
An approach to semantic search on technical
documentation based on machine learning algorithm

for customer request resolution automation

Artem Kovalev
Institute of Computer Science and

Technology
Peter the Great Saint-Petersburg

Polytechnic University
Saint-Petersburg, Russian Federation

kov3000@ya.ru

Igor Nikiforov
Institute of Computer Science and

Technology
Peter the Great Saint-Petersburg

Polytechnic University
Saint-Petersburg, Russian Federation

i.nikiforov@ics2.ecd.spbstu.ru

Pavel Drobintsev
Institute of Computer Science and

Technology
Peter the Great Saint-Petersburg

Polytechnic University
Saint-Petersburg, Russian Federation

drob@ics2.ecd.spbstu.ru

Abstract — The software sustaining phase is one of the
essential stages of the software development life cycle. At this
stage, customers can contact support and software engineers to
request a resolution of any problem they meet during software
utilization including questions of how to operate with software,
where to find the information about particular functions and
other relevant questions on software product. The work is
devoted to research in the field of software sustainment
automation.

The distinctive feature of the article is the suggested
semantic documentation search approach with the Doc2Vec
machine learning algorithm, which allows automating automate
customer requests resolution. Proposed semantic search is
performed on documentation files, like PDFs, Microsoft Office
documents, wiki pages and other text files with relevant
information about the product. Documentation files, including
page numbers, that have the closest semantic similarity to the
textual description of an unresolved customer request, help the
developer resolve the incoming request more efficiently and in a
shorter time.

The proposed approach is implemented in a software tool to
automate the analysis of unresolved customer requests and
provide recommendations to help in solving each of those
requests. The results show the advantages of using the tool in the
process of software product support.

Keywords — software sustaining, automation, doc2vec,

machine learning, semantic search, documentation.

I. INTRODUCTION

The software maintenance stage is one of the most
important and complex stages of the development life
cycle [1, 2]. In the process of software maintenance, the
developers of the supplier company solve the problems that
arise during the operation of the software product on the
customer side. At this stage, a technical support engineer or a
software developer receives and processes customer requests.
A request is usually written in natural language and contains a
description of the problem in the software product. For
convenient management of such requests, issue tracking
systems are usually used [3]. In this paper, we will consider
the Jira issue tracking system [4].

In the process of solving the customer’s problem, it is
necessary to refer to the relevant documentation or knowledge
base. The documentation can be presented in the form of local
text files of various formats (pdf, doc, rtf, etc.), as well as
contained on remote sites. A special case of the site with the
documentation is the wiki system, which is considered in this
paper.

The documentation can contain a significant amount of
information and the search for the necessary pages can take a
lot of time, which makes the process of studying the
documentation laborious.

Document files are usually searched by keywords.
However, this approach is not effective if the query becomes
large and complex. The main disadvantage of keyword
searches is the inability to define synonyms for words in a
search query.

Algorithms of machine learning and neural networks [5],
namely, the Doc2Vec algorithm [6], can help solve the
problem of semantic search in documentation. With the
software based on the Doc2Vec algorithm, it is possible to
reduce the complexity and increase the efficiency of the
maintenance process. Improving the quality of support helps
build a long-term relationship between the software provider
and the customer.

This work is aimed at the reduction of the complexity of
search over the documentation via an automated approach
based on the application of the Doc2Vec algorithm. To
achieve this goal, it is necessary to develop a software tool that
implements the proposed approach and show the effectiveness
of the application of the proposed approach and its
implementation in software on actual data.

The relevance of the study lies in the fact that in the
process of developing and complicating software products, the
volume of written source code increases, as well as the volume
of documentation. This inevitably leads to an increase in the
number of defects and shortcomings in the software, which is
the reason why customers turn to the support service of the
supplier company.

Our previous paper [7] showed the effectiveness of using
the Doc2Vec algorithm to search for similar already resolved
customer requests in the process of maintaining a software
product. And the motivation of the current work is to show the
application of the same approach to search for useful software
documentation that can help in solving the request.

II. RELATED WORK

Semantic search is a well-established problem in the
computer science research.

The use of ontologies is one of the approaches to semantic
search. For example, Kassim et al. [8] proposed the Semantic
Search Engine, which consists of Ontology development,
Ontology Crawler, Ontology Annotator, Web Crawler,

Semantic Search and Query Processor. They are using
Ontology to store the structure of words and create domain-
related information structures.

Another group of approaches to the search for
semantically similar texts in the corpus of documents involves
the presentation of documents in the form of numerical
vectors, known as document embeddings.

There are many document embeddings techniques, for
example, classic methods like bag-of-words, TF-IDF and
Latent Dirichlet Allocation (LDA) or supervised and
unsupervised machine learning algorithms.

