
IEEE TRANSACTIONS ON JOURNAL 1

Assessing the quality of the requirements
specification by applying GQM approach and

using NLP tools
Timoshchuk Evgenii

Abstract — Software requirements are quite difficult to measure in terms of quality without reviews and subjective opinions of

stakeholders. Quality assessment of specifications in an automated way saves project resources and prevents future latent

defects in software. Requirements quality can be evaluated based on a huge variety of attributes, but their meaning is quite vague

without any mapping to specific measurement metrics. Application of goal-question-metric (GQM) approach in the quality model

helps to choose the most important quality attributes and create a mapping with metrics, which can be collected and calculated

automatically. Text of software requirements written in natural language can be analyzed by NLP tools due to identify weak signle

words and phrases, which make statements ambiguous. Metrics for such quality attributes as ambiguity, singularity, subjectivity,

completeness, and readability are proposed in this work. The quality model was implemented in a prototype by adopting natural

language processing techniques for requirements written in the Russian language with the support of external API.

Index Terms — requirements quality, GQM approach, quality assessment, Natural Language Processing

—————————— ◆ ——————————

1 INTRODUCTION

Low quality of requirements may cause expensive conse-
quences during the software development lifecycle. Issues
in requirements, such as ambiguity and incompleteness
may lead to time and cost overrun in the project. Especially,
if iterations are long and feedback comes too late – the
faster a problem is found, the cheaper it is to fix. However,
it is not so easy to properly detect in automated way
whether a requirements specification has lack of clarity.
Some of these issues require specific domain knowledge to
be uncovered. For example, it is very difficult to detect
with automatic approaches whether a requirements
specification is lacking necessary features.

There are a variety of requirements management tech-
niques, tools, and practices in the software development
field. However, they should be tailored to the choosen de-
velopment methods. Requirements engineering assumes
that the requirements must meet a number of criteria. De-
scriptions of such criteria can be found in both the scientific
and methodological literature and put on standards. For
instance, the IEEE standard [1] for requirements engineer-
ing defines quality attributes for a single requirement: nec-
essary, appropriate, feasible, verifiable, correct, conform-
ing, complete, consistent, comprehensible etc. Several lan-
guage criteria are also defined for the text of requirements.
Unbounded and ambiguous terms should be avoided. Re-
quirements should state ‘what’ is needed, not ‘how’.

Despite the exact techniques on how to gather and val-
idate this requirements quality metrics are not formulated
by the standard (which is obviously beyond its area of con-
sideration), but they are the topic for various researches.

Software requirements in industry are most ofthen
written in natural language which has no any formal se-
mantics. This is the main reason why issues in require-
ments are so hard to detect. Approach that is presented in
this paper faces the problem of fast feedback and getting

some knowledge about specification’s semantics with con-
crete symptoms for a requirement artefact’s quality defect.

Natural language processing (NLP) tools and systems
have been applied to analysing requirements texts since
the 1980’s [29]. More and more NLP systems and tools with
applying requirements evaluation are developed in recent
years. It is a most appropriate technique to analyse human
text and collect some useful data about it.

Goal-question-metric (GQM) involves defining achiev-
able goals in order to attain quality thereby providing
questions in relation to how to achieve the goals and met-
rics are provided to ascertain the progress in attaining set
goals. This research work makes use of GQM by setting
goals such as unambiguity, completeness, readability that
the requirements must meet, questions on how to derive
these quality attributes, and what to measure in determin-
ing if our requirements match defined goals.

The ultimate goal of this work was encapsulating the
best of these techniques and methods for measurement re-
quirement quality into a single model and provide a pro-
totype of tool for automated validation of real-world re-
quirements against it with Russian language support. This
paper will present some measuring quality indicators for
natural language requirements presented in textual natu-
ral format. Identified quality indicators first of all should
point out concrete defects and provide suggestions for im-
provements. Proposed tool prototype combined all this in-
dicators and computes quality measures in a fully auto-
mated way.

This paper describes a workflow of a model that helps
to obtain low-level quality indicators based on some met-
rics of textual requirements, such as text length, number of
ambiguous terms, imperative verbal forms, etc. This model
has been implemented in a tool that computes quality met-
rics in a fully automated way.

2

2 RELATED STUDIES

Many publications discuss different problems in require-
ments specifications. First problem is automatization of as-
sessment process. Mostly researchers focus on approaches
for automated detection of specific defects in requirements
specifications without any additional interaction with user.
The main features of such tools include detection of simi-
larity in requirements [15] and ambiguity [16], detection of
missing information, linguistic flaws and passive sen-
tences [17].

