
Flow algorithm for scheduling in multiprocessing
heterogeneous systems with integrated modular

architecture
1nd Smirnov Aleksandr
Moscow State University

Moscow, Russia
alsmirnovser@gmail.com

2st Kostenko Valery
Moscow State University

Moscow, Russia
kost@cs.msu.su

Abstract—The article propose algorithm for scheduling tasks
in heterogeneous real-time systems with an architecture of
integrated modular avionics based on finding maximum flow
in transport network. The results of an experimental study for
periodic programs are performed.

Index Terms—real-time system, IMA, scheduling, flow tech-
nique

I. INTRODUCTION

Onboard real-time computing systems of previous gener-
ations of aircraft had a federal architecture. Programs of
each onboard subsystem (for example, location, navigation,
engine control) were executed on their own computers, very
often specialized. The same computer was not allowed to
run programs for different onboard subsystems. This made it
possible to isolate the subsystem’s programs from each other,
but resulted in high hardware costs.

Real-time computing systems for new-generation aircraft
have an architecture of integrated modular avionics (IMA) [1].
A single onboard computer is built from a set of standard-
ized computing modules [2]. Hardware resources of a single
computing module can share application programs of different
onboard systems. It allows to reduce the hardware cost.
However, this requires isolation of programs from different
systems. Isolation extends to all resources, including register
memory, processor caches, and input/output buses.

The well-developed structure of integrated modular avionics
(IMA) has found application far beyond the areas of aviation
alone. This architecture proved to be convenient and reliable
enough for use in other integrated systems and automated
process control systems.

An important point in the construction of real-time systems
with the IMA architecture is the construction of a static-
dynamical schedule for the execution of application programs
[3]. The schedule must guarantee that programs run in the
specified time interval for each program. To construct such a
schedule in a real-time computing system with an integrated
modular avionics architecture, it is necessary to solve the

The work was carried out with the financial support of the RFBR № 19-
07-00614.

problem of constructing static-dynamic schedules. For each
program, you can set the time of its execution, that can vary
depending on the processor type, the directive interval, and
assigning the program to subsystems that we will call partition.
A static-dynamic schedule is constructed if the following pa-
rameters are defined: attaching partitions to processors; a set of
windows for each partition; and opening and closing times for
each window. Each partition can have its own scheduler, which
is responsible for scheduling tasks. Windows are allocated to
partition according to a prebuilt schedule. Programs inside the
window run dynamically. You can interrupt the program and
then execute it in this window or in one of the following
windows in the section. The scheduling algorithms used by
partitions may be different.

In this paper, we consider an algorithm for constructing mul-
tiprocessor static-dynamic schedules in heterogeneous systems
based on finding the maximum flow in the transport network.
The closest problems for which algorithms based on finding
the maximum flow in the transport network are known are the
problems of constructing schedules with program interrupts.

The main challenges of applying known algorithms of
scheduling with interrupts, which are based on finding maxi-
mum flow in a network to build static-dynamic schedules are:
the problem of the attaching partitions for processors and the
problem of determining the correct set of windows.

II. MOTIVATION

Building real-time computing systems with an IMA ar-
chitecture containing a large number of subsystems and
application programs is problematic without computer-aided
design systems. The development of such systems requires
the development of algorithms for solving problems that arise
during the construction of the system. One of these tasks
is to determine the minimum required amount of hardware
resources to run programs in real time and build static-dynamic
schedules for their execution. In some real-time operating
systems [4], [5] based on ARINC-653 specification [6] for
their correct and effective operation, it is necessary to solve the
problem of scheduling processor time, taking into account the
specifics of these mechanisms and the features of programs in

the field of real-time systems. Also there need to be systems to
prove the correctness and perform configuration of the system
behaviour [7]–[9].

III. STATE OF THE ART / RELATED WORK

In [10], ant algorithms were proposed for constructing
static-dynamic schedules. These algorithms are only applicable
for a variant of the problem where program interruption is not
allowed. This means that the program can only run in one
window of its section, which significantly limits the practical
application of algorithms.

In [11], [12], algorithms based on the decomposition of
the problem into two subproblems were considered: binding
partitions to processors and building a set of windows for
each processor. The disadvantage of these algorithms is that
we can’t change first step of algorithm, when we can use
additional information from second step.

