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Relevance

Application fields of recommender systems:
« Search of suitable publications is scientific communities, social networks, photo hosting
« Search of target audience to organize thematic event
* HR industry (selection of vacancies and candidates)
 Sales field (selection of products in internet shops)
 Selection of materials (movies, music, books) in entertainment portals
 Advertising sphere

Recommender systems relate with scientific disciplines:
- Mathematical statistics
« Machine learning
* Discrete math
* Theory of optimization

Technologies used in recommender systems:
« Systems for storage and processing of big data volumes (Hadoop HDFS, Apache Spark)
* Implementations of machine learning algorithms (TensorFlow, Keras, Deeplearning4))
« Graph database management systems (InfiniteGraph, Neo4))

Conclusion: recommendation automation issue is actual and is in demand.




Goal and i1ssues

Goal:

Decrease complexity and increase the quality of image recommendation
for Internet users by automated software tool, implemented based on
graph database containing images, topics and users.

Issues to achieve the goal:

1. Analyze existing solutions for image recommendation and define their
shortcomings.

2. Propose solution to address the shortcomings of existing solutions.

3. Define image recommendation algorithm based on the proposed
solution.

4. Develop prototype of recommendation algorithm and estimate accuracy,
completeness and execution time.




Existing solutions for image recommendation
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Proposed Solution
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The proposed solution is based on

transformation of image recommendation

Issue to recommendation of items described

by text and weights:

1. Transform image to class probabilities

2. Form user interest weighted list from his
rating history

3. Calculate recommendations based on user
interests and image classes probabilities
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Graph data model of recommender system
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Image recommendation algorithm
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Recommender system architecture
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Results
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Parameters:
search depth = 4
threshold = 0.5

Obtained metrics:
Time = 303 ms

Precision = 0.61

“hdepm 3 g 08 s Recall =0.72

Test data:

Image amount — 1500

Topic amount — 50000

User amount — 3

Rating history size of each user — 100

Characteristic Node 1 Node 2
What was deployed Java application Neo4j DBMS

CPU Intel Core i5-8250U | Intel Core i7-4702 MQ
RAM 8 Gb 8 Gb




Conclusion

- Existing solutions for image recommendation were analyzed and
their shortcomings were defined.

- Defined algorithm to address the shortcomings of existing solutions.

- Recommendation algorithm was implemented in a form of

recommender system prototype.
- The recommendation algorithm was tested for accuracy,

completeness and execution time.
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Class diagram
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Recommender system integration with external system

Graph DBMS
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