
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Formal Rules to Produce Object Notation for

EXPRESS Schema-Driven Data

Georgii Semenov

Faculty of information technologies and

programming

ITMO University

Saint-Petersburg, Russia

georgii.v.semenov@gmail.com

Abstract—Recently, product data management systems (PDM)

are widely used to conduct complex multidisciplinary projects in

various industrial domains. The PDM systems enable teams of

designers, engineers, and managers to remotely communicate on

a network, exchange and share common product information. To

integrate CAD/CAM/CAE applications with the PDM systems and

ensure their interoperability, a dedicated family of standards

STEP (ISO 10303) has been developed and employed. The STEP

defines an object-oriented language EXPRESS to formally specify

information schemas as well as file formats to store and transfer

product data driven by these schemas. These are clear text

encoding format (STEP P21) and XML-based format (STEP P28).

Nowadays, with the development and widespread adoption of Web

technologies, the JSON language is getting increasingly popular

due to it being apropos for the tasks of object-oriented data

exchange and storage, as well as its simple, easy to parse syntax.

The paper explores the topic of the suitability of the JSON

language for the unambiguous representation, storage and

interpretation of product data. Under the assumption that the

product data can be described by arbitrary information schemas in

EXPRESS, formal rules for the producing JSON notation are

proposed and presented. Explanatory examples are also provided

to illustrate the practical use of the rules.

Keywords—object-oriented data modeling, EXPRESS, STEP,

JSON, Web services, interoperability

I. INTRODUCTION

In recent decades, product data management (PDM)
systems have been widely used to implement complex
multidisciplinary projects in such industries as aerospace,
defense, automotive, shipbuilding, electronics, and
construction. The PDM systems is an instrument for teams of
designers, engineers and managers to remotely communicate
on a network, to exchange and share common product
information obtained through computer-aided design,
manufacturing and engineering applications
(CAD/CAM/CAE). PDM systems such as ProjectWise,
Windchill, Teamcenter, Enovia have got a certain popularity
thanks to advanced concurrent engineering facilities which
reduce the time and costs of designs in specific industries [1,
2].

 To integrate the software applications and ensure their
interoperability, a dedicated international STandard for the
computer-interpretable representation and Exchange of
Product data (STEP) was developed [3]. Its objective is to
provide a general industry-neutral mechanism capable of
describing product data throughout the entire product life
cycle from design to analysis, manufacturing, quality control,
inspection, support and operation. The neutral nature of this
description makes it suitable not only for the neutral file
exchange, but also for being used as a basis for the sharing,
archiving and implementation of the product databases. It is
noteworthy that many other industry standards, such as P-LIB
(ISO 13584), CIS/2 (CIMSteel Integration Standard, where

CIMSteel stands for Computer Integrated Manufacturing of
Constructional Steelwork), POSC/CAESAR (ISO 15926),
PSL (ISO 18629) and IFC (ISO 16739), developed for similar
purposes, borrow the model-driven methodology and
fundamental parts of the STEP.

The STEP standard defines the object-oriented data
modeling language EXPRESS as an underlying description
method (part 11). Among the other implementation methods,
the part 21 and the part 28 represent an interest for further
consideration. The part 21 defines the format for writing data
to a flat text encoding file, also known as the STEP Physical
File format (SPF) [4]. The part 28 relies on the eXtensible
Markup Language (XML) to represent schemas using the
EXPRESS language and the data that is governed by
EXPRESS schemas.

Nowadays, with the development and widespread
adoption of Web technologies, the JavaScript Object Notation
(JSON) language is getting increasingly popular due to it
being apropos for the tasks of object-oriented data exchange
and storage. JSON is a key-value style lightweight data
exchange format which is independent of any programming
language and which is easy for machines to parse and generate
while it is also human readable. As applied to product data,
these features bring it closer to the SPF format. At the same
time, JSON is extensively adopted as a default data exchange
format by various Web applications, specifically
Asynchronous JavaScript and XML (AJAX) Web services. It
is noteworthy that JSON is used in Web applications along
with XML. However, the performance of Web services has
shown a significant decrease when using XML data because
of the low efficiency of reading and parsing XML data during
the execution of services [5]. Based on the measurement of
performance metrics such as the number of objects sent,
average time per object transmission, CPU and memory
utilization, it has been proved that JSON is significantly faster
and has higher efficiency than XML [6, 7]. Several researches
have shown that JSON deserialization on mobile platforms is
few orders faster than XML [8, 9]. It therefore follows that
XML should not be used for large datasets because of its long
deserialization time and larger size relatively to the same
datasets represented in JSON.

Being designed to process large engineering datasets,
PDM systems must meet the requirements of efficiency and
scalability, while providing open interfaces to access the data.
Having several standard interfaces implemented, it is
advisable for PDM systems to operate with light-weight and
easily parsed data format.

