
Implementation of Memory Subsystem of Cycle-

Accurate Application-Level Simulator of the Elbrus 

Microprocessors 
 

Pavel Poroshin  
Department of Verification and 

Modelling  
INEUM, MIPT  

Moscow, Russia 
poroshin_p@mcst.ru 

Dmitriy Znamenskiy 
Department of High-Performance 

Microprocessor Engineering 
MCST 

Moscow, Russia 
znamen_d@mcst.ru 

Alexey Meshkov 
Department of Verification and 

Modelling 
MCST, INEUM  
Moscow, Russia 

alex@mcst.ru 

Abstract—Performance characteristics of any modern 

microprocessor largely depend on its memory subsystem. 

Naturally, the memory subsystem software model is an 

important component of the cycle-accurate simulator, and its 

validity and quality have high impact on the overall accuracy of 

the simulation. In this paper the cycle-accurate application-level 

simulator of the Elbrus microprocessor family is introduced. 

The structure of the cycle-accurate simulator is briefly 

explained. After that the software model of memory subsystem 

and its integration as a part of the cycle-accurate application-

level simulator are described. We evaluate accuracy of the 

application-level cycle-accurate simulator on the SPEC 

CPU2006 benchmark and analyze the simulation errors. 

Finally, a brief comparison of different Elbrus architecture 
simulators is given. 
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Memory, Cycle-Accurate Simulator, Microprocessor, Application-
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I. INTRODUCTION 

As complexity of modern microprocessor and compiler 
optimizations increases, it becomes almost impossible to 
predict performance of application without actually running it. 
This is why cycle-accurate simulators are important, 
especially during development of hardware. 

To be useful, a cycle-accurate simulator should give 
reasonable approximation of behavior and timings of real 
hardware, therefore it should be reasonably accurate. And a 
proper simulation of memory subsystem is a major factor in 
overall accuracy of simulator. 

Due to high complexity of the simulator itself, it is not only 
important to have a working simulator, it is also important to 
have means to debug and evaluate it. 

In this paper we describe our approach to integration of 
memory subsystem model into application-level cycle-
accurate simulator of Elbrus microprocessors and give an 
overview of the tools that we developed to help to improve 
accuracy of this simulator. 

The remainder of this paper has the following structure. 
Section II gives brief overview of Elbrus microprocessor 
architecture, its memory subsystem characteristics and 
pipeline specifics. Section III describes synchronous part of 
pipeline model and its interaction with memory subsystem 
model. Section IV describes the general design of memory 
subsystem model. Section V gives an overview of available 
debugging facilities for the simulator being developed. 
Section VI is dedicated to the simulator evaluation from the 

standpoint of its accuracy and performance. Section VII is 
dedicated to related work about simulator validation. Section 
VIII gives concluding remarks and briefly describes our plans 
for further work. 

II. PREREQUISITES 

A. Elbrus Architecture 

Elbrus microprocessors have ISA (Instruction Set 
Architecture) of VLIW (Very Long Instruction Word) type. In 
such architectures, performance is achieved through the use of 
"Wide Instructions" (WI). Each WI consist of several sub-
operations, which are executed by hardware in parallel. 

Elbrus ISA implies in-order execution. Extraction of ILP 
(Instruction Level Parallelism) from a program algorithm is 
the responsibility of an optimizing compiler. This allows to 
reduce complexity of the hardware. 

Each WI of Elbrus ISA can contain several arithmetic, 
logical operations or memory access operations, control 
transfer (CT) operations, operations on predicates and others. 

B. Memory subsystem 

Since Elbrus is a VLIW architecture, the memory 
subsystem accordingly has high ILP potential. Up to 4 
memory load or 2 memory store operations can be placed in a 
single WI. 

The cache hierarchy of the Elbrus microprocessors 
memory subsystem includes Instruction Buffer (IB, 
responsible for code fetching and generally acting as an 
instruction cache), data caches (L1D, L2, L3) and various 
address translation structures (ITLB, DTLB). 

Additionally, Elbrus microprocessors have Array Access 
Unit (AAU), which is used for programmable asynchronous 
data prefetch, and CLW, which is used for automatic cleanup 
of data on stack. Both of them asynchronously generate 
requests to memory subsystem. There are also other 
components (for example TLU) that insert specific memory 
requests into synchronous memory access operations stream. 

C. Pipeline Specifics 

Pipeline of Elbrus microprocessors consists of the 
following stages (from early to late stages from the 
perspective of individual instruction): L, A, F0, F1, S, D, B, 
R, E0, E1 etc. First of them (from L to S) are in responsibility 
of Instruction Buffer. Stage R  roughly corresponds to reading 
of operands, and stages starting from E0 are general execution 



stages, including arithmetic, address calculation for loads and 
stores, etc. 

Instruction Buffer incorporates several parallel code 
fetching pipelines. Special control transfer preparation (CTP) 
operations can be executed to start fetching code for the 
upcoming control transfers using dedicated preparation 
pipelines, and a prepared control transfer operation can switch 
the main pipeline to the chosen preparation pipeline. This 
mechanism is used for hiding latency of some control 
transfers. 

Several types of pipeline stalls can be distinguished. Each 
stall type induces different pipeline reaction. 

The first stall type is regular. The stalled WI is not 
progressing on the pipeline until the stall condition is resolved. 

The second type of stalls includes B-Stalls and L-Stalls. 
The most frequent reason for such stalls are unavailable 
operands. Pipeline logic detects such situations with some 
delay, that is why simply stopping pipeline progression for the 
instruction is not enough. Instead, current results of instruction 
are discarded and for the next ticks instructions are transferred 
back to the R stage (from E2 for B-Stall and from E0 for L-
Stall) until all affected instructions are placed back into the 
proper order. There is special pipeline logic for cases when 
one such stall happens during another one. In most cases, one 
round of B-Stall effectively adds 4 ticks and L-Stall adds 2 
ticks of latency. 

Even if only one operation of WI triggers stall condition, 
the whole WI is affected. 

When WI passes stage E2, it can not be stalled anymore 
and effectively continues its execution without interruptions. 

III. SYNCHRONOUS PIPELINE MODEL 

A. Overall Design 

The cycle-accurate simulator described in this paper is 
based on functional application-level simulator of Elbrus 
microprocessor and shares most of the code base with it. 

Both the architecture state and the algorithmic behavior 
are handled by the functional component of simulator. This 
includes decoding instructions, maintaining state of memory 
and registers, simulating effects of executed instructions, 
emulating system calls, etc. 

