
HP-Graph as a Basis of a DSM Platform Visual

Model Editor

Nikolai M. Suvorov
Department of Business Informatics

National Research University

Higher School of Economics

Perm, Russian Federation

E-mail: SuvorovNM@gmail.com

Lyudmila N. Lyadova
Department of Business Informatics

National Research University

Higher School of Economics

Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract. The language-oriented approach is becoming more

and more popular in the development of information systems,

but the existing DSM-platforms that implement this paradigm

have significant limitations, including insufficient expressive

capabilities of the models used to implement visual model

editors for complex subject areas and limited abilities to

transform visual models. Visual languages are usually based on

graph models, but the types of graphs used have restrictions,

such as inefficiency and complexity of operations and

insufficient expressiveness of the created models. For creating a

tool that does not have the described constraints, development

of a new formal model is needed. HP-graphs can become a

solution for this problem, not only providing the ability to define

and implement new visual languages, but also providing a basis

for implementing operations on models built using these

languages. Definitions of the HP-graph and its elements are

given. Justification of expressive power of the HP-graph is

presented. Main operations for the HP-graph are described. The

chosen graph formalism unites expressive possibilities of

various types of graphs and allows the creation of a flexible

visual model editor based on it for a DSM-platform.

Keywords: Domain-specific language; DSM platform; visual

model; graph model; HP-graph; algorithms on graphs.

I. INTRODUCTION

The study of any objects and processes, as well as their
design, can barely be done without modeling, that is why
software tools that allow non-IT specialists to build various
models and formalize descriptions of objects and processes, or
use modeling as a method of analysis for the study of objects
are becoming more popular. Among the subject areas where
modeling is particularly important, the development of
information systems stands out. Currently the main approach
to creating large information systems is a model-oriented
approach [1]. Using it, developers usually deal only with
models, which helps to ensure high quality of programs and
prevent errors. CASE tools [2], which automate the system
development process as much as possible due to the
capabilities of visual modeling, model interpretation, and code
generation based on the created models, are used especially
for these purposes.

However, the traditional model-oriented approach to
developing systems has its drawbacks, among which are:

• Universality of the languages used for system
development as languages operate not in terms of the
subject area, but in constructs of the means by which
the system is created.

• Immutability of modeling languages, which does not
allow all the subtleties, pitfalls, and limitations of the
subject area to be displayed and taken into account.

• Complexity of modification of the created systems as
making changes to the system is possible only if there
are development tools, source codes and a professional
IT specialist.

• The impossibility of transitioning from one modeling
language to another, but, creating large systems usually
involves building several models describing the system
from different points of view, with different
granularity, so in such cases, there is a need to
harmonize the models created by different
professionals at different stages of development, which
requires the ability to perform a transition from one
modeling language to another.

These problems are solved by a paradigm called language-
oriented programming [3]. This paradigm at the initial stage
of development implies the creation of a metamodel of a
subject area represented by one or more languages for solving
various project tasks. These languages are used to build the
necessary models for implementing the system. For
implementing this approach DSM-platforms [4], language
tools, and Meta-CASE systems, such as MetaEdit+ [5], which
facilitate the development of domain-specific languages
(DSL), are usually used. These languages operate in terms of
the subject area and reflect the specifics of the tasks they solve.
Moreover, subject-oriented languages can also consider the
qualifications of users who will use them [6].

Nevertheless, existing tools only partially solve the
problems of the traditional approach to modeling. To solve all
the problems described above, a language tool must meet the
particular requirements [4], [7], [8]. It should

• have an ability to define modeling languages for most
subject areas;

• have an ability to dynamically change the modeling
language;

• have an ability to alienate the created modeling
language from the system where it has been developed;

• have an ability to modify the visual model of the
system, rather than the source code, when a modeled
process or system undergoes changes;

• unify representation and description of both models
and metamodels, which allows a person to work with
models and metamodels using the same tools, as well
as, for example, provides the opportunity to perform
vertical and horizontal transformations of visual
models.

