
Static analyzer debugging and quality assurance
approaches

Maxim Menshikov
Department of Software Engineering

Saint Petersburg State University
Saint Petersburg, Russia

info@menshikov.org

Abstract—Writing static analyzers is hard due to many equiv-
alent transformations between program source, intermediate rep-
resentation and large formulas in Satisfiability Modulo Theories
(SMT) format. Traditional methods such as debugger usage,
instrumentation, and logging make developers concentrate on
specific minor issues. At the same time, each analyzer architecture
imposes a unique view on how to represent the intermediate
results required for debugging. Thus, error debugging remains
a concern for each static analysis researcher.

In this paper, our experience debugging a work-in-progress
industrial static analyzer is presented. Several most effective
techniques of constructive (code generation), testing (random test
case generation) and logging (log fusion and visual representa-
tion) groups are presented. Code generation helps avoid issues
with the copied code, we enhance it with the verification of the
code usage. Goal-driven random test case generation reduces the
risks of developing a tool highly biased towards specific syntax
construction use cases by producing verifiable test programs with
assertions. A log fusion merges module logs and sets up cross-
references between them. The visual representation module shows
a combined log, presents major data structures and provides
health and performance reports in the form of log fingerprints.

These methods are implemented on a basis of Equid, the
static analysis framework for industrial applications, and are
used internally for development purposes. They are presented
in the paper, studied and evaluated. The main contributions
include a study of failure reasons in the author’s project, a set
of methods, their implementations, testing results and two case
studies demonstrating the usefulness of the methods.

Index Terms—static analysis, debugging, goal-driven random
test case generation, code generation, log file analysis, visual
representation.

I. INTRODUCTION

Software engineering is ailing from quality assurance is-
sues. Many approaches are aiming at achieving runtime error
absence (reviewed in Section II), but logical correctness is
not trivially reachable even if it is guaranteed statically. This
is often the case because the correctness is not automatically
derived from internal consistency.

The static analysis is aimed at verification of the real-world
problems written in the form of programs. Analyzers follow
the generic debugging and quality assurance trends, however,
there is specificity which should be taken into account [1]. The
input program undergoes several transformations, and each of
them has a significant impact on the validity of the final result.
Moreover, several transformations, when combined, may have
cumulative effects. The issues during transformations are

usually not runtime errors, which are easy to narrow down
using traditional methods, but rather logical defects. Since
transformations are unique products of each static analyzer,
quality assurance is the sole responsibility of the analyzer’s
author.

In the Equid project [2], the author had several observations.
First, feature testing looked biased towards the developer’s
interpretation: there is a tendency to test constructions in a way
they are used by the person. Second, thorough bugs may be
hidden behind multiple abstractions and appear unexpectedly
as analyzer grows. Third, a significant amount of errors could
have been found if there was a simple measure indicating that
action was required. Inserting heuristics for every aspect of
a large software project log is barely achievable (consider
limited system resources when making such advanced log-
ging), so log analysis is the foremost goal for analysis debug-
ging. Fourth, contracts and formal requirements undeniably
contribute to the quality of the product, however, they cover
integrity and consistency rather than the absence of logical
issues. In that sense, static analyzers have no specificity. And
the last, static analyzers have a rare environment with little to
no requirements for issue reproduction. For example, repro-
ducing the issue in network router software may require days
and months just to repeat the pattern. That makes it possible
to increase logging verbosity until the issue is detected, so the
developer may put efforts into making logs as informative as
possible. With that in mind, the paper suggests an approach for
increasing the visibility of issues and/or reducing the likeliness
of bugs, based on code generation, log file improvements, goal-
driven random test case generation, and visual representation.
These four methods make up the author’s static analysis
debugging and quality assurance approach. The study starts
with the description of third-party approaches (Section II),
continues with the key issue sources identified by the author
(Section III), the method is presented in Section IV and
evaluated in Section V.

Motivation. The debugging field concentrates on runtime
issues and doesn’t answer the question how to debug deep logi-
cal issues in the static analyzer. Thus, solving this problem and
employing the right methods brings many practical benefits,
such as improvements in stability, reduced risk of problems
after implementing new features, a faster development pace.