Although JSON is a promising candidate for such
purposes, so far there is a lack of studies on representing
product data using the JSON. This paper highlights the topic
of the suitability of the JSON language for the unambiguous
presentation, storage and interpretation of product data driven

by EXPRESS schemas. Section 2 provides a brief overview of
the EXPRESS language with the emphasis on underlying data
types. An example schema formally specified in EXPRESS is
presented in Section 3. An explanatory dataset driven by the
specified schema and presented in both SPF and JSON
formats is provided too. Formal rules to produce JSON
notation for product data driven by arbitrary EXPRESS
schemas are proposed and shortly illustrated in Section 4. In
Conclusions, the perspectives of the JSON notation produced
according to the rules are outdrawn in the context of the STEP
standardization.

II. BRIEF OVERVIEW OF EXPRESS LANGUAGE

EXPRESS is a conceptual schema language which
consists of the constructs supporting an unambiguous object-
oriented data model definition, the specification of dynamic
aspects and constraints on both the data and dynamics. A lot
of languages such as Ada, Algol, C, C++, Eiffel, Euler, Icon,
Modula-2, Pascal, PL/I, SQL, ER and UML have contributed
to EXPRESS. Some facilities have been invented to make
EXPRESS more suitable for the representation of information
models. A graphical representation for a subset of the
EXPRESS constructs, called EXPRESS-G, has been also
developed and standardized [10].

The top-level EXPRESS construct is the schema so that all
declarations occur as a part of a schema declaration. The
schema defines both datatypes and constraints on the instances
with the corresponding data types. Datatypes are divided into
the simple datatypes, enumeration and selection datatypes,
defined datatypes, entity datatypes, aggregation datatypes,
and generalized datatypes. These datatype categories are
shown in Figure 1. Predefined datatypes available in
EXPRESS are highlighted by bold italic type. Constructs for
user-defined types are in regular type. The arrows show the
generalization/specialization relationships between datatypes.
In the latest edition of EXPRESS standard, an entity may be
additionally defined in terms of its behavior, described by the
events it responds to and the way it responds. These facilities
are left beyond the scope of the paper, and therefore the
original version of the EXPRESS standard [11] will be
discussed upon further consideration.

 Simple datatypes define the domain of the atomic data
units in EXPRESS, which cannot be further subdivided into
smaller elements recognized by EXPRESS. The simple
datatypes are REAL, INTEGER, NUMBER, STRING,
LOGICAL, BOOLEAN and BINARY.

Enumeration and selection datatypes are declared using
the ENUMERATION and SELECT keywords respectively.
An ENUMERATION datatype has a set of names as its
domain. The names are referred as enumeration items which
represent the values of the enumeration datatype. Two
different ENUMERATION datatypes may contain the same
enumeration item. In this case, any reference shall be pre-
qualified with the datatype identifier to ensure that the
reference is unambiguous. A SELECT datatype domain is the
union of the domains of the named datatypes. The SELECT
datatype is a generalization of each of the named datatypes in
its select items.

The domains of the aggregation datatypes are the
collections of values of a given base datatype. These base
datatype values are called elements of the aggregation
collection. The number of elements in a collection may vary
and may be constrained by the specification of bounds. There
are four kinds of aggregation datatype generators: BAG, SET,
LIST, and ARRAY. Each kind of aggregation datatype
generator attaches different properties:

- BAG generates a datatype containing an unordered
collection;

- SET generates a datatype containing an unordered
collection of unique elements;

- LIST generates a datatype containing an ordered
collection of elements (a sequence) that can be accessed by
their position within the sequence. The LIST generator can be
modified with the UNIQUE constraint, thereby implying an
ordered collection of unique elements;

- ARRAY generates a datatype containing a collection of
elements with associated indexes of an INTEGER type, where
indexes identify the element. The number of elements in an
ARRAY collection is either fixed by the index values or
variable, in which case it is unconstrained.

EXPRESS aggregations are one-dimensional. Data
structures usually considered to have multiple dimensions
(such as mathematical matrices) can be represented by an
aggregation datatype whose base type is another aggregation.
Thus, aggregation datatypes can be nested to an arbitrary
depth, allowing any number of dimensions to be represented.
For example, a matrix for linear algebra can be defined as an
array of arrays of reals.

Defined datatypes declared by the TYPE keyword include
aliased and constrained datatypes. The domain of the
constrained defined datatype is a subset of the domain of the
underlying type, as constrained by the WHERE clause.

Entity datatypes represent objects of interest. The entity
datatype with the ENTITY declaration is defined in terms of
its attributes, which are characterized by a name and a value
space. The attributes can take values from the specified
domains with the constraints taken in account on these values
defined individually or in combination. Typically attribute
values are explicitly supplied by an implementation in order
to create an entity instance. An exception is made for the
attributes declared with the keyword OPTIONAL meaning
that the attribute need not have a value. If the attribute has no
value, the value is said to be indeterminate. The DERIVED
keyword indicates that the attribute value is computed in some
manner. The INVERSE keyword indicates that the attribute
value consists of the entity instances which use the entity in a
particular role.

