078191332377 16010

457.7035133901014 314045

437.19194102533953 1627

As you can see, there are vertices with a fairly large number of points at the
top of the rating, given that the maximum is 700 points. This indicates that
the same vertices received points of 4 or more rules. Hence, it is stands out of

167

A Tool for Identification of Unusual Wallets on Ethereum Platform 11

the general background immediately by several characteristics, which proves its
strangeness.

References

1. Christian Cachin, AD Caro, Pedro Moreno-Sanchez, Björn Tackmann, and Marko
Vukolic. The transaction graph for modeling blockchain semantics. Technical report,
Cryptology ePrint Archive, Report 2017/1070, 2017.

2. Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):15, 2009.

3. Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,
dynamics, and function using networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

4. Jan Lansky. Possible state approaches to cryptocurrencies. Journal of Systems
Integration, 9(1):19–31, 2018.

5. Wenke Lee and Dong Xiang. Information-theoretic measures for anomaly detection.
In Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on,
pages 130–143. IEEE, 2001.

6. Mary McGlohon, Leman Akoglu, and Christos Faloutsos. Statistical properties of
social networks. In Social network data analytics, pages 17–42. Springer, 2011.

7. Caleb C Noble and Diane J Cook. Graph-based anomaly detection. In Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 631–636. ACM, 2003.

8. Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques:
Existing solutions and latest technological trends. Computer networks, 51(12):3448–
3470, 2007.

168

Vulnerabilities Detection via Static Taint Analysis
Nikita Shimchik

Ivannikov Institute for System Programming
of the Russian Academy of Sciences (ISP RAS)

Moscow, Russian Federation
shimnik@ispras.ru

Valery Ignatyev
Ivannikov Institute for System Programming

of the Russian Academy of Sciences (ISP RAS),
CMC MSU

Moscow, Russian Federation
valery.ignatyev@ispras.ru

Abstract—Due to huge amounts of code in modern software
products, there is always a variety of subtle errors or flaws
in programs, which are hard to discover during everyday use
or through conventional testing. A lot of such errors could be
used as a potential attack vector if they could be exploited
by a remote user via manipulation of program input. This
paper presents the approach for automatic detection of security
vulnerabilities using interprocedural static taint analysis. The
goal of this study is to develop the infrastructure for taint analysis
applicable for detection of vulnerabilities in C and C++ programs
and extensible with separate detectors. This tool is based on
the Interprocedural Finite Distributive Subset (IFDS) algorithm
and is able to perform interprocedural, context-sensitive, path-
insensitive analysis of programs represented in LLVM form.

According to our research it is not possible to achieve good
results using pure taint analysis, so together with several en-
hancements of existing techniques we propose to supplement it
with additional static symbolic execution based analysis stage,
which has path-sensitivity and considers memory region sizes
for filtering results found by the first stage. The evaluation of
results was made on Juliet Test Suite and open-source projects
with publicly known CVE.

Index Terms—static code analysis, taint analysis, vulnerabili-
ties

I. INTRODUCTION

In the paper we consider a specific subset of all possible
software vulnerabilities – ones which are caused by utilizing
unchecked user-provided data in critical functions or code
instructions. This class includes, but is not limited to vul-
nerabilities allowing such important attacks as SQL Injection,
Buffer Overflow and XSS attacks.

One group of methods used to represent and discover such
vulnerabilities is called taint analysis. In general, taint analysis
starts from so-called taint sources – pre-defined functions,
which provide special ”tainted” data. For example, we may say
that the result of a read() call will contain untrusted data and
thus call it a taint source. Besides that, any value dependent
on tainted data is declared to be tainted itself.

There are also so-called taint sinks – special functions
or instructions which should never accept tainted data as
arguments. Continuing our example, it is not safe to use values,
obtained from read() call, as a buffer index, since this may lead
to a memory corruption and a variety of other problems, thus
we may call any pointer dereference instruction a taint sink.

Taint analysis is expected to report such potentially danger-
ous data flows for a manual or automated verification.

Taint analysis may be performed both as a part of dynamic
and static analysis and each approach has its own advantages
and drawbacks.

Dynamic analysis is performed during program execution
and thus has low false positive rate, but it requires a lot of test
runs and it could be close to impossible to explore all possible
execution paths in a non-trivial program due to path explosion
problem – this is important since some vulnerabilities could
actually be hidden on complex execution paths, which are hard
to discover using dynamic analysis or testing.

Static analysis on the contrary doesn’t execute the analysed
program, but processes some kind of model instead. Depend-
ing on a specific algorithm, this could enable an analyzer
to explore almost all possible execution paths, which is a
significant advantage in terms of security, but is also likely
to increase amount of false positives due to inconsistencies
between program and its model.

In this work the term ”taint analysis” will be used to
refer to ”static taint analysis” and we define taint sources as
all functions providing untrusted data and taint sinks as all
instruction parameters or function call arguments which may
cause undesired program behavior if one allow an attacker to
pick an arbitrary value for it.

We propose some extensions to the interprocedural context-
sensitive taint analysis algorithm originally defined in [1].
Implementation of the algorithm is based on the LLVM com-
piler infrastructure and uses LLVM bitcode as an intermediate
representation.

The paper is organized as follows. In Section II we briefly
discuss the general idea of IFDS algorithm and its application
to the taint analysis problem. Section III describes several
approaches developed to make memory model used by taint
analysis more precise and our improvements of indirect calls
resolution. Section IV summarizes our attempts to decrease
false positive ratio by performing additional verification step
for all reported vulnerabilities. Section V reports experimental
results. In the last section, we summarize the results of the
work and present directions of future research.

II. RELATED WORK

A. IFDS Framework

Reps et al. [2] introduced an efficient, context-sensitive
and flow-sensitive dataflow analysis framework which is able
to solve a large class of interprocedural dataflow problems.

169

This class of problems is called IFDS (Interprocedural, Finite,
Distributive, Subset) problems and consists of all dataflow
problems in which the set of dataflow facts is a finite set and
dataflow functions distribute over the meet operator (either ∪
or ∩). The algorithm solves an IFDS problem in a polynomial
time by transforming it into a problem of reachability along
interprocedurally realizable paths. The complexity of the algo-
rithm is shown to be O(ED3) in general case and O(ED) for
locally separable problems, where E is the number of edges
in the interprocedural control flow graph and D is the number
of dataflow facts.

According to the algorithm, the program should be repre-
sented as a directed super graph G = (N,E), which contains
a union of all functions’ control flow graphs (CFG) with some
special nodes and edges described below.

• There is a single entry and exit node for every function
in a program.

• Every call statement is represented with two adjacent
nodes: a call-site node and a return-site node. For every
such statement there is an intraprocedural edge from
call-site to the corresponding return-site node, an inter-
procedural edge from the call-site to the corresponding
called function’s entry node and an interprocedural edge
to the return-site coming from the corresponding called
function’s exit node.

The general idea of the algorithm is to construct a directed
exploded super graph Ge = (Ne, Ee) with Ne = N ×D set
as nodes (where N is the set of super graph nodes and D is
the set of dataflow facts) in which any node (s, d) is reachable
from a special start node iff the dataflow fact d holds at node
s.

Later several extensions to the IFDS algorithm were pro-
posed by Naeem et al. [3], such as constructing nodes of a
super graph on demand (which is important when dealing with
large D sets) and exploiting existing subsumption relationships
between elements of D set to perform more efficient analysis.
It has been reported that these extensions are often necessary
when applying the IFDS algorithm to non-separable problems,
such as alias set analysis.

B. IFDS based taint analysis

Flowdroid [4] is one of the most well-known implemen-
tations of the IFDS framework for data leaks detection in
Android applications. It demonstrates a possibility to perform
taint analysis in terms of IFDS framework and also explains
how to combine on-demand backward alias analysis with a
regular forward taint analysis. In Flowdroid, dataflow set D
is defined as the set of access paths, plus a special ”true” fact
[∅]. An access path consists of a base value (such as a local
variable or parameter) with potentially empty ordered list of
fields and could be written e.g. like 〈x; f, g〉 which corresponds
to x.f.g Java expression, where x is the name of the base
object, f is the name of the dereferenced field of x object and
g is one of the fields of x.f object.

Dataflow fact x.f holds at node s iff an object, which is
accessible through this access path at s, may contain tainted

data here. x.f being tainted implies the fact that all object,
accessible through this object (such as already mentioned
x.f.g), are also considered tainted.

III. TAINT ANALYSIS STAGE

Our experience with the development of vulnerabilities
detection tool based on taint analysis shows that resulting
warnings contain a lot of false positives. Particular results
evaluation makes it possible to discover 2 main roots of the
problem: path-insensitivity and inaccurate sizes of tainted ob-
jects. It’s unclear how to resolve both issues without complex
memory model, which would allow to build path and object
size conditions. We deal with it by using external symbolic
execution engine, forcing it to execute the exploded graph
subset corresponding to any specific warning.

Initial warning set is generated by the tool based on [1]
and is greatly inspired by Flowdroid design. It uses LLVM
as intermediate representation. Due to a low-level nature of
LLVM bitcode, we use another definition of access path:
an access path consists of a base value (which is an actual
LLVM value) and an ordered list of dereference offsets. This
definition is suitable for referencing both structure fields (since
in LLVM bitcode it is possible to calculate a fixed offset for
any structure field) and memory locations, accessible with a
help of simple pointer arithmetics. In this paper we will use
[pointer, offset] to denote value, accessible through dereference
of pointer value plus offset bytes, [integer] to denote value of
the integer, and [∅] to denote a special ”true” fact. It is possible
to specify a list of offsets to define a sequence of consecutive
dereferences.

Let’s consider an example on Fig.1, written in C language.

extern void *a;
extern void *b;

void source(int *pointer) {
scanf("%d", pointer);

}

void sink(int size) {
memcpy(a, b, size);

}

void foo(int *t) {
source(t);
sink(*t);

}

Fig. 1. Example of program with interprocedural taint flow

Omitting insignificant details, it is possible to say that

• scanf function call is a taint source, since it changes the
value pointed to by the pointer parameter to an arbitrary
value chosen by the user.

170

• memcpy function call copies size bytes from the object
pointed to by b variable to the object pointed to by a
variable. We may call it a taint sink, since it is dangerous
to specify size values greater than actual size of objects
pointed to by a or b.

• source function’s entry-to-exit subgraph can be sum-
marized with the path edge (source-Entry, [∅]) →
(source-Exit, [pointer, 0]), i.e. value of [pointer, 0] be-
comes unconditionally tainted.

• sink function’s subgraph can be summarized with the path
edge (sink-Entry, [size])→ (Sink, [size]), i.e. tainted data
would reach a taint sink if the value of [size] is known
to be tainted at the entry of the sink function.

• foo function’s subgraph can be summarized as
(foo-Entry, [∅])→ (source-callsite, [∅])
→ (source-retsite, [t, 0])
→ (sink-callsite, [t, 0])
→ (Sink, [size]), i.e. tainted data unconditionally reaches
a taint sink.

Unlike in known implementations and Flowdroid we don’t
store the whole exploded super graph, because it requires too
much memory for regular industrial project with millions lines
of code even if this graph is constructed on-demand. To solve
this issue another analysis mode was developed, which doesn’t
require exploded super graph edges to be constructed. The
existing IFDS analysis engine was supplemented with function
summaries (similar to [3]) and explicit taint traces, which
makes it possible to show user where the tainted data originate
from and how did it get to the taint sink without the need to
store the graph itself.

As we’ve noticed during analysis of selected open source
projects, the majority of taint sources is usually located
”far” from each other in a program and thus their taint
flow subgraphs are rarely intersecting. To decrease memory
consumption, we have added an ability to run a separate
analysis for every taint source. Therefore, exploded graph
nodes and summaries can be cleared, but the total analysis
time could increase since parts of the program graph can be
potentially analyzed more than once.

The second significant difference with other implementa-
tions is that each request for a set of aliases for any specific
tainted value is handled in a separate local environment with
its own IFDS solver and exploded super graph. The graph
is cleared after the call and only the resulting aliases set is
preserved so that it could be reused both in main taint analysis
and when calculating other aliases sets.

Remaining improvements are discussed in following sub-
sections III-A and III-B with more details.

A. Unresolved function calls

When examining a call site we assume that it is trivially
easy to determine the called function by the generated bitcode.
Unfortunately, C and C++ programs contain calls, whose
targets couldn’t be determined until runtime. There are three
main sources of such unresolved calls, described below:

1) virtual functions;

2) external functions;
3) indirect calls.

C++ virtual function is a member function declared within
a base class and overridden by the method in the derived
class. When performing a virtual call, the called function is
determined by the actual type of the object and may vary
in runtime. Such calls were already handled in the previous
implementation of the algorithm [1] by adding interprocedural
edges to all possible overrides.

Another case of a call with unknown called function is
an external call. There are two main kinds of external calls:
library functions and system calls. In both cases the analyzed
program doesn’t contain called functions’ definitions and thus
we cannot add any ”call-site to entry” and ”exit to return-site”
edges to the call and has to rely on ”call-site to return-site”
intraprocedural edge only.

By default we assume that an external function can change
values of all its arguments, unless it contradicts with language
semantics, so the corresponding facts are not propagated
further. We also assume that external function doesn’t change
value of any global variable and leave it tainted. Usually such
assumptions lead to an undertainting and thus we’ve developed
several ways to deal with this issue:

1) Since there is a limited number of system functions
and most of them are well-documented, it is possible
to create summaries (models) for most frequently used
ones manually. Our tool also provides the list of external
functions encountered during analysis, which makes
it possible for user to prepare summaries for them.
It’s also possible to specify custom sources, sinks and
propagators using similar files in JSON format – those
summaries are applied at ”call-site to return-site” edges.

2) For an open-source library it is possible to compile
it into LLVM bitcode and then link it together with
the analyzed program’s representation using llvm-link
program, which is a part of LLVM infrastructure.

3) If some specific parameter of an external function has
type with const qualifier, which specifies that its value
should remain unchanged after invocation, we derive
a rule for propagating taint through the corresponding
argument in every call of this function. Unfortunately,
a lot of type-related information, including constancy,
is lost during compilation, so we had to add several
modifications to the Clang compiler in order to store
this information in the LLVM metadata.

Lastly, there is another type of calls where the memory
address of the called function is calculated at runtime – such
calls are named indirect calls. It is possible to say that a
virtual call is just a special case of such indirect call. C
developers sometimes use indirect calls to simulate virtual
calls functionality available in C++ and thus it could be
important to support such calls. For example, such technique
is used in security-critical OpenSSL library.

We’ve evaluated several ways to handle indirect calls,
described below. Firstly, we make the following assumptions

171

for an indirect call:
(A) the indirect call is never used for invocation of any

external function, thus the analyzed program contains
definitions for all possible candidate functions;

(B) the set of all possible candidates is completely deter-
mined by the program itself, which means that for all
possible target function there is a path in the program
where the address of the given target is taken and
transferred to the indirect call instruction.

If (A) is considered to be false, such indirect call is
actually an external call and should be handled as appropriate,
otherwise we can examine following approaches:

1) The naive approach is to take every function definition
with compatible parameter types and consider as a can-
didate. The problem of this approach is that all functions
with 0 parameters are indistinguishable and most func-
tions with 1-2 parameters are divided into large clusters.
If we also assume (B) to be true, this approach could be
slightly improved by excluding functions, whose address
was never explicitly taken in the program.

2) Another approach relies on the assumption that both
functions and variables in a program are usually named
according to their semantics. In this case it should be
possible to compare similarity between call instruction
and different call candidates to choose the most likely
called function. Unfortunately, the function and variable
names are virtually never plain equal and while it should
be possible to write an automated heuristic, its results
would be unreliable due to lack of formal specifica-
tions regarding naming. Such a heuristic would need to
put ”encrypt string”, ”EncryptString”, ”EncryptUTF”,
”encstr” names into the same similarity cluster, but
differentiate between ”encrypt” and ”decrypt” function
names. Common abbreviations, such as ”Context – ctx”
and ”Source – src” may also pose a problem.
Right now we use a semi-automated solution, where the
naive approach is used to generate a .txt file with ”ex-
pression name” → ”{called function names}” mapping,
which can be filtered by a user for further analysis runs.

3) Assuming both (A) and (B) are true, it should be possi-
ble to implement an interprocedural backward-dataflow
analysis to find possible candidates for an arbitrary
indirect call. We suppose that one of the problems of
such analysis is that its results are used to add missing
interprocedural edges to the super graph, but at the same
time they are dependent on the super graph structure,
thus it should be performed as an iterative process. We
don’t have a working implementation of this approach
by now.

B. Memory model

As it was already mentioned in Section III, we use an access
path based memory model with an access path defined as a
combination of base value and an ordered list of dereference
offsets.

In the current implementation, offsets are represented with
either constant integers or a special λ-offset, which is used to
denote an unknown offset. This λ-offset has a special behavior:
given any pointer ptr and a constant offset a, access path
[ptr, λ] is considered to be subsuming [ptr, a], i.e. the statement
b = ptr[a] would propagate taint from either one of these
access paths to [b], but the statement ptr[a] = 0 would
remove taint from the second one only.

Usage of arbitrary integer offsets instead of object fields in
access paths, what is required to achieve complete support of
all C++ features, leads to an extremely large D set, which
has a great impact on worst-case complexity of the algorithm.
Thus it is necessary either to make sure that transfer functions
would work with a limited subset of D for any given program,
or to limit path length in the exploded super graph.

While this special offset enables us to give a simple
and efficient representation for complex expressions like
s->packet+len+left, where s->packet is a pointer
and len and left are non-constant offsets, it inevitably leads
to an overtaint problem, because λ-offset doesn’t restrict the
set of possible values and any two λ-offsets are considered to
be equal.

While it is possible to extend this model to achieve more
precise analysis, it’s required to keep reasonable size of the D
set. We’ve evaluated following approaches:

1) A relatively simple extension of the model is to in-
troduce ”unknown non-negative” offset λ+, which is
included into ”unknown” λ-offset. Let us assume that an
instruction writes tainted data into a single element with
unknown index of an array field of an object. As a result
the whole object becomes tainted, because resulting
access path will be equal to [this, offsetof(field) + λ] =
[this, λ]. If the used index is nonnegative, because it
corresponds to an unsigned variable, it’s possible to
achieve better precision, tainting only consequent part
of the object with the help of λ+.
This approach has allowed us to slightly decrease
amount of false positives on LibTIFF library, but it
hasn’t proved to make any difference in other cases,
since buffers are usually accessed via pointers and this
situation seems to be rather an exception.

2) The access path is the core of used memory model. It’s
possible to use interval domain to get better granularity
and precision. The model requires to define a number
of predicates, such as that one access path corresponds
to the memory region included into region of another
access path. Since AP construction and predicate cal-
culation for interval domain is significantly slower and
the total number of created access paths (the size of the
D set) grows significantly too, the total analysis time
becomes unacceptable.

3) We also tried to implement another extension of mem-
ory model which uses symbolic expressions instead
of integer offsets in access path. But this approach
requires to gather constraints for these offsets using
LLVM-instructions which are usually ignored by the

172

IFDS engine, because values of these variables are
not tainted. Therefore it’s better to build a dedicated
symbolic execution engine and integrate it with existing
IFDS engine or to build taint analysis immediately on
symbolic execution [5]. Because of this we decided to
use an existing symbolic execution tool as a second
analysis stage.

4) We also considered using a region based memory model,
similar to the one proposed in [6], since that would allow
us to merge all aliases in a single data fact, instead
of propagating them independently. We don’t have a
working implementation of this approach.

IV. ANALYSIS RESULTS REFINEMENT STAGE

One of the likely reasons of false positives is the lack
of path-sensitivity in the IFDS algorithm. Let’s consider a
modified example based on a typical buffer overflow test from
the Juliet Test Suite for C/C++ on Fig.2.

extern int globalFive;
int data = -1;

if(globalFive == 5)
{
fscanf(stdin, "%d", &data);

}

if(globalFive != 5)
{

int buffer[10] = { 0 };
if (data >= 0)
{

buffer[data] = 1;
}

}

Fig. 2. Example for path insensitivity problem

There is a single taint source fscanf(data) and a single taint
sink buffer[data]. Due to path-insensitivity of the algorithm,
it reports a dangerous data flow between those instructions,
but in reality there is no realizable path from source to sink,
because that would require variable globalFive to be equal to
5 and not to be equal to 5 at the same time.

There are different ways to solve this issue. We propose
performing a two-stage analysis: the first step is done by a
relatively fast and simple analyzer, which is able to detect
most errors in the program but also produces a high amount of
false positives and a second one is performed by a slower but
more precise path-sensitive analyzer, whose task is to confirm
or reject reports from the first stage.

Similar two-staged approach, consisting of static and guided
dynamic analysis was proposed for example in [7] [8]. Pre-
liminary static analysis helps to avoid path explosion problem
in dynamic analysis, since it is necessary to check only those
execution paths, which were already discovered by the first
stage.

We propose an analogical combination of two static anal-
yses: IFDS-based analysis and symbolic execution. Unlike
building taint analysis using static symbolic execution without
IFDS framework, as we have already done for C# in [5],
or as it is done for C and C++ in Svace [9], two-staged
approach allows to deal with following issues. Every general
purpose static analyzer is required to balance between analysis
precision and performance. We can enable very detailed and
precise analysis because it’s necessary to handle only minimal
amount of possible dangerous paths, found by the previous
stage. Hence states explosion problem together with conditions
simplification for analyzer with states merging are solved.

We decided to use an existing symbolic execution engine
for a second stage and the main requirement was that it should
work with program representation in LLVM bitcode format to
ease exchanging data between stages.

As an experiment, we consider a simpler form of report
confirmation – a path confirmation. In this case the only
task of the second analyzer is to confirm that the source-
sink path is realizable and it doesn’t need to know anything
about the vulnerability itself. Hereafter we plan to built more
precise condition for each type of detected error. For example,
considering usage of tainted data as an array index, we can
ensure proper sanitizing by building condition to check if the
index is out of bounds.

A. KLEE

KLEE [10] is a well-known open-source symbolic execution
engine which is actively developed since 2008 and has more
than one hundred related publications [11].

It analyses programs in LLVM format and is able to mix
both concrete and symbolic execution. To enable symbolic
execution, the program should be explicitly annotated with
special functions, which are used to mark symbolic values
to be created, conditions to be checked etc. This should be
done either manually, or by linking the program with a special
implementation of system libraries, such as uClibc [12].

We have tested a simple way to transfer information about
taint sources and sinks in program to KLEE by instrumenting
bitcode file with necessary special functions calls.

The path confirmation problem was modeled as follows:
Every warning trace contains an ordered list of instructions

(tracepoints) in a program along the path from source to sink,
which are important to demonstrate to user the taint flow. For
every tracepoint except the last one corresponding to the sink,
a special global variable tracepoint i j is created, where i is
the index number of the current report trace and j is an index
number of the tracepoint.

At the first tracepoint of every trace i we insert an LLVM
instruction, corresponding to the assignment

tracepoint_i_1 = 1;

At every other tracepoint j of the trace i we insert LLVM
instructions, corresponding to the code

if (tracepoint_i_(j-1))

173

tracepoint_i_j = 1;

At the sink we insert an equivalent of the code

if (tracepoint_i_(j-1))
klee_report_error(...);

In this terms, the error would be reported iff KLEE has
found a realizable path which visits all tracepoints of the trace
in a proper order.

Unfortunately, while the concept seemed to be working for
simple test cases (and even there were some difficulties with
external functions), the general idea has proved to be not so
easy to properly implement.

In particular, we encountered following issues:
• KLEE doesn’t support memory regions with symbolic

size. It means that it’s necessary to explicitly specify
size for every input string and memory buffer, which is
inappropriate for us. This problem is addressed in [13]

• KLEE as is can’t start analysis from an arbitrary point of
the program. It is acceptable for tests generation, but it is
not very suitable for our purpose, since we are interested
in simulating of a relatively small subpath from source
to sink. In addition many libraries don’t have any entry
point at all. The problem is addressed in [14]

• By design KLEE uses program traversing strategy which
is aimed to increase code coverage. However, we were
not satisfied with the existing ”covering-new” heuristic
and would need to implement another one for directed
symbolic execution similar to [15].

• By default, KLEE works on self-contained isolated pro-
grams that don’t use any external code (e.g. C library
functions), but in practice most programs use external
functions calls. To solve this issue, it is possible to link
the program with the library or model representation or
to automatically generate stub definitions for unknown
functions.

After successful experiments on artificial tests, we’ve tried
KLEE to automatically confirm our reports on the relatively
small library LibTIFF, but we haven’t managed to find a way
to reach even the taint source.

As a conclusion, we’ve decided that it would be too hard
to adapt this tool to our problem and it is better to use a pure
static analysis approach.

B. Svace

Svace [16] is a static analysis tool for bug detection de-
veloped at the Institute for Systems Programming, Russian
Academy of Sciences. It supports analyzing program written
in various programming languages, including C, C++, C# and
Java.

Unlike the previous tool, it performs purely static analysis,
which means that it doesn’t necessarily require a full model
of the analyzed program and is suitable to analyze libraries
without executable files.

We started with creating a symbolic execution based checker
for Svace, which analyses the modified LLVM bitcode file to

confirm the existence of a realizable source-sink path for traces
of warnings reported by the first stage.

For the proof of concept, report traces are represented in a
following manner:

1) Temporarily we don’t use any tracepoints, other than
the first corresponding to the source and the last one
corresponding to the sink.

2) All unique sources appearing in any reported source-sink
pair are sorted and enumerated. If tainted data from the
source haven’t reached any sink, such source is ignored.

3) For every source, a global variable source i tainted is
created, where i is the source’s index number.

4) A special function call
taint_variable(source_i_tainted) is
inserted after every source statement in the program to
tell the analyzer that the variable is tainted.

5) A special function call
check_tainted(source_i_tainted) is
inserted before every sink statement appearing in
a source-sink pair, where i is the corresponding source’s
index number.

For every function containing either taint variable or
check tainted call, a summary is created. Summary contains
intraprocedural reachability condition of the corresponding
source or sink. Similar summaries are created for every caller
function and contain conjunction of call reachability condition
and condition from the callee translated into the caller context.
Error condition is equal to the conjunction of the current
path condition, the source reachability condition and the sink
reachability condition. The resulting condition is passed to a
solver for every function call, containing sink. If the resulting
condition is UNSAT checker classifies corresponding report as
false positive.

Hereafter we plan to check the reachability condition of the
whole path or set of paths, instead of source to sink subpath.
For example the entry point can be considered as the entry
of nearest function containing source to sink path. We also
want to filter out sanitized taints by checking corresponding
security conditions.

V. TESTING RESULTS

First of all, we performed empirical evaluation of some of
the memory usage enhancements mentioned in Section III. We
have launched analysis 4 times on libssl library from OpenSSL
version 1.0.1f with following configurations:

1) Baseline configuration, with most enhancements dis-
abled

2) Default configuration
3) Default configuration without separate sources analysis
4) Default configuration with full exploded graph instead

of currently used taint traces
This library contains 3 taint sources and was chosen for the

demonstration because it contains a well-known ”Heartbleed”
(CVE-2014-0160) vulnerability, which was successfully found
by the analyzer. Also we have to mention the fact that baseline

174

TABLE I
EVALUATION OF MEMORY CONSUMPTION

Configuration # Reports Time Memory
(1) 75 45 s 938 Mb
(2) 75 55 s 318 Mb
(3) 75 53 s 467 Mb
(4) 75 45 s 580 Mb

configuration exceeds 20 Gb RAM usage limit on a full
openssl executable – it contains 162 taint sources and has
a huge taint flow graph mostly because of extensive use of
cryptographic library libcrypto. Thus mentioned enhancements
seem to be necessary for the analysis of programs with vast
taint flow graphs.

Another launch without ”const” qualifier handling in ex-
ternal function calls mentioned in Subsection III-A shows
decreased amount of reported warnings from 75 to 67, amount
of covered functions from 141 to 136 and the decrease of the
number of performed algorithm iterations from 3.61 millions
to 3.02 millions.

Regarding two-stage analysis concept, we’ve performed an
evaluation on the set of artificial tests, which was created
during development of the first stage analyzer. While these
tests were not designed to test path confirmation, that allowed
us to find some obvious implementation flaws and compare
analysis time of both stages.

TABLE II
EVALUATION OF ANALYSIS TIME ON ARTIFICIAL TESTS

Stage # Tests # Passed Time
First 266 263 1m 16s
Both 175 167 15m 38s

Second stage analyzer has been launched for 175 tests in
which first stage analyzer produced at least a single report to
be confirmed.

Out of 8 tests, incorrectly filtered out by the second stage
analysis:

• 3 were caused by the lack of indirect and virtual calls
support in the second stage analyzer

• 3 were caused by incorrect interpretation of traces pro-
duced by a backward analysis checker

• 2 has failed because of merged or duplicated reports,
which seems to be an implementation issue

The substantial slowdown of the second stage analyzer is
most likely caused by the fact that Svace is a general-purpose
tool and performs a lot of actions which are not necessary
for the path confirmation checker. Also, it requires more time
to bootstrap and initialize analysis, which makes difference
because every test file was analyzed in a separate instance.

We’ve also checked two-stage approach on Juliet
1.3 test suite for C/C++ [17] with and without
work-in-progress Svace checker. The first stage was
launched on a program which consists of all unix
tests from CWE121 Stack Based Buffer Overflow,

CWE122 Heap Based Buffer Overflow,
CWE126 Buffer Overread and CWE127 Buffer Underread
directories. There were 2240 taint sources in the analyzed
program. Some tests use a hardcoded index instead of
user-provided data for buffer overflow – such overflows
cannot be discovered by the analyzer since there are no taint
sources.

TABLE III
EVALUATION OF TWO-STAGE ANALYSIS ON JULIET TEST SUITE

Stage # Reports True positive rate Time Memory
First 1982 43% 8m 58s 1.7 Gb

Second 1404 43% 9m 37s 7.5 Gb
Second∗ 804 72% 9m 52s 7.7 Gb

∗We don’t have a working solution for security conditions
checking right now. For the purpose of proof of concept,
we’ve implemented a simple addition to the current path
confirmation checker, which should check that all LLVM
values corresponding to the access paths from the reported
trace are able to have arbitrary high values. This is not a
proper implementation of security conditions checking, but is
enough to demonstrate filtering out most false positives on this
particular test suite.

As it can be seen from the evaluation data, path confirmation
checker alone is not enough to improve analysis results on
the selected test suite, because it doesn’t contain tests with
unrealizable paths between source and sink. Also, the current
version of the checker was able to confirm path only for 1404
warnings from the first stage analyzer results, which has to be
investigated.

However, if supported with a security conditions checker,
this approach seems to be able to significantly decrease amount
of false positives among reported warnings without affecting
performance of the analysis.

Unfortunately, current implementation of the path confir-
mation checker is not yet able to confirm real vulnerabilities,
which are known to be detectable by the first stage analyzer.

In case of OpenSSL library and CVE-2014-0160 vulnerabil-
ity, the second stage analysis appears to lose information about
taint sinks in several functions. This is most likely caused by
imperfection of the checker and will try to fix it in the nearest
future.

In case of LibTIFF library and CVE-2018-15209 vulnera-
bility, the taint path could not be confirmed because it requires
handling of indirect calls which is not yet supported by the
checker.

Therefore our testing shows that the concept seems to be
promising, but still requires further refinement.

VI. CONCLUSION

Performing taint analysis for vulnerability detection via
pure IFDS approach has several limitations in comparison to
existing buffer overflow checkers, such as [9]: it doesn’t make
any assumptions about buffer size and is unable to detect
several cases even from Juliet Test Suite, because there are

175

no taint sources. For example, if a constant array index is
used to access memory outside of array bounds. Moreover,
considering error detection problem, pure static taint analysis
generate too many alarms to be able to find few vulnerabilities
uncaught in an industrial project. The majority of false alarms
are introduced by path-insensitivity and overtainting due to
inconsistencies between a program and its memory model. Our
experience shows that addons to simple and efficient memory
model used by IFDS lead to unreasonable analysis slowdown
and offer just a minimal results improvement. Therefore a
postprocessing of results is required.

Proposed approach with two-staged analysis looks promis-
ing, but requires a lot of enhancements to achieve industrial-
level quality and there are no guaranties that it is even possible.

We are going to continue our research by developing other
types of report confirmation in Svace infrastructure, since
despite all listed limitations, the tool has a potential to discover
serious vulnerabilities, such as ”Heartbleed” in OpenSSL and
CVE-2018-15209 in LibTIFF.

REFERENCES

[1] V. Koshelev, A. Izbyshev, and I. Dudina., “Interprocedural taint analysis
for LLVM-bitcode,” Trudy ISP RAN / Proc. ISP RAS, vol. 26, pp. 97–
118, 2014, (in Russian).

