Peter the Great Saint-Petersburg Polytechnic University
Institute of Computer Science and Technology

High School Of Programming Engineering

Hybrid image recommendation
algorithm combining content and
collaborative approaches

Kobyshev Kirill — ks.kobyshev@edu.spbstu.ru

Voinov Nikita — voinov@ics2.ecd.spbstu.ru

Relevance

Application fields of recommender systems:
« Search of suitable publications is scientific communities, social networks, photo hosting
« Search of target audience to organize thematic event
* HR industry (selection of vacancies and candidates)
 Sales field (selection of products in internet shops)
 Selection of materials (movies, music, books) in entertainment portals
 Advertising sphere

Recommender systems relate with scientific disciplines:
- Mathematical statistics
« Machine learning
* Discrete math
* Theory of optimization

Technologies used in recommender systems:
« Systems for storage and processing of big data volumes (Hadoop HDFS, Apache Spark)
* Implementations of machine learning algorithms (TensorFlow, Keras, Deeplearning4))
« Graph database management systems (InfiniteGraph, Neo4))

Conclusion: recommendation automation issue is actual and is in demand.

Goal and i1ssues

Goal:

Decrease complexity and increase the quality of image recommendation
for Internet users by automated software tool, implemented based on
graph database containing images, topics and users.

Issues to achieve the goal:

1. Analyze existing solutions for image recommendation and define their
shortcomings.

2. Propose solution to address the shortcomings of existing solutions.

3. Define image recommendation algorithm based on the proposed
solution.

4. Develop prototype of recommendation algorithm and estimate accuracy,
completeness and execution time.

Existing solutions for image recommendation

Images Metadata Visual Features . Existing solution
representation | (Textual features) Impl. 1 Impl. 2 hlybiidiEeattiics shortcorr_nngs:
' ' - Necessity of manual
carcuiationof | Calculation of image filling of metadata
) :eﬁl;eaalﬁrez features Calculation of o Lgck of user ratlng
Algorith <. p = image features history c_:on5|d(_era_t|pn
gorithm parts earTOtn auEE o @i .« GCN - Necessity of significant
gggfeﬁ ;;‘?‘? = e ron « random walks computation resources
* Kk-NN
Filtration tvpe Collaborative Content Collaborative
P Memory-based Model-based
Usef ratings Yes No No
consideration
Doesn’t require N Yes N
manual actions
Intel Core i5-6500 aslsnotﬁl (I:7F_’U
Computation CPU, Unknow NVIDIA | 16 Tesla K80 GPU
resources (irE]BS(_i;BniIE?;\iI]t) N 1080Ti GPU (quite significant)
g (significant)

Proposed Solution

image classes and
user interests

(2\
f(\\
Class probabilities
F_err?sentefd House | 0.96
Inatormo B
— Car 0.95
- .- * -
—| | Asphalt 0.75
- | City 0.67
Images rated —| | Megapolis 0.62
by user A CC :
L Rating: 3.94)
Form user
A part interests and
of save in
(Y
f N
e A
- (Y
|| r N
|| || 4 - AY N
L 1 P N\
___—_—_ ((A N\
- - * _—___—_—_ Class
Represented T K probabilities
oS 1 Bird 0.99
i < [H alibri .
All photo in a form of L FHHT Cwlﬂbd gfgg
hosting S\ TH] 2nima [0
1 e Wings 0.75
Images | .

J/

The proposed solution is based on

transformation of image recommendation

Issue to recommendation of items described

by text and weights:

1. Transform image to class probabilities

2. Form user interest weighted list from his
rating history

3. Calculate recommendations based on user
interests and image classes probabilities

Database with

Calculate
for user A

Recommended
for user A images

Save in

Graph data model of recommender system

— RECONGIZED IN/—.
Node types
HAS INTEREST SIMILAR RECOGNIZED IN
HAS INTEREST SIMILAR RECOGNIZED IN

HAS INTEREST RECOGNIZED IN
Edge type HAS INTEREST SIMILAR RECOGNIZED IN
Between edges User — Topic Topic — Topic Topic — Image
Edge weight is : : Euclidian distance between

User rating history Class probability

calculated from words in GloVe model

weight(A,B) = ——22

Z] 1 A]
A - user node,

weight(A,B) = \/Z?zl(xfl — Xp)?