K¨orner and Brumm presented RESI, a tool that scans
documents for linguistic flaws and reports them to the user
(see Section II-C). It can be used to detect defects in require-
ments specifications, but the high number of false positives
results prohibits the actual use of this tool in a real case
[18].

Fabbrini et al. presented QuARS (Quality Analyzer for
Requirement Specifications) tool that checks requirements
specification by comparing with predefined word lists [16].
The lists give indicators for problems and if the number of
indicators in the phrase exceeds a given threshold, require-
ments is ambigious.

Verma et al. presented their RAT (Requirements Analy-
sis Tool) [19] tool - a word processor that able to analyze
natural language requirements based on a user-defined
glossary and constrained language. RAT highlights prob-
lematic requirements directly in the requirements
specifications, but this process requires some training by
real users.

Goldin and Berry [24] implemented a tool called Ab-
stfinder to identify the abstractions from natural language
text used for requirements elicitation.

Lee and Bryant [25] developed an automated system to
assist the engineers to build a formal representation from
informal requirements.

Overhelming majority of authors suppose that ambigu-
ity carries a high risk of misunderstanding among different
readers. Several studies dealing with ambiguity identifica-
tion have aimed to help improve the quality of require-
ments documents. Some tools have been developed specif-
ically to detect, measure and reduce possible structural
ambiguities in text.

In paper Yang H, Willis A, De Roeck A and Nuseibeh B
describe an automated approach for characterizing and

detecting ambiguities that was implemented in NAI (Noc-
uous Ambiguity Identification) tool prototype [22]. Imple-
mented tool uses machine learning algorithm to determine
whether an ambiguous sentence is nocuous or innocuous,
based on a set of heuristics that draw on human judg-
ments, which we collected as training data. The tool fo-
cuses on coordination ambiguity.

Kamsties et al. [26] described pattern-driven inspection
technique to detect ambiguities in requirements.

Mich and Garigliano [27] investigate the use of a set of
ambiguity for the measurement in syntactic and semantic
ambiguity, which is implemented in tool LOLITA using
NLP algorithms.

Kiyavitskaya et al. [28] proposed a two-step approach in
which lexical and syntactic analysys was performed to
identify ambiguity. An automated tool was implemented
to measure what is potentially might be ambiguous specif-
ically for each sentence.

Another important proplem related to specification
quality assesment is a choice of correct criteria for overall
evaluation. Davis et al. evaluated 24 criteria and metrics for
determination of the overall requirements specification
quality [20]. Some of the criteria may affect and even con-
tradict each other. Therefore, the authors made a conclu-
sion that a perfect requirements specification does not ex-
ist. Another approach was proposed by Wilson et al. – he
counted the occurrences of certain expressions in a docu-
ment to evaluate its quality [21] with indicators that in-
clude completeness and consistency. This group of re-
searches developed a tool that focus on a broader under-
standing of requirements quality, instead of just a single
aspect. Implemented ARM tool is based on the IEEE 830
standard and aims at developing metrics for requirements
quality.

Ambriola and Gervasi [23] developed a web-based NLP
tool, called Circe, which was designed to facilitate the gath-
ering, elicitation, selection, and validation of requirements.

Unlike other related works show attempts to evaluate
requirements in automatically by only one quality criteria,
current paper describes an approach to identify several
correct quality attributes with correlated metrics to meas-
ure, combining them into one overall evaluation in an au-
tomated way. Moreover, all the mentioned-above tools
support only English language and don’t support require-
ments written in Russian.

Fig. 1. Example of requirement analysis workflow for automated tool conQAT [30]

 3

3 GQM APPROACH

The Goal-Question-Metric is a method based on system of
questions and simple answers about properties evaluation
[3]. This approach consists of three main steps: specifying
goals, pointing relevant attributes and providing measure-
ments. GQM framework helped to define appropriate met-
rics and estimate the quality of requirements in current
case. The goal should be defined for an object, with a pur-
pose, from a perspective, in an environment. The overall
goal of current project it to measure quality of require-
ments and it can be formulated by following template:

Analyze requirement quality
for the purpose of improving
with respect to quality attributes
from the viewpoint of project managers
in the context of product development.

In addition, several sub-goals were identified, which
should be fulfilled to achieve the main goal. For instance:

Sub-goal: Analyze requirement unambiguity for the pur-
pose of improving with re-spect to quality attributes from
the viewpoint of project managers in the context of product
development.
Question: How many vague words and weak phrases
make requirement ambiguous?
Metric: Number of ambiguous words in 1 requirement di-
vided by an average number of words in 1 requirement.

