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Abstract—Trace models such as Finite State Machines 

(FSMs) are widely used in the area of analysis and synthesis of 

discrete event systems. FSM minimization is a well-known 

optimization problem which allows to reduce the number of 

FSM states by deriving the canonical form that is unique up to 

isomorphism. In particular, the latter is a base for FSM-based 

‘black-box’ test derivation methods such as W-method and its 

modifications. Since nowadays the behavior of many software 

and hardware systems significantly depends on time aspects, 

classical FSMs are extended by clock variables including input 

and output timeouts. The minimization of a Timed Finite State 

Machine (TFSM) includes both state and time aspects 

reduction. Existing approaches allow to derive the canonical 

representation for non-initialized deterministic TFSMs while 

for initialized TFSMs, i.e., TFSMs with the designated initial 

state, several pair-wise non-isomorphic minimal forms can 

exist. In this paper, we determine initialized TFSM classes for 

which the minimal form is unique up to isomorphism. 
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I. INTRODUCTION 

Finite State Machines (FSM) [1, 2] are widely used for 
synthesis and analysis of discrete components of 
telecommunication and other hardware and software 
systems [3, 4, 5]. The complexity of solving many problems 
significantly depends on the number of states of an FSM 
that represents the system (component) specification; 
moreover, having the canonical form of a model usually 
simplifies solving these problems. For example, almost all 
FSM-based test derivation methods [6, 7] with guaranteed 
fault coverage for telecommunication protocols and other 
control systems with deterministic behavior are developed 
for reduced FSMs, i.e., FSMs which have different behavior 
at any two different states and such a reduced machine is 
unique for any complete deterministic FSM. 

In the classical FSM theory, the FSM minimization 
methods are well developed [1], i.e., given a deterministic 
complete FSM, it is well known how to derive a reduced 
form of the FSM that in fact is the canonical representation 
of a complete deterministic FSM. Nowadays time aspects 
become very important when describing the behavior of 
digital and hybrid systems, and, respectively, classical FSMs 
have been extended with time variables [see, for example, 8, 
9, 10, 11]. A timed FSM (TFSM) is an FSM annotated with 
a clock and extended by input/output timeouts and 
input/output timed guards [10, 12]. Input timed guards 
describe the behavior at a given state for inputs which arrive 
during an appropriate time interval until timeout at the state 
expires. If no input is applied until the clock value reaches 
an (input) timeout then the system can spontaneously move 
to another state. An output timeout describes how long an 
applied input is processed at a given state. In the number of 

cases [10], an FSM with output timed guards is considered 
when an interval of possible output delays for processing 
each transition is given. In this paper, we assume that every 
output timeout is a non-negative integer. As a simple 
example, computers or mobiles can be considered when the 
devices move to a sleep mode if no button is pressed during 
the appropriate number of time units, i.e., no input is 
applied. 

When minimizing classical FSMs (and other trace 
models) most attention is paid to minimizing the number of 
states of the machine under investigation. Differently from 
classical FSMs, a timed FSM can have several non-
isomorphic state reduced forms and time aspects should be 
also taken into account when minimizing a TFSM. In [13], 
the notion of a time and state reduced non-initialized FSM 
with timed guards and timeouts is introduced. The authors 
also show that such minimal form is unique up to 
isomorphism for a non-initialized TFSM. However, such 
minimal form is not unique for an initialized FSM with 
timeouts while such machines are widely used for modeling 
timed systems with a reliable reset signal. For example, a lot 
of test derivation techniques are developed for initialized 
FSMs and the absence of the unique reduced form for 
Timed FSMs do not allow to directly apply W-methods and 
its derivatives to initialized TFSMs [14]. 

It is known that the reason for having several minimal 
forms is related to input timeouts [15], since for FSMs with 
timed guards there is the unique state and time reduced FSM 
with time guards [16]. In this paper, we determine classes of 
initialized TFSMs for which the unique minimal form can 
be derived. 

The structure of the paper is as follows. Section 2 
contains the preliminaries for classical and timed FSMs. In 
Section 3, the related work on minimizing TFSMs is briefly 
described. In Section 4, we determine a class of initialized 
TFSMs for which the minimal form is unique up to 
isomorphism. In Section 5, we show how the unique form 
can be derived for an FSM with timeouts based on its 
transformation to an FSM with timed guards. Section 6 
concludes the paper. 

