
Verified Isabelle/HOL tactic for the theory of
bounded linear integer arithmetic based on

quantifier instantiation and SMT
Rafael Sadykov

Faculty of Mathematics and Mechanics
Lomonosov Moscow State University

Moscow, Russia
sadykovrf@gmail.com

Mikhail Mandrykin
Software Engineering Department,

Ivannikov Institute for System Programming of the RAS
Moscow, Russia

mandrykin@ispras.ru

Abstract—SMT solvers are widely applied for deductive verifi-
cation of C programs using various verification platforms (Why3,
Frama-C/WP, F*) and interactive theorem proving systems
(Isabelle, HOL4, Coq) as the decision procedures implemented
in SMT solvers are complete for some combinations of logical
theories (logics), in particular for the QF UFLIA logic. At the
same time, when verifying C programs, it is often necessary to dis-
charge formulas in other logical theories and their combinations,
that are also decidable but not supported by all SMT solvers.
Theories of bounded integers both with overflow (for unsigned
integers in C) and without overflow (for signed integers), and
also theory of finite interpreted sets (needed to support frame
conditions) are good examples of such theories. One of the possi-
ble ways to support such theories is to directly implement them
in SMT-solvers, however, this method is often time-consuming,
as well as insufficiently flexible and universal. Another way is to
implement custom quantifier instantiation strategies to reduce
formulas in unsupported theories to formulas in widespread
decidable logics such as QF UFLIA. In this paper, we present an
instantiation procedure for translating formulas in the theory of
bounded integers without overflow into the QF UFLIA logic. We
formally proved soundness and completeness of our instantiation
procedure in Isabelle. The paper presents an informal description
of this proof as well as some considerations on the efficiency of
the proposed procedure. Our approach is sufficient to obtain
efficient decision procedures implemented as Isabelle/HOL proof
methods for several decidable logical theories used in C program
verification by relying on the existing capabilities of well-known
SMT solvers, such as Z3 and proof reconstruction capabilities of
the Isabelle/HOL proof assistant.

Index Terms—static verification; quantifier instantiation; SMT
formulas; SMT solvers; automated decision procedures; software
verification.

I. INTRODUCTION

In the process of developing software in the C language,
errors often arise due to improper use of arithmetic operations,
which can lead to overflow and result in unexpected behaviour,
despite excessive testing. However, with the use of formal
verification, it is possible to find all potential errors related to
operation on machine integer values. Many deductive verifica-
tion methods and tools make use of automated solvers for the

Identify applicable funding agency here. If none, delete this.

problem of logical formula satisfiability modulo theories, also
called SMT solvers. Algorithms implemented by such solvers
are complete for some combinations of logical theories, in
particular for the QF UFLIA logic. Although SMT solvers are
applicable to a wide class of problems, it is often necessary
to apply decision procedures to formulas in logical theories
that are decidable but not always fully supported by SMT
solvers. Such logical theories include bounded integers both
with and without overflow (useful for unsigned and signed
integers in C, correspondingly), the theory of finite interpreted
sets (necessary to supporting frame conditions), etc. In this
paper we propose a method for validating formulas in the
theory of bounded integers based on the use of an SMT
solver for QF UFLIA logic, intended to automatically obtain
(reconstruct) proofs within the Isabelle/HOL system for inter-
active theorem proving [1]. Our method is a complete decision
procedure for formulas in the theory of bounded integers, im-
plemented as an Isabelle/HOL method. Its operation consists
of the following steps: extending the original formula with
instances of the axioms from the theory of bounded integers
(the axioms themselves being lemmas proved in the Isabelle
HOL-Word theory [2]); interpreting the resulting formula in
the QF UFLIA logic; applying an existing proof-producing
SMT solver and subsequently reconstructing the proof in
Isabelle/HOL using the tools already employed by its smt
proof method. The completeness proof of the proposed method
is based on transforming the model of the extended formula in
QF UFLIA logic (that can be obtained from the SMT solver)
into a model in the theory of bounded integers.

Extending the formula with instantiations of the axioms
only linearly increases its size, and as the formulas typically
involved in interactive verification are not very large, the
resulting overhead is practically negligible. Also, there is no
need to alter the Isabelle proof reconstruction tools or the
SMT solver. The main goal of our work is to prove the
completeness and soundness of the proposed procedure for
converting formulas in the theory of bounded integers to the
QF UFLIA logic.



A. Related work

We also reviewed several papers on modular integer arith-
metic [3], [4] and [5] describing integer overflow errors and
verification of programs utilizing bounded integers. “Modular
Arithmetic Decision Procedure” [3] proposes transformation
methods for formulas in non-linear modular arithmetic with
bounded integers, which involve altering the internal algo-
rithms of the SMT solver. The proofs potentially produced
by the proposed methods (the paper does not provide an
exhaustive description of the corresponding deductive system)
could be difficult to reproduce using the existing capabilities of
the interactive theorem proving systems. The paper “Modular
difference logic is hard” [4] estimates the complexity of
the decision procedure for modular IDL (integer difference
logic) for a fixed modulus. By definition, IDL formulas are
conjunctions of inequalities of the form x − y < b, where
x and y are integer variables and b is an integer constant.
The decision procedure for this logic is polynomial, however
the decision procedure for the corresponding modular logic
(for a fixed modulus) is NP-complete. The logic of linear
integer inequalities (LIA), which extends the IDL by adding
the operation of multiplication by a constant, is also an NP-
complete problem.

Thus by itself, a decision procedure for bounded linear
integer arithmetic is not at all a novel contribution. There are
existing decision procedures for more general theories such as
modular arithmetic with non-linear multiplication. However, a
decision procedure we propose in this paper is suitable for
simple implementation within existing proof reconstruction
framework of Isabelle/HOL [6], [7] as it does not require
any changes in either in the implementation of the SMT
solver or its proof format. It is also easily extensible in order
to support new function symbols with axiomatically defined
semantics. As the theory of bounded linear arithmetic is far
from the only decidable logical theory fragment that has
practical relevance in program verification yet is not directly
supported by existing SMT solvers, we argue that our example
demonstrates an interesting approach to extending capabilities
of existing interactive theorem provers such as Isabelle/HOL
with little programming effort.

II. PRELIMINARIES

In the SMT-LIB standard [8], QF UFLIA logic is defined
for quantifier-free formulas with equality and uninterpreted
constant and function symbols interpreted in the combined the-
ories of linear integer arithmetic and uninterpreted functions.
The QF UFLIA logic can be considered a combination of
the QF LIA and QF UF logics. QF LIA includes quantifier-
free formulas with equality in the theory of linear integer
arithmetic (LIA). Its signature includes the following function
symbols: {+, c×·,≤}, where c is an integer constant. QF UF
includes quantifier-free formulas with equality in the theory of
uninterpreted functions.