Novelty. The suggested approach covers a significant



amount of issues found in the real-world analyzer’s develop-
ment. The code generation stage is enhanced with the post-
processing phase in which the internal use cases are loosely
verified, making integration of new objects faster. The log
fusion adopts hypertext-like approach, making the output more
linked and indexable, allowing for better search and filtering.
To the knowledge of the author, the logging had never been
integrated with the hypertext. Random test case generation
usually covers trivial input data or just compilable programs,
but in this study, it produces programs with specified verifica-
tion goals, which is an improvement over completely random
programs. The visual representation is usually aimed at the
visualization of control flow graphs, but in this paper, it is
intended for data structures and internal health/performance
reports.

Main contributions. Main contributions comprise the study
of the issues in the Equid project, four debugging and quality
assurance techniques, implementations for 3 of the mentioned
platform-independent methods, the testing results, and two
case studies presenting the usefulness of the method.

II. RELATED WORK

Most works are about analyzing complex systems with static
analyzers rather debugging analyzers, however, there is a study
of defects in static analyzers [1], which gives useful insight
to the opinions of other researchers. According to the paper,
visualization and handling of intermediate results is still not
satisfactory for the most developers, as well as handling of
data structures. While the author hadn’t synchronized with
this research when the development of the analyzer started,
a significant match with the practical experience had been
determined.

There are well-known complex tools for debugging of
complex systems, e.g. GDB [3], supporting all major Central
Processing Unit architectures. The LLDB [4] is an LLVM-
based GDB analogue, which aims to provide reusable infras-
tructure. Of course, there is a number of language-specific
tools, but GDB and LLDB are among the most universal ones
(e.g. UndoDB [5], which is based upon GDB, can be used to
debug Java and Go applications). Such debuggers provide a
way to debug tools in the direction from the beginning to the
end and support analyzing core files.

The reverse direction debugging (or “omniscient debug-
ging”) is covered by GDB itself; the Mozilla’s RR [6],
the record and replay framework; the Undo Debugger [5],
which is claimed to be one of the first commercial reverse-
debuggers [7]. The reverse-debugging tools are useful for
runtime errors, but the majority of the defects, at least in
our project, don’t fall into this category, so the usefulness is
limited.

Random program generation has been first shown in [8],
this method then evolved into CSmith [9] framework, which
had extremely successful applications to industrial compilers.
An interesting result was achieved in the paper [10], in
which the author tries to avoid generating dead code by
using all the temporary computations for the final result.

Intel has also prepared its random program generator [11]
capable of triggering compiler optimization bugs, with over
140 defects found in LLVM and GCC. The research [12]
covers Orange4 random program generator with an idea of
equivalent transformations — which is, by the framework,
similar to goal-based generation from our study, however,
the generated programs are completely random without any
goals set. The MicroTESK [13] project generates test programs
for various microprocessors (ARM, MIPS, RISC-V and other
architectures), however, it is aimed at a lower level than the
tool described in our research.

The static analysis visualization is a highly specialized topic,
only applicable to concrete tool developers. Still, the authors
of the paper [14] explored the ways to animate the static
dependence analysis, and the result is very different from stan-
dard still visualizations. The closest generic solutions so far
are brought by code visualization tools, e.g. Sourcetrail [15],
CVSscan — code evolution visualizer [16], which are at least
capable of visualizing programs. The negative part is that local
intermediate representations aren’t supported in such tools.
Graph-based program evolution is estimated by GEVOL [17]
project, which is important for tracking defects produced by
specific authors and functions. Software performance evolution
had been examined in [18], as a list of functions along with
performance results.

The logging is well-investigated in [19], with useful insight
about the usage of logging in open-source projects. The
study [20] concentrates on characterizing when do developers
log the information. Additionally, researchers performed the
survey on how to improve the logging. Three suggestions
are relevant to our study: log filtering, categorization and
analysis/visualization.

The current methods for information retrieval are mostly
for natural languages. For unstructured data, it implies the
usage of n-grams, machine learning and other text search
methods [21]. One of the examples is DeepLog [22] system,
which aims to find anomalies using deep neural network
model utilizing Long Short-Term Memory (LSTM). Paper [23]
reconstructs control flow graph of the distributed system to
find anomalies. Anomaly detection in computer systems using
decision trees is performed in [24]. Those are valid methods
for unstructured log analysis, however, these methods are
more suitable for malware action detection on sets of third-
party applications, while the study concentrates the single
application development, where defects are detected by the
developer. Our log handling approach is closer to classic
hypertext [25].