Also, the cycle-accurate simulator reuses some of the 
facilities of functional simulator, such as internal cache of 
decoded instructions [1], logging system, command line 
options parsing, events system, various configuration 
mechanisms, etc. 

To achieve higher simulation performance and at the same 
time obtain desirable levels of accuracy and maintainability 
we implement pipeline model, described in [2] as "Hybrid" 
pipeline model. General idea of this approach is to simulate 
timing behavior of instructions by as large continuous chunks 
of logic as possible, potentially with use of some educated 
predictions about future behavior. For inevitable situations 
when predictions are false, simulator maintains additional data 
for making necessary corrections and does not allow 
propagation of incorrect speculative behavior to irreversible 
state. 

For example, we assume by default that operations will not 
be stalled and on this basis we speculatively register 

availability of the results of the operation according to this 
assumption. But in case if the operation is actually stalled, the 
simulator corrects the earlier made assumption and 
recalculates the moment when results of the operations will be 
available. 

In our case large chunks of timing logic correspond to 
continuous sequences of pipeline stages that are executed 
without interruptions. 

The algorithm of simulation loop can be summarized by 
the following steps: 

 For the new instructions, do simulation of its 
algorithmic behavior using functional 
component of the simulator, saving necessary 
info for cycle-accurate part of simulation in the 
process. 

 Place this instruction into the pipeline model and 
pass necessary additional info about its 
execution. 

 Iterate through each pipeline stage and for each 
stage determine which instruction is at this stage. 
If it is the first stage of continuous uninterrupted 
sequence - speculatively simulate all stages of 
this sequence. 

 Update pipeline state (which instructions are at 
which stage), taking into account possibly 
occurred stalls. 

B. Support of Memory Subsystem 

Memory subsystem plays a major role in overall 
performance of the system. It is important to accurately 
simulate its effects. 

Memory subsystem of Elbrus microprocessors is rather 
complex, so instead of implementing its model from the 
ground up we adopted the model described in [3]. From the 
perspective of the pipeline model, this memory subsystem 
model is regarded as black box with clear but limited interface. 
This helps us to achieve higher levels of modularity and limit 
influence of design of cycle-accurate simulator on memory 
subsystem model so it can be used in several projects more 
easily. 

Model of memory subsystem implements IB (Instruction 
Buffer), all data caches (L1D, L2 and L3) and MC (Memory 
Controller). Functional component of the simulator does not 
directly interact with the memory subsystem model, and the 
cycle-accurate component directly interacts with IB and L1D 
by regularly (each tick) forming and passing input to them. 

Because the described simulator is application-level, there 
are no OS effects and no proper memory management. The 
consequence of this is that there is effectively no virtual 
address translation takes place during simulation, and memory 
subsystem functions as if all memory accesses are physically 
addressed. 

General architecture of the cycle-accurate simulator is 
presented on Fig. 1. 

1) Memory Access Operations 
As rather isolated component of the simulator, memory 

subsystem model does not implement speculative features of 
the pipeline model. Moreover, because its high complexity it 
does not support rollback of the state that happens during 



 

Fig. 1. General architecture of described cycle-accurate simulator 

some of the stalls (specifically, L-Stalls that affect stages R 
and E0, and B-Stalls that affect stages R, E0, E1 and E2). 
These facts should be taken into consideration during 
integration of the model into cycle-accurate simulator. 

Memory subsystem model is designed as cycle-by-cycle 
model and expects that its main simulation step should be 
executed once every simulation tick. In our approach this 
happens in the main simulation loop body of the pipeline 
model. From the perspective of the pipeline model, the 
specific moment when this can happen must satisfy following 
conditions: 

 It must happen before other operations that are 
currently on the pipeline check availability of 
operands, otherwise there would be excess stalls. 
This check happens during simulation of the R 
stage. 

 It must not happen after the most recent 
instruction with memory access operations 
(which should be send to memory subsystem 
model next) irreversibly (non-speculatively) 
reached earliest stage of possible feedback from 
memory subsystem that should be immediately 
acted upon. This corresponds to stage E2 when 
earliest possible data return from L1D cache can 
happen, and which should be taken into account 
during checking availability of operands on the 
same tick. 

This means, at least from perspective of the pipeline 
model, that it is possible to send new memory access 
operations and execute memory subsystem simulation step 
anywhere between simulating (non-speculatively) stages R 
and E2 of instruction. But from the perspective of memory 
subsystem model, the earlier it can start processing new 
operations, the better, as this gives to the model more 
simulation steps to process each individual operation and 
probably will require less changes to original memory 
subsystem model. So in our final approach the information 
about memory access operations of instruction is sent and 
simulation step of memory subsystem model is executed just 
after processing stage E0 of this instruction just before 
processing stage R of other instructions. 

Because memory subsystem model does not support 
"speculative" features of the pipeline model, and there is no 
means to make corrections of the model’s state, new memory 
access operations should be sent to model only when it is 
guarantied that there will be no corrections that can change the 
data related to these operations. In our current model, the 
information about memory access operations is mostly 
determined by the functional component of simulator, which 
is not affected by "speculative" features of the pipeline model, 
so this requirement is fulfilled. 

Other aspect to consider is the lack of support of rollback 
during some stalls. This means that in case of rollback of the 
instruction actions, sending of the memory access operations 
of this instruction to the memory subsystem model should be 
postponed until the next opportunity after the rollback. This 
also means that rollbacks should be known with certainty 
before (or at least at) stage E0, which is true for our current 
model. 

Information about memory access operations is gathered 
during functional simulation at the start of processing of 
instruction. This information includes type of operation, 
memory address, destination register number (for load 
operations) and various other attributes. After functional 
simulation, this data is saved in the pipeline model alongside 
with other information about instruction and is used to form 
request to memory subsystem model when the time comes. 

There can be several memory operations in-flight at the 
same time, and to distinguish them each memory access 
operation is associated with a unique token (internally 
represented by an integer). Because memory access operations 
can take many ticks to complete, response from the memory 
subsystem model can arrive when relevant instruction is no 
longer present in pipeline model (all instructions that pass 
stage E2 are deallocated from the pipeline model as there are 
no more stalls that can affect it and most of the timing behavior 
is certain and speculatively simulated). To address this, 
pipeline model implements additional buffers that hold the 
information necessary for proper action on response from the 
memory subsystem. 

2) Code Fetching 
Memory subsystem model also simulates the Instruction 

Buffer, which handles fetching of instructions from memory. 

