
Techniques for Implementation of Symbolically
Interpretable Haskell EDSLs

Grigoriy Volkov
National Research University Higher School of Economics

Institute for System Programming of the Russian Academy of Sciences
Moscow, Russia

Email: gdvolkov@ispras.ru

Abstract—Embedded domain-specific languages (ED-
SLs) are often used in typed functional programming
languages like Haskell to implement executable formal
specifications. A common requirement for the specifica-
tion language is to be symbolically interpretable, which
makes it possible to export specifications into external
formats. Executable formal specifications often require
abilities like sequential composition with data dependen-
cies. Such abilities require powerful expressive abstrac-
tions (e.g. monads) which cannot be interpreted sym-
bolically in the host language. In this paper we present
various implementation techniques that allow symbolic
interpretation of DSLs that require such abstractions in
some practical cases.
Index Terms—functional programming, Haskell,

domain-specific languages, symbolic interpretation

I. INTRODUCTiON
Haskell is a typed functional programming language fa-

mous for, among other things, hosting lots of embedded
domain-specific languages (EDSLs). There are EDSLs
for everything from concurrent data access[1] to safe sys-
tems programming[2] (compiling to C code) and hardware
description[3] (compiling to synthesizable VHDL/Verilog
code). The Haskell language ecosystem offers many pow-
erful tools, compiler features and conventions for build-
ing embedded languages that assign custom semantics to
Haskell expressions.
At ISP RAS, we are developing formal specification lan-

guages embedded in Haskell. These languages have to
comply with some unique requirements. Most notably, we
need to be able to interpret programs in these languages
symbolically, without running the program on actual data
– for example, one such interpretation is printing the syn-
tax tree to a string resembling the original source code. A
more useful but similar usage would be to export the spec-
ification into a format suitable for various external tools.
At the same time, these languages are designed to describe
sequences of events and state operations, which means that
expressions must be composed sequentially, in strict order
– with data dependencies between expressions. This re-
quires the usage of monads for interpretation on actual
data. Also, these languages contain many of the usual
standard library operators (equality, comparison) and con-

trol flow constructs (if-then-else), which are required be
symbolically executable as well.
The combination of these requirements forms a class

of EDSLs that are difficult to implement with standard
techniques. The use of monads is in direct conflict with
symbolic interpretation, as the signature of the monadic
bind combinator makes it impossible to keep values always
wrapped inside interpreter-provided types, and the use of
standard operators requires them to be overloadable. How-
ever, the flexibility of Haskell (with GHC extensions) al-
lows us to work around problems like this one.
In this paper we review the capabilities of Haskell for

building EDSLs, describe our experience with implement-
ing EDSLs with the aforementioned properties, and pro-
pose novel methods for dealing with problems that arise
when dealing with the described class of EDSLs.
The outline of this paper is as follows: in Section II, var-

ious classifications of EDSLs are examined; in Section III,
the problems discovered from our experience with build-
ing imperative, symbolically interpretable EDSLs are de-
scribed and corresponding solutions are proposed; in Sec-
tion IV, a conclusion is provided along with directions for
future research.

II. FUNDAMENTALS OF HASKELL EDSLS

Embedded DSLs are, in essence, libraries that offer a
limited set of types and functions with certain rules for
composing expressions out of them[4].
One traditional classification of EDSLs is shallow ver-

sus deep embedding[5]: shallow embedding uses semantics
of the host language directly, while deep embedding pre-
serves the syntax of the embedded language, constructing
an abstract syntax tree — typically, using algebraic data
types (ADTs).
In [6], a classification of two encodings of embedded lan-

guages was introduced: initial and final encoding. Initial
encoding means the abstract syntax tree (AST) of a pro-
gram in the embedded language is explicitly represented
using ADTs. The naive version of this is called tagged,
because tagged sum types are used. The usage of gener-
alized algebraic data types (GADTs) allows for a tagless

initial encoding. The tagless final encoding is different: in-
stead of data constructors, overloaded functions are used
to construct expressions in the embedded language. This
is made possible by Haskell’s typeclass feature, which al-
lows for ad-hoc polymorphism. (Typeclasses are roughly
similar to interfaces in object-oriented languages like Java,
except typeclass instances are defined independently of the
type, and they can be multi-parameter.) Despite not using
ADTs, the tagless final encoding is still related to deep em-
bedding: initial and final encodings are isomorphic, and it
is trivial to construct a tagless final interpreter that would
construct an explicit AST.
The major benefit added by the tagless style is extensi-