III. SOURCES OF ISSUES

Throughout 2019 author had been analyzing defects for the
issues in more than 1500 commits in the closed static analysis
project. Key issue sources had been identified:
• Missing support for the specific syntax/intermediate rep-

resentation (IR) construction in submodules.
• Small differences in implementations for repeating parts

(classes).



Fig. 1. Sources of the issues, reasons why these issues are not observed and their solutions

• Transformation and ordering issues.
The developers fix such issues promptly if they are ob-

served, but they are not trivial to find. The author had
determined the following three main reasons:
• Low visuality of the transformation passes and the devel-

opment process. The developer sees the input, the result,
but intermediate transformations might be incorrect. That
might lead to false testing results.

• Unattainable cross-dependencies between modules. The
engineer creates a new feature and edits modules to
integrate it, yet different parts might be broken.

• Low quality of tests. This is the main reason why non-
trivial issues are often not found. For example, if tests
verify separate handling of if and switch construc-
tions, there might be problems in their combinations if
their implementations have interchanged code.

The following ideas were evaluated to make these issues
more visible:
• Automatic generation of major cross-linked data struc-

tures to avoid unattended defects.
• Making an interface for viewing log that would detect

cross-references between pass logs, visualize the steps,

the internal error rate. That’s similar to the approach
suggested by the paper [1].

• Improving test cases: make random tests that would be
more representative than those written by hand.

No single solution can be engineered to solve these prob-
lems. All typical quality assurance techniques were used in the
project, which is not extraordinary, considering that the ulti-
mate goal for the static analyzer is to promote good software
engineering practices. The recipes suggested by this paper are
extensions of the typical methods, designed specifically for
static analyzers. In section V-E, we predict the classes of the
programs which might also benefit from the approach.

Fig. 1 summarizes the findings, matches the issues with the
reasons why they are not found and the solutions.

In the next section, the author’s solutions to these problems
are demonstrated, along with their implications.

IV. METHODS

As stated in the introduction, the paper aims to develop
methods assisting in debugging of logical issues in static
analyzers. Unlike other kinds of issues, these issues do not
cause runtime failures and thus are often unattended. The form
of assistance varies for every method.



A. Code generation

As the code base grows along with the number of syn-
tax constructions, it gets important to ensure that repeatable
fragments are written strictly and concisely, not breaking the
stability of the whole program. Code generation reduces the
risk of adding logical mistakes by producing modules with
high integrity and compatibility. This technique itself is not
new and can be applied to any software project, however, the
analysis had shown that verification of the usage is vital as
static analyzers introduce transformations between different
models. Also, the plurality of the models implies the need for
the model instantiation for different occasions. This way, the
risk of logical issues in this domain reduces due to common
code generation base.

Thus, in the case of Equid, there are three major consider-
ations for the code generation:

• Enumerations. When a new element is added to the
enumeration, there is a high chance that dependent enu-
merative functions are invalidated. A mechanism that
indicates the expected use of enumeration within the
source code had been developed.
For example, if a selected code needs to handle just
specific enumeration elements, then, before using the
enumeration EnumerationName, the developer may
indicate the all-variant usage of the enumeration:

core_indicate_use(EnumerationName,
CoreEnumUse::AllVariants)

If the code intentionally uses just selected enumeration
values, then the developer indicates it:

core_indicate_use(EnumerationName,
CoreEnumUse::Selected)

The post-code generation phase verifies whether all or
selected elements are used. This is a cheap yet effective
mechanism to ensure that all enumeration values are
processed. Noteworthy is that GCC has a switch-checking
approach (-Wswitch-enum or -Wswitch), which can
be used with #pragma GCC diagnostic push for the
region selection, however, GCC’s approach is compiler-
dependent.

• Repetitive classes. A big software project doing many
data transformations inevitably gets many classes repre-
senting nodes participating in different analysis passes.
In most cases, nodes have a similar structure. The rule of
thumb is that classes that can be described declaratively
should be written this way. For instance, in the project,
we cover not only syntax structures but also data classes,
language semantics.

• Multi-model data. Input data sets may be cross-linked
and can be used for different purposes. There should be
a way to interpret the data differently.

