
Code generation for floatting-point arithmetic in
architecture MIPS

1st Ivan Arkhipov
faculty of mathematics and mechanics

St Petersburg University
St Petersburg, Russia
arkhipov.iv99@mail.ru

Abstract—This article is related to code generation for
floatting-point arithmetics in the MIPS architecture. This work
is a part of the “RuC” project. It is specialized only in code
generation for operations with floatting-point numbers. This
paper does not consider lexical, syntactic, and species-specific
analyses.

Index Terms—code generation, translator, floatting-point arith-
metics, MIPS

I. INTRODUCTION

RISC and CISC architectures, unlike stack architectures and
virtual machines systems, have different ways to express high-
level language features. There are many registers for working
with data, which creates a large variability in optimal code
generation. Therefore, code generation in these architectures
is quite a difficult task.

For work with such architectures a technique of request
and response [1] have been developed at the mathematics and
mechanics faculty Leningrad State University: from the top of
the constructed parse tree the requests for values are received,
and from below the answers – form submission parse (register,
memory, constant). In addition, there are certain relationship
agreements. For example, in the MIPS32 architecture, function
parameter values must be in some specific registers, and
function values must be in other specific registers. There are
stored registers that must be preserved when calling functions,
and there are non-stored (unsafe) registers. For example, the
left operand of a binary formula must be represented in a
stored register if the right operand has calls or slicing that
apply the same rules as functions, otherwise the left operand
can also be represented in an unsaved register. Determining
the complexity of the right operand is the task of optimizing
parse.

This work has practical application: the MIPS32 architec-
ture is the basic architecture of one of the russian computers
Baikal-T1 [2].

The goal of this work is to generate codes for floating-point
arithmetic in MIPS32 codes using the request and response
technique.

II. MOTIVATION

The development of a domestic translator is an actual task,
since many industries require domestic software to avoid “back
doors” in foreign software. Writing your own translator is

a difficult task. This work is part of the “RuC” project [3]
and is specialized only in code generation of operations with
floatting-point numbers. At the moment, this project has a
customer, which is an additional evidence of the relevance
of this work.

III. PROBLEM STATEMENT

To achieve the goal of this work, the following tasks were
set:

• Implement code generation for operations with floatting-
point numbers in RuC using the query and response
technique

• Implement printing floatting-point numbers to the console
• Prepare tests and test the implemented code generation

The results can be considered successful if the assembler code
received during code generation is executed on the Baikal-T1
machine and displays the correct result in the console.

IV. OVERVIEW

Since this work is part of the RuC project, the same ideas
as in the RuC are used to achieve the set goals. The code
generator will view the parsing tree of the program and
generate code based on the lexemes located in it.

It is necessary to describe the principles of RuC in general.
The RuC translator has a traditional two-view structure. On
the first view a scanner (lexical analyzer), a view-independent
analyzer (parser) and a view-dependent analyzer work. The
result of the first view is a parsing tree. This tree is input
to the second code generation view, which outputs the result
in MIPS32 architecture codes. This work is a part of second
code generation view module, that implements operations with
floatting-point numbers. More information about RuC may be
found in section wiki of ’RuC’ project github [9] and in the
following article [10].

It is also worth mentioning a few general decisions made
during the work:

• It was decided to generate commands for working with
single-precision floatting-point numbers. This is due to
two reasons. Firstly, at the moment there is no need for
double-precision calculations on the Baikal-T1 computer.
Secondly, the computer Baikal-T1 (another name BE-
T1000) has 2 32-bit p5600 processor cores of the MIPS32

r5 architecture, which makes it unsuitable for double-
precision computing. For example, because of the 32-bit
version, you will need two commands to load a double-
precision number from memory, not one.

• Implementation of using registers manually without using
LLVM [8], firstly, to support RuC, and secondly, to
guarantee the absence of malicious code, since due to the
huge amount of code in LLVM, it is difficult to check,
for example, the absence of “back doors”.

• Processing requests of the register-to-register type only
(more on this later), since there are no commands with
a direct operand for floatting-point values, and working
with memory is represented by only two commands: load
and store.

