
Modeling of library functions in an industrial static
code analyzer

1st Mikhail Belyaev
Ivannikov Institute for System Programming of Russian Academy of Sciences

25 Aleksandra Solzhenitsyna Str., Moscow, 109004, Russian Federation
mbelyaev@ispras.ru

2nd Egor Romanenkov
Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University
1 building 52, Leninskie Gory Str., Moscow, 119991, Russia

esromanenkov@ispras.ru

3rd Valery Ignatyev
Ivannikov Institute for System Programming of Russian Academy of Sciences

25 Aleksandra Solzhenitsyna Str., Moscow, 109004, Russian Federation,
Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University
1 building 52, Leninskie Gory Str., Moscow, 119991, Russia

valery.ignatyev@ispras.ru

Abstract—SharpChecker is an industrial level static analyzer,
which is aimed at detection of various bugs in C# source code.
Because the tool is actively developed, it requires more and more
precise information about program environment, especially about
results and side-effects of library functions. The paper is devoted
to the evolution of models for the standard library historically
used by SharpChecker, its advantages and drawbacks. We
have started from SQLite database with the most important
functions properties, then introduced manually written C# model
implementations of frequently used methods to add support of
data container states and have recently developed a model, built
by a preliminary analysis of library source code, which allows
to gather all significant side-effects with conditions for almost
whole C# library.

Index Terms—static analysis, library, source code analysis

I. INTRODUCTION

There are four main methods for finding defects in pro-
grams: manual inspection, testing, dynamic analysis and static
analysis. Testing requires to prepare a large number of tests,
but even if the code is fully covered by tests, some part of
program execution cases is left unconsidered. Fuzz testing,
or fuzzing, is automatic generation of random correct and
incorrect input data and running the program on that input
data with error detection. Fuzzing requires a large number of
program runs, and its applicability is limited by the difficulty
of finding the input data that causes an error. Dynamic analysis
also requires to prepare an execution environment and a set
of input data, and it covers only the paths reachable on given
input data.

Static analysis allows to find defects in programs without
execution. The result of a static code analyzer is a list of
potential defects found in the program with defect type, origin
location and propagation trace.

Source-level static analysis allows the analyzer to get more
information about the source code, including variable types
and syntax, that is lost after transforming the program into
the compiler’s intermediate representation. Such information
can be used to increase the quality of analysis and to report the
defect trace precisely mapped to the source code. Moreover,
there are several types of errors that could be discovered only
using static analysis, for example, unreachable code, copy-
paste errors and comparison of a pointer with null after
dereferencing it.

Most projects use external libraries in binary form, so
source-level static analyzer is unable to get any information
about such functions and the resulting analysis quality is
significantly reduced. To be able to produce precise results
it is necessary to provide the most sensitive information
about called external functions, for example, which excep-
tions can be triggered with their conditions, which values
are changed, etc. This paper is devoted to the possible
methods for data provision that were tested with the static
analysis tool SharpChecker [1], which is also available as a
part of Svace [2], [3] static analyzer tool-set. SharpChecker
contains several analysis engines: AST, dataflow, symbolic
execution [4], taint [5] and experimental machine learning
based subsystem [6].

Modeling of external libraries code is an important task

in interprocedural source code analysis. Knowing the precon-
ditions, return values and side effects of external functions
can improve the precision and recall of analysis in general.
Programming languages such as Java and C# have large
standard libraries – Java Class Library and .NET Framework
(or .NET Core) respectively, which are widely used by pro-
grammers. So this problem gets high priority even for initial
analyzer version.

We will demonstrate the evolution of our approaches, that
were used by SharpChecker in historical order. At each stage
the specified method was sufficient to meet the requirements
of the analyzer. During the evolution of algorithms, used by
SharpChecker, or because of the development of detectors for
new error types it becomes necessary to get higher precision
of modeling, to cover huge amounts of new libraries, to model
specific properties of several functions. Since SharpChecker is
the industrial level tool which is deployed into large compa-
nies, we also have to consider such criteria as performance,
results stability and determinism. As a result we can’t be
limited by the single approach and will show how we combine
all of them to achieve better results.