1) The practical implementation: To get code generation,
the author had written a standalone C++ tool1. The input
is in customized YAML2 format. Several models were em-
ployed: enumerations, expressions and intermediate represen-
tation commands. The tool produces a not strictly formal
syntax tree, which is transformed into the real code file.

The Enumeration model has the following format:

type: <A complete type, can have
reference to a different
namespace>

clean_type: <A type name without
namespace references>

namespace: <Namespace in which
enum is introduced>

dont_create_enum: [false/true]
header:

- <extra header entry>
- ...

field:
- name: <Field name>
token: <string representation>

- ...
unknown: <Unknown field for

default alternative>
mapping:

- name: <MappingName>
from: <Source type>
to: <Target type>
unknown: <default result for
unmapped values>

map:
- from: <Source value>
to: <Destination value>

The product is a C++ enum class with the given name, a
set of fields, a mapping function between enum and std::
string, and several custom mappings.

The Expression model borrows many ideas from enumer-
ations, but it is slightly more oriented towards expression
model:

type: <Short expression type>
value_type:

direct: <fixed type>
indirect: <expression to borrow
type from>

constructor:
- name: <Internal constructor name>
parameter:

- <list of parameters, named as
members>

- ...

1https://github.com/maximmenshikov/eq codegen. This version is limited
regarding supported syntactical constructions, only intended for demonstra-
tion.

2https://yaml.org/

https://github.com/maximmenshikov/eq_codegen
https://yaml.org/


- ...
member:

- name: <Friendly member name>
internal: <Private member name>
type: <Member type>
default: <Default value>

header:
- <extra header entry>
- ...

operation:
<enumeration-like list of operations>

function:
- name: <custom function name>

signature: <function’s signature>
body: <function’s body>

override:
ToString: <Code that will return

entry’s string representation>

This is a short description of expression model, in fact, the
model has more parameters for handling minor cases, e.g.
children handling, whether the entry is LValue, and a more
sophisticated return type handling.

The source for the command model (not presented in the
paper) is provided at GitHub3.

B. Log fusion

A typical log is a flat file with thousands of lines. De-
velopers often struggle to find an optimal balance between
verbosity and conciseness [19], but as mentioned in Section I,
static analyzers are in the unique position in which running
debugging versions is possible without complete reproduction
of the environment. In that case, it is possible to make tools as
verbose as possible. This method does not find logical issues
by itself, but, in conjunction with the fact that logs present a
significant part of intermediate objects being the inputs and
the outputs of transformations, it assists in making the log
analysis quicker.

An approach based on the following two concepts is sug-
gested:

1) Module-specific logs. Each module writes to its log,
however, the core keeps track of unique timestamps for
each log entry. Thus, it is possible to view separate
logs if required or to view combinations of logs. This
approach has important implications from a practical
perspective. First, it decreases the resources required for
categorization and search. A single log would have to be
parsed from the beginning to the end — which would
inevitably mean a slowdown. Second, the reader gets an
opportunity to select points of interest and completely
avoid unrelated parts.

2) Internal bookmarks/tags. Each object (in our classi-
fication, a resource, a fragment or a virtual machine
command) has unique ID within the object pool. Objects
are referenced by a tuple (name : id : type), and

3https://github.com/maximmenshikov/eq codegen models

each action on the object is bookmarked by a tuple
(id : type : action). The log viewer allows quick
navigation between these objects and by that reduces the
cognitive load on log reader. This implies that the log
is less of flat structure, but rather a technical document,
more oriented towards understanding.

1) Implementation: Separate logging is very
implementation-specific and novelty-free. The analyzer
simply opens a number of streams and provides a debug
context object allowing for access to all of these streams.

The bookmark approach requires attention to the implemen-
tation of Uniform Resource Name (URN) producing methods.
URN must be both readable and short, since reading log files
in plain text is still an option. In the author’s implementation,
the URN doesn’t adhere to RFC 21414 to save space. The
practical URN grammar is presented in the corresponding
GitHub repository5.

C. Goal-driven random test case (program) generation

Order of actions and bias towards specific use case for
syntax structures is the major source of the issues during
the development. They are not detectable mainly because
preparing a reasonable selection of tests proving the issue
source is hard. The random test program generation is helpful
in such cases due to its ability to test software against large
volumes of varying input data. In result, not only logical issues
are detected, but also a number of runtime issues, as seen in
compilers.