bility: unlike the set of data constructors of a sum type[7]1,
the set of Haskell functions is open for extension, so a li-
brary that provides a tagless final EDSL can be extended
by consumers of the library (new expressions can be added
to the language). In a final EDSL, the typeclasses define
syntax of the language, while their instances define par-
ticular interpretations of that syntax, i.e. their semantics.
The values that represent programs in the embedded lan-
guage are polymorphic, parameterized by the type of the
interpreter.
An interesting consequence of that is that interpreters

with complex rules for nesting expressions can use different
types for different “sublanguages”. For example, in impera-
tive programing languages a ‘break’ statement only makes
sense inside of a loop. When implementing this in a tag-
less final EDSL, the ‘break’ statement would be defined in
a separate typeclass, and the evaluating interpreter would
only provide instances of it for types that represent expres-
sions inside the loop body.
Another orthogonal classification of EDSLs is by which

mechanism is used for variable bindings. One option is de
Brujin indices[10]: explicit tracking of the environment,
with numeric indices used to refer to variables. Another
is higher-order abstract syntax[11]: usage of the host lan-
guage’s lambda expressions.

III. DiSCOVERED PROBLEMS AND SOLUTiONS
We have been building an embedded DSL for software

behavior specification that is made to resemble impera-
tive programming: a specification describes a sequence of
events, state changes and logical checks that might cause
the specification checker (evaluator) to abort early. There-
fore, the implementation of the evaluator in Haskell re-
quires monads, and in fact various aspects of the evalua-
tor map quite naturally onto common monads and monad
transformers (such as ExceptT for early exit).
Our DSL is built in the tagless final style with higher-

order abstract syntax. Papers related to the tagless fi-
nal style[6][12] do not discuss embedding imperative lan-
guages, but the integration of monads into tagless final

1Compositional data types[8][9] can be used as an alternative, however
they are quite difficult to use

was straightforward. However, it has made symbolic in-
terpretation impossible. In this chapter, we describe our
solution to that problem, as well as some additional prob-
lems and solutions.
A. Symbolic Interpretation of Expressions with Monadic
Composition
Monads are the fundamental abstraction in the

Haskell standard library for dealing with sequen-
tial composition. The monadic bind operator
(>>=) :: m a -> (a -> m b) -> m b composes two
computations where the second one has a data depen-
dency on the first one, which means that it requires the
first one to be executed first: it is impossible to construct
the computation m b without unwrapping the a from m a.
Monads are obviously important for imperative program-
ming, and composing I/O actions this way2 is one of the
first things Haskell beginners usually learn.
Unfortunately, the usage of monadic composition

presents a serious problem for any kind of symbolic
interpretation such as printing. As described above,
the signature of the bind operator requires the inter-
preter to have access to actual data – an unwrapped
value of the return type. In a symbolic interpreter,
such values do not exist. The type of expressions
defined for such an interpreter looks like, for exam-
ple, newtype Print a = { unPrint :: String }. Note
that the type variable ‘a’, which is the raw type of the
expression (a number, string, list, etc) is a phantom type
variable, i.e. it is thrown away on the right side – the sym-
bolic interpreter only has a symbolic representation of the
expression, such as a string in the case of printing. This
means that for printing and similar interpreters, we can-
not use monads at all, even though we need to use them
for the interpreter that does real evaluation.
However, it is possible to only use monadic composition

in one interpreter and functional composition in another,
thanks to the RebindableSyntax GHC extension. We can
define a typeclass that uses functional composition in the
general case, and defaults to monadic composition for in-
terpreters that are monadic:
class RCombinators repr where

obind :: repr a
-> (repr a -> repr b)
-> repr b

oseq :: repr a -> repr b -> repr b
default obind :: Monad repr

=> repr a
-> (repr a -> repr b)
-> repr b

a `obind` f =
(Prelude.>>=) a \$ f . return

default oseq :: Monad repr
=> repr a

2Often with do notation instead of direct usage of the bind operator

-> repr b
-> repr b

oseq = (Prelude.>>)

And thanks to RebindableSyntax, we can set
(>>=) = obind and (>>) = oseq. This works with
do notation just fine.
Now we can define non-monadic instances of this class

for symbolic interpreters like printers:
instance RCombinators Print where

Print a `obind` f =
Print $ "let" <+> "VAR" <+> "=" <+>

parens a <+> "in" <$>
parens (unPrint $ f $ Print "VAR")

Print a `oseq` Print b =
Print $ a <+> ">>" <$> b

(This example uses a pretty-printing library, but does
not use a numbering scheme for lambda arguments, just
for demonstration.)
Here you can see that because the typeclass is defined

using functional, not monadic composition, we are not re-
quired to provide actual unwrapped values (which do not
exist), and we provide a symbolic representation (here,
Print “VAR”) which is of the wrapped type.

