
Implementation of Memory Subsystem of Cycle-

Accurate Application-Level Simulator of the Elbrus

Microprocessors

Pavel Poroshin
Department of Verification and

Modelling
INEUM, MIPT

Moscow, Russia
poroshin_p@mcst.ru

Dmitriy Znamenskiy
Department of High-Performance

Microprocessor Engineering
MCST

Moscow, Russia
znamen_d@mcst.ru

Alexey Meshkov
Department of Verification and

Modelling
MCST, INEUM
Moscow, Russia

alex@mcst.ru

Abstract—Performance characteristics of any modern

microprocessor largely depend on its memory subsystem.

Naturally, the memory subsystem software model is an

important component of the cycle-accurate simulator, and its

validity and quality have high impact on the overall accuracy of

the simulation. In this paper the cycle-accurate application-level

simulator of the Elbrus microprocessor family is introduced.

The structure of the cycle-accurate simulator is briefly

explained. After that the software model of memory subsystem

and its integration as a part of the cycle-accurate application-

level simulator are described. We evaluate accuracy of the

application-level cycle-accurate simulator on the SPEC

CPU2006 benchmark and analyze the simulation errors.

Finally, a brief comparison of different Elbrus architecture
simulators is given.

Keywords—Elbrus Architecture, Memory Subsystem, Cache

Memory, Cycle-Accurate Simulator, Microprocessor, Application-

Level Simulation, SPEC CPU2006

I. INTRODUCTION

As complexity of modern microprocessor and compiler
optimizations increases, it becomes almost impossible to
predict performance of application without actually running it.
This is why cycle-accurate simulators are important,
especially during development of hardware.

To be useful, a cycle-accurate simulator should give
reasonable approximation of behavior and timings of real
hardware, therefore it should be reasonably accurate. And a
proper simulation of memory subsystem is a major factor in
overall accuracy of simulator.

Due to high complexity of the simulator itself, it is not only
important to have a working simulator, it is also important to
have means to debug and evaluate it.

In this paper we describe our approach to integration of
memory subsystem model into application-level cycle-
accurate simulator of Elbrus microprocessors and give an
overview of the tools that we developed to help to improve
accuracy of this simulator.

The remainder of this paper has the following structure.
Section II gives brief overview of Elbrus microprocessor
architecture, its memory subsystem characteristics and
pipeline specifics. Section III describes synchronous part of
pipeline model and its interaction with memory subsystem
model. Section IV describes the general design of memory
subsystem model. Section V gives an overview of available
debugging facilities for the simulator being developed.
Section VI is dedicated to the simulator evaluation from the

standpoint of its accuracy and performance. Section VII is
dedicated to related work about simulator validation. Section
VIII gives concluding remarks and briefly describes our plans
for further work.

II. PREREQUISITES

A. Elbrus Architecture

Elbrus microprocessors have ISA (Instruction Set
Architecture) of VLIW (Very Long Instruction Word) type. In
such architectures, performance is achieved through the use of
"Wide Instructions" (WI). Each WI consist of several sub-
operations, which are executed by hardware in parallel.

Elbrus ISA implies in-order execution. Extraction of ILP
(Instruction Level Parallelism) from a program algorithm is
the responsibility of an optimizing compiler. This allows to
reduce complexity of the hardware.

Each WI of Elbrus ISA can contain several arithmetic,
logical operations or memory access operations, control
transfer (CT) operations, operations on predicates and others.

B. Memory subsystem

Since Elbrus is a VLIW architecture, the memory
subsystem accordingly has high ILP potential. Up to 4
memory load or 2 memory store operations can be placed in a
single WI.

The cache hierarchy of the Elbrus microprocessors
memory subsystem includes Instruction Buffer (IB,
responsible for code fetching and generally acting as an
instruction cache), data caches (L1D, L2, L3) and various
address translation structures (ITLB, DTLB).

Additionally, Elbrus microprocessors have Array Access
Unit (AAU), which is used for programmable asynchronous
data prefetch, and CLW, which is used for automatic cleanup
of data on stack. Both of them asynchronously generate
requests to memory subsystem. There are also other
components (for example TLU) that insert specific memory
requests into synchronous memory access operations stream.

C. Pipeline Specifics

Pipeline of Elbrus microprocessors consists of the
following stages (from early to late stages from the
perspective of individual instruction): L, A, F0, F1, S, D, B,
R, E0, E1 etc. First of them (from L to S) are in responsibility
of Instruction Buffer. Stage R roughly corresponds to reading
of operands, and stages starting from E0 are general execution

stages, including arithmetic, address calculation for loads and
stores, etc.

Instruction Buffer incorporates several parallel code
fetching pipelines. Special control transfer preparation (CTP)
operations can be executed to start fetching code for the
upcoming control transfers using dedicated preparation
pipelines, and a prepared control transfer operation can switch
the main pipeline to the chosen preparation pipeline. This
mechanism is used for hiding latency of some control
transfers.

Several types of pipeline stalls can be distinguished. Each
stall type induces different pipeline reaction.

The first stall type is regular. The stalled WI is not
progressing on the pipeline until the stall condition is resolved.

The second type of stalls includes B-Stalls and L-Stalls.
The most frequent reason for such stalls are unavailable
operands. Pipeline logic detects such situations with some
delay, that is why simply stopping pipeline progression for the
instruction is not enough. Instead, current results of instruction
are discarded and for the next ticks instructions are transferred
back to the R stage (from E2 for B-Stall and from E0 for L-
Stall) until all affected instructions are placed back into the
proper order. There is special pipeline logic for cases when
one such stall happens during another one. In most cases, one
round of B-Stall effectively adds 4 ticks and L-Stall adds 2
ticks of latency.