The paper is organized as follows. In Section II we define
the set of metrics and properties used to evaluate and compare
the described techniques. Section III is devoted to the existing
and well-tested approaches. In Section IV we describe the
newly developed approach that we plan to finish and integrate
into production. We present most serious problems that we
have solved and address. Evaluation of the proposed approach
using artificial examples and a representative set of open-
source projects, containing more than 4 million lines of code
(LOC) from 24 projects, is shown in Section V. In the last
Section VI, we summarize the results of the work and present
directions of future research.

II. COMPARISON CRITERIA

Although SharpChecker uses several approaches for library
modeling, it may be due to historical and other reasons,
which are not based on the actual drawbacks of any specific
technique. We propose the set of criteria that we will use for
comparison in the conclusion. We classify the following list
as the most important properties.

• Scalability – the approximate number of methods that are
modeled using the specific approach. We measure only
the order of magnitude of the corresponding value.

• Performance – the influence of resulting function model
on the analyzer performance. Since it is hard to measure
it, we will sort all methods and use comparative order as
a value.

• Completeness is a logical property which clarifies if the
given approach covers all method properties or it will be
necessary to add something in future. For example, it is
possible to specify only a single property of a method,
such as whether it can return null. It will require a way
to specify additional properties, such as precondition for
null return value, or that method also uses locks or
creates a resource that should be managed.

• Maintainability means how easy it is to update or correct
existing models, when a new library version is published
or to supplement with models for newly added functions.

• Manual correction – a property which specifies who is
able to correct models manually: analyzer developer, user,
both or nobody.

• Size – the total size in bytes of all models. The average
size of a model of a given method could be calculated as
a result of division of given value by the total number of
methods, covered by the approach.

• Private code – a logical property, which means if it is
possible for the user to add data about private libraries
without sharing it with analyzer developers.

All listed metrics are calculated for SharpChecker, but the
order of magnitude of resulting values is valid for general case
because of the nature of the analyzed approaches.

III. APPROACHES

A. Hardcoded semantics

The simplest approach for modeling individual properties
of several methods, which was used in the earliest versions of
analyzer, is hardcoded semantics. It is a very flexible method,
because it makes it possible to model almost everything. It is
still used by SharpChecker. For example, the semantics of the
following functions is hardcoded in the analysis engine:

• string.IsNullOrEmpty(string),
• string.IsNullOrWhitespace(string),
• various built-in, NUnit and xUnit asserts,
• System.Environment.Exit(int),
• System.Nullable<T>.HasValue,
• System.Nullable<T>.Value and so on.

The main drawback of this approach is inability to scale
for substantial share of methods that is necessary to cover,
because writing support for each function in different parts
of analysis engine is rather difficult. At the same time
it allows to represent some unique properties, for exam-
ple, that System.Environment.Exit(int) terminates
the execution and that System.Nullable<T>.HasValue
doesn’t dereference this and instead compares it with null.
Since the number of such properties and corresponding meth-
ods is very small and these properties are very different, so
that the unified approach is not possible, and hardcoding is
the only way to cover such situations.

B. Property database

One of the earliest and most important detectors
of SharpChecker is related to null dereference. It re-
quires to know, for example, if some method throws
ArgumentNullException, when it’s argument is null.
For the majority of functions such information is provided in
documentation. As a result, the first approach to library func-
tion modeling implemented in SharpChecker [1] is extracting
some properties of methods from the documentation at MSDN,
which is now replaced with Microsoft Docs [7], and storing
it in per-method XML files. The extracted properties include:

• method signature, which includes its fully qualified name
and types of parameters,

• a list of possible thrown exception types,
• the possibility of returning null,
• which parameters must be non-null.

Other properties are manually added for some methods. Such
method properties specify whether a described method:

• disposes this,
• enters or exits a synchronization monitor,
• changes the inner state of this,
• is pure (has no side effects and returns the same value if

called with the same arguments multiple times),
• uses multithreading,
• is an obsolete cryptographic algorithm implementation,
• is a virtual method which must be called in any method

that overrides it.
Later thousands of XML files were transformed into an

SQLite database of method properties, because such database
allows more compact storage and faster lookup. Boolean fields
are represented as bit flags in a single Attributes integer
column.