Fig. 1. Datatype categories available in EXPRESS.

EXPRESS allows the specification of entities as subtypes
of other entities, where a subtype entity is a special form of its
supertype. This establishes an inheritance (i.e.,
subtype/supertype) relationship between the entities in which
the subtype inherits the properties (i.e., attributes, behavior,
constraints) of its supertype. An attribute declared in a
supertype can be redeclared in a subtype. The attribute is kept
in the supertype but the domain for this attribute is governed
by the redeclaration given in the subtype. The declaration may
be changed in different ways, but the attribute redeclared in
the subtype shall have a domain narrower than or equal to the
attribute being redeclared. For example, a NUMBER datatype
attribute in the supertype may be changed to a REAL or to an
INTEGER datatype in the subtype, an optional attribute — to
a mandatory attribute, an explicit attribute — to a derived
attribute, an unordered collection type attribute — to an
ordered collection attribute, etc.

Two or more direct subtypes of a supertype may be
allowed to have overlapping instantiations. The ONEOF,
ANDOR, AND constraints are used to specify the relationship
within a group of direct subtypes. The ONEOF constraint
states that the elements of the ONEOF list are mutually
exclusive. None of the elements may be instantiated with any
other element in the list. Each element shall be a subtype
expression which may resolve to a single subtype of the entity
datatype. If the subtypes are not mutually exclusive, that is, an
instance of the supertype may be an instance of more than one
of its subtypes, then the relationship between the subtypes
shall be specified using the ANDOR constraint. If the
supertype instances are categorized into multiple groups of
mutually exclusive subtypes (i.e., multiple ONEOF
groupings) indicating that there is more than one way to
completely categorize the supertype, then the relationship
between those groups shall be specified using the AND
constraint. The AND constraint should only be used to relate
groupings established by other subtype/supertype constraints.

Generalized datatypes are used to specify a generalization
of other datatypes and their application is very narrowed. The
GENERIC datatype is a generalization of all datatypes. The
AGGREGATE datatype is a generalization of all aggregation
datatypes. The general aggregate datatypes are generalizations
of aggregation datatypes which relax some of the constraints
normally applied to the aggregation datatypes.

Finally, the domain of the datatype used in the attribute
declaration is set by constraints. Each constraint represents
one of the following properties of the entity:

- limits on the number, kind and organization of values of
the attributes, which are specified in the attribute declarations;

- required relationships between attribute values or limits
on the attribute values for a given instance, which appear in
the WHERE clause and are referred as domain rules;

- required relationships between attribute values over all
instances of the entity datatype, which appear in the UNIQUE
clause, where they are referred to as uniqueness constraints,
the INVERSE clause, where they are referred to as cardinality
constraints, or GLOBAL rules;

- required relationships between instances of several entity
types, which appear rather in GLOBAL rules than in entity
declaration itself.

The above-mentioned constructs and features of the
language are sufficient for further consideration. More details
can be found in the EXPRESS standard revisions [11].

III. EXAMPLES OF EXPRESS SCHEMA AND SCHEMA-DRIVEN

DATASET

Let us consider an example of the schema with the
specification shown in Figure 2 and corresponding
EXPRESS-G diagram presented in Figure 3. The
ActorResource schema declaration defines a common scope
for a collection of related entity and other datatype
declarations. These are the entities Person, Organization,
Address, PostalAddress, TelecomAddress,
OrganizationRelationship, as well as the selection
ActorSelect, the enumeration AddressTypeEnum, the string
type Label, and the aliased string type ActorRole.

SCHEMA ActorResource;

 TYPE ActorSelect = SELECT (Organization, Person);

 END_TYPE;

 TYPE AddressTypeEnum = ENUMERATION OF (OFFICE, HOME,

USERDEFINED);

 END_TYPE;

 TYPE Label = STRING(255);

 END_TYPE;

 TYPE ActorRole = Label;

 END_TYPE;

 ENTITY Address

 ABSTRACT SUPERTYPE OF (ONEOF(PostalAddress,

TelecomAddress));

 Purpose : AddressTypeEnum;

 UserDefinedPurpose : OPTIONAL STRING;

 INVERSE

 OfPerson : SET OF Person FOR Addresses;

 OfOrganization : SET OF Organization FOR Addresses;

 WHERE

 WR1 : (Purpose <> AddressTypeEnum.USERDEFINED) OR

 ((Purpose = AddressTypeEnum.USERDEFINED) AND

 EXISTS(UserDefinedPurpose));

 END_ENTITY;

 ENTITY PostalAddress

 SUBTYPE OF(Address);

 AddressLines : LIST [1:?] OF Label;

 END_ENTITY;