Even if only one operation of WI triggers stall condition,
the whole WI is affected.

When WI passes stage E2, it can not be stalled anymore
and effectively continues its execution without interruptions.

III. SYNCHRONOUS PIPELINE MODEL

A. Overall Design

The cycle-accurate simulator described in this paper is
based on functional application-level simulator of Elbrus
microprocessor and shares most of the code base with it.

Both the architecture state and the algorithmic behavior
are handled by the functional component of simulator. This
includes decoding instructions, maintaining state of memory
and registers, simulating effects of executed instructions,
emulating system calls, etc.

Also, the cycle-accurate simulator reuses some of the
facilities of functional simulator, such as internal cache of
decoded instructions [1], logging system, command line
options parsing, events system, various configuration
mechanisms, etc.

To achieve higher simulation performance and at the same
time obtain desirable levels of accuracy and maintainability
we implement pipeline model, described in [2] as "Hybrid"
pipeline model. General idea of this approach is to simulate
timing behavior of instructions by as large continuous chunks
of logic as possible, potentially with use of some educated
predictions about future behavior. For inevitable situations
when predictions are false, simulator maintains additional data
for making necessary corrections and does not allow
propagation of incorrect speculative behavior to irreversible
state.

For example, we assume by default that operations will not
be stalled and on this basis we speculatively register

availability of the results of the operation according to this
assumption. But in case if the operation is actually stalled, the
simulator corrects the earlier made assumption and
recalculates the moment when results of the operations will be
available.

In our case large chunks of timing logic correspond to
continuous sequences of pipeline stages that are executed
without interruptions.

The algorithm of simulation loop can be summarized by
the following steps:

 For the new instructions, do simulation of its
algorithmic behavior using functional
component of the simulator, saving necessary
info for cycle-accurate part of simulation in the
process.

 Place this instruction into the pipeline model and
pass necessary additional info about its
execution.

 Iterate through each pipeline stage and for each
stage determine which instruction is at this stage.
If it is the first stage of continuous uninterrupted
sequence - speculatively simulate all stages of
this sequence.

 Update pipeline state (which instructions are at
which stage), taking into account possibly
occurred stalls.

B. Support of Memory Subsystem

Memory subsystem plays a major role in overall
performance of the system. It is important to accurately
simulate its effects.

Memory subsystem of Elbrus microprocessors is rather
complex, so instead of implementing its model from the
ground up we adopted the model described in [3]. From the
perspective of the pipeline model, this memory subsystem
model is regarded as black box with clear but limited interface.
This helps us to achieve higher levels of modularity and limit
influence of design of cycle-accurate simulator on memory
subsystem model so it can be used in several projects more
easily.

Model of memory subsystem implements IB (Instruction
Buffer), all data caches (L1D, L2 and L3) and MC (Memory
Controller). Functional component of the simulator does not
directly interact with the memory subsystem model, and the
cycle-accurate component directly interacts with IB and L1D
by regularly (each tick) forming and passing input to them.

Because the described simulator is application-level, there
are no OS effects and no proper memory management. The
consequence of this is that there is effectively no virtual
address translation takes place during simulation, and memory
subsystem functions as if all memory accesses are physically
addressed.

General architecture of the cycle-accurate simulator is
presented on Fig. 1.

1) Memory Access Operations
As rather isolated component of the simulator, memory

subsystem model does not implement speculative features of
the pipeline model. Moreover, because its high complexity it
does not support rollback of the state that happens during

Fig. 1. General architecture of described cycle-accurate simulator

some of the stalls (specifically, L-Stalls that affect stages R
and E0, and B-Stalls that affect stages R, E0, E1 and E2).
These facts should be taken into consideration during
integration of the model into cycle-accurate simulator.

Memory subsystem model is designed as cycle-by-cycle
model and expects that its main simulation step should be
executed once every simulation tick. In our approach this
happens in the main simulation loop body of the pipeline
model. From the perspective of the pipeline model, the
specific moment when this can happen must satisfy following
conditions:

 It must happen before other operations that are
currently on the pipeline check availability of
operands, otherwise there would be excess stalls.
This check happens during simulation of the R
stage.

 It must not happen after the most recent
instruction with memory access operations
(which should be send to memory subsystem
model next) irreversibly (non-speculatively)
reached earliest stage of possible feedback from
memory subsystem that should be immediately
acted upon. This corresponds to stage E2 when
earliest possible data return from L1D cache can
happen, and which should be taken into account
during checking availability of operands on the
same tick.

This means, at least from perspective of the pipeline
model, that it is possible to send new memory access
operations and execute memory subsystem simulation step
anywhere between simulating (non-speculatively) stages R
and E2 of instruction. But from the perspective of memory
subsystem model, the earlier it can start processing new
operations, the better, as this gives to the model more
simulation steps to process each individual operation and
probably will require less changes to original memory
subsystem model. So in our final approach the information
about memory access operations of instruction is sent and
simulation step of memory subsystem model is executed just
after processing stage E0 of this instruction just before
processing stage R of other instructions.

Because memory subsystem model does not support
"speculative" features of the pipeline model, and there is no
means to make corrections of the model’s state, new memory
access operations should be sent to model only when it is
guarantied that there will be no corrections that can change the
data related to these operations. In our current model, the
information about memory access operations is mostly
determined by the functional component of simulator, which
is not affected by "speculative" features of the pipeline model,
so this requirement is fulfilled.