A random program generator creating a set of tests with
the following properties was prepared. First, all tests have
one goal defined and asserted in main(), this is unlike
other random program generators, which produce compilable
programs without assertions. Second, all of the test cases are
identical in terms of final results.

Our algorithm revolves around the idea of a verification
goal. The straight-forward algorithm for main() is as fol-
lows:

1) Create a function main() with empty block.
2) Insert a randomly named variable. Let it be x.
3) Assume a random goal as a target value for variable x.

Let it be a.
4) Generate a random block or a random function returning

a or modifying the input pointers so that x is receiving
a.

5) Insert an assertion x = a.
A random block or a random function is generated ac-

cordingly. The goal is transformed into a final statement (e.g.
return a or x = a, based on whether the block or a function
is being generated).

1) The statement is transformed into a different statement
based on the random value (which chooses the next
operation from the list below):

4https://tools.ietf.org/html/rfc2141
5https://github.com/maximmenshikov/eq-urn-grammar

https://github.com/maximmenshikov/eq_codegen_models
https://tools.ietf.org/html/rfc2141
https://github.com/maximmenshikov/eq-urn-grammar


a) If the statement isn’t a block, it is transformed into
a block of statements.

b) If the statement is a block, then a new variable is
added to a block.

c) If the statement is a block, then a random (not goal)
variable is assigned.

d) The statement is rolled into the if-else if-
else statement, where the goal is put into the first
if then statement. For the rest of the branches, the
false goal is generated and rolled into a random
block.

e) The statement is rolled into the switch/case
statement, where the goal is put into the first case
body. For the rest of the cases, the false goal is
generated and rolled into a random block. The false
cases are randomly ended with break.

f) The statement is rolled into for or while loop.
In the author’s implementation, these construc-
tions were of minor interest, so they were imple-
mented trivially, similarly to Orange4 [12] same-
assignment.

g) ... the rest of constructions.
After executing the first two procedures, the outcome is a

valid program which must be well-parsed (syntactically correct
by construction), should be analyzable and, if compiled, must
satisfy all assertions. To get a set of programs, the shuffling is
performed on all constructions allowing for it (the showcase
is for if and switch). if branches are shuffled if the con-
dition expressions are not intersecting (i.e. swapping branches
doesn’t change the semantics), cases are switched based on
break existence. All-break switch-case statements can be
shuffled completely.

The practical implementation is located in corresponding
GitHub repository6.

D. Visual representation

The visual introspection assists in finding logical issues by
using a graphical view. A number of issues, especially those
involving formulas and type conversions, are not distinguish-
able in textual forms. The following directions were in the
focus of the research. First, making passes visually observable.
Second, provide reasonable health reports for performance
figures, error occurrence rates.

As for the first goal, our main intention was to make
an internal Virtual Machine intermediate representation (IR)
viewable. The IR can be represented using a tree view since
branches may contain child entries. To simplify interface
development, a plain tree view from Qt7 framework had been
used. Clicking on any IR command brings a list of related
parts: a simplified SMT representation, a simplified abstract
interpretation view (Fig. 2). At the moment of writing, the
IR representing module is not directly linked to the debugger
e.g. via GDB/MI interface [26], but the project’s debugging

6https://github.com/maximmenshikov/eq fuzzytest
7https://www.qt.io

Fig. 2. The transformation view of IR commands

framework is capable of generating the commands to set the
breakpoints at the specific execution points (like IR transfor-
mation phases) for the RR [6] replaying.

As for the second, the following formulas had been used
to prepare a chart. The first formula is trivial. Consider ti
a start time for i− verification phase, where i ∈ [1, n], and
t′ is the final execution time. If, for simplicity, t′ = tn+1,
then durations are calculated accordingly: ∆ti = ti+1 − ti,
where i ∈ [1, n]. However, this computation gives a very rough
approximation of internal time spans.

Module log separation provides two other useful empirical
formulas. One formula is based on log size. Consider that the
logging is more or less uniformly spread around the modules.
In that case, module log size is a simple profiler for the module
execution times, without an actual profiler running.