The theory of linear arithmetic with bounded integers
(BLIA) will be defined axiomatically as an extension of
the theory of linear integer arithmetic. In addition to the

symbols of the LIA theory, the following functional symbols
are included in its signature: {+b, c×b ·, v(·), (·)b,≤b}, where
c is unbounded integer constant. The terms (if considered
separately from predicates) in this theory can be of two sorts:
bounded or unbounded integers. Bounded integers take integer
values from a certain range [L . . . U ] (both ends included).
These bounded integers can be obtained using the function
v(·). The names a, b, and d are be used in the following
to denote variables of the bounded integer type. For the
unbounded integer type, we use names x, y, and c, where
c always represents an interpreted integer constant. Thus, for
any bounded integer a, the relation L ≤ v(a) ≤ U holds.
The semantics of the operations +b and ×b is such that their
results coincide with the results of the corresponding integer
operations applied to the values of bounded arguments if these
results can be represented as bounded integers. Otherwise,
these results are not defined, i.e, their model is not fixed
and can be chosen arbitrarily for each specific formula. The
operation (·)b returns a bounded integer with a given value
if this value lies in the range [L . . . U ] and an undefined
result otherwise. The operation ≤b compares the values of
bounded integers and is essentially a shorthand notation for
the expression v(·) ≤ v(·). Consider the following examples
of formulas in the theory of bounded integers:

v(a) ≤ 5 ∧ 5 ≤ v(a) ∧ (5)b×b a+b(1)b 6= (26)b (1) and

a≤b(5)b ∧ (5)b≤b a ∧ (5× v(a) + 1− 26)b 6= (0)b (2).

We will assume L = 0 and U = 25. Under these assumptions,
formula (1) will be satisfiable, for example, if we assume
the bounded variable a to be such that v(a) = 5. Then
v(a) = 5, (5)b×b a = (25)b, but (5)b×b a+b(1)b and (26)b
are undefined, since 25 + 1 = 26 > 25 = U and can be
chosen equal to, say, (0)b and (1)b correspondingly. Formula
(2) is unsatisfiable, because a≤b(5)b ∧ (5)b≤b a implies that
v(a) = 5, which means 5 × v(a) + 1 − 26 = 0 and
(0)b = (0)b. To solve the problem of formula satisfiability
in BLIA, we use translation into the QF UFLIA logic. The
translation procedure for a formula involves instantiation of the
axioms defining the BLIA theory within LIA. Instantiation of
an axiom for a given formula is defined as a conjunction of
a ground substitution of the axiom with the formula. Instan-
tiations are triggered by occurrences of subterms matching
certain patterns. Only subterms of the original formula are
considered. The described transformation yields a formula F ∗,
which is then interpreted in the QF UFLIA logic. Next, the
SMT solver’s decision procedure is called, producing a proof,
which is then reproduced (certified) by Isabelle. To prove
the completeness of the transformation procedure, consider
the case when a model R of the transformed formula F ∗

is obtained in the QF UFLIA logic. In the paper we call
the model R the realization of formula F. In this paper,
we demonstrate how the model M of the original formula
F in BLIA can be reconstructed from its realization R.
The following sections explain the basic definitions, describe
the instantiation procedure and provide an example of its



operation. Then we present the statement and proof of the
corresponding completeness theorem.

III. PROBLEM

Let Z be the set of integers, Zb be the set of bounded
integers and Σ = {+b,×b,≤b} be the signature of the theory
T of linear arithmetic with bounded integers. F is a formula in
BLIA, where bounded integer variables range over the set Zv .
We define the BLIA theory within the theory of linear integer
arithmetic (LIA) axiomatically using the set of 5 axioms (See
Fig. 1). We denote this set as T0. In the actual implementation
of our proof method in Isabelle/HOL, we prove those axioms
as lemmas of the HOL-Word theory [2]. Since the axiom
A6 in the definition of the theory T0 is quantified over two
variables a and b, we introduce another re-formulated theory
T1, which differs from T0 only in the axiom A6 (see axiom
A6′ in Fig. 1). This is done to avoid quadratic overhead in the
size of the original formula during instantiation. Therefore,
our procedure instantiates axioms of the theory T1.

Let’s show the equivalence of our two axiomatizations T0
and T1. We state and prove this equivalence in the following
theorem:

Theorem 1. Every ground (quantifier-free) formula F in the
signature Σ is satisfiable in the theory T0 if and only if it is
satisfiable in the theory T1.

Proof. We show that whenever a formula F has a model M
in theory T0 it has the same model M in theory T1 and vice
versa.

First assume F has a model M in T0. Then all the axioms
except for (A6′) hold in M . Take any arbitrary bounded
integer a. Since (A4) holds, we have

L ≤ vM (a) ≤ U.

Let’s denote vM (a) as c. Then L ≤ c = vM (a) ≤ U and
since (A5) holds, we have

vM
(
(c)Mb

)
= c.

Now we have vM
(
(c)Mb )

)
= c = vM (a) and by axiom (A6)

also have
(c)Mb = a.

Now from vM (a) = c by congruence we have

vM
((
vM (a)

)M
b

)
= vM

(
(c)Mb

)
,

and again by (A6), (
vM (a)

)M
b

= (c)Mb .

Hence
(
vM (a)

)M
b

= (c)Mb = a and we have (A6′) for
arbitrary a.

Now assume F has a model M in T1. Then all the axioms
except for (A6) hold in M . Therefore for any arbitrary
bounded integers a and b such that vM (a) = vM (b) by axiom
(A6′) we have(

vM (a)
)M
b

= a and
(
vM (b)

)M
b

= b.

From vM (a) = vM (b) we have
(
vM (a)

)M
b

=
(
vM (b)

)M
b

by
congruence. Hence a = b and we have (A6) for any arbitrary
a and b.

IV. INSTANTIATION PROCEDURE

Now assume we have a ground formula F in BLIA. To
check its satisfiability we translate the formula into an equisa-
tiafiable formula F ∗ in the QF UFLIA logic. The translation
procedure simply instantiates axioms of the definition T0
according to the following triggers:
• (A1) is instantiated with the terms a and b for every

subterm of the form a+b b occurring in F ;
• (A2) is instantiated with the terms c and a for every

subterm of the form c×b a occurring in F ;
• (A3) is instantiated with the terms a and b for every

subterm of the form a≤b b occurring in F ;
• (A4) is instantiated with the term a for every bounded

integer subterm occurring in F ;
• (A5) is instantiated with the term c for every subterm of

the form (c)b occurring in F ;
• (A6′) is instantiated with the term a for every bounded

integer subterm occurring in F .
We denote the formula resulting from this instantiation proce-
dure as F ∗.