To create a tool that has all these features, the development

of a new formal model is needed. Visual languages are usually
based on graph models [1], but the types of graphs used have
limitations, such as insufficient expressiveness of the created
models, inefficiency, and complexity of operations. However,
there is a more powerful formal model that solves these
problems, but has not been used by developers yet, which is
called a hypergraph with poles (HP-graph) [9], which
connects the expressive capabilities of various types of graph
models.

II. RELATED WORKS

Many different tools have been created that allow people
to develop modeling languages and build models based on
these languages. These tools are Microsoft DSL Tools [10],
Eclipse Sirius [11], MetaEdit+ [5], Microsoft Visio [12],
QReal [13], etc. Detailed description and comparison of these
platforms is given in [4]. All these platforms have some
limitations and do not fully meet the requirements described
above. Consideration of main constraints of the platforms is
given below.

Microsoft DSL Tools uses templates based on UML
diagrams to create a new DSL, which leads to complexity and
confusion when building model hierarchies and leads to
appearance of limitations and inaccuracies in the resulting
modeling language [8]. Moreover, this platform is
characterized by the lack of the ability to dynamically change
metamodels and transform models, as well as the inability to
use DSL outside of MS Visual Studio.

Eclipse Sirius offers a solution for rapid development of a
graphical tool for DSM, but certain complex tasks may require
changes to the EMF and GMF code. There is also a need for
interpreted expressions which will be evaluated at runtime to
provide a behavior specific to domain and representations and
which can only be written in Acceleo, OCL or Java [11]. Sirius
allows a user to perform horizontal transformations, but the
knowledge of special addons is needed.

MetaEdit+ contains only limited possibilities for
transforming visual models. Models exported from the
platform have their own format, which makes it difficult to use
models created in this platform in other software tools.

The main drawbacks of Microsoft Visio are the inability
to change the modeling language while the system is running,
and the need to purchase MS Visio to use the tools developed
on its basis. Also, a language metamodel can only be built
using a UML class diagram, which significantly limits the
platform's capabilities and complicates the process of creating
languages.

The QReal platform does not have the ability to change the
metalanguage, the ability to transform models, and this
platform is characterized by the complexity of modifying the
created modeling language.

As it seems from the Table I, there is no platform that
meets all the previously given requirements. Nevertheless, it
should be noted that at least some of the requirements for tools
are met by each of the platforms listed. Modeling and
designing information systems tend to be done using special
methodological approaches which can be divided to structural
and object-oriented approaches. Despite the difference in the
approaches and the division of all tools into two large groups
depending on the approach underlying them (UML and "No-
UML"), there are general modeling principles that the model
should be aimed to implement.

TABLE I. THE COMPARISON OF THE TOOLS

Requirements
MS DSL

Tools

Eclipse

Sirius

Meta

Edit+

MS

Visio
QReal

Ability to define modeling
languages for most subject
areas

+ + + + +

Ability to dynamically
change the modeling
language

− − + − −

Ability to alienate the
created language from the
system

− + − − −

Ability to modify the
visual model

+ + + + +

Ability to perform a
horizontal transformation

− + − − −

The essence of the structural approach is to decompose a
process into automated functions – the function of the upper
level is decomposed and divided into subfunctions, refining
properties of the functions at the upper levels of the hierarchy.
Each subfunction, in turn, is decomposed into elements of the
next level, and this happens until the obtained structure
becomes trivial enough. Among the diagrams of this approach
are Structural Analysis and Design Technique (SADT), a
Data-Flow Diagram (DFD) and an Entity-Relation Diagram
(ERD). The structural approach is used in simulation systems
[15], as well as for functional and information modeling [16].
DSL can also be developed as part of this approach [17].