II. PRELIMINARIES 

This section contains basic definitions of classical and 
timed Finite State Machines. 

A. Finite State Machines 

The model of a Finite State Machine (FSM) [1] is used 
for describing the behavior of a system that moves from state 
to state under input stimuli and produces predefined output 
responses. If the system has a reliable reset then usually the 
system behavior is described by an initialized FSM, i.e., by 
an FSM with the designated initial state. Formally, an 



initialized FSM is a 5-tuple S = (S, I, O, hS, s0) where S is a 
finite non-empty set of states with the designated initial 
state s0, I and O are input and output alphabets, and hS 

 (S  I  O  S) is the transition (behavior) relation. A 

transition (s, i, o, s) describes the situation when an input i is 

applied to S at the current state s and S moves to state s and 
produces the output (response) o.  

A trace or an Input/Output sequence / of the FSM S at 
state s is a sequence of consecutive input/output pairs starting 

at the state s. There is a trace / = i1/o1, i2/o2, …, in/on at 
state s of FSM S if and only if there exist transitions (s, i1, o1, 

s1), (s1, i2, o2, s2), …, (sn-1, in, on, sn). Given a trace /,  is 

the input projection of the trace (input sequence) while  
is the corresponding output projection (output sequence), 
i.e., an output response of the FSM when the input 

sequence  is applied at state s. In this paper, if the 
converse is not explicitly stated, we consider complete 
and deterministic FSMs where for each state s and input 

sequence  there exists a single trace / at state s of the 

FSM S. Given an input sequence  of a deterministic 

complete FSM, state s' is the -successor of state s in FSM 

S if S moves from state s to state s' when  is applied. 

Given an initialized FSM, a trace / is a trace of the FSM 
S if it is a trace at the initial state of S.  

B. Timed Finite State Machines 

In this paper, a Timed FSM (TFSM) is an FSM with 
timeouts that can spontaneously move to another state when 
the timeout expires at a current state. Respectively, a TFSM 
is an FSM annotated with a clock (timed variable) and 
timeouts. A good example is a server implementation which 
can decline the connection when a client request is not 
applied within an appropriate timeout. Correspondingly, an 
initialized TFSM is a 6-tuple S = (S, I, O, hS, ΔS, s0) where S 
is a finite non-empty set of states with the designated 
initial state s0, I and O are input and output alphabets, hS 

 S  I  O  S  Z is the transition relation, ΔS is the 
timeout function and Z is a set of output delays which are 
nonnegative integers. We consider the timeout function ΔS: S 

→ S  (N  {}) where N is the set of positive integers: for 
each state this function specifies the maximum time for 
waiting for an input. If no input is applied until an (input) 
timeout expires then the system can spontaneously move to 
another state. By definition, for each state of the TFSM 
exactly one timeout is specified. An output delay describes 
the number of ticks when an output has to be produced after 

applying an input. A transition (s, i, o, s, d) describes the 
situation when an input i is applied to S at the current state s. 

In this case, the FSM moves to state s the clock value then 
is set to zero and S produces output o after d time units. 
Given state s of TFSM S such that ΔS(s) = (s', T), if no 
input is applied before the timeout T expires then the 
TFSM S moves to state s' while the clock value is set to 

zero. If ΔS(s) = (s', ) then s' = s; in other words, in this 
case, the TFSM can stay at state s infinitely long waiting 
for an input. 

In this work, we consider complete and deterministic 

TFSMs where for each pair (s, i)  S  I, there exists a 

single transition (s, i, o, s′, d)  hS. 

Similar to [7], for each state s of TFSM S we consider 
the function time(s, t) = s' that determines state s' that will 

be reached by the TFSM if no input is applied during t time 
units. 

A timed input is a pair (i, t) where i  I and t is a real; a 
timed input (i, t) means that input i is applied to the TFSM 

at time instance t. A timed output is a pair (o, d) where o  

O and d is the output delay. A sequence of timed inputs  = 
(i1, t1) … (in, tn) is a timed input sequence, a sequence of 

timed outputs  = (o1, d1) … (on, dn) is a timed output 

sequence. A sequence / = (i1, t1)/(o1, d1) … (in, tn)/(on, dn) 
of consecutive pairs of timed inputs and timed outputs 
starting at the state s is a timed I/O sequence or a timed trace 

of TFSM S at state s. Similar to FSMs,  is an applied 

timed input sequence while  is the corresponding output 

response of the TFSM to sequence  of applied inputs. 
The behavior of TFSM S at state s is the set of all timed 

traces at this state. For a timed input sequence  of TFSM 

S at state s the -successor is defined similar to FSM. 