Other aspect to consider is the lack of support of rollback
during some stalls. This means that in case of rollback of the
instruction actions, sending of the memory access operations
of this instruction to the memory subsystem model should be
postponed until the next opportunity after the rollback. This
also means that rollbacks should be known with certainty
before (or at least at) stage E0, which is true for our current
model.

Information about memory access operations is gathered
during functional simulation at the start of processing of
instruction. This information includes type of operation,
memory address, destination register number (for load
operations) and various other attributes. After functional
simulation, this data is saved in the pipeline model alongside
with other information about instruction and is used to form
request to memory subsystem model when the time comes.

There can be several memory operations in-flight at the
same time, and to distinguish them each memory access
operation is associated with a unique token (internally
represented by an integer). Because memory access operations
can take many ticks to complete, response from the memory
subsystem model can arrive when relevant instruction is no
longer present in pipeline model (all instructions that pass
stage E2 are deallocated from the pipeline model as there are
no more stalls that can affect it and most of the timing behavior
is certain and speculatively simulated). To address this,
pipeline model implements additional buffers that hold the
information necessary for proper action on response from the
memory subsystem.

2) Code Fetching
Memory subsystem model also simulates the Instruction

Buffer, which handles fetching of instructions from memory.

Process of instruction fetching is divided into several
pipeline stages, but for simplicity they are not fully
represented in the pipeline model. Pipeline model uses a
special pseudo stage (internally named F) instead. New
instruction is placed on this stage after its functional
simulation. At the same time, on the same simulation tick the
information about this instruction (mainly its address and size)
is passed to the memory subsystem model. Instruction can
leave pseudo stage F only after there was a response from the
memory subsystem model about successful completion of the
code fetching.

Some of the Elbrus control transfer instructions are
separated into two parts: "control transfer preparation" (CTP)
and "control transfer" (CT) instructions. CTP instructions
initiate fetching of the code for the new path (which happens
in parallel with regular fetch of the current path), and CT
instructions implement control transfer to this code. This
functionality allows to reduce latency of branches in some
cases. This fetch is also a responsibility of IB and is simulated
by the memory subsystem model. Information about CTP

operations is gathered during functional simulation and passed
to the memory subsystem model in the beginning of
processing of the instruction by the pipeline model (at pseudo
stage F). When corresponding CT operation is executed,
address of target instruction is passed to the memory
subsystem model by standard mechanism (described earlier),
and if IB has not fetched target instruction yet, then there will
be a pipeline stall (at pseudo stage F).

3) Hardware Generated Operations
In some cases, hardware of Elbrus microprocessor issues

special instructions (later referred to as "hardware
instructions") that are not directly represented in binary code.
Most notable of such hardware instructions are instructions
which spill and fill register file contents to/from memory when
active register window changes (for example, after procedural
control transfers). Most of the hardware instructions perform
memory accesses, and therefore play an important role in
interaction of synchronous pipeline and the memory
subsystem.

The functional simulator already simulates hardware
instructions, as the triggering conditions for them are part of
instruction set, and it is necessary to account for them to
correctly maintain microprocessors visible state. But
functional simulation of hardware instructions is significantly
simplified, as the whole process takes place during simulation
of ordinary instruction with a triggering condition occurring
during one of the simulation steps (while one spill of register
file can consist of many write accesses to memory).

Although functional simulation of hardware instruction is
inaccurate from a timing standpoint, cycle-accurate
simulation reuses most of it. During functional simulation
information about all execution of hardware instruction is
saved and passed to the pipeline model alongside with the
instruction which triggered them. When this instruction
reaches specific stage the saved information about hardware
instructions is used to appropriately insert them into pipeline
instead of next ordinary instruction. This continues until all
hardware instructions are inserted.

It is possible to save information about hardware
instructions in compact way. For example, although each spill
(or fill) of register file usually consists of a sequence of many
individual instructions, algorithm to generate them is
predetermined and defined by several parameters. Also, all of
the memory accesses of each individual spill (or fill) sequence
share most of the attributes.

While ordinary instructions enter and leave the pipeline
model in a FIFO fashion (enter at pseudo stage F and leave
after stage E2), this is no longer true in the presence of
hardware instructions. They are not fetched from memory (as
they are not directly represented in binary code) and enter
pipeline at stage R. This was not considered during original
design of data structures of pipeline model and necessary
changes were implemented.

IV. MEMORY SUBSYSTEM MODEL

A. Adaptation

For usage inside the application level (AL) cycle-accurate
Elbrus architecture simulator, the memory subsystem timing
model, which originated from the system-level memory
subsystem (SLM) cycle-accurate simulator [3], underwent
several changes.

According to the pipelining mechanics described above,
code fetching from the IB cache and the instruction-word
related memory accesses are processed on different pipeline
pseudo stages. The timing model engine code was distributed
between those pseudo stages, and separate input request
queues for the code fetching stream and the memory access
operations, with respective pipeline stalls, were created. It is
worth mentioning that both parts of the model continue
influencing each other through the “lower” part of the memory
subsystem.

The precise WI data dependency checking and conflict
resolution logic was implemented as a part of the core pipeline
timing model. That is why a simplified scoreboarding
mechanism utilized in the SLM cycle-accurate simulator was
replaced by a set of fast callbacks, which report the memory
operation processing status to the core pipeline timing model
(e.g., a cache hit or a cache miss, MU internal queues
overflow, etc).