RuC has its own virtual machine, so assembly code could
be generated like this: first code in virtual machine codes is
generated, and then each virtual machine instruction is trans-
lated to MIPS32 assembly code. It was decided to abandon
this approach because it generated large code that is difficult
to optimize in the future.

V. RELATED WORK

In the process, we also looked at the code generated by the
gcc compiler [7] and compared it with our own. Of course,
the gcc compiler has already implemented many optimizations,
which makes the code generated by it better. At the moment,
RuC does not have any optimizations related to arithmetic
operations. Optimization is the next stage of RuC development
and a topic for future work.

If you compare the code generated by RuC with the non-
optimized code generated by gcc, you can see that RuC uses
more temporary registers than gcc for intermediate calcula-
tions. This approach is closer to a relationship agreement in
mips architecture.

RuC has its own virtual machine, so it was possible to
generate assembly code like this: firstly generate code in
virtual machine codes, and then translate each virtual machine
instruction into mips assembly code. We abandoned this
approach because it generated a large code that is difficult
to optimize in the future.

As an alternative approach to code generation, generation
to LLVM [8] codes can be also offered. But, as it was written
above, you can not guarantee that there are no “back doors”
in LLVM.

As for the application, after further improvements, RuC can
be used in areas where a security guarantee is required, which
is why it is not possible to use foreign software products. This
is the novelty of RuC - it is the first Russian translator that
modifies the C language.

VI. IMPLEMENTATION

A. Parse tree lexemes

As described above, the code generator views lexemes from
the parse tree. We are only interested in lexemes that describe
operations with floatting-point numbers, namely the following:

• TConstf – floatting-point constant

• TIdenttovalf – take the value of an identificator
• “Unary” arithmetic operation lexemes:

– ASSR – =
– PLUSASSR – +=
– MINUSASSR – -=
– MULTASSR – *=
– DIVASSR – /=
– INCR – increment
– POSTINCR – postincrement
– DECR – decrement
– POSTDECR – postdecrement

• “Binary” arithmetic operation lexemes:
– LPLUSR – +
– LMINUSR – -
– LMULTR – *
– LDIVR – /

• Logic operation lexemes:
– EQEQR – ==
– NOTEQR – !=
– LLTR – <=
– LGTR – >=
– LLER – <
– LGER – >

The processing of each type of lexemes will be shown below.

B. A technique of request and response

Before describing the processing of lexemes, it is necessary
to describe the technique of requests and responses. There are
several types of requests, we are interested in the following:

• BREG – load the result in a register “breg”. “breg”
is a global variable in the translator, that contains the
register’s number.

• BREGF – request on the left operand, you can get an
answer. Answers will be shown below.

• BF – free request on the right operand.
Type of request is contained in global variable “mbox”. The
types of responses are:

• AREG – the result in a register “areg”. “areg” is a global
variable in the translator, that contains the register’s
number.

• AMEM – the result in memory. Global variable “adispl”
contains displacement and global variable “areg” contains
register.

• CONST – result is a constant.
Type of request is contained in global variable “manst”.

C. TConstf

This lexeme means that a constant request was received. Af-
ter this lexeme in the tree there is a constant value. Depending
on the request type, we can get a register to put the constant
value in (“breg”). If we don’t get a register, the constant value
is put in a temporary register $f4 with the pseudo instruction
li.s. It is described about floating point registers in [4]. The
type of the response is AREG.

D. TIdenttovalf

This lexeme means that the value of variable must be put
in register by identificator. If this is register variable, it is
necessary to move it to the register “breg” when request BREG
or BREGF is received. Otherwise we must put the value of
this variable from memory in register “breg” or $f4 with the
instruction lwc1 [5].

E. “Unary” arithmetic operation lexemes

These operations are called “unary” operations because
when when processing them, it is necessary to request the
right operand, and the left operand is already known. The left
operand may be already in register if it is register variable
or in memory. If it is in memory it is necessary to put it in
register. Only a register request must be issued for the right
operand since there are not operations addition, subtraction,
multiplication and division for floating point numbers with
register and number operands. So, left and right operands must
be in registers.