In order to determine the output response of the TFSM at 
state s to a timed input (i, t), state s' = time(s, t) is 
calculated first. State s' is a state where the TFSM moves 
from state s via timeout transitions such that the maximum 

sum  of all timeouts starting from state s is less than t. At 
the second step, a transition (s', i, o, s'', d) is used and 
respectively, the machine produces the output (o, d) to a 
timed input (i, t) applied at state s and moves to the next 
state s''. Thus, the output response of the TFSM to a timed 
input sequence at state s is iteratively determined starting 
from state s. Similar to FSMs, the set of all timed traces at 
the initial state of the initialized TFSM determines the 
TFSM behavior. 

A timed input sequence  is a transfer sequence for state 
s or simply an s-transfer sequence in TFSM S if state s is 

the -successor of the initial state of S. If for state s of 

TFSM S there exists a transfer timed input sequence , then 
s is an input-reachable state, otherwise s is input-
unreachable. By default, the initial state is input-reachable, 
since it is reachable by the empty input sequence. If for an 
input-unreachable state s' there exists a time instance t and 
input-reachable state s such that time(s, t) = s' then s' is 
time-reachable. The TFSM S is initially connected or 

simply connected if each state s  S is input- or time-
reachable. In this paper, we consider only connected 
TFSMs. 

Example. Consider a TFSM S in Figure 1 with the initial 
state a. This TFSM is connected but state b is input-
unreachable. 

III. MINIMIZATION PROBLEM 

There is a big body of work for minimizing a classical 
deterministic complete FSM based on the state 
equivalence [1]. We now remind the notion of equivalent 
states for deterministic complete (Timed) FSMs [1, 12]. 
Given complete deterministic (Timed) FSMs S and P with 
their states s and p, states s and p are equivalent if (timed) 
output responses at these states coincide for each (timed) 
input sequence. If states s and p are not equivalent then 
they are distinguishable. Initialized (Timed) FSMs are 
equivalent if their initial states are equivalent. Equivalent 
(Timed) FSMs have the same behavior. Two TFSMs S 
and P are isomorphic if there exists the one-to-one 

correspondence H: S → P such that there exists a 

transition (s, i, o, s d)  hS if and only if there exists a 



transition (H(s), i, o, H(s) d)  hP and ΔP(H(s)) = (H(s'), T) 
if and only if ΔS(s) = (s', T). A complete deterministic 
(Timed) FSM S is state reduced if every two different 

states s1, s2  S are not equivalent. 

A. FSM minimization 

The minimal form of a (initialized) deterministic 
complete FSM S is defined as a (initialized) state reduced 
FSM which is equivalent to S. An algorithm for deriving 
the minimal form (or an FSM minimization algorithm) for 
classical deterministic complete FSMs has been proposed 
in [1] and is based on partitioning the state set into 
equivalence classes, i.e., subsets with pairwise equivalent 
states. The equivalence relation induces a partition E of the 
set of states of a complete deterministic FSM. Any two 
states of the same class of the partition E are equivalent; any 
two states of different classes of partition E are 
distinguishable. Correspondingly, states of the reduced form 
correspond to classes of the partition E, i.e., the number of 
states of the reduced form equals the cardinality of E. The 
transition relation of the reduced form is derived based on 
transitions between E classes. It is shown that the minimal 
form of an initialized as well as for a non-initialized 
deterministic complete FSM is unique up to isomorphism. 

B. TFSM minimization 

The notions of a state reduced TFSM and the partition 
into equivalent states are defined similar to those of 
classical FSMs. A state reduced form of an FSM with 
timeouts can be derived based on its FSM abstraction [13, 
15]. Moreover, in order to derive the unique minimal form 
up to isomorphism for a non-initialized FSM with 
timeouts, a so called time reduced form should be also 
constructed. 

A non-initialized FSM with timeouts is time reduced if 
for each state s such that ΔS(s) = (s', T), it holds that for 
each state s'' and integer T' < T, TFSM S' which is obtained 
from S by replacing the timeout at state s to ΔS(s) = (s'', T'), 
is not equivalent to S. Minimal timeouts for states of TFSM 
S can be found based on its FSM abstraction [13]. In other 
words, when deriving a time reduced form of a non-
initialized TFSM, the timeout for each state s should be 
set to the minimum value in such a way that the TFSM 
behavior at state s is not changed. 