Let’s illustrate our instantiation procedure on the following
sample formula F assuming L = −25 and U = 25:

F = (25)b≤b a ∧ −1×b a+b(25)b 6= (0)b.

Relevant instantiations according to our procedure are shown
in Fig. 2. Using these instantiations we can show the formula
F to be unsatisfiable.

Proposition 1. The formula F is unsatisfiable.

Proof. In the proof we use only the instantiations shown in
Fig. 2. From the instantiation of (A5) we have v

(
(25)b

)
=

25. Then from the instantiation of (A3) we have 25 =
v
(
(25)b)

)
≤ v(a) and also from the instantiation of (A4)

have v(a) ≤ 25. Thus v(a) = 25. Now from the instantiation
of (A2) we have v(−1×b a) = −1× v(a) = −25, then from
(A1) have v

(
− 1×b a+b(25)b

)
= v(−1×b a) + v

(
(25)b

)
=

−25+25 = 0. Finally, from the instantiation of (A6′) we have
−1×b a+b(25)b =

(
v
(
− 1×b a+b(25)b

))
b

= (0)b. This is
in contradiction with the second conjunct −1×b a+b(25)b 6=
(0)b of the formula F . Thus F is unsatisfiable.

V. SOUNDNESS

The soundness of our procedure is straightforward since we
only instantiate the axioms from the definition of the BLIA
theory.

VI. COMPLETENESS

In this section we assume that we have an arbitrary ground
(quantifier-free) formula F in BLIA, its translation F ∗ to
QF UFLIA obtained according to our instantiation procedure,
and the model R of the translation F ∗ in QF UFLIA that



Σ = {+b,×b,≤b}, a, b ∈ Zb, (c)b ∈ Zb, v(a) ∈ Z, c ∈ Z — constant

∀a b ∈ Zb. L ≤ v(a) + v(b) ≤ U =⇒ v(a+b b) = v(a) + v(b), (A1)
∀a ∈ Zb.∀c ∈ Z. L ≤ c× v(a) ≤ U =⇒ v(c×b a) = c× v(a), (A2)

∀a b ∈ Zb. a≤b b⇐⇒ v(a) ≤ v(b), (A3)
∀a ∈ Zb. L ≤ v(a) ≤ U, (A4)
∀c ∈ Z. L ≤ c ≤ U =⇒ v

(
(c)b

)
= c, (A5)

∀a b ∈ Zb. v(a) = v(b) =⇒ a = b. (A6)

∀a ∈ Zb.
(
v(a)

)
b

= a. (A6′)

Fig. 1. Axioms defining the theory of bounded integers

−1×b a+b (25)b∈F⇒ − 25 ≤ v(−1×b a) + v
(
(25)b

)
≤ 25 =⇒ v

(
− 1×b a+b(25)b

)
= v(−1×b a) + v

(
(25)b

)
, (A1)

−1×b a∈F⇒ −25 ≤ −1× v(a) ≤ 25 =⇒ v(−1×b a) = −1× v(a), (A2)
(25)b≤b a∈F⇒ (25)b≤b a⇐⇒ v

(
(25)b)

)
≤ v(a), (A3)

a∈F⇒ −25 ≤ v(a) ≤ 25, (A4)
(25)b∈F⇒ −25 ≤ 25 ≤ 25 =⇒ v

(
(25)b

)
= 25, (A5)

−1×b a+b(25)b∈F⇒
(
v
(
− 1×b a+b(25)b

))
b

= −1×b a+b(25)b. (A6′)

Fig. 2. Translation of the sample formula F = (25)b≤b a ∧ −1×b a+b(25)b 6= (0)b

we call realization. We use plain terms and predicates (e.g.
v(u) + v(t)) to denote the syntactic terms and predicates as
they occur in the formulas F and F ∗ while their valuations
in the realization R are denoted with the superscript R e.g.
vR(uR) +R

b v
R(tR). Free bounded integer terms are denoted

with letters t and u, free integer terms are denoted with
k or n, while arbitrarily chosen bounded integer values are
debited with letters a and b, and unbounded integer values are
denoted with x, y or c. The section proceeds by gradually
reconstructing the model M of the original formula F in
BLIA. First we prove several auxiliary lemmas.

Lemma 1. A term of the form v(t) occurs in F ∗ if and only
if the bounded integer term t occurs in F .

Proof. First assume a bounded integer term t occurs in F .
Then it is a bounded integer subterm of F and according to
the rule for instantiating the axiom (A4), an instantiation of
this axiom with t occurs in F ∗. Since the instantiation contains
the term v(t), it occurs in F ∗.

Now assume a term of the form v(t) occurs in F ∗. Let’s
show a term of this form can arise during the instantiation
procedure only if the term t already occurs in F . We show
this by induction on the instantiation rules. Consider the rule
for instantiating (A1). An instantiation of (A1) contains three
occurrences of the symbol v, namely v(t+b u), v(t) and v(u).
The axiom is instantiated only if the term t+b u occurs in F .
But this implies that all the terms t, u and t+b u already occur
in F . The proofs regarding the rules for instantiation of other
axioms proceeded similarly. The case when term v(t) occurs
in F itself is straightforward.

Lemma 2. A term of the form
(
v(t)

)
b

occurs in F ∗ if and
only if the bounded integer term t occurs in F .

Proof. First assume a bounded integer term t occurs in F .
Then it is a bounded integer subterm of F and an instance of
the axiom (A6′) for t containing the term

(
v(t)

)
b

occurs in
F ∗. Thus

(
v(t)

)
b

occurs in F ∗.
Now assume a term of the form

(
v(t)

)
b

occurs in F ∗. A
term of this form can appear in axiom instantiations only if
the term t occurs in F since the only axiom containing a term
of this form is (A6′) and it is instantiated whenever t already
occurs in F . The case when a term

(
v(t)

)
b

directly occurs in
F is straightforward.

Lemma 3. A term of the form (n)b occurs in F ∗ if and only
if either it already occurs in F or the term n has the form
v(t) where t occurs in F .

Proof. If a bounded integer term t occurs in F , then the term(
v(t)

)
b

occurs in F ∗ by the Lemma 2. Thus (n)b occurs in
F ∗ where n = v(t).

