
SYRCoSE 2020

Implementation of Memory Subsystem

of Cycle-Accurate Application-Level

Simulator of the Elbrus Microprocessors

Pavel Poroshin, Dmitriy Znamenskiy, Alexey Meshkov

1

Problem Statement

 Cycle-accurate simulators (CAS) are useful tools

 For debugging of performance problems of applications

 For exploration of (micro)architecture design space

 Performance of modern microprocessors are largely
dependent on their memory subsystem

 Quality of software model of memory subsystem plays vital
role in overall accuracy of CAS

 Goal: Implement memory subsystem model as part of CAS
and evaluate it accuracy

2

“Elbrus” Microprocessors

 Very Long Instruction Word (VLIW)

 Each wide instruction (WI) consists of several operations, including
arithmetic, memory access, control flow and other types of operations

 In-Order pipeline

 Two types of pipeline stalls

 Ordinary stalls, that immediately block pipeline progress

 “Deferred” stalls, that “activate” after several cycles and on activation
rollback instructions from later (specific) stage to earlier (specific) one for
several cycles

 Non-blocking caches

 Cache miss on memory load potentially stalls operation that uses load
result, but not load operation itself

3

“Elbrus” Microprocessors
Memory Subsystem

 Memory subsystem consists of

 Cache hierarchy (L1D, L2, L3)

 Instruction Buffer (IB, plays role of L1I)

 Address translation structures (DTLB, ITLB, etc.)

 Besides ordinary memory access operations there are

 Array Access Unit (AAU) – programmable device for asynchronous array
prefetch

 Automatically inserted load/store operations for filling and spilling register
file contents

 CLW device for automatic cleanup of stack

 And others

4

“Elbrus” Application-Level CAS

 Based on Application-Level (AL) Instruction Set Simulator
(ISS)

 No operating system

 No proper memory management

 Trivial virtual to physical address translation

 Functional simulation (inherited from ISS) directly “feeds”
CAS model

 Faithfull simulation of instruction pipeline state

 Including both types of stalls and proper rollback

 “Speculative” execution of some effects with correction on
miss-speculation

 Proper ordering of effects and data transfers are mostly
achieved by ordering of simulation of pipeline stage effects

5

Memory Subsystem Model
Original Version

 Originally developed as part of System-Level Memory-Only
CAS (SLM CAS), based on existing System-Level ISS

 Comprehensive support of memory subsystem of “Elbrus”
microprocessors, including

 Cache hierarchy

 Instruction buffer

 Address translation structures

 Basic support of instruction fetch pipeline and scoreboard

 Get input directly from SL ISS, packed in single chunk per
executed instruction

 Do not provides any output to SL ISS

6

Memory Subsystem Model
Integration into AL CAS

 All address translation structures are disabled or function in
physically addressed mode

 AL CAS has trivial address translation

 Scoreboard and later instruction fetch pipeline stages are
removed

 They are implemented as part of pipeline model of AL CAS

 Inputs are separated into independent inputs for instruction
fetch and for memory access

 Initiation of related actions are controlled by pipeline model of AL CAS
and happens at the different pipeline stages

 Simulation step function called during pipeline simulation

 Early enough to affect possible consumer at the same tick

 Late enough to take into account possible inputs

 Output to AL CAS implemented with callbacks

 Both implementations (for AL CAS and for SLM CAS) share
most of the source code 7

Memory Access Operations

 Information about memory access operations is saved during
functional simulation of instruction

 When instruction reaches specific pipeline stage, this
information transferred to memory subsystem model

 Necessary to be certain that there is no related miss-speculation or
future unroll due to “deferred” stall, as memory subsystem model do
not support “speculative” features of AL CAS or unroll of state

 Result of memory access communicated with callback

8

Instruction Buffer

 IB is responsible not only for ordinary instruction fetch, but
also for execution of control transfer (CT) operations

 Besides information about new instruction (its address and size),
memory subsystem model is also given information about CT
operations

 IB has its own pipeline, that corresponds to earliest pipeline
stages of instruction