B. Combining EDSL Code and Regular Code in One Mod-
ule
The RebindableSyntax GHC extension tells GHC to

use in-scope definitions (instead of hard-coded standard
library ones) for common operators including composition
(>>=, >>), comparisons (==, >=, and so on) and even if-
then-else blocks. This allows an advanced EDSL to reuse
regular Haskell syntax for custom EDSL expressions. How-
ever, manually importing all the EDSL operators into the
current scope for each top-level definition of an EDSL ex-
pression is tedious and distracting, while importing them
into module scope prevents regular, non-DSL code in the
same module from functioning normally. The latter may
very well be an acceptable trade-off, but we have found a
solution that allows mixing EDSL and regular code in one
module without too much syntactic noise.
The key is to use the RecordWildCards GHC exten-

sion, which allows for a lightweight and short expression
to be used for bringing multiple definitions into scope
at once. The regular Haskell functions would start with
let DSL{..} = noDsl in (code) and EDSL functions
with let DSL{..} = ourDsl in (code). (Note: literally
two dots, not something omitted from the article.) The
DSL type would be a collection of operators supported by
RebindableSyntax. Type-level functions (Type Families)
would be used to provide choice between EDSL and nor-
mal types. We have discovered three common cases, each
of which requires its own type family. The first is the
choice between raw and wrapped values:
type family W b (repr :: * -> *) a where

W 'False repr a = a
W 'True repr a = repr a

The second is the choice between two wrapped values
(i.e. wrapped in our EDSL representation or an arbitrary
functor):

type family WM b (repr :: * -> *)
(m :: * -> *) a where

WM 'False repr m a = m a
WM 'True repr m a = repr a

The third is for type constraints related to the second
case. When choosing between the bind operator (»=) for
arbitrary monads and for EDSL expressions, we need to
choose between the Monad typeclass constraint and no
typeclass constraint:

type family WMC b (m :: * -> *) where
WMC 'False m = Monad m
WMC 'True m = ()

These type families use a type-level boolean argument
for disambiguation – if we try to match on the provided
wrapper type, GHC is not able to infer types for the oper-
ators. The DSL type uses these type families like so:

data DSL w repr a b m = DSL
{ ifThenElse :: W w repr Bool

-> W w repr a
-> W w repr a
-> W w repr a

, (==) :: Eq a
=> W w repr a
-> W w repr a
-> W w repr Bool

, (>>=) :: WMC w m
=> WM w repr m a
-> (W w repr a -> WM w repr m b)
-> WM w repr m b }

To define a value of this type that corresponds to stan-
dard functions, we set the type variable ‘w’ of the DSL
type to false (and the ‘repr’, which is the DSL wrapper
variable, to Const Void, which is a functor that has no
values), which causes our type families to calculate types
equal to standard expressions on normal unwrapped val-
ues. Then we can use standard functions from the Prelude
(and a custom but obvious if-then-else definition) for the
fields:

noDsl :: DSL 'False (Const Void) a
noDsl = DSL { ifThenElse = ite

, (==) = (Prelude.==)
, (>>=) = (Prelude.>>=) }

where ite True a _ = a
ite False _ b = b

And to define a value of this type that imports the oper-
ators for our embedded language, we set ‘w’ to true, which

causes our type families to resolve to wrapped types, and
we provide a type variable of our own for the ‘repr’, with
the constraints corresponding to EDSL typeclasses placed
on it. We can use EDSL functions then to define the op-
erators:
dsl :: (RLogic repr, RCombinators repr)

=> DSL 'True repr a b m
dsl = DSL { ifThenElse = if_

, (==) = eq
, (>>=) = obind }

With all this code, we have successfully convinced GHC
to allow us to use very short RecordWildCards based inclu-
sions of fields from this structure for including operators
with very different types.

IV. CONCLUSiONS AND FUTURE WORK
In this paper, the problems of implementing symboli-

cally interpretable Haskell EDSLs that require many un-
usual features (monadic composition, standard operators)
were described, and several techniques for solving these
problems were proposed. These techniques are currently
used in the development of embedded formal specification
languages for software testing tools at ISP RAS.
One direction for future research is development of tech-

niques for manipulating user-defined data types inside
symbolically interpretable EDSLs. Another is develop-
ment of alternatives to the RebindableSyntax approach.
(The experimental overloaded library recently appeared
on Hackage, it looks like an interesting direction.)

REFERENCES
[1] S. Marlow, L. Brandy, J. Coens, and J. Purdy,

“There is no fork: An abstraction for efficient, con-
current, and concise data access,” in Proceedings of
the 19th ACM SIGPLAN International Conference
on Functional Programming, ser. ICFP ’14, Gothen-
burg, Sweden: Association for Computing Machin-
ery, 2014, pp. 325–337, iSBN: 9781450328739. DOi:
10.1145/2628136.2628144. [Online]. Available: https:
//doi.org/10.1145/2628136.2628144.