The closest problems for which algorithms based on finding
the maximum flow in the transport network are known are the
problems of building schedules with interruptions of work.
The method of using algorithms for finding the maximum
flow in the network to build schedules with interruptions was
proposed in [13]. In [14], an algorithm for building sched-
ules for a heterogeneous multiprocessor system (processors
have different performance) was considered. Interrupts and
switching operations do not require time, but in our system
we need time to switch from program of one partition to
another partition. In [15], [16], an algorithm was described
for the problem, which took into account the limited amount
of processor memory.

The main problems that prevent the direct application of the
known algorithms based on finding the maximum flow in the
transport network for building static-dynamic schedules are:
accounting for work belonging to partitions and constructing
the set of windows that need to consider switching time.

In [17] a flow algorithm was proposed for constructing
static-dynamic schedules for single processor system and in
[18] for multiprocessor systems that consider switching time
between partitions, but those works only with homogeneous
systems.

IV. PROBLEM STATEMENT

We assume that the following data are known:
• n is the number of programs.
• m is the number of processors.
• q is the number of partitions.
• M =

{
pj = 〈sj , Rj〉 | j = 1,m

}
is the set of processors,

where sj is the performance of the processor j which is
measured in units of work per unit of time, Rj is the set
of functional capabilities of the processor j.

• A =
{
ak =

〈
bAk , f

A
k , c

A
k , d

A
k , r

A
k

〉
| k = 1, n

}
is the set

of programs, where bAk is the beginning of the directive
interval, fAk is the end of the directive interval, cAk is the
complexity of the program execution which is measured
in units of work, dAk is the partition number to which the

program is attached, rak is the set of processor’s function-
ality capabilities requirements for program execution.

• w is the complexity of the switching window, which is
measured in units of work, we assume that this parameter
is common for all processor.

A static-dynamic schedule is constructed if the set of win-
dows (time intervals) is defined for each processor l = 1,m:
• ml is the number of windows on the processor;
• Wl =

{
wl

i =
〈
bWl
i , fWl

i , dWl
i , AWl

i

〉
| i = 1,ml

}
is the

set of windows where bWl
i is the time of window opening,

fWl
i is the time of window closing . dWl

i is the partition
number to which the window is attached.

• AWl
i = {(aj , cj) | aj ∈ A, j ⊂ 1, n, cj ≤ cAj } is the set

of programs that are executed in the window (cj indicates
the time given for executing of the program j in the
window).

Conditions for the static-dynamic schedule’s correctness for
each window sets Wl:

1) Windows do not overlap one another and the switch time
is considered:

bWl
i+1 − f

Wl
i ≥ w ∀i ∈ 1,m− 1. (1)

2) The sum of the durations of the parts of the programs
in the same window does not exceed the duration of the
window: ∑

aj∈A
Wl
i

cji
pl
≤ fWl

i − bWl
i ∀i ∈ 1,m. (2)

3) In a window, only programs or their parts that have the
same partition number with the window can be executed:

∀aj , ak ∈ AWl
i → dWl

j = dWl

k ∀i ∈ 1,m. (3)

4) A program can only be executed on a processor if
the processor meets program’s functional capabilities
requirements:

∀ak ∈ AWl
i → rAk ⊆ Rl (4)

5) The program is placed if it is fully executed entirely on
a single processor:

∀ak ∈ AWl
i

∑
A

Wl
j |ak∈A

Wl
j

clkj = cAk . (5)

The clij indicates the number of units of work performed on
the processor l for the program i in the window j.

Our goal is to construct correct static-dynamic schedule,
that places as many programs as it’s possible.

A. Computing system

.
There are several types of operating systems running on the

system. Partition operating systems and the main (modular)
operating system [4]. The modular operating system is respon-
sible for scheduling time windows for each operating system

in the partition. It also passes information to the operating
system of the partition about the quantum of time that should
be allocated for the execution of each program inside this
window. And the operating system scheduler of the partition
inside the window puts programs on execution in accordance
with the priority for the nearest completion time and removes
programs from execution after the expiration of the quantum
of time given to this program for execution in this window.
We assume that if programs meets their requirements then
all messages that should be performed in the system meets
their requirements too. For messages are usually used special
networks [19].