In this approach identification of the questions and metrics
allows to properly clarify the goals in order to achieve the
transparency and propose how and why the goals are sup-
posed to be achieved. Clarifiacation becomes more con-
crete during the movement from top level to bottom and
helps to avoid abstract unreal goals.

GQM approach is supported by several specific method-
ological phases [Fig.1] [4]:

• Definition - goals, questions, metrics and hypotheses

are defined and documented. Main attributes, formulas
and measurement approaches and exact metrics are de-
fined.

• Data Collection - searching and counting for ambigu-
ous words and other quality indicators in source text.

• Interpretation - collected data is processed into quality
measurement results, that provides answers on defined
questions to reach the goal.

GQM approach in current case consists of 5 main steps [4]:

▪ Business goal setting. The main purpose of this case is

automated evaluating quality of software requirements
by range of attributes.

▪ Generating questions. Breaking down goals into com-
ponents, defining them in a quantifiable way, f.e.:
“How much should the proposal structure be complied
with so that the requirement has the quality property
of complete-ness”?

▪ Specifying measures. Detecting metrics that should be
collected to answer questions, f.e.: “Percentage of
matching requirement sentence structure template”.

▪ Defining mechanism of data collection. Measures are
collected by semantic and syntax text analysis based on
matching words with predefined diction-aries.

▪ Gathering and analyzing of collected data. Calculated
metrics should be interpreted into quality estimation
for each requirement and overall Software Require-
ments Specification (SRS).

Process of measuring quality in software development has
it’s certain difficulties. In order to understand the effects of
actions that are implemented in software development and
gain the understanding of how the improvements can be
made for a future process a certain purpose should be put
in measurement process. The purpose may be:

1. Understanding of the product requirements. Correct
measurements will allow to see the graphical or mathemat-
ical representation of a requirement elicitation process,
whether it will be a time spend on describing every feature.

2. Controlling the product requirements. While having
a graphical representation of the SRS document, the rela-
tions between different requirements and user actions can
be identified, which further would allow to control the im-
pact on the development process in total.

3. Improving the product requirements. can be achieved
after the control of the development processes is gained.
Certain improving effect can be applied to processes, vari-
ables and their relationships.

Metrics for the requirements should allow to determine
their quality for the current development process and to
represent collected resulting data in a graphical way.

Fig. 2. Phases of Goal/Question/Metric approach [4]

Fig. 3. Process of collecting metrics and measurements [4]

4

4 QUALITY ATTRIBUTES

Many authors in their methodologies have already defined
the key interdependent [Fig. 4] quality attributes [6].

• Validity – the clients should be able to validate

(confirm) the requirement according to their

needs.

• Verifiability – the engineer must be able to verify

that the system-to-be meets the specified system.

• Modifiability – requirements must be able modi-

fiable with ease for maintenance.

• Completeness – all client’s needs must be cov-

ered.

• Consistency – should not be any contradiction

among requirement.

• Understandability – the requirements are cor-

rectly understood without difficulty.

• Unambiguity – there exists only one interpreta-

tion of the requirement (no ambiguous words in

the requirement sentence).

• Traceability – there exists an explicit relationship

of each requirement with design, implementation

and testing artefacts.

• Singularity – each requirement is clearly deter-

mined and identified, without mixing it with

other requirements.

Mentioned-above attributes come out from following

types of unbounded or ambiguous terms that should be
avoided according to the standard:

- superlatives (‘best’, ‘most’);

- subjective language (‘user friendly’, ‘easy to use’, ‘cost-

effective’);

- vague pronouns (‘it’, ‘this’, ‘that’);

- ambiguous terms such as adverbs and adjectives (‘al-

most always’, ‘significant’, ‘minimal’) and ambiguous

logical statements (‘or’, ‘and/or’);

- open-ended, non-verifiable terms (such as ‘provide

support’, ‘but not limited to’, ‘as a minimum’);

- comparative phrases (‘better than’, ‘higher quality’);

- loopholes (‘if possible’, ‘as appropriate’, ‘as applica-

ble’);

- terms that imply totality (‘all’, ‘always’, ‘never’, and

‘every’);

Unambiguity. It requires that only one semantic interpre-
tation of the requirement exists. To evaluate the ambiguity
of each requirement, we propose to use dictionaries with a
set of words, which indicates ambiguity in the requirement
[13][14]. There are several types of them:

Type English examples Russian examples

Quality ‘best’, ‘most’, ‘ap-
propriate’, ‘ade-
quate’

‘лучший’, ‘самый’,
‘подходящий’,
‘адекватный’

Subjec-
tivity

‘user-friendly’,
‘easy to use’, ‘ra-
tional’