The virtual address translation mechanics is not used for
the AL cycle-accurate simulator. All virtual addresses are
equal to physical addresses, and all MMU mechanics
including page table search, ITLB and DTLB lookup are
disabled. In addition, the L1D cache physical tags lookup
mechanism, which is used as an anti-aliasing technique for
virtual address cache indexing, is turned off. This gives an
opportunity to simplify the memory subsystem model code
and to increase its performance.

B. Improvements

Besides the adaptation changes described above, we
significantly improved the memory subsystem model in terms
of accuracy.

Multiple enhancements of IB, L1D, L2 and L3 cache
models including a multitude of refinements for caches
algorithms, latency calibrations and buffer depth adjustments
were made.

For the shared L3 cache of a multicore processor, even for
a single-threaded workload attached to a specific core, one
should also consider influence of idle processor cores. Each of
the idle-cores generates a sparse stream of memory accesses
to the L3 cache. The combined idle-core stream can have a
sufficient magnitude to interfere with the application core
stream or at least to influence L3 cache performance metrics.
To emulate the described background idle-core stream for the
single-core configuration of the simulator a synthetic
adjustable L3 cache access stream was introduced. This
mechanism partially compensates idle-core traffic, and its
precise adjustment is yet to be done.

Workloads like 410.bwaves from the SPEC CPU2006
benchmark [4] show strong performance dependency on the
system memory characteristics like latency or throughput,
which in turn can vary across different memory access
patterns in different workloads. With a view of the simulator’s
accuracy improvement, a model of DDR4 memory controller
(MC), as a part of the memory subsystem timing model, was
implemented. Current SLM and AL simulator configurations,
which correspond to an 8-core Elbrus processor, include four
MCs with the original interleaving scheme. The MC model
was simplified for the sake of performance increase at the cost
of some potential accuracy loss. Even with this tradeoff,
adding MC model into the AL cycle-accurate simulator
yielded additional 4% overall accuracy improvement on the

SPEC CPU2006 benchmark, with negligible simulator speed
degradation.

V. PROFILING AND DEBUGGING FACILITIES

It is important to have debugging tools in simulator, both
for users of the simulator and for its developers. As more and
more features are implemented (most notably accurate model
of memory subsystem), complexity of possible mistakes in
simulator rises, which demands for more advanced internal
debugging capabilities of the simulator.

The simulator described in this paper provides two main
debugging capabilities, namely execution log and execution
statistics (profiling). Their design is described in this section.

A. Execution Cursor

Both execution log and execution statistics need the way
to identify different events in simulator. For this purpose the
concept of "execution cursor" is implemented in pipeline
model.

Content of the execution cursor should point to the specific
moment of simulation process, preferably both in terms of
internal phases of simulation and in more simulator
independent terms. In our implementation execution cursor
specifies execution tick (when event should have happen on
real hardware), simulation tick (when event was simulated,
with respect to "speculative" nature of pipeline model),
pipeline stage, IP of instruction, fetch tick of instruction,
specific operation of instruction and internal simulator's
description of operation.

Current execution cursor should be accessible from
(almost) everywhere in the code. To achieve this "current"
execution cursor implemented as a field of pipeline model
object, which is accessible almost everywhere.

Logically execution cursor should have different structure
for different events and parts of the simulation path. For
example, some events (like pipeline stall on code fetching)
should be attributed for whole instruction, but specifying one
operation is meaningless for them. But for simplification and
performance purposes, in our implementation the execution
cursor always specifies whole range of attributes, possible
with garbage values, but its users (various code pieces of the
simulator) know which part of it is valid and which is not. For
example, when a pipeline stall happens on fetching and
appropriate counter of execution statistics is going to be
incremented, it is known that operation related attributes of the
execution cursor are undefined.

Also, the execution cursor should function like a stack,
since most of the simulation process is stack-like (whole
pipeline is at the bottom of the stack and specific instructions
and operations are at the top). When simulation moves higher
into the stack, relevant attributes of execution cursor should
be updated, and when simulation returns back, the execution
cursor should be restored as earlier updates are no more
relevant. For performance reasons, restoration of execution
cursor state is not implemented, as most of the time updated
attributes are not valid in lower parts of simulation stack, so
no information is lost. In a few cases where information is lost
during update, saving and restoration of the execution cursor
are implemented manually.

B. Execution Log

The main function of execution log is to present a detailed
view of execution process and of microprocessor state
evolution with respect to timing. Execution log includes
information about ticks when each executed instruction
reached certain pipeline stage, whether it was stalled, its stall
reasons and etc. This information can be used to investigate
performance anomalies and unexpected behavior.

Due to "speculative" features of the pipeline model, the
execution log can not simply reuse standard logging facilities
of functional simulator. For example, if availability of some
register was speculatively but incorrectly updated, it would be
wrong to include this update in the log. Therefore logging of
any such event should be postponed until its correctness is
certain. To support this, any intention to log an event is placed
in execution log queue, indexed by tick number when event
should actually (non-speculatively) happen. This queue is
inspected every simulation step, and every event that is
indexed by current non-speculative tick (“tick of no return”)
and is still in the queue, is printed. If some speculation was
wrong and a correction of speculative state is needed, then the
queue of execution log is scanned and all wrong events are
erased.

When an event is placed in the queue, current execution
cursor is examined and all its information relevant for logging
is placed in the queue alongside with the event. For example,
when availability of a register changes, the information about
current operation (which, in fact, is the reason for this event
happening) is saved in the queue for a more informative
output.