B. Periodic programs

.
Also, instead of the set of programs, a set of periodic

programs can be known, which can be reduced to a set of
programs with individual directive intervals:
AP =

{
aPk =

〈
TAP
k , bAP

k , fAP
k cAP

k , dAP
k , rAP

k

〉
| k = 1, nP

}
is the set of periodic tasks, where TAP

k is the period of
task execution, bAP

k is the jitter to start executing the
program within the period, fAP

k is the jitter for the end of
program execution within the period, for these parameters,
the following relations must be met: 0 ≤ bAP

k ≤ fAP
k

AP
k

cAP
k is the complexity of executing the program instance.
dAP
k is the partition number partition number to which the

periodic program is attached. rAp
k is the set of processor’s

functionality capabilities requirements for program execution.
In this case, to reduce this task to set of programs with

individual directive intervals, we should compute the duration
of planning cycle as least common multiple of all periodic
programs periods. Then we create program instances for each
periodic program with individual directive intervals, which
are calculated as follows: the periodic task is divided into
N programs, where N is the duration of planning cycle
divided by the periodic program period. Program instances
are numbered starting from 0. And for each program instance
with the number i = 0, ..., N − 1 the following directive
interval (TAP

k · i + bAP
k , TAP

k · i + fAP
k] is assigned. The

program instance partition is the periodic program partition.
The complexity of the program instance is the complexity of
periodic program.

V. ALGORITHM FOR CONSTRUCTING A STATIC-DYNAMIC
SCHEDULE BASED ON THE ALGORITHM FOR FINDING THE

MAXIMUM FLOW IN THE NETWORK

The algorithm consists of three main stages:
1) Constructing a transport network (oriented graph).
2) Finding the flow in the transport network.
3) Restoring the schedule from the received flow.

A. Construction of a transport network

It’s similar to transport network from [18], but now we need
to take into account that our system is heterogeneous and the
duration of execution of the same program will vary depending
on the processor.

In accordance with the programs directive intervals (start
time and end time of the directive interval), a set of disjoint
time intervals is constructed in time order I = Ii = τi−1, τi,
where τ0 ≤ · · · ≤ τs is all different values of bAk and fak . The
program k can only be executed in intervals that intersect with
its directive interval: Ii ∈ (bAk , f

A
k].

The network consists of a bipartite graph with two addi-
tional vertices: source and drain. The first part of the graph
consists of vertices that corresponds to a program (vertices-
programs) and the second part consists of vertices correspond-
ing to a pair of interval and processor (vertices-intervals-
processors).

Fig. 1. Transport network

The source vertex is connected to the program vertices
by edges of capacity equal to the complexity of executing
this program cAk . Vertex programs are joined with the vertex-
intervals-processors, on which the corresponding program is
available for execution, i.e., Ii ∈ (bAk , f

A
k] and the functional

capabilities requirements are met rAk ∈ Rj , edges capacity is
equal to complexity handled by the processor for the duration
of the given interval sj |Ii|. Finally, all vertices-intervals-
processors are connected to the drain by edges with capacity
equal to sj |Ii|. The result network is on figure 1.

For network vertices, the following symbols will be used:
u, v. The parameter f(u, v) and c(u, v) denotes the flow and
capacity from the vertex u to the vertex v.

Also, for the convenience of further discussion, we will
assume that each vertex has the following characteristics:

• eu is the excess vertex flow,
• hu is the height of the vertex.

that each vertex-program has the following characteristics:

• du is the partition number, that program attaches to,
• cu is the complexity of the program.

and each vertex-interval-processor:

• niv is the next vertex-interval-processor,
• piv is the previous vertex-interval-processor,
• cwv is the number of window switches inside the vertex,

• irv is the indicator for the switching on the right border
of the interval,

• ilv is the indicator for the switching on the left border of
the interval,

• PT i
v is the structure for storing total flows from all

partitions i = 1, q,
• PSv is the set of partitions with a non-zero incoming

flow,
• fpv is the first section in the interval,
• lpv is the last section in the interval,
• |Iv| is the duration of the interval,
• procv is processor number.
All vertices are grouped by the partition they belong to,

and all vertices-intervals-processors by processors they belong
to. The K parameter specifies the maximum number of
processor reallocation attempts. The PRd structure specifies
the processor to execute for all partitions d = 1, q. There is a
list of all excess vertices.