Process of instruction fetching is divided into several 
pipeline stages, but for simplicity they are not fully 
represented in the pipeline model. Pipeline model uses a 
special pseudo stage (internally named F) instead. New 
instruction is placed on this stage after its functional 
simulation. At the same time, on the same simulation tick the 
information about this instruction (mainly its address and size) 
is passed to the memory subsystem model. Instruction can 
leave pseudo stage F only after there was a response from the 
memory subsystem model about successful completion of the 
code fetching. 

Some of the Elbrus control transfer instructions are 
separated into two parts: "control transfer preparation" (CTP) 
and "control transfer" (CT) instructions. CTP instructions 
initiate fetching of the code for the new path (which happens 
in parallel with regular fetch of the current path), and CT 
instructions implement control transfer to this code. This 
functionality allows to reduce latency of branches in some 
cases. This fetch is also a responsibility of IB and is simulated 
by the memory subsystem model. Information about CTP 



operations is gathered during functional simulation and passed 
to the memory subsystem model in the beginning of 
processing of the instruction by the pipeline model (at pseudo 
stage F). When corresponding CT operation is executed, 
address of target instruction is passed to the memory 
subsystem model by standard mechanism (described earlier), 
and if IB has not fetched target instruction yet, then there will 
be a pipeline stall (at pseudo stage F). 

3) Hardware Generated Operations 
In some cases, hardware of Elbrus microprocessor issues 

special instructions (later referred to as "hardware 
instructions") that are not directly represented in binary code. 
Most notable of such hardware instructions are instructions 
which spill and fill register file contents to/from memory when  
active register window changes (for example, after procedural 
control transfers). Most of the hardware instructions perform 
memory accesses, and therefore play an important role in 
interaction of synchronous pipeline and the memory 
subsystem. 

The functional simulator already simulates hardware 
instructions, as the triggering conditions for them are part of 
instruction set, and it is necessary to account for them to 
correctly maintain microprocessors visible state. But 
functional simulation of hardware instructions is significantly 
simplified, as the whole process takes place during simulation 
of ordinary instruction with a triggering condition occurring 
during one of the simulation steps (while one spill of register 
file can consist of many write accesses to memory). 

Although functional simulation of hardware instruction is 
inaccurate from a timing standpoint, cycle-accurate 
simulation reuses most of it. During functional simulation 
information about all execution of hardware instruction is 
saved and passed to the pipeline model alongside with the 
instruction which triggered them. When this instruction 
reaches specific stage the saved information about hardware 
instructions is used to appropriately insert them into pipeline 
instead of next ordinary instruction. This continues until all 
hardware instructions are inserted. 

It is possible to save information about hardware 
instructions in compact way. For example, although each spill 
(or fill) of register file usually consists of a sequence of many 
individual instructions, algorithm to generate them is 
predetermined and defined by several parameters. Also, all of 
the memory accesses of each individual spill (or fill) sequence 
share most of the attributes. 

While ordinary instructions enter and leave the pipeline 
model in a FIFO fashion (enter at pseudo stage F and leave 
after stage E2), this is no longer true in the presence of 
hardware instructions. They are not fetched from memory (as 
they are not directly represented in binary code) and enter 
pipeline at stage R. This was not considered during original 
design of data structures of pipeline model and necessary 
changes were implemented. 

IV. MEMORY SUBSYSTEM MODEL 

A. Adaptation 

For usage inside the application level (AL) cycle-accurate 
Elbrus architecture simulator, the memory subsystem timing 
model, which originated from the system-level memory 
subsystem (SLM) cycle-accurate simulator [3], underwent 
several changes. 

According to the pipelining mechanics described above, 
code fetching from the IB cache and the instruction-word 
related memory accesses are processed on different pipeline 
pseudo stages. The timing model engine code was distributed 
between those pseudo stages, and separate input request 
queues for the code fetching stream and the memory access 
operations, with respective pipeline stalls, were created. It is 
worth mentioning that both parts of the model continue 
influencing each other through the “lower” part of the memory 
subsystem. 

The precise WI data dependency checking and conflict 
resolution logic was implemented as a part of the core pipeline 
timing model. That is why a simplified scoreboarding 
mechanism utilized in the SLM cycle-accurate simulator was 
replaced by a set of fast callbacks, which report the memory 
operation processing status to the core pipeline timing model 
(e.g., a cache hit or a cache miss, MU internal queues 
overflow, etc). 

The virtual address translation mechanics is not used for 
the AL cycle-accurate simulator.  All virtual addresses are 
equal to physical addresses, and all MMU mechanics 
including page table search, ITLB and DTLB lookup are 
disabled. In addition, the L1D cache physical tags lookup 
mechanism, which is used as an anti-aliasing technique for 
virtual address cache indexing, is turned off. This gives an 
opportunity to simplify the memory subsystem model code 
and to increase its performance. 

B. Improvements 

Besides the adaptation changes described above, we 
significantly improved the memory subsystem model in terms 
of accuracy. 

Multiple enhancements of IB, L1D, L2 and L3 cache 
models including a multitude of refinements for caches 
algorithms, latency calibrations and buffer depth adjustments 
were made. 

For the shared L3 cache of a multicore processor, even for 
a single-threaded workload attached to a specific core, one 
should also consider influence of idle processor cores. Each of 
the idle-cores generates a sparse stream of memory accesses 
to the L3 cache. The combined idle-core stream can have a 
sufficient magnitude to interfere with the application core 
stream or at least to influence L3 cache performance metrics. 
To emulate the described background idle-core stream for the 
single-core configuration of the simulator a synthetic 
adjustable L3 cache access stream was introduced. This 
mechanism partially compensates idle-core traffic, and its 
precise adjustment is yet to be done. 

Workloads like 410.bwaves from the SPEC CPU2006 
benchmark [4] show strong performance dependency on the 
system memory characteristics like latency or throughput, 
which in turn can vary across different memory access 
patterns in different workloads. With a view of the simulator’s 
accuracy improvement, a model of DDR4 memory controller 
(MC), as a part of the memory subsystem timing model, was 
implemented. Current SLM and AL simulator configurations, 
which correspond to an 8-core Elbrus processor, include four 
MCs with the original interleaving scheme. The MC model 
was simplified for the sake of performance increase at the cost 
of some potential accuracy loss. Even with this tradeoff, 
adding MC model into the AL cycle-accurate simulator 
yielded additional 4% overall accuracy improvement on the 



SPEC CPU2006 benchmark, with negligible simulator speed 
degradation. 

