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Assessing the quality of the requirements 
specification by applying GQM approach and 

using NLP tools  
Timoshchuk Evgenii 

Abstract — Software requirements are quite difficult to measure in terms of quality without reviews and subjective opinions of 

stakeholders. Quality assessment of specifications in an automated way saves project resources and prevents future latent 

defects in software. Requirements quality can be evaluated based on a huge variety of attributes, but their meaning is quite vague 

without any mapping to specific measurement metrics. Application of goal-question-metric (GQM) approach in the quality model 

helps to choose the most important quality attributes and create a mapping with metrics, which can be collected and calculated 

automatically. Text of software requirements written in natural language can be analyzed by NLP tools due to identify weak signle 

words and phrases, which make statements ambiguous. Metrics for such quality attributes as ambiguity, singularity, subjectivity, 

completeness, and readability are proposed in this work. The quality model was implemented in a prototype by adopting natural 

language processing techniques for requirements written in the Russian language with the support of external API. 

Index Terms — requirements quality, GQM approach, quality assessment, Natural Language Processing  
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1 INTRODUCTION

Low quality of requirements may cause expensive conse-
quences during the software development lifecycle. Issues 
in requirements, such as ambiguity and incompleteness 
may lead to time and cost overrun in the project. Especially, 
if iterations are long and feedback comes too late – the 
faster a problem is found, the cheaper it is to fix. However, 
it is not so easy to properly detect in automated way 
whether a requirements specification has lack of clarity. 
Some of these issues require specific domain knowledge to 
be uncovered.  For example, it is very difficult to detect 
with automatic approaches whether a requirements 
specification is lacking necessary features. 

There are a variety of requirements management tech-
niques, tools, and practices in the software development 
field. However, they should be tailored to the choosen de-
velopment methods. Requirements engineering assumes 
that the requirements must meet a number of criteria. De-
scriptions of such criteria can be found in both the scientific 
and methodological literature and put on standards. For 
instance, the IEEE standard [1] for requirements engineer-
ing defines quality attributes for a single requirement: nec-
essary, appropriate, feasible, verifiable, correct, conform-
ing, complete, consistent, comprehensible etc. Several lan-
guage criteria are also defined for the text of requirements. 
Unbounded and ambiguous terms should be avoided. Re-
quirements should state ‘what’ is needed, not ‘how’. 

Despite the exact techniques on how to gather and val-
idate this requirements quality metrics are not formulated 
by the standard (which is obviously beyond its area of con-
sideration), but they are the topic for various researches. 

Software requirements in industry are most ofthen 
written in natural language which has no any formal se-
mantics. This is the main reason why issues in require-
ments are so hard to detect. Approach that is presented in 
this paper faces the problem of fast feedback and getting 

some knowledge about specification’s semantics with con-
crete symptoms for a requirement artefact’s quality defect. 

Natural language processing (NLP) tools and systems 
have been applied to analysing requirements texts since 
the 1980’s [29]. More and more NLP systems and tools with 
applying requirements evaluation are developed in recent 
years. It is a most appropriate technique to analyse human 
text and collect some useful data about it.  

Goal-question-metric (GQM) involves defining achiev-
able goals in order to attain quality thereby providing 
questions in relation to how to achieve the goals and met-
rics are provided to ascertain the progress in attaining set 
goals. This research work makes use of GQM by setting 
goals such as unambiguity, completeness, readability that 
the requirements must meet, questions on how to derive 
these quality attributes, and what to measure in determin-
ing if our requirements match defined goals. 

The ultimate goal of this work was encapsulating the 
best of these techniques and methods for measurement re-
quirement quality into a single model and provide a pro-
totype of tool for automated validation of real-world re-
quirements against it with Russian language support. This 
paper will present some measuring quality indicators for 
natural language requirements presented in textual natu-
ral format. Identified quality indicators first of all should 
point out concrete defects and provide suggestions for im-
provements. Proposed tool prototype combined all this in-
dicators and computes quality measures in a fully auto-
mated way. 