‘легкий в
использовании’

Quantity ‘about’, ‘signifi-
cant’, ‘minimal’,
‘few’, 'all', 'each',
'every', 'any', 'few',
'little', 'many',
'much', 'several',
'some'

‘примерно’,
‘несколько’,
’немного’

Fre-
quency

‘almost always’,
‘usually’, ‘as a rule’,
‘never’

‘почти всегда’,
‘обычно’, ‘как пра-
вило’

Persis-
tency

‘long’, ‘longer’,
‘durable’, ‘momen-
tary’

‘долго’, ‘больше’,
‘прочный’,
‘сиюминутного’

Probabil-
ity

‘probably’, ‘possi-
bly’, ‘if it possible’,
‘unlikely’

‘возможно’, 'если
это возможно’, 'вряд
ли'

Open
listings

‘etc.’, ‘and so forth’,
‘and so on’

‘и так далее’

Position /
size

‘close’, ‘bigger’,
‘tall’, ‘far’, ‘short’,
‘small’, ‘huge’

‘близко’, ‘больше’,
‘падение’, ‘далеко’,
‘короткий’, ‘неболь-
шой’, ‘огромный’

Compar-
ative
phrases

‘better than’,
‘higher quality’,
‘same as’

‘лучше, чем’, 'выше
качество’, 'то же,
что’

Loop-
holes

‘if possible’, ‘as ap-
propriate’, ‘as ap-
plicable’

‘если возможно’, ‘со-
ответствующие’, ‘в
качестве примени-
мого’

Weak ad-
verb or
adjective

'as desired', 'at last',
'either', 'eventu-
ally', 'if appropri-
ate', 'if desired', 'in
case of', 'if neces-
sary'

'по желанию', 'нако-
нец', 'либо', 'в конеч-
ном счете', 'если
уместно', 'если жела-
тельно', 'в случае',
'если необходимо'

Fig. 4. Dependencies between of qualitative attributes [6]

 5

▪ Connection words dictionary – (“and”, “or”, “but”,

“however”, “otherwise”, “even”, “although”, etc.)

the usage of such words not a problem in itself, but

their too frequent use leads to a decrease in the

quality of requirements, especially in terms of

uniqueness and ambiguity.

▪ Negative adverbs dictionary – the negative particle

is the word not used to indicate negation, denial, re-

fusal, or prohibition. Repeated use of such words

makes a sentence difficult to understand and de-

crease the ambiguity of the requirement.

▪ Anaphoric expressions dictionary – the use of ex-

pressions, the interpretation of which depends on

other expressions previously encountered in the

text, for example: “which”, “he”, “she”, “it”, “they”,

“where”, “this”, “that”, etc. Requirements contain-

ing anaphora usually do not have characteristics of

clarity and unambiguity.

▪ Undefined terms dictionary – In addition to connec-

tive words, the quality of requirements is signifi-

cantly affected by the use of vague terms that lead

to ambiguity.

As the metric for assessing ambiguity, was used the follow-
ing formula:

𝑈𝑛𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 % = (1 −
𝑁𝑎𝑚𝑏𝑖𝑔

𝑁𝑡𝑜𝑡𝑎𝑙

) × 100

Where 𝑁𝑎𝑚𝑏𝑖𝑔 – the number of words in the requirement,
𝑁𝑎𝑚𝑏𝑖𝑔 – the number of ambiguous words in the require-
ment.

Singularity. Statement of the requirement must relate to
only one unique requirement that does not overlap with
others. The presence of several modal words tells us that
the requirement contains several meanings and that the
statement does not have the characteristic of singularity.
These words may include could, may, might, can, should,
will, shall, must, would, etc. The number of connective
words may also indicate the presence of several require-
ments within one (mentioned above). As the metric for as-
sessing singularity, was used the following formula:

𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 % = (1 −
(𝑁𝑚𝑜𝑑𝑎𝑙 − 1) + 𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑒

𝑁𝑡𝑜𝑡𝑎𝑙

) × 100

where 𝑁𝑡𝑜𝑡𝑎𝑙 – the number of words in the requirement,
𝑁𝑚𝑜𝑑𝑎𝑙 – the number of modal verbs which are not zero,
𝑁𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑒– the number of connective words in the require-
ment.

Subjectivity. This attribute indicates the presence of per-
spectives, feelings, or opinions entering the decision-mak-
ing process. The leading causes of subjectivity in require-
ments can be:

• dangerous plural with ambiguous reference,

• combination of “and” and “or” that leads to un-

clear associativity,

• unclear inclusion,

• passive voice,

• imprecise and inside behavior,

• negative or too broad reason.