 ENTITY TelecomAddress

 SUBTYPE OF(Address);

 TelephoneNumbers : OPTIONAL LIST [1:?] OF Label;

 FacsimileNumbers : OPTIONAL LIST [1:?] OF Label;

 ElectronicMailAddresses : OPTIONAL LIST [1:?] OF Label;

 WWWUrls : OPTIONAL LIST [1:?] OF Label;

 WHERE

 WR1 : EXISTS (TelephoneNumbers) OR EXISTS

(FacsimileNumbers) OR

 EXISTS (ElectronicMailAddresses) OR EXISTS

(WWWUrls);

 END_ENTITY;

 ENTITY Organization;

 Id : INTEGER;

 Name : Label;

 Description : OPTIONAL STRING;

 Roles : LIST [1:?] OF UNIQUE ActorRole;

 Addresses : LIST [1:?] OF UNIQUE Address;

 INVERSE

 IsRelatedBy : SET OF OrganizationRelationship FOR

RelatedOrganizations;

 Relates : SET OF OrganizationRelationship FOR

RelatingOrganization;

 Engages : SET OF Person FOR EngagedIn;

 UNIQUE

 UR1 : Id;

 WHERE

 WR1 : SIZEOF(QUERY(temp <* Engages | ‘Director’ in

temp.Roles)) = 1;

 END_ENTITY;

 ENTITY OrganizationRelationship;

 Name : Label;

 Description : OPTIONAL STRING;

 RelatingOrganization: Organization;

 RelatedOrganizations: SET [1:?] OF Organization;
 WHERE

 WR1 : SIZEOF([RelatingOrganization] *

RelatedOrganizations) = 0;
 END_ENTITY;

 ENTITY Person;

 Id : INTEGER;

 FamilyName : OPTIONAL Label;

 GivenName : OPTIONAL Label;

 MiddleNames : OPTIONAL LIST [1:?] OF Label;

 PrefixTitles : OPTIONAL LIST [1:?] OF Label;

 SuffixTitles : OPTIONAL LIST [1:?] OF Label;

 Roles : LIST [0:?] OF UNIQUE ActorRole;

 Addresses : LIST [1:?] OF UNIQUE Address;

 EngagedIn : SET OF Organization;

 UNIQUE

 UR1 : Id;

 WHERE

 WR1 : EXISTS(FamilyName) OR EXISTS(GivenName);

 END_ENTITY;

END_SCHEMA;

Fig. 2. Specification of ActorResource schema in EXPRESS language.

Fig. 3. EXPRESS-G diagram of ActorResource schema

The Address entity is declared as an abstract supertype of
the PostalAddress and TelecomAddress entities. It means that
the Address entity can be instantiated only through its
subtypes. PostalAddress and TelecomAddress instances
inherit both attributes and constraints from their mutual
supertype Address. These are the explicit attributes Purpose,
UserDefinedPurpose, the inverse attributes OfPerson,
OfOrganization and the domain rule WR1. According to the
rule, the value of the UserDefinedPurpose attribute cannot be
indeterminate if the attribute Purpose takes the
USERDEFINED enumeration item. Additionally, the
PostalAddress defines the attribute AddressLines, and the
TelecomAddress — the attributes TelephoneNumbers,
FacsimileNumbers, ElectronicMailAddresses, WWWUrls
and own domain rule WR1.

The Person and Organization entities define own sets of
explicit and inverse attributes, as well as domain and
uniqueness rules. The OrganizationRelationship entity is
specially introduced into the schema in order to be able to set
up qualified, attributed relations between Organization
instances. These one-to-many relations can be established
through the attributes RelatingOrganization and
RelatedOrganization of the proper collection cardinality.
Using the inverse attributes IsRelatedBy, Relates, Engages
defined by the Organization entity, it becomes possible to find
out in which relations particular Organization instances are
involved.

For brevity, we omit further clarifications since the
remained part of the schema specification uses similar
constructs and is quite transparent to understanding.

As an example, let us consider an EXPRESS schema-
driven dataset in Figure 4 presented as a data section of the
corresponding ASCII SPF file. The data section contains
entity instances to be transferred between applications as an
exchange structure. Each instantiated entity must correspond
to one EXPRESS schema specified in the header section of
the file. In our example, the specified schema is
ActorResource, and instantiated entities are Organization,
Person, PostalAddress, TelecomAddress, and
OrganizationRelationship all belonging to the schema. Each
entity instance is represented at most once in the exchange
structure and must have an instance name that is unique within
the exchange structure. The entity instances need not be
ordered in the exchange structure. An instance name may be
referenced before it is defined.

