
SYRCoSE 2020

Implementation of Memory Subsystem

of Cycle-Accurate Application-Level

Simulator of the Elbrus Microprocessors

Pavel Poroshin, Dmitriy Znamenskiy, Alexey Meshkov

1

Problem Statement

 Cycle-accurate simulators (CAS) are useful tools

 For debugging of performance problems of applications

 For exploration of (micro)architecture design space

 Performance of modern microprocessors are largely
dependent on their memory subsystem

 Quality of software model of memory subsystem plays vital
role in overall accuracy of CAS

 Goal: Implement memory subsystem model as part of CAS
and evaluate it accuracy

2

“Elbrus” Microprocessors

 Very Long Instruction Word (VLIW)

 Each wide instruction (WI) consists of several operations, including
arithmetic, memory access, control flow and other types of operations

 In-Order pipeline

 Two types of pipeline stalls

 Ordinary stalls, that immediately block pipeline progress

 “Deferred” stalls, that “activate” after several cycles and on activation
rollback instructions from later (specific) stage to earlier (specific) one for
several cycles

 Non-blocking caches

 Cache miss on memory load potentially stalls operation that uses load
result, but not load operation itself

3

“Elbrus” Microprocessors
Memory Subsystem

 Memory subsystem consists of

 Cache hierarchy (L1D, L2, L3)

 Instruction Buffer (IB, plays role of L1I)

 Address translation structures (DTLB, ITLB, etc.)

 Besides ordinary memory access operations there are

 Array Access Unit (AAU) – programmable device for asynchronous array
prefetch

 Automatically inserted load/store operations for filling and spilling register
file contents

 CLW device for automatic cleanup of stack

 And others

4

“Elbrus” Application-Level CAS

 Based on Application-Level (AL) Instruction Set Simulator
(ISS)

 No operating system

 No proper memory management

 Trivial virtual to physical address translation

 Functional simulation (inherited from ISS) directly “feeds”
CAS model

 Faithfull simulation of instruction pipeline state

 Including both types of stalls and proper rollback

 “Speculative” execution of some effects with correction on
miss-speculation

 Proper ordering of effects and data transfers are mostly
achieved by ordering of simulation of pipeline stage effects

5

Memory Subsystem Model
Original Version

 Originally developed as part of System-Level Memory-Only
CAS (SLM CAS), based on existing System-Level ISS

 Comprehensive support of memory subsystem of “Elbrus”
microprocessors, including

 Cache hierarchy

 Instruction buffer

 Address translation structures

 Basic support of instruction fetch pipeline and scoreboard

 Get input directly from SL ISS, packed in single chunk per
executed instruction

 Do not provides any output to SL ISS

6

Memory Subsystem Model
Integration into AL CAS

 All address translation structures are disabled or function in
physically addressed mode

 AL CAS has trivial address translation

 Scoreboard and later instruction fetch pipeline stages are
removed

 They are implemented as part of pipeline model of AL CAS

 Inputs are separated into independent inputs for instruction
fetch and for memory access

 Initiation of related actions are controlled by pipeline model of AL CAS
and happens at the different pipeline stages

 Simulation step function called during pipeline simulation

 Early enough to affect possible consumer at the same tick

 Late enough to take into account possible inputs

 Output to AL CAS implemented with callbacks

 Both implementations (for AL CAS and for SLM CAS) share
most of the source code 7

Memory Access Operations

 Information about memory access operations is saved during
functional simulation of instruction

 When instruction reaches specific pipeline stage, this
information transferred to memory subsystem model

 Necessary to be certain that there is no related miss-speculation or
future unroll due to “deferred” stall, as memory subsystem model do
not support “speculative” features of AL CAS or unroll of state

 Result of memory access communicated with callback

8

Instruction Buffer

 IB is responsible not only for ordinary instruction fetch, but
also for execution of control transfer (CT) operations

 Besides information about new instruction (its address and size),
memory subsystem model is also given information about CT
operations

 IB has its own pipeline, that corresponds to earliest pipeline
stages of instruction