[2] T. Elliott, L. Pike, S. Winwood, P. Hickey, J. Biel-
man, J. Sharp, E. Seidel, and J. Launchbury, “Guilt
free Ivory,” in Proceedings of the 2015 ACM SIG-
PLAN Symposium on Haskell, ser. Haskell ’15, Van-
couver, BC, Canada: Association for Computing Ma-
chinery, 2015, pp. 189–200, iSBN: 9781450338080.
DOi: 10.1145/2804302.2804318. [Online]. Available:
https://doi.org/10.1145/2804302.2804318.

[3] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and
M. Gerards, “Cλash: Structural descriptions of syn-
chronous hardware using haskell,” in Proceedings
of the 2010 13th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools,
ser. DSD ’10, USA: IEEE Computer Society, 2010,
pp. 714–721, iSBN: 9780769541716. DOi: 10 . 1109 /
DSD.2010.21. [Online]. Available: https://doi.org/
10.1109/DSD.2010.21.

[4] A. Löh, “Haskell for (E)DSLs,” Functional Program-
ming eXchange, 2012. [Online]. Available: https://
www.andres-loeh.de/HaskellForDSLs.pdf.

[5] J. Gibbons and N. Wu, “Folding domain-specific lan-
guages: Deep and shallow embeddings (functional
pearl),” in Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Program-
ming, ser. ICFP ’14, Gothenburg, Sweden: Asso-
ciation for Computing Machinery, 2014, pp. 339–
347, iSBN: 9781450328739. DOi: 10 . 1145/2628136 .
2628138. [Online]. Available: https : / /doi . org / 10 .
1145/2628136.2628138.

[6] J. Carette, O. Kiselyov, and C.-c. Shan, “Finally
tagless, partially evaluated: Tagless staged inter-
preters for simpler typed languages,” J. Funct. Pro-
gram., vol. 19, no. 5, pp. 509–543, Sep. 2009, iSSN:
0956-7968. DOi: 10 .1017/S0956796809007205. [On-
line]. Available: https : / / doi . org / 10 . 1017 /
S0956796809007205.

[7] P. Wadler et al., “The expression problem,” Posted
on the Java Genericity mailing list, 1998. [Online].
Available: http://homepages.inf.ed.ac.uk/wadler/
papers/expression/expression.txt.

[8] W. Swierstra, “Data types à la carte,” J. Funct.
Program., vol. 18, no. 4, pp. 423–436, Jul. 2008,
iSSN: 0956-7968. DOi: 10.1017/S0956796808006758.
[Online]. Available: https : / / doi . org / 10 . 1017 /
S0956796808006758.

[9] P. Bahr and T. Hvitved, “Compositional data types,”
in Proceedings of the Seventh ACM SIGPLAN Work-
shop on Generic Programming, ser. WGP ’11, Tokyo,
Japan: Association for Computing Machinery, 2011,
pp. 83–94, iSBN: 9781450308618. DOi: 10 . 1145 /
2036918.2036930. [Online]. Available: https ://doi .
org/10.1145/2036918.2036930.

[10] N. G. De Bruijn, “Lambda calculus notation with
nameless dummies, a tool for automatic formula ma-
nipulation, with application to the Church-Rosser
theorem,” in Indagationes Mathematicae (Proceed-
ings), North-Holland, vol. 75, 1972, pp. 381–392.

[11] F. Pfenning and C. Elliott, “Higher-order abstract
syntax,” in Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and
Implementation, ser. PLDI ’88, Atlanta, Georgia,
USA: Association for Computing Machinery, 1988,
pp. 199–208, iSBN: 0897912691. DOi: 10.1145/53990.

https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2804302.2804318
https://doi.org/10.1145/2804302.2804318
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1109/DSD.2010.21
https://www.andres-loeh.de/HaskellForDSLs.pdf
https://www.andres-loeh.de/HaskellForDSLs.pdf
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1145/53990.54010

54010. [Online]. Available: https://doi.org/10.1145/
53990.54010.

[12] O. Kiselyov, “Typed tagless final interpreters,” in
Proceedings of the 2010 International Spring School
Conference on Generic and Indexed Programming,
ser. SSGIP’10, Oxford, UK: Springer-Verlag, 2010,
pp. 130–174, iSBN: 9783642322013. DOi: 10 . 1007 /
978- 3 - 642- 32202- 0_3. [Online]. Available: https :
//doi.org/10.1007/978-3-642-32202-0_3.

https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-32202-0_3

	Introduction
	Fundamentals of Haskell EDSLs
	Discovered Problems and Solutions
	Symbolic Interpretation of Expressions with Monadic Composition
	Combining EDSL Code and Regular Code in One Module

	Conclusions and Future Work