In [13], the following theorem has been proven. 

Theorem. Two non-initialized deterministic complete 
state and time reduced FSMs with timeouts are equivalent if 
and only if they are isomorphic. 

Respectively, the minimal form of a non-initialized 
deterministic complete TFSM is unique up to isomorphism. 

C. The uniqueness of the minimal form of initialized FSMs 

with timeouts 

Unlike non-initialized Timed FSMs, a complete 
deterministic initialized FSM with timeouts can have 
several non-isomorphic state and time reduced forms. An 
example is shown in Figure 1 where two equivalent 
minimal initialized FSMs with timeouts are presented. 
However, those TFSMs are not isomorphic. The reason is 
that for noninitialized equivalent TFSMs, for each state of 
one machine there is an equivalent state of another 
machine and vice versa. For initialized machines it is not 
the case for input-unreachable states. 

 

Fig. 1. State and time reduced equivalent initialized TFSMs S with the 

initial state a (at the top) and P with the initial state e (at the bottom) 

In fact there can exist some states in TFSMs which are 
only time-reachable, i.e., are not input-reachable, for 
example, state b of TFSM S. This input-unreachable state 
can be removed from the TFSM if the TFSM moves from 
state a by timeout to state c. The corresponding TFSM P is 
presented at the bottom of Figure 1 where the timeout of 
value 2 is used instead of two timeouts of value 1. Therefore, 
the problem that a reduced form of an FSM with timeouts is 
not unique is closely related to states which are only time-
reachable because for these states, the requirement for the 
one-to-one correspondence between states of initialized 
equivalent TFSMs does not need to necessarily hold. In this 
paper, we specify classes of initialized FSMs with timeouts 
for which the state and time reduced form is unique up to 
isomorphism. 

IV. INPUT-CONNECTED FSM WITH TIMEOUTS 

Since the existence of several state and time reduced 
equivalent but non-isomorphic initialized FSMs with 
timeouts is closely related to time-reachable states, we first 
consider TFSMs without such states. An FSM with 

timeouts S is input-connected if each state s  S is input-
reachable. In other words, given a state s of an input-
connected initialized FSM with timeouts, there exists a 
transfer timed input sequence from initial state to state s. For 
input-connected TFSMs, the following proposition can be 
proven. 

Proposition 1. Two deterministic complete state and 
time reduced initialized input-connected FSMs with timeouts 
are equivalent if and only if they are isomorphic. 

Proof. Let deterministic complete state and time reduced 
initialized input-connected FSMs S and P with timeouts be 

equivalent. Since the TFSMs are equivalent then -
successors s and p of initial states TFSMs S and P 

respectively are equivalent for any timed input sequence . 
Moreover, since S and P are state reduced then one-to-one 

correspondence Hi: S → P can be established such that p = 
Hi(s) is an input-reachable state of TFSM P which is 
equivalent to the input-reachable state s. Similar to [13], for 

each transition (s, i, o, s, d)  hS there exists a transition 

(Hi(s), i, o, Hi(s), d)  hP. Let there exist a pair of states s 
and p = Hi(s) such that ΔS(s) = (s', Ts) and ΔP(p) = (p', Tp) 
and Tp < Ts. Due to the fact that S and P are equivalent, 
there exists state s'' which is equivalent to state p' = Hi(s''). 
Since states s and p are also equivalent, the timeout at 
state s can be replaced by ΔS(s) = (s'', Ts') where Ts' = Tp < 
Ts. The latter is not possible as S is time reduced. Since P is 
time reduced too, the same reasoning can be applied when 



Ts < Tp and thus, Ts = Tp. Since states s and p are 
equivalent, states time(s, Ts) and time(p, Tp) are also 
equivalent and respectively, p' = H(s'). Thus, ΔP(Hi(s)) = 
(Hi(s'), T) if and only if ΔS(s) = (s', T). Since isomorphic 
TFSMs coincide up to state renaming, isomorphic TFSMs 
are equivalent. 

Corollary. The minimal (state and time reduced) form 
of an input-connected FSM with timeouts is unique up to 
isomorphism. 