[2] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” POPL ’95, pp. 49–61, 1995.

[3] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical extensions to the
IFDS algorithm,” Compiler Construction 2010, pp. 124–144, 2010.

[4] S. Arzt, S. Rasthofer, C. Fritz, A. Bartel, J. Klein, Y. L. Traon,
D. Octeau, and P. McDaniel, “FlowDroid: precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,”
PLDI ’14, pp. 259–269, 2014.

[5] M. V. Belyaev, N. V. Shimchik, V. N. Ignatyev, and A. A. Belevantsev,
“Comparative analysis of two approaches to static taint analysis,”
Programming and Computer Software, vol. 44, no. 6, pp. 459–466, 2018.

[6] Z. Xu, T. Kremenek, and J. Zhang, “A memory model for static
analysis of C programs,” Leveraging Applications of Formal Methods,
Verification, and Validation, pp. 535–548, 2010.

[7] A. Y. Gerasimov, L. V. Kruglov, M. K. Ermakov, and S. P. Vartanov,
“An approach of reachability determination for static analysis defects
with help of dynamic symbolic execution,” Trudy ISP RAN / Proc. ISP
RAS, vol. 29, pp. 111–134, 2017, (in Russian).

[8] A. Y. Gerasimov, “Directed dynamic symbolic execution for static
analysis warnings confirmation,” Programming and Computer Software,
vol. 44, no. 5, pp. 316–323, 2018.

[9] I. A. Dudina and A. A. Belevantsev, “Using static symbolic execution to
detect buffer overflows,” Programming and Computer Software, vol. 43,
no. 5, pp. 277–288, 2017.

[10] C. Cadar, D. Dunbar, , and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” OSDI
’08, pp. 209–224, 2008.

[11] Publications • KLEE. [Online]. Available:
http://klee.github.io/publications/ [Accessed: 20-Mar-2019]

[12] klee/uclibc: KLEE’s version of uClibc. [Online]. Available:
https://github.com/klee/klee-uclibc [Accessed: 2-Apr-2019]

[13] M. Šimáček, “Symbolic-size memory allocation support for Klee,”
Master’s thesis, Masaryk University, Faculty of Informatics, Brno,
2018. [Online]. Available: https://is.muni.cz/th/mdedh/ [Accessed: 21-
Mar-2019]

[14] D. A. Ramos and D. Engler, “Under-constrained symbolic execution:
Correctness checking for real code,” Proceedings of USENIX Security
Symposium ’15, pp. 49–64, 2015.

[15] P. D. Marinescu and C. Cadar, “KATCH: High-coverage testing of
software patches,” Proc. of 9th Joint Mtg. on Foundations of Software
Engineering (FSE) ’13, pp. 235–245, 2013.

[16] V. P. Ivannikov, A. A. Belevantsev, A. E. Borodin, V. N. Ignatiev, D. M.
Zhurikhin, and A. I. Avetisyan, “Static analyzer Svace for finding defects
in a source program code,” Programming and Computer Software,
vol. 40, no. 5, pp. 265–275, 2014.

[17] Software assurance reference dataset. [Online]. Available:
https://samate.nist.gov/SARD/testsuite.php [Accessed: 20-Mar-2019]

176

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

C# parser for extracting cryptographic protocols

structure from source code

1st Ilya Pisarev

Information security departmen

Southern Federal University

Taganrog, Russian Federation

ilua.pisar@gmail.com

2nd Liudmila Babenko

Information security departmen

Southern Federal University

Taganrog, Russian Federation

lkbabenko@sfedu.ru

Abstract—Cryptographic protocols are the core of any secure

system. With the help of them, data is transmitted securely and

protected from third parties' negative impact. As a rule, a

cryptographic protocol is developed, analyzed using the means of

formal verification and, if it is safe, gets its implementation in the

programming language on which the system is developed.

However, in the practical implementation of a cryptographic

protocol, errors may occur due to the human factor, the

assumptions that are necessary for the possibility of

implementing the protocol, which entail undermining its security.

Thus, it turns out that the protocol itself was initially considered

to be safe, but its implementation is in fact not safe. In addition,

formal verification uses rather abstract concepts and does not

allow to fully analyze the protocol. This paper presents an

algorithm for analyzing the source code of the C# programming

language to extract the structure of cryptographic protocols. The

features of the implementation of protocols in practice are

described. The algorithm is based on the searching of important

code sections that contain cryptographic protocol-specific

constructions and finding of a variable chain transformations

from the state of sending or receiving messages to their initial

initialization, taking into account possible cryptographic

transformations, to compose a tree, from which a simplified

structure of a cryptographic protocol will be extracted. The

algorithm is implemented in the C# programming language using

the Roslyn parser. As an example, a cryptographic protocol is

presented that contains the basic operations and functions,

namely, asymmetric and symmetric encryption, hashing,

signature, random number generation, data concatenation. The

analyzer work is shown using this protocol as an example. The

future work is described.

Keywords—cryptographic protocols, C#, parser, verification,

tree, analysis, source code.

I. INTRODUCTION

The problem of verifying the security of cryptographic
protocols is relevant nowadays despite the existence of a large
number of already verified protocols. The need to use self-
written protocols that use lightweight cryptography for IoT,
mobile robots, as well as the imperfection of formal
verification of protocols is a new challenge for verification
methods, in particular, the possibility of verifying the security
of cryptographic protocols implementation. The primary task in
this matter is to extract the structure of the protocol from the

source code. At the moment there are works in which the
problem of extracting an abstract model from the source code
of programming languages C [1-3], Java [4-6], F# [7-12] is
being considered. Most of them require a special programming
style for the possibility of use these algorithms or the use of
additional annotations in the source code. The paper proposes
to analyze the source code of the C # programming language.
There are no other works in which code analysis would be
carried out, not involving the use of annotations or a special
programming style.

II. CRYPTOGRAPHIC PROTOCOLS

Cryptographic protocols are a set of cryptographic
algorithms and functions, with a correct combination of which
is obtained a secure process of transferring messages between
the parties. Protocol security is defined as complying with
security requirements, the main of which are mutual
authentication of the parties, protection against time attacks
such as replay attacks, privacy and integrity of the transmitted
data. Below is an example of a test protocol that does not have
a special meaning, but contains all the basic cryptographic
algorithms and functions: asymmetric and symmetric
encryption, hashing, signature, random number generation.

1. A->B:

2. B->A:

3. A->B:

4. B->A:

5. A->B:

6. B->A:

At the beginning of this protocol, messages 1-3 use the
Needham–Schroeder public key protocol (NSPK) [13] for
mutual authentication of the parties. In message 3, in addition
to the random number Nb, the key k is also transmitted for
further communication between the parties using a symmetric
cipher. In message 4, M2 data is transmitted, asymmetrically
encrypted on partys' A public key, and some M1 data. All this
is encrypted symmetrically using the key k, after which the data
hash M1 is applied. In message 5, side A applies its M3 data to
the previously sent data M1 and M2, encrypts all this
symmetrically on key k, applies a signature and sends this

177

message to side B. In message 6, B sends A M3 data encrypted
symmetrically on key k.

III. FEATURES OF THE CRYPTOGRAPHIC PROTOCOLS

IMPLEMENTATION

There are a number of problems with the implementation of
cryptographic protocols. One of the problems is the dynamic
size of messages. In the programming language, the transfer of
messages between the parties is implemented using sockets. In
this case, the party that receives the message must know in
advance the size of the buffer to receive. For example, in the
protocol described in the previous paragraph, in the first three
messages random numbers and identifiers of the parties with a
fixed length are used. In this case, everything is simple and at
the reception of the message by the party, it will expect a
previously calculated static message length. However,
messages 4-6 use data M1, M2, M3, which may have different
lengths. For example, in message 4, M1 data can be a video
file, the length of which can vary from 1 MB to several GB.
And the question is how to tell the receiving party the size of
the receiving buffer. There are various options for how this can
be done, for example, to add information about its length to the
beginning of a message, to put a mark at the end of the
message. Let us consider in more detail the option with the
addition of information about the length of the message. This
option involves the use of additional data before the main
message, which will contain the size of the future message. An
example of a message with additional size information is
shown in Figure 1.

Buffer size Message

Figure 1 – Additional information about the size of the message

The receiving party in this case receives a fixed array of
bytes, which contains the size of the message, after which the
second portion takes the rest of the message knowing in
advance its length.

A send: Buffer size, Message

B receive(4 bytes): Buffer size

B receive(Buffer size): Message

Since Message is usually encrypted and, in the context of a
protocol, its transmission is protected, the question arises of
how to protect information in Buffer size. All security
requirements are important for us, except secrecy. To ensure
them, you can, for example, use the signature of this area with
timestamps. Thus, the transmission, for example, message 4,
will have the following form when implementing the protocol:

B->A:

Another way is to get data into a fixed-length buffer until
the buffer becomes empty. In this case, problems can also arise
as shown in Figure 2.

Message part 1

Message part 2 Intruder’s part

Receive in buffer 1

Receive in buffer 2

Figure 2 – Intruders' attack on the addition of real data

The result is that the message will be received longer than
necessary and in some implementations, in which further
processing of the message by the receiving party is tied to the
use of the message length, some data may be imperceptibly
corrupted when decrypting and dividing the data into the
message elements (random numbers, keys, etc.). In order to
avoid this, various methods of controlling the length of a
message are also used. Thus, some protocols are changed and
supplemented during implementation, and for their initial
analysis, for example, by means of formal verification this is
not taken into account.

IV. SOURCE CODE ANALYSIS ALGORITHM

As an example for describing the operation of the
algorithm, the previously considered protocol was taken and
implemented in the C # programming language in the form of a
client server application.

1. A->B:

2. B->A:

3. A->B:

4. B->A:

5. A->B:

6. B->A:

The analysis algorithm uses the C # Roslyn source code
parser [14]. With it you can get the tree structure of the source
code, and you can use filters. We need these filters:

1. InvocationExpressionSyntax - call expressions.

2. VariableDeclarationSyntax - declaration of variables.

3. AssignmentExpressionSyntax - an assignment
expression.

4. IfStatementSyntax - statement with a condition
statement.

Using filters, you can get the desired expression, after
which you can view the tree structure of this expression. For
example, using "AssignmentExpressionSyntax" we can find the
expression "M1enc1 = RSA.Encrypt (M1, true)". The derived
linear tree structure of the expression is shown in Figure 3.

Figure 3 – Tree structure of expression in a linear form.

178

The main purpose of using this parser is to find the
transition from one variable to another. In this case, we are
interested in the transition M1enc1 -> M1. This is achieved by
searching for data such as "IdentifierName" together with the
use of a black list of expressions. For example, it uses the call
of the "Encrypt" method, as well as the previously declared
object of the asymmetric encryption class "RSA", which are
present in the black list, and M1enc1 and M1 that we need can
be obtained from here, where the first element will be the
variable to which the value will be assigned, and the rest of
those that are lower and not included in the black list will be
the new value assigned.

The algorithm is based on the definition of important code
sections containing constructs specific to cryptographic
protocols. Ultimately, the task is to find a chains of variables
transformation from the state of sending or receiving messages
(socket send/receive) to their initial initialization (static
initialization, load from file, etc.), while taking into account
possible cryptographic transformations (hash, encryption, etc.).
In the course of building a chain, a tree is constructed, the
nodes of which are variables with additional information about
them, including data type definitions for the final leaves of the
tree and cryptographic algorithms in the tree nodes. The tree
structure allows you to describe all the chains of data
transformations, since the data in the message is combined in
various ways, the chains can be strongly branched and joined.
Below is a fragment of the source code for the implementation
of a part of the cryptographic protocol (messages 1-3) from
participant A.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

...

Socket socA =

new Socket(ipAddress.AddressFamily,

SocketType.Stream, ProtocolType.Tcp);

socA.Connect(remoteEP);

RNGCryptoServiceProvider rng = new

RNGCryptoServiceProvider();

byte[] A = new byte[] { 132, 114 };

byte[] B = new byte[] { 15, 245 };

byte[] Na = new byte[64];

rng.GetBytes(Na);

byte[] M1 = new byte[2 + 64];

Array.Copy(A, 0, M1, 0, A.Length);

Array.Copy(Na, 0, M1, 2, Na.Length);

//1

byte[] M1enc;

using (RSACryptoServiceProvider RSA =

new RSACryptoServiceProvider())

{

 RSA.ImportParameters(

rsaPB.ExportParameters(false));

 M1enc = RSA.Encrypt(M1, true);

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

}

socA.Send(M1enc);

//2

byte[] MGet2Encr = new byte[256];

socA.Receive(MGet2Encr);

byte[] MGet2;

using (RSACryptoServiceProvider RSA = new

RSACryptoServiceProvider())

{

 RSA.ImportParameters(

rsaSA.ExportParameters(true));

 MGet2 = RSA.Decrypt(MGet2Encr, true);

}

byte[] BFromServer = new byte[2];

byte[] NaGet = new byte[64];

Array.Copy(MGet2, 0, BFromServer, 0, 2);

Array.Copy(MGet2, 0, NaGet, 0, 64);

if (!NaGet.SequenceEqual(Na) &&

!B.SequenceEqual(BFromServer))

{

 socA.Shutdown(SocketShutdown.Both);

 socA.Close();

 return;

}

byte[] Nb = new byte[64];

Array.Copy(MGet2, 64, Nb, 0, 64);

byte[] k = new byte[32 + 16];

rng.GetBytes(k);

byte[] M3 = new byte[0];

M3 = Nb.Concat(k).ToArray();

//3

byte[] M3enc;

using (RSACryptoServiceProvider RSA = new

RSACryptoServiceProvider())

{

 RSA.ImportParameters(rsaPB.ExportParameters(false));

 M3enc = RSA.Encrypt(M3, true);

}

socA.Send(M3enc);

...

First you need to define the declaration and initialization:

1. Objects of class Socket.

2. Class objects of the standard library cryptographic
algorithms, such as the RSACryptoServiceProvider
asymmetric encryption algorithm, the
RNGCryptoServiceProvider random number generator,
etc.

179

The variables of the class object Socket: [socA], classes of
cryptographic algorithms are defined: [rng, RSA].

To find variable of the Socket class object, the sending and
receiving messages is searched. In this case, there are 3 such
constructions. At this stage, you can construct an interaction
scheme of the following form:

1. A-> B: M1

2. B-> A: M2

3. A-> B: M3

To determine the structure of the message, it is necessary to

build a tree, the nodes of which contain variables with
additional information. Consider an example for determining
the content of the first message. The order of the algorithm is as
follows:

1. The expression of the first message socA.Send (M1enc)
is taken as the root of the tree. It is necessary to
understand the contents of the variable M1enc.

2. First you need to find the declaration of the variable
M1enc using the filter VariableDeclarationSyntax.
However, in our case, the variable is declared, but not
initialized (line 23). In this case, the filter
AssignmentExpressionSyntax is used and you can find in
line 29 the assignment of the value to our variable.
M1enc is added as a child node with the "var" tag,
which means it is just a variable.

3. The simplest case of assignment is when the value of
one variable is assigned to another. In this case, the
situation is more difficult. The variable M1enc is
assigned the value of the result of the work of the
Encrypt method for an object of the asymmetric
encryption class RSACryptoServiceProvider, which
takes two parameters as input: what to encrypt and flag
whether to use optimal asymmetric encryption with
addition (OAEP padding). At the current stage, we
remember that the content of the variable M1 was
asymmetrically encrypted and assigned to the variable
for sending message 1. In the tree structure, this is
displayed as adding a child node M1 with the note
"AsymENC", which means that the value of the variable
M1 is encrypted using an asymmetric cipher.

4. Similar to paragraph 2, we are looking for the
initialization of the variable M1. Using the first filter,
you can find out that the variable is a one-dimensional
array (line 17). Using the second filter, you must find
the assignment of values to our array. These are lines 19
and 20. Two children Na and A with the mark "var" are
added to node M1.

5. For variable A, the final value can be found using the
first VariableDeclarationSyntax filter (line 11). This is
where static initialization occurs in the source code. It is
enough for a person to simply understand that this is the
initial value, but for the automated determination of this
fact it is necessary to understand that this is not a
variable. One way to solve this problem is to re-search
the right side of the expression, and since more in the

design code of the assignment is not detected, this value
is final. In the tree structure for node A, the initialization
leaf is added "new byte [] {132, 114};" marked "DATA",
which means the presence of some semantic data in the
variable A.

6. For the Na variable, the search is carried out further.
Using filters, we look for the declaration of the array
and its initialization. The declaration occurs in line 14,
and initialization occurs in line 15 by calling some
method of the rng variable, which in turn is an object of
the RNGCryptoServiceProvider class of random
numbers, thus, the value of this variable is defined as a
random number. The last leaf "rng.GetBytes (NaPrev);"
is added to the tree structure marked "RANDOM",
which means generating a random number.

7. Further search initialization for current leaves gives
nothing, therefore the structure of the tree is considered
final. The output tree view is shown in Figure 4 in the
"Full tree" area and it corresponds to the following
chain: Send (M1enc) -> M1enc = E (M1) -> M1 = {A,
Na} -> A = new byte [] {132, 114}, Na = rand (). You
can also see short tree structure and result message from
it.

Figure 4 –Output for composing the structure of a single message

V. RETURN DATA PROBLEM

At the moment there is a problem in determining the
returned data. For example, in message 1, a random number Na
is sent, and then in the second message it is sent back. By
default, there are currently two data concepts: DATA and
RANDOM. All that is not a random number - is considered
semantic data, for example: keys, identifiers, transferred files,
etc. And at this stage, all values are considered different. For
example, for the following protocol:

1. A->B: Ek(Na,A)

2. B->A: Ek(Nb,B)

The result of the work will be as follows:

1. A->B: SymENC(RANDOM, DATA)

2. B->A: SymENC(RANDOM, DATA)

And in our context, the default DATA in the first message is
different from the one in the second message. If the protocol
takes the following form:

180

1. A->B: Ek(Na,A)

2. B->A: Ek(Nb,Na)

There is a problem. Na just comes back, and on the
receiving side we need to understand that this is the same data.
For example, when processing message 2 (lines 34-58), we can
trace the separated parts. In line 50, the value of the random
number Na is obtained, after which it is checked for
coincidence with what was sent in line 52. Most often in the
context of cryptographic protocols, returned values are used for
mutual authentication. There can be 2 types: the return of the
same number or the return of a function from this number. In
both cases, the return value is checked for a match with the one
sent earlier. In our case, this is line 53. However, another value
is checked here — identifier B. In this case, one of the solutions
to this problem would be to find the situation when the variable
was sent, and then a value is checked for a match with this
variable. In this case, you can assume that this is the case of the
return value. However, there may be a number of problems, in
particular, just the occurrence of an error in writing code, or
simply the absence of such a check of the return value. At the
moment, the abstract notion of the type of the RETURN
variable is used. This means that a variable of this type was
returned in the current message.

VI. PROTOCOL OUTPUT STRUCTURE

Using the algorithm presented in the preceding paragraphs,
the complete output structure of the protocol is constructed
according to the messages. It is obtained both in short form for
formal verification, and in full form for dynamic verification.
The full view contains the last variable, before serving in the
cryptographic function, the names of the last variables and their
initial initialization, for example, static in the code or loading
data from a file. Dynamic analysis will be considered in further
work and therefore the contents of the full protocol can be
changed.

Short view:

1) A->B: AsymENC(DATA,RANDOM)

2) B->A: AsymENC(RETURN,RANDOM,DATA)

3) A->B: AsymENC(RETURN,RANDOM)

4) B->A: SymENC(DATA,AsymENC(DATA)),

 HASH(DATA)

5) A->B: SymENC(RETURN,RETURN,DATA),

 Sign(RETURN,RETURN,DATA)

6) B->A: SymENC(RETURN)

Full view:

1) A->B: AsymENC(DATA,RANDOM)

M1 | byte[] A = new byte[] { 132, 114 }

| rng.GetBytes(Na)

2) A->B: AsymENC(RETURN,RANDOM,DATA)

M2 | socB.Receive(MGet1) |

rng.GetBytes(Nb) | byte[] B = new

byte[] { 15, 245 }

3) A->B: AsymENC(RETURN,RANDOM)

M3 | socA.Receive(MGet2Encr) |

rng.GetBytes(k)

4) A->B: SymENC(DATA,AsymENC(DATA)),

HASH(DATA)

ForEncM4 | byte[] M1forSend =

File.ReadAllBytes("Mess1.txt") |

M2forSend | byte[] M2forSend =

File.ReadAllBytes("Mess2.txt") |

M1forSend | byte[] M1forSend =

File.ReadAllBytes("Mess1.txt")

5) A->B: SymENC(RETURN,RETURN,DATA),

Sign(RETURN,RETURN,DATA)

ConcatMess5 | socA.Receive(MGet4) |

socA.Receive(MGet4) | byte[] M3forSend

= File.ReadAllBytes("Mess3.txt") |

ConcatMess5 | socA.Receive(MGet4) |

socA.Receive(MGet4) | byte[] M3forSend

= File.ReadAllBytes("Mess3.txt")

6) A->B: SymENC(RETURN)

M3From5 | socB.Receive(MGet5)

VII. FUTURE WORK

Future work primarily includes a segmentation of DATA
semantic data into classes:

1. Party identifiers

2. Keys

3. Timestamps

4. Authentication Codes

5. Data received from the user

It is also an important point to determine the ownership of a
key by any of the parties in the case of asymmetric encryption,
and to the list of parties in the case of symmetric encryption.
Support for protocols involving more than two parties will also
be needed. In addition, a complete solution to the problem of
accurately determining the returned data is necessary to make it
possible to build a complete structure of a cryptographic
protocol and its further analysis using formal verification tools.
After obtaining the structure of the cryptographic protocol, it is
necessary to develop an algorithm for automated translation
into the specification language of the most well-known
protocol verification tools, such as Avispa [15], Scyther [16],
ProVerif [17], and others. It is also necessary to improve the
parser. At the moment, the structure can only be retrieved from
areas of code where all functions for sending and receiving
messages are combined into one block, for example, into the
body of a function or class method. In the future, it is planned
to improve the parser to work with complex code structures.

VIII. CONCLUSION

An algorithm was presented for analyzing the source code
of the C # programming language for extracting the structure of
cryptographic protocols, based on identifying important code
sections that contain cryptographic protocol-specific
constructions and determining the chain of variable

181

transformations from the sending or receiving status to their
initial initialization, taking into account possible cryptographic
transformations to compose a tree, from which it is possible to
get simplified structure of a cryptographic protocol. An
example of a protocol containing all cryptographic functions is
given. The output structure of the cryptographic protocol is
shown. For the further possibility of the application of formal
verification of protocols and dynamic analysis, it is necessary
to make an additional classification of semantic data, determine
whether the keys belong to any party or parties, and also solve
the problem with the returned values.

ACKNOWLEDGMENT

The work was supported by the Ministry of Education and
Science of the Russian Federation grant № 2.6264.2017/8.9.

REFERENCES

[1] Chaki S., Datta A. ASPIER: An automated framework for verifying
security protocol implementations //Computer Security Foundations
Symposium, 2009. CSF'09. 22nd IEEE. – IEEE, 2009. – С. 172-185.

[2] Goubault-Larrecq J., Parrennes F. Cryptographic protocol analysis on
real C code //International Workshop on Verification, Model Checking,
and Abstract Interpretation. – Springer, Berlin, Heidelberg, 2005. – С.
363-379.

[3] Goubault-Larrecq J., Parrennes F. Cryptographic protocol analysis on
real C code. – Technical report, Laboratoire Spécification et
Vérification, Report LSV-09-18, 2009.

[4] Jürjens J. Using interface specifications for verifying crypto-protocol
implementations //Workshop on foundations of interface technologies
(FIT). – 2008.

[5] Jürjens J. Automated security verification for crypto protocol
implementations: Verifying the jessie project //Electronic Notes in
Theoretical Computer Science. – 2009. – Т. 250. – №. 1. – С. 123-136.

[6] O’Shea N. Using Elyjah to analyse Java implementations of
cryptographic protocols //Joint Workshop on Foundations of Computer
Security, Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security (FCS-ARSPA-WITS-2008). – 2008.

[7] Backes M., Maffei M., Unruh D. Computationally sound verification of
source code //Proceedings of the 17th ACM conference on Computer
and communications security. – ACM, 2010. – С. 387-398.

[8] Bhargavan K. et al. Cryptographically verified implementations for TLS
//Proceedings of the 15th ACM conference on Computer and
communications security. – ACM, 2008. – С. 459-468.

[9] Bhargavan K., Fournet C., Gordon A. D. Verified reference
implementations of WS-Security protocols //International Workshop on
Web Services and Formal Methods. – Springer, Berlin, Heidelberg,
2006. – С. 88-106.

[10] Bhargavan K. et al. Verified interoperable implementations of security
protocols //ACM Transactions on Programming Languages and Systems
(TOPLAS). – 2008. – Т. 31. – №. 1. – С. 5.

[11] Bhargavan K. et al. Verified implementations of the information card
federated identity-management protocol //Proceedings of the 2008 ACM
symposium on Information, computer and communications security. –
ACM, 2008. – С. 123-135.

[12] Bhargavan K. et al. Cryptographically verified implementations for TLS
//Proceedings of the 15th ACM conference on Computer and
communications security. – ACM, 2008. – С. 459-468.

[13] Needham R. M., Schroeder M. D. Using encryption for authentication in
large networks of computers //Communications of the ACM. – 1978. –
Т. 21. – №. 12. – С. 993-999.

[14] Capek P., Kral E., Senkerik R. Towards an empirical analysis of. NET
framework and C# language features' adoption //Computational Science
and Computational Intelligence (CSCI), 2015 International Conference
on. – IEEE, 2015. – С. 865-866.

[15] Viganò L. Automated security protocol analysis with the AVISPA tool
//Electronic Notes in Theoretical Computer Science. – 2006. – Т. 155. –
С. 61-86.

[16] Cremers C. J. F. The scyther tool: Verification, falsification, and analysis
of security protocols //International Conference on Computer Aided
Verification. – Springer, Berlin, Heidelberg, 2008. – С. 414-418.

[17] Küsters R., Truderung T. Using ProVerif to analyze protocols with
Diffie-Hellman exponentiation //Computer Security Foundations
Symposium, 2009. CSF'09. 22nd IEEE. – IEEE, 2009. – С. 157-171.

182

Fabless-companies data security

while using cloud services

Adelina Akhmedzianova

Kazan Federal University

Kazan,Russia
iadelina.ah@gmail.com

Alexey Budyakov

Bauman Moscow State Technical

University

Moscow, Russia

alexbb@mail.ru

Sergey Svinarev

Rostov Law Institute of the Ministry of

Internal Affairs of the Russian

Federation

Rostov-on-Don, Russia
squire@inbox.ru

Abstract—Cloud storage services like Google Drive and

Yandex.Disk are increasingly popular to store and transmitting

service information in corporate purposes, especially in fabless

companies, which do not have hardware and other resources for

sensitive data storage and exchange. These services allow

synchronizing and accessing data from multiple devices.

However, privacy of data stored in a cloud is a concern. To allow

data access from multiple devices, current solutions derive the

encryption keys solely from user-chosen passwords, which

result in low entropy keys. Moreover existing solutions do not

provide verification of the relevance of the data contained in the

cloud. In these terms, fabless companies need a more

appropriate solution. Method being developed has integration

with the Yandex.Disk cloud and intended to improve the

confidentiality of information stored in a cloud and consists of

user-side encryption, two-factor authentication scheme using

single-time passwords. Provision is made to ensure the

confidentiality of information during transmission to users not

having installed software. The resulting solution also can be

further used to create cross-platform software. Limitations of

considered scheme and further research are presented.

Keywords—cloud services, data security, encryption

I. INTRODUCTION

The high demand for using cloud storage services can be
demonstrated by the example of fabless-companies. These
companies are engaged in the development of semiconductor
chips and other high-tech devices, so employees during their
work process develop intellectual property objects –
information in the limited-access category that have high
economic value [1]. Many fabless-companies are small and it
is widespread practice that engineers of the companies work
remotely in collaboration, so there is the reason cloud storage
services are preferable.

At present, cloud storage solutions like Google.Drive and
Yandex.Disk are becoming more and more popular, bringing
innovation not only in terms of minimizing the cost of
resources but also in terms of optimization of company
processes. These solutions are widely used for both personal
purposes and corporate purposes for storage and transmission
different types of data, including proprietary information.

Cloud services have a number of advantages like absence
of need physical storages and opportunity to provide multiple
access to files. However, security policy of cloud storages do
not provide an appropriate level of data protection, including
protection from cloud service providers themselves [2].

Currently some solutions partially solve the problem of
providing security data storage in cloud services: Boxcyptor
[3], CarotDAV [4], Mega [5]. These software applications are
powerful tools for ensuring the confidentiality of data storage
in the clouds, but most of them do not meet the requirements

in terms of easy access to the system, providing high level of
data availability to multiple users, adaptability to the needs of
the particular organization.

For example, the service [3] does not provide the relevance
of files in the presence of multiple user access. Additionally,
the encryption keys are generated only once when the user
registers. The service [5] uses its own cloud storage and does
not interact with other cloud storages.

The common disadvantages of existing solutions include
the fact that they do not provide secure transmission of keys
between users and the absence of version control – these tasks
are completely left on the shoulders of users. Thus, the
existing solutions in the field of data security in cloud services
have a number of drawbacks, so they can not be used in
organizations interested in providing the secure storage of
processed data in cloud services – in particular, in fabless-
companies.

This paper presents the approach to develop the software
solution providing the security of data storage in the
Yandex.Disk cloud storage service. The main part of paper
divided into three sections. The first section presents the main
requirements for the system. The second section describes the
main functionalities of the system: two-factor authentication
scheme, client-side encryption and directly interaction with
cloud storage service directly by using API interface. In the
third section is proposed the technique of generation and safe
distribution of the encryption keys that takes into account the
features of the scope of the system. In the last section, the
limitations of the approach are described and options for the
future work directions are proposed.

II. MATERIALS AND METHODS

A. Requirements

The main task of our system is to ensure the security of
data stored in the cloud services. The most effective way to
achieve this task is client-side encryption. However, client-
side encryption additionally leads to the task of secure
encryption key exchange between multiple users and task of
secure transfer data to users who have no access to the system.

In order to design the solution it is necessary to define the
main requirements that it must meet in order to be successful.
An effective solution should meet the following requirements:

• providing convenient and effective tools to quickly

upload files from computer to cloud storage and download

files from cloud storage to a computer in safe mode;

• integration with cloud storage service using API

interface;

183

• ensuring the confidentiality of data (data encryption,

key generation and exchange) taking into account the features

of the scope of the system;

• ensuring the availability of data (including in relation

to people who have no access to the system);

• ensuring the relevance of data (confirmation of the

relevance of the file when it is loaded);

• providing an intuitive user interface;

• reducing the number of required actions from the user.

B. The basic functionality

Requirements from Section A allow to describe basic
functionality of solution. In general, the solution can be used
to perform the following scenarios:

1. Uploading a file to the cloud storage service;

2. Downloading a file from the cloud storage service;

3. Transfer a file to a person who has no access to the
solution (but has the right to access the file).

Let’s describe each scenario more detailed.

Scenario 1. Uploading a file to the cloud storage
service. In order to upload a new file to the cloud storage,
firstly user has to be verified by entering a one-time password
from his own token. After successful verification user should
select the document needs to be uploaded. Then the solution
generates an encryption key, encrypts the selected file and
upload it directly to user’s folder in the cloud storage. If the
user wants to update an existing file, in the solution will be
additionally performed a comparison of the keys of both
versions of file (normally they must be equal). After
successful uploading the file to the file’s parameters will be
added meta information about the last uploading. Fig.1 shows
the conceptual scheme of the Scenario 1.

Fig.1. Conceptual scheme of Scenario 1 “Uploading a file to the cloud
storage service”

Scenario 2. Downloading a file from the cloud storage
service. In order to download file from the cloud storage, user
must select the file has to be downloaded from the list of
available files, provided by the solution. Then user has to be
verified by entering a one-time password from his own token.
Then in the solution is performing checking of the relevance
of the file and, if it necessary, requests to get the latest version
of this file are sent to users who have access to this file. Then
user has to enter the encryption key, after which the document
is decrypted. After successful downloading the file to the file’s
parameters will be added meta information about the last
downloading. Fig.2 shows the conceptual scheme of the
Scenario 2.

Fig.2. Conceptual scheme of Scenario 2 “Downloading a file from the

cloud storage service”

Scenario 3. Transfer a file to a person who has no access
to the system. In order to transfer a file to a legitimate person
without an installed application, other user with access to the
solution has to download the file according to Scenario 2 and
sent this file via secure messenger.