Now consider the case when a term (n)b occurs in F ∗ and
it does not occur in F . We need to show that such a term can
arise during instantiation only if it already occurs in F or if
n has the form v(t) where t occurs in F . We can show this
by induction on instantiation rules. Only the axioms (A5) and
(A6′) contain the symbol (·)b. According to the instantiation
rules in case of (A5), (n)b already occurs in F . In case of
(A6′) n has the required form.

At this point we introduce some notation that we are using
further in the proof. We denote the image of a subset X of



the domain A under function f : A → B as f [X]. We also
introduce the following shorthand:

{f(x) | P (x)} ≡ f
[
{x | P (x)}

]
,

where {x | P (x)} is the common set-builder notation de-
scribing the set defined by the predicate P (x) (the set of
all elements satisfying the predicate). We only use such sets
where the predicates P (x) take individual terms, bounded or
unbounded integers as input, so that the sets built using this
notations are always well-defined. Now we use these notations
to define the following two sets:

BR ≡
{
tR | v(t) ∈ F ∗

}
,

CR ≡
{
nR | (n)b ∈ F ∗

}
,

where, as was noticed above, tR and nR denote the valuations
of terms t and n in the realization R. As the realization R
contains partial models for functions v and (·)b defined on
those elements of the corresponding domains that are denoted
by terms occurring in F ∗, we can consider functions vR and
(·)Rb (we later call them realizations of functions v and (·)b
correspondingly) well-defined on their corresponding domains
BR and CR. Now let’s prove some necessary properties of the
realizations v and (·)b.

Lemma 4. vR[BR] ⊆ CR.

Proof.

vR[BR] =
{
vR(a) | a ∈ BR

}
=
{
vR(a) | a ∈

{
tR | v(t) ∈ F ∗

}}
=
{
vR(tR) | v(t) ∈ F ∗

}
(by definition of set-builder)

=
{
vR(tR) | t ∈ F

}
(by Lemma 1)

=
{
vR(tR) |

(
v(t)

)
b
∈ F ∗

}
(by Lemma 2)

=
{(
v(t)

)R | (v(t)
)
b
∈ F ∗

}
(by definition of valuation)

=
{
nR | (n)b ∈ F ∗ ∧ ∃t. n = v(t)

}
(by definition of set-builder)

⊆ {n | (n)b ∈ F ∗}
= CR.

Lemma 5. vR[BR] ⊆ [L,U ]

Proof. By definition of BR, for any integer value c such that
c ∈ vR[BR] we have c = vR(tR), where v(t) ∈ F ∗. By
Lemma 1 this implies t ∈ F . This, in turn, implies that the
axiom (A4) was instantiated with the term t, i. e. L ≤ v(t) ≤
U is a ground (not occurring under any symbol other than ∧)
subterm of F ∗. Since R is a model of F ∗, L ≤ vR(tR) ≤ U
and thus L ≤ c ≤ U for any c ∈ BR.

Lemma 6. vR[BR] ⊆ CR ∩ [L,U ].

Proof. Directly from Lemmas 4 and 5.

Lemma 7. vR is injective (on its domain BR).

Proof. Take any arbitrary bounded integer values x and y from
the set BR. Then we have x = tR, y = uR, v(t) ∈ F ∗ and
v(u) ∈ F ∗. Then by Lemma 1, t ∈ F and u ∈ F and thus
the axiom (A6′) was instantiated with these terms ensuring the
predicates

(
v(t)

)
b

= t and
(
v(u)

)
b

= t are ground subterms of
F ∗. Since R is a model of F ∗, we have

(
vR(tR)

)R
b

= tR and(
vR(uR)

)R
b

= uR and since R is a model in the QF UFLIA
logic that includes congruence of uninterpreted functions (such
as (·)b), we have vR(tR) = vR(uR) =⇒

(
vR(tR)

)R
b

=(
vR(uR)

)R
b

, or, equivalently, vR(tR) = vR(uR) =⇒ tR =
uR i. e. vR(x) = vR(y) =⇒ x = y for any x and y from
the set BR.

Lemma 8. vR is surjective on CR ∩ [L,U ].

Proof.

CR =
{
nR | (n)b ∈ F ∗

}
(by definition of CR)

=
{
nR | (n)b ∈ F

}
∪
{(
v(t)

)R | t ∈ F}
(by Lemma 3)

=
{
nR | (n)b ∈ F

}
∪
{(
v(t)

)R | v(t) ∈ F ∗
}

(by Lemma 1)

=
{
nR | (n)b ∈ F

}
∪
{
vR(tR) | v(t) ∈ F ∗

}
(by definition of valuation)

=
{
nR | (n)b ∈ F

}
∪ v
[{
tR | v(t) ∈ F ∗

}]
(by definitions of set-builder and image of a set)

=
{
nR | (n)b ∈ F

}
∪ v[BR]

(by definition of BR).

Thus to prove that CR ∩ [L,U ] ⊆ vR[BR] we need to
show that

{
nR | (n)b ∈ F

}
∩ [L,U ] ⊆ vR[BR]. Consider

any term n such that (n)b ∈ F . Since (n)b ∈ F , (A5) was
instantiated with n and thus L ≤ n ≤ U =⇒ v

(
(n)b

)
= n

is a ground subterm of F ∗ and, as R is a model of F ∗,
L ≤ nR ≤ U =⇒ vR

(
(nR)Rb

)
= nR. So if nR ∈ [L,U ]

then nR = vR
(
(nR)Rb

)
∈
{
vR
(
(nR)Rb

)
| (n)b ∈ F

}
. Thus

{
nR | (n)b ∈ F

}
∩ [L,U ]



⊆
{
vR
(
(nR)Rb

)
| (n)b ∈ F

}
=
{
vR
((

(n)b
)R) | (n)b ∈ F

}
(by definition of valuation)

=
{
vR(tR) | t ∈ F ∧ ∃n. t = (n)b

}
(by definition of set-builder)

⊆
{
vR(tR) | t ∈ F

}
=
{
vR(tR) | v(t) ∈ F ∗

}
(by Lemma 1)

= vR
[{
tR | v(t) ∈ F ∗

}]
(by definition of set-builder and image of a set)

= vR[BR]
(by definition of BR).

Lemma 9. vR is a bijectoin between BR and CR ∩ [L,U ]
and (·)Rb is its unique inverse.

Proof. The fact that vR is a bijectoin between BR and CR ∩
[L,U ] follows directly from Lemmas 7 and 8. Thus vR has a
unique inverse. This inverse can be uniquely characterized by
the equation (vR)−1

(
vR(a)

)
= a for every a ∈ BR. But for

every a ∈ BR, value a can be represented as tR where v(t) ∈
F ∗. By Lemma 1, t ∈ F and so axiom (A6′) was instantiated
with the term t. So

(
vR(tR)

)R
b

= tR and thus
(
vR(a)

)R
b

= a
for every a ∈ BR. So the unique inverse coincides with the
function (·)Rb .