LDA is a generative statistical model that allows sets of
observations to be explained by unobserved groups that
explain why some parts of the data are similar. For example,
if observations are words collected into documents, it posits
that each document is a mixture of a small number of topics
and that each word’s presence is attributable to one of the
document’s topics.

Latent Dirichlet Allocation (LDA) [9] can be basically
viewed as a model which breaks down the collection of
documents into topics by representing the document as a
mixture of topics with their probability distributions. The
topics are represented as a mixture of words with a probability
representing the importance of the word for each topic.

Wei Xing et al. [10] applied LDA algorithm for Ad-hoc
retrieval task. They proposed an LDA-based document model
within the language modeling framework, and evaluate it on
several TREC collections.

Ai Wang et al. [11] proposed a LDA-based cross-language
retrieval model that did not rely on word-by-word translation
of query or document. The proposed LDA-based retrieval
model was compared with three popular retrieval models:
LDA-based mono-lingual document model; Mono-lingual
TF.IDF retrieval model; Cross-lingual Latent Semantic
Indexing retrieval model on CNKI datasets.

Recently, neural network language models have
demonstrated promising performance by reducing time
complexity and successfully solved many NLP problems.
They effectively generate dense and short embeddings,
namely word embeddings [12, 13]. For document
embeddings, averaging word embeddings in a document
could be a way for the representation. Q. Le and
T. Mikolov [6] proposed a method to produce document
vector, which is similar to word embeddings. The method
directly produces document embeddings along with the word
embeddings. They found document embedding very effective
for the problem of sentiment analysis and document retrieval.

There are research papers that have already reviewed the
Doc2Vec method. For instance, Wang S. et al. [14] compared
the Doc2Vec and Ariadne document embedding approaches
in the context of information retrieval. They evaluated these
document embedding techniques in a specific information
retrieval use case related to evidence-based medicine
guidelines. However, experiment results show that Ariadne
performs equally well as Doc2Vec in a specific information
retrieval task.

The Doc2Vec often exhibits low accuracy if the training
data consists of short sentences. Kurihara K. et al. [15]
proposed a new method of supplementing the context of short
sentences for the training phase of the Doc2Vec with the PV-

DM model. This method uses target-topic IDs instead of
sentence IDs as the context. Doc2Vec algorithm was modified
with the hypothesis that other posts for the same topic (i.e.
reviews for the same movie in online movie review sites) may
share the same background. They conducted a large-scale
experiment using movie review posts and proved the
effectiveness of their approach.

Galke L. et al. [16] compared the performance of several
techniques that leverage word embeddings in the retrieval
models to compute the similarity between the query and the
documents, namely word centroid similarity, paragraph
vectors, Word Mover’s distance. They also proposed novel
inverse document frequency (IDF) re-weighted word centroid
similarity and compared it with other approaches. They
evaluated the performance using the ranking metrics mean
average precision, mean reciprocal rank, and normalized
discounted cumulative gain.

Hee Seok Cho et al. paper [17] is devoted to the
implementation of a question and answer search system that
automatically provides learners with the most similar
questions by analyzing the questions and answers based on
Doc2Vec embedding technologies.

BERT (Bidirectional Encoder Representations from
Transformers) is a recent paper [18] published by researchers
at Google AI Language. BERT’s key technical innovation is
applying the bidirectional training of Transformer models to
language modelling. These models generate contextual
embeddings of input tokens (commonly sub-word units), each
infused with information of its neighborhood, but are not
aimed at generating a rich embedding space for input
sequences.

Sentence-BERT, presented in [19] aims to adapt the
BERT architecture by using siamese and triplet network
structures to derive semantically meaningful sentence
embeddings that can be compared using cosine-similarity.

Jiang Zhuolin at al. [20] in their paper explored the use of
the BERT to model and learn the relevance between English
queries and foreign-language documents in the task of cross-
lingual information retrieval.

None of the reviewed studies applies the approach based
on the Doc2Vec algorithm for semantic search in the software
documentation during the maintenance phase. Doc2Vec is the
robust, research-proven algorithm that shows effectiveness in
semantic search and information retrieval tasks. Thus, the
distinctive feature of our research is the use of the above
algorithm to identify semantically related software
documentation pages.

III. PROPOSED APPROACH

In this paper, it is proposed to reduce the complexity of
manual analysis of customer requests. The essence of the
manual approach is to get a list of unresolved customer
requests in the issue tracking system, and then examine and
process each request in an iterative manner. During the request
processing, engineers often have to refer to the documentation
of the software product. The developer has to look for specific
information among a large amount of text data. This process
is inefficient in terms of time and can be optimized.