This approach allows a rather compact storage of method
annotations, doesn’t depend on the availability of library
source code, covers all methods that have available docu-
mentation at the moment of parsing and allows easy manual
correction of annotations.

However, it doesn’t represent a large part of method seman-
tics, including exception conditions, field assignments, return
value conditions etc., and adding any new information field
requires the developers to fill it by hand for all known methods.
When new methods are added into .NET Framework, manual
fields should also be filled.

An additional significant issue with such database is that
it becomes outdated and it’s hard to transfer manually added
fixes and new information into updated version. Even if we
overcome this difficulty, we cannot verify that the resulting
database doesn’t contain parse errors, which could suddenly
appear only on customers’ code.

C. Code models

C# programs widely use collections – data structures and
methods for data manipulation. C# programming language
itself supports LINQ [8] – SQL-like language which is used
as a unified API for collections library. For path-sensitive
analysis it is very important for the analyzer to be able to
understand if any specific collection could be empty or not,
because a lot of errors are related with corner cases, when
loop iteration over collection will not perform even a single
iteration. Listing 1 demonstrates an example of such situation,
when lastSatisfied could have value null if list
has no elements. However, it can never happen, because an
element is always added to the list before the loop, so it’s never
empty. It is impossible to reuse both described approaches:
there are too many types and interfaces to hardcode all of
them, and it is impossible to hold internal state of object,
which represents a collection, using a database.

1 private bool check(object obj) => true;
2 private void foo(IList<object> list, object elem)
3 {
4 object lastSatisfied = null;
5 list.Add(elem);
6 foreach (var elem in list)
7 {
8 if (check (elem))
9 lastSatisfied = elem;
10 }
11 Console.Writeline(lastSatisfied.ToString());
12 }

Listing 1. NRE defect example

To overcome the described problem, we have developed
another approach that still doesn’t require the source code of
libraries to be available. This approach is to model the most
frequently used methods with handwritten C# code. It isn’t
necessary for such implementation to be a complete drop-in
replacement of the corresponding library method. Instead, such
code contains only some key features useful for analysis, such
as management of the internal state of an object, exception
conditions, data flow between arguments, fields and return
value, the possibility of returning null etc. When the analysis
engine is improved, it becomes able to analyze such models
better, and so the quality of library modeling improves even
though the models are not changed.

The implementation of the given method is not very hard.
The models are organized similarly to their implementation
in the standard library using identical names. All models are
joined into the single C# project, which is analyzed before
the target code. So, analyzer can differ these implementations
from user code only because of special labels and prefer to
apply summaries of models instead of using library database.

The main disadvantage of this approach is that the models
are written manually, and that means that they cover only a
small fraction of .NET Framework methods. Another theoreti-
cally possible drawback is that if we managed to write manual
models for a large number of methods, SharpChecker would
spend a lot of time analyzing these models in the beginning
of each run. This disadvantage is important especially for
using SharpChecker with small projects. Such modeling is
very significant for taint analysis engine [5], because it makes
it possible to specify paths of tainted data propagation and
cleanup between arguments, object fields and return value.

The described approach seems to have an evident extension.
What if it would be possible to perform preliminary analysis
of open source standard libraries, save its results similarly to
a regular user method and reuse for all further static analyzer
runs? To make it possible to explore the proposed approach
it is necessary to solve several serious problems. First of all,
regular code of library methods implementation is much more
complex than used for models, so the analyzer should be very
precise, stable and deterministic, because an error of analysis
of library will be distributed and multiplied into dozens of
errors on target user code. Analyzer must also be very efficient,
because the conditions of every interesting property, gathered
from real implementation, are big and complex. Analyzer
should be able to generate compact summaries, because the

summaries of preliminarily analyzed libraries become a part
of tool distribution package. It took several years to overcome
mentioned problems, and the most interesting issues and its
solutions are presented in the next section.