Lemma 10. (·)Rb [CR] ⊆ BR

Proof.

(·)Rb [CR] = (·)Rb
[{
nR | (n)b ∈ F ∗

}]
(by definition of CR)

= (·)Rb
[{
nR | (n)b ∈ F

}
∪
{(
v(t)

)R | t ∈ F}]
(by Lemma 3)

= (·)Rb
[{
nR | (n)b ∈ F

}]
∪

(·)Rb
[{(

v(t)
)R | t ∈ F}]

(by definition of set image)

=
{

(nR)Rb | (n)b ∈ F
}
∪
{((

v(t)
)R)R

b
| t ∈ F

}
(by definition of set-builder and set image)

=
{(

(n)b
)R | (n)b ∈ F

}
∪
{(
vR(tR)

)R
b
| t ∈ F

}
(by definition of valuation).

{(
(n)b

)R | (n)b ∈ F
}

=

=
{
tR | t ∈ F ∧ ∃n. t = (n)b

}
(by definition of set-builder)

⊆
{
tR | t ∈ F

}
=
{
tR | v(t) ∈ F ∗

}
(by Lemma 1)

= BR

(by definition of BR).

For every t ∈ F , (A6′) was instantiated with t, therefore(
v(t)

)
b

= t is a ground subterm of F ∗ and since R is a model
of R,

(
vR(tR)

)R
b

= tR. Thus by definition of set-builder,{(
vR(tR)

)R
b
| t ∈ F

}
=
{
tR | t ∈ F

}
=
{
tR | v(t) ∈ F ∗

}
(by Lemma 1)

= BR

(by definition of BR).

Using the above representation of (·)Rb [CR] we finally have
the required (·)Rb [CR] ⊆ BR.

At this point we end up with the situation depicted in
Figure 3. vR is a bijection between BR and CR ∩ [L,U ],
(·)Rb is its unique inverse on the domain BR. (·)Rb is defined
on a larger domain CR, where it might not be injective in
general. However, its range is still the set BR. To proceed
further with our reconstruction of the model in BLIA, without
loss of generality, we now consider the case [L,U ] \CR 6= ∅.
If the sets CR and [L,U ] coincide, the following proof is
still correct despite involving some vacuous reasoning (certain
arguments are performed on empty domains and therefore can
be safely omitted). Similarly, without loss of generality we
assume the inequalities L ≤ 0 ≤ U .

We now consider the set [L,U ] \ CR, which has a finite
cardinality not exceeding U − L+ 1. We therefore arbitrarily
choose some

∣∣[L,U ]\CR
∣∣ distinct elements from any domain

disjoint from BR and establish a bijection v′ between those
opaque elements and the set [L,U ] \ CR. Let’s denote the
resulting set of the corresponding distinct opaque elements
as Z′b and the corresponding unique inverse of the bijection
v′ as (·)′b. Now we are ready to introduce the definition of
the reconstructed model M of the original formula F that is
shown in Figure 4. We proceed by establishing the necessary
properties of this definition.

Lemma 11. The reconstructed model M shown in Figure 4
is well-defined.

Proof. The reconstructed model M shown in Figure 4 includes
both the definition of the domain Zb of bounded integers
as well as the definitions for all the functions from the
corresponding signature of the BLIA theory (+b, ×b, ≤b, v



ℤ
ℤ'b

vR

( )b
R

( )b
R

v'

( )'bBR
CR

[L,U]

Fig. 3. Extending the bijection between BR and CR ∩ [L,U ] to the whole sets Zb = BR ∪ Z′
b and [L,U ].

ZM
b = BR ∪ Z′b,

vM (a) =

{
vR(a), a ∈ BR,

v′(a), a /∈ BR,

(c)Mb =


(c)Rb , c ∈ CR,

(c)′b, c ∈ [L,U ] \ CR,

εZM
b , c /∈ CR ∪ [L,U ],

a+M
b b =



a+R
b b, (a, b) ∈

{
(tR, uR) | t+b u ∈ F ∗

}
,(

vM (a) + vM (b)
)M
b
,

(a, b) /∈
{

(tR, uR) | t+b u ∈ F ∗
}
,

L ≤ vM (a) + vM (b) ≤ U,
(0)b, otherwise,

c×M
b a =



c×R
b a, (c, a) ∈

{
(n, tR) | n×b t ∈ F ∗

}
,(

c× vM (a)
)M
b
,

(c, a) /∈
{

(n, tR) | n×b t ∈ F ∗
}
,

L ≤ c× vM (a) ≤ U,
(0)b, otherwise,

a≤M
b b = vM (a) ≤ vM (b).

Fig. 4. Definition of the reconstructed model M in BLIA.

and (·)b). Thus we have to show that the functions defined
as shown in the Figure do indeed map any combination of
their arguments taken from the corresponding domains to the
elements from the corresponding ranges. The cases for the
function v and predicate ≤b are trivial. However, we have to
ensure that the chosen domain ZM

b does indeed contain all the
values taken by functions (·)Mb , +M

b and ×M
b , otherwise our

definition of the model is inconsistent.
Consider the cases for function (·)Mb . In the first case (c)Rb ∈

BR for any c ∈ CR according to Lemma 10, thus (c)Rb ∈ ZM
b .

In the second case (c)′b ∈ Z′b ⊆ ZM
b by construction. In the

third case εZM
b ∈ ZM

b by definition of the Hilbert epsilon-
operator ε (choosing arbitrary element of a non-empty set)

since
∣∣ZM

b

∣∣ ≥ ∣∣Z′b∣∣ =
∣∣[L,U ] \ CR

∣∣ > 0 (in the general case
either Z′b or BR is non-empty).

Now consider the function +M
b . The second and the third

cases (
(
vM (a) + vM (b)

)M
b

and (0)b) are well-defined since
(c)Mb is well-defined for any c as shown above. In the first
case we proceed by induction on the instantiation rules and
show that the term of the form t+b u can only appear during
instantiation when it already occurs in F (the only relevant
axiom (A1) is instantiated whenever t+b u is in F ). Then
t+b u ∈ F ∗ implies t+b u ∈ F and by Lemma 1, v(t+b u) ∈
F ∗. Since a = tR, b = uR, a+b b = tR +R

b u
R = (t+b u)R ∈

BR ⊆ ZM
b by definition of BR. The proof for the function

×M
b is similar.

