
Static analyzer debugging and quality assurance
approaches

Maxim Menshikov

28.05.2020

St.Petersburg State University



About the author & the project

Maxim Menshikov —

• PhD student at St.Petersburg State University.
• Software engineer.
• (ex. security analyst; participated in commercial debugger
project).

Equid1 — a static analyzer for C/C++/RuC based on Model
Checking and Abstract Interpretation. It verifies contracts and
finds common defects.

1Engine for performing queries on unified intermediate representations of
program and domain models 1



What’s special in analyzers?

Not much.

• Many equivalent transformations:
input format ̸= intermediate format ̸= output format.

• Intermediate representations are mostly internal.

• The code is usually consistent and has high integrity, but
there are logical mistakes, unprocessed parts → the biggest
defects are logical.

2



The problem

• There are many debugging & quality assurance methods.

• None of them are specialized enough for static analysis.

• Every project brings its own set of hardly formalized
methods.

What if we find a right specialization of the methods to the static
analysis field?

3



The paper’s goal

4



Defect sources (observations)

• Missing support for the specific syntax/intermediate
representation (IR) construction in submodules.

• Small differences in implementations for repeating parts
(classes).

• Transformation and ordering issues.

5



Defect reasons (observations)

• Low visuality of the transformation passes and the
development process.

• Unattainable cross-dependencies between modules.

• Low quality of tests.

6



Proposed solutions

Proposing the solutions of these three groups:

• Code generation:
Generated code usage verification.

• Testing:
Goal-driven random test case generation.

• Logging:
Log fusion and visual representation.

7



Code generation

• One model, several interpretations, many output source files.
• Perform a simple integrity check.

8



Code generation: enumeration example

9



Goal-driven random test case generation

The idea is: generate input programs with an integrated
verification goal (assertion).

10



Goal-driven random test case generation

1. The tool generates a random goal and asserts it → an
expression.

2. The expression is repeatedly rolled into
if/switch/for/while/... random blocks → a block.

3. The meaningful blocks are shuffled using equivalent
transformations.

11



Goal-driven random test case generation

In result we get:

1. A completely random program.

2. A set of shuffled random programs.

By that, it is possible to verify:

1. Logical issues in transformations.

2. Ordering issues.

3. Runtime failures.

12



Log fusion

Fuse separate logs, set up cross-references, so the final log is a
technical documentation of the run. Allows for easy navigation.

13



Log fusion: reverse recording assistance

The Log Fusion also helps break right after the specific log line
using reversible debugger like RR2, UndoDB, etc. That is achieved
using logging engine traps and GDB scripts.

2https://rr‐project.org

14

https://rr-project.org


Visual representation: steps

Visualize steps — present all transformations in one window,
allow to debug specific transformations.

15



Visual representation: log health

Log health — visualize the time allocation for different modules.

In result, it is possible to determine whether the specific part is
unintentially skipped.

16



Random test case generation: discovered issues & their
severity

The method detected many performance, ordering, logical issues,
and even runtime failures.

Defect type Number of issues Severity
Performance 3 Medium
Ordering 5 High
Runtime failure 1 High
Logical issues 1 Medium

17



Log fusion: (rough) time to resolve the issues

Average improvement rate: 2.8.

Defect type Time to resolve before (h) Time to resolve after (h)

Performance 25 13
Ordering 5 1
Runtime failure 1 0.3
Logical issues 1 1

18



Results: code generation and visual representation

The improvement is hard to examine.

In our experiment, developing the same feature twice took 7
times less time than on previous iteration - thanks to code
generation.

Visual representation allowed to discover at least 2 performance
issues, and overall provided an enormous help during defect
resolution.

19



Conclusion

• The specialization of the proposed methods helps find real
issues in the static analyzer.

• The combination of approaches dramatically decreases the
defect resolution time.

20