 The order of the instance parameters in the exchange
structure are the same as the order of the corresponding
attributes in the entity declaration. Each parameter list first
encodes the values of the inherited explicit attributes of all
supertype entities and, then the explicit attributes of the leaf
entity datatype. The form of each parameter must correspond
to the attribute datatype. In the presented example dataset, the
PostalAddress instance with unique name #31 has the
following parameters: the first parameter .OFFICE. is the
value of the attribute Purpose declared in the supertype
Address, the second parameter $ is the indeterminate value of
the attribute UserDefinedPurpose also declared in the Address
supertype, the third parameter ('9292 Automobile Dr.', 'Mc
Lean', 'VA 22101') is the value of the explicit attribute
AddressLines declared in the PostalAddress entity as a list of
the Label strings. It is worth mentioning here that the derived
and inverse attributes are not mapped to the exchange
structure.

#11 = Organization(1203, 'Automobile Inc.', 'In

cars we trust.', ('Supply Chain Manager', 'Executive

Manager', 'Sells Manager'), (#31, #34));

#12 = Organization(1204, 'Wheels Inc.', 'We do

wheels.', ('Executive Manager', 'Sells Manager'),

(#32, #35));

#13 = Organization(1205, 'Motor Inc.', 'Motors

are essential.', ('Executive Manager', 'Sells

Manager'), (#33, #36));

#31 = PostalAddress(.OFFICE., $, ('9292

Automobile Dr.', 'Mc Lean', 'VA 22101'));

#32 = PostalAddress(.USERDEFINED., 'Sells

Department', ('1172 Wheel Avenue', 'Fresno', 'CA

93711'));

#33 = PostalAddress(.USERDEFINED., 'Sells

Department', ('1119 Motor Road', 'Reno', 'NV

89501'));

#34 = TelecomAddress(.OFFICE., $, ('678-762-

2354', '678-762-2355'), $, ('automobile@cars.com'),

('http://www.cars.com/automobile'));

#35 = TelecomAddress(.USERDEFINED., 'Product

Information', ('775-201-8669', '775-761-2384'), $,

('wheels@cars.com'),

('http://www.cars.com/wheels'));

#36 = TelecomAddress(.USERDEFINED., 'Product

Information', ('609-639-9256', '201-213-0598'), $,

('motor@cars.com'), ('http://www.cars.com/motor'));

#51 = OrganizationRelationship('Consumer', $,

#11, (#12, #13));

#52 = OrganizationRelationship('Supplier', $,

#12, (#11));

#53 = OrganizationRelationship('Supplier', $,

#13, (#11));

#61 = Person(901, 'Pringle', 'Andrew', $, ('Mr'),

$, ('Supply Chain Manager', 'Executive Manager'),

(#34), (#11));

#62 = Person(902, 'Martinez', 'Bill', $, ('Mr'),

$, ('Executive Manager', 'Sells Manager'), (#35),

(#12));

#63 = Person(903, 'Ackley', 'Chris', $, ('Mr'),

$, ('Executive Manager', 'Sells Manager'), (#36),

(#13));

Fig. 4. Sample dataset driven by ActorResource schema and represented

in SPF format.

IV. FORMAL RULES TO PRODUCE OBJECT NOTATION

JSON is a text format for the serialization of structured
data. It is derived from the object literals of JavaScript, as
defined in the ECMAScript Programming Language Standard
[12]. JSON can represent four primitive types (strings,
numbers, booleans, and null) and two structured types (objects
and arrays). An object is an unordered collection of zero or
more name/value pairs (members), where a name is a string
and a value is a string, number, boolean, null, object or array.
An array is an ordered sequence of zero or more values. A
string is a sequence of zero or more Unicode characters.

Let us systemize the rules how instances of data types
defined in EXPRESS language can be mapped to the JSON
document. Such mapping must conform to an unambiguous
representation, storage and interpretation of product data
regardless of format used (SPF, STEP XML or JSON).

Two general rules can be formulated independently of the
predefined datatypes available in EXPRESS and from user-
defined datatypes declared in EXPRESS schemas. The first
rule regulates the representation of the explicit attributes
declared in the schema entities as OPTIONAL. Such attributes
are not required to have a value in the entity instance. When
the optional value is supplied in an entity instance, it shall be
represented according to the rules below. When the optional
value is not supplied in an entity instance, the missing attribute
value shall be encoded by JSON "null" keyword. It is worth
mentioning that the dollar sign "$" is used for the same
purpose in the SPF file format.

The second general rule specifies the qualification of
EXPRESS datatypes. The qualification is necessary in cases
where an attribute value cannot be unambiguously interpreted
using the attribute definition. Typically, such cases occur for
attributes of selection datatypes. The datatype qualification is
also necessary for overlapping instantiations of complex
entities declared with the subtype/supertype constraints
ONEOF, ANDOR, AND. To avoid misinterpretations, simple

entity instances shall be supplied with the qualified entity
datatype. For definiteness, all the datatype names will be
converted to the corresponding lowercase letter names. The
qualification may be desirable in cases where software
applications require additional validation of the interpreted
data.