The advantage of the solution is the fact that users do not
interact with cloud storage service, but only with one solution.
Interaction with cloud service is provided through Rest API
interface, where the following methods are possible:

 view a list of files in a user’s folders;

 view and add meta information parameters of the
file;

 upload and download files.

 Therefore, data processing takes place on the side of our
solution, data storage – on the side of cloud service. The
fragment of system sequence diagram, which shows the
interaction between our solution and cloud storage service
according to Scenario 1 “Uploading a file to the cloud storage
service” is provided on Fig.3.

Fig.3. Sequence diagram for Scenario 2“Uploading the file to a cloud
service”

C. Approach for data encryption

 The task of providing the confidentiality of data is
traditionally solved by the implementation of cryptographic
algorithms. There is no need to separate the sender, who

184

applies encryption, and the receiver, who applies decryption
of files, so it is advisable to use symmetric cryptographic
algorithms in this case. DES is one such algorithm. DES is a
block cipher operating on 64-bit blocks of plaintext using a
64-bit key [6].

 In addition, to the implementation of the encryption, the
solution according to the requirements should provide the
secure transfer of encryption keys. Transferring method must
be appropriate to the specifics of the scope of the solution: in
the cloud data storage users should be able to instantly access
all the files available in their cloud folders.

 At the time, we consider two approaches to generate
encryption keys: by hardware random number generator
(Fig. 4) and by extracting bits from the image data (Fig. 5).

Fig.4. Example of one-time random number generator

 Using image files as source files for a key generation has
the advantage of improving the convenience in transferring
encryption keys between users and implemented in different
ways: generating encryption keys directly from the image or
getting a key as result of converting the bits of the source file.

 Method of generating encryption keys directly from the
image, provided by the user, do not ensure a high degree of
data confidentiality [7]. Image-keys distribute to users by
uploading them into a cloud storage. Storing image-keys in a
cloud service raises the probability of a brute-force attack.

 More appropriate way to generate encryption key from the
image as a result of some transformations. Currently the most
popular method of hiding information in the media files is a
steganography, the essence of which is to use files as a digital
containers to hide data [8]. But using stenography methods in
our solution leads to the complexity of the user interface and
to the need for additional training in the rules of storage result
images.

 A modification of method of stenography is the reverse
approach, when the encryption key is extracted from the
source image by transformations without pre-treatment of this
image. In order to generate the key from the source image we
must set the sequence of positions. The encryption key
consists of the bits standing in positions from a given
sequence. In order to increase the resistance to attacks of this
sequence should be non-trivial: for example, a sequence of
positions of a fractal curve can be used (Fig.5).

If we define a set of positions in fractal curve, the bits from
the original image located at these positions will make up the
resulting encryption key. The most important limitation of the

proposed approach is the need to ensure the confidentiality of
the solution source code.

Fig.5. Julia Set visualization

Advantages and disadvantages of considered two-factor
authentication schemes will be investigated and compared to
choose one for realization.

III. CONCLUSION

Nowadays privacy of data stored in a cloud services is a
concern. The organizations interested in data security while
using cloud storages (including fabless-companies) need such
solution. This paper purposes an approach to the development
of a solution providing security of data stored in the cloud
services. The proposed approach has advantages over existing
solutions. The approach ensures not only the implementation
of the encryption functions but also the method of secure and
convenient key generation and distribution. A system
developed according to the described method will have an
intuitive user interface. The number of actions required from
the user is reduced because of direct interaction with cloud
service by API interface. The main limitation of the approach
is the need to protect program source code from unauthorized
access and modification. The method proposed in this paper
can be used as a basis for the development of a cross-platform
application.

REFERENCES

[1] Jeorge S.Hurtarte, Evert A.Wolsheimer, Lisa M.Tafoya,
“Understanding Fabless IC Technology”. Newnes, 2007, pp.25-32

[2] ‘Terms of Use of Yandex.Disk Service’, 2018. [Online]. Available:
https://yandex.com/legal/disk_termsofuse/.

[3] ‘Boxcryptor. Encryption software to secure cloud files’, 2018.
[Online]. Available: https://www.boxcryptor.com

[4] ‘WebDAV Client CarotDAV’, 2018. [Online]. Available:
http://rei.to/carotdav_en.html.

[5] ‘MEGA’,2019. [Online]. Available: https://mega.nz.

[6] W.Stallings, “Cryptography and Network Security: Principles and
Practice”, 6th ed. Prentice Hall Press Upper Saddle River, New Jersey:
2013, pp. 68-89.

[7] Omer A.Shqeer, “Judgment of Extracting Encryption Keys From
Image Data”, IJCSNS vol.14, no.2, pp.116-119.

[8] S.Katzenbeisser, Fabien A.P.Petitcolas, “Information Hiding
Techniques for Steganography and Digital Watermarking”. Boston:
Artech House, 2000, pp.43-71.

[9] J.Sanders, E.Kandrot “CUDA by Example: an introduction to general-
purpose GPU programming”. Addison-Wesley Professional,2010,
pp.46-57.

185

https://www.boxcryptor.com/
http://rei.to/carotdav_en.html
https://mega.nz/

Artificial Intelligence in Web Attacks Detecting

Maxim Gromov

Tomsk State University,
 36, Lenin ave., Tomsk, 634050, Russia

maxim.leo.gromov@gmail.com

Svetlana Prokopenko
Tomsk State University,

 36, Lenin ave., Tomsk, 634050, Russia
s.prokopenko@sibmail.com

Natalia Shabaldina
Tomsk State University,

 36, Lenin ave., Tomsk, 634050, Russia
nataliamailbox@mail.ru

Alexander Sotnikov
Tomsk State University,

 36, Lenin ave., Tomsk, 634050, Russia
sotnikhtc@gmail.com

Annotation – In this paper, the problem of web attacks

detecting is considered. We propose to use neural networks

to solve the problem. Such approach allows to pre-process

user data only once. Experimental results confirm the

feasibility of the application of artificial intelligence in web

attacks detection.

Index Terms – Web application, attack, neural network.

I. INTRODUCTION

EB APPLICATIONS are widely used. Users trust

web applications transfer, processing and storage

of personal and commercial data. Therefore security of

web applications is a hot topic.
As a rule, web applications are verified and tested, in

particular, the security of applications is checked. But

even in this case, a valid user (who in fact has no

malicious intents) may accidentally enter data that

actually is an attack on the application. It happens due to

the fact that the variety of possible attacks is very large.

And at the moment of application development not all

attacks are known for developers.

Usually known types of attacks are considered for

testing of safety/security. But during exploitation, new

types of attacks dangerous for the application may appear.
In this case, it becomes necessary to eliminate this

vulnerability of the application. It can be done, for

example, by adding of a new filter to the application

which detects such attacks.

The detection of web application vulnerabilities can be

done in different ways. There are mathematical

approaches based on automata equations and inequalities

solutions [1-5]. These approaches require the description

of a part of the program and all kinds of user data by

automata. Then the solutions of corresponding automata

equation or inequality describe possible attacks on this

web application. But these mathematical approaches are
not general, because in some cases they can lead to

attacks’ skipping. In other cases the solutions include not

only attacks but also safe data [2].

Furthermore, there is a tool called Stranger [6, 7]. This

tool uses an attack pattern and a source code of a web

application and draws a conclusion whether the

application is vulnerable to the given attack.

Unfortunately, Stranger is applicable to programs written

in PHP ver. 3 or lower versions.

If new type of attacks appear and the application is

vulnerable to these attacks, new filters should be added to

the source code of the web application. These filters may

be implemented based on the PHP function

preg_replace. Filters indicate attacks and stop the

execution of the application, or modify user data. Such

user data modification should not lead to the loss of data

meaning but should remove the threat. During

exploitation, the web application is regularly upgraded

with new filters. So the web application source code is

regularly changed. To the best of our knowledge, there

are no other ways to protect web applications from new

vulnerabilities.
Our paper is devoted to web attacks detection. For this

purpose we propose to exploit neural networks. Attack

detection is considered as a text classification process.

This approach requires only attack patterns and there is no

necessity in the source code of the application. Thus this

approach can be applied for web attacks detection on

applications that are developed in any programming

language. When new types of attacks appear, one only

needs to retrain the neural network.

II. PROBLEM STATEMENT

All modern web applications are interactive. Usually it

is assumed that users interact with the applications. The

user enters arbitrary data in specific fields. Since entered

data is processed by the application, it may be unsafe for

the application. User data can lead to database structure or

contents disruption, unauthorized access to data, etc.

To avoid situations described above, it is possible to act

in two ways. The first way is to analyze the source code

of a web application in order to detect and fix

vulnerabilities in the application. The second way is to

pre-process user data in order to detect and prevent
possible attacks on the web application. Both cases

require the knowledge of the type of attacks.

Feasibility of neural networks to pre-process user data

is experimentally investigated in this paper.

III. THEORY

In this research, we consider a web application to be

vulnerable if it admits unauthorized access to data, their

modification, etc. Users interact with the web application

by issuing requests to the web server (via form fields or

W

186

2

URL requests). These requests contain transmitted users’

data. In this case, an attack is user data that is generated in

a special way.

The attack can be detected and neutralized using built-

in filters, for example, using the PHP preg_replace

function. Each type of attack should be described by a

regular expression, and the filter function should be called

for this expression (Fig. 1a).

Filter 1

Filter 2

Filter 3

Web-service

Data

User

ANN

Filter 1 Filter 2 Filter 3

Web-service

0

1
2

3

Data

User

a) b)

Fig. 1. Attacks’ filtering workflow. Classical approach (a), proposed

approach (b)

We propose another approach. The idea is to create a

function that detects an attack and determines attack’s

type. Neural network will be used for this purpose [8].

This approach allows to avoid multiple calls of the
filtering function and call it with the desired regular

expression only once (Fig. 1b).

Since the considered problem is similar to the problem

of text messages classification, an appropriate neural

network structure is chosen (Fig. 2). The network includes

the following layers. The first one is embedding layer,

which is designed to map text strings to dense vectors.

Next layers are two recurrent layers LSTM (1) and LSTM

(2) for analyzing sequences and extracting key features

from dense vectors. The activation functions of the

recurrent layers are linear. Then dropout layer comes that

controls overfitting followed by dense layer. Dense layer
is a classical features’ classification layer. An activation

function of the dense layer is sigmoid. Since this network

is used for classification problem, the function categorical

cross-entropy is used as a cost function during network

training.

The variety of possible attacks is large. Therefore we

consider only three types of classical attacks for

experiments: two types of SQL injections and one type of

XSS attacks.

An SQL injection is an injection of a malicious code

into an SQL request in order to gain unauthorized access
to a database [9]. An XSS attack (cross-site scripting) is

an insertion of malicious code into the page being formed

[10]. For example, the malicious code can be written in

JavaScript.

The neural network needs to be trained before using.

The training set is formed as follows.

Three types of text strings were generated. The first

type of strings contains strings with SQL injections of the

kind OR 1=1. The second one contains strings of

common SQL injections. And the third type of strings

contains XSS attacks. In each case, the attacks were

masked by randomly generated text. We also generated

strings without attacks and strings that are similar to

attacks but are not attacks in fact.

string

E
m

b
e

d
d

in
g

 la
y
e

r

maps words
on dense
vectors

LS
T

M
(2

)

LS

T
M

(1
)

analyses
sequences

D
R

O
P

O
U

T

to avoid
overfitting

D
e

n
se

0 – not dangerous
1 – XSS attack,
dangerous for the
field 3
2 – SQL-injection of
the kind ;‘OR 1= 1’,
dangerous for the
field 2
3 – common SQL-
injection, dangerous
for the fields 1 and 2

Fig. 2. Neural network structure

IV. EXPERIMENTAL RESULTS

A. An Example of a Web Application and Attacks

In order to develop attack patterns and to train the

neural network, we implemented user password change

web application. Moreover, we may not experiment with

real web applications since these experiments can lead to

data corruption stored and processed by the application.

The created web application is implemented using the

web server solution stack XAMPP [11]. The graphical

user interface of this application has a web form with

three fields, in which the user enters a login, an old-

password and a new-password.

The following two database queries are made in the

PHP part of the web application when transferring data

from the form to the web server:

SELECT pswrd FROM users WHERE login =

‘”.$login.”’;

UPDATE users SET pswrd =

‘”.$newpass.”’ WHERE login =

‘”.$login.”’;

For this web application, we consider various SQL

injections. An example of one of them is as follows.

Suppose that a user does not know the structure of

database queries, but knows names of tables. The user

wants to drop the table containing information about

logins and passwords. In order to drop the table, the user

types the following text in the new-password field:

'; drop table users; --

It implies the following database query:

UPDATE users SET pswrd = ‘’; drop

table users; -- ’ WHERE login =

‘”.$login.”’;

As a result of the malicious query, the table users is

dropped.

187

3

B. Experiments to Detect Web Attacks Using a Neural
Network

To experiment on web attacks detecting using neural

network, the source code of the web application is not

required and the purpose of the application is not

essential. Therefore, similar to the experiments described

in the previous subsection, we consider a web application

with graphical user interface form containing three fields

(1, 2 and 3). Users type data to these fields. The web
application processes data from the specified fields in

different ways. The method of data processing is essential

for the experiment. These fields are sensitive to the

attacks of different types.

The data from the first field is substituted as values of

variables in the logical expression for the WHERE

directive of the SQL query, for example,

SELECT * FROM users WHERE login =

'".$login."'

In the example above, the data from field 1 is

substituted for the $login variable.

Data from the second field is inserted into SQL query

of the general form.

Data from the third field is displayed unchanged in the

browser.

To detect and classify attacks, the neural network takes

user data string as an input, and returns a class number of

the string (Fig. 2):

0 denotes that the user data string does not contain an

attack;

1 denotes that the user data string contains an XSS

attack. The string is dangerous for the field 3;

2 denotes that the user data string contains an SQL

injection of the form ";‘ OR 1 = 1 ’". The string is

dangerous for the field 2;

3 denotes that the user data string contains an SQL

injection of the general form. The string is dangerous for

fields 1 and 2.

To train the neural network, the following training set

was generated:

– one million different strings with XSS attacks,

– one million different strings with the SQL injection of

the form ";‘ OR 1 = 1 ’";

– one million different strings with common SQL

injection.

Each attack was masked by random text data.

Moreover, strings that resemble attacks but are not

attacks were generated. For example, instead of the tag

<SCRIPT> a non-existent tag <ASCRIPT> was used,

etc. One million strings of pseudo-attacks for each type of

attacks were generated. Therefore, three millions of such

pseudo-attacks were generated.

Additionally, one million text strings with no attacks

and pseudo-attacks were generated.

Totally seven million text strings (data that user could

type in the fields of the web application form) were

generated. Each generated string was of the length 100

characters.

To train the neural network all string were shuffled. The

type of the string (SQL injections of the kind OR 1=1,

common SQL injection, XSS attack, and the string

without any attack) was kept with the corresponding

string. This information was used to train the network and

to assess the accuracy of recognition of the attack type.

The Keras over TensorFlow framework was used to

implement the neural network. For the experiments we

used the computer with the following parameters:

processor Intel Core i5-3470 3.2 GHz, 8 GB of RAM, 1

TB hard drive, video card GeForce GTX 650 Ti with

CUDA support, operating system Windows 7.

After training the network by 10% of an artificially

generated sample of seven million strings, the neural

network could classify the attacks with the accuracy of

99.97%.

V. CONCLUSION

In this paper, we considered the problem of web

application security. To the best of our knowledge the

only approach to solve the problem is to add new filters to

the source code of the application. Each filter should

detect specific attack and/or modify user data. In contrast

to this approach in the paper we suggested to perform

two-step pre-processing of user data to detect and filter an

attack on the web application.

At the first step an attack is detected and classified. At

the second step the user data is filtered by the appropriate

filter. Note that in the classical approach user data passes
through several filters (Fig. 1a). It happens because it is

not known a priori whether the data contain an attack. The

type of the attack also is not known. In our approach, user

data passes through one filter (Fig. 1b), since the type of

attack was recognized at the first step.

As a future work, one could consider the problem of

embedding of a trained neural network into a web

application. In addition, it is interesting to investigate the

problem of neural network training on the fly.

ACKNOWLEDGMENT

This work was carried out with the financial support of

grant RNF No. 16-49-03012 "Reliability, security and

trust in systems used as services: scalable solutions for

effective analysis and management."

REFERENCES

[1] Anton V. Kolomeets, Natalia V. Shabaldina, Ekaterina V.

Darusenkova, Nina V. Yevtushenko. Using Models of Finite

Transition Systems for Checking Web-Service Security //18th

International Conference of Young Specialists on

Micro/Nanotechnologies and Electron Devices EDM 2017 :

proceedings Erlagol, 29 june - 3 july 2017. Novosibirsk: NSTU

publisher, 2017. P. 151-154.

[2] Shabaldina N., Yevtushenko N., Yu F. Towards checking

WEB-services security: using automata equations and inequalities //

Proceedings of the XII Conference Computer-aided technologies in

applied mathematics (ICAM 2018), June 4-8, 2018. P. 90

[3] P. Linz. An Introduction to Formal Languages and Automata,

Johnes & Barlett Learning, 2012

[4] L. Kari, “On language equations with invertible operations,”

Theoret. Comput. Sci. 132 (1994), L. Kari and G. Thierrin,

“Maximal and Minimal Solutions to Language Equations,” Journal

of computer and system sciences 53, (1996)

[5] B. A. Trahtenbrot, Ya. M.Barzdin: Finite automata (Behavior

and synthesis). Nauka, Moscow 1970 (in Russian).

188

4

[6] An Automata-based PHP String Analysis Tool.

https://vlab.cs.ucsb.edu/stranger/

[7] F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-

based string analysis tool for php. In TACAS, pages 154-157, 2010.

[8] Artificial neural network.

https://en.wikipedia.org/wiki/Artificial_neural_network

[9] SQL Injection Cheat Sheet.

https://www.netsparker.com/blog/web-security/sql-injection-cheat-

sheet/

[10] XSS Filter Evasion Cheat Sheet.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Shee

t

[11] XAMPP. https://www.apachefriends.org

189

SQLite RDBMS Extension for Data Indexing Using

B-tree Modifications

Anton Rigin1, Sergey Shershakov2

Faculty of Computer Science

National Research University – Higher School of Economics

Moscow, Russia
1amrigin@edu.hse.ru, 2sshershakov@hse.ru

The B-tree structure has several modifications which are, by

default, not supported in the popular open-source RDBMS

SQLite. In the scope of this work an extension for SQLite is

developed, based on some modifications of the B-tree structure.

The modifications of the base structure were developed as a C++

library. The library is connected to the SQLite using the C-C++

cross-language API. The SQLite extension also implements the

novel algorithm for selecting the best possible index structure (B-

tree or one of its modifications) for some table of a database.

Keywords—B-tree; data indexing; SQLite; DBMS; RDBMS;

multiway tree

I. INTRODUCTION

Last decades, the amount of data volume is growing
substantially which exposes the well-known problem of big
data [1].

Many companies and laboratories need to collect, store and
process big data. There exist many algorithmic and software
solutions to cope with these problems. One of these solutions is
using indices which are usually represented by data structures
such as hash tables and trees.

Using indices creates a new problem – when data are stored
on slow carriers, it is more efficient to load data batches from a
storage instead of splitting to individual elements. Multiway
trees solve this problem. One type of them is a B-tree which
was initially described by Bayer and McCreight in 1972 [2].
The B-tree also has several modifications. In this paper, the
following B-tree modifications are considered: B+-tree [3], B*-
tree [4] and B*+-tree (the latter is developed by the author of
this paper data structure, which combines the main B+-tree and
B*-tree features) [5].

This paper extends the research made in the framework of
the term project [5].

One of the popular open-source relational database
management systems (RDBMS) is SQLite [6]. It is used in
mobile phones, computers and many other devices. However,
this RDBMS does not support using B+-tree or B*-tree as data
index structures by default.

The main goals of the work are the following:

• to add B-tree modifications such as B+-tree, B*-
tree and B*+-tree to SQLite;

• to develop and implement an algorithm that would
allow selecting the most appropriate indexing data
structure (B-tree, B+-tree, B*-tree or B*+-tree)
when a user manipulates a table.

The work includes linking of B-tree modifications from a
C++ library (developed by the author of this work previously)
to SQLite using a C-C++ cross-language API and developing
an algorithm for selecting an indexing data structure.

The rest of the paper is organized as follows. Firstly, B-
tree, B+-tree, B*-tree and B*+-tree are shortly described. After
this, the SQLite, its indexing algorithms and extensions are
presented. Then, the B-tree modifications C++ library and
connecting it to the SQLite RDBMS is described. After this,
our previous researches conducted using this library are
presented. These researches have proved the main theoretical
B-tree modifications complexity hypotheses and they show the
abilities of this library. Then, the indexing approach, the
methods for outputting the index representation and
information and the development of algorithm of selecting the
best index structure for table are discussed, after which the
experiment conducted using the developed in this work SQLite
extension is described. After this, the main points of the paper
are summarized in conclusion and used references are
presented.

II. B-TREE AND ITS MODIFICATIONS

A. B-tree

The B-tree is a multiway tree. It means that each node may
contain more than one data key. Furthermore, each node except
of the leaf nodes contains more than one pointer to the children
nodes. If some node contains k keys than it contains exactly
k + 1 pointers to the children nodes [2].

The B-tree depends on its important parameter which is
called B-tree order. The B-tree order is such a number t that:

190

• for each non-root node, the following is true:
t – 1 ≤ k ≤ 2t – 1, where k is the number of keys in
the node [2];

• for root node in the non-empty tree the following
is true: 1 ≤ k ≤ 2t – 1, where k is the number of
keys in the node [2];

• for root node in the empty tree the following is
true: k = 0, where k is the number of keys in the
node [2].

B-tree operations complexities are the following (t is the
tree order, n is the tree total keys count):

• for the searching operation: time complexity is
O(tlogtn), memory usage is O(t) and disk
operations count is O(logtn) [2];

• for the nodes split operation (the part of the
insertion operation): time complexity is O(t),
memory usage is O(t) and disk operations count is
O(1) [2];

• for the insertion operation (includes the nodes split
operation): time complexity is O(tlogtn), memory
usage is O(tlogtn) for simple recursion and O(t)
for tail recursion and disk operations count is
O(logtn) [2];

• for the deletion operation: time complexity is
O(tlogtn), memory usage is O(tlogtn) for simple
recursion and O(t) for tail recursion and disk
operations count is O(logtn) [2].

B-tree is usually used as the data index [2].

The example of B-tree is shown on the Fig. 1.

Fig. 1. The B-tree example, tree order t = 6.

B. B-tree Modifications

B+-tree is the B-tree modification in which only leaf nodes
contain real keys (real data), other nodes contain router keys
for searching real keys. Leaf nodes in B+-tree contain t ≤ k ≤ 2t
keys, where t is the tree order, the rules for other nodes are the
same as in B-tree [3]. Keys deletion in B+-tree is expected to be
faster than in B-tree since it is always performed on the leaf
nodes.

B*-tree is the B-tree modification in which each node
(except of the root node) is filled at least by 2/3 not 1/2 [4].
Keys insertion in B*-tree is expected to be faster than in B-tree.

B*+-tree is the B-tree modification developed by the author
of this paper which combines the main B+-tree and B*-tree
features together. In this data structure only leaf nodes contain
real keys (real data) as in B+-tree and each node (except of the
root node) is filled at least by 2/3 as in B*-tree.

III. IMPLEMENTATION AND TOOLS

A. SQLite and Its Extensions

The SQLite is the popular open-source C-language library
which implements the SQLite relational database management
system (RDBMS) [6]. The SQLite default index algorithms are
hash-table and B-tree. The SQLite does not implement B+-tree
and B*-tree based indices.

Nevertheless, SQLite supports loading its extensions at run-
time, which can add new functionality to the SQLite. For
example, it can be a new index structure implementation. One
of such extensions is the R-tree. The R-tree is a B-tree
modification which allows to index geodata. It is loaded by the
SQLite as the extension and delivered together with the SQLite
RDBMS default build.

B. B-tree Modifications C++ Library

The B-tree modifications C++ library was developed by the
author of this paper previously. It contains B-tree, B+-tree, B*-
tree and B*+-tree implementations written in C++ [5].

In the current work this library is connected to the SQLite
as the run-time loadable extension. For this goal the C-C++
cross-language API is implemented. It is possible to do using
the extern “C” { … } C++ statement. The other tasks are to
implement base SQLite extension’s methods and to use
Makefiles to make this extension run-time loadable correctly.
The extension provides module for creating virtual tables
(tables which encapsulate callbacks instead of simple reading
from database and writing to database) based on this module.

C. Research Conducted Using the Library

The B-tree modifications C++ library was previously used
for conducting a research on the performance of multiway trees
in the problem of structured data indexing by the author of this
paper [5].

The CSV files with random content were generated for the
indexing, with sizes of 25000, 50000, 75000, 100000 rows.
The value of the first cell of each row was considered as a key
(“name”) of the row and was saved in the tree together with the
bytes offset of the row in the indexed CSV file. The charts of
different dependencies were built using the Python 2.

The chart with the indexing time dependence on the tree
order for a file where the “names” (keys) of the rows are
uniformly distributed, with the size of 25000 rows is shown on
the Fig. 2.

191

Fig. 2. The chart with the indexing time dependence on the tree order for a

file where the “names” (keys) of the rows are uniformly distributed, with

the size of 25000 rows.

According to this chart, B*-tree and B*+-tree have a better
time performance on the keys insertion than B-tree and B+-tree,
as expected. These results are confirmed by the experiments
with other parameters (for example, on the larger files with
different keys).

However, the better time performance of B*-tree and B*+-
tree on the keys insertion has a cost of a larger memory usage
as shown on the Fig. 3.

Fig. 3. The chart with the indexing memory usage dependence on the tree
order for a file where all the “names” (keys) of the rows are equal, with

the size of 25000 rows.

Also, indexing using B*-tree or B*+-tree requires more disk
operations than indexing using B-tree or B+-tree as shown on
the Fig. 4.

Fig. 4. The chart with the indexing disk operations count dependence on
the tree order for a file where all the “names” (keys) of the rows are

equal, with the size of 25000 rows.

The monotonous dependence of the keys searching on the
tree order is not detected as shown on the Fig. 5.

Fig. 5. The chart with the index searching time dependence on the tree

order for a file where the “names” (keys) of the rows are uniformly

distributed, with the size of 25000 rows.

The B*-tree and B*+-tree require more memory during the
keys searching than the B-tree and B+-tree as shown on the Fig.
6.

192

Fig. 6. The chart with the index searching memory usage dependence on

the tree order for a file with real (not randomly generated) data.

In addition, the B+-tree and B*+-tree have a better time
performance on the keys removing than B-tree and B*-tree as
expected and shown on the Fig. 7. This chart also proves that
the B*+-tree has the best time performance on the keys
removing among all the considered in this paper multiway trees
and that the dependence of keys removing time on the tree size
is logarithmic.

Fig. 7. The chart with the keys removing time dependence on the tree size.

Therefore, the main theoretical hypotheses were confirmed
[5].

IV. WORKING WITH INDICES WHILE MANIPULATING DB DATA

A. Table Creation, Data Search and Updating

In the current work B-tree modifications based indices are
built over the existing SQLite table implementation which is
represented in the storage as pages of a B-tree by default.

The table creation and main data operations (inserting,
searching, deleting and updating) use the methods presented in
the Table I.

TABLE I. MAIN EXTENSION METHODS

Method Purpose

btreesModsCreate(sqlite3*, void*, int,
const char* const*, sqlite3_vtab**,
char**)

Creates a new table.

btreesModsUpdate(sqlite3_vtab*, int,
sqlite3_value**, sqlite_int64*)

Inserts, deletes or updates a value of
a row in the table.

btreesModsFilter(sqlite3_vtab_cursor*,
int, const char*, int, sqlite3_value**)

Searches for a row in the table.

The extension with the B-tree modifications based indices
provides module for creating virtual tables. User should create
a virtual table using the module called btrees_mods in order to
use one of the B-tree modifications as index for the table.
When a user creates such virtual table, the btreesModsCreate()
method of the extension is called and the matching real table is
created in the database. Also, a B-tree or one of its
modifications is created using the algorithm of selecting the
best index’s structure (see the section V) and the information
about the created table and index’s structure (including the
name of the file with the B-tree or its modification and the
attributes of the primary key of the table) is stored in a special
table.

When a user inserts a row into a table, the
btreesModsUpdate() method of the extension is called and a
corresponding record for the index structure is created. The
record consists of the primary key value of this row and the
row id. This record is saved as a data key into the index
structure (B-tree or one of its modifications).

When a user searches for a row in a table, the
btreesModsFilter() method of the extension is called and the
value of the primary key of the row being searched is
compared with the keys of the index structure. During the key
searching only the primary key value part of the tree’s keys is
compared with the value of the primary key of the row being
searched. If the necessary tree’s key is found, the row id is
extracted from the key and a row found in the table by the row
id is considered as a result of the searching.

When a user deletes a row from a table, the
btreesModsUpdate() method of the extension is called, the
primary key of the deleted row is found in the index structure
using the same approach as in the search case. The found key is
deleted from the index structure.

When a user updates the value of the primary key of a row
in a table, the btreesModsUpdate() method of the extension is
called. The old value of the primary key is deleted from the
index structure and the new value is inserted to the index
structure.

B. Index Structure’s Graphical Representation and Main

Information Outputting

Also, the several methods are available to output the index
structure’s graphical representation and main information.
They are presented in the Table II.

193

TABLE II. INDEX STRUCTURE’S INFORMATION AND GRAPHICAL

REPRESENTATION OUTPUTTING EXTENSION METHODS

Method Purpose

btreesModsVisualize(sqlite3_context*, int,
sqlite3_value**)

Outputs the graphical
representation of the table’s
index structure (tree) into the
GraphViz DOT file.

It is called after the SQL query
such as SELECT
btreesModsVisualize(“btt”,
“btt.dot”);, where btt is the
table name, btt.dot is the
outputting GraphViz DOT file
name.

btreesModsGetTreeOrder(sqlite3_context*,
int, sqlite3_value**)

Outputs the order of the tree
used as the table’s index
structure.

It is called after the SQL query
such as SELECT
btreesModsGetTreeOrder(“btt”
);, where btt is the table name.

btreesModsGetTreeType(sqlite3_context*,
int, sqlite3_value**)

Outputs the type of the tree (1 –
B-tree, 2 – B+-tree, 3 – B*-tree,
4 – B*+-tree) used as the table’s
index structure.

It is called after the SQL query
such as SELECT
btreesModsGetTreeType(“btt”
);, where btt is the table name.

C. SQLite Extension’s Usage Example

The developed in this work SQLite extension’s usage
example is presented on the screenshot (Fig. 8).

Fig. 8. SQLite extension’s usage example.

V. ALGORITHM OF SELECTING THE BEST INDEX STRUCTURE

In this work an algorithm for selecting the best index
structure for a table is developed and implemented in the
following way.

The algorithm considers B-tree and its modifications (B+-
tree, B*-tree and B*+-tree) for using as an index structure. The
best index structure is defined by the step 6 of the algorithm.

The algorithm is executed at the start of each operation on
the table (search, insertion, deletion or update of the table’s
row) which uses the btrees_mods module. The algorithm
consists of the following steps.

1. If the current total count of the operations on the tree
is equal to 0 or more than 10000 or not a multiple of 1000,
then exit the algorithm, otherwise go to step 2.

2. If the current count of the modifying operations on the
tree (key insertions, key deletions) is less than 10 % of the
current total count of the operations on the tree, then exit
the algorithm, otherwise go to step 3.

3. If the current count of the key insertion operations is
more than 90 % of the current count of the modifying
operations on the tree, then select the B*-tree as the index
structure and go to step 6, otherwise go to step 4.

4. If the current count of the key insertion operations is
not less than 60 % of the current count of the modifying
operations on the tree, then select the B*+-tree as the index
structure and go to step 6, otherwise go to step 5.

5. Select the B+-tree as the index structure and go to
step 6.

6. If the new index structure was selected in the steps
3 – 5, then rebuild the existing index structure into the new
selected index structure (which is considered as the best
index structure) saving all the data stored in the existing
index structure.

The tree order of the B-trees and their modifications used in
the SQLite extension developed in this work equals 100.

VI. EXPERIMENT CONDUCTED USING THE DEVELOPED SQLITE

EXTENSION

The experiment on the counting the empirical
computational complexity is conducted using the developed in
this work SQLite extension. The operations’ times were
counted using the SQLiteStudio GUI manager [7]. The results
are presented in the Table III.

