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Introduction

• Haskell is a typed functional programming language famous for hosting
embedded domain-specific languages (EDSLs);

• At ISP RAS, we are developing formal specification languages embedded in
Haskell, with some unique requirements;

• Notably, we need to be able to interpret programs in these languages
symbolically.
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Introduction to Haskell
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Haskell is a functional language

In functional programming, functions are first-class values that can be passed
around to other functions.

map (+ 1) [1, 2, 3] -- [2,3,4]

Composing functions is key to effective functional programming.

sumOfSquares = foldr (+) 0 . map (\x -> x * x)

sumOfSquares [1, 2, 3] -- 14

These days, even the most popular industrial languages support some functional
programming (C# LINQ, Java Streams)!
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Haskell is a pure functional language

Haskell functions do not have side effects – they’re like mathematical functions,
not imperative procedures.

incr a = launchRockets && a + 1 -- impossible!

How can we communicate with the real world?

We can compose effectful computations!

main = putStrLn "hello" >> putStrLn "world"

Haskell offers powerful abstractions for doing that. (Coming up in a few slides!)
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Haskell is a typed functional language

Structures with fields are defined like this:

data Book = Book { catalogNumber :: Int, title :: String }

These are called product types.

Record syntax (above) is optional, it just defines accessor functions.

data Book = Book Int String

Enumerations are called sum types.

data Color = Red | Green | Blue

The data syntax lets you define sums of products: each constructor can have
any number fields:

data Part = CPU { cpuSpeed :: Int, cpuManufacturer :: String }
| RAM { ramSize :: Int, ramSticks :: Int }
| Fan

This is called algebraic data types.
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Haskell is a polymorphic functional language

Data types can be parameterized by types:

data Maybe a = Just a | Nothing

Functions can be parameterized as well.

map :: (a -> b) -> [a] -> [b]

This is called parametric polymorphism (known as “generics” in Java,
“templates” in C++). In a pure language like Haskell, the type signature can
make it really obvious what the function would be. (In fact, it is impossible for a
function with this type signature to be anything valid other than map!)

There is also ad-hoc polymorphism via typeclasses (roughly similar to
“interfaces” in Java/etc., but more powerful):

class Plus a where add :: a -> a -> a

instance Plus Int where add a b = a + b
instance Plus String where add a b = a <> b
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Fundamentals of Embedded DSLs
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Naive EDSL implementation

Declare an Abstract Syntax Tree type, write interpreters that match on it.

data Expr = Num Int
| Add Expr Expr
| ...

-- e.g. Add (Add (Num 1) (Num 2)) (Num 3)

eval (Num i) = i
eval (Add l r) = eval l + eval r

print (Num i) = show i
print (Add l r) = print l <> " + " <> print r

Expression Problem1: cannot add new constructs, only new interpretations!

1The expression problem. / P. Wadler [et al.] // Posted on the Java Genericity mailing list. 1998.
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Tagless final encoding2

Encode syntax as typeclasses, semantics as instances:

class Arithmetic repr where
num :: Int → repr Int
add :: repr Int → repr Int → repr Int

-- e.g. add (add (num 1) (num 2)) (num 3)

newtype Eval a = Eval { unEval :: a }
instance Arithmetic Eval where

num = Run
add l r = Run $ unRun l + unRun r

newtype Print a = Print { unPrint :: Int → String }
instance Arithmetic Print where

num = Print . const . show
add l r = Print $ \c → l c <> " + " <> r c

2Carette J., Kiselyov O., Shan C.-c. Finally Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler Typed
Languages. // J. Funct. Program. USA, 2009. Sept. Vol. 19, no. 5. P. 509–543.
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Tagless final encoding, pt. 2

We can add new language constructs as a separate class!

class Lambda repr where
lam :: (repr a → repr b) → repr (a → b)
app :: repr (a → b) → repr a → repr b

instance Lambda Eval where
lam f = Run $ unRun . f . Run
app l r = Run $ (unRun l) (unRun r)

instance Lambda Print where
lam f = Print $ \c → "\var" <> c <> " → " <>

(unPrint $ f $ Print $ const $ "var" <> show c) (c + 1)
app l r = Print $ \c → "(" <> l c <> ") (" <> r c <> ")"
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Tagless final encoding, pt. 3

Programs are polymorphic in the interpreter type.

We can compose languages by requiring multiple typeclasses to be implemented
on the interpreter type!

prog :: (Lambda repr, Arithmetic repr) => repr Int
prog = app (lam (add (num 1))) (num 2)

10



Implementing Symbolically Interpretable Imperative EDSLs
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The Obligatory Monad Tutorial Slide

You can write imperative programs in Haskell with do notation:

main = do
name ← getLine
putStrLn $ "Hello, " <> name

This is just syntactic sugar for:

main = getLine >>= \name → putStrLn $ "Hello, " <> name

What is >>=?

class Monad m where
(>>=) :: m a → (a → m b) → m b
-- ...