After this it is necessary to execute the instruction (addition,
subtraction, multiplication or division). Then if variable is in
memory new value of variable is saved in memory. In “areg”
register of left operand is put. The type of the response is
AREG.

It is worth noting that the division operation is performed
like the rest with a single command, in contrast to the similar
operation with integers.

F. “Binary” arithmetic operation lexemes

“Binary” operations differ from “unary” operations in that
both the left and right operands must be requested before
operation is executed. In contrast to the similar operation with
integers for executing operations with floating point numbers
left and right operands must be in registers. That’s why only a
register request must be issued for the left and right operands.

After getting values of left and rights operands in registers
the instruction may be executed. This stage is performed as
for unary operations. The type of the response is AREG.

G. Logic operation lexemes

Just like in “unary” and “binary” operations both operands
must be in registers. That’s why only a register request must
be issued for the left and right operands.

Unlike in similar operations with integers floating point
operations change flag FP. Based on the logic operation, con-
ditional transition commands are generated. If the conditional
expression is complex (contains operations “and” or “or”), it
is divided into simple logical expressions, the result of which
is stored in the global variable in translator. When processing
subsequent conditional expressions, the value of this global
variable is also taken into account.

H. Printf

To see the results of code generation printf function must
be implemented. Firstly, string in data segment is generated.
String is given in parse tree after TString lexeme. Then text

segment begins again. Address of string is put in register $a0.
After this a register request for the second operand is created.
If this operand is integer or char value of this operand is put
in register $a1 and printf is executed. If this operand is float
pointing due to mips agreements we must convert the single
precision floating point number to a double precision number.
After these operations printf is executed.

If printf has more than one arguments string is divided into
several parts and for each part printf is executed.

VII. EVALUATION

After implementing code generation for operations with
floatting-point numbers and printing floatting-point numbers
tests were prepared. Tests have been prepared that demon-
strate the code generation for each operation separately and
for complex expressions with floatting-point operations. For
example, ’RuC’ translates a program in application 1 to the
assembly code in application 2.

It is important to note that the goal is considered achieved
only when the generated code is assembled successfully and
is executed on the Baikal-T1. This is significant since we can
think that code generation is correct but in fact it does not
work. Also in such way successfulness of this work can be
demonstrated.

For this purpose:

• emulator qemu [6] was installed;
• Baikal-T1 was bought;
• Baikal-T1 was connected to a laptop.

After this the prepared tests for arithmetic operations were first
tested on the emulator, and then on the Baikal-T1. The tests
were successful, so we can assume that the goal was achieve.
You can find tests in [3] in branch mips.

VIII. CONCLUSION

This work solves the problem of code generation in MIPS32
codes of arithmetic operations with floating point numbers.
Various approaches to code generation have been considered
and one of them has been implemented – direct code genera-
tion.

The novelty of this work is that this work is part of the RuC
project, the first Russian translator to modify the C language
in favor of programming security.

In the course of the work important results were obtained
showing the applicability of the results of this work in practice.
Direct code generation was implemented MIPS32 codes for
floating point arithmetic operations. The generated code was
successfully run on Baikal-T1.

This work has many opportunities for further research.
The RuC project is not yet complete, and some C language
structures are not yet implemented. Optimization of generated
code is also a big area of research. Also it is necessary to
implement a linker. As you can see, there are still many
sources for research.

REFERENCES

[1] A. N. Baluev, I. L. Bratchikov, I. B. Gindysh, N. A. Krupko, G. S.
Tseytin, A. N. Terekhov, (total, 12 people), “ALGOL 68. Method of
implementing.” Saint Petersburg University press, 1976.