This paper describes a workflow of a model that helps 
to obtain low-level quality indicators based on some met-
rics of textual requirements, such as text length, number of 
ambiguous terms, imperative verbal forms, etc. This model 
has been implemented in a tool that computes quality met-
rics in a fully automated way. 
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2 RELATED STUDIES 

Many publications discuss different problems in require-
ments specifications. First problem is automatization of as-
sessment process. Mostly researchers focus on approaches 
for automated detection of specific defects in requirements 
specifications without any additional interaction with user. 
The main features of such tools include detection of simi-
larity in requirements [15] and ambiguity [16], detection of 
missing information, linguistic flaws and passive sen-
tences [17]. 

K¨orner and Brumm presented RESI, a tool that scans 
documents for linguistic flaws and reports them to the user 
(see Section II-C). It can be used to detect defects in require-
ments specifications, but the high number of false positives 
results prohibits the actual use of this tool in a real case 
[18]. 

Fabbrini et al. presented QuARS (Quality Analyzer for 
Requirement Specifications) tool that checks requirements 
specification by comparing with predefined word lists [16]. 
The lists give indicators for problems and if the number of 
indicators in the phrase exceeds a given threshold, require-
ments is ambigious. 

Verma et al. presented their RAT (Requirements Analy-
sis Tool) [19] tool - a word processor that able to analyze 
natural language requirements based on a user-defined 
glossary and constrained language. RAT highlights prob-
lematic requirements directly in the requirements 
specifications, but this process requires some training by 
real users.  

Goldin and Berry [24] implemented a tool called Ab-
stfinder to identify the abstractions from natural language 
text used for requirements elicitation.  

Lee and Bryant [25] developed an automated system to 
assist the engineers to build a formal representation from 
informal requirements.  

Overhelming majority of authors suppose that ambigu-
ity carries a high risk of misunderstanding among different 
readers. Several studies dealing with ambiguity identifica-
tion have aimed to help improve the quality of require-
ments documents. Some tools have been developed specif-
ically to detect, measure and reduce possible structural 
ambiguities in text. 

In paper Yang H, Willis A, De Roeck A and Nuseibeh B 
describe an automated approach for characterizing and 

detecting ambiguities that was implemented in NAI (Noc-
uous Ambiguity Identification) tool prototype [22]. Imple-
mented tool uses machine learning algorithm to determine 
whether an ambiguous sentence is nocuous or innocuous, 
based on a set of heuristics that draw on human judg-
ments, which we collected as training data. The tool fo-
cuses on coordination ambiguity. 

Kamsties et al. [26] described pattern-driven inspection 
technique to detect ambiguities in requirements.  

Mich and Garigliano [27] investigate the use of a set of 
ambiguity for the measurement in syntactic and semantic 
ambiguity, which is implemented in tool LOLITA using 
NLP algorithms.  

Kiyavitskaya et al. [28] proposed a two-step approach in 
which lexical and syntactic analysys was performed to 
identify ambiguity. An automated tool was implemented 
to measure what is potentially might be ambiguous specif-
ically for each sentence.  

Another important proplem related to specification 
quality assesment is a choice of correct criteria for overall 
evaluation. Davis et al. evaluated 24 criteria and metrics for 
determination of the overall requirements specification 
quality [20]. Some of the criteria may affect and even con-
tradict each other. Therefore, the authors made a conclu-
sion that a perfect requirements specification does not ex-
ist. Another approach was proposed by Wilson et al. – he 
counted the occurrences of certain expressions in a docu-
ment to evaluate its quality [21] with indicators that in-
clude completeness and consistency. This group of re-
searches developed a tool that focus on a broader under-
standing of requirements quality, instead of just a single 
aspect. Implemented ARM tool is based on the IEEE 830 
standard and aims at developing metrics for requirements 
quality. 

Ambriola and Gervasi [23] developed a web-based NLP 
tool, called Circe, which was designed to facilitate the gath-
ering, elicitation, selection, and validation of requirements.    

Unlike other related works show attempts to evaluate 
requirements in automatically by only one quality criteria, 
current paper describes an approach to identify several 
correct quality attributes with correlated metrics to meas-
ure, combining them into one overall evaluation in an au-
tomated way. Moreover, all the mentioned-above tools 
support only English language and don’t support require-
ments written in Russian. 