Lemma 12. The axioms (A4), (A5) and (A6′) of the BLIA
theory hold in the model M .

Proof. Consider axiom (A4) for an arbitrary a ∈ ZM
b = BR∪

Z′b. In case a ∈ BR, vM (a) = vR(a) ∈ [L,U ] by Lemma 5.
In case a ∈ Z′b, vM (a) = v′(a) ∈ [L,U ] \ CR ⊆ [L,U ] by
construction.

Consider the axiom (A5) for an arbitrary integer c. As
is stated by the axiom, we have to show the equality
vM
(
(c)Mb

)
= c for any c ∈ [L,U ] =

(
CR ∩ [L,U ]

)
∪(

[L,U ] \ CR
)
. In case c ∈ CR ∩ [L,U ] using the definitions

in Figure 4 and Lemma 9 we get (c)Mb = (c)Rb ∈ BR and
vM
(
(c)Mb

)
= vR

(
(c)Rb

)
= c. In case c ∈ [L,U ] \ CR we

get (c)Mb = (c)′b ∈ Z′b and vM
(
(c)Mb

)
= v′

(
(c)′b

)
= c by

construction.
Finally, in case of the axiom (A6′) we have to show(
vM (a)

)M
b

= a for any a ∈ ZM
b = BR ∪ Z′b. In case

a ∈ BR by Lemma 9 we have vM (a) = vR(a) ∈ CR∩ [L,U ]

and
(
vM (a)

)M
b

=
(
vR(a)

)R
b

= a. In case a ∈ Z′b we get
vM (a) = v′(a) ∈ [L,U ]\CR and

(
vM (a)

)M
b

=
(
v′(a)

)′
b

= a
by construction.

Lemma 13. The axioms (A1), (A2) and (A3) of the BLIA
theory hold in the model M .



Proof. First we establish the axiom (A1). We consider the
cases in the definition of the +M

b operation.
Consider the case (a, b) ∈

{
(tR, uR) | t+b u ∈ F ∗

}
. In the

proof of the Lemma 11 (the last paragraph) we have shown that
t+b u ∈ F ∗ implies t+b u ∈ F . By the instantiation rule for
the axiom (A1) we conclude that L ≤ v(t) + v(u) ≤ U =⇒
v(t+b u) = v(t) + v(u) is a ground subterm of F ∗ and, since
R is a model of F ∗, we have L ≤ vR(tR) + vR(uR) ≤
U =⇒ vR(tR +R

b u
R) = vR(tR)+vR(uR). The fact (a, b) ∈{

(tR, uR) | t+b u ∈ F ∗
}

implies a = tR and b = uR, so
L ≤ vR(a) + vR(a) ≤ U =⇒ vR(a+R

b b) = vR(a) + vR(b).
Now since t+b u ∈ F , we have t ∈ F , u ∈ F , and by the
Lemma 1, v(t+b u) ∈ F ∗, v(t) ∈ F ∗ and v(u) ∈ F ∗. This
means a+R

b b = tR +R
b u

R = (t+b u)R ∈ BR, a = tR ∈ BR

and b = tR ∈ BR by definition of BR. Thus by the definitions
in Figure 4, L ≤ vM (a) + vM (b) ≤ U =⇒ vM (a+M

b b) =
vM (a) + vM (b).

Now consider the case L ≤ vM (a) + vM (b) ≤ U . By the
Lemma 12 the axiom (A5) holds in M and thus L ≤ c ≤
U =⇒ vM

(
(c)Mb

)
= c for any c and, in particular, L ≤

vM (a) + vM (b) ≤ U =⇒ vM
((
vM (a) + vM (b)

)M
b

)
=

vM (a) +vM (b). By definition of +M
b in Figure 4 this implies

L ≤ vM (a) + vM (b) ≤ U =⇒ vM (a+M
b b) = vM (a) +

vM (b).
Finally, in case vM (a) + vM (b) /∈ [L,U ], the premise L ≤

vM (a) + vM (b) ≤ U does not hold and thus the axiom (A1)
holds trivially.

The proof for the axiom (A2) is similar and the case of (A3)
directly follows from the definition of ≤M

b in Figure 4.

Lemma 14. The model M can be extended with uninterpreted
constants occurring in F so that for any subterm t ∈ F its
interpretations in the model M and the realization R coincide
i. e. tM = tR.

Proof. Without loss of generality, we consider the case when
t does not contain occurrences of uninterpreted functions
with arity greater than zero. The extension of this proof to
terms with uninterpreted functions (rather than constants) is
straightforward. The proof is carried out by induction on the
structure of the term t.

We start by considering zero-arity subterms i. e. constants.
Interpreted constants (numbers) have the same fixed interpre-
tation in both R and M . Let’s choose the interpretation of
uninterpreted constants occurring in F to be the same in both
M and R. This is consistent since if a term t occurs in F , then
by Lemma 1, v(t) occurs in F ∗ and therefore tR ∈ BR ⊆ ZM

b .
Similarily, if t is an argument of function v occurring in F

and tM = tR, then tR ∈ BR and by definition in Figure 4
vM (tM ) = vR(tR), which by definition of valuation gives(
v(t)

)M
=
(
v(t)

)R
. If (n)b occurs in F , then by Lemma 3

it also occurs in F ∗ and thus nR ∈ CR. Hence if nM = nR

then
(
(n)b

)M
= (nM )Mb = (nR)Mb = (nR)Rb =

(
(n)b

)R
.

If n×b t occurs in F then by construction of the instantiated
formula it also occurs in F ∗. If, furthermore tM = tR,

then (n×b t)
M = nM ×M

b tM = nR×M
b tR = nR×R

b t
R =

(n×b t)
R. Same applies to +b.

Finally, if t≤b u occurs in F then according to the in-
stantiation rules, the axiom (A3) was instantiated with t
and u and thus tR≤R

b u
R ⇐⇒ vR(tR) ≤ vR(uR).

By induction hypothesis we have vM (tM ) = vR(tR) and
vM (uM ) = vR(uR). Moreover, by definition in Figure 4
we have tM ≤M

b uM ⇐⇒ vM (tM ) ≤ vM (uM ). Thus
tM ≤M

b uM ⇐⇒ vR(tR) ≤ vR(uR) ⇐⇒ tR≤R
b u

R.

Now the proof of the completeness theorem directly follows
from the lemmas we proved at this point:

Theorem 2. Every ground formula F in BLIA is satisfiable if
and only if its translation F ∗ is satisfiable in QF UFLIA.