The workflow schema of the proposed automated
approach to semantic search for documentation is shown in
Fig. 1.

Fig. 1. Workflow schema of proposed approach

The diagram shows that the proposed approach to
semantic search in program documentation consists of the
following steps:

 Creation of data sets from local and remote
resources

 Vector models training

 Handling unresolved issues with the Doc2Vec
algorithm

There are two types of data sources for creating data sets:

 Local document files of various formats, such as
PDF, DOC (DOCX), RTF, TXT, PPT (PPTX),
etc.

 Remote network resources, for instance, wiki
web sites (Confluence, Redmine, Trac, etc.)

The structure of the data set is as follows: each line of the
file begins with a unique identifier that points to a specific
page of a particular document, then there is a separating
character (for example, “|”) followed by the rest of the text
content from the specific page.

In addition to the data set file, a metadata file is created. It
consists of lines divided by three columns: a unique identifier
for the page, the name of the document, the page number in
this document.

The metadata file is required to determine the document
name and the page number, where the specific text is
presented, by a unique page identifier.

Then for each data set, a vector model is created. When
vector models are created, they are used by the Doc2Vec
algorithm to find document pages, which are semantically
similar to the unresolved issue text content.

As a result, the tool generates html report that contains
references:

 To specific pages in local documents

 To specific pages on particular remote wiki sites

After receiving a report with the results, the user can
discover the relevant parts of the documentation that will help
to deal with the customer’s problem quickly. There is no need
to search for the necessary page in the document or in the wiki
system.

Summing up, the proposed approach can be expressed in
the formula 1:

𝑈(𝐿(𝑇), 𝐼) = [𝑅𝑎𝑡𝑒(𝑡) … 𝑅𝑎𝑡𝑒(𝑡ே)] (1)

The description of the values in the formula is as follows:

T – an array of text data from the documentation;

L(x) – learning function used on text data sets, as a result
of the function is a vector model;

Ii – textual data describing a specific issue;

U(x, y) – function of applying a vector model to text data,
which results in an array of the most similar documents;

ti – one of the most similar documents;

N – number of documents found;

Rate(x) – a number that is expressed as a percentage and
means the semantic similarity of ti with the Ii.

IV. TRAINING PROCESS OF THE DOC2VEC ALGORITHM

A. Vector representation of text data

Numerical representation of text documents can be used
for many purposes, for example, document classification, web
search, spam filtering, similar bug report detection [7] and
also for searching semantically related documents [21]. A
simple and effective method of representing texts in the form
of vectors is the use of the Doc2Vec algorithm.

Doc2Vec is an approach in the field of distributional
semantics to the representation of documents in the form of
vectors with a small fixed size. Doc2Vec is based on the
Word2Vec approach [22, 23]. The difference between the
Doc2Vec algorithm and Word2Vec is that, as a result of
training, in addition to the word vectors W, vector
representations of documents D will be obtained.

The schema of using the trained Doc2Vec model for
finding similar documents is as follows: a new document is
fed to the input of the neural network, and the output is a
vector that identifies a document similar to the incoming one.

B. The process of finding similar texts

The semantic proximity of two texts is determined by the
cosine similarity of their vectors. The cosine similarity [24]
measures the cosine of the angle between two nonzero vectors.
If the cosine is 1, then the angle between the vectors is 0
degrees. If the cosine is less than 1, then the angle between the
vectors is in the interval [0; 0.5π). Thus, this metric determines
the location of one vector in space relative to another vector.
Two vectors with the same orientation in space have a cosine
similarity of 1, and two vectors, which are located at an angle
of 90° relative to each other, have a similarity of 0. Two
diametrically opposite vectors have a similarity of -1. Cosine
similarity is mainly used in positive vector space, in which the
result is limited to [0,1]. Unit vectors are as similar as possible
if they are parallel and as dissimilar as possible if they are
orthogonal (perpendicular).

The coefficient of similarity is calculated by formula 2:

, (2)

where 𝐴 and 𝐵 are the components of vectors A and B,
respectively.

The cosine similarity measure is applicable for vector
spaces with any number of dimensions. This measure is most
often used in multidimensional positive spaces.

In the vector representation of text data, each word or
document is matched with its unique vector. The cosine
similarity between the two vectors of words or documents
shows the probability of the semantic similarity of these two
words or documents.

In the proposed approach of automated analysis of
customer requests, it is proposed to use cosine similarity as a
measure of the similarity of two texts. It is assumed that the
two texts are similar in meaning if the cosine similarity of their
vector representations is greater or equal to the coefficient
with a value of 0.8. This ratio can be adjusted. The increase in
the coefficient may be due to the desire to find a smaller
number of the most similar text documents. At the same time,
reducing this ratio will lead to more search results among
semantically similar documents.