TABLE III. EXPERIMENT RESULTS

Operation on the table Total execution time
(ms)

Mean execution
time per row (ms)

Table creation 21 -

First 500 rows insertion 9128 18.3

Next 500 rows insertion 9802 19.6

1001st row insertion
(including the B-tree
into the B*-tree
rebuilding)

50 50

Next 499 rows insertion 9168 18.4

Last 500 rows insertion 8933 17.9

194

Operation on the table Total execution time
(ms)

Mean execution
time per row (ms)

First 500 rows deletion 9888 19.8

Next 500 rows deletion
(including the B*-tree
into the B*+-tree
rebuilding)

9974 19.9

Next 500 rows deletion 9784 19.6

Last 500 rows deletion
(including the B*+-tree
into the B+-tree
rebuilding)

9201 18.4

1000 rows insertion 18113 18.1

Next 4800 rows
insertion (including the
B+-tree into the B*+-tree
rebuilding)

86465 18

According to the data in the Table III, the key insertion on
the B*-tree is faster than on the B-tree as expected. The key
deletion on the B+-tree and B*+-tree is faster than on the B-tree
and B*-tree respectively. Also, the key insertion on the B*+-tree
is slightly faster than on the B+-tree.

VII. CONCLUSION

The big data problem currently affects the world. There are
many mathematical and software solutions for collecting,
storing and processing big data including the data indexing.
Many of the index data structures are tree-based ones such as
B-tree and its modifications. B-tree is used as an index
structure in many DBMSs including the popular open-source
RDBMS SQLite. However, the SQLite does not support its
modifications which may be more appropriate for some tasks
than the original B-tree. In the current work this problem is
elaborated.

Firstly, the B-tree modifications C++ library is connected
to the SQLite as the extension using C-C++ cross-language
API. After this, the algorithm of the best index selecting is
developed and implemented and the experiment is conducted
using the developed in this work SQLite extension.

This work tests new data indexing approaches using the
SQLite as an example. The results of the work can be used by
researchers and professors in this field and their students. The
SQLite B-tree modifications extension can be used by all the
developers who use this DBMS.

ACKNOWLEDGMENT

This work is supported by RFBR according to the Research
project No. 18-37-00438 “mol_a”.

REFERENCES

[1] J. Manyika et al., “Big data: The next frontier for innovation,
competition, and productivity,” McKinsey Global Institute, May 2011.
Accessed: Jan. 20, 2019. [Online]. Available:
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/
McKinsey%20Digital/Our%20Insights/Big%20data%20The%20next%2
0frontier%20for%20innovation/MGI_big_data_exec_summary.ashx

[2] R. Bayer and E. McCreight, “Organization and maintenance of large
ordered indexes,” Acta Informatica, vol. 1, no. 3, pp. 173 – 189, 1972.

[3] K. Pollari-Malmi. (2010). B+-trees [PDF paper]. Available:
https://www.cs.helsinki.fi/u/mluukkai/tirak2010/B-tree.pdf

[4] “B*-tree.” NIST Dictionary of Algorithms and Data Structures.
Available: https://xlinux.nist.gov/dads/HTML/bstartree.html (accessed
Dec. 24, 2018).

[5] A. Rigin, “On the Performance of Multiway Trees in the Problem of
Structured Data Indexing,” (in Russian), coursework, Dept. Soft. Eng.,
HSE, Moscow, Russia, 2018.

[6] “SQLite Home Page.” SQLite.org. Available: https://www.sqlite.org/
(accessed Jan. 20, 2019).

[7] “SQLiteStudio”. SQLiteStudio. Available: https://sqlitestudio.pl/
(accessed: Jan. 26, 2019).

195

Supporting evolutionary concepts to organize

information search in the Internet

 1st Alexander Marenkov
 I nstitute YurInfor-MSU Moscow
 Malaya Pirogovskaya 5, Moscow,

119435, Russian Federation
 qwex-x@rambler.ru

2nd Senior Researcher Sergey
Kosikov

I nstitute YurInfor-MSU Moscow
Malaya Pirogovskaya 5, Moscow,

119435, Russian Federation

kosikov.v@gmail.com

3rd Candidate of Technical Sciences
Larisa Ismailova

I nstitute YurInfor-MSU Moscow
Malaya Pirogovskaya 5, Moscow,

119435, Russian Federation

lyu.ismailova@gmail.com

Abstract—Problem domain (PD), which are modeled in

information systems, are subject to changes; they have the

dynamics that must be taken into account when designing and

further using an information system. In this case, the arising

changes in the problem domain may not only affect the specific

data but change the content of the meta descriptions of the

problem domain. This instability is especially characteristic of

the information from the Internet. This requires additional

domain modeling tools and information system support for

saving the actual connection between the information system

and the problem domain.

The paper proposes an approach to modeling dynamic PD

based on the support of evolutionary concepts. It also considers

the possibility of using the approach to develop a prototype of a

system for supporting information search in the Internet and

processing the data found.

Keywords—concept, extension, intensional, problem domain,

domain dynamics

I. INTRODUCTION

When researching the PD one should adhere to the
hypothesis, which forms the possibility of allocating

indivisible atomic objects, on the one hand, in this problem

domain, and the connections between these objects, on the

other hand. In its turn, the connected objects can form new

objects in the PD, and it is possible to include the connections

between objects themselves into the number of objects [4].

The dynamic nature of the PD requires a formalized

description of changes as a basis for developing tools. The

changes may be extensional (changing the scope of concepts

in the description of the problem domain) and intensional

(changing the content of the concepts, i.e., the researcher's

understanding of the problem domain).

The indicated above is characteristic of such an

information resource as the Internet, as well. Numerous

changes of concepts are seen in the Internet environment,

which today penetrate many spheres of human activity, be it

information gathering, training, communication, job, leisure,

etc. Constantly new information appears, the existing
information is deleted or is affected by modifications.

Network pages are identified by a URL, which can be

considered as an individual identifier of the information page.

The change in the content of a page can both keep the

classification attributes of a page (extensional changes) and

lead to their change (intensional changes).

The changes may also be related to a modification of the

PD. This happens when the Internet user formulates

information queries. When the query is performed, a dynamic
web page is created in accordance with its own classification

of resources. Different queries may classify the same Internet

resources into different classes according to the setting the

classifying characteristics.

The paper proposes an approach to the formalization of

variable classifications of objects based on the evolutionary

concept technique. An evolutionary concept is understood as

a concept supplied with a spectrum of its potential

transformations, keeping a given set of semantic
characteristics of the concept. The paper discusses ways to

specify the general definition of the evolutionary concept

regarding the Internet.

II. THE TASK OF SUPPORTING EVOLUTIONARY CONCEPTS

Ensuring the work with evolutionary concepts is a critical

opportunity when developing information systems in

dynamic problem domains. For this reason, the task of

supporting evolutionary concepts for describing dynamic

objects is given a priority and is considered as the task to form

a set of tools that provide for the following:

 representation of objects, allowing to account the
dynamics of both extensions and intensions of the

introduced concepts;

 ability to compute the assigning of objects bound to the

point of correlation;

 ability to store descriptions of objects with the support

to linking with the object data about the nature of its

dynamics and extracting objects according to such

data.

 The need to support the work in the Internet

environment makes additional requirements to the

developed tools. These requirements are as follows:

 dynamic invocation to the address of the resource in

the Internet to check the validity of the link;

 dynamic information retrieval by link and comparison

with a set of stored samples to determine the presence

of changes and define their nature;

196

 construction and re-construction of the classification of

dynamic objects, including the case when modifying

the intentions of concepts in the problem domain.

It is feasible to solve the problem by combining the

expressive capabilities of semantic networks and applicative

computing systems. In this case, it seems possible to provide

a combination of the representation flexibility and the power

of computational tools enough to support evolutionary

concepts.

The possibility of using the approach to develop a

prototype of a system for supporting information search in the

Internet and processing the data found is under consideration.

III. REFERENCES

[1] Storing RDF at relational database. URL:

 http://infolab.stanford.edu/~melnik/rdf/db.html
[2] Current status of RDF, URL:

http://www.w3.org/standarts/techs/rdf#w3c_all

[3] Quillan M. R. Semantic memory // BOLT BERANEK AND

 NEWMAN INC CAMBRIDGE MA. 1966. №. SCIENTIFIC-2.
[4] Wolfenhagen V. E. Logic. Lecture notes: the technique of reasoning.

 Moscow. JurInfoR Center JSC, 2002.
[5] Wolfengagen V. E., Ismailova L. Y., Kosikov S. V. The Presentation

 of Evolutionary Concepts // First International Early Research Career

 Enhancement School on Biologically Inspired Cognitive

 Architectures. Springer, Cham, 2017. С. 113-125.
[6] Wolfengagen, V. 2010. Semantic Modeling: Computational Models

 of the Concepts // In Proceedings of the 2010 International

 Conference on Computational Intelligence and Security (CIS '10).

 IEEE Computer Society, Washington, DC, USA, 42-46.

 DOI=10.1109/CIS.2010.16.

 URL:http://dx.doi.org/10.1109/CIS.2010.16

197

http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16
http://dx.doi.org/10.1109/CIS.2010.16

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Deriving test suites with guaranteed fault coverage

against nondeterministic Finite State Machines with

timed guards and timeouts

Aleksandr Tvardovskii

National Research Tomsk State University

Tomsk, Russia

tvardal@mail.ru

Nina Yevtushenko

Ivannikov Institute for System Programming RAS

Moscow, Russia

evtushenko@ispras.ru

Abstract—The behavior of many information and control

systems nowadays is nondeterministic and depends on time

aspects. In this paper, we adapt classical FSM based test

derivation methods for initialized nondeterministic FSMs with

timed guards and timeouts (TFSMs). A proposed approach and

appropriate fault model are based on the FSM abstraction of the

given TFSM specification that can be used to describe the

behavior of a TFSM and allows to adapt classical FSM based

test derivation methods when deriving tests for TFSMs. We

study properties of such an abstraction for a nondeterministic

TFSM and justify that our method allows to derive test suites

with guaranteed fault coverage with respect to the defined fault

model.

Keywords—Finite State Machine, timeout, timed guard,

nondeterministic Timed Finite State Machine, test derivation

I. INTRODUCTION

Finite State Machines (FSMs) are widely used for
analysis and synthesis of discrete event systems [1]. In
particular, FSM based approaches can be effectively used
when deriving test sequences for determining whether a given
implementation considered as a “black box” conforms to its
specification and a number of methods exist for deriving
complete test suites with respect to various fault models [see,
for example, 2-5] without the explicit enumeration of possible
FSMs under test. Well-known W-method [2] and many its
derivatives have been developed including those for FSMs
with the nondeterministic behavior (see, for example, [4, 6]).
Researchers often consider the case when the specification is
a nondeterministic FSM, while an implementation FSM is
deterministic and conforms to the specification if the
implementation behavior is contained in that of the
specification. In other words, the specification
nondeterminism occurs according to the optionality of the
informal requirements’ description and the behavior of a
conforming implementation must not violate the specification.

Nowadays time aspects become very important when
describing the behavior of digital and hybrid control systems,
and, respectively, similar to automata [7] classical FSMs were
extended with time variables [see, for example, 5, 8-12].
When the behavior of a system under test is described by a
Timed Finite State Machine (TFSM), classical FSM-based
methods have to be modified and extensions to the W-based
methods are considered in the context of systems with timed
constraints [8], [13]. In [10], Merayo et al. consider timed
possibly nondeterministic FSMs where time elapsed when an
output has to be produced after an input has been applied to
the FSM under test is limited. The model also takes into
account input timeouts at states. However, the authors do not
consider test derivation; yet establish a number of

conformance relations. El-Fakih et al. [9] consider test
derivation and assessment for FSMs with timed guards; such
an FSM has a single clock that is reset at every transition. In
the thesis by Zhigulin [12], a method is proposed for deriving
complete test suites for FSMs with timeouts. The author
considers a traditional fault domain assuming that the number
of states of an implementation TFSM (Implementation Under
Test, IUT) does not exceed that of the state reduced
specification TFSM as well as the maximal finite timeout of
the IUT does not exceed that of the specification. However, as
we further show, two reduced TFSMs with timeouts can be
equivalent but not isomorphic and this fact violates the main
idea of W-based methods of checking the isomorphism or
homomorphism between transitions of the specification and
implementation under test. In [11], the authors show that the
behavior of a deterministic TFSM can be adequately described
by its FSM abstraction and this is a hint that a fault model can
be derived based on such abstraction for which well elaborated
FSM based methods with guaranteed fault coverage can be
applied. Such a fault model is considered in [14] for deriving
a complete test suite against deterministic TFSMs.

In this paper, we consider FSMs with timed guards,
timeouts and output delays (TFSM) which generalize the
TFSM model that has only timed guards or only input
timeouts [10]. Moreover, in our case, a TFSM can be
nondeterministic. Timed guards describe the system behavior
depending on a time instance when an input is applied. If no
input is applied until an (input) timeout expires then the
system can spontaneously move to another state. An output
delay describes a time for processing a given transition.

We propose a method for deriving a test suite with
guaranteed fault coverage against a complete possibly
nondeterministic specification FSM with timed guards, input
timeouts and output delays with respect to the reduction
relation assuming that an implementation TFSM under test is
deterministic. The fault model and a procedure for deriving a
complete test suite are based on the FSM abstraction of a given
TFSM specification since according to [11], the behavior of a
TFSM can be completely described by its corresponding
(untimed) FSM abstraction.

The structure of the paper is as follows. Section 2 contains
the preliminaries for classical and timed FSMs. It also
contains the explanation how the behavior of a TFSM can be
described using an appropriate FSM abstraction. In Section 3,
existing test derivation methods for nondeterministic FSMs
with respect to the reduction relation are considered. Section
4 contains the review of related works on test derivation
against Timed FSM models. In Section 5, a method is
proposed for deriving a complete test suite against a

198

nondeterministic FSM with timed guards and timeouts by
determining an appropriate fault model based on the FSM
abstraction of the given TFSM specification; the section also
contains an example of a test derivation procedure. Section 6
concludes the paper.

II. PRELIMINARIES

This section contains basic definitions of classical Finite
State Machines and Timed Finite State Machines as their
extension. We also show how the behavior of a TFSM can be
adequately described by the corresponding FSM abstraction
and establish some useful properties of such FSM
abstractions.

A. Finite State Machines

The model of a Finite State Machine (FSM) [1] is used for
describing the behavior of a system that moves from state to
state under input stimuli and produces a predefined output

response. Formally, an initialized FSM is a 5-tuple S = (S, I,

O, hS, s0) where S is a finite non-empty set of states with
the designated initial state s0, I and O are input and output

alphabets, and hS  (S  I  O  S) is the transition

(behavior) relation. A transition (s, i, o, s) describes the
situation when an input i is applied to S at the current state s.

In this case, the FSM moves to state s and produces the output
(response) o. FSM S is nondeterministic [15] if for some

pair (s, i)  S  I, there can exist several pairs (o, s′)  O 

S such that (s, i, o, s′)  hS; otherwise, the FSM is

deterministic. FSM S is complete if for each pair (s, i)  S

 I there exists (o, s′) ∈ O  S such that (s, i, o, s′)  hS;
otherwise, the FSM is partial. FSM S is observable if for

every two transitions (s, i, o, s1), (s, i, o, s2)  hS it holds
that s1 = s2. In the following, we consider complete
observable possibly nondeterministic FSM specifications,
while an implementation is a complete deterministic FSM.
A complete nondeterministic FSM is reduced if for every
two different states, the sets of traces do not coincide. The
unique reduced form exists for any complete
nondeterministic FSM and can be derived similar to that for
complete deterministic FSMs [15].

A trace or an Input/Output sequence /, written often as
an I/O sequence, of the FSM S at state s is a sequence of
consecutive input/output pairs starting at the state s. Given a

trace /,  is the input projection of the trace (input

sequence) while  is the corresponding output projection
(output sequence), i.e., a possible output response of the

FSM when the sequence  is applied at state s. Given a
complete nondeterministic FSM, there can exist several
output responses for an input sequence at a given state.

Given states s and p of complete FSMs S and P, state p is
a reduction of s (written, p ≤ s) if the set of I/O sequences of
FSM P at state p is contained in the set of I/O sequences of
FSM S at state s. FSM P is a reduction of FSM S if the
reduction relation holds between the initial states of the
machines.

B. Timed Finite State Machines

A timed FSM (TFSM) is enriched with timed guards and
timeouts [11]. The timed guards at a state have less time upper
bounds than the timeout at the state (if any) and describe the
behavior at a given state for inputs which arrive at different
time instances. Correspondingly, an initialized TFSM is a 6-
tuple S = (I, S, O, hS, ΔS, s0) where S is a finite non-empty

set of states with the designated initial state s0, I and O are

input and output alphabets, hS  S  I  O  S    Z is
the transition relation and ΔS is the timeout function. The

set  is a set of input timed guards and Z is the set of output
delays which are non-negative integers. The timeout

function is the function ΔS: S → S  (N  {}) where N is the
set of positive integers: for each state this function specifies
the maximum time for waiting for an input. If no input is
applied until an (input) timeout expires then the system can
spontaneously move to another state. By definition, for each
state of TFSM exactly one timeout is specified. An input timed

guard g   describes the time domain when a transition can
be executed and is given in the form of interval <min, max>

from [0; T), where <  {(, [}, >  {),]} and T is the input
timeout at the current state. We also denote the largest finite
boundary of timed guards and timeouts as BS. The transition

(s, i, o, s, g, d)  S  I  O  S    Z means that TFSM S

being at state s accepts an input i applied at time t  g
measured from the initial moment or from the moment when
TFSM S has produced the last output; the clock then is set to
zero and S produces output o exactly after d time units. Given
state s of TFSM S such that ΔS(s) = (s', T), if no input is
applied before the timeout T expires, the TFSM S moves to

state s'. If ΔS(s) = (s', ) then s' = s, and this means that the
TFSM can stay at state s indefinitely long waiting for an
input.

Given TFSM S, S is a complete TFSM if the union of all
input timed guards at any state s under every input i equals [0;
T) when ΔS(s) = (s', T). In this paper, we consider only
complete TFSMs and the question about the interpretation of
undefined transitions in partial machines and their
augmentation is out of the scope of this paper [16].

TFSM S is a deterministic TFSM if for each two

transitions (s, i, o1, s1, g1, d1), (s, i, o2, s2, g2, d2)  hS, s1  s2,
d1  d2 or o1  o2, it holds that g1  g2 = , otherwise, TFSM
S is nondeterministic. In this paper, we consider the system
specification as a complete observable possibly
nondeterministic TFSM while the behavior of an
implementation under test (IUT) is described by a complete
deterministic TFSM. In other words, the specification
describes a set of permissible possible behaviors and a
conforming implementation must be one of them.

Example. Consider a TFSM S in Figure 1 with two states,
one input and three outputs, where ΔS(a) = (b, 2), i.e., the

timeout at state a is 2. For state b, ΔS(b) = (b, ), and this loop
is not shown in the figure. If input i is applied to the TFSM at
state a at time instance 1 measured from the initial moment
then S moves to state b producing output o2 after one time unit.
However, if any input is not applied to TFSM until time value
reaches 2 then S moves to state b using a timeout transition.
At state b, TFSM S can wait for an input indefinitely long.

Fig. 1. Timed Finite State Machine S

199

A timed input is a pair (i, t) where i  I and t is a real; a
timed input (i, t) means that input i is applied to the TFSM at
time instance t measured from the initial moment or from the
moment when TFSM S has produced the last output. A timed

output is a pair (o, d) where o  O and d is the output delay
measured from the moment when an input has been applied.
In order to determine the output response of the TFSM at state
s to a timed input (i, t), state s', which is reached by the TFSM
by timeout transitions at time instance t, is calculated first
[12]. State s' is a state where TFSM moves from state s via

timeout transitions such that the maximum sum  of all
timeouts starting from state s is less than t. At the second step,
a transition (or several transitions for nondeterministic

TFSM) (s', i, o, s'', g, d) such that t –   g is considered.
According to this transition, the machine produces the output
(o, d) to a timed input (i, t) applied at state s and moves to the
next state s''.

A sequence of timed inputs  = (i1, t1) … (in, tn) is a timed

input sequence, a sequence of timed outputs  = (o1, d1) … (on,
dn) is a timed output sequence. The TFSM is initialized and
the clock is equal to 0 at the initial moment. Given a timed
input sequence (i1, t1) … (in, tn), an input i1 is applied when
clock value is equal to t1; after applying the input the clock is
set to 0 and the machine produces an output o1 when clock
value is equal to d1. After producing the output o1 the clock is
reset and the machine is waiting for another input i2 that is
applied when clock value equals t2. After applying the input i2

the clock is set to 0 and the machine produces an output o2
when clock value is equal to d2. After producing the output o2

the clock is reset and the machine is waiting for another input

i3, etc. A sequence / = (i1, t1)/(o1, d1) … (in, tn)/(on, dn) of
consecutive pairs of timed inputs and timed outputs starting at
the state s is a timed I/O sequence or a timed trace of TFSM S
at state s. Note that time of the first timed input in the sequence
is counted from startup of the system at state s while time of
all next inputs is counted from the time instance when a

previous output was produced. Similar to FSMs,  is an

applied timed input sequence while  is the corresponding

output response of the TFSM to sequence  of applied
inputs. Given a state of a complete nondeterministic TFSM,
there can exist several output responses to a timed input
sequence.

Similar to FSMs, the set of all timed traces at the initial
state determines the behavior of an initialized TFSM.

Example. Consider TFSM S in Figure 1 again. If a timed
input sequence (i. 2.5).(i, 0) is applied to S at state a then
TFSM first moves to state b by timeout when clock value
reaches 2. The clock is reset and output (o1, 2) or (o3, 2) is
produced, the system moves back to state a and the clock is
reset When the next input (i, 0) is immediately applied, the

TFSM moves either to state a with timed output (o3, 0) or to
state b with timed output (o1, 1).

Given states s and p of complete TFSMs S and P, state p
is a reduction of s (written, p ≤ s) if the set of timed I/O
sequences of TFSM P at state p is contained in the set of timed
I/O sequences of TFSM S at state s. TFSM P is a reduction of
TFSM S if the reduction relation holds between the initial
states of the machines.

C. FSM abstraction

The behavior of a TFSM can be adequately described
using a classical FSM that is called the FSM abstraction of the
TFSM and is derived similar to [11]; however, in [11], output
delays are not considered.

Given a complete observable possibly nondeterministic

TFSM S = (S, I, O, S, ΔS, s0), the largest finite boundary of
timed guards and timeouts BS and maximum output delay D,
we derive the FSM abstraction of TFSM S as the FSM AS =

(SA, I  {I}, OA, AS, s0) where SA = {(s, 0), (s, (0, 1)), …, (s,

(BS – 1, BS)), (s, BS), (s, (BS, )): s  S}, OA = {(o, 0), (o, 1),

…, (o, D): o  O}  {I}. The input I is a special input of
the FSM abstraction. Given state (s, tj), tj = 0, …, BS, of FSM

AS and input i, a transition ((s, tj), i, (o, d), (s, 0)) is a transition
of the FSM abstraction AS if and only if there exists a transition

(s, i, o, s, gi, d)  S such that tj  gi. Given state (s, gj), gj =

(0, 1), …, (BS – 1, BS), (BS, ), of FSM AS and input i, a

transition ((s, gi), i, (o, d), (s, 0)) is a transition of AS if and

only if there exists a transition (s, i, o, s, g, d)  S such that

gi  g. In other words, transitions under input i  I
correspond to timed inputs (i, t) where t is ‘hidden’ as the
second item of states of the FSM abstraction AS. Transitions
under the special input I correspond to the clock change
between non-integer and integer values, or to a timeout
transition between states. Given state s such that ΔS(s) = (s',

T), transitions ((s, n), I, I, (s, (n, n + 1))) and ((s, (n – 1,

n)), I, I, (s, n)) are in the transition relation AS if and only

if n < T. Transition ((s, (n – 1, n)), I, I, (s, 0))  AS if and

only if n = T  . In [11], it is shown that the FSM abstraction
of complete and deterministic TFSM S is also complete and
deterministic. In the same way, it can be shown that the FSM
abstraction of a complete observable nondeterministic TFSM
S is complete observable and nondeterministic.

Example. For a deterministic TFSM S in Figure 1 the
corresponding FSM abstraction is shown in Figure 2. FSM
abstraction AS has states (a, 0), (a, (0, 1)), (a, 1), (a, (1, 2)), (b,

0), (b, (0, )). Transitions ((a, 0), i, (o1, 1), (b, 0)) and ((a, 0),
i, (o3, 0), (a, 0)) exist in FSM abstraction AS since TFSM S has
transitions (a, i, o1, b, [0, 0], 1) and (a, i, o3, a, [0, 0], 0). FSM
abstraction AS has transition ((a, (0, 1)), i, (o2, 1), (b, 0)) since
TFSM S has transition (a, i, o2, b, (0, 2), 1). Transition ((a, 0),

Fig. 2. FSM abstraction AS of TFSM S (Figure 1)

200

I, I, (a, (0, 1))) of AS corresponds to clock change at state a
from time instance 0 to the interval (0, 1).

A timed input sequence  of TFSM S can be transformed

into a corresponding input sequence FSM of the FSM
abstraction AS. In this case, each timed input (i, t) is replaced
by sequence I.I … I.i of inputs of the FSM abstraction
where the number of inputs I equals the number of clock
transitions between a non-integer and integer values for the
time duration t. At the same time the response of the FSM
abstraction to sequence I.I.….I.i equals I.I.….I.(o, d),
where the number of inputs I is the same as for the timed
input (i, t) and (o, d) is the response of the TFSM to timed
input (i, t). Thus, the output sequence of the FSM abstraction

FSM can be transformed into corresponding timed output

sequence  by removing all outputs I. The following
statement can be established.

Proposition 1. A timed trace / exists for TFSM S if and

only if there exists a trace FSM/FSM for the FSM abstraction
AS.

Proposition 2. There exists a timed trace / at state s of
a possibly nondeterministic TFSM S if and only if the FSM

abstraction AS has a trace FSM/FSM at state (s, 0).

Indeed, all the transitions under input I are deterministic
and correspond to the clock change between integer and non-
integer value and equal to increasing of timed variable while
transitions at state (a, g) of abstraction under another input i
corresponds to transitions of TFSM at state a at time (or timed
interval) g.

Example. Consider TFSM S in Figure 1 and its FSM
abstraction in Figure 2. Timed trace (i, 2.5)/(o1, 2).(i, 0)/(o3, 0)
of TFSM S corresponds to trace I/I.I/I.I/I.I/I.I/I.i/(o1,
2).i/(o3, 0) of FSM abstraction AS, and vice versa.

According to Proposition 2, all the trace features of a
TFSM are preserved for its FSM abstraction and thus, the
set of reductions of a TFSM can be analyzed based on a set
of reductions of a classical FSM. The following statement
establishes necessary and sufficient conditions for two
TFSM states to be in the reduction relation.

Proposition 3. State s of TFSM S is a reduction of state p
of TFSM P if and only if state (s, 0) of the FSM abstraction AS
is a reduction of state (p, 0) of FSM AP.

Thus, the conclusion about the reduction relation between
two TFSMs can be drawn based on their FSM abstractions and
there exist methods for checking the reduction relation
between two FSM states or between two FSMs.

III. FAULT MODELS AND TEST SUITES

FSM based testing can be preset and adaptive. We first
consider the preset testing where test cases are (timed) input
sequences derived from the given TFSM specification to
determine whether a given IUT, which is assumed to have the
FSM behavior, conforms to the given specification. In this
section, classical FSM based test derivation methods are
adapted for test derivation against Timed FSMs.

In this paper, an implementation FSM P conforms to the
specification if FSM P is a reduction of the specification FSM.
In other words, an implementation FSM P conforms to the
specification FSM if for each input sequence the output
response of the FSM P is contained in the set of output

responses of the specification FSM to this input sequence. In

this case, the fault model FMm
FSM = <S, ≤, m> is considered

where S is the specification that is a complete observable,

possibly nondeterministic FSM, ≤ is the reduction relation, m
is the fault domain which contains each deterministic
complete FSM with at most m states over the same input
alphabet as the specification. Here we notice that differently
from the paper [17] where only deterministic FSMs are
considered, the specification can be nondeterministic and the
conformance relation is not the equivalence but the reduction
relation. Correspondingly, different transfer and separating
sequences have to be used when deriving a test suite with
guaranteed fault coverage.

A test suite is complete with respect to the FMm
FSM = <S,

≤, m> if for each FSM P ∈ m such that P is not a reduction
of S, the test suite has a sequence for which an output response
of P is not in the set of output responses of S to this sequence.

A complete test suite with respect to FMm
FSM can be

derived using an appropriate modification of the so-called
state counting reduction (SCR) method for nondeterministic
FSMs which was proposed in [6]; the proposed method is
based on deterministically-transfer (d-transfer) and
separating sequences. A state s is deterministically reachable
(d-reachable) from the initial state of the FSM S if there exists
an input sequence α such that for any output response β to α,
the machine S moves from the initial state to state s when α is
applied. In this case, α is a d-transfer sequence for state s.
States s1 and s2 of an FSM S are separable if there exists an
input sequence α such that the sets of output responses of the
FSM at states s1 and s2 to α do not intersect; in this case,
sequence α is called a separating sequence for states s1 and s2.
If a sequence separates each pair of different states of the FSM
S then this sequence is a separating sequence for FSM S.
Again, differently from [17], not each input sequence is a d-
transfer of the nondeterministic specification and separable
states and separating sequences for the nondeterministic
specification are defined in a different way according to [15].

If FSM S has a separating sequence  and each state is d-
reachable from the initial state, the procedure for deriving a

complete test suite w.r.t. the fault model FMn
FSM = <S, ≤, n>

where n is the number of states of S, has the following steps:

1. A d-cover set of the FSM S is derived. This set contains a

d-transfer sequence for each state of the FSM S.

2. Each sequence of the d-cover set is appended with the

separating sequence  of the FSM S and every input that

also is appended with the separating sequence .

If an adaptive test suite is derived, an adaptive
distinguishing sequence can be used instead of a separating
sequence while d-transfer sequences can be replaced by
adaptive transfer sequences (if they exist). Adaptive
distinguishing (separating) and d-transfer sequences can be
shorter then preset, moreover, they exist more often.

An input sequence α is adaptive if the next input depends
on the outputs of the FSM. Such an input sequence can be
represented by an FSM called a test case [18]. At each state of
a test case, either there are transitions for one input with all
outputs or there are no transitions and in the latter case, a state
is called terminal. Given a test case (TC) D for FSM S, an
adaptive distinguishing sequence defined by DTC D is applied
in the following way. If input i1 is defined at the initial state d0

201

of D then the first input i1 is applied to FSM S and DTC D
moves to the i1o-successor d1 of state d0 if the output o is the
response of S to the input i1. The next input to apply is the
input defined at state d1, etc. The procedure terminates when
a terminal state is reached.

A test case represents an adaptive separating sequence for
states s1 and s2 of the FSM S if each input-output sequence
from the initial to the terminal state of the test case is possible
at most at one of states s1 or s2. In the former case, the state s1
is identified, while in the latter case it will be state s2. States s1
and s2 of the FSM S are adaptively separable if there is a test
case that represents an adaptive separating sequence for states
s1 and s2. In this case, the corresponding trace from the initial
state to a terminal state of an adaptive separating test case
allows to determine what was a state of the FSM S before the
experiment.

If an adaptive sequence separates each pair of states of the
FSM S, then such a sequence is an adaptive separating
sequence for the FSM S.

A test case can also represent an adaptive sequence from
the initial state of the FSM S to the state s if each input-output
sequence of the test case from the initial to a terminal state is
ended at state labeled by s [18, 19]. In this case, the state s is
adaptively reachable from the initial state. The above steps for
deriving a complete adaptive test suite are almost the same as
for preset testing listed above; the only difference is that
adaptive distinguishing sequences are used instead of
separating sequences while using adaptive transfer sequences
instead of d-transfer sequences.

If FSM S has no (adaptive) separating sequence or S has
states which are not d-reachable from the initial state then a
complete test suite cannot be derived using the above
procedure. In this case, the so-called state counting (SCR)
method should be applied [6].

Below, we describe the main steps of the general SCR-

method with respect to fault model FMm
FSM = <S, ≤, m>.

1. Determine subset Sd of all d-reachable states and derive

d-cover of the FSM S which contains a d-transfer

sequence for each state of Sd.

2. Determine the set R = {R1, R2, …, Rp} of maximal subsets

of pairwise separable states; for each subset Rj  R,

denote Rjd a subset of all d-reachable states of Rj. For

each subset Rj  R, derive a distinguishing set Wj that

contains a separating sequence for each pair of different

states of Rj.