Fig. 1. Example of requirement analysis workflow for automated tool conQAT [30] 
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3 GQM APPROACH 

The Goal-Question-Metric is a method based on system of 
questions and simple answers about properties evaluation  
[3]. This approach consists of three main steps: specifying 
goals, pointing relevant attributes and providing measure-
ments. GQM framework helped to define appropriate met-
rics and estimate the quality of requirements in current 
case. The goal should be defined for an object, with a pur-
pose, from a perspective, in an environment. The overall 
goal of current project it to measure quality of require-
ments and it can be formulated by following template:
  

Analyze requirement quality 
for the purpose of improving 
with respect to quality attributes 
from the viewpoint of project managers 
in the context of product development. 

 
In addition, several sub-goals were identified, which 
should be fulfilled to achieve the main goal. For instance:  
 
Sub-goal: Analyze requirement unambiguity for the pur-
pose of improving with re-spect to quality attributes from 
the viewpoint of project managers in the context of product 
development. 
Question: How many vague words and weak phrases 
make requirement ambiguous? 
Metric: Number of ambiguous words in 1 requirement di-
vided by an average number of words in 1 requirement. 

 

 
In this approach identification of the questions and metrics 
allows to properly clarify the goals in order to achieve the 
transparency and propose how and why the goals are sup-
posed to be achieved. Clarifiacation becomes more con-
crete during the movement from top level to bottom and 
helps to avoid abstract unreal goals. 

GQM approach is supported by several specific method-
ological phases [Fig.1] [4]: 
 
• Definition - goals, questions, metrics and hypotheses 

are defined and documented. Main attributes, formulas 
and measurement approaches and exact metrics are de-
fined.  

• Data Collection - searching and counting for ambigu-
ous words and other quality indicators in source text.  

• Interpretation - collected data is processed into quality 
measurement results, that provides answers on defined 
questions to reach the goal. 

 
GQM approach in current case consists of 5 main steps [4]: 

 
▪ Business goal setting. The main purpose of this case is 

automated evaluating quality of software requirements 
by range of attributes.  

▪ Generating questions. Breaking down goals into com-
ponents, defining them in a quantifiable way, f.e.: 
“How much should the proposal structure be complied 
with so that the requirement has the quality property 
of complete-ness”? 

▪ Specifying measures. Detecting metrics that should be 
collected to answer questions, f.e.: “Percentage of 
matching requirement sentence structure template”.  

▪ Defining mechanism of data collection. Measures are 
collected by semantic and syntax text analysis based on 
matching words with predefined diction-aries.  

▪ Gathering and analyzing of collected data. Calculated 
metrics should be interpreted into quality estimation 
for each requirement and overall Software Require-
ments Specification (SRS). 

Process of measuring quality in software development has 
it’s certain difficulties. In order to understand the effects of 
actions that are implemented in software development and 
gain the understanding of how the improvements can be 
made for a future process a certain purpose should be put 
in measurement process. The purpose may be:  

1. Understanding of the product requirements. Correct 
measurements will allow to see the graphical or mathemat-
ical representation of a requirement elicitation process, 
whether it will be a time spend on describing every feature. 

2. Controlling the product requirements. While having 
a graphical representation of the SRS document, the rela-
tions between different requirements and user actions can 
be identified, which further would allow to control the im-
pact on the development process in total.  

3. Improving the product requirements. can be achieved 
after the control of the development processes is gained. 
Certain improving effect can be applied to processes, vari-
ables and their relationships.  

Metrics for the requirements should allow to determine 
their quality for the current development process and to 
represent collected resulting data in a graphical way.  

Fig. 2. Phases of Goal/Question/Metric approach [4] 

 

Fig. 3. Process of collecting metrics and measurements [4] 
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4 QUALITY ATTRIBUTES 

Many authors in their methodologies have already defined 
the key interdependent [Fig. 4] quality attributes [6].  
 

• Validity – the clients should be able to validate 

(confirm) the requirement according to their 

needs. 

• Verifiability – the engineer must be able to verify 

that the system-to-be meets the specified system. 

• Modifiability – requirements must be able modi-

fiable with ease for maintenance. 