B. Find the flow in the transport network

The search for a flow is similar to algorithm from [18] and
use it based operations with some modifications. All modifica-
tions are described here. Algorithm defines the main operation
- vertex discharge, based on two operations: lifting the vertex,
pushing from vertex to vertex that check for correctness of
the schedule, which are clearly described in [18]. The main
idea of pushing with checking the correctness is consist of
reserving flow for switch window operation when one vertex-
interval-processor receive flow from vertex-programs that are
owned by different partition. This reserving consist of reducing
capacity of the edge from that vertex-interval-processor to the
drain.

Since the transport network may change the capacity of
edges due to the need to take into account the switching time
between windows the result of the algorithm may be non-
optimal.

The algorithm has been modified to work with heteroge-
neous systems, the main additional operations to maintain
the correctness of the schedule under construction are detach
partition from processor and decide partition attachment that
are applying during the algorithm work and consider current
situation in the network.

Modified operations:
Decide partition attachment
For finding partition attachment we will use greed

criterion that is based on maximum of free space after
partition attachment to the processor. Each partition i has it’s
complexity Ci =

∑
akinA|dA

k =i

cAk . And each processor j has it’s

free space, that as the beginning of the algorithm is equal to
mainloop ∗ sj . After attaching partition i to processor j free
space on processor j is reduced by Ci. Also all edges, that
lead to another vertices-processors-intervals that are owned
by other processors not equal j from vertices-programs that
owned by i partition should reduce their capacity to 0.

Detach partition from processor
When partition detached from processor we need to return

all flows, that go from program vertices that owned by i
partition to processors intervals vertices that are owned by
processor j. It can be done with push operations and window
corrects operation that are described in [18] by applying it
in back order. By that way the correctness of schedule will
remain.

Network Initialization.

1) Natively, the preflow is equal to the capacity for all edges
coming out of the source (this is a flow only to the u
program vertices), and the opposite for reverse vertex
pairs:
f(source, u) = c(source, u) ,
f(u, s) = −c(source, u) ,
eu = c(source, u) .

2) For the other pairs of vertices, the preflow is zero.
3) The initial height is equal to H (algorithm parameter)

in the network for the source, 1 – for program vertices
(since you will have to immediately push the flow to
the processor-interval vertices), 0-for processor-interval
vertices and the drain.

4) For each partition in order of ascending complexity
apply decide attachment operation.

5) All program vertices are added to the list of excess
vertices.

Pushing from u to v.
1) Flow f(u, v) increases by the value deltaf(u, v) =

min(eu, c(u, v)− f(u, v)) .
2) deltaf(u, v) increases the excess flow ofev .
3) the Reverse flow f(v, u) and the excess flow eu are

reduced by deltaf(u, v) .
4) If u is a program vertex and v is a vertex-interval-

processor, perform the partition accounting operation
(check how many different partitions flows to v, see
[18]) when adding a flow of the size δf(u, v) of the du
section to the vertex-interval-processor v and perform
the window correction operation in v (count number of
switching in the vertex, see [18]).

5) If u is a vertex-interval-processor, v is a vertex-program,
perform the partition accounting operation when deleting
a flow of the size δf(u, v) of the dv section to the vertex-
interval-processor and perform the window correction
operation in u.

6) If eu = 0, the vertex u is removed from the list of excess
vertices in the corresponding section.

7) If ev > 0, the vertex is added to the list of excess
vertices.

Discharge of vertex u
While eu0: in order, we consider all available vertices for

pushing v : f(u, v) < c(u, v) and hu = hv + 1.

1) If v is encountered for the first time and it is a vertex-
interval-processor, then we perform the push from u to v
operation to the vertex-interval-processor v, taking into

account the excess flow in drain (it is like bipush to the
drain, see [18]).

2) If v occurs repeatedly or is not a vertex-interval-
processor, perform the push operation from u to v.

3) If there are no v vertices left, perform the operation
lifting u vertex.