3. For each state sk of Sd, derive a set of input sequences Nk:

an input sequence   Nk if for each I/O sequence / at

state sk, it holds that / traverses states of some Rj  R

at least m - |Rjd| + 1 times and this does not hold for any

proper prefix of . Concatenate each prefix of sequence

 with each sequence of the set Wj.

4. Concatenate each d-transfer sequence with each

sequence of each set Wj that was used at Step 3 when

terminating an input sequence of the set Nk, k = 1, …, p.

Here we notice that in general case, complete test suites
derived by SCR method are much longer than for the case
when the specification FSM has a separating sequence and the
derivation method is much more complex. To minimize our

efforts for deriving a complete test suite w.r.t. the fault model

FMm
FSM = <S, ≤, m>, the adaptive testing can be used instead

of the preset [18].

It is known that a test suite can be usually shorter if the
specification FSM has a sequence, which separates every two
states [6]. In this case set Wj contains only one separating

sequences  and R = {S}. However, such a separating
sequence does not always exist and thus, we are obliged to use
a set of separating sequences for test derivation. Adaptive
distinguishing (separating) sequences exist more often than
the preset and are usually shorter, thus, adaptive
distinguishing sequences can be preferable for test derivation.
Anyway, using adaptive distinguishing sequences can
increase the size of subsets of pairwise distinguishable states,
and thus, sets Wj and the sets Nk of transfer input sequences,
and correspondingly, minimize a complete test suite.

In the next section, we consider an existing approach for
adaptation classical FSM based test derivation methods for
Timed FSM.

IV. RELATED WORK ON TFSM BASED TESING

The problem of deriving a complete test suite against a
nondeterministic FSM with timed guards with respect to
reduction relation has been considered in [19]. The proposed
approach is based on the FSM abstraction of TFSM but that
abstraction is a bit different from that considered in the
‘Preliminaries’ section. In that case, one-to-one mapping
between sets of states of TFSM and corresponding FSM
abstraction has been established. The latter allows to inherit
the above described steps for deriving a complete test with
respect to the fault domain which contains each deterministic
complete TFSMs with timed guards with at most m states over
the same input alphabet as the specification TFSM S and the
largest boundary BS for input timed guards. However, in
general case, this approach cannot be applied for FSMs with
time guards and timeouts since the one-to-one mapping
between transitions of two state reduced equivalent TFSMs
with timeouts not always can be established.

In [14], it is shown that initialized reduced deterministic
TFSM specification and TFSM implementation with timeouts
can be equivalent yet not isomorphic; moreover, they can have
different number of states. The latter violates the main
assumption of W-based methods about checking the
correspondence between FSM transitions. As an example,
consider TFSMs in Figure 3.

Fig. 3. Two reduced deterministic complete TFSMs R and Q

202

Each state in R and Q is reachable from the initial state and
each two different states of each machine are not equivalent,
i.e., both TFSMs are connected and state reduced. By direct
inspection, one can assure that equivalent machines in Figure
3 have different number of states and thus, are not isomorphic.

On the other hand, according to Proposition 1, the
necessary relationship holds between transitions of their FSM
abstractions. For example, reduced forms of FSM abstractions
of TFSMs R and Q (Figure 3) are isomorphic. FSM abstraction
AR and its reduced form is shown in Figure 4. Thus, in order
to derive a complete test suite for deterministic TFSMs,
corresponding fault domain contains every TFSM P over the
same input alphabet as S such that the reduced form of the
FSM abstraction of P has at most m > 1 states. A similar
approach can be applied for the test derivation against
nondeterministic FSMs with timeouts and timed guards; in the
next section, corresponding fault model and test derivation
method are proposed.

V. TEST DERIVATION METHOD FOR NONDETERMINISTIC FSM

WITH TIMED GUARDS AND TIMEOUTS

In order to derive a test suite with guaranteed fault
coverage for a nondeterministic TFSM we propose a fault
model based on the FSM abstraction of the TFSM and apply
the SCR-method.

Given a nondeterministic TFSM S with n states (Figure 1),
two deterministic equivalent TFSM implementations R and Q
(Figure 3) which are reductions of S can have different
number of states. However, the reduced forms of their
abstractions are isomorphic and are reductions of FSM
abstraction AS. Another example in Figure 5 demonstrates that
for nondeterministic TFSM Y there can exist a deterministic

TFSM Y with the same number of states and the boundary BS,

such that FSM abstraction AY has more states than AY.

Given a TFSM specification S, we consider the fault

model FMm
TFSM = <S, ≤, m>, where S is the complete

nondeterministic observable TFSM specification, ≤ is the

reduction relation, m is the fault domain that contains each
deterministic complete TFSM P over the same input alphabet
as the specification such that the reduced form of its FSM
abstraction AP has at most m > 1 states.

It can well happen that some timed FSMs with less states
than the specification TFSM are not included into the fault

domain and vice versa a number of timed FSMs which have
more states than the specification TFSM, are included into the
fault domain.

Example. Consider TFSM specification S (Figure 1) with

two states. Fault domain m from fault model FMm
TFSM = <S,

≤, m> contains TFSM R (Figure 3) with 3 states since the
FSM abstraction AR has not more states than the FSM
abstraction AS. At the same time, in Figure 5 the TFSM

specification Y and its non-conforming implementation Y are
shown such that both TFSMs have three states and the finite

timed guards’ boundary two. However, the fault domain m

does not contain Y since the reduced form of its FSM
abstraction has more states than AY. Thus, it can happen that
nonconforming implementations with the same number of
states as the specification TFSM can pass a complete test suite

with respect to <S, ≤, m>.

Fig. 5. TFSM Y and its non-conforming implementation Y

Note that the FSM abstraction of TFSM S can have non-
separable states, i.e. the FSM abstraction can have a pair of
states for which a separating sequence does not exist while the
specification TFSM S has a separating sequence, i.e., all states
of the TFSM S are pairwise separable. For example, TFSM S
in Figure 1 has a separating sequence (i, 1) while the
corresponding FSM abstraction AS has a pair of non-separable

Fig. 4. The FSM abstraction AR of TFSMs R (Figure 3) and its reduced forms

203

states (b, 0) and (b, (0, )), for which the sets of input/output
sequences coincide. In order to derive a complete test suite for
such FSM, the SCR method can be used.

As mentioned above, similar to a deterministic FSM
abstraction [14], a nondeterministic FSM abstraction can be
minimized using the method from [15]. As an example, for
FSM abstraction AS (Figure 2) of TFSM S (Figure 1),

equivalent states (b, 0) and (b, (0, )) can be merged into one
state. However, unlike deterministic machines, such
optimization does not always allow to merge pairs of non-
separable states of the FSM abstraction of the specification
and thus, the SCR method is still used for test derivation.

Algorithm for deriving a complete test suite w.r.t

FMm
TFSM = <S, ≤, m> where m is the number of states of the

reduced form of the FSM abstraction of S

Input: The complete observable possibly
nondeterministic specification TFSM S

Output: A complete test suite TS with respect to the fault

model FMm
TFSM = <S, ≤, m>, where m contains every

TFSM P over the same input alphabet as S such that FSM
abstraction of P has at most m > 1 states

Step 1. Derive the reduced form of the FSM abstraction
AS of TFSM S.

Step 2. Derive a test suite TSA with respect to the fault

model FMm
FSM = <AS, ≤, m> using the SCR-method

described above, where m is number of states of the FSM
abstraction AS.

Step 3. According to Proposition 1, transform test cases
of the test suite TSA into corresponding timed sequences

 over the TFSM S and obtain the test suite TS.

Proposition 4. The test suite TS returned by Algorithm
1 is complete with respect to the fault model FMm

TFSM = <S,

≤, m>.

Proof. Let TFSM P which is not a reduction of

specification TFSM S be in the set m, and a test suite TS is
returned by the above algorithm. By definition of the fault

domain m, the reduced form of the FSM abstraction AP has

at most m states. Since P is not a reduction of S, the FSM AP
is not a reduction of AS (Proposition 3). Thus, a test suite TSA

derived at Step 2 contains an input sequence FSM, which
separates FSMs AP and AS. By Proposition 2, for each

response of the FSM AP to sequence FSM there exists the

corresponding timed input sequence  of the TFSM P that will
demonstrate that P is not a reduction of the TFSM S. The latter
guarantees that each non-conforming implementation P of the

set m is detected by the test suite TS.

The fault domain in the above algorithm can be extended
and for TFSM S and the reduced form of its FSM abstraction
As with n states, a complete test suite can be derived by SCR-

method with respect to m when m > n. However, in this case
length of a complete test suite significantly increases.

In the worst case, the length of derived by SCR-method
test suite exponentially depends on number of states of FSM
and can be more complex for FSM with timed aspects. In
practice length of adaptive d-transfer sequences does not
exceed number of states FSM while length of an adaptive
distinguishing sequence usually polynomial depends on the
number of states of FSM [19]. Respectively, similar results
can be derived for a TFSM when proposed algorithm is used
and the boundary on timed guards is not too big. Note that
length of the test suite significantly depends on timed aspects
of TFSM such as boundary of timed guards and value of
timeouts [19].

We note again that the FSM abstraction of TFSM S can
have non-separable states while all states of the TFSM are
pairwise separable. However, we underline that the FSM
abstraction inherits d-reachability of states from the
specification TFSM and the following proposition holds.

Proposition 5. States (s, 0), (s, (0, 1)), (s, 1), (s, (1, 2)) …
of FSM abstraction As are d-reachable if and only if state s is
d-reachable in TFSM S.

The statement is implied by Proposition 1 and Proposition
2 due to a deterministic transition under the special input I.
Respectively, all states of FSM abstraction As are d-reachable
if and only if all states of TFSM S is d-reachable.

Fig. 6. A fragment of test suite TSA for the FSM abstraction

204

Example. Consider TFSM S in Figure 1 and its FSM
abstraction AS in Figure 2. We derive a complete test suite

w.r.t. the fault model FM6
TFSM = <S, ≤, 6>. For state (b, 0)

of AS there exists a d-transfer sequence I.i and respectively,
state b of TFSM S has a timed d-transfer sequence (i, 0,5).
Other states of FSM abstraction are d-reachable from states (a,
0) and (b, 0) by a sequence of I inputs. Thus, all states of AS
are d-reachable from the initial state and for the FSM
abstraction AS, Sd = {(a, 0), (a, (0, 1)), (a, 1), (a, (1, 2)), (b, 0),

(b, (0, ))}.

Given FSM AS, we can also determine two maximal
subsets of pairwise separable states R1 = {(a, 0), (a, (0, 1)), (a,
1), (a, (1, 2)), (b, 0)}, R2 = {(a, 0), (a, (0, 1)), (a, 1), (a, (1, 2)),

(b, (0, ))} and corresponding distinguishing sets W1 = W2 =
{ i, I.i, I.I.i}. Note that R1 = R1d and R2 = R2d since all states
of AS are d-reachable.

Consider state (b, 0) and the set N(b, 0) of input sequences
derived at Step 3 of the SCR-method when a test suite is

derived with respect to the fault model <S, ≤, 6>.
Input/Output sequences with the input projection of the set N(b,

0) should traverse states of some Rj at least 2 = 6 - 5 + 1 times
while this does not hold for any proper prefix of the input
sequence, and respectively, i.i is in the set N(b, 0) which
traverses states (a, 0) and (b, 0) of R1. Other sequences at state
(b, 0) are i.I (traverses (a, 0), (a, (0, 1))), I.i (traverses (b, (0,

)), (a, 0)), I.I (traverses (b, (0, )), (b, (0, ))) and thus,

N(b, 0) = {i.i, i.I, I.i, I.I, i, I

A fragment of the tree that is obtained when deriving a test
suite, is shown in Figure 6. One of test sequences of TSA is
I.i.i.i.I.I.i and a corresponding timed input sequence of test
TS is (i, 0,5).(i, 0).(i, 0).(i, 1) where (i, 0,5) is a d-transfer
sequence and (i, 1) is a separating sequence from W1. Each
sequence of the test suite is applied to TFSM implementation
at the initial state. First input i is applied when clock is equal
to 0,5; after applying the input the clock is set to 0 and the
machine produces corresponding output when clock value is
equal to 1 when an implementation is conforming. After
producing the output o2 the clock is reset and the machine is
waiting for the next input i that is immediately applied after
resetting the clock. After applying this input the clock is reset
again and the machine produces an output o1 or o3 when clock
value is equal to 2. After producing any of outputs the clock is
reset and the machine is waiting for a next input, etc.

VI. CONCLUSIONS

In this paper, we have proposed an approach for deriving
complete test suites with respect to the reduction relation
against nondeterministic Finite State Machines with timed
guards and timeouts. Both, a proposed approach and a
corresponding fault model are based on the FSM abstraction
of machines with timed guards and timeouts and this allows
inheriting the known FSM based SCR-method when deriving

test suites with guaranteed fault coverage for nondeterministic
TFSMs.

ACKNOWLEDGMENT

This work is partly supported by RFBR project N 19-07-
00327/19.

REFERENCES

[1] Gill A. Introduction to the Theory of Finite-State Machines, 272 p.
1964.

[2] Chow T.S. Test design modeled by finite-state machines. IEEE Trans.
Software Eng., 1978, vol. 4, no. 3, pp. 178–187.

[3] Dorofeeva R., El-Fakih K., Maag S., Cavalli A., Yevtushenko N. FSM-
based conformance testing methods: A survey annotated with
experimental evaluation. Inf. Software Technol., 2010, vol. 52, pp.
1286–1297.

[4] Hierons R.M., Merayo M.G., Nunez M. Testing from a Stochastic
Timed System with a Fault Model. Journal of Logic and Algebraic
Programming, 2009, Vol. 72(8), pp. 98-115.

[5] Krichen M. and Tripakis S. Conformance testing for real-time systems.
Formal Methods Syst. Des., 2009, vol. 34, no. 3, pp. 238–304.

[6] Petrenko A., Yevtushenko N. Conformance tests as checking
experiments for partial nondeterministic FSM. In: Grieskamp, W.,
Weise, C. (eds.) FATES 2005, Springer, Heidelberg, 2006, LNCS, vol.
3997, pp. 118–133. doi:10.1007/11759744_9

[7] Alur R. and Dill D.L. A theory of timed automata. Theoretical
Computer Science 126, 1994, pp. 183–235.

[8] Springintveld J., Vaandrager F., and D’Argenio P. Testing timed
automata. Theor. Comput. Sci., 2001, vol. 254, nos. 1–2, pp. 225–257.

[9] El-Fakih K., Yevtushenko N., and Fouchal H., Testing timed finite
state machines with guaranteed fault coverage. Proceedings of the 21st
IFIP WG 6.1 International Conference on Testing of Software and
Communication Systems and 9th International FATES Workshop,
2009, pp. 66–80.

[10] Merayo M.G., Nunez M., and Rodriguez I. Formal testing from timed
finite state machines. Comput. Networks: Int. J. Comput. Telecommun.
Networking, 2008, vol. 52, no. 2, p. 432–460.

[11] Bresolin D., El-Fakih K., Villa T., and Yevtushenko N. Deterministic
timed finite state machines: Equivalence checking and expressive
power, Int. Conf. GANDALF, 2014, pp. 203–216.

[12] Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test
Derivation Strategies for Systems with Time-Outs. 11th International
Conference On Quality Software, Madrid, 2011, pp. 141–150.

[13] En-Nouaary A., Dssouli R., Khendek F. Timed Wp-Method: Testing
Real-Time Systems. IEEE TSE 28(11), 2002, 1023–1038.

[14] Tvardovskii A., El-Fakih K, Yevtushenko N. Deriving Tests with
Guaranteed Fault Coverage for Finite State Machines with Timeouts.
LNCS, 2018, Vol. 11146, pp. 149–154.

[15] Starke P. Abstract Automata / P. Starke // American Elsevier, 1972,
419 p.

[16] Villa T., Kam T., Brayton R.K., Sandgiovanni-Vincentelli A. Synthesis
of Finite State machines: Logic Optimization, Springer, 1997, 520 p.

[17] Lee D., Yannakakis M. Principles and methods of testing finite state
machines - a survey. Proceedings of the IEEE, 1996, Vol. 84(8), pp.
1090–1123.

[18] Yevtushenko N., El-Fakih K., and Ermakov A., On-the-fly
construction of adaptive checking sequences for testing deterministic
implementations of nondeterministic specifications. Lect. Notes
Comput. Sci., 2016, vol. 9976, pp. 139–152.

[19] Tvardovskii A.S., Gromov M.L., El-Fakih Khaled, Evtushenko N.V.
Testing Timed Nondeterministic Finite State Machines with the
Guaranteed Fault Coverage. Automatic Control and Computer
Sciences, 2017, Vol. 51, № 7, pp. 724–730.

205

Simulating Petri Nets with Inhibitor and Reset
Arcs*

Pavel Pertsukhov
PAIS Lab, Faculty of Computer Science

National Research University Higher School of Economics
Moscow, Russia

papertsukhov@edu.hse.ru

Alexey Mitsyuk
PAIS Lab, Faculty of Computer Science

National Research University Higher School of Economics
Moscow, Russia
amitsyuk@hse.ru

Abstract—Event logs of software systems are used to analyse
their behaviour and inter-component interaction. Artificial event
logs with desirable specifics are needed to test algorithms sup-
porting this type of analysis. Recent methods allow to generate
artificial event logs by simulating ordinary Petri nets. In this
paper we present the algorithm generating event logs for Petri
nets with inhibitor and reset arcs. Nets with inhibitor arcs
are more expressive than ordinary Petri nets, and allow to
conveniently model conditions in real-life software. Resets are
common in real-life systems as well. This paper describes the net
simulation algorithm, and shows how it can be applied for event
log generation.

Index Terms—Petri nets, inhibitor arcs, reset arcs, simulation,
event logs

I. INTRODUCTION

Recently, process analytics evolved into an advanced field
of computer-based technology. Automated methods have been
created to find bottlenecks and inefficiencies in process models
of information systems.

One particular technology that helps to automate process
analysis is process mining [1]. Experts in this technology
employ algorithms and methods which use the records of a
system behaviour, which are called “event logs” or “system
logs”. This information can be explored to discover a model
of how the real process behaves [1]. An existing process model
runs can be aligned to the records of an event log to check
if the model conforms to the real system behaviour [2]. The
field also provides an expert with method to improve/repair
processes and process models.

The process simulation methods are also applied in the field
of process analytics [3].

Recently, it has been stated that process mining and si-
mulation form “a match made in heaven” [4]. In particular,
process model simulation can be applied to look in the future
of a process, and to test what-if alternative scenarios possible
because of process change. Moreover, the development of pro-
cess mining algorithms is impossible without sample models
and event logs with a suitable characteristics [1]. Sample event
logs can be generated using the process model simulation
methods [5]–[8]. Process mining and simulation can also be

*This work is supported by the Basic Research Program at the National
Research University Higher School of Economics.

matched in other way. The results of process discovery and
conformance checking can be applied to improve simulation
models.

Various modelling formalisms are employed in the field
of process analytics [1], [3]. Among them, the language of
Petri nets is one of the most well-established, well-researched,
simple, and commonly-used modelling languages [9]. Lots of
process discovery and analysis techniques are based on this
language [1].

A strength of the Petri net language is that on top of simply
defined P/T-nets many extensions have been built. These are
high-level Petri nets: Coloured Petri nets [10], Nested Petri
nets [11], Object nets [12] etc. Method to simulate Petri nets
of various types have been proposed in literature. However,
for many types of Petri nets still there are no simulation
techniques/tools.

This paper presents an approach and a tool to simulate
Petri nets with reset and inhibitor arcs. The addition of these
arc types improves the net expressiveness significantly. Thus,
these nets are used when the process can not be (conveniently)
modelled by P/T-nets.

This paper is organized as follows. Section II defines
models and event logs. In Section III the main contribution
is presented: algorithms to simulate Petri nets with inhibitor
and reset arcs. These algorithms are implemented in the tool
which is described in Section IV. Finally, Section V concludes
the paper.

II. PETRI NETS AND EVENT LOGS

In this section, we define process models and event logs.
Let N denote the set of all non-negative integers, and N+ =
N \ {0}.

A. Ordinary Petri nets

Petri nets are directed bipartite graphs which allows for
modelling and representation of processes in information sy-
stems [13]. More formally, an ordinary Petri net is a triple
N = (P, T, F), where P and T are two disjoint sets of places
and transitions, and F ⊆ (P ×T)∪ (T ×P) is a flow relation.

As graphs, Petri nets have convenient visual representation.
Fig. 1 shows an example model. Places are shown by circles,
transitions are shown by boxes, the flow relation is depicted

206

A
t1

A
t1 p1p1p0p0

D
t4 p2p2

B
t2

B
t2

C
t3

C
t3

Fig. 1. An ordinary labelled Petri net

using ordinary directed arcs. In Fig. 1, there are three places
(p0, p1, p3) and four transitions (t1, t2, t3, t4).

Transitions are labelled with activity names from the set
A∪{τ}. In the example, A = {A,B,C,D}. Labels are placed
inside the transition boxes. An Petri net can contain invisible
(silent) process actions which are labelled with τ . Labels are
assigned to transitions via a labelling function λ : T → A ∪
{τ}.

A state of an ordinary Petri net is called its marking. It is
a function M : P → N assigning natural numbers to places.
In figures, a marking M can be designated by putting M(p)
black tokens into a place p of the net. By M0 we denote the
initial marking. For example, the initial marking of the net
from Fig. 1 consists of a single token in the place p0.

A transition represents an activity of a process. It is enabled
in a current marking if in each of its input places (for t ∈ T
input places are •t = {p | (p, t) ∈ F}) there enough tokens,
that is ∀p ∈ •t: M(p) ≥ 1. An enable transition may fire that
changes a marking of the net. It consumes tokens from the
input places, and produces tokens to output places (for t ∈ T
input places are t• = {p | (t, p) ∈ F}).

A
t1

A
t1 p1p1p0p0

D
t4 p2p2

B
t2

B
t2

C
t3

C
t3

A
t1

A
t1 p1p1p0p0

p2p2

Fig. 2. An ordinary labelled Petri net

Consider a model from Fig. 1. t1 is the only one transitions
is enabled in the initial marking. It may fire, that corresponds
to an occurrence of activity “A”. Then, the transition consumes
a single token from p0 and produces tokens to p1 and p2. Fig. 2

illustrates this firing. The firing is local, each transition fires
independently from other transitions.

B. Petri nets with Inhibitor and Reset Arcs

In this paper, we consider Petri nets with arcs of two
additional types: reset and inhibitor arcs. These nets also
contain places, transitions, and ordinary control flow arcs.

A labelled Petri net with weights, inhibitor and reset arcs
(WIR Petri net) is a tuple NWIR = (P, T, F,W,R, I, λ),
where
• (P, T, F) is an ordinary Petri net,
• W ∈ F → N+ is an arc weight function,
• R ⊆ P × T is a function defining reset arcs,
• I ⊆ P × T is an inhibiting relation,
• and λ : T → A∪ {τ} is a labelling function.
Fig. 3 shows an example WIR Petri net.

A
t1

A
t1 p1p1p0p0

D
t4

p2p2

B
t2

B
t2

2

C
t3

C
t3

E
t5

E
t5 p4p4

F
t6

F
t6

p3

Fig. 3. A WIR Petri net

A reset arc removes all tokens from the place no matter of
their number. These arcs also called clear arcs [14].

In Fig. 3, there is a reset arc from the place p1 to the
transition t3 labelled with “C”. Reset arcs are denoted with
double arrows at the end. Note that the net contains a loop of
two actions “A” (t1) and “D” (t4). The possible sequence of
firings is < t1, t4, t1, t4, t1, t4, t3 >. Before the last step,
p1 will contain 3 tokens all of which will be removed by the
firing of t3.

An inhibitor arc [15], [16] can be from a place to a
transition. This transition can not fire if there is a token in
place connected with the transition using an inhibitor arc.
◦t = {p | (p, t) ∈ I} denotes the set of inhibiting places for
t. That is, an inhibiting place allows to prevent the transition
firing. Transitions consume no tokens through inhibitor arcs.

Inhibitor arcs are shown with small circles instead of arrows
at the end. In Fig. 3, there is a reset arc from the place p4
to the transition t2 labelled with “B”. Thus, t2 can not fire if
there is a token in p4 no matter how many tokens are in p1.
The whole part of the model that consists of places p3 and
p4, transitions t5 and t6 is a switch with two possible states:
open (there is a token in p3) / closed (there is a token in p4).

The firing of t5 closes the switch and deprecates the firing
of t2. Thus, only t3 is able to clear tokens from the place p1

207

if there is a token in p2. The firing of t3 will end the process,
because it will consume and remove all tokens from the upper
part of the net.

The firing of t6 opens the switch. Then, t2 may consume
tokens from p1 independently of tokens in other places. Note
that the arc from p1 to t2 has a weight of 2. Thus, each firing
of t2 consume exactly 2 tokens, and t2 can not fire if there is
only one token in p1.

Note that a particular WIR Petri net can contain zero number
of reset and inhibitor arcs.

Marking of a WIR Petri net is defined in the same way
as for an ordinary Petri net. But the firing rule is slightly
different for WIR Petri nets. Each marking change is called
step. In this paper, we assume that each step consists of a
single transition firing. The step from Fig. 2 is denoted by
M0[t1〉M ′, where M ′(p1) = M ′(p2) = M ′(p3) = 1 and
M ′(p0) =M ′(p4) = 0.

C. Event Logs

In this paper, we apply process model simulation to generate
event logs with records of the behaviour.

We define an event log as a finite multiset of traces L ∈
B(A∗) 1. A trace σ ∈ A∗ is a finite sequence of events from
the set A. Note that transitions of a WIR Petri net are labelled
with elements of A. The only transitions which firing leaves
no events are silent τ -transitions.

Technically, we record the event logs in XES (Extensible
Event Stream) format2 that will be considered in more detail
in Section IV.

III. PETRI NET SIMULATION ALGORITHM

This section describes the algorithm to simulate labelled
WIR Petri nets.

The main idea is to iterate over all transitions and fire one
of them at each iteration, recording corresponding events to
the log. This procedure is performed in the main generating
function called generateTrace (see Algorithm 1).

This algorithm works as follows. We have maxIterations
attempts to reach the final marking of the net. By default this
number is 10. The function moveToInitialState initiates the
trace generation by setting a marking of the to M0. Then, we
create an empty trace by calling createTrace.

At each step of the main loop, the algorithm chooses an
enabled transition in the chooseNextTransition, and fire it
(function fire). The function fire changes a marking of the
net and writes an event to trace. Then we call the function
isCompleted to check if we reached the final marking and
update replayCompleted. This loop iterates until we reach
the final marking (replayCompleted = true) or exceed the
specified limit of steps for one trace maxNumberOfSteps.

When we can not find an enabled transition which is ready
to fire, we clear the unfinished trace and begin a new attempt.

1Here B(A∗) denotes all multisets over A∗, where A∗ — all finite
sequences with elements from A.

2http://www.xes-standard.org/

If no one of ten attempts succeeded, we return NULL which
will be recorded as an empty trace to the event log. Note that
there is a setting of the prototype tool that removes all empty
and unfinished traces.

Algorithm 1 One trace generation
Input: transitions, initialMarking, finalMarking,
settings as {maxNumberOfSteps,maxIterations,
isRemovingUnfinishedTraces}
Output: generated trace or NULL
1: function GENERATETRACE
2: trace← NULL;
3: replayCompleted← false;
4: addTraceToLog ← false;
5: iteration← 0;
6: repeat
7: MOVETOINITIALSTATE();
8: trace← CREATETRACE();
9: stepNumber ← 0;

10:
11: while stepNumber < maxNumberOfSteps

12: and not replayCompleted do
13:
14: transition← CHOOSENEXTTRANSITION();
15: if transition = NULL then
16: trace← NULL;
17: break;
18: end if
19:
20: FIRE(transition, trace);
21: replayCompleted← ISCOMPLETED(finalMarking);
22: stepNumber ← stepNumber + 1;
23: end while
24:
25: iteration← iteration+ 1;
26: until (iteration >= maxIterations or
27: not isRemovingUnfinishedTraces or replayCompleted)
28:
29: if not replayCompleted

30: and isRemovingUnfinishedTraces then
31: trace← NULL;
32: end if
33: return trace;
34: end function

The chooseNextTransition function selects an enabled tran-
sition using a specified rule. The most basic implementation
of this function is shown in Algorithm 2. Here, the random
transition among all enabled and noise transitions is selected.
This algorithm is based on the algorithm for ordinary Petri
nets [17], and thus, is able to add noise to the event log. More
complex rules to select the enabled transition can be applied.
For example, priorities of preferences can be assigned to the
transitions which affect the order of their firing. If there is no
enabled transition, then NULL is returned.

Algorithm 2 Looking for the next transition
Input: allTransitions, noiseTransitions
Output: selected transition or NULL

1: function CHOOSENEXTTRANSITION(allTransitions, noiseTransitions)
2: enabledTransitions← FINDENABLEDTRANSITIONS();
3:
4: return random transition among enabledTransitions
5: and noiseTransitions or NULL;
6: end function

208

To check if a transition t is enabled, we ensure that all input
places connected with t with the help of ordinary arcs have
enough tokens. Besides that, we check that places connected
with t with the help of inhibitor arcs don’t contain any
tokens. Reset arcs don’t affect if a transition is enabled or
not. Algorithm 3 shows how this is done.

Algorithm 3 Finding enabled transitions
Input: allTransitions
Output: list of enabled transitions

1: function FINDENABLEDTRANSITIONS(allTransitions)
2: enabledTransitions← ∅;
3:
4: for transition in allT ransitions do
5: enabled← true;
6: for arc in transition.inputArcs do
7: if arc.place.numberOfTokens < arc.weight then
8: enabled← false;
9: break;

10: end if
11: end for
12: if not enabled then
13: continue;
14: end if
15: for arc in transition.inhibitorArcs do
16: if arc.place.numberOfTokens > 0 then
17: enabled← false;
18: break;
19: end if
20: end for
21: if enabled then
22: enabledTransitions.add(transition)
23: end if
24: end for
25: return enabledTransitions;
26: end function

Algorithm 4 shows the transition firing function. This
function produces and consumes tokens, and then adds an
event corresponding to this transition to the trace. The ba-
sic implementation is shown which considers only transition
names. There are much more complicated implementations
of this function for time-driven, resources, and priorities
generation modes.

Algorithm 4 Firing function
1: function FIRE(transition, trace)
2: for arc in transition.inputArcs do
3: arc.place.consumeToken(arc.weight)
4: end for
5:
6: for arc in transition.inputResetArcs do
7: arc.place.consumeAllTokens()
8: end for
9:

10: log transition to trace or perform some noise event
11:
12: for arc in transition.outputArcs do
13: arc.place.produceTokens(arc.weight)
14: end for
15: end function

IV. PROTOTYPE TOOL

The presented event log generation algorithm has been
implemented as a prototype tool. It is written in Java and in

Kotlin programming languages. In this section, we consider
the tool.

The tool consists of two parts: Generation Setup unit and
Generation unit.

A. Preparing for Generation

In preparation part we receive settings from the GUI (see
Fig. 4) or read a JSON (see Fig. 5) file. Settings from JSON
are validated. Then we load the model from a PNML3 file
and prepare this model for generation. Inhibitor and reset arcs
could be either specified in settings file, or loaded from the
PNML file. The initial and final markings are loaded in the
same manner.

Fig. 4. Tool GUI

After that we create an instance of special class
GenerationHelper, which encapsulates the main code for
choosing transitions, looking for enabled transitions, handling
noise and artificial log events if it is needed. There are different
helpers for simple generation, generation with priorities, and
generation with time.

Also we convert each transition to a special loggable
transition-related class which is used during generation. They
contain methods of event recording to a trace. Such a class
also consumes tokens from input places and produces tokens
to output places. Methods to check if a transition is enabled
are also here.

B. Generation

A singleton class is used to record the event log. We set-
up this logging class. It uses the OpenXES4 library with the
help of which we can write XES log files. The XES format is
common for the field of process mining [1]. OpenXES library
creates a separate file for each log.

A fragment of the example output in XES file is shown
in Fig. 6. This example contains two traces with names
“Trace 4” and “Trace 5”. These names should be unique.

3www.pnml.org/
4http://www.xes-standard.org/openxes/start

209

Fig. 5. Generation settings in JSON

Fig. 6. Fragment of XES file

The first trace is of the three events: “B”, “D”, and “D”. Note
that XES is XML-based, and is easy-to-read for a machine or
a human.

Then we use a Generator class to launch the main genera-
tion method (see Algorithm 1), passing a generationHelper
to this class.