V. PROFILING AND DEBUGGING FACILITIES 

It is important to have debugging tools in simulator, both 
for users of the simulator and for its developers. As more and 
more features are implemented (most notably accurate model 
of memory subsystem), complexity of possible mistakes in 
simulator rises, which demands for more advanced internal 
debugging capabilities of the simulator. 

The simulator described in this paper provides two main 
debugging capabilities, namely execution log and execution 
statistics (profiling). Their design is described in this section. 

A. Execution Cursor 

Both execution log and execution statistics need the way 
to identify different events in simulator. For this purpose the 
concept of "execution cursor" is implemented in pipeline 
model. 

Content of the execution cursor should point to the specific 
moment of simulation process, preferably both in terms of 
internal phases of simulation and in more simulator 
independent terms. In our implementation execution cursor 
specifies execution tick (when event should have happen on 
real hardware), simulation tick (when event was simulated, 
with respect to "speculative" nature of pipeline model), 
pipeline stage, IP of instruction, fetch tick of instruction, 
specific operation of instruction and internal simulator's 
description of operation.  

Current execution cursor should be accessible from 
(almost) everywhere in the code. To achieve this "current" 
execution cursor implemented as a field of pipeline model 
object, which is accessible almost everywhere. 

Logically execution cursor should have different structure 
for different events and parts of the simulation path. For 
example, some events (like pipeline stall on code fetching) 
should be attributed for whole instruction, but specifying one 
operation is meaningless for them. But for simplification and 
performance purposes, in our implementation the execution 
cursor always specifies whole range of attributes, possible 
with garbage values, but its users (various code pieces of the 
simulator) know which part of it is valid and which is not. For 
example, when a pipeline stall happens on fetching and 
appropriate counter of execution statistics is going to be 
incremented, it is known that operation related attributes of the 
execution cursor are undefined. 

Also, the execution cursor should function like a stack, 
since most of the simulation process is stack-like (whole 
pipeline is at the bottom of the stack and specific instructions 
and operations are at the top). When simulation moves higher 
into the stack, relevant attributes of execution cursor should 
be updated, and when simulation returns back, the execution 
cursor should be restored as earlier updates are no more 
relevant. For performance reasons, restoration of execution 
cursor state is not implemented, as most of the time updated 
attributes are not valid in lower parts of simulation stack, so 
no information is lost. In a few cases where information is lost 
during update, saving and restoration of the execution cursor 
are implemented manually. 

B. Execution Log 

The main function of execution log is to present a detailed 
view of execution process and of microprocessor state 
evolution with respect to timing. Execution log includes 
information about ticks when each executed instruction 
reached certain pipeline stage, whether it was stalled, its stall 
reasons and etc. This information can be used to investigate 
performance anomalies and unexpected behavior. 

Due to "speculative" features of the pipeline model, the 
execution log can not simply reuse standard logging facilities 
of functional simulator. For example, if availability of some 
register was speculatively but incorrectly updated, it would be 
wrong to include this update in the log. Therefore logging of 
any such event should be postponed until its correctness is 
certain. To support this, any intention to log an event is placed 
in execution log queue, indexed by tick number when event 
should actually (non-speculatively) happen. This queue is 
inspected every simulation step, and every event that is 
indexed by current non-speculative tick (“tick of no return”) 
and is still in the queue, is printed. If some speculation was 
wrong and a correction of speculative state is needed, then the 
queue of execution log is scanned and all wrong events are 
erased. 

When an event is placed in the queue, current execution 
cursor is examined and all its information relevant for logging 
is placed in the queue alongside with the event. For example, 
when availability of a register changes, the information about 
current operation (which, in fact, is the reason for this event 
happening) is saved in the queue for a more informative 
output. 

C. Execution Statistics 

Other useful functionality of the simulator is the ability to 
gather statistics of execution. While the execution log is useful 
for analyzing specific moment of execution, execution 
statistics provide more convenient view of integral 
characteristics of the whole execution process. In other words 
data of the execution log is spaced in time domain and data of 
execution statistics are spaced in code domain. 

As a tool, execution statistics collection is implemented as 
two main parts: 

 Facilities (internal for cycle-accurate simulator) 
for accumulation and counting of interesting 
events and for forming (raw) output with 
accumulated data. 

 Facilities for processing and transforming (raw) 
output with statistics into a more human readable 
format. 

1) Accumulation of Statistics 
Execution statistics collection in cycle-accurate simulator 

is represented as an in-memory map indexed by addresses of 
instructions (IPs). Each entry of this map contains some 
general counters for this IP (like number of executions, 
number of stalls etc.) and a map of event counters, indexed by 
event type and attributes. 

All of the events that are currently being collected by 
simulator are always certain and can not be speculative, unlike 
events of the execution log. This allows to simplify current 
implementation of execution statistics, but it is always 
possible to apply solution from execution log implementation, 
if necessary. 



For each IP, execution statistics accumulate the following 
information: 

 Total number of executions, stalls, NOPs etc. 

 Number of stalls of each type (for example, stalls 
caused by unavailable data in register file and 
bypasses, stalls caused by fetching of 
instructions, etc.). 

 Number of procedural control transfers. 

 Number of non-procedural control transfers. 

 Some other statistics. 

It is important to properly count pipeline stalls. For 
example, instruction can be stalled at stage B, but not because 
it has some reason itself, but because currently B-Stall (or L-
Stall) is active, which blocks pipeline progression for 
instruction on stage B. Counting such stall not only 
misattributes stall for wrong instruction, but also counts 
effects of real reason for stall (reason of B-Stall) twice. 

It can be useful to separate stalls not only by their general 
type, but also by some additional factors. For example, for 
every stall caused by unavailability of data in register file, 
there is a producer of this data and a consumer of this data, 
which is actually stalled. For this reason, statistics counters are 
indexed not only by type of event, but also by additional 
attributes, such as specific channel of instruction that was 
stalled, IP and channel of instruction that produces the result 
that leads to stall etc. For different types of events different 
types of additional attributes are used. 

Counter of (non-)procedural control transfers are specific 
for each target. These counters are later used for construction 
of call graph and calculation of approximate inclusive costs of 
functions. Non-procedural control transfers are also essential 
for this, as some compiler optimizations (such as tail call 
optimization) transform procedural transfers into non-
procedural ones. Information about non-procedural control 
transfers helps to detect such transformations. 

2) Processing of Statistics 
Although raw output of execution statistics is text based 

and can be analyzed directly without any additional 
processing, it is meant to be transformed into a more human 
readable format with some tools external to the simulator. 

For this purpose a separate tool was implemented as a 
script with the following possible output options: 

 Disassembly annotated with counters from raw 
output of execution statistics. 