IV. LIBRARY PRE-ANALYSIS

Growing collaboration of Microsoft with open-source com-
munity has lead to development of .NET Core – a cross-
platform open-source runtime and class library for .NET
programming languages. .NET Core is partially compatible
with .NET Framework, although now it doesn’t support all
classes, methods and features of .NET Framework. .NET 5,
which is planned to be released this year, will join .NET Core
and .NET Framework into one open platform.

The SharpChecker’s interprocedural analysis engine works
by traversing the call graph in the reverse topological order,
analyzing methods from callees to callers and saving all the
knowledge that it has gained about a method into a method
summary, which can be kept in memory or written into a file.
When the analyzer encounters a call of an already analyzed
method, it applies its summary to bring that knowledge into
the context of current method.

A fully automatic approach to library modeling is to analyze
the source code of a library (.NET Core in this case, but the
technique could be used with any library with source code)
with SharpChecker and to save all summaries of the library
methods into a file. Then, when analyzing a user’s project,
SharpChecker loads the summaries of called library methods
from the file and applies them.

Like the previous approach, the quality of library modeling
is closely connected with the quality of the main analysis
engine. This property has the following consequences:

• when the analysis engine is improved, the quality of
library modeling increases;

• improvements that are aimed to improve the quality of
models make the main analysis better;

• to get good results when using library summaries, it
is necessary to fix many previously unknown bugs in
the analysis engine and even to implement some new
features.

A. Summary size reduction

Before the introduction of pre-analysis for library modeling,
SharpChecker used method summaries during analysis to keep
gathered information and cleared summary after the analysis of
all callers. The first implementations used identical summaries
that were serialized and stored on disk. The resulting file has
0.5 gigabyte size for 137 thousand records. Initially the size
was even more, because it contained multiple instances of
summaries for each method, as some statistical information
is changed after the first serialization and needs to be saved
again, and it’s impossible to remove previously serialized
record from a compressed archive without rewriting the whole
archive. To use the approach in production it would be
necessary to add that huge file into distribution package, and
it is inconvenient to use and update.

A method summary consists of several components, gath-
ered by the common analysis engine and separate error detec-
tors. Analysis of the biggest summaries showed that a lot of
space is occupied by the information, required for statistics-
based detection of possible null return value dereferences.
Since it is not necessary to discover errors in the library during
the analysis of the user code, all statistical data for library
methods were removed. Summaries of all private methods,
which are not available from the user code, were also removed.
All these fixes allowed to reduce the total size to 230 MB for
80 thousand records.

Currently we are developing additional more complex fea-
tures which will also decrease the total file size, such as
simplification of stored conditions.

B. Performance issues
Previously used methods for modeling the majority of

library functions were unable to store pre-conditions. Despite
of them pre-analysis produces tons of conditions for every
property. Joined with user conditions they reach performance
limits. For example, consider the example at Listing 2. Mod-
eling based on the pre-analysis will generate condition arg1
!= null && arg2 == null instead of the simpler form
arg2 == null, build by the previous library modeling
subsystem. Moreover, every condition, obtained as a result
of analysis of foo will contain arg1 != null && arg2
!= null, significantly increasing the complexity of every
further condition.

1 void foo(object arg1, object arg2)]
2 {
3 if (arg1 == null)
4 throw new ArgumentNullException();
5 if (arg2 == null)
6 throw new ArgumentNullException();
7

8 ...
9 }

Listing 2. An example of a method throwing ArgumentNullException

To address the problem we develop condition simplification
methods. Since all conditions are automatically generated, they
have a lot of redundancy. Manual inspection of generated con-
ditions showed that variable substitution will remove a lot of
useless conditions. We extract the known values from equality
for conjunction or its negation for disjunction and substitute
value into other components of condition. But conditions,
generated by analyzer are very complex. The current limit for
every condition is 200000, what means that a condition tree
can have 200000 nodes. Condition tree is a non-binary tree,
where leaves represent atomic conditions, such as x = 5, and
non-leaf nodes contain one of three operations: negation, con-
junction or disjunction. Thus simplification should be carefully
preformed, because it is necessary to prevent multiple traverse
of such huge conditions.