C. Tool Usage

Let us test our tool on the model from Fig. 7.
The initial marking consists of the four tokens (shown as

black dots): one token lies in place2, one is in place5, and two

tokens are in place1. Our goal is to reach the final marking
(shown as green dots): two tokens in place7, and one token
in place6.

Fig. 7. Petri net used for log generation

Transition C is enabled only when place place6 is empty.
C consumes 2 tokens from place4 and produces a token to
place7.

Transition B removes all tokens in places place1 and
place2. When fire this transition consumes 4 tokens from
place4 and produces a token to place7. Thus, B can not fire
before A.

At each step either X or Y is enabled, so these transitions
may produce a trace of any length.

We set-up our tool to remove unfinished traces and limited
max number of steps to 10.

The result of the generation is shown in Fig. 8.
Let us look at some trace, for example: 〈A,X,B, Y,C,X〉.

First fired transition was A, and it produced 6 tokens to place4.
Then X fired. It consumed a token from place5 and produced
one to place6. C can not fire in this marking. Thus, B fires.
4 of 6 tokens was consumed from place4, and one token

Fig. 8. Resulting traces

210

produced to place7. Then Y fired and “opened” C. C has been
fired just after Y was fired, when a token has been removed
from place6 . B and C were fired once each, and produced 2
tokens in total to place7. place1 and place2 were cleared by
B. The last event was X , which placed a token to place6. At
the end of this run all tokens lie in the final marking.

V. CONCLUSIONS

In this paper, we have presented the algorithm to simulate
a process model in the form of weighted labelled Petri net
with inhibitor and reset arcs. This algorithm can be applied to
generate event logs from the event log. Proposed algorithm
continues the previous works on Petri net simulation with
the purpose of generating artificial event logs. The prototype
implementation is based on Gena tool5.

We have plans for future work. Firstly, we plan to com-
prehensively evaluate the proposed algorithm on artificial and
real-life process models. For now, we just tested it on sample
models to check algorithm validity. Secondly, we also plan
to improve the prototype implementation and make it stable
and usable. Thirdly, Gena is able to simulate timed process
models, models with resources, data, add noise to an event
log [8], [17]. Recently, an extension for Gena to simulate
the multi-agent system has been proposed [18]. We plan to
merge these extensions and the algorithm presented in this
paper. Then, it will be possible to simulate WIR Petri nets
with time/resources, and data.

REFERENCES

[1] Wil M. P. van der Aalst, Process mining: Discovery, Conformance and
Enhancement of Business Processes. Springer, 2011.

[2] J. Carmona, B. F. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking - Relating Processes and Models. Springer, 2018.

[3] M. Weske, Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 2007.

[4] W. M. P. van der Aalst, “Process mining and simulation: a match made
in heaven!,” in SummerSim, pp. 4:1–4:12, ACM, 2018.

[5] A. Burattin and A. Sperduti, “PLG: A framework for the generation
of business process models and their execution logs,” in Business
Process Management Workshops, vol. 66 of Lecture Notes in Business
Information Processing, pp. 214–219, Springer, 2010.

[6] A. Burattin, “PLG2: multiperspective process randomization with online
and offline simulations,” in BPM (Demos), vol. 1789 of CEUR Workshop
Proceedings, pp. 1–6, CEUR-WS.org, 2016.

[7] T. Jouck and B. Depaire, “Ptandloggenerator: A generator for artificial
event data,” in BPM (Demos), vol. 1789 of CEUR Workshop Procee-
dings, pp. 23–27, CEUR-WS.org, 2016.

[8] A. A. Mitsyuk, I. S. Shugurov, A. A. Kalenkova, and W. M. P. van der
Aalst, “Generating event logs for high-level process models,” Simulation
Modelling Practice and Theory, vol. 74, pp. 1–16, 2017.

[9] W. Reisig, Understanding Petri Nets - Modeling Techniques, Analysis
Methods, Case Studies. Springer, 2013.

[10] K. Jensen and L. M. Kristensen, Coloured Petri Nets - Modelling and
Validation of Concurrent Systems. Springer, 2009.

[11] I. A. Lomazova, “Nested petri nets: Multi-level and recursive systems,”
Fundam. Inform., vol. 47, no. 3-4, pp. 283–293, 2001.

[12] R. Valk, “Object petri nets: Using the nets-within-nets paradigm,” in
Lectures on Concurrency and Petri Nets, vol. 3098 of Lecture Notes in
Computer Science, pp. 819–848, Springer, 2003.

[13] W. M. P. van der Aalst and K. M. van Hee, Workflow Management:
Models, Methods, and Systems. MIT Press, 2002.

5https://pais.hse.ru/research/projects/gena

[14] C. Lakos and S. Christensen, “A general systematic approach to arc
extensions for coloured petri nets,” in Application and Theory of Petri
Nets, vol. 815 of Lecture Notes in Computer Science, pp. 338–357,
Springer, 1994.

[15] R. Janicki and M. Koutny, “Semantics of inhibitor nets,” Inf. Comput.,
vol. 123, no. 1, pp. 1–16, 1995.

[16] H. C. M. Kleijn and M. Koutny, “Process semantics of p/t-nets with
inhibitor arcs,” in ICATPN, pp. 261–281, 2000.

[17] I. S. Shugurov and A. A. Mitsyuk, “Generation of a Set of Event
Logs with Noise,” in Proceedings of the 8th Spring/Summer Young
Researchers Colloquium on Software Engineering (SYRCoSE 2014),
pp. 88–95, 2014.

[18] R. A. Nesterov, A. A. Mitsyuk, and I. A. Lomazova, “Simulating
behavior of multi-agent systems with acyclic interactions of agents,”
Proceedings of the Institute for System Programming, vol. 30, pp. 285–
302, 2018.

211

Computing Transition Priorities for Live Petri Nets
Kirill Serebrennikov

Faculty of Computer Science
National Research University Higher School of Economics

Moscow, Russia
cyrilsilver94@gmail.com

Abstract—In this paper we propose an approach to
implementation of the algorithm for computing transition
priorities for live Petri nets. Priorities are a form of constraints
which can be imposed to ensure liveness and boundedness of a
Petri net model. These properties are highly desirable in
analysis of different types of systems, ranging from business
processes systems to embedded systems. The paper covers the
design considerations of the implementation, including an
approach to handling the high time complexity of the algorithm
and optimizations introduced in the original algorithm.
Analysis of design decisions is provided. On the basis of the
actual implementation an application for computing priorities
was developed. It can be used for further analysis of the
algorithm applicability for real life cases.

Keywords—formal methods, Petri nets, coverability graph,
priority relation, cyclic behavior

I. INTRODUCTION

Petri nets are widely applicable for modeling and analysis
of various distributed systems ranging from business
processes systems to biological systems. Regardless the
nature of such systems their models always have some
properties of liveness and boundedness. Properties of
liveness include reiteration of all subprocesses and return to
some initial state of the system. Properties of boundedness
are those related to finiteness of the set of possible states.

In most of the cases it is highly desirable for the system to
have finite set of states, i.e. its model should be bounded. Let
us take, for example a Petri net shown in Fig. 1. This Petri net
is a model of a simple producer/consumer system, where the
left cycle represents a producer, the right cycle – a consumer,
and the place p3 between them is a buffer. This net is live, i.e.
in every reachable marking each transition can eventually
fire. The net is unbounded, since the number of tokens in p3

can be arbitrary large. It means that the buffer overflow will
eventually occur. Thus, it is desirable to transform the model
into live and bounded preserving the original structure of the
net.

The problem of transformation of a given live and
unbounded Petri net into live and bounded one without
modification of its structure was considered in [1] and [2].
The authors focused on two approaches to control of Petri net
behavior: through priority-based and through time-based
constraints on transition firings. Algorithms for computation
of priorities and time intervals were proposed by them. This
paper continues their study.

The proposed algorithms are based on construction of the
spine tree which is a subgraph of the reachability tree,
containing exactly all feasible cyclic runs in a net. It
represents the behavior that should be saved in a transformed
Petri net to preserve the liveness property of the original net.
The procedure of obtaining those cyclic runs each of which
contains all transitions and is reachable from the initial
marking was introduced in [3]. It is based on the construction
of the coverability graph that is finite by definition but can be

extremely large. This fact affects negatively the overall time
complexity of the algorithms.

Nevertheless, the performance of these algorithms may be
optimal for the majority of real life cases. In this paper we
target implementation considerations of the above mentioned
algorithms. The study is focused on computation of transition
priorities leaving apart computation of time intervals since
these two procedures have common foundation. The main
contributions of this paper are:

1. An approach to implementation design of the
transition priority computation algorithm based on
construction steps optimization and adoption of
parallelization;

2. A brief analysis of the actual implementation coded in
Java programming language;

3. A Java application with command line interface built
upon the algorithm implementation that can be used
for running experiments and researching the
applicability of the algorithm in practical cases.

The source code of the application along with usage
instructions can be found in the repository1.

The structure of the paper is as follows. In Section II the
main theoretical preliminaries are provided. Section III
contains a brief description of the algorithm under
consideration. In section IV the approach to implementation
design is described and results of implementation analysis are
presented. Section V concludes the paper.

II. PRELIMINARIES

For a more detailed introduction to the concepts presented
in this section see e.g. [4].

Let ℕ denote the set of natural numbers (including 0). We
define a marked Petri net as a tuple

(P, T, pre: T ⨯ P ⟶ ℕ, post: T ⨯ P ⟶ ℕ, m0: P ⟶ ℕ)

where P and T are finite disjoint sets of places and
transitions, respectively. pre(t,p) is a number of tokens
required to present on place p to enable transition t. The
firing of t adds post(t,p) – pre(t,p) tokens to p. Graphically,

1 https://github.com/molassar/PN-transition-priority-computer

Fig. 1. Example of a marked Petri net

212

places are denoted by circles and transitions by squares.
There is a directed arc from p to t if pre(t,p) > 0. The arc is
annotated with pre(t,p) if pre(t,p) > 1. Similarly, there is a
directed arc from t to p if post(t,p) > 0. It is annotated with
post(t,p) if post(t,p) > 1. The pre-set of a transition t is the set
of places p satisfying pre(t,p) > 0. The post-set of t is a set of
places p satisfying post(t,p) > 0. A marking of a net is a
mapping m: P ⟶ ℕ. The initial marking m0 is represented
by m0(p) tokens on place p.

An initial run is a sequence of transition firings, starting
with the initial marking. Reachable markings are all those
markings which can be reached by the initial run. A cyclic
run is a finite run starting and ending at the same marking.

A reachability graph of a Petri net is a labeled directed
graph in which vertices correspond to reachable markings of
the net. A directed edge from vertex v to vertex v' is labeled
with transition t which is enabled by marking m represented
by v and leads to marking m' represented by v'.

A Petri net is bounded if, for each place p, the number of
tokens on p does not exceed some fixed bound k , i.e. for∈ℕ
each reachable marking m the following is true: m(p) ≤ k.
Thus, a Petri net is bounded if and only if its reachability
graph is finite.

A marking m' strictly covers a marking m if and only if
for each place p ∈ P, m'(p) ≥ m(p) and m' ≠ m.

In case of unbounded nets coverability graphs provide
finite information about behavior. The construction of
coverability graph is based on the notion of the generalized
marking which is formally a mapping: P {ω}, where⟶ ℕ ⋃
ω denotes an arbitrary number of tokens on a place. A
coverability graph is defined constructively: it is constructed
successively like the reachability graph starting from the
initial marking. However, in case of the coverability graph
when a marking m' represented by a current leave v' in the
reachability graph strictly covers a marking m represented by
a vertex v, lying on the path from the root to v', then in
coverability graph the vertex v' gets a marking mw, where
mw(p) = ω, if m'(p) > m(p), and mw(p) = m'(p), if m'(p) =
m(p). Fig. 2 shows a coverability graph of the example
shown in Fig. 1.

The coverability net of a Petri net N = (P, T, pre, post, m0)
is a new Petri net N' = (P', T', pre', post', m0') which is
constructed on the basis of a coverability graph (V, E, v0) of
the original net. The transitions of N' are mapped to the
transitions of N by a labeling function λ': T' ⟶ T. The
coverability net is formally defined as:

 P' = V,

 T' = E,

 pre'((v', t, v''), v) = 1 if v = v',

 pre'((v', t, v''), v) = 0 if v ≠ v',

 post'((v', t, v''), v) = 1 if v = v'',

 post'((v', t, v''), v) = 0 if v ≠ v'',

 m0'(v) = 1 if v = v0,

 m0'(v) = 0 if v ≠ v0,

 λ'(v, t, v') = t.

The extended coverability net is the coverability net that
contains additional places to capture the token count change
for ω-marked places of the original net. For each unbounded
place p in the original net a place p is added to the extended
coverability net. If transition t is in the pre-set of p in the
original net N, then all transitions t' ∈ T' with λ'(t') = t are in
the pre-set of the added place p. Arc weights are taken into
account. The same holds for the post-sets of added places.
The initial marking of added places coincides with the initial
marking of these places in the original net. Fig. 3
demonstrates the extended coverability net constructed upon
the coverability graph shown in Fig. 2.

We define the set of all minimal feasible cyclic runs
together with prefixes leading to the cycles in a Petri net N as

C(N) = {τσ | τσ* is an initial run in N,

τ does not include σ and

σ includes all transitions in N}

where σ is a minimal feasible cyclic run in N and τ is a finite
initial run leading to σ. A spine tree is a subgraph of a
reachability tree that contains exactly all runs from C(N). The
spine tree contains the behavior that should be saved in
course of transformation in order to keep a Petri net live. For
the Petri net in Fig. 1 C(N) = {babacd, babcad, babcda,
babacbd, babcabd, babacbad}. Thus, the spine tree of the net
has the construction as shown in Fig. 4.

A priority relation for a Petri net N is a partial order
(T, ≪), i.e., the relation is reflexive, antisymmetric and
transitive. A priority relation ≪ can be specified by assigning
a priority label π(t) ∈ ℕ to each transition t. Thus, t ≪ t' if
and only if π(t) < π(t'). A Petri net with priorities is a Petri
net together with a priority relation. In a Petri net with
priorities if Q is a set of all transitions enabled in a marking
m then only transitions with the highest priority may fire.

Fig. 3. The extended coverability net of the Petri net of Fig. 1

Fig. 2. A coverability graph of the Petri net of Fig. 1

213

III. ALGORITHM OVERVIEW

Let N be a live and unbounded Petri net. The task is to
check, if it is possible to transform this net into live and
bounded by adding priorities to its transitions. To accomplish
the task we should find those transition priorities, which
exclude runs leading to unboundedness.

It is possible to distinguish two major stages in the
algorithm. The first is the search for cyclic runs in a Petri net.
The presence of cyclic runs is a necessary condition for
existence of transition priorities for a given Petri net. On the
second stage the spine tree is built with the cyclic runs found
on the previous stage forming its skeleton. The whole
algorithm has the following sequence of actions:

1. Given a Petri net build its coverability graph;

2. Given the coverability graph constructed on the
previous step build a coverability net;

3. Transform the coverability net into an extended
coverability net;

4. Find behavioral cycles of the extended coverability
net;

5. If the set of cyclic runs computed on the previous step
is not empty build a spine tree in which the cyclic runs
form the skeleton;

6. Given the spine tree build a spine-based coverability
tree in which all leaves are colored in either red or
green2;

7. Traverse the spine-based coverability tree. For each
non-red node a with its incoming edge labeled after
transition t1 if there exists a red sibling b with its
incoming edge labeled after transition t2 add (t1, t2) to
the priority relation;

8. Assign priority labels to the transitions on the basis of
the priority relation computed on the previous step.

The steps 1-4 form the first stage of the algorithm –
search for cyclic runs. The procedure was introduced in [3].
The second stage – computation of a priority relation through
spine tree construction – is represented by the steps 5-7. It
was described in [1].

2 For the complete algorithm see [1]

IV. IMPLEMENTATION APPROACH

A. Cyclic Runs Search

The problem of the search for cyclic runs in a Petri net
can be reduced to the search for cyclic runs in its extended
coverability net. The original algorithm for the cyclic runs
search is comprised of four steps. We have reduced the
number of steps to two by optimizing the construction phases
of coverability and extended coverability nets.

The first step is the construction of a coverability graph.
This step can not be avoided since the coverability graph is
the foundation for the rest of the algorithm. Since the
coverability graph can grow exponentially the overall time
complexity of the algorithm is also exponential. We have
chosen parallelization to target the problem. The
implementation of coverability graph construction and
traversal steps was designed to be easily parallelized.

Listing 1 demonstrates the pseudocode of the algorithm
for building the coverability graph. Each node is processed in
the following way: the set of transitions is filtered to find the
transitions enabled by the marking corresponding to a node,
then all the filtered transitions are fired to produce new
generalized markings. Directed arcs are added from the
vertex labeled by the marking of the node to the vertices
labeled by the produced generalized markings. New nodes
are generated from the obtained markings for further
processing. Processing of a node does not depend on
processing of other nodes so this task can be scheduled in
parallel. The actual implementation of the pseudocode has
the time complexity

O(|V| * |T| * d(CG) * |P|)

where |V| is the number of vertices in a coverability graph, |T|
- the cardinality of the transition set of a Petri net, d(CG) –
depth of the coverability graph, i.e. the distance from the
root to the most distant vertex, and |P| - the cardinality of the
set of places.

We have made two implementations of the algorithm:
single-threaded and parallel. For the parallel implementation
the fork/join Java framework was used. It is based on the

Fig. 4. The spine tree of the Petri net of Fig. 1

Listing 1. Pseudocode of the algorithm for building the coverability graph

214

divide and conquer approach and uses a pool of threads. We
have also conducted a benchmarking of the two
implementations with the use of JMH open source tool.
Coverability graph construction for the Petri net in Fig. 1 was
benchmarked. The single shot time mode was selected for the
test. In this mode the time for a single operation is measured.
Thus the “cold” performance of an algorithm is estimated,
since no preliminary warm-up is conducted. This mode is
most similar to the real-life usage scenario of the algorithm
The results are presented in Table 1.

The results in Table 1 demonstrates that the single-
threaded implementation performs slightly better for the Petri
net of Fig. 1. The probable reason is the low complexity of
the net. The time complexity of processing a single node is

O(|T| * d(CG) * |P|)

and, hence, there are strong reasons to believe that with
increase in concurrency of the model and in number of
transitions and places the parallel implementation will
outperform the single-threaded one. Further experiments
should be conducted.

TABLE I. BENCHMARK RESULTS FOR IMPLEMENTATIONS OF THE
COVERABILITY GRAPH CONSTRUCTION ALGORITHM

Benchmark Mode Single-Threaded
Score

Parallel Score

Single shot time 5080.768 us/op 7632.496 us/op

The construction of the coverability net and the extended
coverability net was optimized: we used coverability graph
built on the previous stage and a separate data structure for
capturing the number of tokens on unbounded places to find
all feasible cyclic runs. The pseudocode of the cyclic runs
search procedure is presented in Listing 2.

Again, the algorithm was designed to be easily
parallelized. Processing of each node in the actual
implementation has the time complexity

O(|E|)

where |E| is the number of edges in the coverability graph.
Table 2 demonstrates benchmark results of parallel and
single-threaded implementations of the cyclic runs search
algorithm. For the purposes of benchmarking the Petri net of
Fig. 1 was searched for cyclic runs. Again, the single-
threaded solution has higher performance and this time the
gap is larger. However, as it was mentioned earlier further
experiments should be conducted since the model is very
simple.

TABLE II. BENCHMARK RESULTS FOR IMPLEMENTATIONS OF THE CYCLIC
RUNS SEARCH ALGORITHM

Benchmark Mode Single-Threaded
Score

Parallel Score

Single shot time 11366.737 us/op 19647.215 us/op

B. Priorities computation

The rest of the algorithm is based on the construction of
the spine tree of a Petri net and its traversal. The procedure of
constructing the spine tree from the list of cyclic runs is quite
straightforward and we omit its description here. Similarly,
the algorithm for the construction of the spine-based
coverability tree was described in details in [1] and we have

mostly followed this description in the process of
implementation design. In the spine-based coverability tree
the red leaves (ω-leaves) are those nodes which strictly cover
some markings preceding them in their branches. To
guarantee boundedness they should be cut off. This is
achieved with priorities. Listing 3 demonstrates the
pseudocode for computing priority relation on the basis of the
spine-based coverability tree.

It was proved in [1] that if the relation ≪ constructed for
the live and unbounded Petri net (N, m0) is a partial order (i.e.
antisymmetric), then ≪ is a priority relation for N, and the
Petri net (N, ≪, m0) is live and bounded. However, it is
possible for the algorithm in Listing 3 to produce relations
with contradictory pairs, thus violating the antisymmetric
property. In [2] it is suggested to remove such contradictory
pairs from the relation. In this case the Petri net with the
resulting priority relation should be checked for boundedness
and liveness.

The concluding step of the algorithm implementation is
computation of priority labels of transitions. For transitions

Listing 2. Pseudocode of the algorithm for cyclic runs search

215

which are not included in the priority relation the highest
priority is assigned since this means that the order of their
occurrence is not important. For the rest of transitions a
topological sorting is used to order the transitions in the
ascending priority and assign a label to each of them with
respect to their position. This is possible because the priority
relation can be represented as a directed acyclic graph. It
should be noted that the obtained priorities can be stronger
than it is required since topological sorting does not take into
account relative independence of transitions in the priority
relation.

V. CONCLUSION

In this paper we have proposed an approach to
implementation design of the algorithm for computing
transition priorities for live Petri nets. In the worst case the
performance of the algorithm may be not optimal for the task
since it is based on construction and traversal of the
coverability graph which can grow exponentially. However, it
may prove optimal for the majority of real-life system
models. The presented approach targets the drawbacks of the
algorithm. The main proposed methods are the use of parallel
computing and the optimization of construction steps.

Priority constraints can be helpful in analysis of technical
systems, since they ensure liveness and boundedness of such
systems. For the purposes of computing priorities an
application was developed. This application is based on the
algorithm implementation presented in the paper and can be
used for further studies on the problem.

However, it should be noted that the application inherits
the weak points of the algorithm it is based on, i.e. the high
time complexity. Hence, further experiments should be
conducted to determine the limits of applicability of the
application and the algorithm in particular.

VI. ACKNOWLEDGMENTS

This work is supported by the Basic Research Program at
the National Research University Higher School of
Economics.

REFERENCES

[1] I. Lomazova, L. Popova-Zeugmann Controlling Petri Net
Behavior using Priorities for Transitions. Fundamenta
Informaticae, Vol. 143, No 1-2, pp. 101–112, 2016.

[2] I. Lomazova, L. Popova-Zeugmann, A. Bartels
Controlling Boundedness for Live Petri Nets.
Proceedings of the 4th International Conference on
Control, Decision and Information Technologies,
pp. 236-241, 2017.

[3] J. Desel, On Cyclic Behaviour of Unbounded Petri Nets.
In: Application of Concurrency to System Design
(ACSD). 13th International Conference on Application
of Concurrency to System Design, pp. 110–119. IEEE,
2013.

[4] W. Reisig, Understanding Petri Nets. Springer-Verlag
Berlin Heidelberg, 2013.

[5] T. Cormen, C. Leiserson, R. Rivest, C. Stein,
Introduction to Algorithms. The MIT Press, 2009.

[6] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes,
D. Lea, Java Concurrency in Practice. Addison-Wesley
Professional, 2006.

Listing 3. Pseudocode of the algorithm for priority relation computation

216

Method for Building UML Activity Diagrams from
Event Logs

Natalia Zubkova∗ and Sergey Shershakov†
Laboratory of Process-Aware Information Systems (PAIS Lab)

National Research University Higher School of Economics
Moscow 101000, Russia

Email: ∗nszubkova@edu.hse.ru, †sshershakov@hse.ru

Abstract—UML Activity Diagrams are widely used models for
representing software processes. Models built from event logs can
provide valuable insights into real flows in systems and suggest
ways of improving those systems. This paper proposes a novel
method for mining UML Activity Diagrams (AD) from event
logs. The method is based on a framework that consists of three
nested stages involving a set of model transformations. The initial
model is inferred from an event log using one of the existing
mining algorithms. Then the model, if necessary, is transformed
into an intermediate form and, finally, converted into the target
UML AD by the newly propsed algorithm. The transforming
algorithms, except one used at the last stage, are parameters of
the framework.

Index Terms—Process mining, Petri Nets, UML Activity Dia-
grams, Process Discovery

I. INTRODUCTION

Process mining techniques [1] aim at analyzing and im-
proving real-life processes by taking information from event
logs. Event logs are generally produced by process-aware
information systems (PAIS) that support these processes. One
particular problem of process mining is process discovery; its
goal is to build a model of a process, based on the data in
an event log. Such models can be expressed in different nota-
tions. For example, transition systems (TS) naturally represent
sequences of events (traces) as they are recorded in event logs.
However, if a process contains concurrent behavior, transition
systems tend to be very complex and as large as the event log
itself. This occurs due to the fact that similar patterns are not
joined together and concurrency is expressed in the form of
interleaving.

There are other types of models that allow to represent
concurrency patterns, namely choice and parallelism, and that
are widely used in the field of process mining. Petri nets (PN),
BPMN, Fuzzy maps and UML Activity Diagrams (AD) are
examples of such models. Unified Modeling Language (UML)
[2] is a standart for defining, documenting and visualizing
artifacts, especially in the software engineering domain. Par-
ticularly, UML Actitity Diagrams are used, among other, to
represent and analyse actual or expected behavior of software
systems. AD is not the only UML class that allows to represent
concurrency [3]. For instance, UML State Machine Diagrams
have their own semantics to illustrate concurrency. However,
they reflect different states of a system which are not explic-
itly represented in event logs. These states, therefore, have

to be mined using different techniques, i.e. encoding states
with trace prefixes. Given that event logs contain information
representing activities performed by process participants and
supporting systems, we regard Activity Diagrams as the de-
sired class of target models in this paper.

In our work, we propose a framework for building UML
Activity Diagrams from event logs, consisting of a number
of steps. The frameworks essential part is the algorithm for
converting Petri nets into UML ADs. Other intermediate
models (namely, TS and PN) can be synthesised using different
algorithms which are parameters of the framework. Here we
consider the algorithm of regions [4] as a means to generate
Petri nets which are consequently converted into target UML
ADs. ADs are usually more compact than Petri nets and are
more easily interpretable. Moreover, generated diagrams can
be imported and used in different visual modeling and design
tools used in the software engineering domain, i. e. Sparx
Enterprise Architect, and be later included as part of bigger
software models.

The contributions of this paper are as follows: (1) a
framework for generating UML AD from event logs, (2)
a novel method for UML AD sythesis from a Petri nets
as intermediate models, (3) implementation of the proposed
framework specified by a particular set of sythesis algorithms.

The rest of the paper is organized as follows. Section II
gives a brief overview of related work. Section III defines
necessary concepts needed for the explanation of the proposed
approach. The framework is described in Section IV and the
PN-to-UML AD conversion algorithm is presented in Section
V. Section VI contains models derived from real-life event
logs. Finally, Section VII concludes the paper and outlines
possible directions for future work.

II. RELATED WORK

There exist many approaches to construct Petri nets from
event logs [1], [5], [6]. The algorithm of regions and its
extensions are described, particularly, in [4], [7], [8]. The
algorithm produces a Petri net from a given TS that serves
as an input of the algorithm. The behavior of the derived PN
is guaranteed to be equivalent to the TS. Previously, Petri nets
have also been used as intermediate models for constructing
other types of target models, such as BPMN in [9].

217

The similarity between UML Activity Diagrams and Petri
nets are studied in numerous works. Arlow et al. present
UML specification in application to Unified Process including
UML AD structural elements, and also mention that UML
AD are based on the Peti Net techniques [10]. In [11] authors
formalize AD semantics and compare them to semantics of
Petri Nets. There are many works dedicated to the transfor-
mation of UML Activity Diagrams into Petri nets; the reverse
transformation is studied scantily. In [12] the author describes
an approach to translate UML AD into Petri nets. Agarwal
[13] developed a method for transforming AD into Petri nets
for verification purposes. The author considers a set of UML
patterns and indicates corresponding Petri net instances.

III. PRELIMINARIES

B(X) is the set of all multisets over some set X . For a
given set X , X+ is the set of all non-empty finite sequences
over X .

A. Trace, Event Log

Let Z be a set of activities. A trace is a finite sequence
σ = 〈a1, a2, ..., ai, ..., an〉 ∈ Z+.By σ(i) = ai we denote i-th
element. L ∈ B(Z+) , such that |L| > 0, is an event log. Here,
|L| is the number of all traces.

B. Labeled Petri Net, Well-structured Labeled Petri Net

A labeled Petri net (PN) is a tuple PN = {P, T, F, l},
where P is a set of places, T is a set of transitions, P ∩T = ∅,
F ⊆ (P × T) ∪ (T × P) is the flow relation, l is the labeling
function l : T → Λ, and Λ is a set of labels. In process mining,
labels of transition represent events.

Given p ∈ P , the set p• = {y|(p, y) ∈ F} is the postset of
p.

In this paper by Petri net we denote a well-structured Petri
net, i.e. a hierarcical Petri net that can be recursively divided
into parts having single entry and exit points [14].

Fig. 1: An Activity Diagram example

C. UML Activity Diagram

A UML Activity Diagram is a tuple AD = {N,E,NT},
where
• NT is a set of node types
NT = {control, object, executable}

• N is a set of nodes. n ∈ N : n = (λ, type), λ ∈
Λ, type ∈ NT

• E is a set of edges. e ∈ E : e = (n1, n2), n1, n2 ∈ N
Similar definition was used in [15]. In this paper we mainly
focus on the following elements of the UML AD (see Fig. 1):

1) A is a set of activity nodes, a ∈ A : a = (λ, executable)
2) F is a set of parallel nodes, f ∈ F : f = (control)
3) D is a set of decision nodes, d ∈ D : d = (control)
4) init and final are initial and final nodes, both of type

control.
UML decision nodes should be equipped with guards that

indicate the conditions under which the decision is made. In
this paper, we regard non-deterministic Petri nets as interme-
diate models1. The proposed conversion algorithm does not
assume the presence of guard information in the event log
and uses only the input Petri net. Thus, the produced Activity
Diagram is non-deterministic as well.

IV. FRAMEWORK

The proposed framework is illustrated in Fig. 2. The frame-
work consists of a number of nested stages related to individ-
ual steps of the proposed method. At every step a transforma-
tion from one entity, event log or process model, into another
is made. There exist numerous approaches to construct both
Petri nets and transition systems. Models obtained from the
same event log, but using different algorithms, represent the
same process. However, they vary in details that are usually
represented by quality metrics [16]. Depending on the task,
specific combinations of quality metrics can be considered.

The long path of the framework (I) includes first building
a TS needed for the algorithm of regions. Here, various
techniques for TS construction can be used, for instance,
prefix tree sythesis [17], frequency based reduction [18], neural
approach [19] etc. However, the TS synthesis can be bypassed
and a Petri net can be generated directly from the event log (II).
There are many algorithms for that, i. e. Inductive miner [14],
α−algorithm [5], ILP-miner [20] and other. Finally, in III the
generated Petri net is converted into a UML Activity Diagram.

A. Proposed implementation

In this paper we consider the full version of the framework
with the following parameters.

1) Prefix tree builder, unlimited window, for TS construc-
tion.

2) The algorithm of regions for converting the TS into a
PN.

3) The PN-to-UML AD converter described in the follow-
ing section.

This following paragraph gives a brief overview of the
algorithms used in steps 1 and 2.

Prefix tree builder [17] is an algorithm for TS synthesis.
Event logs usually do not explicitly contain states that are
needed for the construction of a transition system. A state
function is introduced in order to infer such states. This

1There exists an extension to Petri nets that adds guards to its semantics.
However, most of the process mining algorithms consider Petri nets without
guards. Here we follow the same approach.

218

Event log

TS builder

TS

PN Builder

PN

PN-to-UML AD
converter

UML AD

III
II

I

II

Fig. 2: Proposed framework. I-III are nested staged of the framework.

• I – II + TS construction from event log.
• II – III + PN synthesis from event log.
• III – AD synthesis for a given PN.

function maps events in an event log onto states of a TS.
Let E be a set of events in an event log, and S be a set
of states in a transition system. For each event e ∈ E the
state function produces a state s ∈ S regarding either pre-
or posthistory of the state s. A prefix tree is a special type
of transition systems, for which the state function consideres
prehistory (prefix) of the state s. Informally, a transition
(s, e, s′) appears if prehistorys′ = prehistorys + e. If the
prefix size is unlimited, the size of the generated TS can be
equivalent to the size of the event log.