Readability. This attribute indicates how easily require-
ment text can be read and understood, it can be based on
the number of syllables per word and number of words per
sentence. It can be calculated by Flesch-Kincaid Grade
Level [37], Coleman-Liau Grade Level [38], and Smog
Grade [39]. The second one was chosen:

𝑅𝑒𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑖 𝐶𝐿𝐼 = 0.0588 𝐿 − 0.296𝑆 − 15.8

where L – average number of letters per 100 words, S – av-
erage number of sentences per 100 words. If CLI is around
10, text is easy to read, but if CLI > 15 text is too difficult
for understanding. A mapping into percentage interpreta-
tion was made (if CLI index is more than 17.5, than reada-
bility is 0%) by following formula:

𝑅𝑒𝑎𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 % = (1 −
| 𝐶𝐿𝐼 − 12.5 |

5
) × 100

Completeness. It requires that the requirement contain all
necessary elements, including constraints and conditions,
to enable the requirement to be implemented [18].

Example of structure template in Table 1 for this require-
ment:

“In the Combat Zone, an HQ Switch, which is identical
to a trunk node switch, shall be given two independent
links to at least two other nodes in the network”.

Element Text

Actor an HQ switch

Conditions of Action
Action

Object of action

Constraints of action

Source of Object

Destination of Action

in the Combat Zone
two independent links

-

To at least two other nodes in the net

To at least two other nodes in the net

Which identical to a trunk node

switch

Table. 1. Structural template for completeness

Completeness quality attribute was calculated by this for-
mula:

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 % =
𝑁𝑓𝑖𝑙𝑙𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙

× 100

where 𝑁𝑡𝑜𝑡𝑎𝑙 – the number of elements in the structural
template, 𝑁𝑓𝑖𝑙𝑙𝑒𝑑 – the number of elements from template
that were identified in requirement sentence.

6

5 NATURAL LANGUAGE PROCESSING

Natural Language Processing is a field of computer science
and computational linguistics that aims to analyze linguis-
tic data from input using computational methods and tech-
niques [33]. The natural language is very complicated, it is
subject to syntactic and semantic rules. It studies the con-
ceptual dimension that refers to “pragmatic” actions which
are intended. The syntactic rules describe the major pattern
of a sentence such as nouns, adjectives, and verbs [34]. The
semantic rules refer to the meaning of each word in the
sentence and relation between words when they are com-
bined, which is “compositional semantic” [35].

Natural language texts are used to be analyzed in a se-
quential process. This process starts with lexical and struc-
tural elements. For its purpose text should be parsed in a
search of the most suitable syntax tree. After that some
complex techniques are applied for interpretation of the se-
mantic content due to meaning understanding. Of course,
such analysis does not allow to understand fully the con-
tent and get independent meaning of the sentence without
any discrepancies.

Several techniques were used in current model work-
flow: splitting sentence in syntax tree, part-of-speech tag-
ging, morphological analysis and calculationg word distri-
bution and co-occurance by redefined dictionaries [Fig. 5].
Inputed text document with requirements should go
through several text preprocessing steps: sentence split-
ting, POS-tagging, and phrase-based shallow parsing.

Sentence splitting. At first, the text is splitted into a set
of sentences by using a sentence boundary detector.

POS-tagging. Then, for each requirement sentence, the
parser based on individual words and associated phrase
information that used to obtain word lemma and POS tags
such as noun, verb, adjective, adverb, etc. In current model
the Stanford NLP library [42] was used for this. POS tag-
ging helped to determine so-called substituting pronouns.
A detailed description of POS tagging technical details is
beyond the scope of this paper, but can be found, for exam-
ple, in [41]. Given a sentence in natural language text, it
determines the role and function of each single word in the
sentence. The output is usually a so-called tag for each
word, e.g. whether a word is an adjective, a particle or a
possessive pronoun. These are pronouns that do not repeat

the original noun and, thus, need a human’s interpretation
of its dependency. A syntax tree shows the main structure
of the sentence [Fig. 6], where tree’s leafs are the words of
the sentence and inner nodes express the sentence’s com-
position. In example “the channel selection” forms a nom-
inal phrase (NP), as indicated by their common parent
node NP. The additional information “of the headphones”
is added as prepositional phrase (PP). The noun phrase
and the prepositional phrase form a new nominal phrase,
which is the object of the verb “changes”.

Morphological Analysis. Based on POS-tagging more
detailed analysis of text was performed that determines its
inflection. This step contains identifying a verb’s tense or
an adjective’s comparison. The main outcome of this step
is analysis for usage of adverbs and adjectives in their com-
parative or superlative form.