C. New features
An example of a feature that has not been implemented yet

is field sensitivity. If string.IsNullOrEmpty(string)
method was implemented like this:

1 static bool IsNullOrEmpty(string value)
2 {
3 return value == null ||
4 value == string.Empty;
5 }

Listing 3. Simple implementation of string.IsNullOrEmpty

the analyzer would correctly ‘understand’ its behavior from
summaries, removing the necessity of hardcoded semantics.
However, in .NET Core this method has the following imple-
mentation [9]:

1 static bool IsNullOrEmpty(string value)
2 {
3 return (value == null ||
4 0u >= (uint)value.Length) ? true : false;
5 }

Listing 4. The original implementation of string.IsNullOrEmpty

The comments say that such trick with a ternary operator
and >= instead of == are used to workaround some per-
formance issues with the current JIT compiler. Analysis of
such implementation discovered a bug in the control flow
graph, where the logical disjunction operator affected only
the control flow, but the value for its result was not cre-
ated. Even after fixing this issue, the analyzer can’t infer
that string.IsNullOrEmpty(x) && x == "Hello,
world!" is false, because it lacks some kind of field
sensitivity: a = b 6=⇒ a.f = b.f .

Using summaries allows the analyzer to provide warning
traces inside library functions that make it more easy for the
user to understand the reason of the defect and to determine
if the warning is true positive or false positive. It is similar to
Microsoft SourceLink [10] technology that allows to browse
and step library source code when debugging.

V. PRACTICAL EVALUATION

The current state of summary pre-analysis implementation
doesn’t allow to deploy it to the main analyzer branch, since
it has significant regressions in analysis results. We con-
sider separate major error detectors consequently to decrease
the number of false positives, which were produced by the
approach. The results of evaluation are presented for the
NRE.*.ARGUMENT checker family that should be one of the
most beneficial from the new technique.

A. Artificial examples

Evaluation on existing set of tests used during SharpChecker
development showed that the analyzer, unfortunately, fails
more tests with the pre-analysis summaries than without any
function models (except hardcoded). One of the causes is that
we focused on null dereference checker during the develop-
ment of library pre-analysis approach, and some other checkers
are either accidentally broken or not properly supported.
However, even if we filter only null dereference tests, we
still get more failures (18 versus 10) when using pre-analysis
summaries. Some tests are specifically designed to check
warnings for library methods, which may return null, and
now they don’t pass because the analyzer doesn’t distinguish

between library and source methods. Another cause is that
this approach is currently in early preview stage, and there are
many things to improve, because this method is very sensitive
to any analysis errors.

B. Open source projects

Evaluation on a set of 24 open-source projects confirmed
that the analyzer is not yet ready to use summary pre-analysis
instead of the database. Among new null dereference warnings
there are many false positives, and some true positives disap-
peared. However, there are some new true positive warnings
which were not found before due to outdated and incomplete
database, and the trace that shows where inside the library
the null value is dereferenced is useful for reviewing expert.
Some warning changes seem to be accidentally introduced
analyzer imprecisions or bugs, because these warnings are
not related to external methods at all. We will continue our
efforts in development of summary-based approach to make
it production-ready, as it has significant advantages over other
approaches, and fixing issues that arise during the analysis of
libraries helps to improve the analysis quality for user code.

As for the performance, the total slowdown of summary-
based analysis is about 1 hour (≈ 60%) on this project set
in comparison with property database approach. It may be
noted that the slowdown for single project may be slightly
less, because for a set of projects the summaries are loaded
from file and deserialized multiple times. However, most time
is spent due to increased complexity of analysis, because the
analyzer has significantly more information about methods,
such as value flow and exception conditions.

C. Related work

ReSharper [11] (a code analysis and refactoring plugin for
Visual Studio) and Rider [12] (a .NET IDE from JetBrains,
which is based on ReSharper analysis engine) use XML
annotation files for .NET Framework, .NET Core and many
widespread libraries, such as Xamarin, Entity Framework,
NUnit, xUnit, Newtonsoft.Json, log4net etc. Currently annota-
tions allow to specify such properties of methods [13]: whether
a method can return null, is pure, invokes passed delegate,
takes a path as a parameter, is implicitly used through reflec-
tion, modifies a collection, is an assertion with condition, ter-
minates the control flow. Annotations can also define method
contracts, which specify the dependencies between method
input (parameters) and output (returned value, out parameters
and control flow effect). JetBrains annotations are documented,
regularly updated and released under MIT license, so they
should be considered for usage in SharpChecker as a free
source of quality improvement.