• Completeness – all client’s needs must be cov-

ered. 

• Consistency – should not be any contradiction 

among requirement. 

• Understandability – the requirements are cor-

rectly understood without difficulty. 

• Unambiguity – there exists only one interpreta-

tion of the requirement (no ambiguous words in 

the requirement sentence). 

• Traceability – there exists an explicit relationship 

of each requirement with design, implementation 

and testing artefacts. 

• Singularity – each requirement is clearly deter-

mined and identified, without mixing it with 

other requirements. 

 
Mentioned-above attributes come out from following 

types of unbounded or ambiguous terms that should be 
avoided according to the standard: 

- superlatives (‘best’, ‘most’); 

- subjective language (‘user friendly’, ‘easy to use’, ‘cost-

effective’); 

- vague pronouns (‘it’, ‘this’, ‘that’); 

- ambiguous terms such as adverbs and adjectives (‘al-

most always’, ‘significant’, ‘minimal’) and ambiguous 

logical statements (‘or’, ‘and/or’); 

- open-ended, non-verifiable terms (such as ‘provide 

support’, ‘but not limited to’, ‘as a minimum’); 

- comparative phrases (‘better than’, ‘higher quality’); 

- loopholes (‘if possible’, ‘as appropriate’, ‘as applica-

ble’);  

- terms that imply totality (‘all’, ‘always’, ‘never’, and 

‘every’); 

Unambiguity. It requires that only one semantic interpre-
tation of the requirement exists. To evaluate the ambiguity 
of each requirement, we propose to use dictionaries with a 
set of words, which indicates ambiguity in the requirement 
[13][14]. There are several types of them: 
 

Type  English examples Russian examples 

Quality ‘best’, ‘most’, ‘ap-
propriate’, ‘ade-
quate’ 

‘лучший’, ‘самый’, 
‘подходящий’, 
‘адекватный’ 

Subjec-
tivity 

‘user-friendly’, 
‘easy to use’, ‘ra-
tional’ 

‘легкий в 
использовании’ 

Quantity ‘about’, ‘signifi-
cant’, ‘minimal’, 
‘few’, 'all', 'each', 
'every', 'any', 'few', 
'little', 'many', 
'much', 'several', 
'some' 

‘примерно’, 
‘несколько’, 
’немного’ 

Fre-
quency 

‘almost always’, 
‘usually’, ‘as a rule’, 
‘never’ 

‘почти всегда’, 
‘обычно’, ‘как пра-
вило’ 

Persis-
tency 

‘long’, ‘longer’, 
‘durable’, ‘momen-
tary’ 

‘долго’, ‘больше’, 
‘прочный’, 
‘сиюминутного’ 

Probabil-
ity 

‘probably’, ‘possi-
bly’, ‘if it possible’, 
‘unlikely’ 

‘возможно’, 'если 
это возможно’, 'вряд 
ли' 

Open 
listings 

‘etc.’, ‘and so forth’, 
‘and so on’  

‘и так далее’ 

Position / 
size 

‘close’, ‘bigger’, 
‘tall’, ‘far’, ‘short’, 
‘small’, ‘huge’ 

‘близко’, ‘больше’, 
‘падение’, ‘далеко’, 
‘короткий’, ‘неболь-
шой’, ‘огромный’ 

Compar-
ative 
phrases  

‘better than’, 
‘higher quality’, 
‘same as’ 

‘лучше, чем’, 'выше 
качество’, 'то же, 
что’ 

Loop-
holes 

‘if possible’, ‘as ap-
propriate’, ‘as ap-
plicable’ 

‘если возможно’, ‘со-
ответствующие’, ‘в 
качестве примени-
мого’ 

Weak ad-
verb or 
adjective 

'as desired', 'at last', 
'either', 'eventu-
ally', 'if appropri-
ate', 'if desired', 'in 
case of', 'if neces-
sary' 

'по желанию', 'нако-
нец', 'либо', 'в конеч-
ном счете', 'если 
уместно', 'если жела-
тельно', 'в случае', 
'если необходимо' 

Fig. 4. Dependencies between of qualitative attributes [6] 
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▪ Connection words dictionary – (“and”, “or”, “but”, 

“however”, “otherwise”, “even”, “although”, etc.) 

the usage of such words not a problem in itself, but 

their too frequent use leads to a decrease in the 

quality of requirements, especially in terms of 

uniqueness and ambiguity.  