V. SOFTWARE TOOL IMPLEMENTATION

The developed tool that implements the proposed
automated approach is written in Java 8 and consists of several
modules:

 2 connectors to remote web systems (Jira,
Confluence)

 2 processors (Documentation and Confluence)

 HTML report generator

 Process executor which coordinates the work of
the entire system

The architecture of the tool is shown in Fig. 2:

Fig. 2. The tool architecture

The Jira and Confluence connectors were developed and
used to load data from Jira and Confluence web resources,
respectively. The services are connected to via corresponding
REST API interfaces. Anonymous or basic authentication
with a username and password is possible.

Jira Connector obtains a textual description of unresolved
requests from Jira. The Confluence connector gains textual
representation of the wiki pages.

The Jira Rest Java Client library (JRJC)1 is used in the Jira
connector. This Java library allows one to connect to any
instance of Jira 4.2+ using the REST API. JRJC currently
provides a thin layer of abstraction on top of the REST API,
as well as the client-side Jira object model. These objects
represent request entities: Issue, Priority, Resolution, Status,
User, etc.

The Confluence Rest Java Client library (CRJC)2 is used
in the Confluence connector. As well as JRJC, the CRJC

1 https://bitbucket.org/atlassian/jira-rest-java-client

2 https://docs.atlassian.com/atlassian-confluence/5.9.2/

provides a thin layer of abstraction on top of the Confluence
REST API.

Each processor is responsible for three things:

 creation of a data set from raw sources

 creation of vector models using data sets

 usage of created model to find related
documentation for unresolved requests

The Documentation processor uses local text files to create
Documentation_DataSet.txt file, and the Confluence
processor uses text content from wiki pages to create
Confluence_DataSet.txt file.

The structure of documentation data set is as follows: each
line of the file begins with a unique identifier that points to a
specific page of a particular document, then there is a
separating vertical bar character and then all text content from
a specific page.

The format of the created data set file can be seen in Fig. 3.

Fig. 3. Part of the documentation data set file

In addition to the data set file, a metadata file is created.
Its structure can be seen in Fig. 4.

Fig. 4. Part of the documentation metadata file

The structure of confluence data set is similar to the one
used in the documentation, but the unique identifier of each
row points to a particular confluence wiki page ID directly and
there is no need to create a metadata file in this case.

The basis of the processors is the Doc2Vec algorithm,
which is implemented in the Java library Deeplearning4j3. The
work with the algorithm is divided into three stages: data
preparation, training and use.

Before transferring the contents of the data set *.txt files
to the input of the Doc2Vec algorithm, it is necessary to
prepare text data to create a vector model. The preparation
process consists of tokenization [25], stemming [26] and
removing stop words. The software tool uses a popular
implementation of Porter's stemmer [27, 28] for the Java
language.

3 https://deeplearning4j.org/

The data set files generated by the Documentation and
Confluence connectors and containing preprocessed page
texts are used for the training. As a result of training, a vector
model is obtained, which is subsequently serialized into the
Documentation_VectorModel.zip and
Confluence_VectorModel.zip files, respectively. Vectors
represent the meaning of requests, and using mathematical
operations on vectors, you can find similarities between
different requests. The example of document vectors is shown
in Fig. 5.

Fig. 5. Vector representations of the documents

All settings for the training are contained in the
doc2vec.properties configuration file. This file contains the
following fields:

 minWordFrequency ― defines the minimum word
frequency in a training dataset, all words that are less
than this threshold will be deleted before learning the
model,

 iterations ― determines the number of learning
iterations performed for each part of the training
body,

 epochs ― the number of iterations across the entire
training body,

 layerSize ― number of output vectors,
 learningRate ― initial learning speed of the

model [6],
 windowSize ― context window size [6],
 sampling ― determines whether to use a subsample

or not, to establish a selection, this field should have
a value greater than 0.

The VectorModel.zip archive contains the following files:

 codes.txt ― codes for the Huffman tree [29],

 config.json ― settings of the Doc2Vec algorithm,

 frequencies.txt ― metrics tf-idf [30] and bag-of-
words [23],

 huffman.txt ― coordinates of the Huffman tree
points,

 labels.txt ― list of resolved requests in base64 format,

 syn0.txt ― weights of connections between input and
hidden neurons of the network,

 syn1.txt ― weights of connections between hidden
and output neurons of the network.

After learning the Doc2Vec algorithm, it is possible to use
it. To do this, a model is loaded into memory from the
VectorModel.zip file, in which each request is represented as
a numerical vector and is associated with a particular
documentation or wiki page identifier. After that, the text

content of unresolved requests is sent to the input of the
Doc2Vec algorithm.