The essence of the object-oriented approach is an object
decomposition, when the system is represented as a set of
objects that exchange messages during the interaction.
Moreover, the object itself in this case is an independent entity
characterized by its state, behavior, and semantics [18]. Based
on this approach, a set of DSLs [19],[20] is developed, but this
approach is characterized by certain disadvantages, among
which the complexity of building a hierarchy of models is
highlighted. Using this approach does not always allow a
person to properly express the concepts of the subject area, so
the resulting language may have some limitations and
inaccuracies. However, using it we can significantly reduce
the language development time [21]. With all this in mind, the
formalism underlying the visual model editor for a DSM-
platform must meet the following requirements:

• To allow multi-level and multi-aspect modeling, which
makes the decomposition of models from different
points of view possible.

• To unify the description of models at different levels
of the hierarchy, which means that the same formalism
should be used to describe both models and
metamodels.

• To allow development of modeling languages for a
wide range of subject areas.

• To allow a user to discard constructions that are not
details of the subject area, which will simplify the
study of the developed language by end users.

• To perform both horizontal and vertical
transformations.

Various types of graph formalisms are used for
constructing and visualizing models, including oriented

graphs, multigraphs [22], hypergraphs [23], hi-graphs [24],
[25], meta-graphs [7], [26], P-graphs [27], [28]. Nevertheless,
all these formalisms cannot meet all the mentioned
requirements due to their certain limitations, therefore,
development of a new graph model is needed.

III. DESCRIPTION OF THE GRAPH MODEL

Hypergraph with poles (HP-graph) is a graph model which
meets the given requirements and can be used as a base for a
visual model editor.

HP-graph is an ordered triple G = (P, V, W), where

P = {π1,…,πn is a set of external poles, V = {v1,…,vm} is a
non-empty set of vertices, W = {w1,…,wl} is a set of edges [9].
Let Pol be an abstract set of all poles of the graph. Thus, 2Pol
is a powerset of all poles of the graph. Then:

• Every vertex v  V is a subset of the set of all subsets

of poles (v  2Pol) but viV,vjV[i ≠ j→vivj =],
which means that V is a set of mutually disjoint
subsets of Pol.

• A set of external poles P is also a subset of the

powerset of poles (P  2Pol). This set consists of input

and output poles of the graph (P = I(G)O(G)). Each

vertex of the graph v  V is also represented by a set
of input (I(v)) and output (O(v)) poles Pv = {pv₁,…pvₙ}

(vV I(v)  Pv, O(v)  Pv[I(v)O(v) = v]). Sets
of input and output poles can also intersect. If no poles
are specified for a vertex, it is assumed that the vertex
consists of a single pole, which is both input and
output (I(v) = O(v)).

• Each edge w  W defines connections between
vertices and is represented as a subset of the powerset

of poles (w = Pw = {pw₁,…,pwₖ}  2Pol). An edge

cannot be represented as an empty set (wW:

[Pw≠]). The edge can allow a vertex to be even
linked to itself. Each edge must contain at least one

input pole and one output pole, so for vV(G),

wW(G) the following condition must be met:

[pw(I(v)I(G)) and rw(I(v)I(G))].

An example of the hypergraph with poles is demonstrated

on Fig. 1.

Fig. 1. Example of an HP-graph

 On this figure external poles are represented by a set
P = {π1,…,π5}, edges are represented by a set W = {w1,…,w6}
and vertices are represented by a set V = {v1, v2, v3}. Every
vertex contains a certain number of poles p, which are

connected to other poles by means of hyperedges from
the set W.

In the HP-graph, edges and vertices are represented as sets
of inputs and outputs, while the actual structure of these
elements is hidden. Thus, it can be assumed that these
elements are represented as a "Black box".

A. Main Operations

 To describe main operations on the HP-graph, let us define
G = (P, V, W) as an original HP-graph, G' = (P', V', W') as a
resulting HP-graph, v as a vertex, p1 as an inner pole, p2 as an
outer pole and w as an edge.

 The following operations add elements to an HP-graph:

• v + p1 is the addition of the inner pole to the node.
The pole is added to both the vertex itself and the set
of all poles of the graph:

Pol(G') = Pol(G){p1},

v' = v{p1}.