However, there exist FSMs with timeouts which have 
time-reachable states, i.e., are not input-connected. We 
next consider such TFSMs and discuss when the unique 
minimal form of such TFSMs can be derived. 

V. FSM WITH TIMED GUARDS 

Given an FSM with timeouts, according to Corollary to 
Proposition 1, if this FSM has a state and time reduced input-
connected form, then this form is unique up to isomorphism. 
However, just now we do not know whether such a minimal 
form exists for any FSM with timeouts. On the other hand, 
FSMs with timed guards can be considered as another type 
of the minimal form and such TFSMs are input-connected. It 
is known [12] that there exists a class of FSMs with timeouts 
which can be represented by a corresponding FSM with 
timed guards. Correspondingly, in this section, we show that 
if for an FSM with timeouts there exists a minimal form with 
timed guards then such minimal form is unique up to 
isomorphism.  

A. FSM with timed guards 

An initialized FSM with timed guards is a 5-tuple S = (S, 
I, O, s0, hS) where I and O are input and output alphabets, 
S is the finite non-empty set of states with the designated 

initial state s0, hS  (S  I  O  S    ) is the 

transition relation with the set  is a set of input timed 

guards. An input timed guard g   describes the time 
domain when a transition can be executed and is given in 

the form of interval min, max from [0; ), where   {(, 

[}, {), ]}. The transition (s, i, o, s, g, d)  S  I  O  S 

    means that TFSM S being at state s accepts an 

input i applied at time t  g measured from the moment 
when TFSM S entered state s; the clock then is set to zero, 
S produces output o and moves to state s after d time units. 

The state reduced form for FSM with timed guards can 
be derived based on its FSM abstraction [13] or by the 
algorithm presented in [16]. Moreover, an FSM with timed 
guards is time reduced if for each two transitions (s, i, o, s', 

g1, d), (s, i, o, s', g2, d)  hS it holds that timed guards g1 and 
g2 cannot be merged into a single guard. Thus, in order to 
derive the time reduced form for an FSM with timed guards, 
transitions under the same input with the same output and 
output delay, between the same states, the timed guards 
which can be merged should be replaced by a single 
transition. The uniqueness of the minimal form of a non-
initialized FSM with timed guards has been proven in [13] 
and next we formulate a similar proposition for initialized 
TFSMs. 

Proposition 2. Two deterministic complete time and 
state reduced initialized connected FSMs with timed guards 
are equivalent if and only if they are isomorphic. 

Proof.  Let deterministic complete time and state reduced 
initialized connected FSMs with timed guards S and P be 

equivalent. Since TFSMs S and P are equivalent, the -
successors s and p of initial states of these TFSMs are also 

equivalent for each , i.e., at these states there are the 
same output responses for each timed input sequence. 
Moreover, since S and P are state reduced then the one-to-

one correspondence H: S → P can be established such that p 
= H(s) is a state of TFSM P which is equivalent to state s. We 

now show that for each transition (s1, i, o, s2, g, d)  S 

there exists a transition (p1, i, o, p2, g, d)  P, where p1 = 

H(s1) and p2 = H(s2). Let there exist (s1, i, o, s2, g, d)  S, 

but (H(s1), i, o, H(s2), g, d)  P. Since s1 and p1 are 
equivalent, the behavior of P at state p1 in time interval g 
coincides with that of the TFSM S at state s1. 

Respectively (p1, i, o, p2, g', d)  P, where g  g', 
because P is state and time reduced. However, the behavior 
of TFSM S for the same input at state s for time instances 
in g differs from that in adjacent intervals since S is state 

and time reduced. Thus, there exists t  g' \ g, such that 
the output responses to (i, t) at states s and p do not 
coincide. In a similar way, we can show that for each 

transition (H(s1), i, o, H(s2), g, d)  P there exists a 

transition (s1, i, o, s2, g, d)  S and thus, S and P are 
isomorphic. Since isomorphic TFSMs coincide up to state 
renaming, isomorphic TFSMs are equivalent. 

Thus, the minimal (state and time reduced) form of an 
initialized FSM with timed guards is unique up to 
isomorphism and next we show how FSM with timeouts can 
be represented by a TFSM with timed guards in some cases. 

B. Transformation of  an FSM with timeouts to an FSM 

with timed guards 

An FSM with timeouts S is timeout loop-free [12] if there 
is no cycle of transitions labeled with timeouts. A timeout 
loop-free FSM can be represented as an FSM with timed 
guards by the algorithms proposed in [12]. 