The other formula requires building a time series. The
complete execution time t′ is collected, and it is divided up
to 40 chunks: ∆ti = t′

40 , where i ∈ [1, 40]. The graph with
timestamp occurrence frequencies for each ∆ti group is built
for every module. The result of the implementation can be
roughly described as a digital fingerprint for the execution
(Fig. 3). The source code is located at GitHub8.

Concluding, these three formulas provide insight into per-
formance. They consider (a) total phase time, (b) total time
spent in the module, (c) time distribution. They are useful if
logging invocation distribution is uniform.

V. EVALUATION

The implementation of the proposed approaches had been
tested in the Equid project. For random test case generation,
it is common to measure how many errors of which severity
had been found using the technique, that’s what determines
the real usefulness of the method.

For log fusion, the developer’s time to find an error was
continuously monitored. This way is not accurate since the
issues might differ at every testing instance.

8https://github.com/maximmenshikov/loghealth

https://github.com/maximmenshikov/eq_fuzzytest
https://www.qt.io
https://github.com/maximmenshikov/loghealth


Fig. 3. The “fingerprint” of the execution

For code generation, we investigated the time needed to
bring up a new syntax structure. We were lucky to have had
a syntax processing refactoring right after tool bringup due to
new language requirements to the static analyzer (which are
out of the scope of the paper), that made the evaluation easier.

Visual representation isn’t trivially testable. The only eval-
uation the author could do is the subjective contribution to the
issue investigation.

A. Random test case generation

After introducing the random test case generation, the author
observed the decrease in a number of issues with both existing
and newly added syntax constructions. Several defects were
found, which could be classified as logical, performance,
ordering and runtime issues. Logical issues comprise of
verification-breaking issues, not related to ordering (which is a
separate group). Performance issues are due to slow handling
of syntax constructions. For this group, the time required
for the execution of generated source had been evaluated
and tested for sanity. The time twice larger than the empiric
average for the syntax construction had been considered an
error. Ordering issues appear during transformations when
specific elements can’t be trivially reordered in a destination
form. When resulting messages differ for reordered sources,
the case is considered a failure.

The results of testing are provided in Table I. In total 10
issues had been detected during the evaluation, 6 of them
had high severity, and 4 of which had medium severity. The
author considers the method applicable to finding mistakes in
static analyzers but needs significant improvement to cover all
language features. However, it is hard to judge the usefulness
for compilers because no investigation had been done.

B. Log fusion

The logging engine can be practically evaluated only by
checking the time to resolve a typical issue. The evaluation
time (1 month) had been divided into two periods, in one
period no logging features were used during issue-resolving,
the other period is characterized by intensive usage of log
fusion. The time to resolve the typical issue reduces twice
or thrice (see table II). The improvement rates are 1.92, 5,
3.3, 1, which result in an average of 2.8 among these test
groups. These results also indicate that the method is feasible
for static analyzer development tasks, however, the effect is

vastly different for different groups (and, supposedly, tests).
But, at least, the method doesn’t make the process slower.

C. Code generation

The code generation covers a significant part of the process
of adding a new syntax structure. For the project, class support
had to be implemented again due to customer’s requirements &
changed the project’s infrastructure. The result is as follows. It
was determined that adding class support has taken 7 times less
time than the same feature several years before this test. More-
over, it was noticed that previous attempts had a month-long
trail of commits revising the architectural modules and minor
issues, however, the attempt after introducing code generation
didn’t have so many visible effects. The representability of
this empirical test is very low: after all, the project has become
more mature over years, however, it is hard to perform a more
fair comparison to see the improvement.

D. Visual representation

For the visual representation, the low improvement for
maintenance development phases was observed. The reason
is that no developer or tester would ever look at visual
reports for everyday testing. However, it is profitable for the
active development phase. At least 2 performance issues were
discovered using the performance chart implemented in our log
viewing tool. They were related to different timings between
stages, while the overall result was about the same: this
situation happened due to substantially simplified processing
of structures due to all of them getting the same visibility
level. The deeply nested test had much longer table lookup
time with much shorter propagation stage. While the visual
representation testing implies little representability, the whole
method can benefit if the developer is taught to have a critical
look on charts.