• G + v is the addition of the node to the graph. If a
cardinality of v is more than 0 (|v|>0), a vertex is
added to the set of vertices V(G), and all poles of this
vertex are added to the set of all poles of the graph:

Pol(G') = Pol(G)v,

V(G') = {V(G){v}| |v|>0}.

• G + w is the addition of the edge to the graph. An edge
is formed from the already existing poles of the graph
by combining them into a single set. Let I(w) be the
set of input poles of an edge w, and O(w) be the set of
output poles of w, then the operation is represented as:

W(G') = {W(G){w}| |I(w)|>0 and |O(w)|>0}.

• w + p1 is the addition of the inner pole to the edge. An
existing pole belonging to one of the vertexes is added

to the edge (vV(G) [p1v]), which is represented
as:

w' = w {p1}.

• w + p2 is the addition of the outer pole to the edge. An
existing pole belonging to the set of outer poles

(p2P(G)) of the graph is added to the edge:

w' = w {p2}.

• G + p2 is the addition of the outer pole to the graph.
A pole is added to both the set of outer poles of the
graph G and the set of all poles:

Pol(G') = Pol(G) {p2},

P(G') = P(G) {p2}.

The following operations remove elements from an HP-
graph:

• v − p1 is the removal of the inner pole from the node.
When a pole is removed from a vertex, all its
occurrences in the edges are cut off and it is removed
from the set of all poles of the graph:

wW(G) [w = {w\{p1} | {p1}w}],

Pol(G’) = Pol(G)\{p1},

v' = {v \{p1} | |v|>1}.

π1

π2

π3

π4

π5

ν1

ν2

ν3

G

p1

p2
p3

p6
p5

p4

p10

p7 p8
p9

p11

p12w1

w2

w3

w4

w6w5

• G − v is the removal of the node from the graph. In
addition to deleting a vertex, all occurrences of the
poles of this vertex in the edges are cut off, and all
poles of the vertex are removed from the set of poles
of the graph:

wW(G) pv [w = {w \{p}| pw}],

Pol(G') = Pol(G) \{v},

V(G') = V(G) \{v}.

• G − w is the removal of the edge from the graph.
Performing this operation only removes an edge from
the set of all edges of the graph, leaving the external
poles and vertex poles unchanged:

W(G') = W(G) \{w}.

• w − p1 is the removal of the inner pole from the edge.
A pole is removed only from an edge w, without
changing the set of all poles of the graph and the set
of poles of the vertex to which it belongs, but if the
resulting edge w’ does not contain at least one input
and one output pole, then the edge is removed:

w' = w \{p1},

W(G') = {W(G) \{w}| |I(w)| = 0 or |O(w)| = 0}.

• w – p2 is the removal of the external pole from the
edge, which is equal to the previous operation.

• G – p2 is the removal of the outer pole from the graph,
which also includes removing this pole from all edges
that contain this pole:

wW(G) [w = {w \{p2} | {p2}w}],

P(G') = P(G) \{p2},

Pol(G') = Pol(G) \{p2}.

B. Operations of Decomposition

 A hypergraph with poles allows vertices and edges to be
decomposed during the decryption operation. This feature
makes multilevel representation possible. This possibility is
achieved by correctly correlating the poles of the source and
received graph which is done by implementing a mapping
function.

 The mapping f: v → P, which is a decoding function for a
vertex v, must be concordant with the sets I(v) and O(v), so

that pI(v): [f(p)I(G)], rO(v): [f(r)O(G)]. Thus, the

mapping of the pole pv to the next level of the hierarchy is

represented as f(p) = π, where πP(G), which means that a
pole p becomes the external pole π for a resulting graph.

Fig. 2 illustrates decomposition of the vertex v3 by a new
HP-graph.

An edge can be decomposed similarly but with the help of
mapping f: w → P which also must be concordant with sets of
input (I(w)) and output (O(w)) poles, so that

pI(w): [f(p)I(G)], rO(w): [f(r)O(G)]. Thus, the

mapping of the pole pw to the next level of the hierarchy is

also represented as f(p) = π, where π  P(G). Example of
decomposition of the edge w6 is demonstrated on Fig. 3.