To clarify this rule, let us consider a sample dataset and

the driving schema IllustrationResource both presented in

Figure 5. The schema defines the entities Title, Picture and

Illustration as well as a few auxiliary datatypes. The

selection datatype Image is declared as a generalization of

the defined datatypes Url, Png, Pixels each of which

corresponds to a particular way of the representation of

images. Therefore, when a Picture instance is created and its

attribute “figure” is initiated, the type of the assigned value

shall be additionally qualified as Url, Png, or Pixels. In the

sample dataset, the Picture instance with the object identifier

“#1” is specified as having the attribute “figure”, initiated by

a given list of integers and qualified as “Pixels”. As seen

from the example, in such cases the attribute values shall be

represented as nested JSON objects with own “type”,

“value” members.

The schema defines the Illustration datatype as a

complex entity being a subtype of the Title and Picture

entities. It implies that complex Illustration instances are

composed of simple instances of the corresponding

supertype instances. In the sample dataset, the Illustration

instance with the object identifier “#2” is specified as being

composed of the Title and Picture instances. The supertype

instances shall be represented as JSON objects and qualified

using the “type” member. The objects are included in an

internal JSON array that is identified as a “_prototype”

member of the complex instance. Simple instances are not

given the object identifiers due to the uselessness. It is worth

mentioning that the order of attributes in any JSON object

does not matter, however, it is a good practice to keep it by

setting the attributes “_oid”, “type”, and “_prototype”

before others.

 SCHEMA IllustrationResource;

TYPE Url = STRING; END_TYPE;

TYPE Png = BINARY; END_TYPE;

TYPE Pixels = LIST[1:?] OF INTEGER;

END_TYPE;

TYPE Image = SELECT (Url, Png, Pixels);

END_TYPE;

ENTITY Title;

 text : STRING;

END_ENTITY;

ENTITY Picture;

 figure : Image;

END_ENTITY;

ENTITY Illustration SUBTYPE OF (Title AND

Picture);

END_ENTITY;

END_SCHEMA;

[

 {

 "_oid": "#1",

 "type": "Picture",

 "figure": {

 "type": "Pixels",

 "value": [0,255,255,128,128]

 }

 },

 {

 "_oid": "#2",

 "type": "Illustration",

 "_prototype":

 [

 {

 "type": "Title",

 "text": "Book"

 },

 {

 "type": "Picture",

 "figure": {

 "type": "Url",

 "value":

"http://www.cars.com/automobile/picture.jpg"

 }

 }

]

 }

]

Fig. 5. An example of EXPRESS datatype qualification in JSON format.

A. Mapping of EXPRESS simple, constructed and

aggregation data types

EXPRESS simple, constructed and aggregation data types
should be mapped to JSON primitive types in accordance with
the following rules:

• NUMBER datatype shall be mapped to JSON number
datatype. The representation of numbers is similar to
the one used in most of the programming languages.
A number is represented in base 10 using decimal
digits. It contains an integer component that may be
prefixed with an optional minus sign, which may be
followed by a fraction part and/or an exponent part.
Leading zeros are not allowed. A fraction part is a
decimal point followed by one or more digits. An
exponent part begins with the letter E in uppercase or
lowercase, which may be followed by a plus or minus
sign. The E and optional sign are followed by one or
more digits. Limits on the range and precision of
numbers should be regulated by software
implementations and are beyond of the consideration;

• A value of INTEGER datatype shall be treated as
specified for an integer component of the JSON
number datatype: a sequence of one or more digits
with no leading zeros, optionally preceded by a minus
sign "-";

• A value of REAL datatype shall be represented in the
same way as the EXPRESS datatype NUMBER;

• BOOLEAN datatype shall be mapped to JSON
datatype boolean. The BOOLEAN values TRUE and
FALSE shall correspond to the JSON boolean values
"true" and "false" respectively;

• A value of LOGICAL datatype shall be treated as a
predefined enumerated datatype with the values
encoded by the strings "true", "false" and "unknown"
which correspond to the LOGICAL values TRUE,
FALSE, and UNKNOWN;

• A value of STRING datatype shall be represented as
JSON string similar to the conventions used in the C
family of programming languages. A string begins
and ends with quotation marks. All Unicode
characters may be placed within the quotation marks,
except for the characters that must be escaped:
quotation mark, reverse solidus, pound symbol and
the control characters (U+0000 through U+001F);

• A value of BINARY datatype shall be represented as
JSON string of Base64 encoded character sequence;

• A value of ENUMERATION datatype shall be
represented as JSON string corresponding to the one
of the names of the enumeration items as declared in
the EXPRESS schema. All uppercase letters in the
names shall be converted to the corresponding
lowercase letters to match the JSON text style. This
conversion is done as opposed to the SPF format in
which the names of the enumeration items are
converted to uppercase letters and delimited by a full
stop symbol ".";

• A value of ENTITY datatype, being the reference to
an entity instance, shall be represented as a JSON
string containing the instance name. The referenced
entity instance must be presented once in the JSON
document and its name must be unique within the
document;

• BAG, SET, LIST, ARRAY datatypes shall be

mapped to JSON array datatype. It is not required for

array element values to belong to the same data type.