The search process for semantically related documentation
is as follows. First, a numerical vector is formed from the
incoming unresolved request. After that, this vector is
compared with the vectors of the documentation pages and
with the vectors of wiki pages. In this case, the similarity of
the text data is determined by the cosine proximity coefficient
of their vector representations. The greater the coefficient
value is, the more confidently it can be argued that the two
texts are similar.

Thus, the result of the algorithm is a list with identifiers of
the documentation pages most similar to the input unresolved
requests. All this data is then compiled into a report and
presented to the user.

Fig. 6. Final report with related documentation references

The process executor coordinates the work of all these
components. It first starts the Jira connector, retrieves a list of
unresolved requests, and then iteratively sends each request to
both processors. The results of processing are sent to the report
generator, which creates the report.html file. An example of
such report is shown in Fig. 6.

VI. EVALUATION OF DOCUMENT EMBEDDING METHODS

This section compares the results of using various
document embedding methods in the proposed approach to
find semantically similar software documentation. In addition
to Doc2Vec, two known methods, LDA and BERT, were also
chosen for evaluation.

To assess the quality of the useful documentation search
for one request, the classic measures for the information
retrieval task were selected: precision, recall and F1-score. In
our case, any search query is represented by all text data from
an unresolved request. Relevant documentation pages are
those pages that helped in solving the request and retrieved
pages are those that are presented in the final report.

Precision (formula 3) is the fraction of the documentation
pages retrieved that are relevant to the user's information need.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{௩௧ ௦}∪{௧௩ௗ ௦}|

|{௧௩ௗ ௦}|
 (3)

Recall (formula 4) is the fraction of the documentation
pages that are relevant to the query that are successfully
retrieved.

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{௩௧ ௦}∪{௧௩ௗ ௦}|

|{௩௧ ௦}|
 (4)

The traditional F-measure or balanced F-score (formula 5)
is the weighted harmonic mean of precision and recall.

𝐹ଵ =
ଶ∗௦∗

௦ା
 (5)

The described measures were used to evaluate 100
requests using three document embedding methods: LDA,
Doc2Vec and BERT. The results for the first three requests
are shown in the Table I.

TABLE I. EVALUATION OF PRECISION, RECALL AND F1-SCORE FOR 3
REQUESTS WITH LDA, DOC2VEC AND BERT ALGORITHMS

Request
ID Methods

Measures

precision recall F1

1

LDA 0.815 0.716 0.762

Doc2Vec 0.885 0.906 0.895

BERT 0.693 0.851 0.764

2

LDA 0.844 0.809 0.826

Doc2Vec 0.950 0.821 0.881

BERT 0.791 0.738 0.763

3

LDA 0.748 0.816 0.781

Doc2Vec 0.839 0.891 0.864

BERT 0.782 0.810 0.796

The table shows that the Doc2Vec algorithm basically has
better precision, recall and F1 scores than LDA and BERT
algorithms.

Precision, recall and F1 are single-value metrics based on
the whole list of documents returned by the system. For
systems that return a ranked sequence of documents, it is
desirable to also consider the order in which the returned
documents are presented. By computing a precision at every
position in the ranked sequence of documents, it is possible to
calculate the average precision (formula 6) of the algorithm:

𝐴𝑃@𝑛 =
∑ (()∗())

ೖసభ

ோ
, (6)

where k is the rank in the sequence of retrieved documents;
n is the number of retrieved documents; P(k) is the precision
at cut-off k in the list; R is number of relevant documents;
rel(k) is an indicator function equaling 1 if the item at rank k
is a relevant document, zero otherwise.

Mean average precision (MAP) (formula 7) for a set of
queries is simply the mean of all the average precision scores
for each query.

𝑀𝐴𝑃 =
∑ ()

ೂ
సభ

ொ
, (7)

where Q is the number of queries in the set and AP(q) is
the average precision for a given query, q.

We calculate the MAP measure depending on how many
results for each query are retrieved by the developed system:
5, 10 and 20.

The Table II shows that the MAP score is higher for the
Doc2Vec algorithm and that it is most optimal to return 10 the
most similar documentation pages for each query. This is due
to the fact that with 5 results, the remaining important pages
are lost. And with 20 results, extra pages appear that do not
help in solving the request.

TABLE II. EVALUATION OF MAP-SCORE WITH 5, 10 AND 20
RETRIEVED DOCUMENTS FOR 100 REQUESTS WITH LDA, DOC2VEC AND

BERT ALGORITHMS

Methods
Measures

MAP@5 MAP@10 MAP@20

LDA 0.834 0.859 0.848

Doc2Vec 0.876 0.921 0.893

BERT 0.745 0.837 0.812

The diagram (Fig. 7) clearly shows the results of
comparing three document embedding methods in the task of
finding relevant documentation pages for 100 unresolved
requests.