As is seen, the decomposition of edges and vertices is
almost equal, therefore, it is possible to define a common
decryption algorithm for these structures.

Fig. 2. Example of vertex decomposition by a new HP-graph

Fig. 3. Example of edge decomposition by a new HP-graph

 To do it, let us define a set of structures Str = V  W.

Hence, str  Str is a structure which can be either a vertex or
an edge. The algorithm of the structure decomposition by a
new HP-graph can be described as follows:

Algorithm 1. Procedure DecomposeStructure

G = new HPGraph();

foreach pstr:

 if (pI(str)):

 I(G) = I(G)  p;

 if (pO(str)):

 O(G) = O(G)  p;

Openstr = Openstr  (str, G)

As is seen from the algorithm, for every structure str
several decoding operations can be defined. Generally, they
can be presented as Openstr ⸦ str × Gall, where Gall is the set
of all HP-graphs determined on the set Pol.

An edge of an HP-graph can also be decrypted by ordinary
links between the poles. To implement this operation, it is
necessary to define the set Ew = {e1,…,en} ⸦ I(w) × O(w) for

each edge w  W, so that every link (e  Ew) is represented by

a pair (p, r) provided that p  I(w), r  O(w). Thus, the

decoding of the edge w  W can be represented by the
mapping function f: w → Ew, which replaces the hyperedge
with normal connections between the input and output poles.

Fig. 4 illustrates the example of hyperedge decoding by
ordinary links. As Ew ⸦ I(w) × O(w), some input and output
poles can be unconnected such as poles p9[O] and p11[I] in
Fig. 4.

ν3

p6[I,O]
p5[I,O]

p7[I] p8[I]
p9[O]

G_v3 π6[I,O]

π9[O]

π8[I]π7[I]

π5[I,O]

Open = (ν3, G_v3)

π5[I,O]

p11[I]

p12[O]

w6p9[O]

G_w6

π9[O]

π11[I]

Open = (w6, G_w6)

π12[O]

π5[I,O]

Fig. 4. Example of edge decomposition by a ordinary links

C. Operations of Transformation

 Many different approaches are used to transform visual
models, but from the point of view of some scientists and
developers [8], [29] the most promising one is the algebraic
approach [30], which allows parsing graphs and checking
graph models for consistency. This approach and its
modifications are implemented in such tools as
MetaLanguage [8], AGG [31] and VIATRA [32]. It is worth
mentioning that there are also toolsets, such as ATL [14], that
implement technologies from other areas of software
engineering, but most of them have considerable restrictions.

 To determine transformation operations, it is necessary to
give a definition to a subgraph of HP-graph. A subgraph of
the HP graph G = (P, V, W) is an HP-graph G' = (P', V', W')

that is part of the graph G (P' ⸦ P & (v'V'

v  V: [v' ⸦ v]) & W' ⸦ W) and fulfills the condition
Open' ⸦ Open. The subgraph must also meet the condition (1)
to make transformation operations possible.

 (v  V' \ V'partial [pv] & wW[pw]) → wW' ()

The set V'partial is a set of the incomplete vertices in the graph,
where V'partial ⸦ V'.

 A subgraph can contain vertices called incomplete whose
sets of poles can only be part of the sets of poles of the vertices
of the original graph.

 To perform a transformation, it is needed to select the
source and the target graph and set production rules that
describe the transformation. A production rule is represented
as p = (GL, GR), where GL is a pattern-graph and GR is a
replacement graph. Nevertheless, there is a restriction which
is represented in (1) and must be satisfied to perform a
transformation. It can be explained by the fact that it is
unknown how certain hyperedges should change during the
transformation while this restriction obliges to redefine all
edges which are incident to poles involved in the
transformation.

 To display all hyperedges, all the poles that are included
in them must be displayed, so it is needed to add such auxiliary
(incomplete) vertexes that store only those poles that belong
to the displayed hyperedges.

 An algorithm for the transformation can be divided into
two functions. The first one removes a subgraph isomorphic
to the pattern and the second one adds replacement graph to
the original graph.