Proof. If F is satisfiable in BLIA, F ∗ is satisfiable in
QF UFLIA due to soundness of the instantiation procedure.
Assume F ∗ is satisfiable in QF UFLIA with the model
R. Then by the Lemmas 11, 12 and 13, the reconstructed
model M is a model of the BLIA theory. Moreover, by the
Lemma 14, the whole formula F as a term has the same
value in both R and M extended with the corresponding
uninterpreted constants. Since F is a ground subterm of F ∗

and therefore is an identical truth in R, it is also satisfied by
M .

VII. FORMALIZATION

The completeness proof presented in the previous section
was formalized in Isabelle/HOL proof assistant. In this formal-
ization we employed untyped deep embedding of object-level
formulas so that we could apply very simple induction with
just two possible constructors (a function and a variable) on the
structure of the formulas and reason about the interpretation
of these formulas in different models of our object logic.
There were two most notable differences distinguishing the
fully formal proof in Isabelle/HOL from the still somewhat
informal presentation given in the paper.

First, the use of untyped deep embedding, although it
greatly simplifies the structural representation of the formulas,
allows nonsensical malformed formulas to be represented and
potentially interpreted in the object logic. For example, a
formula like the following:(

(a)b ≤ n
)

+ (b)b×b 2,

where every function symbol is applied to at least one ar-
gument of an incompatible sort, can be represented in the
embedding. To exclude such formulas we formulated explicit
well-formedness constraints (in the form of a special predicate)
and used them as preconditions in various lemmas as well as in
our definition of satisfiability. In our approach an interpretation
can only model a well-formed formula.

The second problem is not as obvious. The traditional
definition of interpretation for a quantified formula (such as an
axiom) involves an additional parameter usually called valua-
tion µ that maps opaque variables to their corresponding inter-
pretations. Thus using this definition was have to manipulate



not only the formulas and interpretations (models), but also the
corresponding valuations. In this reasoning style establishing
a seemingly trivial substitution principle, i. e. if ∀a. FM (a)

we have FM (xM ) =
(
F (x)

)M
if a is not free in x, requires

defining an intermediate valuation µ′ = µ ◦ [a 7→ xM ] and
evaluating the formula F in the model M with both the
valuation µ and µ′. We instead employ a substitution-based
definition of interpretation formalized as follows:

∀a ∈ D. FM (a) ⇐⇒
(
∀t. vars(t) = ∅ ⇒

(
[t/a]F (a)

)M)
,

where any model M should satisfy the following restriction:
∀a ∈ D. ∃t. tM = a. Here D is the domain chosen for inter-
pretation of terms (particularly, variables) of the corresponding
sort, [t/a] denotes substitution of the variable a with the term
t. Since the substituted term t is ground, there’s no need
in special efforts for avoiding variable captures. Moreover,
in our formalization we never needed nested quantifiers, so
we used toplevel schematic variables instead of quantifiers
and thus greatly simplified the formula representation. In
fact, we further simplified our substitution-based approach by
restricting the form of the ground bounded integer terms t in
the substitution. If

∀a ∈ Zb. ∃c ∈ Z. (c)b = a,

we can switch from quantification over bounded integer terms
t to simple quantification over integers:(
∀t. vars(t) = ∅ ⇒

(
[t/a]F (a)

)M)⇔ ∀c ∈ Z.
(
F (c)b

)M
,

thus completely turning object-level quantification (in
BLIA/QF UFLIA) into the meta-level quantification in HOL
itself. This is the most common form of “object-level” quan-
tification that we use in our formal proof [9]1.

VIII. IMPLEMENTATION AND EVALUATION

We implemented the instantiation-based decision procedure
described in this paper within our Isabelle framework for ex-
tending SMT tactic with trigger-based quantifier instantiation.
The framework is called TSMT [9] and is not described in
this paper. Here we only briefly mention that it allows to
perform preliminary saturation of the current goal (being a
ground formula) with all quantifier instantiations triggered by
matching subformulas of a certain form present in the goal.
The quantifiers are provided as lemmas and the triggering
subformulas can be specified using special lemma attributes.
The framework also supports proof reconstruction for the
saturated formula (using existing capabilities for Z3 proof
reconstruction in Isabelle) as well as extracting the model
(counterexample) of the current goal and showing the extracted
model to the user.

Evaluating a specific tactic for interactive proof assistant
is not a simple task as there are not many readily available
benchmarks for such tools and the vast majority of available

1The corresponding Isabelle theory in the repository is called
TSMT_Bounded_Complete.

Subgoal CPU time, s
uint_arith (tsmt ubound)

memcpy wp’ 1 0.366 0.329
memcpy wp’ 2 < 0.1 0.450
memcpy word 1 < 0.1 0.320
memcpy word 2 < 0.1 0.350
memcpy wp’ 3 0.201 0.320
memcpy wp’ 4 0.508 0.315
memcpy wp’ 5 0.250 0.509
partition correct 1 0.468 0.581
partition correct 2 0.401 0.441
qsort unat sub sub1 < 0.1 0.526
quicksort correct 1 0.251 0.493
simple example — (< 0.1) 0.196
simple 2a mn 1 pl b — (1.202) 0.860
simple div2 mul2 — (0.102) 0.756
simple 2 min mn 1 pl min — (0.897) < 0.1
simple div3 mul3 — (0.145) 0.779

Fig. 5. Evaluation of TSMT BLIA and uint_arith tactics on sample
formulas and real subgoals from AUTOCORRES examples.

proofs are already specially tailored for the use of existing tac-
tics with all their particular traits and limitations. The closest
available Isabelle/HOL tactic that provides similar capabilities
is the uint_arith tactic from the HOL-Word theory. It also
tries to saturate the current goal with additional assumptions
about arithmetic on bounded integers and relies the actual
work of discharging the goal to the standard arithmetic tactics
(simplification procedures, presburger and linarith).
Nonetheless, unlike our approach, the translation implemented
in the uint_arith tactic is not complete in general. The
uint_arith tactic is not very widely used in most practical
applications, however, as its capabilities are similar to that
of unat_arith tactic (a similar tactic for natural numbers
rather than integers), which is often used instead. Since
arithmetic on natural numbers is not directly implemented
in most SMT solvers, we based our tactic on the integer
arithmetic. So to evaluate our implementation we took several
most time-consuming goals solved by the unat_arith tactic
and manually transformed them into the corresponding goals
suitable for both uint_arith and our implementation (the
transformation is mostly purely syntactic, apart from adding
some missing constraints of the form n ≥ 0). The goals
were taken from the real-world examples featuring verified
C implementations of functions memcpy and quicksort
formalized within AUTOCORRES [10] framework. The exam-
ples included more than 130 invocations of the uint_arith
tactic, of wihich we selected 11 most time-consuming (still
originally finishing within several seconds). In addition to the
existing examples we added several very simple lemmas about
bounded integer arithmetic, where the uint_arith tactic
fails to prove the goal.