Coverity static analyzer [14] allows users to specify
the behavior of external functions using code models, that
are similar to our models [15]. Such models are com-
piled and analyzed like regular code, but they have spe-
cial builtin function invocations that represent specific fea-
tures, for example, nondet() represents an unknown
condition, unknown() represents an unknown value and

UseAfterFreePrimitives.use(x) represents a usage
of a value. Coverity can produce such models automatically by
analyzing source code with cov-make-library command,
and a set of models for Java and Android classes is bundled
with the analyzer. Although this approach allows to use both
automatically generated and manually written models, it has
the following disadvantages:

• generating models from the internal representation of
analysis data loses some information in comparison with
serialized summaries;

• constant effort of the analyzer’s developers is required to
write and support code that generates the model for each
feature;

• compilation and analysis of models consumes additional
time, though it’s less than time required for the analysis
of original source code.

Some languages and frameworks have built-in support for
annotating code properties and checkers in the compiler that
verify these properties. For example, C# adds nullable ref-
erence types analysis, that makes all reference types non-
nullable by default and requires the user to mark all variables
which may hold null with a ? postfix. These annotations
are preserved in compiled libraries and allow to check, for
example, whether a function can return null or can take
null as a parameter value. AllowNull, MaybeNullWhen,
NotNullWhen and other attributes [16] allow to specify
more complex nullability cases. However, conformance to
the annotations is not enforced: the compiler emits warnings
(not errors) when it detects violations, and these warnings
may be suppressed with a postfix ! operator. So, a static
analyzer should ignore nullability annotations for user code
and use them for library functions only when there are no other
models. Java uses @Nullable and @NotNull annotations
for this purpose, but it adds a third state ”— not annotated.
The fact that nullability annotations are integrated into the
languages and checked by the compiler stimulates program-
mers to annotate their code; on the contrary, a developer
that doesn’t use a particular static analyzer wouldn’t provide
annotations for his library for this static analyzer. However,
these attributes, annotations and language features describe
only some properties like nullability, and do not replace proper
modeling of library functions.

VI. CONCLUSION

The paper presents all pros and cons of different approaches
used by SharpChecker. Major benefits and drawbacks of all
described approaches are summarized in table I.

Table I demonstrates that pre-analysis approach is more
flexible and covers all features of all other approaches. The
major drawback of the technique is significant performance
degradation. But the resulting models always have quality
suitable for analyzer, because models are generated by the
same algorithms and the quality will increase together with
improvement of analysis engine itself. It covers all libraries,
since most of them have opened sources. Library models can
be easily updated and moreover created from private sources

TABLE I
CAPTION

Hardcoded Database C# model Pre-analysis
Scalability 101 104 102 104

Performance 0 1 2 3
Completeness − − − +
Unique prop + − + +

Maintainability − − − +
Manual corr. Developer Both Both Nobody

Size N/A 27 MB 0.8 MB 230 MB
Private code − ∓ − +

by the user independently. The additional advantage of the
approach is predictability – it is unlikely to get very poor
results due to parse or human error that could suddenly appear
on inaccessible code. All algorithms, used for generation and
application are tested twice, similarly to a compiler bootstrap.

The production version of SharpChecker now uses hard-
coded semantics and a database together, and used C# models
before recent changes. The authors think that usage of four
different ways for library modeling is redundant, so when
analyzer is ready and the pre-analysis approach is tested
enough, it will replace all others completely. But it doesn’t
mean that this way is the only right technique, because it is
impossible to use it for earlier versions, when analyzer was
not able to extract and reuse data precisely and efficiently and,
moreover, didn’t require such high accuracy of modeling.