C. Execution Statistics

Other useful functionality of the simulator is the ability to
gather statistics of execution. While the execution log is useful
for analyzing specific moment of execution, execution
statistics provide more convenient view of integral
characteristics of the whole execution process. In other words
data of the execution log is spaced in time domain and data of
execution statistics are spaced in code domain.

As a tool, execution statistics collection is implemented as
two main parts:

 Facilities (internal for cycle-accurate simulator)
for accumulation and counting of interesting
events and for forming (raw) output with
accumulated data.

 Facilities for processing and transforming (raw)
output with statistics into a more human readable
format.

1) Accumulation of Statistics
Execution statistics collection in cycle-accurate simulator

is represented as an in-memory map indexed by addresses of
instructions (IPs). Each entry of this map contains some
general counters for this IP (like number of executions,
number of stalls etc.) and a map of event counters, indexed by
event type and attributes.

All of the events that are currently being collected by
simulator are always certain and can not be speculative, unlike
events of the execution log. This allows to simplify current
implementation of execution statistics, but it is always
possible to apply solution from execution log implementation,
if necessary.

For each IP, execution statistics accumulate the following
information:

 Total number of executions, stalls, NOPs etc.

 Number of stalls of each type (for example, stalls
caused by unavailable data in register file and
bypasses, stalls caused by fetching of
instructions, etc.).

 Number of procedural control transfers.

 Number of non-procedural control transfers.

 Some other statistics.

It is important to properly count pipeline stalls. For
example, instruction can be stalled at stage B, but not because
it has some reason itself, but because currently B-Stall (or L-
Stall) is active, which blocks pipeline progression for
instruction on stage B. Counting such stall not only
misattributes stall for wrong instruction, but also counts
effects of real reason for stall (reason of B-Stall) twice.

It can be useful to separate stalls not only by their general
type, but also by some additional factors. For example, for
every stall caused by unavailability of data in register file,
there is a producer of this data and a consumer of this data,
which is actually stalled. For this reason, statistics counters are
indexed not only by type of event, but also by additional
attributes, such as specific channel of instruction that was
stalled, IP and channel of instruction that produces the result
that leads to stall etc. For different types of events different
types of additional attributes are used.

Counter of (non-)procedural control transfers are specific
for each target. These counters are later used for construction
of call graph and calculation of approximate inclusive costs of
functions. Non-procedural control transfers are also essential
for this, as some compiler optimizations (such as tail call
optimization) transform procedural transfers into non-
procedural ones. Information about non-procedural control
transfers helps to detect such transformations.

2) Processing of Statistics
Although raw output of execution statistics is text based

and can be analyzed directly without any additional
processing, it is meant to be transformed into a more human
readable format with some tools external to the simulator.

For this purpose a separate tool was implemented as a
script with the following possible output options:

 Disassembly annotated with counters from raw
output of execution statistics.

 Summary of counters, aggregated for functions
(with non-inclusive aggregation across
instructions of function body and with inclusive
aggregation across instructions of all callees).

 Summary in the format compatible with the
profile visualization tools such as KCachegrind
[5].

Unprocessed execution statistics do not contain function
names or disassembly. They are supposed to be obtained with
objdump utility with support of Elbrus ELF files from binary
executable file of the program being investigated.

The first step of execution statistics processing is its
parsing and converting into a representation more suitable for
further transformations. Then, a call graph is constructed, if
necessary for chosen output.

As raw execution statistics for each control transfer
counter contain only IPs of source (caller) and target (callee)
of the transfer, it is impossible to construct a call graph which
considers full call stack at the moment of transfer. To address
this, during construction of a call graph a simple heuristic is
used, which assumes that for each function all executions of
its body are similar for all real call stacks. This assumption
allows to calculate inclusive costs of functions by evenly
distributing all counters of a callee across all individual calls
from callers, starting from leaves of the call graph.

This method of inclusive function costs calculation does
not work if a call graph has cycles, which are usually caused
by recursive calls. To combat this, before calculation happens
all cycles (more specifically, all strongly connected
components) are detected and converted into special
aggregated nodes of the call graph.

During construction of a call graph, not only procedural
control transfers are considered, but also non-procedural ones.
But not all non-procedural control transfers should be taken
into account, as most of them are truly logically non-
procedural. In our implementation, only non-procedural
control transfers that cross function boundaries are converted
into calls.

For visualization of execution statistics we use
Kcachegrind program. It is mainly used for visualization of
output from callgrind utility, but the input format is simple and
flexible enough for visualization of other call graph like data.
Our script supports output in KCachegrind compatible format
with only aggregated information about functions and with
more granular information about individual instructions.
KCachegrind was built in support for viewing annotated
disassembly, but not for the Elbrus disassembly. To achieve
similar functionality, we utilize view of annotated source
code, but in place of source code we use disassembly manually
obtained with objdump utility with support of Elbrus binary
format.

D. A Validation Case Study

As an illustration of the introduced simulator statistics
usage, the authors present a simulator validation case study.
During one of the validation iterations, a significant run time
mismatch for the 444.namd workload (taken from SPEC
CPU2006 benchmark) was found: the AL cycle-accurate
simulation duration result was increased by 17%, while the
cache hit rate differences stayed tolerable. The tasks’
reference system and simulator profiles were collected using
perf Linux profiler and the described AL simulator’s statistical
tools and methodology, respectively. The key profiling
parameter was the total number of pipeline stalls. The profiles
are shown in listings 1 and 2.