Algorithm 1: Transforming a timeout loop-free FSM 
into an FSM with timed guards  

Input: A timeout loop-free FSM S' = (S, I, O, hS, ΔS, s0) 
Output: The FSM with timed guards S 

While there exists sj  S such that ∆S(sj) = (sk, T), T <  
do 

for each (sk, i, [t1, t2), o, sh, d)  hS do hS = hS  {(sj, i, 
[t1 + T, t2 + T), o, sh, d)}; 
if ∆S(sk) = (sf, Tf) then ∆S(sj) = (sf, Tf + T) else ∆S(sj) = 

(sj, ); 
Return S = (S, I, O, hS, s0). 

Proposition 3 [12]. Given a complete deterministic 
initialized timeout loop-free FSM S', let S be an FSM 
with time guards returned by Algorithm 1 for S'. TFSM S 
is a complete deterministic initialized FSM with timed 
guards that is equivalent to S'. 

Let S be an FSM with timed guards that is returned by 
Algorithm 1 for a timeout loop-free FSM S'. Note that 
each time-reachable state of TFSM S' becomes 
unreachable from the initial state of TFSM S, and 
respectively can be removed, since the behavior at this 
state does not affect the machine behavior at the initial 
state. As an example, for the timeout loop-free FSM S in 
Figure 1 the corresponding FSM with timed guards Q is 
presented in Figure 2.  



 

Fig. 2. An FSM with timed guards Q that is equivalent to TFSM S in 

Figure 1 

State b of TFSM Q becomes unreachable from the 
initial state a and can be removed without changing the 
initialized TFSM behavior. The following proposition can 
be proven based on Proposition 2 and results from [12].  

Proposition 4. Two deterministic complete initialized 
timeout loop-free FSMs are equivalent if and only if 
corresponding state and time reduced FSMs with timed 
guards are isomorphic. 

Given an initialized timeout loop-free FSM S, the state 
and time reduced form can be derived for S as such a form 
for a corresponding FSM with timed guards. Respectively, 
the unique minimal form for FSM with timed guards or 
timeouts P can be derived by the following algorithm. 

Algorithm 2: Deriving the minimal form of an 
initialized FSM with timed guards or timeouts 

Input: An initialized FSM with timed guards or an 
initialized timeout loop-free FSM S 
Output: The minimal FSM with timed guards S'  

Step 1. If S is an FSM with timeouts then Step 2, else Step 3.  
Step 2. If S is a timeout loop-free FSM then call Algorithm 
1 for deriving a corresponding FSM with timed guards and 
Step 3, else the unique minimal form as an FSM with timed 
guards cannot be derived. 
Step 3. The unique minimal form with timed guards S' is 
derived as described in [16]. 

Proposition 5. Let P be a TFSM returned by the 
Algorithm 2 for a complete deterministic initialized 
timeout loop-free FSM or an FSM with timed guards S. 
TFSM P is a complete deterministic initialized state and 
timed reduced FSM with timed guards which is equivalent 
to S. 

Given an FSM with timed guards or timeouts, we next 
determine corresponding class of TFSMs with the unique 
minimal form in the following way. 

Theorem. Given two deterministic complete FSMs with 
timed guards or timeouts S and P which are initialized 
connected timeout loop-free TFSMs, S and P are equivalent 
if and only if their time and state reduced forms FSMs with 
timed guards are isomorphic. 

VI. CONCLUSION 

In this work, we have investigated the uniqueness of the 
minimal form for initialized FSMs with timeouts. We 
determine two TFSM classes for which the minimal form is 
unique up to isomorphism. The first class contains initialized 
TFSMs for which all states are reachable from initial state 
under a timed input sequence. The second class contains 
TFSMs which are timeout loop-free, i.e., their transition 
diagrams have no loops labeled with timeouts. 

We also note that the uniqueness of the minimal form for 
Timed FSMs allows to directly adapt classical W-based test 
derivation methods for TFSMs. These methods are based on 
checking the equivalence relation by checking the 
isomorphism (or possibly another relation for 
nondeterministic TFSMs) between the specification and an 
implementation under test. We also plan to study the 
possibility of deriving homing and synchronizing sequences 
for FSMs with timeouts based on their minimal forms.  
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