The monadic bind combinator >>= sequentially composes effectful computations
with a data dependency:

in the above example you need the actual result of getLine to produce the
putStrLn "Hello, username" computation!
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Monadic tagless final DSL

Say we have a logging construct, and it is implemented using monads in the real
interpreter.

class Monad repr => Logging repr where
log :: String → repr ()

Of course we can implement Logging for Print..

instance Logging Print where
log x = Print $ const $ "log \"" <> x <> "\""

But Logging also requires Monad.

instance Monad Print where
l >>= r = Print $ \c → unPrint l c <> " >>= " <>

(unPrint r ??undefined??) c

We do not have the actual result of the left computation – Print is a symbolic
interpreter!
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Not-necessarily-monadic tagless final DSL

We can’t use monads! But wait, all is not lost..

• we do not actually need monads in the syntactic typeclasses.

• we need monadic composition in the evaluator, but regular functional
composition in the printer.

• solution: abstract over the composition method!

class RCombinators repr where
obind :: repr a → (repr a → repr b) → repr b

instance RCombinators Eval where
a `obind` f = (>>=) a $ f . return

instance RCombinators Print where
a `obind` f = Print $ \c → unPrint l c <> " >>= " <> unPrint r c

13



Not-necessarily-monadic tagless final DSL

We can’t use monads! But wait, all is not lost..

• we do not actually need monads in the syntactic typeclasses.
• we need monadic composition in the evaluator, but regular functional

composition in the printer.

• solution: abstract over the composition method!

class RCombinators repr where
obind :: repr a → (repr a → repr b) → repr b

instance RCombinators Eval where
a `obind` f = (>>=) a $ f . return

instance RCombinators Print where
a `obind` f = Print $ \c → unPrint l c <> " >>= " <> unPrint r c

13



Not-necessarily-monadic tagless final DSL

We can’t use monads! But wait, all is not lost..

• we do not actually need monads in the syntactic typeclasses.
• we need monadic composition in the evaluator, but regular functional

composition in the printer.
• solution: abstract over the composition method!

class RCombinators repr where
obind :: repr a → (repr a → repr b) → repr b

instance RCombinators Eval where
a `obind` f = (>>=) a $ f . return

instance RCombinators Print where
a `obind` f = Print $ \c → unPrint l c <> " >>= " <> unPrint r c

13



Not-necessarily-monadic tagless final DSL

We can’t use monads! But wait, all is not lost..

• we do not actually need monads in the syntactic typeclasses.
• we need monadic composition in the evaluator, but regular functional

composition in the printer.
• solution: abstract over the composition method!

class RCombinators repr where
obind :: repr a → (repr a → repr b) → repr b

instance RCombinators Eval where
a `obind` f = (>>=) a $ f . return

instance RCombinators Print where
a `obind` f = Print $ \c → unPrint l c <> " >>= " <> unPrint r c

13



Not-necessarily-monadic tagless final DSL, pt. 2

Now we have to use the RebindableSyntax language extension to make do
notation work with our custom combinator.

prog = let (>>=) = obind in do
ident ← generateId
log ident

Actually, we have to repeat the process for (>>) to make do lines that don’t bind
variables work.

Actually, in our production DSL, we overload a lot more things this way, because
we want to allow lots of operations inside the DSL..
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Combining EDSL Code and Regular Code in One Module

• RebindableSyntax uses definitions from the current scope.
• let / where bindings are the easiest way to bring definitions into local

scope..

• but repeating this for lots of functions is very cumbersome:
• let (>>=) = obind; (>>) = oseq; ifThenElse = ite; (+) = add; .. in

..
• importing a module with all the definitions is easy, but confines EDSL

programs to their own modules;
• would be nice to be able to bring the whole EDSL into scope using
RecordWildCards: let DSL{..} = ourDsl in ..
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Combining EDSL Code and Regular Code in One Module, pt. 2

To make let DSL{..} = ourDsl in .. work, we need to define these things:

noDsl = DSL { (==) = (Prelude.==)
, (>>=) = (Prelude.>>=) }

dsl = DSL { (==) = eq
, (>>=) = obind }

What type would DSL have? Well, we need to decide between overloaded types
and standard library types..

We need functions at the type level! These are called type families.

Here’s how to decide between wrapped and unwrapped values based on a boolean:

type family W b repr a where
W 'False repr a = a
W 'True repr a = repr a

Similarly, in the paper we define WM for choosing between two wrappings, and WMC
for choosing between a Monad m constraint and an empty constraint.
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Combining EDSL Code and Regular Code in One Module, pt. 3

The type of DSL uses these type families to decide between DSL and regular
functions:

data DSL w repr a b m = DSL
{ (==) :: Eq a => W w repr a → W w repr a → W w repr Bool
, (>>=) :: WMC w m

=> WM w repr m a → (W w repr a → WM w repr m b)
→ WM w repr m b }

The types of the aforementioned DSL values are:

noDsl :: DSL 'False (Const Void) a
dsl :: RCombinators repr => DSL 'True repr a b m

Now, when the module with the DSL type is imported, we have to decide
between using regular and DSL operations with a let DSL{..} = .. construct.
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Thank you!
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