General scheme of the algorithm.
1) Perform initialization operation.
2) While there are excess vertices:

a) Selects a partition which list of overloaded vertices
is not empty (if there is no such section, go to step
3), then the following operations are performed for
these vertices u: discharge of the vertex u.

b) As long as the lists of overflow partition vertices
and processor interval vertices are not empty, the
ordered discharge of these vertices is performed:
if there is an excess vertex from the number of
processor interval vertices, it is discharged first.

c) If discharging leads to flow into source that means
that the partition can be executed on that processor
and we should detach it from current processor and
decide new attachment for this as it was described
in two operation upper. Increase K by one.

d) Go to step 2.
3) If there are programs that are not fully placed, the first

such program is deleted from the network (remove all
flow from this vertex-program, see [18]) and go to step
1.

C. Restore schedule by flow

The following operations are performed sequentially (in
the order of time intervals) for all processor vertex-interval-
processor that belong to the same processor for each proces-
sors.

1) If there is a window switch on the left, the current
window is closed, the switching time is taken into
account, the window of the first section opens in this
interval, and one is subtracted from the number of
window switches in this interval.

2) If there is a window switch in the middle ,then (as long
as there are switches in the middle) the window closes
after a time equal to the flow of this section to this
vertex, divided by processor performance. Sections are
sorted, starting from the first and ending with the last (no
matter what order is in the center), switching is taken
into account, and the next section window opens.

3) If there is a window switching on the right, the current
window closes, the switching time is taken into account,
and the window of the first section of the next interval
opens.

4) to specify the programs that are running in the window,
as well as their execution time allocated in each window,
it is sufficient for each vertex-program to take the flow
in the corresponding window interval and divide it by

processor performance. If there is no flow, its value is
zero and the program is not running in this window.

As a result, a set of windows is formed for each processor
with an indication of how much processor time each program
needs to allocate within the window.

D. Correctness of the constructed schedule

The result of the algorithm meets the conditions for correct
scheduling. In the algorithm, the main operation is the vertex
discharge operation, which consists of operations of pushing
from vertex to vertex and operations of lifting the vertex. The
lift operation only affects the order of pushes and does not
affect the correctness of the schedule. The push operation is
designed in such a way that if there is no excess flow in the
network, all the conditions for the correct schedule will be met.
Design of the network not allowed flow, that exceed the ability
of processors to perform tasks and the push operation asso-
ciated with the interval vertex performs window adjustment
operations that add window switching between partitions to
the corresponding vertex-reserving time for switching between
partitions so that other operations cannot use it. Windows are
built based on the duration of one section of work that follows
in a row. In duration of algorithm all not fully placed programs
will be removed from schedule.

Since placement occurs immediately after the attaching of
the partition to the one of the processors, further placement of
programs of this partition is possible only on this processor
(since the capacity to the other processors is equal to zero).
Until the programs wants to make a push to the source, which
is equivalent to not being able to place the entire partition on
this processor. Then the detached operation is performed. The
flow is removed from all vertices from all programs vertices of
this partition (the schedule remains correct, since all window
switches are taken into account). And capacity to the rest of
the processors is restored. Therefore, the condition cannot be
violated: the programs of a same partition is performed on a
same processor.

E. Computational complexity and completeness

The network is built for O(mn2) as there are only 2n pos-
sible intervals and if we assume that we have fully connected
bipartite graph it means that we will have 2n+n vertices and
2n2 edges. And for every edge we need to perform a check
and assign capacity. The schedule is restored for O(mn) as it
is linear operation to check all vertecies-interval-processor in
time order.

As algorithm was based on preflow algorithm [20] it has the
same complexity O(mn3). As we have checks about pushes
than the height of the source is bound number of attemption
to reallocate the flow from one partition layer to processor
layer. And there are only K attempts to reallocate partition
attachment. That leads that in finite number of steps and the
algorithm will end it work.

Therefore the total complexity of algorithm is O(mn3)

VI. IMPLEMENTATION

The program for construction a static-dynamic schedule is
implemented in C++. It has a modular structure based on the
Web class that aggregate Vertex class, that has all required
fields for implementing algorithm. Network architecture and
operations of the proposed algorithm. The transport network
consists of layers that consist of vertices. Each layer have
type: partition layer or processor layer. All vertices of partition
layers associated with vertex-programs and all vertices of
processor layers associated with vertex-intervals-processors.
To link vertex-programs with source there is a special field
in Vertex class for partition layers and to link vertex-intervals-
processors with drain there is a special field in Vertex class
for processor layers. All required operations implement as
methods of Web class.