 Also has 3 separate and parallel pipelines for control transfer
preparation (CTP) operations, but we do not “faithfully” simulate them
for simplicity

 In pipeline model this part of pipeline is “compressed” and
represented by one “pseudo” stage in the beginning

 Each new instruction is starts its life on the pipeline model on this
stage

 Instruction is stalled on this stage until memory subsystem model
signals about successful fetch 9

Hardware Generated Memory
Access Operations

 Some memory access operations are automatically
generated by hardware and inserted into pipeline

 For example, operations for spilling/filling register file to/from memory

 Functional part of AL CAS already simulates such operations

 It happens during execution of ordinary instruction

 To support them in AL CAS:

 During functional execution all information about HW generated
operations is saved in intermediate storage

 When this instruction transferred to pipeline model, all this saved
information is placed alongside with other data of the instruction

 When instruction reaches certain pipeline stage, information of HW
generated operations is used to populate pipeline (instead of next
instruction)

10

Debug Facilities
 Execution Log

 Due to “speculative” features of CAS, logging events accumulated in tick-
indexed buffer, which is filtered on miss-speculation

 Execution Statistic

 Accumulates counters for each WI

 RAW output generated at the end of the simulation

 Separated tools for transforming into more human readable form

 Annotated disassembler

 Summary for functions

 Call-graph, compatible with Kcachegrind for visualization

 Both use universal mechanism for identifying / marking events

11

Accuracy Evaluation
 Test cases from SPEC CPU2006 benchmarks

 Used with test data sets due to long times of simulation

 Compiled by optimizing compiler developed by MCST

 Highest optimization level (O3)

 No use of AAU (due to its incomplete implementation in CAS)

 Real 8-core Elbrus CPU as reference

CPU Elbrus, 8 cores, 1 node

Clock frequency 1500 MHz

L1 instruction

cache (IB)

128 KBytes, 256-byte cache line, 4-way set-associative,

virtually addressed

L1D cache 64 Kbytes, 32-byte cache line, 4-way set-associative, virtually

addressed

L2 cache 512 Kbytes, 64-byte cache line, 4-way set-associative, 4-banks

interleaved, physically addressed

Shared L3 cache 16 Mbytes, 64-byte cache line, 16-way set-associative, 8-

banks interleaved, physically addressed

12

Accuracy Evaluation

0

20

40

60

80

100

120

N
o
rm

a
liz

e
d
 r

u
n
 t

im
e
,
%

Reference system AL cycle-accurate simulator Error

19

8

3
1 1 1

0

5

10

15

20

<4% 4-8% 8-12% 12-16% 16-20% 20-24%N
u
m

b
e
r

o
f

ta
s
k
s

Error ranges

13

Sources of Errors
433.milc

 Error of 16% for test data and 25% for train data

 Unusually high DTLB miss rate

 1% of all memory accesses are due to DTLB misses (on reference
system)

 Orders of magnitude more than for most other tasks

 Application-Level CAS in question does not simulate DTLB

 Unaccounted by CAS DTLB misses adequately explain
difference in total cycles

 Possible solutions (?):

 Simplified heuristic for DTLB misses

 Implement memory management as part of AL CAS

14

Sources of Errors
429.mcf & 450.soplex

 Error of 18% for 429.mcf and 13% for 450.soplex (on train data)

 Higher L1D hit-rate on CAS than reference system

 Likely logical inaccuracy in CAS

 Effects of memory management by OS

 COW pages, zero pages, shared pages etc.