▪ Negative adverbs dictionary – the negative particle 

is the word not used to indicate negation, denial, re-

fusal, or prohibition. Repeated use of such words 

makes a sentence difficult to understand and de-

crease the ambiguity of the requirement. 

▪ Anaphoric expressions dictionary – the use of ex-

pressions, the interpretation of which depends on 

other expressions previously encountered in the 

text, for example: “which”, “he”, “she”, “it”, “they”, 

“where”, “this”, “that”, etc. Requirements contain-

ing anaphora usually do not have characteristics of 

clarity and unambiguity. 

▪ Undefined terms dictionary – In addition to connec-

tive words, the quality of requirements is signifi-

cantly affected by the use of vague terms that lead 

to ambiguity. 
 
As the metric for assessing ambiguity, was used the follow-
ing formula: 
 

𝑈𝑛𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 % = (1 −  
𝑁𝑎𝑚𝑏𝑖𝑔

𝑁𝑡𝑜𝑡𝑎𝑙

) × 100 

Where 𝑁𝑎𝑚𝑏𝑖𝑔 – the number of words in the requirement, 
𝑁𝑎𝑚𝑏𝑖𝑔 – the number of ambiguous words in the require-
ment. 
 
Singularity. Statement of the requirement must relate to 
only one unique requirement that does not overlap with 
others. The presence of several modal words tells us that 
the requirement contains several meanings and that the 
statement does not have the characteristic of singularity. 
These words may include could, may, might, can, should, 
will, shall, must, would, etc. The number of connective 
words may also indicate the presence of several require-
ments within one (mentioned above). As the metric for as-
sessing singularity, was used the following formula: 
 

𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 % = (1 −  
(𝑁𝑚𝑜𝑑𝑎𝑙 − 1) + 𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑒  

𝑁𝑡𝑜𝑡𝑎𝑙

) × 100 

 
where 𝑁𝑡𝑜𝑡𝑎𝑙 – the number of words in the requirement, 
𝑁𝑚𝑜𝑑𝑎𝑙  – the number of modal verbs which are not zero, 
𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑒– the number of connective words in the require-
ment. 
 
Subjectivity. This attribute indicates the presence of per-
spectives, feelings, or opinions entering the decision-mak-
ing process. The leading causes of subjectivity in require-
ments can be:  

• dangerous plural with ambiguous reference, 

• combination of “and” and “or” that leads to un-

clear associativity, 

• unclear inclusion, 

• passive voice, 

• imprecise and inside behavior, 

• negative or too broad reason. 
 
Readability. This attribute indicates how easily require-
ment text can be read and understood, it can be based on 
the number of syllables per word and number of words per 
sentence. It can be calculated by Flesch-Kincaid Grade 
Level [37], Coleman-Liau Grade Level [38], and Smog 
Grade [39]. The second one was chosen: 
 

𝑅𝑒𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑖 𝐶𝐿𝐼 = 0.0588 𝐿 − 0.296𝑆 − 15.8 
 
where L – average number of letters per 100 words, S – av-
erage number of sentences per 100 words. If CLI is around 
10, text is easy to read, but if CLI > 15 text is too difficult 
for understanding. A mapping into percentage interpreta-
tion was made (if CLI index is more than 17.5, than reada-
bility is 0%) by following formula: 
 

𝑅𝑒𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 % = (1 −  
| 𝐶𝐿𝐼 − 12.5 |

5
 ) × 100 

Completeness. It requires that the requirement contain all 
necessary elements, including constraints and conditions, 
to enable the requirement to be implemented [18]. 
 
Example of structure template in Table 1 for this require-
ment: 

“In the Combat Zone, an HQ Switch, which is identical 
to a trunk node switch, shall be given two independent 
links to at least two other nodes in the network”. 
  