Further improvement of library modeling may be the anal-
ysis of library binaries. Since C# uses CIL [17] as an inter-
mediate representation and it could be decompiled back to C#
source code with a reasonable quality and processed as regular
sources, so it doesn’t require a separate analysis engine for
CIL. The most advanced use case can include decompilation
and analysis of binary libraries on the fly.

REFERENCES

[1] V. K. Koshelev, V. N. Ignatiev, A. I. Borzilov, and A. A. Belevantsev,
“SharpChecker: Static analysis tool for C# programs,” Programming and
Computer Software, vol. 43, pp. 268–276, 2017.

[2] V. P. Ivannikov, A. A. Belevantsev, A. E. Borodin, V. N. Ignatiev, D. M.
Zhurikhin, and A. I. Avetisyan, “Static analyzer Svace for finding defects
in a source program code,” Programming and Computer Software,
vol. 40, no. 5, pp. 265–275, 2014.

[3] A. Belevantsev, A. Borodin, I. Dudina, V. Ignatiev, A. Izbyshev,
S. Polyakov, E. Velesevich, and D. Zhurikhin, “Design and development
of Svace static analyzers,” in 2018 Ivannikov Memorial Workshop
(IVMEM), 2018, pp. 3–9.

[4] V. Koshelev, I. Dudina, V. Ignatyev, and A. Borzilov, “Path-sensitive bug
detection analysis of C# program illustrated by null pointer dereference,”
Proceedings of the Institute for System Programming of RAS, vol. 27,
pp. 59–86, 01 2015.

[5] M. V. Belyaev, N. V. Shimchik, V. N. Ignatyev, and A. A. Belevantsev,
“Comparative analysis of two approaches to static taint analysis,”
Programming and Computer Software, vol. 44, pp. 459–466, 2018.

[6] G. Morgachev, V. Ignatyev, and A. Belevantsev, “Detection of variable
misuse using static analysis combined with machine learning,” in 2019
Ivannikov ISP RAS Open Conference (ISPRAS), 2019, pp. 16–24.

[7] Microsoft Docs. Accessed: Apr. 10, 2020. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/api/?view=netframework-4.5

[8] E. Meijer, B. Beckman, and G. Bierman, “LINQ: Reconciling object,
relations and XML in the .NET Framework,” in Proceedings of
the 2006 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD 06. New York, NY, USA: Association

for Computing Machinery, 2006, p. 706. [Online]. Available:
https://doi.org/10.1145/1142473.1142552

[9] Source code implementation for string.IsNullOrEmpty().
Accessed: Apr. 10, 2020. [Online]. Available: https://github.com/dotne
t/coreclr/blob/1f3f474a13bdde1c5fecdf8cd9ce525dbe5df000/src/System
.Private.CoreLib/shared/System/String.cs#L439-L448

[10] Source Link – a language- and source-control system for providing
source debugging experiences for binaries. Accessed: Apr. 10, 2020.
[Online]. Available: https://github.com/dotnet/sourcelink/blob/master/R
EADME.md

[11] Features – ReSharper. Accessed: May 18, 2020. [Online]. Available:
https://www.jetbrains.com/resharper/features/

[12] Features – Rider. Accessed: May 18, 2020. [Online]. Available:
https://www.jetbrains.com/rider/features/

[13] External Annotations – Help | ReSharper. Accessed: May 18, 2020.
[Online]. Available: https://www.jetbrains.com/help/resharper/Code A
nalysis External Annotations.html

[14] Coverity Static Analysis. Accessed: May 18, 2020. [Online].
Available: https://www.synopsys.com/content/dam/synopsys/sig-assets/d
atasheets/SAST-Coverity-datasheet.pdf

[15] Coverity 2018.09 Command Reference. Accessed: May 18, 2020.
[Online]. Available: https://www.academia.edu/38375284/Cov comma
nd ref

[16] C# Reserved attributes: Nullable static analysis | Microsoft Docs.
Accessed: May 18, 2020. [Online]. Available: https://docs.microsoft.c
om/en-us/dotnet/csharp/language-reference/attributes/nullable-analysis

[17] CIL – Common Intermediate Language. Accessed: Apr. 10, 2020.
[Online]. Available: https://en.wikipedia.org/wiki/Common Intermediat
e Language