The first step can be described as follows:

Algorithm 2. Function DeleteGraph(HostG, GL)

G’ = Find_Isomorphic_Subgraph(HostG, GL);
partials = {}

foreach w’W(G’):
 W(HostG) = W(HostG) \ {w’};

foreach v’V(G’):

 if (v’V(HostG)):
 V(HostG) = V(HostG) \ {v’};
 else:

 partials = partials  {v’};

foreach p’P(G’):

 if (¬wW(HostG)[p’w]):
 P(HostG) = P(HostG)\p’;
return partials;

The second step of the algorithm will be following:

Algorithm 3. Procedure AddGraph(HostG, GR, partials)

foreach pP(GR):

 if pP(HostG):

 P(HostG) = P(HostG)  {p};

foreach vV(GR):

 if (vPartials):

 V(HostG) = V(HostG)  {v};

foreach wW(GR):

 W(HostG) = W(HostG)  {w};

 These algorithms can be repeated several times as the set
of transformation rules may not be limited to just one rule.

IV. JUSTIFICATION OF EXPRESSIVE POWER OF FORMALISM

 It is possible to justify the transcending expressive power
of the HP-graph by proving that the graph formalisms
generally used for building and visualizing models can be
represented as an HP-graph. Previously, it was mentioned that
oriented graphs, hypergraphs, hi-graphs, meta-graphs and
P-graphs are most frequently used for such purposes. Table II
describes formulas which represent any of these graph
structures as an HP-graph.

TABLE II. REPRESENTATION OF GRAPHS AS AN HP-GRAPH

Graph model Representation in the HP-graph G' = (P', V', W')

Oriented Graph

G = (V, E)

V = P' = V', where v'V': [|v'| = 1]

E = W', where w'W': [|w'| = 2])

Hypergraph

G = (X, E)

X = P' = V', where v'V': [|v'| = 1]

E = W'

Hi-graph

G = (X, E)

{x | xX & |x| = 1} = P’ = V’, where v’V’: [|v’| = 1]

E  {x | x  X & |x| > 1} = W’

Metagraph

G = (V, MV, E)

V = P' = V', where v'V': [|v'| = 1]

E  MV = W'

P-graph

G = (P, V, W)

P = P'
V = V'

W = W', where w'W': [|w’| = 2]

 From the table it can be concluded that the HP-graph has
more expressive power than the previously described graph
models. These graph models are special cases of the HP-
graph; thus, the HP-graph is a generalization of all of these
graph formalisms.

V. CONCLUSION

 The definition of the mathematical apparatus underlying
the visual model editor was given above, including a detailed
description of the graph structure itself, as well as the

π5[I,O]

p11[I]

p12[O]

w6p9[O]

Open = (w6, E)

π5[I,O]

p11[I]

p12[O]

p9[O]

operations that can be performed on it. For the selected graph
formalism, algorithms for decoding vertices and edges, as well
as algorithms for performing transformations, were described.

 The HP-graph unites expressive possibilities of various
types of graphs, therefore, algorithms that are designed for
these types of graphs (particularly model transformation
algorithms [33], [34]) can also be implemented for HP graphs.
The time complexity of model transformation algorithms can
be reduced. The paper proves that HP-graph allows the
creation of a flexible visual model editor based on this graph
formalism for a DSM-platform. Representing both vertices
and links as sets of poles simplifies the object model of DSM
editor and visual model editing algorithms.

 It is planned to develop a program that will demonstrate
the practical significance of the selected graph formalism.

REFERENCES

[1] Koznov D.V. Osnovy vizual'nogo modelirovanija [Basics of visual
modeling]. Uchebnoe posobie [Textbook], 2007 (in Russian).

[2] Fugetta A. A classification of CASE technology. Computer. IEEE
Computer Society, 1993, vol. 26, no. 12, pp. 25-38.

[3] Ward M. P. Language Oriented Programming. Software – Concepts &
Tools, 1994, vol. 15, no. 4, pp. 147-161.