[2] Baikal-T1 specifications – URL: http://www.baikalelectronics.ru/products/35/
(accessed: 15.05.2020)

[3] ’RuC’ project github – URL: https://github.com/andrey-terekhov/RuC
(accessed: 15.05.2020)

[4] SYSTEM V APPLICATION BINARY INTERFACE MIPS RISC Pro-
cessor, 3rd Edition

[5] MIPS Architecture for Programmers Volume II-A: The MIPS32 Instruc-
tion Set Manual

[6] QEMU official site – URL: https://www.qemu.org/ (accessed:
15.05.2020)

[7] GCC official site – URL: https://gcc.gnu.org/ (accessed: 15.05.2020)
[8] LLVM official site – URL: https://llvm.org/ (accessed: 15.05.2020)
[9] ’RuC’ project github, section wiki – URL: https://github.com/andrey-

terekhov/RuC/wiki (accessed: 15.05.2020)
[10] A. N. Terekhov, M. A. Terekhov, “RuC project for education and reliable

software systems development” ISSN 0321-2653 IZVESTIYA VUZOV.
SEVERO-KAVKAZSKIYREGION. TECHNICAL SCIENCE, 2017

APPLICATION 1

vo id main ()
{

f l o a t a = 5 . 1 , b = 6 . 3 , c = 2 . 3 ;
i f (c > a && b < 5 . 3 | | 5 . 2 >= a)

c += (a + b) * 3 . 2 − 6 . 7 / c ;
p r i n t f (”% f \n ” , c) ;

}

APPLICATION 2

. f i l e 1 ” t e s t s / mips / f l o a t . c ”

. s e c t i o n . mdebug . a b i 3 2

. p r e v i o u s

. nan l e g a c y

. module fp =xx

. module nooddsp reg

. a b i c a l l s

. o p t i o n p i c 0

. t e x t

. a l i g n 2

. g l o b l main

. e n t main

. t y p e main , @func t ion
main :

move $fp , $sp
a d d i $fp , $fp , −4
sw $ra , 0 ($ fp)
l i $ t0 , 268500992
sw $t0 , −8060($gp)
j NEXT2
nop

FUNC2 :
a d d i $fp , $fp , −96
sw $sp , 20($fp)
move $sp , $ fp
sw $ra , 16($sp)

l i . s $f4 , 5 .100000
swc1 $f4 , 80($sp)
l i . s $f4 , 6 .300000
swc1 $f4 , 84($sp)
l i . s $f4 , 2 .300000
swc1 $f4 , 88($sp)
lwc1 $f20 , 88($sp)
lwc1 $f4 , 80($sp)
c . l e . s $f20 , $ f4
b c 1 t ELSE4
lwc1 $f20 , 84($sp)
l i . s $f4 , 5 .300000
c . l t . s $f20 , $ f4
b c 1 t ELSE3

ELSE4 :
l i . s $f20 , 5 .200000
lwc1 $f4 , 80($sp)
c . l t . s $f20 , $ f4
b c 1 t ELSE1

ELSE3 :
lwc1 $f20 , 80($sp)
lwc1 $f4 , 84($sp)
add . s $f20 , $f20 , $ f4
l i . s $f4 , 3 .200000
mul . s $f20 , $f20 , $ f4
l i . s $f22 , 6 .700000
lwc1 $f4 , 88($sp)
d i v . s $f22 , $f22 , $ f4
sub . s $f20 , $f20 , $f22
lwc1 $f6 , 88($sp)
add . s $f4 , $f6 , $f20
swc1 $f4 , 88($sp)

ELSE1 :
. r d a t a
. a l i g n 2

STRING1 :
. a s c i i ”%f \n\0”
. t e x t
. a l i g n 2
lwc1 $f4 , 88($sp)
c v t . d . s $f4 , $ f4
mfc1 $5 , $ f4
mfhc1 $6 , $ f4
l u i $t1 , %h i (STRING1)
a d d i u $a0 , $t1 , %l o (STRING1)
j a l p r i n t f
nop
j FUNCEND2
nop

FUNCEND2:
lw $ra , 16($sp)
a d d i $fp , $sp , 96
lw $sp , 20($sp)
j r $ r a
nop

NEXT2 :
j a l FUNC2
nop
lw $ra , −4($sp)
j r $ r a
nop
. end main
. s i z e main , .−main