Element Text 

Actor an HQ switch 

Conditions of Action 
Action 

Object of action 

Constraints of action 

Source of Object 

Destination of Action 

in the Combat Zone 
two independent links 

- 

To at least two other nodes in the net 

To at least two other nodes in the net 

Which identical to a trunk node 

switch 

 

Table. 1. Structural template for completeness 

 
Completeness quality attribute was calculated by this for-
mula:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 % =
𝑁𝑓𝑖𝑙𝑙𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙

× 100 

where 𝑁𝑡𝑜𝑡𝑎𝑙 – the number of elements in the structural 
template, 𝑁𝑓𝑖𝑙𝑙𝑒𝑑  – the number of elements from template 
that were identified in requirement sentence. 
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5 NATURAL LANGUAGE PROCESSING 

Natural Language Processing is a field of computer science 
and computational linguistics that aims to analyze linguis-
tic data from input using computational methods and tech-
niques [33]. The natural language is very complicated, it is 
subject to syntactic and semantic rules. It studies the con-
ceptual dimension that refers to “pragmatic” actions which 
are intended. The syntactic rules describe the major pattern 
of a sentence such as nouns, adjectives, and verbs [34]. The 
semantic rules refer to the meaning of each word in the 
sentence and relation between words when they are com-
bined, which is “compositional semantic” [35]. 

Natural language texts are used to be analyzed in a se-
quential process. This process starts with lexical and struc-
tural elements. For its purpose text should be parsed in a 
search of the most suitable syntax tree. After that some 
complex techniques are applied for interpretation of the se-
mantic content due to meaning understanding. Of course, 
such analysis does not allow to understand fully the con-
tent and get independent meaning of the sentence without 
any discrepancies.  

Several techniques were used in current model work-
flow: splitting sentence in syntax tree, part-of-speech tag-
ging, morphological analysis and calculationg word distri-
bution and co-occurance by redefined dictionaries [Fig. 5]. 
Inputed text document with requirements should go 
through several text preprocessing steps: sentence split-
ting, POS-tagging, and phrase-based shallow parsing.  

Sentence splitting. At first, the text is splitted into a set 
of sentences by using a sentence boundary detector. 

POS-tagging. Then, for each requirement sentence, the 
parser based on individual words and associated phrase 
information that used to obtain word lemma and POS tags 
such as noun, verb, adjective, adverb, etc. In current model 
the Stanford NLP library [42] was used for this. POS tag-
ging helped to determine so-called substituting pronouns. 
A detailed description of POS tagging technical details is 
beyond the scope of this paper, but can be found, for exam-
ple, in [41]. Given a sentence in natural language text, it 
determines the role and function of each single word in the 
sentence. The output is usually a so-called tag for each 
word, e.g. whether a word is an adjective, a particle or a 
possessive pronoun. These are pronouns that do not repeat  
 

 

the original noun and, thus, need a human’s interpretation  
of its dependency. A syntax tree shows the main structure  
of the sentence [Fig. 6], where tree’s leafs are the words of 
the sentence and inner nodes express the sentence’s com-
position. In example “the channel selection” forms a nom-
inal phrase (NP), as indicated by their common parent 
node NP. The additional information “of the headphones” 
is added as prepositional phrase (PP). The noun phrase 
and the prepositional phrase form a new nominal phrase, 
which is the object of the verb “changes”.  

Morphological Analysis. Based on POS-tagging more 
detailed analysis of text was performed that determines its  
inflection. This step contains identifying a verb’s tense or 
an adjective’s comparison. The main outcome of this step 
is analysis for usage of adverbs and adjectives in their com-
parative or superlative form. 

Dictionaries. For describing different quality attributes 
were used several dictionatries with ambigious phrases 
and words based on quality standards and case study ex-
perience. Normalisation technique for dicitionry words 
called lemmatisation was applied, that reproduces the orig-
inal form of a word. This technique is very similar to stem-
ming, Porter Algorithm [40], that based on the POS tag as 
the word’s morphological form instead of heuristics. 

Fig. 5. NLP workflow for requirement analysis  

 

Fig. 6. Syntax tree for NLP workflow 
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6 PROTOTYPE 

 

To fully support the extraction of metrics for all before-
mentioned quality attributes, the prototype should have 
several features [Fig. 7]. 