 Different physical addresses patterns

 Possible more physical addresses conflicts

 AL CAS in question has trivial virtual address mapping

 Possible solution (?):

 Implement memory management as part of AL CAS

15

Sources of Errors
445.gobmk

 Error of 14%

 Workload consists of many short subtasks

 High runtime variation of reference system on short subtasks

16

Performance Evaluation

 AL CAS is 5 to 14 times slower than AL ISS

 Highest slowdown is on high CPWI task slowdown

 AL CAS slower by 13% on average than SLM CAS

 Overhead of whole cycle accurate pipeline of AL CAS is moderately
greater than simulation of MMU and other system level components

Workload

CFP CINT

453.povray 434.zeusmp 410.bwaves 471.omnetpp 462.libquantum 429.mcf

Clocks per Wide Instruction 1.6 3.1 6.6 1.7 3.5 4.6

Machine Intel Core i7-2600 CPU @ 3.40GHz, 16GB RAM Intel Xeon E3-12xx v2 (Ivy Bridge), 32GB RAM

Simulator

speed, MHz

FUNC 5.081 4.152 9.442 3.579 3.361 10.565

AL 0.796 0.670 0.817 0.462 0.609 0.795

SLM 0.734 0.699 0.965 0.577 0.733 1.066

Speed (FUNC) / speed (AL) 8.37 8.43 12.67 6.30 5.43 13.77

Speed (AL) / speed (SLM) 1.09 0.96 0.85 0.80 0.83 0.75

17

Conclusion
 Described Application-Level CAS achieves good runtime

accuracy on average (average error 5%)

 Simulator achieves expected performance (order of magnitude
slowdown on average relative to ISS)

 Debug tools greatly helped in finding and fixing mistakes in
simulation

But

 There is still inaccuracies

 Current accuracy is achieved on feature incomplete model (most notably
without use of AAU)

 Memory management effects are not accounted for

 Many tasks are still too long to run

18

Future Work

 Further improvement of accuracy

 Support of missing components (first and foremost, AAU)

 Investigating of ways to account for memory management effects

 General polish

 Improvement simulation speed

 Code optimization

 Removing unnecessary details

 Investigating of “smart” ways to achieve speedup

 Further development of debug tools

 Support of next versions of “Elbrus” ISA

19

Previous Work

 Memory subsystem model of SLM CAS

 Znamenskiy D.V., Kutsevol V.N. Development of a cycle-accurate
simulator of the Elbrus processor core memory subsystem. Radio
industry (Russia), 2019, vol. 29, no. 2, pp. 17-27

 General design of pipeline model of AL CAS

 Poroshin P.A., Meshkov A.N. An exploration of approaches to instruction
pipeline implementation for cycle-accurate simulators of «Elbrus»
Microprocessors. Proc. ISP RAS, 2019, vol. 31, no. 3, pp. 47-58

20

Thank you for listening!

21

Accuracy Evaluation

0
20
40
60
80

100
120

L
1
D

 c
a
c
h
e
 h

it
 r

a
te

,
%

Reference system AL cycle-accurate simulator Absolute difference

0

20

40

60

80

100

120

L
2
 c

a
c
h
e
 h

it
 r

a
te

,
%

Reference system AL cycle-accurate simulator Absolute difference

0

20

40

60

80

100

120

L
3
 c

a
c
h
e
 h

it
 r

a
te

,
%

Reference system AL cycle-accurate simulator Absolute difference

22

Reference System Configuration

CPU Elbrus, 8 cores, 1 node

Clock frequency 1500 MHz

L1 instruction cache (IB) 128 KBytes, 256-byte cache line, 4-way set-

associative, virtually addressed

L1D cache 64 Kbytes, 32-byte cache line, 4-way set-

associative, virtually addressed

L2 cache 512 Kbytes, 64-byte cache line, 4-way set-

associative, 4-banks interleaved, physically

addressed

Shared L3 cache 16 Mbytes, 64-byte cache line, 16-way set-

associative, 8-banks interleaved, physically

addressed

RAM channels 4 channels DDR4

RAM size DDR4-2400, 128 GBytes

Operating system OS Elbrus based on the Linux kernel

Linux kernel version 4.9.0-4.1-e8c2 23

Overall AL CAS Design

24

Functional Model

Pipeline
Logic and

State

Buffers and Queues

Code Fetch
Info

Memory
Operations

Info
Other Info

Pipeline Model

Memory Subsystem Model

IB Input
Memory

Operations Input