[4] Sukhov A.O. Sravnenie sistem razrabotki vizual'nyh predmetno-
orientirovannyh jazykov [Comparison of visual object-oriented
language development systems]. Matematika programmnyh sistem:
mezhvuzovskij sbornik nauchnyh statej [Mathematics of software
systems: Intercollegiate collection of scientific articles], 2012, no. 9,
pp. 84-111 (in Russian).

[5] Kelly S., Lyytinen K., Rossi. M. MetaEdit+: A Fully Configurable
Multi-User and Multi-Tool CASE Environment. In: Proceedings of
CAiSE'96, 8th Intl. Conference on Advanced Information Systems
Engineering, Lecture Notes in Computer Science, 1996, vol. 1080, pp.
1-21.

[6] Lyadova L.N., Sukhov A.O., Zamyatina E.B. An Integration of
Modeling Systems Based on DSM-Platform. In: Advances in
Information Science and Applications. Volumes I & II. Proceedings of
the 18th International Conference on Computers, 2014, pp. 421-425.

[7] Sukhov A.O., Lyadova L.N. MetaLanguage: a Tool for Creating Visual
Domain-Specific Modeling Languages. In: Proceedings of the 6th
Spring/Summer Young Researchers’ Colloquium on Software
Engineering, 2012, pp. 42-53.

[8] Sukhov A.O. Razrabotka instrumental'nyh sredstv sozdanija vizual'nyh
predmetno-orientirovannyh jazykov [Development of tools for creating
visual subject-oriented languages]. PhD thesis, Moscow, 2013, 256 p.
(in Russian).

[9] Sukhov A.O., Lyadova L.N., Poryazov S.A. Gipergrafy s poljusami
kak osnova sozdanija redaktorov vizual'nyh jazykov [Hypergraphs
with poles as the basis for creating visual language editors].
Matematika programmnyh sistem [Mathematics of software systems],
2018, no. 15, pp. 97-104 (in Russian).

[10] Microsoft. Visual Studio Docs. Overview of Domain-Specific
Language Tools [Online]. Available: https://docs.microsoft.com/en-
us/visualstudio/modeling/overview-of-domain-specific-language-
tools?view=vs-2019 [Accessed: 10.01.2020].

[11] Vujovic V., Maksimovic M., Perisic B. Comparative analysis of DSM
Graphical Editor frameworks: Graphiti vs. Sirius. 23nd International
Electrotechnical and Computer Science Conference ERK, 2014, pp.
7-10.

[12] Pavlinov A.A. Kompleks sredstv razrabotki problemno-
orientirovannyh vizual'nyh jazykov [A set of tools for developing
problem-oriented visual languages]. Vestnik Sankt-Peterburgskogo
universiteta [Bulletin of Saint Petersburg University], 2007, vol. 10,
no. 1, pp. 86-96 (in Russian).

[13] Terekhov A.N. Arhitektura sredy vizual'nogo modelirovanija QReal
[Architecture of the visual modeling environment QReal]. Sistemnoe
programmirovanie [System programming], 2009, no. 4, pp. 172-197 (in
Russian).

[14] Bezivin J., Jouault F., Touzet D. An Introduction to the ATLAS Model
Management Architecture, 2005, 24 p.

[15] Jeong K., Wu L., Hong J. IDEF method-based simulation model design
and development. Journal of Industrial Engineering and Management,
2009, vol. 2, no. 2, pp. 337-359.

[16] Serifi V., Dasic P., Jecmenica R., Labovic D. Functional and
Information Modeling of Production Using IDEF Methods. Strojniški
vestnik – Journal of Mechanical Engineering, 2009, vol. 55, no. 2, pp.
131-140.

[17] Imran S., Foping F., Feehan J., Dokas I. Domain Specific Modeling
Language for Early Warning System: Using IDEF0 for Domain
Analysis. International Journal of Computer Science Issues, 2010,
vol. 7, no. 5, pp. 10-17.

[18] OMG. Unified Modeling Language Specification [Online]. Available:
https://www.omg.org/spec/UML/2.5.1/PDF [Accessed 15.02.2020].