For the AL cycle-accurate simulator the relative weight of
the hottest procedures calc_pair_fullelect and
calc_pair_energy_fullelect has increased by 9% and 14%,
respectively. Taking a closer look at the annotated
disassembly of the hottest procedure calc_pair_fullelect
revealed a significant stall increase (almost up to 9%) for an
instruction at the 0x40020 address, which executed absolutely
seamlessly on the reference machine. The perf-generated and

Listing 1. 444.namd perf-generated profile, reference machine

Listing 2. 444.namd simulator-generated profile with relative function weight difference

Listing 3. 444.namd perf-annotated disassembly, reference machine

Listing 4. 444.namd simulator-annotated disassembly

the simulator-annotated disassemblies are shown in listings 3
and 4.

As we can see, the data for the store operation (%db[62])
in the 0x40020 instruction word is produced by floating-point
addition instruction located at 0x3ff78. The consumer (store
at 0x40020) is scheduled for execution with a 4-cycle latency
after the operand producer (faddd at 0x3ff78), but it gets
stalled very frequently because faddd’s result is not ready.
Notably, on the real hardware the consumer instruction does
not stall at all. The authors checked the CPU’s scheduling
rules, which are a part of the Elbrus ISA. It turned out that the

result availability latency of type {faddd → integer / memory}

is 6 cycles, but for the special case {faddd → store data}, the
latency is 4 cycles. Thus, the complier created an optimally
scheduled code. Further examination revealed that this very
special case was not taken into account by the simulator’s
logic. Fixing this inaccuracy shrinked the total run time error
of the 444.namd workload to a negligible value (below 1%).

VI. EVALUATION

A. Simulator Accuracy

Accuracy is one of the key simulator quality markers in a
sense of reference and modelled system characteristics
convergence. It can vary significantly across different classes
of workloads (for instance, integer or floating-point
workloads), and, moreover, across different workloads of the
same class. As for physical microprocessor systems, for the
cycle-accurate microprocessor simulator characteristics
evaluation, a standard benchmark, which includes a variety of
workloads from different classes and problem domains,
should be used. The authors chose the standard cross-platform
SPEC CPU2006 benchmark, which has been used for the

Elbrus architecture microprocessors performance evaluation
[6][7]. We compiled SPEC CPU2006 workloads with the
Elbrus compiler toolchain developed by JSC MCST. It is
essential that, for the sake of cycle-accurate simulator
compatibility, some optimization features were disabled at
compile time. For example, the usage of Array Access Unit
was disabled because the latter is not yet appropriately
supported in the timing model of the simulator. In other words,
all the reference system and the simulator data presented
below correspond to some intermediate performance mode
sufficient for the simulator validation, but not to the peak
performance mode.

The authors used a physical machine based on 8-core
Elbrus CPU as a reference system for the AL cycle-accurate
simulator accuracy benchmarking. The configuration of the
reference system is presented in Table 1.

For most of the SPEC CPU2006 tasks the test input data
set was used, and a smaller fraction of workloads was run with
the train data set. This choice of input data sets was motivated
by a reduction in simulator run time for those workloads,
which in turn allowed the authors to speedup the simulator
validation workflow loop that requires frequent task re-
execution.

Fig. 2 and 3 present the main accuracy evaluation results
for the AL cycle-accurate simulator, namely the task run time
normalized by the run time on the physical reference system
(Fig. 2), and the workload error distribution (Fig. 3).
Workloads on Fig. 2 were run with the test input except
workloads where the train input data is explicitly specified.
The geometric mean (GM) is presented for benchmarks that
include multiple runs. These results show that for more than a

12,05% ComputeNonbondedUtil::calc_pair_fullelect

11,45% ComputeNonbondedUtil::calc_pair_energy_fullelect

 9,45% ComputeNonbondedUtil::calc_pair

…

13,19% +9,45% _ZN20ComputeNonbondedUtil19calc_pair_fullelectEP9nonbonded <0x38a30>

13,00% +13,57% _ZN20ComputeNonbondedUtil26calc_pair_energy_fullelectEP9nonbonded <0x448a0>

 9,53% +0,79% _ZN20ComputeNonbondedUtil9calc_pairEP9nonbonded <0x20a98>

…

5.02 │3ff78:

 │…

 │ faddd,sm %db[94], %db[103], %db[62]

 │…

...

 │40020:

 │…

 │ stgdd %r46, 0x0, %db[62]

0x3ff78 # E=20510404 S=10408678 N=0 HW=0 LD=0 ST=0

 … # IB_FETCH_NOT_READY = 178

 faddd,sm %db[94], %db[103], %db[62] # RF_REG_NOT_READY <source IP 0x3f728> = 88

 … # RF_REG_NOT_READY <source IP 0x3fb00> = 116

 # RF_REG_NOT_READY <source IP 0x40428> = 877024

 # RF_REG_NOT_READY <source IP 0x40450> = 9531272

…

0x40020 # E=20510404 S=66987408 N=0 HW=0 LD=0 ST=19440799

 … # RF_REG_NOT_READY <source IP 0x3ff78> = 66987408

 stgdd %r46, 0x0, %db[62]

TABLE I. REFERENCE SYSTEM CONFIGURATION

CPU Elbrus, 8 cores, 1 node

Clock frequency 1500 MHz

L1 instruction

cache (IB)

128 KBytes, 256-byte cache line, 4-way

set-associative, virtually addressed

L1D cache 64 Kbytes, 32-byte cache line, 4-way

set-associative, virtually addressed

L2 cache 512 Kbytes, 64-byte cache line, 4-way
set-associative, 4-banks interleaved,

physically addressed

Shared L3 cache 16 Mbytes, 64-byte cache line, 16-way

set-associative, 8-banks interleaved,

physically addressed

RAM channels 4 channels DDR4

RAM size DDR4-2400, 128 GBytes

Operating

system

OS Elbrus based on the Linux kernel

Linux kernel

version

4.9.0-4.1-e8c2

half of the workloads the error stays inside a 4% limit, where
the CINT tasks have, on average, a lower error in comparison
to the CFP tasks. The vast majority of the tasks has a 12%
upper bound with several outlying cases with 25% error at
worst. The geometric mean for the error on the whole SPEC
CPU2006 set is below 5%, which is an admissible result
[8][9].