E. The classes of programs

During the evaluation, the techniques had been tested not
only on the main static analyzer project but also on various
software packages surrounding it, to a possible extent. Au-
thor’s experience shows that not only static analyzers may ben-
efit from these methods. The class of “compatible” software
comprises the programs performing a significant number of
transformations. It includes the compilers, their optimization
passes, refactoring, code obfuscation tools, archivers, encryp-
tion tools. The improvement would be seen in case both
the input and the output are in the readable representation
and if the intermediate representations are cross-linked. The
approach is not cost-effective if the project is small due to a
high level of an initial investment.

F. Case studies

1) The case of GNU statement expressions: In this case
study, we would like to stress how the developed software
package helps add new functionality. The GNU Compiler
Collection (GCC) has the support for statement-expressions,
which represent code blocks with the last statement being



TABLE I
DISCOVERED ISSUES & THEIR SEVERITY

Defect type Number of issues Severity Comment
Performance 3 Medium Slow handling of specific combinations of syntax constructions, branches, especially with a high

number of objects.
Ordering 5 High Ordering of syntax constructs affects the processing. This kind of issues appears during the transition

from AST to IR form due to change in linearity
Runtime failure 1 High Other critical issues with failing statements
Logical issues 1 Medium* Problems with expression-to-formula mapping. * - This issue usually has high severity, but this

concrete case was not as critical.

TABLE II
TIME TO RESOLVE TYPICAL DEFECTS

Defect type Time to resolve before (h) Time to resolve after (h) Comment
Performance 25 13 Performance issues require significant refactoring, but it was taking time

to properly diagnose where does the issue appear.
Ordering 5 1 Bookmarks make ordering issues easier to diagnose.

Runtime failure 1 0.3 Runtime failures are easy to work around, but harder to fix completely. All
information in one place makes it quicker.

Logical issues 1 1 No large difference — when a logical issue is expected, you watch the log
with this information. Technically, it reduces the need to find the mapping,
but we haven’t found it measurable.

the result of the block. The infrastructure of the analyzer was
highly biased towards blocks and statements, and the statement
expression was an example of the construction which could be
used on the unexpected levels.

By simply adding a new compound type (“BlockWithRe-
sult”) to the model, the code generator-related tools had shown
the places which had to be touched. These areas included
parsing, expression flattening, expression cloning, type deduc-
tion and IR conversion. However, the IR conversion stage was
not ready for the adoption of the statement expressions, it
took around 7 working days to refactor the algorithm for it.
The visualization approach let the author find the issue with
the incorrect placement of internal statements: e.g. conditions
were set on entering wrong fragments. The random program
generation supported the process by providing a suitable num-
ber of examples. In total, the addition of statement expressions
took approximately 10 working days.

2) The case of wrong constructors: This case is more to-
wards mechanical mistakes when writing the code. The author
did a mistake making a constructor with std::string
parameter and a constructor with bool parameter. When
passing regular strings, they are internally represented by
const char * object, and the closest implicit casting for the
argument was to bool. This mistake flowed from a Directed
Acyclic Graph (DAG) level to VM intermediate representation
and then materialized in missing predicate check during the
verification stage. The issue had been noticed after using visual
representation: it was determined that the object in DAG was
missing a minor property only after reading the expression
dump linked to the VM IR command. The omniscient debug-
ging wasn’t of help because the time to break the execution
was unclear.

VI. CONCLUSION AND FUTURE WORK

In the paper, the sources of errors in the author’s static
analyzer project were studied. Defects are mostly related to
logical issues plaguing from missing syntax/IR support, minor
issues in repeating parts, transformation defects and ordering
problems. To cope with them, four sustainable solutions were
prepared and shown. They include random test case (program)
generation, log fusion, code generation and visual representa-
tion. These methods allowed finding at least 10 defects and
decreased the time to resolve defects by 2.8 on average. The
response differs for different test groups or even tests, from
5x for ordering issues, down to 1x (no improvement) for
logical issues. Two presented case studies support the thesis
of applicability of these methods.

In future, we expect to continue improving the functionality
of the logging package and increasing the number of cross-
links between log parts. Code generation will experience
further generalization of the models. More metrics will be
investigated to make health reports more useful.

REFERENCES

[1] L. N. Q. Do, S. Krüger, P. Hill, K. Ali, and E. Bodden, “Debugging
static analysis,” IEEE Transactions on Software Engineering, 2018.

[2] M. Menshikov, “Equid—a static analysis framework for industrial ap-
plications,” in International Conference on Computational Science and
Its Applications. Springer, 2019, pp. 677–692.