The evaluation results are shown in Figure 5. Goal solving
times are shown in seconds where they exceed 0.1, otherwise
the time is marked as < 0.1. The time for goals not solved



by a tactic is marked as “—” together with the time required
for the attempt before returning the resulting proof state (a
saturated goal in case of uint_arith). Since Isabelle/HOL
workflow is based on interactive formal documents, the solving
time is important as it directly influences the overall time
required for updating the document model upon every user
interaction (especially for unstructured proofs). The results
demonstrate that our implementation is not significantly slower
than the existing tactic despite involving exhaustive quantifier
instantiation, invocation of external provers (Z3) as well as
parsing and reconstruction of the resulting proofs. Moreover,
it provides several notable advantages, namely:
• It enjoys completeness property so it is guaranteed

to solve any goal within a certain class, whereas the
uint_arith tactic is not complete and its ability to
solve a particular goal is not easily predictable in general;

• Due to being complete, our tactic is able not only to
verify a correct goal, but, often more importantly, also to
meaningfully refute incorrect goals within a certain class
(where the tactic is complete). This ability is important
in the context of iterative proof development where it
is widely known that intermediate attempts to prove
incorrect statements are more pervasive than failures due
to incompleteness of the tactics/proof methods.

• Our tactic has approximately the same performance both
in case of a successful proof attempt and a counterexam-
ple extraction, because it behaves the same in both cases,
while uint_arith sequentially attempts to solve the
saturated goal with all the registered arithmetic tactics and
so can spend additional time on unsuccessful attempts.

• Our approach is easily extensible, since semantics of new
function symbols can be easily supported by adding the
corresponding lemmas with their triggers. In fact, the ease
of extensibility of our tactic is comparable to that of the
standard Isabelle simplifier. In the examples we extended
our tactic with support for integer division, subtraction,
maximum and minimum to match the capabilities of the
standard arithmetic tactics in Isabelle.

• Extensing our tactic does not require ML programming,
the tactic is implemented on top of the general TSMT
tactic (main part of our instantiation framework) simply
as a group of lemmas with the corresponding instantiation
triggers, while uint_arith is implemented directly in
Isabelle/ML.

The primary limitation of our current implementation in
comparison with the existing uint_arith tactic is inability
to properly handle quantifiers nested in the goal itself and
not augmented with the corresponding triggers. Our tactic
currently ignores any quantifiers present in the goal. The
examples mentioned in Figure 5 are available in our example
theory [9]2.

IX. CONCLUSION AND FUTURE WORK

In this paper we presented the following contributions:

2The corresponding Isabelle theory in the repository is called
TSMT_Bounded_Examples.

• An axiomatic definition of the theory of bounded linear
integer arithmetic (BLIA) embedded into the logic of
linear integer arithmetic and uninterpreted functions with
equality and congruence (UFLIA);

• A method for deciding the satisfiability of formulas
in BLIA based on translation of the formula into the
QF UFLIA logic, where existing proof-producing deci-
sion procedures can be applied. The translation is formu-
lated as a trigger-based instantiation procedure imposing
only linear overhead in formula size during translation;

• A proof of completeness for the proposed instantiation
procedure;

• A formalization of the completeness proof in Is-
abelle/HOL;

• An implementation of the proposed decision procedure
as an Isabelle/HOL proof method with support of proof
reconstruction and counterexample extraction. The imple-
mentation was evaluated on several examples extracted
from real applications of similar tactics and shown to have
similar efficiency while enjoying completeness property;

Major directions of future work include developing some
predictable (although incomplete) approach for handling quan-
tifiers occurring in the goal without corresponding triggers (the
strategies for quantifier handling inside existing provers are
very efficient, but rarely predictable). Another major direction
is formalization and evaluation of instantiation-based decision
procedures for other decidable theories such as an efficiently
decidable fragment of the theory of bit-vectors, modular linear
integer arithmetic (with wrap-around semantics), a decidable
fragment of a theory formalizing various operations on lists,
a theory of address arithmetic with bounded addresses (but
with C-like separation to disjoint memory blocks), theory
of interpreted sets (for which there are several completeness
proofs, but no formalization in a proof assistant) and other
practically relevant theories and fragments.

X. ACKNOWLEDGEMENT

The research was carried out with funding from the Ministry
of Science and Higher Education of the Russian Federation
(the project unique identifier is RFMEFI60719X0295).

REFERENCES

[1] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Berlin, Heidelberg: Springer-Verlag,
2002.

[2] J. Dawson, “Isabelle theories for machine words,” Electronic Notes in
Theoretical Computer Science, vol. 250, no. 1, pp. 55 – 70, 2009,
proceedings of the Seventh International Workshop on Automated
Verification of Critical Systems (AVoCS 2007). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066109003302

[3] D. Babic and M. Musuvathi, “Modular arithmetic decision procedure,”
Tech. Rep. MSR-TR-2005-114, August 2005. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/modular-
arithmetic-decision-procedure/

[4] N. BjØrner, A. Blass, Y. Gurevich, and M. Musuvathi,
“Modular difference logic is hard,” Tech. Rep. MSR-TR-2008-
140, October 2008. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/modular-difference-logic-is-hard/



[5] B.-Y. Wang, “On the satisfiability of modular arithmetic formulae,”
in Automated Technology for Verification and Analysis, S. Graf and
W. Zhang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 186–199.

[6] S. Böhme, “Proof reconstruction for Z3 in Isabelle/HOL,” in 7th
International Workshop on Satisfiability Modulo Theories (SMT ’09),
2009.

[7] S. Böhme and T. Weber, “Fast LCF-style proof reconstruction for Z3,”
in Interactive Theorem Proving, M. Kaufmann and L. C. Paulson, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 179–194.

[8] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard: Version
2.6,” Department of Computer Science, The University of Iowa, Tech.
Rep., 2017, available at www.SMT-LIB.org.

[9] R. Sadykov and M. Mandrykin, “Completeness of instantiation
procedure for bounded linear integer arithmetic. Formalization
in Isabelle/HOL,” https://forge.ispras.ru/projects/tsmt/repository/, April
2020.

[10] D. Greenaway, J. Andronick, and G. Klein, “Bridging the gap: Automatic
verified abstraction of C,” in Interactive Theorem Proving, L. Beringer
and A. Felty, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 99–115.