Memory subsystem is one of the most contributing sources
of pipeline stalls, especially for a VLIW architecture like
Elbrus since memory accesses can have sophisticated
behavior that can be difficult to be predicted and tackled at
compile time. In this context, the hit rate for different levels of
the cache hierarchy is an important metric that correlates with
the overall system performance, and matching of reference
and simulator-originated hit rate values is an important
simulator timing validation criterion. Fig. 4, 5 and 6 show hit
rates for the L1D, L2 and L3 caches on the reference system
and the AL simulator. For private core caches (L1D and L2)
there is a high correlation between hit rates on the real and
modelled CPU (mean hit rate error is 3% and 2%
respectively). The situation is different for the L3 cache,
namely the mean L3 hit rate error is noticeably higher (18%).

Modelling errors, which result in performance metrics
value mismatches described above, can be arranged in a
number of groups as a rule of thumb:

 Functional limitations of the cycle-accurate
simulator, like hardwired CPU execution mode,
simplified system configuration, etc.

 Logical inaccuracy in the timing model. E.g.,
redundant or insufficient pipeline stalls, wrong
hardware algorithms implementation, etc. This
group of errors should be diagnosed and fixed
during cycle-accurate simulator validation (see
444.namd validation case study above).

 Different performance counters interpretation.
As an example of this error group, one can
consider a pipelined cache memory with an
number of intermediate structures like Store Miss
Buffer, Miss Status Hold Registers, etc. In-flight
operations can be stored in these buffers in a
multitude of internal states, which in turn can be
interpreted in a different way by physical and
modelled performance counters.

 Incremental cache hierarchy error propagation. If
an error appears at some level of the cache
hierarchy model, it tends to propagate further
down the lower levels. For example, an illegal
L1D cache miss causes a spurious L2 cache
request, which alters the hole underlying memory
subsystem behavior. That is why lower cache
levels in the simulator have higher relative
variation in request stream intensity and structure
(and, as a result, a greater hit rate error) in
comparison with higher level caches like the L1D
cache.

When analyzing the error rate for the overall accuracy data
on Fig. 2, one can notice several outliers with the highest error:
433.milc (test — 16%, train — 25%), 429.mcf (18%),
445.gobmk (14%) and 450 soplex (train – 13%). These cases
are worth discussing while keeping in mind the modelling
error classification presented above.

For 433.milc workload (both test and train input data), a
relatively high DTLB hit rate is common. On the reference
system, among the overall 7017 million memory accesses,
DTLB misses comprise around 1%, or 70 million misses in
total. This exceeds DTLB miss rate of most tasks considered
in this paper by several orders of magnitude. Suppose each
DTLB miss takes one memory reference for the page table
lookup, and it always hits in the L3 cache (which is an
optimistic estimate). The L3 cache hit latency takes a few tens
of clock cycles, so the cumulative DTLB miss stall penalty
will definitely exceed 1000 million clock cycles. The latter
number fully explains the difference in real and modelled
execution time. This is a simulator functional limitation case,
namely the absence of address translation mechanisms and
MMU cache lookups in the AL cycle-accurate simulator. One
can say that the AL cycle-accurate simulator has both 100%
ITLB and DTLB hit rates, which result in the absence of TLB
miss-originated pipeline stalls.

For the AL cycle-accurate simulator, the 429.mcf and
450.soplex (train) tasks have a higher L1D hit rate than
expected, which could result in erroneous task speedup. In
both cases the reasons for the divergence are likely to be
simulator logical inaccuracy, which are yet to be fully
investigated. Also, there are some functional limitations of the
simulator that tend to distort memory subsystem dynamics and
complicate the analysis. Namely, on a real machine, the
memory allocation is eventually done by the OS kernel
memory management mechanism using processor’s MMU
hardware. Virtual memory is allocated in 4KB, 2MB or 1GB
physical memory pages, which are often grouped into
contiguous blocks by the allocation algorithm, where possible.
Moreover, some virtual memory pages with distinct virtual
addresses can be mapped to the same underlying physical
memory page, e.g. for the copy-on-write and zero pages
techniques used by the Linux kernel. The AL cycle-accurate
simulator does not reproduce those algorithms. The