Dictionaries. For describing different quality attributes
were used several dictionatries with ambigious phrases
and words based on quality standards and case study ex-
perience. Normalisation technique for dicitionry words
called lemmatisation was applied, that reproduces the orig-
inal form of a word. This technique is very similar to stem-
ming, Porter Algorithm [40], that based on the POS tag as
the word’s morphological form instead of heuristics.

Fig. 5. NLP workflow for requirement analysis

Fig. 6. Syntax tree for NLP workflow

 7

6 PROTOTYPE

To fully support the extraction of metrics for all before-
mentioned quality attributes, the prototype should have
several features [Fig. 7].

The prototype is a software tool which main goal is to
perform requirements quality measurement. Require-
ments can be of any type expressed in the text form: func-
tional, non-functional, use-cases. The prototype is able to
perform several functions:
 – Integration with project management system to gather
textual requirements from it (via is API).
 – Perform syntax and semantic analysis of said require-
ments (supporting Russian language [13][14]).

The core of the prototype is the Requirement Quality
Model which contains a consistent set of requirements
quality metrics and is expressed in algorithms on how to
measure these metrics and how to draw conclusions (aver-
age quality of a requirement/set of requirements). The pro-
totype provides a requirement engineer with a graphical
user interface or command-line interface to obtain the re-
sults of requirements measurement.

For NLP were used custom analogues of Python librar-
ies Wordnet [31] and Spacy [32] with Russian language
support. Analysys of ambiguity was implemented based
on open-source microservice OpenReqEU.

To get results of the requirements analysis the prototype

provides the requirements engineer with the either graph-
ical or command line interface. Here are some of the inter-
face functions that are available:

• List all the requirements;

• Show quality metrics of the specific requirement;

• Show quality metric for all requirements analysed.

The dictionaries of ambigious words were translated
into Russian language. Docker container for OpenReqEU
microservice was rebuild and used as external API for fur-
ther process of quality assessment. All ambigius words in
requirements highlighted according to their category after
service finished its work.

On the next step one more external API was used for
evaluating readability indexes by service readability.io – text
of every requirement was uploaded and resulting number
was recieved from website.

For graphical representation of evaluated quality results
Visual Paradigm Diagram was used. Spider graph and
stacked histogram were chosen as the most appropriate
visualisaition of collected data. All the metrics that were
calculated in prototype automatically synchronized with
Visual Paradigm Service and published as a web-dash-
board.

Fig. 2. Full-scope prototype in ArchiMate notation

Fig. 7. Prototype scope in ArhiMate [36] notation

8

7 RESULTS

 After implementing the proposed solution on require-

ments, it was tested on the sample requirement text. As a

result, the following distribution of weak words was got:

Fig. 8. Number of weak words per requirement.

These weak words were highlighted in GUI and classi-
fied by different types of ambiguity:

Fig. 9. Hightlighted ambiguous words in every requirement

Final evaluation about overall quality was made:

Fig. 10. Overall quality of all requirements by attributes

CONCLUSION AND DISCUSSION

Natural language still prevails in the majority of re-
quirement documents. Software engineers need ways to
cope with the ambiguity inherent in natural language re-
quirements. In order to minimize their side effects at the
early stages of the software development lifecycle, it is im-
portant to develop scalable automated solution to detect
potential nocuous ambiguities in natural language require-
ment specifications.

The usage of quality metrics in a software development
lifecycle requires considering three important aspects.
Firstly, obtaining all mentioned-above measurements by
hand would be misleading, therefore automated tools be-
come required. Secondly, an automated prototype imple-
mentation should avoid the refusal of requirements engi-
neers – this tool is created due to help in improvement of
requirements elicitation process, but not for punishment
and identifying failures. Finally, decisions about which at-
tributes and metrics to apply should be wisely and gradu-
ally made: “Not everything that can be counted counts,
and not everything that counts can be counted” – Albert
Enshtein.

Despite the fact that quantitative measurement is one of
the foundations of modern empirical science, they should
be used with caution and wisdom. Assessing the quality of
requirements demands human judgment. This judgment
can be assisted, but not replaced, by objective measure-
ments. Automated tool that provides low-level quality in-
dicators can provide valuable hints to improve high-level
quality features of requirements.

In this paper an automated approach for characterizing
and identifing potentially nocuous ambiguities was de-
scribed. Given a natural language requirements document,
ambiguous instances contained in the sentences were first
extracted. Identified ambiguities can be the reason of mis-
understanding among different readers. The implementa-
tion can be usable by requirements analysts and will allow
them to experiment with iterative identification of poten-
tial ambiguity moments in requirement documents.