 Also has 3 separate and parallel pipelines for control transfer
preparation (CTP) operations, but we do not “faithfully” simulate them
for simplicity

 In pipeline model this part of pipeline is “compressed” and
represented by one “pseudo” stage in the beginning

 Each new instruction is starts its life on the pipeline model on this
stage

 Instruction is stalled on this stage until memory subsystem model
signals about successful fetch 9

Hardware Generated Memory
Access Operations

 Some memory access operations are automatically
generated by hardware and inserted into pipeline

 For example, operations for spilling/filling register file to/from memory

 Functional part of AL CAS already simulates such operations

 It happens during execution of ordinary instruction

 To support them in AL CAS:

 During functional execution all information about HW generated
operations is saved in intermediate storage

 When this instruction transferred to pipeline model, all this saved
information is placed alongside with other data of the instruction

 When instruction reaches certain pipeline stage, information of HW
generated operations is used to populate pipeline (instead of next
instruction)

10

Debug Facilities
 Execution Log

 Due to “speculative” features of CAS, logging events accumulated in tick-
indexed buffer, which is filtered on miss-speculation

 Execution Statistic

 Accumulates counters for each WI

 RAW output generated at the end of the simulation

 Separated tools for transforming into more human readable form

 Annotated disassembler

 Summary for functions

 Call-graph, compatible with Kcachegrind for visualization

 Both use universal mechanism for identifying / marking events

11

Accuracy Evaluation
 Test cases from SPEC CPU2006 benchmarks

 Used with test data sets due to long times of simulation

 Compiled by optimizing compiler developed by MCST

 Highest optimization level (O3)

 No use of AAU (due to its incomplete implementation in CAS)

 Real 8-core Elbrus CPU as reference

CPU Elbrus, 8 cores, 1 node

Clock frequency 1500 MHz

L1 instruction

cache (IB)

128 KBytes, 256-byte cache line, 4-way set-associative,

virtually addressed

L1D cache 64 Kbytes, 32-byte cache line, 4-way set-associative, virtually

addressed

L2 cache 512 Kbytes, 64-byte cache line, 4-way set-associative, 4-banks

interleaved, physically addressed

Shared L3 cache 16 Mbytes, 64-byte cache line, 16-way set-associative, 8-

banks interleaved, physically addressed

12

Accuracy Evaluation

0

20

40

60

80

100

120

N
o
rm

a
liz

e
d
 r

u
n
 t

im
e
,
%

Reference system AL cycle-accurate simulator Error

19

8

3
1 1 1

0

5

10

15

20

<4% 4-8% 8-12% 12-16% 16-20% 20-24%N
u
m

b
e
r

o
f

ta
s
k
s

Error ranges

13

Sources of Errors
433.milc

 Error of 16% for test data and 25% for train data

 Unusually high DTLB miss rate

 1% of all memory accesses are due to DTLB misses (on reference
system)

 Orders of magnitude more than for most other tasks

 Application-Level CAS in question does not simulate DTLB

 Unaccounted by CAS DTLB misses adequately explain
difference in total cycles

 Possible solutions (?):

 Simplified heuristic for DTLB misses

 Implement memory management as part of AL CAS

14

Sources of Errors
429.mcf & 450.soplex

 Error of 18% for 429.mcf and 13% for 450.soplex (on train data)

 Higher L1D hit-rate on CAS than reference system

 Likely logical inaccuracy in CAS

 Effects of memory management by OS

 COW pages, zero pages, shared pages etc.