To construct Web class there is a special class, that can read
an a csv file with system configuraton and programs to create
a instance of Web class. The format of system file is as in
table I:

TABLE I
FORMAT OF SYSTEM FILE

Number Performance Capabilities
0 4 f1
1 1 f1;f2
2 5 f2

The format of programs csv file is as in table II:

TABLE II
FORMAT OF PROGRAMS FILE

Num. Part. Complexity Period Left Right Req.
0 1 20 100 10 50 f1
1 2 40 50 0 50 f1;f2
2 3 10 200 20 200 f1

TABLE III
FORMAT OF STATIC-DYNAMIC SCHEDULE FILE

Processor Partition Window Programs
0 1 0-10 1-1.5
0 2 11-20 2-2.5
1 3 0-20 3 - 5

There is also a separate module for reading data and
building a network based on it, as well as a module for building
a final schedule from the final flow after the algorithm is
running. The result of the program is an csv file that contain
static-dynamic schedule in next format as in table III.

For testing, a synthetic data generator was written in python,
since it is difficult to find open data on this topic. The language
was chosen based on the convenience of working with data.
Such libraries in python are pandas and numpy allow to create
source data with different distribution of parameters.

VII. EVALUATION

The experimental study was conducted in a system with
Windows 10 64bit, Intel Core i3-2370M 2.39 GHz processor,
8GB RAM.

The purpose of the experimental study is to determine the
sets the known data on which the algorithm works effectively.

To do this, we consider three type of heterogeneous systems
with two, four and eight processors.

After this for those three systems by generator we create
a lot of set of periodic programs with different parameters:
number of partitions, total load of the system. The relationship
between duration of the programs was taken random. The
periodic programs were chosen as more compatible for real-
time onboard systems.

We consider programs with completion period is selected
randomly from the range 100, 500, 1000, 1500 and 3000.
Number of tasks in each partition was picked up between 2
and 5. All programs have different percentage of available
computing system load (that is, the performance of only those
processors on which this task can be placed is considered)
that picked up randomly. For each set of parameters we take
more then 100 experiments. Than we compute average time
and average percentage of placed programs.

We consider areas of source data for loading the computer
system these are low-load systems (up to 60%), medium-
loaded systems (up to 70%) and high-load systems(up to 80%).

The summary results of the experimental study are shown
in the table IV:

TABLE IV
EXPERIMENTAL STUDY

Procs load Parts Time(ms) Placed(%)
2 0.6 3 5.6 100
2 0.7 5 6.3 100
2 0.8 7 9.7 100
4 0.6 5 8.4 100
4 0.7 7 12.7 100
4 0.8 9 16.8 100
8 0.6 9 20.9 100
8 0.7 11 27.2 100
8 0.8 13 36.4 100

Based on the average values of these two parameters, it is
concluded that the algorithm is effective in this area of source
data when the load of the system is under 80% and allow
feasible schedule.

VIII. CONCLUSION

The problem of constructing static-dynamic schedules arises
when designing real-time information and control systems
with integrated modular avionics architecture. Algorithms
based on finding the maximum flow in the transport network
have shown high efficiency in terms of accuracy and computa-
tional complexity at constructing schedules with interruptions.
The main problems that prevent the use of known algorithm
based on finding the maximum flow in the transport network
for building static-dynamic schedules are: the problem of

uniform processor. So that algorithm was modified to work
with heterogeneous systems. Experimental research of the
algorithm properties has shown its high efficiency in terms
of accuracy and computational complexity on wide class of
source data.

REFERENCES

[1] Fedosov E., Kos’janchuk V., Sel’vesjuk N. Integrirovannaja modul’naja
avionika. Radiojelektronnye tehnologii, 2015, vol. 1, pp. 66-71 (in
Russian).

[2] Kostenko V.A. Arhitektura programmno-apparatnyh kompleksov bor-
tovogo oborudovanija. Izv. vuzov. Priborostroenie, 2017, vol. 60, no.
3, pp. 229—233 (in Russian).

[3] Smeljanskij R.L., Kostenko V.A. Problemy postroenija bortovyh kom-
pleksov s arhitekturoj integrirovannoj modul’noj avioniki. Radio-
promyshlennost’, 2016, no. 3, pp. 63–70 (in Russian).