 Summary of counters, aggregated for functions 
(with non-inclusive aggregation across 
instructions of function body and with inclusive 
aggregation across instructions of all callees). 

 Summary in the format compatible with the 
profile visualization tools such as KCachegrind 
[5]. 

Unprocessed execution statistics do not contain function 
names or disassembly. They are supposed to be obtained with 
objdump utility with support of Elbrus ELF files from binary 
executable file of the program being investigated. 

The first step of execution statistics processing is its 
parsing and converting into a representation more suitable for 
further transformations. Then, a call graph is constructed, if 
necessary for chosen output. 

As raw execution statistics for each control transfer 
counter contain only IPs of source (caller) and target (callee) 
of the transfer, it is impossible to construct a call graph which 
considers full call stack at the moment of transfer. To address 
this, during construction of a call graph a simple heuristic is 
used, which assumes that for each function all executions of 
its body are similar for all real call stacks. This assumption 
allows to calculate inclusive costs of functions by evenly 
distributing all counters of a callee across all individual calls 
from callers, starting from leaves of the call graph. 

This method of inclusive function costs calculation does 
not work if a call graph has cycles, which are usually caused 
by recursive calls. To combat this, before calculation happens 
all cycles (more specifically, all strongly connected 
components) are detected and converted into special 
aggregated nodes of the call graph. 

During construction of a call graph, not only procedural 
control transfers are considered, but also non-procedural ones. 
But not all non-procedural control transfers should be taken 
into account, as most of them are truly logically non-
procedural. In our implementation, only non-procedural 
control transfers that cross function boundaries are converted 
into calls. 

For visualization of execution statistics we use 
Kcachegrind program. It is mainly used for visualization of 
output from callgrind utility, but the input format is simple and 
flexible enough for visualization of other call graph like data. 
Our script supports output in KCachegrind compatible format 
with only aggregated information about functions and with 
more granular information about individual instructions. 
KCachegrind was built in support for viewing annotated 
disassembly, but not for the Elbrus disassembly. To achieve 
similar functionality, we utilize view of annotated source 
code, but in place of source code we use disassembly manually 
obtained with objdump utility with support of Elbrus binary 
format. 

D. A Validation Case Study 

As an illustration of the introduced simulator statistics 
usage, the authors present a simulator validation case study. 
During one of the validation iterations, a significant run time 
mismatch for the 444.namd workload (taken from SPEC 
CPU2006 benchmark) was found: the AL cycle-accurate 
simulation duration result was increased by 17%, while the 
cache hit rate differences stayed tolerable. The tasks’ 
reference system and simulator profiles were collected using 
perf Linux profiler and the described AL simulator’s statistical 
tools and methodology, respectively. The key profiling 
parameter was the total number of pipeline stalls. The profiles 
are shown in listings 1 and 2. 

For the AL cycle-accurate simulator the relative weight of 
the hottest procedures calc_pair_fullelect and 
calc_pair_energy_fullelect has increased by 9% and 14%, 
respectively. Taking a closer look at the annotated 
disassembly of the hottest procedure calc_pair_fullelect 
revealed a significant stall increase (almost up to 9%) for an 
instruction at the 0x40020 address, which executed absolutely 
seamlessly on the reference machine. The perf-generated and 



 
Listing 1. 444.namd perf-generated profile, reference machine 

 
Listing 2. 444.namd simulator-generated profile with relative function weight difference 

 
Listing 3. 444.namd perf-annotated disassembly, reference machine 

 
Listing 4. 444.namd simulator-annotated disassembly 

 

the simulator-annotated disassemblies are shown in listings 3 
and 4. 

As we can see, the data for the store operation (%db[62]) 
in the 0x40020 instruction word is produced by floating-point 
addition instruction located at 0x3ff78. The consumer (store 
at 0x40020) is scheduled for execution with a 4-cycle latency 
after the operand producer (faddd at 0x3ff78), but it gets 
stalled very frequently because faddd’s result is not ready. 
Notably, on the real hardware the consumer instruction does 
not stall at all. The authors checked the CPU’s scheduling 
rules, which are a part of the Elbrus ISA. It turned out that the 

result availability latency of type {faddd → integer / memory} 

is 6 cycles, but for the special case {faddd → store data}, the 
latency is 4 cycles. Thus, the complier created an optimally 
scheduled code. Further examination revealed that this very 
special case was not taken into account by the simulator’s 
logic. Fixing this inaccuracy shrinked the total run time error 
of the 444.namd workload to a negligible value (below 1%). 

VI. EVALUATION 

A. Simulator Accuracy 

Accuracy is one of the key simulator quality markers in a 
sense of reference and modelled system characteristics 
convergence. It can vary significantly across different classes 
of workloads (for instance, integer or floating-point 
workloads), and, moreover, across different workloads of the 
same class. As for physical microprocessor systems, for the 
cycle-accurate microprocessor simulator characteristics 
evaluation, a standard benchmark, which includes a variety of 
workloads from different classes and problem domains, 
should be used. The authors chose the standard cross-platform 
SPEC CPU2006 benchmark, which has been used for the 

Elbrus architecture microprocessors performance evaluation 
[6][7]. We compiled SPEC CPU2006 workloads with the 
Elbrus compiler toolchain developed by JSC MCST. It is 
essential that, for the sake of cycle-accurate simulator 
compatibility, some optimization features were disabled at 
compile time. For example, the usage of Array Access Unit 
was disabled because the latter is not yet appropriately 
supported in the timing model of the simulator. In other words, 
all the reference system and the simulator data presented 
below correspond to some intermediate performance mode 
sufficient for the simulator validation, but not to the peak 
performance mode. 

The authors used a physical machine based on 8-core 
Elbrus CPU as a reference system for the AL cycle-accurate 
simulator accuracy benchmarking. The configuration of the 
reference system is presented in Table 1. 

For most of the SPEC CPU2006 tasks the test input data 
set was used, and a smaller fraction of workloads was run with 
the train data set. This choice of input data sets was motivated 
by a reduction in simulator run time for those workloads, 
which in turn allowed the authors to speedup the simulator 
validation workflow loop that requires frequent task re-
execution. 