 Different physical addresses patterns

 Possible more physical addresses conflicts

 AL CAS in question has trivial virtual address mapping

 Possible solution (?):

 Implement memory management as part of AL CAS

15

Sources of Errors
445.gobmk

 Error of 14%

 Workload consists of many short subtasks

 High runtime variation of reference system on short subtasks

16

Performance Evaluation

 AL CAS is 5 to 14 times slower than AL ISS

 Highest slowdown is on high CPWI task slowdown

 AL CAS slower by 13% on average than SLM CAS

 Overhead of whole cycle accurate pipeline of AL CAS is moderately
greater than simulation of MMU and other system level components

Workload

CFP CINT

453.povray 434.zeusmp 410.bwaves 471.omnetpp 462.libquantum 429.mcf

Clocks per Wide Instruction 1.6 3.1 6.6 1.7 3.5 4.6

Machine Intel Core i7-2600 CPU @ 3.40GHz, 16GB RAM Intel Xeon E3-12xx v2 (Ivy Bridge), 32GB RAM

Simulator

speed, MHz

FUNC 5.081 4.152 9.442 3.579 3.361 10.565

AL 0.796 0.670 0.817 0.462 0.609 0.795

SLM 0.734 0.699 0.965 0.577 0.733 1.066

Speed (FUNC) / speed (AL) 8.37 8.43 12.67 6.30 5.43 13.77

Speed (AL) / speed (SLM) 1.09 0.96 0.85 0.80 0.83 0.75

17

Conclusion
 Described Application-Level CAS achieves good runtime

accuracy on average (average error 5%)

 Simulator achieves expected performance (order of magnitude
slowdown on average relative to ISS)

 Debug tools greatly helped in finding and fixing mistakes in
simulation

But

 There is still inaccuracies

 Current accuracy is achieved on feature incomplete model (most notably
without use of AAU)

 Memory management effects are not accounted for

 Many tasks are still too long to run

18

Future Work

 Further improvement of accuracy

 Support of missing components (first and foremost, AAU)

 Investigating of ways to account for memory management effects

 General polish

 Improvement simulation speed

 Code optimization

 Removing unnecessary details

 Investigating of “smart” ways to achieve speedup

 Further development of debug tools

 Support of next versions of “Elbrus” ISA

19

Previous Work

 Memory subsystem model of SLM CAS

 Znamenskiy D.V., Kutsevol V.N. Development of a cycle-accurate
simulator of the Elbrus processor core memory subsystem. Radio
industry (Russia), 2019, vol. 29, no. 2, pp. 17-27

 General design of pipeline model of AL CAS

 Poroshin P.A., Meshkov A.N. An exploration of approaches to instruction
pipeline implementation for cycle-accurate simulators of «Elbrus»
Microprocessors. Proc. ISP RAS, 2019, vol. 31, no. 3, pp. 47-58

20

Thank you for listening!

21

Accuracy Evaluation

0
20
40
60
80

100
120

L
1
D

 c
a
c
h
e
 h

it
 r

a
te

,
%

Reference system AL cycle-accurate simulator Absolute difference

0

20

40

60

80

100

120

L
2
 c

a
c
h
e
 h

it
 r

a
te

,
%

Reference system AL cycle-accurate simulator Absolute difference

0

20

40

60

80

100

120

L
3
 c

a
c
h
e
 h

it
 r

a
te

,
%

Reference system AL cycle-accurate simulator Absolute difference

22

Reference System Configuration

CPU Elbrus, 8 cores, 1 node

Clock frequency 1500 MHz

L1 instruction cache (IB) 128 KBytes, 256-byte cache line, 4-way set-

associative, virtually addressed

L1D cache 64 Kbytes, 32-byte cache line, 4-way set-

associative, virtually addressed

L2 cache 512 Kbytes, 64-byte cache line, 4-way set-

associative, 4-banks interleaved, physically

addressed

Shared L3 cache 16 Mbytes, 64-byte cache line, 16-way set-

associative, 8-banks interleaved, physically

addressed

RAM channels 4 channels DDR4

RAM size DDR4-2400, 128 GBytes

Operating system OS Elbrus based on the Linux kernel

Linux kernel version 4.9.0-4.1-e8c2 23

Overall AL CAS Design

24

Functional Model

Pipeline
Logic and

State

Buffers and Queues

Code Fetch
Info

Memory
Operations

Info
Other Info

Pipeline Model

Memory Subsystem Model

IB Input
Memory

Operations Input