[4] VxWorks 653 multi-core edition [PDF] (https://www.windriver.com/-
products/product-overviews/vxworks-653-product-overview-multi-
core/vxworks-653-product-overview-multi-core.pdf)

[5] Solodelov Ju. A., Gorelic N.K. Sertificiruemaja bortovaja operacionnaja
sistema real’nogo vremeni JetOS dlja rossijskih proektov vozdushnyh
sudov, Trudy ISP RAN, 2017, vol. 29, no. 3, pp. 171–178 (in Russian).

[6] Arinc Specification 653. Airlines Electronic Engineering Committee. (
http://www.arinc.com).

[7] Balashov V.V. Semejstvo sistem avtomatizacii proektirovanija bortovyh
vychislitel’nyh sistem real’nogo vremeni. Programmnye produkty, sis-
temy i algoritmy, 2017, no. 4, pp. 1–19 (in Russian).

[8] Balashov V.V., Kostenko V.A. Sredstva konfigurirovanija bortovyh sis-
tem s arhitekturoj integrirovannoj modul’noj avioniki. Trudy FGUP
NPCAP. Sistemy i pribory upravlenija, 2018, vol. 3, no. 45, pp. 56–58
(in Russian).

[9] Balashov V., Balakhanov V., Kostenko V., and Tutelian S. Tool system
and algorithms for scheduling of computations in integrated modu-
lar onboard embedded systems. IFAC Proceedings Volumes (IFAC-
PapersOnline), 2016, vol. 49, no. 25, pp. 505–510.

[10] Balahanov V.A., Kostenko V.A. Sposoby svedenija zadachi postroenija
statiko-dinamicheskogo odnoprocessornogo raspisanija dlja sistem
real’nogo vremeni k zadache nahozhdenija na grafe marshruta. Pro-
grammnye sistemy i instrumenty, 2007, no. 8, pp. 148-156 (in Russian).

[11] Balashov V. V., Balakhanov V. A., Kostenko V. A. Scheduling of Com-
putational Tasks in Switched Network-based IMA Systems. Proc. Intern.
Conf. on Engineering and Applied Sciences Optimization. National
Technical University of Athens (NTUA), Athens, Greece, 2014, pp.
1001–1014.

[12] Gonzales T., Sanhi S. Preemptive Scheduling of Uniform Processor
Systems. J. Association for Computing Machinery, 1978, vol. 25, no. 1.

[13] Federgruen A., Groenevelt H. Preemptive Scheduling of Uniform Ma-
chines by Ordinar Network Flow Technique. Management Science,
1986, vol. 32, no. 3.

[14] Furugjan M.G. Planirovanie vychislenij v mnogoprocessornyh ASU
real’nogo vremeni s dopolnitel’nym resursom. AiT, 2015, no. 3, pp.
144–150 (in Russian).

[15] Furugjan M.G. Planirovanie vychislenij v mnogoprocessornyh sistemah
neskol’kimi tipami dopolnitel’nyh resursov i proizvol’nymi processo-
rami. Vestn. MGU. Ser. 15. Vychislitel’naja matematika i kibernetika,
2017, no. 3, pp. 38–45 (in Russian).

[16] Furugjan M.G. Sostavlenie raspisanij v mnogoprocessornyh sistemah
s dopolnitel’nymi ogranichenijami. Izv. RAN. TiSU, 2018, no. 2, pp.
52–59 (in Russian).

[17] Kostenko V.A., Smirnov A.S. An Algorithm for Constructing Single Pro-
cessor Static–Dynamic Schedules. Moscow University Computational
Mathematics and Cybernetics, 2018, vol. 42, no. 1, pp. 44–50.

[18] Kostenko V.A., Smirnov A.S. Flow Algorithms for Scheduling Computa-
tions in Integrated Modular Avionics. J. Computer and Systems Sciences
International, 2019, vol. 58, no. 3, pp. 404–414.

[19] Vdovin P. M., Kostenko V. A. Organizacija peredachi soobshhenij v
setjah AFDX. Programmirovanie, 2017, no. 1, pp. 3–18 (in Russian).

[20] Ahuja R.K., Orlin J.B., Stein C., Tarjan R.E. Improved Algorithms for
Bipartite Network Flow. SIAM J. Comput, 1994, vol. 23, no. 5, pp.
906-933.