C;g;ggaego o B - topic node, A - one topic node, we|ght(A,B): 1t_ I.D(WAdE classes(lg))
'€ €A9€ 11~ interest weight vector of user A, B - another topic node, — opIc hode,
weight n : . B — image node
X, ,Xg - coordinates in
Myp = z P(B € classes(l;)) X R; semantic space

i=1

Possible values FromOto1l From O to « FromOto 1l

Image recommendation algorithm

External system
request containing 1D
of user A

Response to the external
system containing
recommended image IDs

Collaborative filtering

Search of the nearest
Images to the user Ain
the graph

Group results

Search of the nearest
users to the user A in
the graph

Summing of HAS INTEREST
edges weight of found users
Selection of the
most frequent topics

Search of the
nearest images to
found topics

Recommender system architecture

Http Http Http
|
Save image Save rating Calculate.
recommendations

Y y Y

REST Controller

! |)
(— Image —> Ll Recommender

Service Service
FTP Instance Bolt
storing images Bolt Bolt
Google Vision Graph DBMS
Al to Neo4j

recognize
image classes

Results

0 2 4

Search depth

0.60

0.55

0.50

0.45

0.40

0.35

0.30

||e23s

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Parameters:
search depth = 4
threshold = 0.5

Obtained metrics:
Time = 303 ms

Precision = 0.61

“hdepm 3 g 08 s Recall =0.72

Test data:

Image amount — 1500

Topic amount — 50000

User amount — 3

Rating history size of each user — 100

Characteristic Node 1 Node 2
What was deployed Java application Neo4j DBMS

CPU Intel Core i5-8250U | Intel Core i7-4702 MQ
RAM 8 Gb 8 Gb

Conclusion

- Existing solutions for image recommendation were analyzed and
their shortcomings were defined.

- Defined algorithm to address the shortcomings of existing solutions.

- Recommendation algorithm was implemented in a form of

recommender system prototype.
- The recommendation algorithm was tested for accuracy,

completeness and execution time.

Thank you !

Class diagram

© % RecognizedInRepository

I8 % getbyimagelvtemnalidString]l List<Long= 1T

[I

©%® Recognizer © % ThematicsRepository

1B % recognizefString] Collaction < Recognition Resbt IE B findByWordiString] Opfinnal<Thamatics=

L L A
1 1 1

: 1l 1
I 4

B % ImageService

—q 1... 1“ i

@ % sreelmageSting, String)

D% UserRepository O % InterestedInRepository
i1 ® findByEcternalidiString) Optisnal:Users I8 ® findBylUserd AndThematicskdiLong, Leng) Optional <intereste:
IZ) B deletalyErternalid String) Lang 'T‘
» H
e I
. -r|
1 -~
1 1 |"
i 2 i
B % UserService
B incinterest{String, Thematics, float, Action Typel wodd
n.-
D% ImageRepository ®a getOnCrastaintanastedinfUsar, Thematics) Interastadin
B cresteintenestedinl ser, Thematics) Interestedin
n -
IE1 ™ findDyEoternalidString] Image)
A @ & getOrSavelseriString) User
@ & swveliserString) Usar
@ = incintarestilsariction) wvid
A A)
1 i 1 i
1 1
1 1
| |
1 |____I
1 I
1
L
@ % UserController
B mclUsernterestiUserfction] woed
mr

ﬂ i saveleltionshipsimage, Collection <RecognitionResult=, String)
oa addNesRelation ship{Recognition Resu it, Collection <Recognizedin =, image, String]
@ & cremtelmogebodetring)

1 [
1

S

|
|
1
&% ImageController

@ ® sveimagelimageToSavel void

&% Recommender

@ = genersteContenthe:cmmendation String)
D & mapfentfenb

® & mapfowiapString, Objact=]

@ = generateContentRecommendationiflcat, String, String)

Lzt <Conten tRecomemesndarticn =
LLinoed List < Con hen tRecomameen dation >
ContentRacommendation

LList <Conten tRecommendation >

i
i
f

1
1

3% RecommendationController

@ getContentfecs List <Cion teen tRiecomimeen dation =

Recommender system integration with external system

Graph DBMS

Neo4;

Find nearest
1images,
users,

Requests to another get edge...

units

Get image

A (—
1mages

Save image

———>

Requests
from client side

Yy Central photo
hosting unit

Recommender

system

—

Save image,
Save user rating,
Calculate recommendations

Request to find o g 0© (t)

the nearest nodes | HEp ?? 4 o

(images/users) e ? 0

Return the nearest
nodes (images/users) Search depth =0

N

Filter the nodes (images/users) having e
weight(i) < threshold * max(weight) '

Y 0
Search depth = 2