ACKNOWLEDGMENT

Author wish to thank the organizers of CASE in Tools In-

ternational Hackathon and every single person who con-

tributed to the success of this event. This research would

not have been conducted without efforts of Konstantin

Valeev, the challenge owner, who shed more light on grey

areas of this project and provided this research with

enough resources.

 9

REFERENCES

1. IEEE, “Systems and Software Engineering – Life Cycle Processes –

Requirements Engineering,” ISO/IEC/IEEE 29148:2018(E) (2018)

2. Khurana, Diksha & Koli, Aditya & Khatter, Kiran & Singh, Su-

khdev. (2017). Natural Language Processing: State of The Art, Current

Trends and Challenges.

3. Basili, Victor; Gianluigi Caldiera; H. Dieter Rombach, The Goal

Question Metric Approach, Basili,Victor; GianluigiCaldiera,1994

4. Solingen, Rini & Berghout, Egon. (1999). The Goal/Question/Metric

Method: A Practical Guide for Quality Improvement of Software De-

velopment.

5. Rosanez. (2017). A.Semi-Automatic Checklist-Based Quality As-

sessment of Natural Language Requirements. Campinas.

6. Génova, G., Fuentes, J. M., Llorens, J., Hurtado, O., & Moreno, V.

(2011). A framework to measure and improve the quality of textual

requirements. Requirements Engineering, 18(1), 25–41.

doi:10.1007/s00766-011-0134-z

7. Daniel Jurafsky & James H. Martin. (2006). Speech and Language

Processing: An introduction to natural language processing, compu-

tational linguistics, and speech recognition.

8. Génova, Gonzalo & Fuentes, José M. & Llorens, Juan & Hurtado,

Omar & Moreno, Valentín. (2011). A Framework to Measure and Im-

prove the Quality of Textual Requirements. Requirements Engineer-

ing. 18. 10.1007/s00766-011-0134-z.

9. Bokhari, Mohammad & Siddiqui, Shams. (2011). Metrics for Re-

quirements Engineering and Automated Requirements Tools.

10. Chantree, F. & Nuseibeh, B. & De Roeck, Anne & Willis, Alistair.

(2006). Identifying Nocuous Ambiguities in Natural Language Re-

quirements. Proceedings of 14th IEEE International Requirements En-

gineering Conference (RE'06). 59 - 68. 10.1109/RE.2006.31.

11. Massey, Aaron & Rutledge, Richard & Antón, Annie & Swire, Pe-

ter. (2014). Identifying and classifying ambiguity for regulatory re-

quirements. 2014 IEEE 22nd International Requirements Engineering

Conference, RE 2014 - Proceedings. 83-92. 10.1109/RE.2014.6912250.

12. Completeness and Consistency Checking of System Requirements:

An Expert Agent Approach,” Expert Systems with Applications 11,

no. 3 (1996): 263–276

13. Кирилл Игоревич Гайдамака, “Характеристики и индикаторы

качества требований для русскоязычной инженерной среды,” in

Конференция «технологии разработки информационных си-

стем» (ФГАОУ ВО "Южный федеральный университет", 2017)

14. Виктор Константинович Батоврин and Кирилл Игоревич Гай-

дамака, “Некоторые особенности оценки характеристик требова-

ний к системам,” Информатизация и связь, no. 4 (2017): 191–196.

15. Y. Pisan, “Extending requirement specifications using analogy,” in

ICSE’00: 22nd Int. Conf. on Software Engineering. Limerick, Ireland:

ACM, 2000, pp. 70–76.

16. F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “The linguistic ap-

proach to the natural language requirements quality: Benefit of the

use of an automatic tool,” in SEW’01: 26th Annual NASA Goddard

Software Engineering Workshop. IEEE Computer Society, 2001, pp.

97–105.

17. N. Power, “Variety and quality in requirements documentation,”

in REFSQ’01: 7th Int. Workshop on Requirements Engineering : Foun-

dation for Software Quality, 2001, pp. 165–170.

18. S. J. K¨orner, M. Landh¨außer, and W. F. Tichy, “Transferring re-

search into the real world: How to improve RE with AI in the automo-

tive industry,” in AIRE’14: 1st Int. Workshop on Artificial Intelligence

for Requirements Engineering, Aug. 2014

19. K. Verma and A. Kass, “Requirements analysis tool: A tool for au-

tomatically analyzing software requirements documents.” in Int. Se-

mantic Web Conf., ser. Lecture Notes in Computer Science, A. P.

Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. W. Finin, and K.