The algorithm of regions [8] used in 2 is based on finding
equivalent behaviors in a given transition system. These behav-
ioral fragments are grouped into so-called regions. Intuitively
a region is equivalent to a place in a Petri net. Placing a token
in such a place means allowing such a behavior to appear –
via activating a post-transition. In UML Acitivity Diagrams
transitions are translated into activities. Thus, considering a
transitive dependence between an initial TS and an AD, one
can ascertain a link between equivalent behavioral fragments
in TS (regions) and corresponding nodes in AD.

V. PN TO UML AD CONVERSION ALGORITHM

The PN-to-UML AD conversion algorithm is based on the
idea of converting places and transitions of a given Petri
net into corresponding elements of the target UML Activity
Diagram. UML AD specification notes that an activity diagram
can only have a single entry point, whereas the inception
of a process modeled by a Petri net can be determined
by placing tokens in multiple places (an initial marking).
Here, we consider all places without incoming edges as a
potential starting place. Then a single starting point (init
node) in an Activity Diagram is constructed and connected
to the following activities. Final places are also not explicitly
indicated in Petri nets, however it is sensible to regard those
without outgoing edges as such, corresponding final nodes are
inserted in the AD.

While translating a Petri net into a UML activity diagram
the algorithm considers special patterns, namely parallelisms
and decisions. Such patterns can be translated into equivalent

patterns in an Activity Diagram. A similar approach was used
in [12], [13] for the reverse transformation.

In order to describe the proposed transformation we illus-
trate it on a running example (Fig. 3). We consider different
types of AD nodes and describe the according transformations
as follows.

A. Transformation functions

• Let α : (T, l) → (A, l) be a function transforming tran-
sitions of the Petri net into activities of the constructed
UML AD, tagged by the same labels;

• Let φ : P → D be a function transforming appropriate
positions of the PN into decision nodes of the UML AD;

• Let ξ : T → F and ψ : P → F be functions transforming
PN transitions and sets of PN places into UML parallel
nodes accordingly.

B. Building a UML Activity Diagram

UML Activity Diagram construction includes the following
procedures.

1) Constructing activity nodes
The semantics of Petri nets suggests that transitions,
which model events in Petri nets, correspond to activities
in Activity Diagrams. So the first transformation step of
the algorithm is turning transitions of a given Petri net
into UML AD activities, i.e. for each transition t ∈ T
we create an activity a = α(t) in the AD.

2) Detecting parallel forks
We now need to connect nodes and identify more com-
plex behaviors. In a Petri net a concurrent pattern occurs
if a transition has multiple outgoing edges, allowing
tokens to appear in all of the following places when the
transition is fired (see Fig. 4). Considering a transition
t ∈ T of a Petri net, let T ∗ be a set of transitions
reachable from t in one step. For each transition t ∈ T ,
if t has

a) 0 outgoing edges, then activity α(t) is connected
to a final node;

219

complete
_booking

pay_by_card

start_booking

send_email

get_insurancebook_flight

choose_payment
_type

pay_by_
web_money

complete_booking

start_booking

book_flight get_insurance

send_email

choose_
payment_type

pay_by_card
pay_by_

web_money

s0

s1

s5

s6

s6

s7

s8

s4s3

start_booking

book_flight

book_flight get_insurance

get_insurance

send_email

choose_payment_type

pay_by
_card

pay_by_
web_money

complete_booking

s10

b) Corresponding Petri net

a) Transition system c) Constructed UML
Activity Diagram

Fig. 3: Example models.

b) 1 outgoing edge, then activity α(t) is connected to
α(t∗, for each t∗ ∈ T ∗;

c) > 1 outgoing edge, activity α(t) is connected to a
fork node ξ(t), and ξ(t) is then connected to α(t∗,
for each t∗ ∈ T ∗.

start_booking send_email
...

...
... ...

(a) In Petri net.

...

...

...start_booking send_email

(b) In corresponding UML Activity Diagram.

Fig. 4: Concurrency pattern.

3) Detecting parallel join
In order for the model to be more interpretable, for
each parallel fork there should be a reciprocal parallel
join. So for each fork, described in 2 we need to find
the corresponding join. This is done according to the
following steps.

a) For each maximum set of places {p1, ..., pn} ⊆ P
that have coinciding postsets (p•1 = ... = p•n) and
n > 1, a ψ(P) join node is inserted in the AD.

b) For each transition t immediately preceding each
place from S, the activity α(t) is connected to
ψ(P).

c) Join node ψ(P) is then connected to α(t′), ∀t′ ∈
T ′, where T ′ is a set of transitions immediately
following places {p1, ..., pn}.

pay_by_card

pay_by_
web_money

...
...

...

(a) In Petri net.

...

...

...pay_by_card

pay_by_
web_money

(b) In corresponding UML Activity Diagram.

Fig. 5: Choice pattern.

220

4) Detecting decision splits and merges
A decision pattern in a Petri net occurs if a place has
multiple outgoing edges allowing only one consecutive
transition to fire (see fig. 5). So for each place p ∈ P ,
that has more than one outgoing edge a decision node
φ(p) is inserted into the AD and is connected to α(t̃),
∀t̃ ∈ T̃ , where T̃ are transitions connected to p (both
before and after). Likewise, if the place p has multiple
incoming edges, a reciprocal merge node φ(p) is inserted
into the AD.

Applying the steps 1–4 to an input Petri net, the target UML
Activity Diagram is constructed.

VI. APPLICATION

In this section we provide example of models obtained from
real logs. Log1 and Log2 consist of 243 and 1132 traces
respectively. For observability purposes intermediate transition
systems were reduced using a frequency reduction algorithm
described in [18].

In 6 models were generated with window size 1 and fre-
quency reduction parameter 0.04. Log1 contains information
about bank operations.

(a) Petri net

(b) UML AD

Fig. 6: Log1.

In 7 models were generated on a log containing information
about building permit applications from five Dutch munici-
palities. Transistion system was built with unlimited window
parameter and reduced with frequency reduction parameter of
0.15.

(a) Petri net

(b) UML AD

Fig. 7: Log2.

VII. CONCLUSION

In this paper we proposed a method based on a framework to
build UML Activity Diagrams from event logs and introduced
a novel algorithm for converting a well-structured Petri net
into a UML Activity Diagram. The method is implemented as
a part of the LDOPA2 library. Future work includes studying
the executuion semantics of Petri nets and UML activity
diagrams with guards. Moreover, the framework can be further
investigated by implementing different TS and PN synthesis
algorithms.

ACKNOWLEDGMENT

This work is supported by the Basic Research Program
of the National Research University Higher School of Eco-
nomics.

2Available at https://prj.xiart.ru/projects/ldopa

221

REFERENCES

[1] Wil Van der Aalst. Data Science in Action. In Process Mining, pages
3–23. Springer, 2016.

[2] UML specification. https://www.omg.org/spec/UML/About-UML/. Ac-
cessed: 2019-03-01.

[3] Concurrecy in UML. https://www.omg.org/ocup-2/documents/
concurrency in uml version 2.6.pdf. Accessed: 2019-03-05.

[4] Josep Carmona, Jordi Cortadella, and Michael Kishinevsky. A Region-
Based Algorithm for Discovering Petri Nets from Event Logs. volume
5240, pages 358–373, 09 2008.

[5] Wil MP Van Der Aalst and Boudewijn F Van Dongen. Discovering Petri
Nets from Event Logs. In Transactions on Petri Nets and Other Models
of Concurrency VII, pages 372–422. Springer, 2013.

[6] A Weijters, Wil M. P. Aalst, and Alves A K Medeiros. Process Mining
with the Heuristics Miner-algorithm, volume 166. 01 2006.

[7] Eric Badouel, Luca Bernardinello, and Philippe Darondeau. Polynomial
algorithms for the synthesis of bounded nets. In Colloquium on Trees
in Algebra and Programming, pages 364–378. Springer, 1995.

[8] Jordi Cortadella, Michael Kishinevsky, Luciano Lavagno, and Alexandre
Yakovlev. Deriving Petri nets from finite transition systems. IEEE
transactions on computers, 47(8):859–882, 1998.

[9] Anna A. Kalenkova, Wil M. P. van der Aalst, Irina A. Lomazova, and
Vladimir A. Rubin. Process mining using bpmn: relating event logs and
process models. Software & Systems Modeling, 16(4):1019–1048, Oct
2017.

[10] Jim Arlow and Ila Neustadt. UML2 and the Unified Process: practical
object-oriented analysis and design. Pearson Education, 2005.

[11] Rik Eshuis and Roel Wieringa. A comparison of Petri net and Activity
diagram variants. In Proc. of 2nd Int. Coll. on Petri Net Technologies
for Modelling Communication Based Systems, volume 93, 2001.

[12] Dirk Fahland. Translating UML2 Activity diagrams to Petri nets. Berlin,
Germany: Humboldt-Universitat zu Berlin, 2008.

[13] Bhawana Agarwal. Transformation of UML Activity diagrams into Petri
nets for verification purposes. International Journal Of Engineering And
Computer Science, 2(3):798–805, 2013.

[14] Sander JJ Leemans, Dirk Fahland, and Wil MP van der Aalst. Discov-
ering block-structured process models from event logs-a constructive
approach. In International conference on applications and theory of
Petri nets and concurrency, pages 311–329. Springer, 2013.

[15] Kseniya Davydova and Sergei Shershakov. Mining hybrid uml models
from event logs of soa systems. 29(4), 2017.

[16] Joos CAM Buijs, Boudewijn F Van Dongen, and Wil MP van Der Aalst.
On the role of fitness, precision, generalization and simplicity in process
discovery. In OTM Confederated International Conferences” On the
Move to Meaningful Internet Systems”, pages 305–322. Springer, 2012.

[17] Wil MP Van der Aalst, Vladimir Rubin, HMW Verbeek, Boudewijn F
van Dongen, Ekkart Kindler, and Christian W Günther. Process mining:
a two-step approach to balance between underfitting and overfitting.
Software & Systems Modeling, 9(1):87, 2010.

[18] Sergey A Shershakov, Anna A Kalenkova, and Irina A Lomazova. Tran-
sition systems reduction: balancing between precision and simplicity. In
Transactions on Petri Nets and Other Models of Concurrency XII, pages
119–139. Springer, 2017.

[19] Timofey Shunin, Natalia Zubkova, and Sergey Shershakov. Neural
approach to the discovery problem in process mining. In Analysis of Im-
ages, Social Networks and Texts, pages 261–273. Springer International
Publishing, 2018.

[20] Jan Martijn EM Van der Werf, Boudewijn F van Dongen, Cor AJ
Hurkens, and Alexander Serebrenik. Process discovery using integer
linear programming. In International conference on applications and
theory of petri nets, pages 368–387. Springer, 2008.

222

https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/ocup-2/documents/concurrency_in_uml_version_2.6.pdf
https://www.omg.org/ocup-2/documents/concurrency_in_uml_version_2.6.pdf

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

“Life” in Tensors: Implementing Cellular Automata

on Graphics Adapters

Shalyapina Natalia

National Research Tomsk State University

Tomsk, Russia

nat.shalyapina@gmail.com

Gromov Maxim

National Research Tomsk State University

Tomsk, Russia
maxim.leo.gromov@gmail.com

Abstract— This paper presents an approach to the

description of cellular automata using tensors on the example

of the cellular automata of Conway's Game of Life. This

approach allows to attract various frameworks for organizing

scientific calculations on high-performance graphics adapter

processors, that is, to automatically build parallel software

implementations of cellular automata. In our work, we use the

Keras and TensorFlow frameworks to organize computations

on NVIDIA graphics adapters. Since these frameworks were

created to build neural networks, the functioning of the

cellular automata of Conway's Game of Life is described by a

specially constructed neural network. The resulting

acceleration from such a parallel implementation of the

cellular automata is estimated experimentally.

Keywords— Cellular automata, Conway's Game of Life,

tensor

I. INTRODUCTION

The use of automata in description of a dynamic systems’
behavior has been known for a long time. The key point of
this approach to the description of systems is a representation
of the object under study in the form of a discrete automatic
device – automaton (State Machine or Transition System).
Under the influence of input sequences (or external factors)
an automaton changes its state and produces reactions. There
are many types of such automata: the Moore and Mealy
machines [1], the cellular automaton [2], and others. The
knowledge of the features of the object under study can
provide enough information to select the appropriate type of
automaton for the object’s behavior description. In some
cases, it is convenient to use an infinite model. But finite
models are mostly common. In the latter case, the sets of
states, input actions (or states of the environment), and
output reactions are finite.

Our work deals with cellular automata (CA). The theory
of cellular automata began to take shape quite a long time
ago. The work of John von Neumann [3] might be
considered as the first work of the cellular automata theory.
Today, a large number of studies devoted to cellular
automata are known [4, 5]. Note that a major part of these
works is devoted to the simulating of spatially distributed
systems in physics, chemistry, biology, etc. [6]. The goal of
the simulation is to find the states of the cells of a CA after a
predetermined number of CA cycles. The resulting set of
states in some way characterizes the state of the process or
object under study (fluid flow rate at individual points,
concentration of substances, etc.). Thus, the task of

simulating a certain process or object by a cellular automaton
can be divided into two subtasks. First, the researcher must
select the parameters of the automaton (the dimension of the
grid of cells, the shape of the cells, the type of neighborhood,
etc.). And secondly, programmatically implement the
behavior of the selected cellular automaton. Our work is
focused on the second task – the software implementation of
the cellular automaton.

In itself, the concept of a cellular automaton is quite
simple and the idea of software implementation is obvious.
However, the number of required calculations and the
structure of these calculations suggest the use of modern
supercomputers with a large number of cores and supporting
large-block parallelism. In this case, the cell field of the
automaton is divided into separate blocks. Processing of
blocks is done in parallel and independently from each other.
At the end of each processing cycle, the task of combining
the processing results of each block arises. This problem was
solved in [7] in the original way. The experimental study in
[7] of the efficiency of parallelization was carried out on
clusters with 32 and 768 processors. Despite the high
effectiveness of this approach, it has some issues. First, this
approach assumes that a researcher has an access to a cluster.
Supercomputers are quite expensive and usually are the
property of some collective access center [8]. Of course, after
waiting a certain time in the queue, access to the cluster is
possible. But another difficulty arises: a special skill is
needed to write parallel programs in order to organize
parallel sections of the program correctly. And this leads to
the fact that it takes a certain number of experiments with the
program to debug it before use. The latter means multiple
times of waiting in a queue for a cluster, which, of course,
delays the moment of launching true (not debugging)
experiments with cellular automata.

We offer an alternative approach for software
implementation of cellular automata, which is based on the
use of modern graphics adapters. Modern graphics adapters
are also well-organized supercomputers, consisting of several
specialized computational cores and allowing execution of
operations in parallel. Compared to clusters, graphics
adapters are available for a wide range of users and we
believe that their capabilities are enough to simulate cellular
automata. The fact is that if we exclude extravagant and
exotic examples of cellular automata, the process of
modeling their behavior does not imply branching or return
to the previous state. Exactly these restrictions are imposed
on programs for graphics adapters. In addition, there are

223

special source development kits (frameworks) that can
exploit multi-core graphics adapters and help a researcher
quickly and efficiently create a software product, without
being distracted by thinking about parallelizing data flows
and control flows. In particular, such frameworks include
Keras [9] and ThensorFlow [10].

In this paper, we demonstrate an approach for software
implementation of cellular automata on graphics adapters. To
do this, we use the well-known frameworks’ combination
Keras-over-TensorFlow.

In order to use these tools, we propose to describe the set
of states of an automaton cells’ by the main data structure
used in these frameworks, namely, the tensor. Then we
describe the process of evolution of the automaton in terms
of tensor operations. Since Keras was developed as a tool for
building (and learning) neural networks, a special neural
network is built to implement the operations on tensors. The
network takes as an input the tensor of the current set of
states of the CA cells and builds the tensor of the subsequent
set of states. A well-known cellular automaton, the
Conway’s Game of Life, is used as a demonstration.

The work is structured as follows. Section II presents the

basic concepts and definitions concerning the theory of

cellular automata. Section III provides a description of the

game Conway’s Game of Life, its features and rules of

operation. Section IV is devoted to a detailed presentation of

the proposed approach for software implementation of

cellular automata on graphics adapters. The results of

computer experiments with the implementation of the

Conway’s Game of Life and comparison with the results of

a classical sequential implementation are presented in

Section V.

II. PRELIMINARIES

The Moore machine (finite, deterministic, fully defined)

is a 6-tuple 𝐴 = 〈𝑆, �̂�, 𝐼, 𝑂, 𝜑, 𝜓〉 , where S is the finite

nonempty set of states of the machine with a distinguished

initial state �̂� ∈ 𝑆, I is the finite set of input stimuli (input

signals), O is a finite set of output reactions (output signals),

𝜑: 𝑆 × 𝐼 → 𝑆 is a fully defined transition function,

𝜓: 𝑆 → 𝑂 is a fully defined function of output reactions. If

at some moment of time the Moore machine 〈𝑆, �̂�, 𝐼, 𝑂, 𝜑, 𝜓〉
is at the certain state 𝑠 ∈ 𝑆 and the input signal 𝑖 ∈ 𝐼 arrives,

then the machine changes its state to the state 𝑠′ = 𝜑 (𝑠, 𝑖),

and the signal 𝑜 = 𝜓 (𝑠′) appears at its output. The

machine starts its operation from the initial state �̂� with the

output signal 𝜓 (�̂�). It is important to note that originally

Moore defined the machine so that the output signal of the

machine is determined not by the final state of the transition,

but by the initial one (i.e. in the definition above instead of

𝑜 = 𝜓 (𝑠′) should be 𝑜 = 𝜓(𝑠)). However, for our

purposes it is more convenient to use the definition we have

specified.

Let ℤ be the set of integers. Consider the set of all possible

integers pairs (𝑖, 𝑗) ∈ ℤ × ℤ . With each pair (𝑖, 𝑗) we

associate some finite set of pairs of integers 𝑁𝑖,𝑗 ⊆ ℤ × ℤ,

called the neighborhood of the pair (i, j). Pairs of Ni, j will be

called neighbors of the pair (i, j). The sets Ni, j must be such

that the following rule holds: if the pair (p, q) is the

neighbor of the pair (i, j), then the pair (p + k, q + l) is the

neighbor of the pair (i + k, j + l), where k and l are some

integers. Note that the cardinalities of all neighborhoods

coincide and the sets will have the same structure. For

convenience, we assume that all neighbors from Ni, j are

enumerated with integers from 1 to | Ni, j |, where | Ni, j | is

the cardinality of the set Ni, j. Then we can talk about the

first, second, etc. neighbor of some pair (i, j). If the pair (p,

q) is the n-th neighbor of the pair (i, j), then the pair (p + k,

q + l) is the n-th neighbor of the pair (i + k, j + l).

Consider the set of Moore machines of the form

𝐴𝑖,𝑗 = 〈𝑆, �̂�𝑖,𝑗 , 𝑆
|𝑁𝑖,𝑗|, 𝑆, 𝜑, 𝜓〉 such that 𝜓 (𝑠) = 𝑠 . Here i

and j are some integers, 𝐵𝑛 is the n-th Cartesian power of B.

The machines corresponding to the neighbors of the pair (i,

j) are called neighbors of the machine Ai, j. Neighboring

machines will be numbered as well as the corresponding

neighboring pairs (that is, the first neighbor, the second,

etc.). We specifically note that (i) for each machine Ai, j the

set of states is the same, i.e. S; (ii) for each machine Ai, j, the

set of output signals coincides with the set of states, that is,

also S; (iii) as an output signal, the machine gives its current

state; (iv) all machines have the same transition function and

the same function of output reaction; (v) as an input signal,

machines take tuples of states (of their neighbors), the

number of elements in the tuple coincides with the number

of neighbors, that is, equals | Ni, j |; (vi) machines differ only

in their initial states. Let at a given time moment the current

state of the first neighbor of the machine Ai, j is equal to s1,

the state of the second neighbor is s2, ..., the state of the n-th

neighbor is sn, where n = | Ni, j |. Then the tuple (s1, s2, ..., sn)

is the input signal of the machine Ai, j at this very moment.

All machines accept input signals, change their states and

provide output signals simultaneously and synchronously.

That is, some global clock signal is assumed.

The resulting set {𝐴𝑖,𝑗| (𝑖, 𝑗) ∈ ℤ × ℤ} of the Moore

machines is called a two-dimensional synchronous cellular

automaton (or simply cellular automaton – CA). Each

individual Moore machine of this set will be called a cell.

The set of states of all cells the CA at a given time moment

will be called the global state of the cellular automaton at

this time moment.

The transition rules of cells from one state to another

(the function φ), the type of neighborhood of the cells (the

sets Ni, j), the number of different possible cell states (the set

S) define the whole variety of synchronous two-dimensional

cellular automata.

For clarity, one can draw cellular automata on the plane.

For this, the plane is covered with figures. Coverage can be

arbitrary, but of course, it is more convenient to do it in a

regular way. Classic covers are equal squares, equal

triangles and equal hexagons. The choice of one or another

method of covering the plane is dictated by the original

problem a CA is used for and the selected set of neighbors.

Next, the cover figures are assigned to the cells of the

cellular automaton in a regular manner. For example, let the

224

plane be covered with equal squares, so that each vertex of

each square is also the vertex of the other three squares of

the coverage (Fig. 1a). Choose the square of this coverage

randomly and associate it with the cell A0,0. Let the cell Ai,j

be associated with a certain square. Then we associate the

cell Ai + 1,j with the square on the right, the cell Ai - 1,j with the

square on the left, the cell Ai,j + 1 with the square above, and

the cell Ai,j - 1 with the square below (Fig. 1b). Cell states

will be represented by the color of the corresponding square

(Fig. 1c)

a)

b)

c)

Fig. 1. A CA represented on a plane covered by equal squares: a) the

coverage of the plane; b) association of the cells with the squares; c) colour

representation of cells’ states (for the case |𝑆| = 2 , «white» – state 0,
«black» – state 1)

The resulting square based representation of a CA on a

plane is classical one. In our work we consider only this

representation.

For the square based representation of a CA, the

neighborhoods shown in Fig. 2 are the most common.

a)

b)

Fig. 2. The neighborhood (grey cells) of a cell (the black one) by а)

von Neumann, b) Moore

If a given cellular automaton models a process (for

example, heat transfer), then the various global initial states

{�̂�𝑖,𝑗| (𝑖, 𝑗) ∈ ℤ × ℤ} of the cellular automaton correspond to

different initial conditions of the process. According to the

definition of cellular automata introduced by us, the set of

cells in it is infinite. However, from the point of view of

practice, especially in the case of an implementation of a

cellular automaton, a set of cells have to be made finite. In

this case, some of the cells lack some neighbors. Therefore,

for them the set of neighbors and the transition function are

modified. Such modifications determine the boundary

conditions of the process being modeled.

III. CONWAY’S GAME OF LIFE

In the 70s of the 20th century, the English

mathematician John Conway proposed a cellular automaton

called the Conway’s Game of Life [l3].

The cells of this automaton are interpreted as biological

cells. The state “0” corresponds to the “dead” cell, and the

state “1” – “alive”. The game uses the Moore’s

neighborhood (Fig. 2b), i.e. each cell has 8 neighbors. The

rules for the transition of cells from one state to another are

as follows:

 if a cell is “dead” and has three “alive” neighbors,

then it becomes “alive”;

− if a cell is “alive” and has two or three “alive”

neighbors, then it remains “alive”;

− if a cell is “alive” and has less than two or more

than three neighbors, then it becomes “dead”.

For the convenience of perception, the behavior of each

cell of the cellular automaton Conway’s Game of Life can

be illustrated using the transition graph (Fig. 3).

Fig. 3. Cell Transition Graph of the Conway’s Game of Life, where N
is the number of “alive” neighbors

Despite the simplicity of the functioning of the

automaton, it is an object for numerous studies, since the

variation of the initial configuration leads to the appearance

of various images of its dynamics with interesting

properties. One of the most interesting among them are

moving groups of cells – gliders. Gliders not only oscillate

with a certain periodicity, but also move the space (plane).

Thus, as a result of experiments, it was established that on

the basis of gliders logical elements AND, OR, NOT can be

built. Therefore any other Boolean function can be

implemented. It was also proved that using the cellular

automata Conway’s Game of Life it is possible to emulate

the operation of a Turing machine [l3].

IV. FEATURES OF CONWAY’S GAME OF LIFE PARALLEL

IMPLEMENTATION

According to our definition, a set of states of a cell is

finite. It is obvious that, in this case, without loss of

generality, we can assume that the set of states is the set of

integers from 0 to |S| - 1, where |S| – is the cardinality of the

set of states. Therefore, the global state of the cellular

automaton can be represented as a matrix A. The element

Ai,j of this matrix is equal to the current state of the cell Ai,j.

We call the matrix A the matrix of the global state of the

cellular automaton. If there are no restrictions on the number

225

of cells, then matrix A will be infinite. As have already been

mentioned, the number of cells has to be limited from a

practical point of view, that is, it is necessary to somehow

choose the finite subset of cells. After that, only selected

cells are considered. In this case, the ability to describe the

global state of the cellular automaton by the matrix is

determined by which cells are selected. We assume that the

following set of cells is selected: {𝐴𝑖,𝑗| (1 ≤ 𝑖 ≤ 𝑚) ∧ (1 ≤

𝑗 ≤ 𝑛)}, where m and n – two fixed natural numbers. In this

case, the global state matrix is obtained naturally.

Since we use the Keras and TensorFlow frameworks for

implementation of a CA, we should work with concepts

defined in them. The main data structure in TensorFlow is a

multidimensional matrix which in terms of this framework

is called a tensor. However, in many cases, such a matrix

may not correspond to any tensor. The tensor in the n-

dimensional space must have n
p + q

 components and is

represented as (p + q)-dimensional matrix, where (p, q) is

the rank of the tensor. And, for example, a 2 by 3 matrix

does not follow these restricions. But the convenience of

data manipulation provided by the framework justifies some

deviations from strictly defining the tensor. Therefore, in the

case when we are talking about the software implementation

of a cellular automaton using TensorFlow, we will consider

the the notion of the global state matrix of a CA and the

notion of the global state tensor of a CA as equivalent.

Thus, the evolution of the global state of a cellular

automaton can be represented (within TensorFlow) as a

transformation of the components of the global state tensor.

Such a transformation will be called the evolution of the

tensor.

Thus, the logic of the transition of the cellular automaton

from a given global state to the next global state will be

described using operations on tensors. In particular, for the

software implementation of Conway’s Game of Life in our

work such operations are the convolution of tensors and the

"restriction" of the components value. Let us consider a

small example.

Let some initial global state of the cellular automaton

(Fig. 4) be given.

Fig. 4. Some initial global state of the finite state machine for the

Conway’s Game of Life

Black cells are a “alive” cell (state 1), zero means that

the cell is “dead” (state 0). The corresponding tensor of the

global state has the form (1):

 𝑻 =

[

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0

0
0
0
1
1
1
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0]

 

The next state of a cell of the cellular automaton of the

Conway’s Game of Life depends on the number of living

neighbors of this cell. We suggest using convolution to

count the number of living neighbors of a cell. Since set of

neighbors in the Conway’s Game of Life are specified by

the Moore neighborhood, the convolution kernel will have

the form (2):

 𝑺 = [
1 1 1
1 0,5 1
1 1 1

] 

Note the special role of the element S22 = 0,5. This

element corresponds to the cell for which the number of

living neighbors is calculated. Let the number of living

neighbors of a certain dead cell be calculated. Then it will

turn out to be integer because component S22 will be

multiplied by the state of the dead cell (and it is equal to 0),

and in the sum the number S22 will not participate. It will

turn out to be half-integer in the case when the number of

living neighbors of a living cell is calculated. This is

important when the cell has two living neighbors. Then the

dead cell must remain dead, and the living cell must live.

That is, if after the convolution the counted number of living

neighbors turns out to be 2 (the cell is dead, it has 2 living

neighbors), then in its place should be 0 in the tensor of the

global state of the cellular automaton in the next cycle. If,

after convolution, the counted number of living neighbors is

2.5 (the cell is alive, and it has 2 neighbors), then in its place

should be 1 in the tensor of the global state of the cellular

automaton in the next cycle.

Constructing a convolution with the kernel S of the

tensor T, we obtain the new tensor C, where at the

intersection of the i-th row and j-th column there is an

element corresponding to the number of living neighbors for

the cell Ai,j. Note that we obtain a tensor (m – 2)  (n – 2)

when constructing a convolution with a kernel of size 3  3

of an arbitrary tensor of the size m  n. In order to save the

initial dimensions of the global state tensor of a cellular

automaton, we will set the elements in the first and last row

and in the first and last column of the global automaton

tensor to 0. We will append these zero rows and columns to

the result after the convolution is completed. Appended

elements in the formula (3) are highlighted in gray. The

mentioned fact suggests that some of the subsequent

computations are superfluous (namely computations on the

appended elements). The amount of extra computations for

226

the global state tensor with dimensions m  n will be (2m –

 2) + (2n – 2). Then, the part of extra computations in the

amount of useful computations is
(2𝑚−2)+(2𝑛−2)

(𝑚−1)(𝑛−1)
= 𝑂(1

𝑚
+ 1

𝑛
).

(3)

Taking into account the agreement on the half-integer

value of the number of living neighbors, the integer part of

the value of the tensor component C determines the number

of living neighbors of the cell, and the presence of the

fractional part means that the cell was alive in the previous

step.

According to the rules of the Conway’s Game of Life it

is necessary to transform the tensor C in order to determine

the global state of the cellular automaton in the next step.

Components with values in the range [2.5, 3.5] should take

the value 1 (cells are alive). The remaining components

should become 0 (cells are dead). Among the classical

operations on tensors there is no operation that would allow

to express the required transformation. However, the

frameworks used in our work (Keras and TensorFlow) were

created primarily for the problems of the theory of artificial

intelligence, namely, for implementing of neural networks.

The data flow in them is the flow of tensors (a tensor as an

input, a tensor as an output). Computational elements, that

change data, are layers of the neural network.

So, for example, in our case for the convolution we use a

two-dimensional convolution layer with the kernel S

(formula (2)). Any tool for neural network implementation

ought to have the special type of layers – activation layers

(layer of non-linear transformations). These layers calculate

activation functions (some non-linear functions) of each

element of the input tensor and put the result into the output

tensor. Keras and TensorFlow offer a standard set of non-

linear activation functions. In addition, it is possible to

create custom activation functions. We built our own

activation function based on a function from a standard set

of functions, called a Rectified Linear Unit (ReLU). The

function ReLU is defined as follows (formula (4)). Its graph

is shown in Figure 5:

 𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(0, 𝑥) 

Fig. 5. Diagram of ReLU function

Taking into account the required transformation of the

components of the tensor C described above, we suggested

the function presented in (5):

δ = 𝑅𝑒𝐿𝑈(4(𝑥 − 2,125)) − 𝑅𝑒𝐿𝑈(4(𝑥 − 2,125)) −
𝑅𝑒𝐿𝑈(4(𝑥 − 2,125)) + 𝑅𝑒𝐿𝑈(4(𝑥 − 2,125)) 

Fig. 6. Diagram of the transition function of the Conway’s Game of

Life

As a result of applying the function δ to each component

of the tensor C, the tensor of the global state of the cellular

automaton will take the following form (formula (6)).

 𝑻′ =

[

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
1
1
1
0
0
0
0

0
0
0
1
0
1
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0]

 

Thus, the software implementation of the Conway’s

Game of Life using the frameworks Keras and TensorFlow

is a two-layer neural network. The first layer is

convolutional, with the kernel from formula (2). The second

layer is the activation layer with the activation function from

formula (5).

V. EXPERIMENTAL RESULTS

We have implemented the described approach for the

cellular automaton of the Conway’s Game of Life in the

Python.

Based on the frameworks Keras and TensorFlow, a two-

layer neural network was created. The first layer is

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

y

x

0
1
2
3
4
5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8

y

x

227

convolutional with the kernel of the form (2), the second

layer is the activation layer with the activation function of

the form (5). Naturally, network training is not required. We

set all parameters in advance. In this case, the neural

network is a way of presenting the necessary

transformations of the global state tensor of the cellular

automaton, which is provided by Keras + TensorFlow. The

resulting program was launched on a graphics adapter with

CUDA support. For comparison with the classical

implementation of the cellular automaton of the Conway’s

Game of Life on a uniprocessor system, we used the

implementation of [11].

R-pentamino [12] located in the middle of the field (Fig.

4) was used as the initial global state of the cellular

automaton of the Conway’s Game of Life in the

experiments.