[19] James P., Knapp A., Mossakowski T., Roggenbach M. Designing
Domain Specific Languages – A Craftsman’s Approach for the
Railway Domain Using CASL. In: International Workshop on
Algebraic Development Techniques, Lecture Notes in Computer
Science, 2012, vol. 7841, pp. 178-194.

[20] Wise R., Brimhall E. A Systems Engineering Approach to the
Development of a Domain-Specific Language for Functional
Reference Architectures. In: Systems Engineering in Context, 2019, pp.
241-254.

[21] Velter M. MD*/DSL Best Practices Update March 2011. Version 2.0
[Online]. Available:
http://www.voelter.de/data/pub/DSLBestPractices-2011Update.pdf
[Accessed: 20.03.2020].

[22] Struchkov I.V. Formalizm dlja opisanija programmnyh sistem i
vychislitel'nyh processov ciklicheskoj parallel'noj obrabotki dannyh
real'nogo vremeni [A formalism for describing software systems and
computational processes for cyclic parallel processing of real time
data]. Informacionno-upravljajushhie sistemy [Information and control
systems], 2006, no. 2, pp. 8-13.

[23] Courcelle B. Recognizable Sets of Graphs, Hypergraphs and Relational
Structures: A Survey. In: Developments in Language Theory.
International Book Series «Lecture Notes in Computer Science», 2005,
vol. 3340, pp. 1-11.

[24] Grosu R., Stefanescu Gh., Broy M. Visual Formalisms Revisited. In:
Proceedings 1998 International Conference on Application of
Concurrency to System Design, 1998, pp. 41-51.

[25] Power J., Tourlas K. Abstraction in Reasoning about Higraph-Based
Systems. In: Foundations of Software Science and Computation
Structures. International Book Series «Lecture Notes in Computer
Science», 2003, vol. 2620, pp. 392-408.

[26] Basu A., Blanning R. Graphs, Hypergraphs, and Metagraphs. In:
Metagraphs and Their Applications. Integrated Series in Information
Systems, 2007, vol 15.

[27] Mikov A.I. Performance evaluation: textbook, 2013, 89 p.

[28] Filatov D.Ju., Lyadova L.N. Razrabotka redaktora vizual'nyh modelej,
osnovannogo na P-grafah [Development of P-graph based visual model
editor]. In: Tehnologii razrabotki informacionnyh sistem (TRIS-2017):
104 Materialy VIII Mezhdunarodnoj nauchno-tehnicheskoj konferencii
[Information Systems Development Technologies (TRIS-2017): 104
Materials of the VIII International Scientific and Technical
Conference], 2017, pp. 113-118 (in Russian).

[29] Parra F. Dean T. Survey of Graph Rewriting applied to Model
Transformations. In: Proceedings of the 2nd International Conference
on Model-Driven Engineering and Software Development, 2014,
pp. 431-441.

[30] Ehrig H., Ehrig K., Prange U., Taentzer G. Fundamentals of Algebraic
Graph Transformation, 2006, 388 p.

[31] AGG The Homebase. A brief Description of AGG [Online]. Available:
https://www.user.tu-berlin.de//o.runge/agg/agg-docu.html [Accessed:
12.03.2020].

[32] Eclipse Modeling Project. Eclipse VIATRA [Online]. Available:
https://www.eclipse.org/viatra/ [Accessed: 12.03.2020].

[33] Seryi A.P., Lyadova L.N. An Approach to Graph Matching in the
Component of Model Transformations. In: Proceedings of the 7th
Spring/Summer Young Researchers’ Colloquium on Software
Engineering, SYRCoSE 2013. Kazan : 2013, pp. 41-46.

[34] Sukhov A., Lyadova L. N. Horizontal Transformations of Visual
Models in MetaLanguage System. In: Proceedings of the 7th
Spring/Summer Young Researchers’ Colloquium on Software
Engineering, SYRCoSE 2013. Kazan, 2013, pp. 31-40.