Fig. 2 and 3 present the main accuracy evaluation results 
for the AL cycle-accurate simulator, namely the task run time 
normalized by the run time on the physical reference system 
(Fig. 2), and the workload error distribution (Fig. 3). 
Workloads on Fig. 2 were run with the test input except 
workloads where the train input data is explicitly specified. 
The geometric mean (GM) is presented for benchmarks that 
include multiple runs. These results show that for more than a 

12,05%  ComputeNonbondedUtil::calc_pair_fullelect 

11,45%  ComputeNonbondedUtil::calc_pair_energy_fullelect 

 9,45%  ComputeNonbondedUtil::calc_pair 

… 

13,19%  +9,45%  _ZN20ComputeNonbondedUtil19calc_pair_fullelectEP9nonbonded <0x38a30> 

13,00% +13,57%  _ZN20ComputeNonbondedUtil26calc_pair_energy_fullelectEP9nonbonded <0x448a0> 

 9,53%  +0,79%  _ZN20ComputeNonbondedUtil9calc_pairEP9nonbonded <0x20a98> 

… 

5.02 │3ff78: 

     │… 

     │ faddd,sm %db[94], %db[103], %db[62] 

     │… 

... 

     │40020: 

     │… 

     │ stgdd %r46, 0x0, %db[62] 

0x3ff78                                           # E=20510404 S=10408678 N=0 HW=0 LD=0 ST=0 

  …                                               # IB_FETCH_NOT_READY = 178 

  faddd,sm %db[94], %db[103], %db[62]             # RF_REG_NOT_READY <source IP 0x3f728> = 88 

  …                                               # RF_REG_NOT_READY <source IP 0x3fb00> = 116 

                                                  # RF_REG_NOT_READY <source IP 0x40428> = 877024 

                                                  # RF_REG_NOT_READY <source IP 0x40450> = 9531272 

… 

0x40020                                           # E=20510404 S=66987408 N=0 HW=0 LD=0 ST=19440799 

  …                                               # RF_REG_NOT_READY <source IP 0x3ff78> = 66987408 

  stgdd %r46, 0x0, %db[62] 



TABLE I. REFERENCE SYSTEM CONFIGURATION 

CPU Elbrus, 8 cores, 1 node 

Clock frequency 1500 MHz 

L1 instruction 

cache (IB) 

128 KBytes, 256-byte cache line, 4-way 

set-associative, virtually addressed 

L1D cache 64 Kbytes, 32-byte cache line,  4-way 

set-associative, virtually addressed 

L2 cache 512 Kbytes, 64-byte cache line,  4-way 
set-associative, 4-banks interleaved, 

physically addressed 

Shared L3 cache 16 Mbytes, 64-byte cache line, 16-way 

set-associative, 8-banks interleaved, 

physically addressed 

RAM channels 4 channels DDR4 

RAM size DDR4-2400, 128 GBytes 

Operating 

system 

OS Elbrus based on the Linux kernel 

Linux kernel 

version 

4.9.0-4.1-e8c2 

 

half of the workloads the error stays inside a 4% limit, where 
the CINT tasks have, on average, a lower error in comparison 
to the CFP tasks. The vast majority of the tasks has a 12% 
upper bound with several outlying cases with 25% error at 
worst. The geometric mean for the error on the whole SPEC 
CPU2006 set is below 5%, which is an admissible result 
[8][9]. 

Memory subsystem is one of the most contributing sources 
of pipeline stalls, especially for a VLIW architecture like 
Elbrus since memory accesses can have sophisticated 
behavior that can be difficult to be predicted and tackled at 
compile time. In this context, the hit rate for different levels of 
the cache hierarchy is an important metric that correlates with 
the overall system performance, and matching of reference 
and simulator-originated hit rate values is an important 
simulator timing validation criterion. Fig. 4, 5 and 6 show hit 
rates for the L1D, L2 and L3 caches on the reference system 
and the AL simulator. For private core caches (L1D and L2) 
there is a high correlation between hit rates on the real and 
modelled CPU (mean hit rate error is 3% and 2% 
respectively). The situation is different for the L3 cache, 
namely the mean L3 hit rate error is noticeably higher (18%). 

Modelling errors, which result in performance metrics 
value mismatches described above, can be arranged in a 
number of groups as a rule of thumb: 

 Functional limitations of the cycle-accurate 
simulator, like hardwired CPU execution mode, 
simplified system configuration, etc. 

 Logical inaccuracy in the timing model. E.g., 
redundant or insufficient pipeline stalls, wrong 
hardware algorithms implementation, etc. This 
group of errors should be diagnosed and fixed 
during cycle-accurate simulator validation (see 
444.namd validation case study above). 

 Different performance counters interpretation. 
As an example of this error group, one can 
consider a pipelined cache memory with an 
number of intermediate structures like Store Miss 
Buffer, Miss Status Hold Registers, etc. In-flight 
operations can be stored in these buffers in a 
multitude of internal states, which in turn can be 
interpreted in a different way by physical and 
modelled performance counters. 

 Incremental cache hierarchy error propagation. If 
an error appears at some level of the cache 
hierarchy model, it tends to propagate further 
down the lower levels. For example, an illegal 
L1D cache miss causes a spurious L2 cache 
request, which alters the hole underlying memory 
subsystem behavior. That is why lower cache 
levels in the simulator have higher relative 
variation in request stream intensity and structure 
(and, as a result, a greater hit rate error) in 
comparison with higher level caches like the L1D 
cache. 

When analyzing the error rate for the overall accuracy data 
on Fig. 2, one can notice several outliers with the highest error: 
433.milc (test — 16%, train — 25%), 429.mcf (18%), 
445.gobmk (14%) and 450 soplex (train – 13%). These cases 
are worth discussing while keeping in mind the modelling 
error classification presented above. 

For 433.milc workload (both test and train input data), a 
relatively high DTLB hit rate is common. On the reference 
system, among the overall 7017 million memory accesses, 
DTLB misses comprise around 1%, or 70 million misses in 
total. This exceeds DTLB miss rate of most tasks considered 
in this paper by several orders of magnitude. Suppose each 
DTLB miss takes one memory reference for the page table 
lookup, and it always hits in the L3 cache (which is an 
optimistic estimate). The L3 cache hit latency takes a few tens 
of clock cycles, so the cumulative DTLB miss stall penalty 
will definitely exceed 1000 million clock cycles. The latter 
number fully explains the difference in real and modelled 
execution time. This is a simulator functional limitation case, 
namely the absence of address translation mechanisms and 
MMU cache lookups in the AL cycle-accurate simulator. One 
can say that the AL cycle-accurate simulator has both 100% 
ITLB and DTLB hit rates, which result in the absence of TLB 
miss-originated pipeline stalls. 