Within the JSON array, each element shall be

encoded as specified above in accordance with its

data type declared in the EXPRESS schema. The

ordering of the elements within the encoding must be

maintained for the ordered aggregations LIST and

ARRAY. Nested aggregations are represented as

multi-dimensional JSON arrays in such a way that

the inner-most array, the array containing only

instances of the element type, shall correspond to the

right-most aggregation specifier in EXPRESS

statement of the nested datatype. If the aggregate is

empty, it shall be represented as an empty JSON

array, rather than as an indeterminate value

designated by JSON "null" keyword;

• SELECT data type shall be mapped to JSON
datatypes in the same way as the named datatypes
listed in its EXPRESS statement. Values of the named
datatypes, including nested selections, are encoded
according to the rules above and must be supplied
with type qualifiers to refine the datatypes of the
selected values.

B. Mapping of EXPRESS entity data types

The JSON document containing product data can be

thought as an array of JSON objects each corresponding to

an EXPRESS ENTITY instance. Each object structure is

represented as a set of members (name/value pairs).

A value of ENTITY instance shall be represented as

JSON object with the following members:

• the identifier “_oid” represented as JSON string. Its

value must be unique, at least among the objects

within the document. Depending on the application

context, the value may be globally unique. This

member is mandatory for all instances not being

supertype instances (see the explanations below).

The predefined member name with the preceded

underscore symbol should prevent naming conflicts

with the underlying schema definitions. The values

preceded by “#” symbol can be used to match the

SPF format style;

• the datatype “type” shall be represented as JSON

string. Its value must exactly match the name of the

ENTITY datatype to which the instance belongs.

This member is mandatory for all instances;

• the prototype “_prototype” shall be represented as

an array of nested JSON objects. This member

appears if only the instance belongs to complex

ENTITY datatype being a specialization of several

ENTITY datatypes under the subtype/supertype

constraints ONEOF, ANDOR, AND (for more

details on complex entity instantiations, see

internal and external mappings of the EXPRESS

standard [11]). In such cases each supertype

instance shall be represented as JSON object of the

prototype array according to the rules specified.

Supertype instances are not provided with the

object identifiers due to the uselessness;

• the attribute members. Each explicit attribute of the

ENTITY instance shall be represented exactly by

one attribute member independently on whether it

was declared in the entity definition as

OPTIONAL. The name of the attribute member

must exactly match the name of its datatype as

defined by the EXPRESS schema. The value of the

attribute member shall be represented according to

the rules of the mapping of simple, constructed and

aggregation data types specified in the previous

subsection. The datatype qualification must be

applied in cases where the value cannot be

unambiguously interpreted using the attribute

definition. No restrictions on the order of the

attribute members are imposed. DERIVED and

INVERSE attributes shall not be represented as

members.

C. An example of the employment of the formal rules

To illustrate the formal mapping rules, let us focus on

the ActorResource schema and the sample dataset presented

in Section III. It can be seen that the dataset presented in the

SPF format is semantically equivalent to the JSON

document encoded accordingly to the specified rules and

shown in Fig. 6.

The document contains the same set of the objects of the

Organization, OrganizationRelationship, Person, Postal

Address and TelecomAddress types. Their attribute values

are the same as in the original dataset. The object identifiers

were intentionally assigned in the same way as in the SPF

file to simplify the comparison.

[

 {

 "_oid":"#11",

 "type":"Organization",

 "id":1203,

 "name":"Automobile Inc.",

 "description":"In cars we trust.",

 "roles":["Supply Chain Manager", "Executive

Manager", "Sells Manager"],

 "addresses":["#31", "#34"]

 },

{

 "_oid":"#12",

 "type":"Organization",

 "id":1203,

 "name":"Automobile Inc.",

 "description":"In cars we trust.",

 "roles":["Supply Chain Manager", "Executive

Manager", "Sells Manager"],

 "addresses":["#31", "#34"]

 },

{

 "_oid":"#13",

 "type":"Organization",

 "id":1203,

 "name":"Automobile Inc.",

 "description":"In cars we trust.",

 "roles":["Supply Chain Manager", "Executive

Manager", "Sells Manager"],

 "addresses":["#31", "#34"]

 },

 {

 "_oid":"#61",

 "type":"Person",

 "id":901,

 "familyName":"Pringle",

 "givenName":"Andrew",

 "middleNames":null,

 "prefixTitles":["Mr"],

 "suffixTitles":null,

 "roles": ["Supply Chain Manager", "Executive

Manager"],

 "addresses":["#34"],

 "engagedIn":["#11"]