The prototype is a software tool which main goal is to 
perform requirements quality measurement. Require-
ments can be of any type expressed in the text form: func-
tional, non-functional, use-cases. The prototype is able to 
perform several functions: 
    – Integration with project management system to gather 
textual requirements from it (via is API). 
    – Perform syntax and semantic analysis of said require-
ments (supporting Russian language [13][14]). 

The core of the prototype is the Requirement Quality 
Model which contains a consistent set of requirements 
quality metrics and is expressed in algorithms on how to 
measure these metrics and how to draw conclusions (aver-
age quality of a requirement/set of requirements). The pro-
totype provides a requirement engineer with a graphical 
user interface or command-line interface to obtain the re-
sults of requirements measurement. 

For NLP were used custom analogues of Python librar-
ies Wordnet [31] and Spacy [32] with Russian language 
support. Analysys of ambiguity was implemented based 
on open-source microservice OpenReqEU.  

 
 

 
To get results of the requirements analysis the prototype 

provides the requirements engineer with the either graph-
ical or command line interface. Here are some of the inter-
face functions that are available:  

• List all the requirements; 

• Show quality metrics of the specific requirement; 

• Show quality metric for all requirements analysed. 

The dictionaries of ambigious words were translated 
into Russian language. Docker container for OpenReqEU 
microservice was rebuild and used as external API for fur-
ther process of quality assessment. All ambigius words in 
requirements highlighted according to their category after 
service finished its work. 

On the next step one more external API was used for 
evaluating readability indexes by service readability.io – text 
of every requirement was uploaded and resulting number 
was recieved from website.  

For graphical representation of evaluated quality results 
Visual Paradigm Diagram was used. Spider graph and 
stacked histogram were chosen as the most appropriate 
visualisaition of collected data. All the metrics that were 
calculated in prototype automatically synchronized with 
Visual Paradigm Service and published as a web-dash-
board.   

Fig. 2. Full-scope prototype in ArchiMate notation 

Fig. 7. Prototype scope in ArhiMate [36] notation  
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7 RESULTS 

 After implementing the proposed solution on require-

ments, it was tested on the sample requirement text. As a 

result, the following distribution of weak words was got: 

Fig. 8. Number of weak words per requirement. 

These weak words were highlighted in GUI and classi-
fied by different types of ambiguity: 

Fig. 9. Hightlighted ambiguous words in every requirement 

 
Final evaluation about overall quality was made: 

Fig. 10. Overall quality of all requirements by attributes 

CONCLUSION AND DISCUSSION 

Natural language still prevails in the majority of re-
quirement documents. Software engineers need ways to 
cope with the ambiguity inherent in natural language re-
quirements. In order to minimize their side effects at the 
early stages of the software development lifecycle, it is im-
portant to develop scalable automated solution to detect 
potential nocuous ambiguities in natural language require-
ment specifications. 

The usage of quality metrics in a software development 
lifecycle requires considering three important aspects. 
Firstly, obtaining all mentioned-above measurements by 
hand would be misleading, therefore automated tools be-
come required. Secondly, an automated prototype imple-
mentation should avoid the refusal of requirements engi-
neers – this tool is created due to help in improvement of 
requirements elicitation process, but not for punishment 
and identifying failures. Finally, decisions about which at-
tributes and metrics to apply should be wisely and gradu-
ally made: “Not everything that can be counted counts, 
and not everything that counts can be counted” – Albert 
Enshtein. 

Despite the fact that quantitative measurement is one of 
the foundations of modern empirical science, they should 
be used with caution and wisdom. Assessing the quality of 
requirements demands human judgment. This judgment 
can be assisted, but not replaced, by objective measure-
ments. Automated tool that provides low-level quality in-
dicators can provide valuable hints to improve high-level 
quality features of requirements. 

In this paper an automated approach for characterizing 
and identifing potentially nocuous ambiguities was de-
scribed. Given a natural language requirements document, 
ambiguous instances contained in the sentences were first 
extracted. Identified ambiguities can be the reason of mis-
understanding among different readers. The implementa-
tion can be usable by requirements analysts and will allow 
them to experiment with iterative identification of poten-
tial ambiguity moments in requirement documents. 
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