For the AL cycle-accurate simulator, the 429.mcf and 
450.soplex (train) tasks have a higher L1D hit rate than 
expected, which could result in erroneous task speedup. In 
both cases the reasons for the divergence are likely to be 
simulator logical inaccuracy, which are yet to be fully 
investigated. Also, there are some functional limitations of the 
simulator that tend to distort memory subsystem dynamics and 
complicate the analysis. Namely, on a real machine, the 
memory allocation is eventually done by the OS kernel 
memory management mechanism using processor’s MMU 
hardware. Virtual memory is allocated in 4KB, 2MB or 1GB 
physical memory pages, which are often grouped into 
contiguous blocks by the allocation algorithm, where possible. 
Moreover, some virtual memory pages with distinct virtual 
addresses can be mapped to the same underlying physical 
memory page, e.g. for the copy-on-write and zero pages 
techniques used by the Linux kernel. The AL cycle-accurate 
simulator does not reproduce those algorithms. The 



underlying physical memory is always available, and all 
physical addresses are identical to virtual, as noted above. This 
results in effectively different physical addresses footprint for 
the AL cycle-accurate simulator with respect to the reference 
system, hence different memory subsystem behavior starting 
from the L2 cache and below. We found some indirect 
markers of the limitation’s impact. To begin with, we used the 
page-types Linux utility to get a glance on the virtual-to-
physical address mapping of the 426.mcf’s task on the 
reference machine, where only the referenced pages were 
considered. А physical address heatmap was collected for the 
cycle-accurate simulator, with physical memory region 
granularity of 4KBytes. We found that the physical memory 
footprint on the real machine is far more dense in comparison 
with the AL simulator, especially when it comes to usage of 
virtual pages mapped to the same physical page. Also, using 
aliased virtual pages can cause additional L1D cache misses 
from the anti-aliasing mechanism, which is not present in the 
AL version of the cycle-accurate simulator. Secondly, an 
interesting difference in the L3 statistics for the 429.mcf 
workload was found. The L3 cache has a special hardware 
structure for in-flight requests. A hit in this structure occurs 
when multiple in-flight L3 cache requests access the same 
cache line. In this situation some additional stalls can occur. 
The overall L3 request number on the simulator is close to the 
reference machine (with 20% difference), but the number of 
hits in the in-flight requests buffer for the reference machine 
is by three orders of magnitude greater. Thus, frequent 
physical address collisions on the reference system are not 
reproduced by the AL cycle-accurate simulator, which 
indirectly points to L2 cache model inaccuracy or to the 
address mapping limitation described above, or both.  

The 445.gobmk workload with test input consists of 
several subtasks, which have very diverse numbers of 
instructions, from tens of millions to billions. “Short” subtasks 
tend to have high inaccuracy due to the reference machine run 
time variation and some simulator limitation effects, which are 
negligible for “long” workloads. Those “short” subtasks have 
high negative impact on the overall 445.gobmk workload 
accuracy. For the same reason, the 462.libquantum task was 
run only with the train input data. 

The cache hit rate error data on Fig. 4, 5 and 6 can be also 
interpreted with the help of the introduced simulator error 
classification. Generally speaking, the private core caches 
(L1D and L2) hit rate errors are quite low except a couple of 
outliers, but the mean shared L3 cache hit rate error is greater. 
For private core caches (Fig. 4, 5) most high error cases are 
likely to be performance counter interpretation errors of the 
memory subsystem timing model (like 462.libquantum for 
L1D and 482.sphinx3 for L2). The L1D and L2 errors are 
almost uniformly distributed across workloads, and it is 
difficult to pick an evident error group for most of them. For 
the L3 cache the situation is different. Here errors of all four 
groups severely distort modelling results. Multicore reference 
configuration has idle core L3 traffic. Moreover, cache 
coherency mechanisms impact the L3 cache hit rate and alter 
L3 performance metrics meaning on the reference system. 
Incremental error propagation uniformly augments error 
margins across all workloads. Finally, some specific L3 cache 
model logical inaccuracies exist. For the 410.bwaves task, the 
hit rate is too high, since this workload is known as a 
streaming one with low L3 hit rate [6]. Nevertheless, high L3 
hit rate error does not always severely influence overall 
results, since for most tests the memory accesses stream 

intensity falls when moving to the lower levels of memory 
hierarchy, especially for workloads that fit in higher level 
caches. 

B. Simulator Performance 

Running speed is an important cycle-accurate simulator 
characteristic. It directly affects the simulator validation rate 
and also the simulator’s usability: the speed should be 
sufficient to run the standard benchmarks common for the 
modelled architecture. Here we present a brief speed 
comparison of the pure functional Elbrus architecture 
simulator (FUNC), the considered AL cycle-accurate 
simulator (AL) and the system-level memory subsystem 
simulator described in [3] (SLM). We conducted comparison 
on several benchmarks from the CINT and the CFP packages. 
Those benchmarks are chosen in such a way that their clocks-
per-instruction (CPI) parameter varies significantly. We chose 
the clock-per-wide instruction (CPWI) characteristic 
measured on the reference system as a simple approximation 
of the CPI. Modelling results are shown in Table II. 

Functional simulator speed is often expressed in terms of 
ticks per second, where a tick basically corresponds to an 
executed instruction. In case of comparison with the cycle-
accurate simulators, choosing this performance measurement 
unit would create some confusion. Instead we expressed the 
functional simulator’s speed in the same performance units as 
both cycle-accurate simulators’ speed, notably in cycles per 
second, where the number of cycles was obtained from the AL 
simulator run for a particular benchmark. Table II shows that 
functional simulator’s speed is between 5,081 MHz and 
10,565 MHz, which is comparable to FPGA processor 
prototypes. The AL simulator speed varies between 462 KHz 
and 817 KHz, which is an order of magnitude slower than pure 
functional instruction set modelling. This is typical since 
detailed timing models overhead is usually quite severe.For 
the SLM simulator, the selected benchmarks were run under 
OS “Elbrus” based no the Linux kernel version 4.19.72. The 
speed is within the limits of 577 KHz and 1066 KHz. For both 
considered cycle-accurate simulators the speed tends to 
increase with the CPWI parameter. This can be explained by 
simulators’ design: during the stall cycles processing, only a 
smaller fraction of pipeline and memory subsystem model 
mechanisms are active, and such kind of cycles usually run 
faster. On average, the SLM simulator is by 13% faster than 
the AL simulator. For the considered CFP workloads the 
geometric mean speed difference is 4%, and for the CINT 
workloads is 21%. The gap gets narrower for lower CPWI 
tasks (453.povray and 471.omnetpp), and wider for higher 
CPWI tasks (410.bwaves and 429.mcf). The latter means that 
the full accurate Elbrus core pipeline timing model overhead 
of the AL cycle-accurate simulator is greater than the SLM 
simulator’s overhead imposed by the MMU model, 
lightweight memory scoreboarding and the OS code 
simulation time combined together. Yet there is some room 
for optimization (see “VIII. Conclusions and Future work”). 
To summarize, simulators’ running speeds are quite 
comparable to each other and acceptable for running the SPEC 
benchmark package with test and train input data sets: running 
a 40-billion cycle benchmark, takes roughly a 24-hour period. 