 },

 {

 "_oid":"#51",

 "type":"OrganizationRelationship",

 "name":"Consumer",

 "description":null,

 "relatingOrganization":"#11",

 "relatedOrganizations":["#12","#13"]

 },

 {

 "_oid":"#31",

 "type":"PostalAddress",

 "purpose":".OFFICE",

 "userDefinedPurpose":null,

 "addressLines":["9292 Automobile Dr.", "Mc

Lean", "VA 22101"]

 },

 {

 "_oid":"#34",

 "type":"TelecomAddress",

 "purpose":".OFFICE",

 "userDefinedPurpose":null,

 "telephoneNumbers":["678-762-2354", "678-762-

2355"],

 "facsimileNumbers":null,

 "electronicMailAddresses":

["automobile@cars.com"],

 "WWWUrls":["http://www.cars.com/automobile"]

 }

]

Fig. 6. Sample dataset driven by ActorResource schema and encoded in

JSON format.

It is important to note that the rules introduced define how

to present product data driven by EXPRESS schemas as

JSON documents. It also seems possible to present

EXPRESS schemas themselves as JSON documents.

However, it has been shown that full mapping is too

complicated even for a particular schema, such as Industry

Foundation Classes (IFC) [13]. It is explained by the

availability of algebraic specifications of the INVERSE,

DERIVED attributes as well as various kinds of WHERE,

UNIQUE, and GLOBAL rules. Incomplete alternative

representations of EXPRESS schemas are not of great interest

because they cannot be used for product data validation

purposes [14].

CONCLUSIONS

Thus, the general rules for producing JSON notation for

EXPRESS schema-driven data are formulated and presented

with explanatory examples. The rules allow to produce an

unambiguous, non-redundant and implementation-neutral

data representation in the JSON file format. The universality

of the rules in relation to arbitrary schemas formally specified

in the EXPRESS language facilitates their widespread

adoption in Web services dedicated to manage product

information models in various industries.

The directions of future research involve practical aspects

of the implementation of the proposed rules as a part of the

existing and emerging PDM systems to accelerate exchange

of complex engineering data and improve processing of long

transactions.

REFERENCES

[1] R.D. Barad. PDM: the essential technology for concurrent engineering.
Spvryan’s International Journal of Engineering Sciences &
Technology (SEST), 2015, vol. 2, no. 3, pp. 1-8.

[2] J. Osborn. Survey of concurrent engineering environments and the
application of best practices towards the development of a multiple

industry, multiple domain environment. Clemson University
TigerPrints, 2009.

[3] ISO 10303. Industrial automation systems and integration — Product
data representation and exchange.

[4] ISO 10303-21:2016. Industrial automation systems and integration —
Product data representation and exchange — Part 21: Implementation
methods: Clear text encoding of the exchange structure.

[5] N. Nurseitov, M. Paulson, R. Reynolds, C. Izurieta. Comparison of
JSON and XML Data Interchange Formats: A Case Study. Proceedings
of the ISCA 22nd International Conference on Computer Applications
in Industry and Engineering, 2009.

[6] D. Peng, L. Cao, W. Xu. Using JSON for data exchanging in web
service applications. Journal of Computational Information Systems,
2011, vol. 7, no. 16.

[7] A. Šimec, M. Magličić. Comparison of JSON and XML Data formats.
Proceedings of Central European Conference on Information and
Intelligent Systems, 2014, pp. 272-275.

[8] I. Jørstad, E. Bakken, T. A. Johansen. Perfomance evaluation of JSON
and XML for data exchange in mobile services. Proceedings of the
International Conference on Wireless Information Networks and
Systems, 2008, pp. 237-240.

[9] A. Sumaray, S. Kami Makki. A Comparison of Data Serialization
Formats For Optimal Efficiency on a Mobile Platform. Proceedings of
the 6th International Conference on Ubiquitous Information
Management and Communication, 2012, pp. 1-6.

[10] ISO 10303-11:2004. Industrial automation systems and integration —
Product data representation and exchange — Part 11: Description
methods: The EXPRESS language reference manual.

[11] ISO 10303-11:1994. Industrial automation systems and integration —
Product data representation and exchange — Part 11: Description
methods: The EXPRESS language reference manual.

[12] T. Bray. The JavaScript Object Notation (JSON) data interchange
format. Internet Engineering Task Force (IETF), 2014.

[13] K. Afsari, C. M. Eastman, D. Castro-Lacouture. JavaScript Object
Notation (JSON) data serialization for IFC schema in web-based BIM
data exchange. Automation in Construction, 2017, vol. 77, pp. 24-51.

[14] V. Semenov, D. Ilyin, S. Morozov, O. Tarlapan. Effective consistency
management for large-scale product data. Journal of Industrial
Information Integration, 2019, vol. 13, pp. 13-21.