Fig. 7. Graph showing the MAP scores of LDA, Doc2Vec and BERT

algorithms in the task of finding proper software documentation for 100
unresolved requests

As a result of evaluation, it can be concluded that the
Doc2Vec algorithm shows the best results in the task of
finding the most similar documentation pages for unresolved
requests. Therefore, this algorithm is used in the developed
tool.

VII. EVALUATION OF DOC2VEC MODEL

In order to evaluate the accuracy of the created vector
models, it is necessary to apply the Doc2Vec algorithm to the
test data.

The test data set is represented by a text file consisting of
several lines. In this paper, we consider a test file with the
number of lines equal to 100. Each line is a test step and is
divided into three columns by a special separating character.
The first column contains the text fragment of the original
request. The second column contains the text of a request that
is close in meaning. In the third column, on the contrary, is the
request text, which is completely unrelated to the original.

The task of testing is to determine how many lines out of
100 will be successfully evaluated.

The evaluation is as follows: If the first two columns are
similar with the coefficient more than 80%, and the first and
third columns are similar to less than 20%, then we assume
that this row is evaluated correctly.

After evaluating all the lines, we summarize the number of
correct evaluations and divide it by the number of lines. The
resulting number shows the accuracy of the vector model.

Typically, model creation is carried out in several epochs.
During testing, we found out that 12 epochs are quite enough

0

0.2

0.4

0.6

0.8

1

LDA Doc2Vec BERT

MAP@5 MAP@10 MAP@20

to create an accurate model (Fig. 8). The accuracy of the
model in this case is 90%.

Fig. 8. Graph showing the accuracy of the doc2vec model depending on the

number of epochs

During testing and selection of Doc2Vec hyper
parameters, it was found out that the following configuration
is the most optimal in quality and execution time of the
algorithm:

 minWordFrequency = 1
 iterations = 5
 epochs = 12
 layerSize = 100
 learningRate = 0.025
 windowSize = 5
 sampling = 0

VIII. EXPERIMENT

The developed tool was used on the open-source project
Apache Kafka4.

Any engineer can find an error in the work of this program
and register a request containing a question or description of
an error in the corresponding Jira issue tracking system5. For
the experiment, 100 outstanding requests were retrieved from
the Jira.

The Apache Kafka Guide.pdf 6 was used as the local
documentation file. The Kafka project space7 was also used as
a remote wiki resource.

The tool is deployed on a platform that serves as a local
workstation with the Windows 10 Enterprise x64 operating
system, an Intel Core i7-4810MQ processor 2.80 GHz
processor and 16 GB RAM.

The Documentation_DataSet.txt file (235 KB) was
generated from the documentation pdf file. The number of
lines in the data set is equal to the number of lines in the pdf
file and accounts for 184 pages.

The Confluence_DataSet.txt data set was generated with a
size of 5,21 MB and a number of lines of 765, which
corresponds to the number of wiki pages downloaded.

Then from the created data sets the vector models
Documentation_VectorModel.zip (3,19 MB) and
Confluence_DataSetVectorModel.zip (35,5 MB) were
created, respectively.

4 https://kafka.apache.org

5 https://issues.apache.org/jira/projects/KAFKA

Creating datasets took 19 minutes, and creating a model
took 12 minutes.

During the process of working on the Apache Kafka
project, two experiments were conducted. The essence of the
first experiment is to apply the tool to unresolved requests and
evaluate its effectiveness. It is necessary to understand the
percentage of cases, when the tool finds at least one relevant
page in the documentation, as well as the number of cases,
when this finding was correct and useful for solving the
problem. A page is considered found if the semantic proximity
between the request text and page text is 80%. At the same
time, the page found is considered useful if it can indeed help
in solving the problem.

Before experiments, it is necessary to define search
process specification for manual and automated approaches.

Manual approach scenario for documentation search:

1. Read an unresolved request

2. Try to find proper information by keywords for
this request in the documentation files

3. Try to find proper information by keywords for
this request in the wiki system

Automated approach scenario for documentation search:

1. Read an unresolved request

2. Configure the automated tool to get a report for
this unresolved request

3. Run the tool and wait until the end of its
processing

4. Review the generated report, check proposed
documentation pages in local files and wiki

5. If the system does not propose any useful pages,
then do the manual search

In the search process, the developer uses only local
documentation files and wiki systems on which the Doc2Vec
algorithm was trained. The usage of search engines such as
Google is not allowed for the purity of the experiment.