 



 

Fig. 2. SPEC CPU2006, AL cycle-accurate simulator accuracy 

 

Fig. 3. SPEC CPU2006 workload error distribution 

 

Fig. 4. SPEC CPU2006 L1D cache hit rate 

 

Fig. 5. SPEC CPU2006 L2 cache hit rate 

 

Fig. 6. SPEC CPU2006 L3 cache hit rate 
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Table II. The AL cycle-accurate simulator and the SL memory subsystem simulator speed comparison 

Workload 
CFP CINT 

453.povray 434.zeusmp 410.bwaves 471.omnetpp 462.libquantum 429.mcf 

CPWI 1.6 3.1 6.6 1.7 3.5 4.6 

Machine Intel Core i7-2600 CPU @ 3.40GHz, 16GB RAM Intel Xeon E3-12xx v2 (Ivy Bridge), 32GB RAM 

Simulator 

speed, MHz 

FUNC 5.081 4.152 9.442 3.579 3.361 10.565 

AL 0.796 0.670 0.817 0.462 0.609 0.795 

SLM 0.734 0.699 0.965 0.577 0.733 1.066 

Speed (FUNC) / speed 

(AL) 

8.37 8.43 12.67 6.30 5.43 13.77 

Speed (AL) / speed 

(SLM) 

1.09 0.96 0.85 0.80 0.83 0.75 

VII. RELATED WORK 

It was demonstrated by [10] that proper validation and 
calibration of simulator is very important for its accuracy. 
Accuracy evaluation made during this study showed that the 
least error in accuracy is achieved by simulators Sniper and 
ZSim, which have been validated against real hardware. It 
is also worth mentioning that these simulators are most 
accurate despite being of application level type. 

Simulator Sniper was validated [11] against Intel 
Nehalem architecture and was shown to achieve average 
error of 11.1% on the SPLASH-2 benchmarks [12]. This 
high accuracy preserved (with reasonable variation) during 
later evaluation conducted in [10] on SPEC-CPU2006 [4] 
and MiBench [13] benchmarks targeting Intel Haswell 
architecture. 

Simulator ZSim was validated [14] against Intel 
Westmere architecture. It achieved absolute IPC error of 
8.5% on SPEC-CPU2006 [4] benchmark (single-threaded 
benchmarks) and .11.2% on combination of PARSEC [14], 
SPLASH-2 [12] and SPEC-OMP2001 [15] benchmarks 
(multi-threaded benchmarks). Absolute error for Intel 
Silvermont configuration of simulator is 20.9%, which is 
roughly twice as large comparing to Intel Westmere 
configuration. This emphasizes importance of validation 
and calibration against specific target hardware. 

Simulator SiNUCA was validated [9] against Intel Core 
2 Duo and Intel Sandy Bridge microprocessors. Validation 
was conducted on two sets of benchmarks: specially 
constructed micro-benchmarks and SPEC-CPU2006 suit 
[4]. Micro-benchmarks were constructed to evaluate 
specific features of microarchitecture and interactions of 
different components of microprocessor. On these micro-
benchmarks simulator achieves average error of 10% for 
Intel Core 2 Duo and 6% for Intel Sandy Bridge, while on 
SPEC-CPU2006 it achieves average error of 19% for both 
hardware configurations, which is significantly larger than 
for microbenchmarks. This error increase reaffirms 
importance of selection of representative workloads during 
simulator accuracy validation. 

VIII. CONCLUSION AND FUTURE WORK 

Cycle-accurate simulators are very useful and important 
class of tools for investigating performance of applications 
and for exploring and evaluating design space of processor 

microarchitectures. And memory subsystem simulation is 
major part of any cycle-accurate simulator. 

But, as microprocessors become more and more 
complex, simulator complexity grows accordingly. That is 
why it is important not only to implement working software 
model of microprocessor, but also to have means to debug 
it and make it more accurate. 

In this paper we described our approach to integration of 
memory subsystem model into application-level cycle-
accurate simulator of Elbrus microprocessors and the tools 
we implemented and used to debug this simulator. 

However, while the simulator described in this paper is 
reasonably performant and accurate (with mean running 
time error below 5%), there is always more work to be done. 

Firstly, there are still some features and components of 
microprocessor that are not yet simulated with sufficient 
accuracy. Most notably, simulation of Array Access Unit 
(AAU) is still very simplified. Part of our future work is to 
properly implement more components. Also, one can 
always find bugs and inaccuracies that should be fixed. 

For the memory subsystem timing model specifically, 
the authors plan to further validate the model and to reduce 
the error rate via fixing of simulator inaccuracies and 
adjustment of performance counters. 

It is known that behavior of OS and effects of I/O can 
have significant effect on performance [16][17]. Such 
details are not properly captured by application-level 
simulators, unlike system-level simulators. Concrete 
examples of this can be seen in our evaluation. It is 
interesting to explore ways to take into account such details 
(for example, stalls caused by DTLB, TLU and other 
components), while staying within AL simulation. 

Secondly, while performance of simulator is reasonable 
enough and stays within our original requirements, 
complete simulation of many applications can take days of 
real time. It is important to improve this situation. 

One obvious way to address this is to reduce 
inefficiencies of current implementation. The main 
advantage of this approach is that it does not negatively 
affect accuracy of simulation. The work on several 
optimizations of this sort is currently in progress. 



Another way to speed up the simulation process is to 
identify and simplify the least impactful parts of the 
simulation. It is less obvious how to do it properly, but as 
accuracy and reliability of current simulator increases, it 
becomes easier to investigate and evaluate such options. 

Thirdly, as it became evident during implementation of 
cycle-accurate simulator, proper tooling has significant 
impact on productivity. And it is quite reasonable to 
improve existing tools to further improve efficiency of 
debugging and developing of simulator. For example, it 
could be useful to add more types of events to execution 
statistics and to implement more verbose version of 
execution log. 

Finally, the support of the upcoming version of the 
Elbrus ISA is yet to be done. 
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