[3] GDB: The GNU Project Debugger. [Online]. Available: https:
//www.gnu.org/software/gdb/

[4] The LLDB Debugger¶. [Online]. Available: https://lldb.llvm.org
[5] Reproducing software defects finally made easy. [Online]. Available:

https://undo.io/
[6] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush,

“Engineering record and replay for deployability,” in 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), 2017, pp. 377–
389.

https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://lldb.llvm.org
https://undo.io/


[7] J. Engblom, “A review of reverse debugging,” in Proceedings of the
2012 System, Software, SoC and Silicon Debug Conference, Sep. 2012,
pp. 1–6.

[8] E. Eide and J. Regehr, “Volatiles are miscompiled, and what to do
about it,” in Proceedings of the 8th ACM international conference on
Embedded software, 2008, pp. 255–264.

[9] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, 2011,
pp. 283–294.

[10] G. Barany, “Liveness-driven random program generation,” in Interna-
tional Symposium on Logic-Based Program Synthesis and Transforma-
tion. Springer, 2017, pp. 112–127.

[11] V. Livinskij, A. Mitrohin, and D. Babokin, “Yet Another Random Pro-
gram Generator - generator sluchajnyh testov dlja verifikacii optimizacij
v kompiljatorah jazykov C/C++.”

[12] S. Takakura, M. Iwatsuji, and N. Ishiura, “Extending equivalence trans-
formation based program generator for random testing of c compilers,”
in Proceedings of the 9th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation, 2018, pp.
9–15.

[13] M. Chupilko, A. Kamkin, A. Kotsynyak, and A. Tatarnikov, “Microtesk:
Specification-based tool for constructing test program generators,” in
Haifa Verification Conference. Springer, 2017, pp. 217–220.

[14] D. Binkley, M. Harman, and J. Krinke, “Characterising, explaining, and
exploiting the approximate nature of static analysis through animation,”
in 2006 Sixth IEEE International Workshop on Source Code Analysis
and Manipulation. IEEE, 2006, pp. 43–52.

[15] “Sourcetrail - documentation,” https://www.sourcetrail.com/
documentation/, (Accessed on 03/15/2020).

[16] L. Voinea, A. Telea, and J. J. Van Wijk, “Cvsscan: visualization of code
evolution,” in Proceedings of the 2005 ACM symposium on Software
visualization, 2005, pp. 47–56.

[17] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A
system for graph-based visualization of the evolution of software,” in
Proceedings of the 2003 ACM symposium on Software visualization,
2003, pp. 77–86.

[18] J. P. S. Alcocer, F. Beck, and A. Bergel, “Performance evolution matrix:
Visualizing performance variations along software versions,” in 2019
Working Conference on Software Visualization (VISSOFT). IEEE, 2019,
pp. 1–11.

[19] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 102–112.

[20] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices in
industry,” in Companion Proceedings of the 36th International Confer-
ence on Software Engineering, 2014, pp. 24–33.

[21] D. Jurafsky, J. Martin, P. Norvig, and S. Russell, Speech and Language
Processing. Pearson Education, 2014.

[22] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017, pp. 1285–1298.

[23] A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and S. Bhattacharya,
“Anomaly detection using program control flow graph mining from
execution logs,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 215–
224.

[24] O. Sheluhin, V. Rjabinin, and M. Farmakovskij, “Anomaly detection in
computer system by intellectual analysis of system journals,” Voprosy
kiberbezopasnosti, no. 2 (26), 2018.

[25] B. Smith, John and F. Weiss, Stephen, “Hypertext,” Communications of
the ACM, vol. 31, no. 7, pp. 816–819, 1988.

[26] R. Stallman, R. Pesch, and S. Shebs, Debugging with GDB: The GNU
Source-Level Debugger. 12th Media Services, 2018.

https://www.sourcetrail.com/documentation/
https://www.sourcetrail.com/documentation/

	Introduction
	Related work
	Sources of issues
	Methods
	Code generation
	The practical implementation

	Log fusion
	Implementation

	Goal-driven random test case (program) generation
	Visual representation

	Evaluation
	Random test case generation
	Log fusion
	Code generation
	Visual representation
	The classes of programs
	Case studies
	The case of GNU statement expressions
	The case of wrong constructors


	Conclusion and future work
	References