As part of the experiment, 100 requests were downloaded
from Jira and analyzed. The results of the analysis of these
requests are presented in Fig. 9.

Fig. 9. The results of requests analysis using the automated tool

6https://docs.cloudera.com/documentation/enterprise/6/latest
/PDF/cloudera-kafka.pdf

7 https://cwiki.apache.org/confluence/display/KAFKA

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ac
cu

ra
cy

Epochs

0

20

40

60

80

100

Local files (PDF) Wiki (Confluence)

Useful Found

The diagram shows the number of found and the number
of useful pages in the documentation. The 83 related pages
from local files were found, and 57 of them turned out to be
useful for solving the problem. It means that the precision of
the algorithm for local files is 69%. With regards to the wiki,
the 73 related pages were found, and 59 of them are useful to
resolution. The precision in this case is 81%. Wiki pages are
more helpful because they are often updated with relevant
information and they contain a more detailed description of
the internal structure of software products.

The second experiment compared the effectiveness of the
manual and automated approaches to searching the useful
documentation. The second engineer carried out the manual
search for the same 100 requests. Furthermore, both engineers
participating in the experiment had similar work experience
and qualifications. The second participant had not yet seen
those requests that were resolved with the automated
approach.

To compare the search time for useful documentation
pages for each request, a regular timer was used. The timer
turned on when the engineer started working on a new request
and turned off when the engineer found at least one page of
the documentation that proved to be useful for solving the
request. The results of the experiment can be seen in Fig. 10.

Fig. 10. A comparison of the time spent to search for useful documentation

with the manual and automated approach by two developers for 100
requests

The chart shows the time difference between the manual
and automated approaches to finding useful software
documentation. The average time to find the proper
documentation using the manual approach was 12.2 minutes,
and the average time spent searching for the relevant
documentation with the proposed automated approach was
18.4 minutes. In this case, the decrease in the complexity of
the search for documentation amounted to 33.7%.

For more confident results, it was necessary to conduct this
experiment with a large number of people. Therefore, another
10 pairs of developers were invited. One of the pair of
developers tried to solve 100 requests manually, and the other
of the pair tried to solve the same 100 requests in an automated
way.

The results of the experiment conducted with the
participation of 20 developers on 100 requests are shown in

Fig. 11. The chart shows the average time spent by developer
searching for the proper documentation for one request.

Fig. 11. A comparison of the average time spent to search for useful

documentation with the manual and automated approach by 10 pairs of
developers for 100 requests

The chart shows that for 100 unresolved requests the
automated approach takes significantly less time than the
manual approach. The average time spent by 10 developers
using the manual approach to find the proper documentation
pages was 20.5 minutes, and the average time spent searching
for relevant documentation pages by another 10 developers
using the proposed automated approach was 15.2 minutes.
Thus, we can conclude that the decrease in the complexity of
the search for documentation amounted to 25.9%.

IX. CONCLUSION

The study reviewed the related work in the field of
semantic search in the text documents.

An automated approach to reduce the complexity of the
customer requests processing is proposed. This approach is
based on the use of the Doc2Vec machine learning algorithm,
which solves the problem of semantic search in the related
documentation.

The created tool was successfully tested on the Apache
Kafka project. As a result of using the tool, 100 requests were
analyzed. The effectiveness of its use is shown. The results
show the benefits of using the software. The average time for
analyzing documentation has decreased compared to the
traditional manual approach.

REFERENCES
[1] Y.B. Leau, W.K. Loo, W.Y. Tham, and S.F. Tan, “Software

development life cycle AGILE vs traditional approaches,”
International Conference on Information and Network Technology,
vol. 37, no. 1, pp. 162-167, 2012.

[2] E.E. Ogheneovo, “On the relationship between software complexity
and maintenance costs,” Journal of Computer and Communications,
vol. 2, no. 14, p. 1, 2014.

[3] D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: the social nature of issue tracking in small,
collocated teams,” Proceedings of the 2010 ACM conference on
Computer supported cooperative work, pp. 291-300, February 2010.

[4] J. Fisher, D. Koning, and A.P. Ludwigsen, “Utilizing atlassian jira for
large-scale software development management,” 14th International
Conference on Accelerator & Large Experimental Physics Control
Systems (ICALEPCS), October 2013.

[5] T. Pellegrini, “Comparing SVM, Softmax, and shallow neural
networks for eating condition classification,” 16th Annual Conference
of the International Speech Communication Association, pp. 899-903,
2015.

0

5

10

15

20

25

30

35

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Ti
m

e
sp

en
t (

m
in

.)

Request ID

Automated approach Manual approach

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10Av
er

ag
e

tim
e

sp
en

t (
m

in
.)