Thirunarayan, Eds., vol. 5318. Springer, Oct. 2008, pp. 751–763

20. A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh,

G. Kincaid, G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M. The-

ofanos, “Identifying and measuring quality in a software require-

ments specification,” in 1st Int. Software Metrics Symposium, May

1993, pp. 141–152

21. W. Wilson, L. Rosenberg, and L. Hyatt, “Automated analysis of

requirement specifications,” in ICSE’97: 19th Int. Conf. on Software

Engineering, May 1997, pp. 161–171

22. Yang H, Willis A, De Roeck A, Nuseibeh B. Automatic detection

of nocuous coordination ambiguities in natural language require-

ments. InProceedings of the IEEE/ACM international conference on

Automated software engineering 2010 Sep 20 (pp. 53-62). ACM.

23. Ambriola, V., and Gervasi, V. 1997. Processing natural language

requirements. In Proceedings of the 12th international conference on

Automated software engineering 36-45.

24. Goldin, L., and Berry, D. M. 1994. Abstfinder, a prototype abstrac-

tion finder for natural language text for use in requirements elicita-

tion: design, methodology, and evaluation. In Proceedings of the First

International Conference on Requirements Engineering, 18–22.

25. Lee, B. S., and Bryant, B. R. 2004. Automation of software system

development using natural language processing and two-level gram-

mar. Radical Innovations of Software and Systems Engineering in the

Future. Springer, Heidelberg 219–233.

26. Kamsties, E., Berry, D., and Paech, B. 2001. Detecting ambiguities

in requirements documents using inspections. In Proceedings of the

First Workshop on Inspection in Software Engineering (WISE'01), 68-

80.

27. Mich, L., and Garigliano, R. 2000. Ambiguity measures in require-

ment engineering. In Proceedings of international conference on soft-

ware—theory and practice (ICS2000), 39– 48.

28. Kiyavitskaya, N., Zeni, N., Mich, L., and Berry, D. M. 2008. Re-

quirements for tools for ambiguity identification and measurement in

10

natural language requirements specifications. Requirements Engi-

neering Journal 13, 207–240.

29. Abbot R. Program design by informal English descriptions.

Comm. ACM 26(11): 882-894, 1983.

30. Femmer H, Fernández DM, Juergens E, Klose M, Zimmer I, Zim-

mer J. Rapid requirements checks with requirements smells: Two case

studies. InProceedings of the 1st International Workshop on Rapid

Continuous Software Engineering 2014 Jun 3 (pp. 10-19). ACM.

31. (2017). ru-wordnet. GitHub repository. Retrieved from

https://github.com/jamsic/ru-wor

32. Baburov, Y. (2018). spacy-ru. GitHub repository. Retrieved from

https://github.com/buriy/spacy-ru

33. Rosanez. (2017). A.Semi-Automatic Checklist-Based Quality As-

sessment of Natural Lan-guage Requirements. Campinas.

34. Génova, G., Fuentes, J. M., Llorens, J., Hurtado, O., & Moreno, V.

(2011). A framework to measure and improve the quality of textual

requirements. Requirements Engineering, 18(1), 25–41.

doi:10.1007/s00766-011-0134-z

35. Daniel Jurafsky & James H. Martin. (2006). Speech and Language

Processing: An introduc-tion to natural language processing, compu-

tational linguistics, and speech recognition.

36. Pubs.opengroup.org. (2019). ArchiMate® 3.1 Specification. [online]

Available at: https://pubs.opengroup.org/architecture/archimate3-

doc/ [Accessed 20 Nov. 2019].

37. Kincaid, J.P., Fishburne, R.P., Rogers, R.L., & Chissom, B.S. (1975).

Derivation of new readability formulas (automated readability index,

fog count, and flesch reading ease formu-la) for Navy enlisted person-

nel. Research Branch Report 8–75. Chief of Naval Technical Training:

Naval Air Station Memphis.

38. Coleman, Meri; and Liau, T. L. (1975); A computer readability for-

mula designed for ma-chine scoring, Journal of Applied Psychology,

Vol. 60, pp. 283–284

39. McLaughlin, G. Harry (May 1969). "SMOG Grading — a New

Readability Formula" (PDF). Journal of Reading. 12 (8): 639–646

40. M. Porter. An algorithm for suffix stripping. Program: electronic

library and information systems, 198

41. D. Jurafsky and J. H. Martin. Speech and Language Processing.

Pearson Education, 2014

42. K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-

Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In

Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies

(NAACL-HLT), 2003.

https://github.com/jamsic/ru-wor
https://github.com/buriy/spacy-ru