We took a square game field (the matrix of the global

state of the cellular automaton) with dimensions m × m,

where m varied from 10 to 350 with the step 10. For each m,

we calculated 1000 subsequent global states of the cellular

automaton. The execution time was measured. The

calculations were repeated 10 times. Time was averaged. All

experiments were conducted on a computer with the

following characteristics: Intel Core i5-3470@3.2 GHz

processor, 8 GB RAM, Windows 7-x64 OS, GeForce GTX

650 Ti graphics adapter (1024 MB RAM, 928 MHz base

frequency, 768 CUDA cores).

Dependence diagrams of the program execution time on

the “length” of the square field side m of the game are

shown in Figures 7 and 8. We also built regressions. The

regression curves are shown in Figures 7 and 8 as well. A

second-degree polynomial was chosen as the regression

hypothesis.

Fig. 7. Results of experiments with a single-threaded implementation

Fig. 8. Results of experiments with CUDA (Keras+TensorFlow)

implementation

It can be noted that for small values of m, the execution

time of a single-threaded program is smaller than the

execution time of the multiprocessor (on the graphics

adapter) implementation proposed by us. However, as m

grows, the situation changes and the proposed

multiprocessor implementation begins to outperform the

classical single-threaded implementation. We associate this

with the overhead of transferring data from the computer’s

general RAM to the graphics adapter’s RAM and returning

the result from the graphics adapter’s memory to the

computer’s memory. When the dimensions of the game field

of the Conway’s Game of Life are small, the time of actual

calculations of the global states of the cellular automaton is

much less than the time of transmission of information. As

the field size grows, the computation time of the cellular

automaton state becomes significant, the data transfer time

is leveled, and the multiprocessor implementation on the

graphics adapter begins to significantly outrun the single-

threaded speed.

Obviously, the dependence of the execution time of

programs on the "length" m of the square field side of the

Conway’s Game of Life must be parabolic. With the growth

of m, the number of cells grows as m
2
, each cell needs to be

processed once per cycle. Therefore, operations of fixed

duration must be of the m
2
 order. According to the obtained

results we constructed regression polynomials of the second

degree. Regression curves are in good agreement with

experimental data (Fig. 7, 8). It may seem that for a

multithreaded implementation the dependency should be

different. However, we note that when the number of cells

becomes much more than the number of cores in a multi-

core system (in our case, the graphics adapter had 768

cores), then processing will be performed block by block:

first comes one block of 768 cells, then another, etc. Thus,

m
2
/K operations will be done, where K is the number of

cores, that is, also of the order of m
2
.

VI. CONCLUTIONS

In this paper, a tensor approach to the software

implementation of cellular automata is described and

programmatically implemented. The approach is focused on

launching programs on multi-core graphics adapters.

Programs are implemented in Python using the frameworks

Keras and TensorFlow. These frameworks allow

automatically generate and run multi-threaded programs on

multi-core graphics adapters. These frameworks were

created for the problems of the artificial neural networks

theory. The data flow is the flow of tensors, and the

converting nodes are the layers of the neural network.

Therefore, the proposed approach should be implemented

within these frameworks as some kind of neural network.

For the Conway’s Game of Life we proposed a two-layer

neural network with certain parameters.

The effectiveness of using the developed approach was

shown during a series of computer experiments. If the

number of cells in the automaton is equal to the number of

cores, then the maximum acceleration can be observed. If

228

the number of cells exceeds the number of cores, then the

parallel sections of the program are executed sequentially.

This means that with a very large size of the playing field

the type of dependence will be parabolic when using a

graphics adapter. The latter is confirmed by regression

analysis.

REFERENCES

[1] D. Harris and S. Harris. Digital Design and Computer Architecture.

Morgan Kaufmann, 2012. 721 p.

[2] T. Toffolli, N. Margolus. Cellular Automata Machines. MIT Press,
1987. 279 p.

[3] J. von Neumann Theory of Self-Reproducing Automata. University of
Illinois Press, 1966. 403 p.

[4] O. Bandman. Simulation Spatial Dynamics by Probabilistic Cellular
Automata. Lecture Notes in Computer Science, 2002, vol. 2493, 10–
19 pp.

[5] G.G. Malinetski, M.E. Stepantsov Modelirovanie diffusionnykh
protsessov s pomoshchyu kletochnykh avtomatov s okrestnostyu
Margolusa (Modeling of Diffusion Processes by Cellular Automata
with Margolus Neighborhood), Zhurnal vychislitelnoy matematiki i
matematicheskoy phiziki (Comput. Math. Math. Phys.), 1998, vol. 38,
No. 6, 1017–1021 pp. (in Russian).

[6] J.R. Weimar. Cellular Automata for Reaction-Diffusion Systems.
Parallel Computing, 1999, vol. 23, No. 11, 1699–1715 pp.

[7] Y.G. Medvedev. Razrabotka i issledovanie trehmernoj kletochno-
avtomatnoj modeli potoka vyazkoj zhidkosti (Development and
Research of a Three-Dimensional Cellular Automaton Model of a
Viscous Fluid Flow). PhD thesis, Novosibirsk, 2005, 108 p (in
Russian).

[8] Vychislitelnyj klaster «SKIF Cyberia» (Computing Cluster «SKIF
Cyberia»). URL: https://cyberia.tsu.ru (12.05.2019).

[9] Keras: the Python Deep Learning Library. URL: https://keras.io
(12.05.2019).

[10] TensorFlow. URL: https://www.tensorflow.org (12.05.2019).

[11] Sozdanie igry «Zhizn'» na C++ (Implementation of the Game "Life"
using С++) URL: https://code-live.ru/post/cpp-life-game
(12.05.2019).

[12] M. Gardner The Fantastic Combinations of John Conway's New
Solitaire Game "Life". Scientific American, 1970, vol. 223, no 4,
120–123 pp.

229

Modeling of angular stabilization system on
processors with scalable architecture

Dmitry Melnichuk
Department of Mathematical Support of Computer and Information Systems

Saratov State University
Saratov, Russia

melnichukdv@sgu.ru

Abstract—A numerical simulation of the effect of typical
nonlinearities on the output vector functions of a nonlinear
stabilization system of a moving control object is performed. The
efficiency of parallelization of computations in the implementa-
tion of similar tasks is investigated on the example of cluster
systems with Intel Xeon Phi coprocessors.

Index Terms—hybrid dynamical systems, processors with scal-
able architectures

I. INTRODUCTION

Currently, cluster systems are widely used, in the nodes
of which one or several processors with a large number of
cores are used. Examples include computing systems with new
Intel Xeon processors with scalable architecture or computing
systems with Intel Xeon Phi coprocessors that are used as
virtual cluster nodes. Parallel computational architectures of
this class are effective only when solving problems with a
significant parallelism resource. In this case, classes of mathe-
matical models that are effectively implemented on Intel Xeon
Phi, will be effectively implemented on modern scalable Intel
Xeon architectures. For the problems of modeling of hybrid
dynamical systems (HDS) [1, 2] a significant resource of par-
allelism is typical, since in this class of mathematical models
the (theoretically infinite-dimensional) phase space of control
objects with space-distributed parameters is isolated. For dy-
namic balancing of computational load on cluster systems, the
MPI-MAP parallelization pattern was previously implemented
[3]. The purpose of this work is to study the effectiveness of
the software implementation on parallel computing systems
of the class of modeling problems of the influence of typical
nonlinearities and nonstationarity on the output vector function
of the HDS. As an example, we consider a similar [4] system
of angular stabilization of the movable control object (the
rocket taking into account the deformations of its body),
but providing stabilization both with respect to the vertical
direction and with respect to the longitudinal axis.

II. PARALLEL ALGORITHMS FOR MODELING OF HYBRID
DYNAMICAL SYSTEMS

HDS are systems of ordinary differential equations and
partial differential equations connected by means of boundary
conditions and constraint’s conditions under appropriate initial
conditions [1, 2]. HDS with piecewise continuous input vector

function x(t), x : R → RNx and continuous output vector
function y(t), y : R → RNy correspond to equations similar
to [2, 4]

ẏ = f(x,y,h,p,µ,µtt)

u̇ = F(u,x,y, ẏ,µ,µtt), r ∈ Ω

G(u,y,µ)|S = 0, S = ∂Ω; h =

∫
S

H(u,µ)dS

y(0) = y0, u(r, 0) = u0(r)

(1)

Here r ∈ RNr are independent spatial coordinates of
individual points of the object with space-distributed param-
eters, Ω ⊂ RNr is an area occupied by an object with
space-distributed parameters, h : R → RNh , f : RNx ×
RNy × RNh × RNp × RNµ × RNt → RNy , u(r, t), u :
RNr × R → RNu are distributed output vector function,
operators F : (RNr × R → RNu) × (R → RNx) × (R →
RNy)× (R→ RNy)×RNµ×RNt → (RNr ×R→ RNu), G :
(RNr×R→ RNu)×(R→ RNy)×RNµ → (RNr×R→ RNg),
H : (RNr × R → RNu) × RNµ → (R → RNh) correspond
to partial differential equations, boundary conditions, and
coupling conditions; p ∈ RNp are feedback parameters; µ ∈
RNµ are parameters of model nonlinearities; µt ∈ RNt are
parameters characterizing the unsteadiness of the system from
the point of view of the automatic control theory; the point at
the top indicates the time t differentiation. When µ = µt = 0
HDS (1) becomes linear stationary. The main theorems on
the stability of linearized HDS are formulated and proved in
[1, 2]. In work [4] on the basis of an asymptotic method of
many scales the fact of stabilization of nonlinear HDS on the
basis of parametric synthesis on the linearized model is proved,
and adaptive algorithms of parametric synthesis are offered.
After parametric synthesis, numerical simulation of the effect
of typical nonlinearities and unsteadiness on the output vector
function of a nonlinear HDS is performed (1). In this case, the
input vector function x(t) and the initial conditions y0, u0(r)
are fixed, and the components of the vectors µ and µt change
with a fixed step within a parallelepiped. The element-by-
element transformation of sequence (µj ,µtj), j = 1, 2, 3, ...
into a sequence of values characterizing the maximum and
standard deviations of function y(t;µj ,µtj) from y(t; 0, 0) is
parallelized

230

(µj ,µtj)→ (v1j , v2j)
T
, j = 1, 2, 3, ...

v1 = max
0≤t≤tmax

|y(t;µ,µt)− y(t; 0, 0)|, tmax � 1

v2 =
[
t−1
max

∫ tmax

0
|y(t;µ,µt)− y(t; 0, 0)|2dt

]1/2 (2)

The transformation (2) can be adapted to the ”two-layer”
MPI-OpenMP scheme, where a separate MPI-MAP executing
process performs the transformation of

{(µj ,µtj), j = 1,m} → {(v1j , v2j)
T
, j = 1,m} (3)

by parallelizing calculation of the values on the right side (3)
based on OpenMP.

Numerical integration of the initial boundary value problem
(1) is realized on the basis of the Galerkins projection method
[4] with the subsequent application of the BDF method to
the resulting Cauchy problem for the system of ordinary
differential equations.

III. MODEL OF STABILIZATION SYSTEM

The equations of the angular stabilization system are similar
[4], but take into account the stabilization of the object (see
Fig. 1) both in the vertical direction and relative to the

Fig. 1. Structural scheme.

longitudinal axis, as well as a smooth change in the time of the
thrust force of the rocket engine. The rotation of the coordinate
system is characterized by angles α = (α1, α2, α3)

T (in order
α3, α2, α1), and

A(α) =

cosα3 − sinα3 0
sinα3 cosα3 0

0 0 1

 ·

·

 cosα2 0 sinα2

0 1 0
− sinα2 0 cosα2

 1 0 0
0 cosα1 − sinα1

0 sinα1 cosα1


B(α) =

 1 0 − sinα2

0 cosα1 cosα2 sinα1

0 − sinα1 cosα2 cosα1


The object moves with respect to a fixed coordinate sys-

tem O0x0y0z0 under the action of force P, attraction to
the Earth and external disturbing horizontal force Fe =
(0, Fey0 , Fez0)

T . The coordinate system Oxyz is connected
to the body 1 (see Fig. 1), and r1 = (x1, y1, z1)

T and
β1 = (β1,1, β1,2, β1,3)

T characterize its linear and angular
displacements relative to O0x0y0z0. Linear r2 = (x2, y2, z2)

T

and angular β2 = (β2,1, β2,2, β2,3)
T displacement of body

2 with respect to Oxyz is caused by the elastic displace-
ment u = (ux, uy, uz)

T
= u(x, t) of the centerline of the

hull. The rotation angle α = (α1, α2, α3)
T of the body

2 relative to O0x0y0z0 measures the gyrostabilizer, and the
control moments of the forces M (c)

j , j = 1, 2, 3 are formed.
Under the action of M (c)

2 and M (c)
3 body 0 rotates at angles

β0 = (0, β0,2, β0,3)
T relative to Oxyz. The moment M (c)

1 acts
on the body 1 and compensates for the rotation of the movable
object relative to the x axis. Let ω0 = (ω0x , ω0y , ω0z)

T ,
Ω1 = (Ω1x ,Ω1y ,Ω1z)

T , Ω2 = (Ω2ξ ,Ω2η ,Ω2ζ)
T be the

relative and absolute angular velocities of bodies 0, 1, 2;
Q = (Q1, Q2, Q3)

T , M=(M1,M2,M3)
T be the internal

forces and moments acting in the cross sections of the body.
In dimensionless variables and parameters the equations of
motion of the HDS have the form

Ω1 = B(µ1β1)β̇1

Ω2 = AT (µ1β2)Ω1 +B(µ1β2)β̇2

ω0x = −β̇0,2 sin(µ1β0,3), ω0y = β̇0,2 cos(µ1β0,3)

ω0z = β̇0,3, m1r̈1 = A(µ1β1)Q(0, t)− Fe+
+ax[(1 +m2)A(µ1β1)Φ(0,β0) +m1Φ(β1,β0)]

J0(Ω̇1 + ω̇0) + J (1)Ω̇1+
+µ1Ω1 × (J0ω0 + J (1)Ω1) =

= M(0, t)− (M
(1)
c , 0, 0)T , J (1) = diag{J1k, J1, J1}

J0[Ω̇1y + ω̇0y + µ1(Ω1zω0x − Ω1xω0z)] =

= M
(c)
2 cos(µ1β0,3) +M

(c)
3 sin(µ1β0,3) sin(µ1β0,2)

J0[Ω̇1z + ω̇0z + µ1(Ω1xω0y − Ω1yω0x)] =

= M
(c)
3 cos(µ1β0,2)

w2 = AT (µ1β1)r̈1 + Ω̇1 ×R2 + µ1(Ω1 ·R2)Ω1−
−µ1Ω

2
1R2 − 2µ1Ω1 × ṙ2 + r̈2

J (2)Ω̇2 + µ1Ω2 × J (2)Ω2 =
= −AT ((µ1β2,1, 0, 0)T)M(1, t)+
+(a, 0, 0)T ×AT ((µ1β2,1, 0, 0)T)Q(1, t)

m2w2 = axm2[Φ(0, µ1(0, β2,2, β2,3)
T

)−
−Φ∗(0, µ1β1)]−A(µ1(0, β2,2, β2,3)

T
)Q(1, t)

Φ(α,β) = µ−1
1 (A(µ1α)A(µ1β)− E)(1, 0, 0)T =

= (Φ1(α,β),Φ2(α,β),Φ3(α,β))T

E = diag{1, 1, 1}, J (2) = diag{J2k, J2, J2}

(4)

231

R2 = (1 + a, 0, 0)T + µ1r2, Φ∗(α,β) =
= µ−1

1 (AT (µ1α)AT (µ1β)− E)(1, 0, 0)T =
= (Φ∗1(α,β),Φ∗2(α,β),Φ∗3(α,β))T

Φ∗∗(α,β) = µ−1
1 (A(µ1α)A(µ1β)− E)(0, 1, 0)

T
=

= (Φ∗∗1 (α,β),Φ∗∗2 (α,β),Φ∗∗3 (α,β))
T

α2 = −µ−1
1 arcsin(µ1Φ3(β2,β1))

α3 = 1
µ1

arcsin µ1Φ2(β2,β1)
cos(µ1α2)

α1 = − 1
µ1

arcsin
µ1Φ∗∗

3 (β2,β1)
cos(µ1α2)

M
(c)
1 = S1[α1], f1(z) = tg z

M
(c)
3 = S3[α3]− p1β̇0,3 − p2µ

−1
2 f1(µ2β0,3)

M
(c)
2 = S2[α2]− p6β̇0,2 − p7µ

−1
2 f1(µ2β0,2)

S1[α] = µ−1
3 f2(µ3S(L)

1 [α])

S(L)
1 [α] = p11dα/dt+ p12α, f2(z) = th z

S3[α] = µ−1
3 f2(µ3S(L)

3 [α])

S(L)
3 [α] = p3dα/dt+ p4α+ p5

∫ t
0
α(ξ)dξ

S2[α] = µ−1
3 f2(µ3S(L)

2 [α])

S(L)
2 [α] = p8dα/dt+ p9α+ p10

∫ t
0
α(ξ)dξ

u′x = [(1− µ2
1(u′y

2
+ u′z

2
))1/2 − 1]/µ1

L21 = µ1u
′
y, L31 = µ1u

′
z

L11 = (1− L2
21 − L2

31)1/2

L33 = (1− L2
31)1/2, L12 = −L21/L33

L22 = L11/L33

L32 = 0, L13 = −L31L22, L23 = L31L12

κ1 = u′z(L12L
′
22 − L22L

′
12)

κ2 = u′zL22L
′
11 − u′′yL23 − u′′zL33

κ3 = −u′yL′11/L33 + u′′yL22

üy + (AT (µ1β1)r̈1) · (0, 1, 0)T − (µ1Ω̇1xuz−
−Ω̇1z (x+ µ1ux)) + µ1[(x+ µ1ux)Ω1x+
+µ1uzΩ1z]Ω1y − µ2

1(Ω2
1x + Ω2

1z)uy+
+2µ1(Ω1x u̇z − Ω1z u̇x) =
= L21(Q′1 + µ1(κ2Q3 − κ3Q2))+
+L22(Q′2 − µ1(κ1Q3 − κ3Q1))+
+L23(Q′3 + µ1(κ1Q2 − κ2Q1))−
−ax[Φ∗2(0,β1) + ((m2 + 1− x)u′y)′]

üz + (AT (µ1β1)r̈1) · (0, 0, 1)T + µ1Ω̇1xuy−
−Ω̇1y (x+ µ1ux) + µ1[(x+ µ1ux)Ω1x+
+µ1uyΩ1y]Ω1z − µ2

1(Ω2
1x + Ω2

1y)uz−
−2µ1(Ω1x u̇y − Ω1y u̇x) =
= L31(Q′1 + µ1(κ2Q3 − κ3Q2))+
+L33(Q′3 + µ1(κ1Q2 − κ2Q1))−
−ax[Φ∗3(0,β1) + ((m2 + 1− x)u′z)

′]
Q′′1 − µ2

1(κ2
2 + κ2

3)Q1 =
= µ1{−ax(m2 + 1− x)(κ2

2 + κ2
3)+

+κ′3Q2 − κ′2Q3 + 2κ3Q
′
2 − 2κ2Q

′
3−

−µ1κ1(κ2Q2 + κ3Q3)− ((u̇′x)2 + (u̇′y)2 + (u̇′z)
2)+

+(Ω1xL11 + Ω1yL21 + Ω1zL31)2−
−(Ω2

1x + Ω2
1y + Ω2

1z)+

+2[L11(Ω1y u̇
′
z − Ω1z u̇

′
y)− L21(Ω1x u̇

′
z − Ω1z u̇

′
x)+

+L31(Ω1x u̇
′
y − Ω1y u̇

′
x)]}

(5)

uy(0, t) = 0, u′y(0, t) = 0
uy(1, t) = y2 − aΦ2(0,β2)
u′y(1, t) = cos(µ1β2,2)µ−1

1 sin(µ1β2,3)
uz(0, t) = 0, u′z(0, t) = 0
uz(1, t) = z2 − aΦ3(0,β2)
u′z(1, t) = −µ−1

1 sin(µ1β2,2)
x2 = ux(1, t) + aΦ1(0,β2)
Q′1(0, t) + µ1(κ2(0, t)Q3(0, t)− κ3(0, t)Q2(0, t)) =
= r̈1 ·A(µ1β1)(1, 0, 0)T + axΦ∗1(0,β1)
Q′1(1, t) + µ1(κ2(1, t)Q3(1, t)− κ3(1, t)Q2(1, t)) =
= axΦ∗1(β2,β1) + µ1a(Ω2

2η + Ω2
2ζ

)+

+(1, 0, 0)T ·AT (µ1β2)w2

(6)

M1 = Ik

(
β2,1 + γβ̇2,1 −

∫ 1

0
κ1dx

)
M2 = κ2 − γu̇′′z , M3 = κ3 + γu̇′′y
Q2 = −M ′3 + µ1(κ2M1 − κ1M2)
Q3 = M ′2 + µ1(κ3M1 − κ1M3)

(7)

β1(0) = β̇1(0) = β2(0) = β̇2(0) = β0,2(0) =

= β̇0,2(0) = β0,3(0) = β̇0,3(0) = r1(0) =
= ṙ1(0) = y2(0) = ẏ2(0) = z2(0) = ż2(0) =
= uy(x, 0) = u̇y(x, 0) = uz(x, 0) = u̇z(x, 0) = 0

(8)

Here x(t) = (Fey0(t), Fez0(t))
T and y(t) =

(β1,3(t), β2,3(t), β1,2(t), β2,2(t), β1,1(t), β2,1(t))
T are input

and output vector functions, p = (p1, p2, ..., p12)
T are

feedback parameters, (4) are ordinary differential equations,
(5) are partial differential equations, (6) are boundary
conditions, (7) are constraints conditions, (8) are initial
conditions. The set of parameters µ = (µ1, µ2, µ3)

T

characterizes typical nonlinearities, and the parameter
µt = {µ4}, µ4 ≥ 0 characterizes a smooth change in the
characteristic overload according to the law

ax(t) = a(min)
x + (a(max)

x − a(min)
x)e−µ4t,

t ≥ 0, a(min)
x < ax ≤ a(max)

x

(9)

At µ = 0, the model equations are linearized and de-
composed into three independent subsets corresponding to
the motion in the O0x0y0 and O0x0z0 planes (by virtue of
symmetry, they pass into each other), as well as to the rotation
relative to the longitudinal axis. In this case, p5+j = pj ,
j = 1, 5, correspond to the stabilization system in the vertical
direction, and p11, p12 correspond to the stabilization system
with respect to the longitudinal axis.

IV. NUMERICAL SIMULATION RESULTS

In the numerical simulation of the output vector functions
of the nonlinear angular stabilization system, the components
of the input vector function were given as Fey0(t) = 1(t),
Fez0(t) = 1(t)−1(t−1), where 1(t) is the unit jump function
of Heaviside. For stabilization system with a set of parameters

232

J0 = 0.02,m1 = 0.3, J1 = 0.07,m2 = 0.2, J2 = 0.05,

a = 0.166667, a(min)
x = 0.2, a(max)

x = 2, γ = 0.01,

J1k = 0.1, J2k = 0.05, Jk = 2, µ1 = 0.08, µ2 = 0.15,

µ3 = 0.055, µ4 = 0.05

(10)

the feedback parameters of the stabilization system in the
direction of vertical p1 = p6 = 6.347, p2 = p7 = 13.12,
p3 = p8 = 17.59, p4 = p9 = 14.03, p5 = p10 = 5.951 were
chosen on the basis of an adaptive algorithm of parametric
synthesis of the family of linearized models of HDS [4]. Since
the stabilization of the object with respect to the longitudinal
axis is intended to compensate for the slow accumulation
of errors due to nonlinear effects, the feedback parameters
p11 = 0.04, p12 = 1 are selected in the central part of the
stability region.

Figure 2 presents the results of numerical simulation of the
components β1,2 and β1,3 of the output vector functions of the
original nonlinear unsteady HDS (shown as a solid line) and
its linear stationary analog at µ1 = µ2 = µ3 = µ4 = 0 (shown
as a dashed line). The significant difference of the results
is explained by the fact that the dimensionless overload ax
decreases smoothly, with the decrease of ax in the considered
range of overload changes in the linear stationary system,
the attenuation of transients decreases, and the characteristic
value of the output vector function increases. Nevertheless,
parametric synthesis based on the linearized model allows
to stabilize the original nonlinear system in the vertical di-
rection in the entire range of overloads. As follows from
the results presented in Fig. 3, the selected values of the
feedback parameters p11 and p12 allow to stabilize the movable
control object with respect to the longitudinal axis, i.e. to
allow compensate for the slow accumulation of errors due
to nonlinear effects. Fig. 4 shows the dependences of the
parameters µ3 ∈ [0, 0.055] and µ4 ∈ [0, 0.05] at fixed µ1

and µ2 maximum v1 and standard v2 deviations (see (2)) of
the output vector function of the nonlinear HDS on the output
vector function of the linearized HDS for tmax = 250. As
follows from the data presented in Fig. 4, when changing
the overload according to (9) the greatest influence on the
output vector function of the nonlinear HDS has parameter
µ4, characterizing the unsteadiness of the system.

Similar data characterizing the efficiency of stabilization
with respect to the vertical, longitudinal axis, as well as the
influence of the parameters of nonlinearity and unsteadiness
on the output functions of the stabilization system with pa-
rameters

J0 = 0.00003,m1 = 0.0667, J1 = 0.00009728,m2 = 0.333,

J2 = 0.00345, a = 0.166667, ax = 1, γ = 0.01,

p1 = p6 = 4.098, p2 = p7 = 9.553, p3 = p8 = 7.687,

p4 = p9 = 7.714, p5 = p10 = 3.269, J1k = 0.002,

J2k = 0.005, J2 = 2, µ1 = 0.08, µ2 = 0.2,

µ3 = 0.04, µ4 = 0.05, p11 = 0.05, p12 = 1
(11)

are shown in Fig. 5-7.

Fig. 2. Stabilization in the vertical direction.

Fig. 3. Stabilization with respect to the longitudinal axis.

Similarly to the previously discussed non-linear stabilization
system allows to compensate for errors in the entire range of
overload (Fig. 5, 6). The greatest influence on the output vector
function of the nonlinear HDS has the parameter µ4, which
characterizes the unsteadiness of the system.

V. EFFICIENCY ANALYSIS OF PARALLEL ALGORITHMS

Consider the effectiveness of the implementation on com-
puter systems with coprocessors Intel Xeon Phi parallel al-
gorithm (2), (3) modeling the effect of typical nonlinearities
and unsteadiness on the output functions of the HDS. The
data corresponding to the modeling of a nonlinear stabiliza-
tion system with parameters (10) are presented in Table I.
The calculations were performed on a cluster of faculty of
Computer Science and Informational Technologies and Volga
Region Center of New Information Technologies of SSU. The
four-dimensional grid of change of parameters µ1, µ2, µ3, µ4

dimension 6×9×9×9 was used. As follows from the results
shownin the Table I , in this case the use of a single Intel Xeon
Phi coprocessor is more efficient than the use of two quad-core
CPUs. The most profitable strategy of using coprocessors is
parallelization based on OpenMP inside the coprocessor and
parallelization based on MPI-MAP between coprocessors.

233

Fig. 4. Maximum and standard deviations.

Fig. 5. Stabilization in the vertical direction.

Fig. 6. Stabilization with respect to the longitudinal axis.

Similar data for the stabilization system with parameters
for the stabilization system with a set of parameters (11) are
presented in Table II. And in this case, using one Intel Xeon
Phi processor is more efficient than using two quad-core CPUs.
The most profitable strategy for the use of coprocessors is the

TABLE I
TIME OF MODELING THE IMPACT OF NONLINEARITIES, SEC.

Grid 6× 9× 9× 9
Processor, serial/parallel Test 1 Test 2 Test 3 Test 4 Test 5
Intel Xeon E5-2603 v2,
serial

16411 16325 16470 16531 16314

2 processors Intel Xeon
E5-2603 v2, OpenMP

2480 2471 2501 2492 2485

Coprocessor Intel Xeon
Phi 5110P, OpenMP

1667 1635 1673 1649 1655

2 coprocessors Intel
Xeon Phi 5110P, MPI-
MAP/OpenMP

1023 1015 1032 1008 1040

parallelization based on OpenMP within the coprocessor and
parallelization based on MPI-MAP between the coprocessors.

TABLE II
TIME OF MODELING THE IMPACT OF NONLINEARITIES, SEC.

Grid 6× 9× 9× 9
Processor, serial/parallel Test 1 Test 2 Test 3 Test 4 Test 5
Intel Xeon E5-2603 v2,
serial

9637 9597 9645 9657 9675

2 processors Intel Xeon
E5-2603 v2, OpenMP

1443 1470 1430 1412 1467

Coprocessor Intel Xeon
Phi 5110P, OpenMP

1052 1042 1063 1037 1055

2 coprocessors Intel
Xeon Phi 5110P, MPI-
MAP/OpenMP

703 699 710 707 705

Analogique evidence of the effectiveness of the imple-
mentation of the parallel algorithm (2), (3) using a single
Intel Xeon Phi coprocessor (OpenMP) and two Intel Xeon
Phi coprocessors (MPI-MAP OpenMP) for a more detailed

234

Fig. 7. Maximum and standard deviations.

meshes, changing parameters µ1, µ2, µ3, µ4 are given in Table
III for stabilization system with parameters (10) and in Table
IV for the stabilization system with parameters (11).

TABLE III
TIME OF MODELING THE IMPACT OF NONLINEARITIES, SEC.

Processor, serial/parallel Test 1 Test 2 Test 3 Test 4 Test 5
Grid 6× 16× 16× 16

Coprocessor Intel Xeon
Phi 5110P, OpenMP

8953 9005 8934 8902 8985

2 coprocessors Intel
Xeon Phi 5110P, MPI-
MAP/OpenMP

4726 4753 4715 4703 4744

Grid 12× 16× 16× 16
Coprocessor Intel Xeon
Phi 5110P, OpenMP

18132 18243 18025 18187 18053

2 coprocessors Intel
Xeon Phi 5110P, MPI-
MAP/OpenMP

9478 9529 9435 9501 9439

TABLE IV
TIME OF MODELING THE IMPACT OF NONLINEARITIES, SEC.

Processor, serial/parallel Test 1 Test 2 Test 3 Test 4 Test 5
Grid 6× 16× 16× 16

Coprocessor Intel Xeon
Phi 5110P, OpenMP

5671 5634 5654 5754 5698

2 coprocessors Intel
Xeon Phi 5110P, MPI-
MAP/OpenMP

2988 2969 2967 3031 3002

Grid 12× 16× 16× 16
Coprocessor Intel Xeon
Phi 5110P, OpenMP

11205 11278 11154 11174 11237

2 coprocessors Intel
Xeon Phi 5110P, MPI-
MAP/OpenMP

5777 5809 5735 5741 5798

As follows from the Table III and IV results, with an
increase in the average number of nodes on the grid measure-
ment, the multiplicative contribution to the acceleration of the
MPI-MAP pattern quickly tends to the number of coprocessors
used.

VI. CONCLUSIONS

The proposed parallel algorithm is effective on cluster
systems with nodes using processors with a large number of
cores. In particular, it is effective on cluster systems with Intel
Xeon Phi coprocessors.

REFERENCES

[1] Andreichenko D. K., Andreichenko K. P. On the theory of hybrid dynam-
ical systems. Jour-nal of Computer and Systems Sciences International,
2000, vol. 39, no. 3, pp. 383-398.

[2] Andreichenko D. K., Andreichenko K. P. Modelirovanie, analiz i sintez
kombinirovannykh dinamicheskikh sistem. Uchebnoe posobie [Model-
ing, analysis and synthesis of combined dynamical systems. Tutorial].
Saratov, Rait-Ekspo Publ., 2013. 144 p. ISBN 978-5-4426-0018-6 (in
Russian).

[3] Andreichenko D. K., Andreichenko K. P., Melnichuk D. V. Pattern
MPI-MAP i modeliro-vanie nelinejnyh kombinirovannyh dinamicheskih
sistem [Pattern MPI-MAP and modeling of nonlinear hybrid dynam-
ical systems] Problemy upravleniya, obrabotki i peredachi in-formacii
[Problems of control, information processing and transmission]. Saratov,
Rait-Ekspo Publ., 2015, vol.2, pp. 19-26. ISBN 978-5-4426-0049-0 (in
Russian).

[4] Andreichenko D. K., Andreichenko K. P., Melnichuk D. V., Portenko
M. S. Adaptive Algorithm of Parametric Synthesis of Hybrid Dynamical
Systems. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2016, vol.
16, iss. 4, pp. 465475 (in Russian). DOI: 10.18500/1816-9791-2016-16-
4-465-475.

235