Developer pair ID

Automated approach Manual approach

[6] Q. Le, T. Mikolov. “Distributed representations of sentences and
documents,” International conference on machine learning, pp. 1188-
1196, 2014.

[7] A. Kovalev, N. Voinov, and I. Nikiforov. “Using the Doc2Vec
Algorithm to Detect Semantically Similar Jira Issues in the Process of
Resolving Customer Requests,” Intelligent Distributed Computing
XIII, pp. 96-101, 2020.

[8] Kassim, J. M., & Rahmany, M. (2009, August). Introduction to
semanticsearch engine. In 2009 International Conference on Electrical
Engineer-ing and Informatics (Vol. 2, pp. 380-386). IEEE

[9] Blei, D., Ng, A., Jordan, M.: “Latent dirichlet allocation,” The Journal
of Machine Learning Research 3, pp. 993–1022, 2003.

[10] Wei, Xing & Croft, W. “LDA-based document models for Ad-hoc
retrieval,” Proceedings of the 29th annual international ACM SIGIR.
pp. 178-185, 2006, 10.1145/1148170.1148204

[11] Ai Wang, Yao Dong Li and Wei Wang, “Cross language information
retrieval based on LDA,” IEEE International Conference on Intelligent
Computing and Intelligent Systems, Shanghai, pp. 485-490, 2009, doi:
10.1109/ICICISYS.2009.5358121

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient
estimation of word representations in vector space,” Proceedings of
Workshop at ICLR, arXiv preprint arXiv:1301.3781, 2013.

[13] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
“Glove: Global vectors for word representation,” EMNLP, 2014.

[14] Wang S., Koopman R. “Semantic Embedding for Information
Retrieval,” BIR@ ECIR, pp. 122-132, 2017.

[15] Kurihara K. et al. “Target-Topic Aware Doc2Vec for Short Sentence
Retrieval from User Generated Content,” Proceedings of the 21st
International Conference on Information Integration and Web-based
Applications & Services. pp. 463-467, 2019.

[16] Galke L., Saleh A., Scherp A. “Word embeddings for practical
information retrieval,” INFORMATIK, 2017.

[17] Hee Seok Cho, Yong Kim. “Development of Doc2Vec-based Question
and Answer Search System,” The 3rd International Conference on
Interdisciplinary research on Computer science, Psychology, and
Education (ICICPE’ 2019), December 17-19, 2019.

[18] Devlin, Jacob & Chang, Ming-Wei & Lee, Kenton & Toutanova,
Kristina. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding,” 2018.

[19] Reimers, Nils & Gurevych, Iryna. “Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks,” 2019.

[20] Jiang, Zhuolin & El-Jaroudi, Amro & Hartmann, William & Karakos,
Damianos & Zhao, Lingjun. “Cross-lingual Information Retrieval with
BERT,” 2020.

[21] N. Ur-Rahman and J.A. Harding, “Textual data mining for industrial
knowledge management and text classification: A business oriented
approach,” Expert Systems with Applications, vol. 39, no. 5, pp. 4729-
4739, 2012.

[22] L. Wolf, Y. Hanani, K. Bar, and N. Dershowitz, “Joint word2vec
Networks for Bilingual Semantic Representations,” Int. J. Comput.
Linguistics Appl., vol. 5, no. 1, pp. 27-42, 2014.

[23] Y. Zhang, Y. Jin, and Z.H. Zhou,. “Understanding bag-of-words
model: a statistical framework,” International Journal of Machine
Learning and Cybernetics, vol. 1, no. 1-4, pp. 43-52, 2010.

[24] G.L Giller, “The Statistical Properties of Random Bitstreams and the
Sampling Distribution of Cosine Similarity,” Giller Investments
Research Notes, no. 20121024/1, 2012.

[25] A.H. Branco and J.R. Silva. “Contractions: breaking the tokenization-
tagging circularity,” Lecture Notes in Computer Science, vol. 2721,
pp. 167-170, 2003.

[26] D. Sharma, “Stemming algorithms: A comparative study and their
analysis,” International Journal of Applied Information Systems,
vol. 4, no. 3, pp. 7-12, 2012.

[27] M.F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130-137, 1980.

[28] P. Willett, “The Porter stemming algorithm: then and now,” Program:
Electronic Library and Information Systems, vol. 40, no. 3,
pp. 219-223, 2006.

[29] M. Sharma, “Compression using Huffman coding,” International
Journal of Computer Science and Network Security, vol. 10,no. 5,
pp. 133-141, 2010.

[30] J. Ramos, “Using tf-idf to determine word relevance in document
queries,” Proceedings of the first instructional conference on machine
learning, vol. 242, pp. 133-142, December 2003.