underlying physical memory is always available, and all
physical addresses are identical to virtual, as noted above. This
results in effectively different physical addresses footprint for
the AL cycle-accurate simulator with respect to the reference
system, hence different memory subsystem behavior starting
from the L2 cache and below. We found some indirect
markers of the limitation’s impact. To begin with, we used the
page-types Linux utility to get a glance on the virtual-to-
physical address mapping of the 426.mcf’s task on the
reference machine, where only the referenced pages were
considered. А physical address heatmap was collected for the
cycle-accurate simulator, with physical memory region
granularity of 4KBytes. We found that the physical memory
footprint on the real machine is far more dense in comparison
with the AL simulator, especially when it comes to usage of
virtual pages mapped to the same physical page. Also, using
aliased virtual pages can cause additional L1D cache misses
from the anti-aliasing mechanism, which is not present in the
AL version of the cycle-accurate simulator. Secondly, an
interesting difference in the L3 statistics for the 429.mcf
workload was found. The L3 cache has a special hardware
structure for in-flight requests. A hit in this structure occurs
when multiple in-flight L3 cache requests access the same
cache line. In this situation some additional stalls can occur.
The overall L3 request number on the simulator is close to the
reference machine (with 20% difference), but the number of
hits in the in-flight requests buffer for the reference machine
is by three orders of magnitude greater. Thus, frequent
physical address collisions on the reference system are not
reproduced by the AL cycle-accurate simulator, which
indirectly points to L2 cache model inaccuracy or to the
address mapping limitation described above, or both.

The 445.gobmk workload with test input consists of
several subtasks, which have very diverse numbers of
instructions, from tens of millions to billions. “Short” subtasks
tend to have high inaccuracy due to the reference machine run
time variation and some simulator limitation effects, which are
negligible for “long” workloads. Those “short” subtasks have
high negative impact on the overall 445.gobmk workload
accuracy. For the same reason, the 462.libquantum task was
run only with the train input data.

The cache hit rate error data on Fig. 4, 5 and 6 can be also
interpreted with the help of the introduced simulator error
classification. Generally speaking, the private core caches
(L1D and L2) hit rate errors are quite low except a couple of
outliers, but the mean shared L3 cache hit rate error is greater.
For private core caches (Fig. 4, 5) most high error cases are
likely to be performance counter interpretation errors of the
memory subsystem timing model (like 462.libquantum for
L1D and 482.sphinx3 for L2). The L1D and L2 errors are
almost uniformly distributed across workloads, and it is
difficult to pick an evident error group for most of them. For
the L3 cache the situation is different. Here errors of all four
groups severely distort modelling results. Multicore reference
configuration has idle core L3 traffic. Moreover, cache
coherency mechanisms impact the L3 cache hit rate and alter
L3 performance metrics meaning on the reference system.
Incremental error propagation uniformly augments error
margins across all workloads. Finally, some specific L3 cache
model logical inaccuracies exist. For the 410.bwaves task, the
hit rate is too high, since this workload is known as a
streaming one with low L3 hit rate [6]. Nevertheless, high L3
hit rate error does not always severely influence overall
results, since for most tests the memory accesses stream

intensity falls when moving to the lower levels of memory
hierarchy, especially for workloads that fit in higher level
caches.

B. Simulator Performance

Running speed is an important cycle-accurate simulator
characteristic. It directly affects the simulator validation rate
and also the simulator’s usability: the speed should be
sufficient to run the standard benchmarks common for the
modelled architecture. Here we present a brief speed
comparison of the pure functional Elbrus architecture
simulator (FUNC), the considered AL cycle-accurate
simulator (AL) and the system-level memory subsystem
simulator described in [3] (SLM). We conducted comparison
on several benchmarks from the CINT and the CFP packages.
Those benchmarks are chosen in such a way that their clocks-
per-instruction (CPI) parameter varies significantly. We chose
the clock-per-wide instruction (CPWI) characteristic
measured on the reference system as a simple approximation
of the CPI. Modelling results are shown in Table II.

Functional simulator speed is often expressed in terms of
ticks per second, where a tick basically corresponds to an
executed instruction. In case of comparison with the cycle-
accurate simulators, choosing this performance measurement
unit would create some confusion. Instead we expressed the
functional simulator’s speed in the same performance units as
both cycle-accurate simulators’ speed, notably in cycles per
second, where the number of cycles was obtained from the AL
simulator run for a particular benchmark. Table II shows that
functional simulator’s speed is between 5,081 MHz and
10,565 MHz, which is comparable to FPGA processor
prototypes. The AL simulator speed varies between 462 KHz
and 817 KHz, which is an order of magnitude slower than pure
functional instruction set modelling. This is typical since
detailed timing models overhead is usually quite severe.For
the SLM simulator, the selected benchmarks were run under
OS “Elbrus” based no the Linux kernel version 4.19.72. The
speed is within the limits of 577 KHz and 1066 KHz. For both
considered cycle-accurate simulators the speed tends to
increase with the CPWI parameter. This can be explained by
simulators’ design: during the stall cycles processing, only a
smaller fraction of pipeline and memory subsystem model
mechanisms are active, and such kind of cycles usually run
faster. On average, the SLM simulator is by 13% faster than
the AL simulator. For the considered CFP workloads the
geometric mean speed difference is 4%, and for the CINT
workloads is 21%. The gap gets narrower for lower CPWI
tasks (453.povray and 471.omnetpp), and wider for higher
CPWI tasks (410.bwaves and 429.mcf). The latter means that
the full accurate Elbrus core pipeline timing model overhead
of the AL cycle-accurate simulator is greater than the SLM
simulator’s overhead imposed by the MMU model,
lightweight memory scoreboarding and the OS code
simulation time combined together. Yet there is some room
for optimization (see “VIII. Conclusions and Future work”).
To summarize, simulators’ running speeds are quite
comparable to each other and acceptable for running the SPEC
benchmark package with test and train input data sets: running
a 40-billion cycle benchmark, takes roughly a 24-hour period.

Fig. 2. SPEC CPU2006, AL cycle-accurate simulator accuracy

Fig. 3. SPEC CPU2006 workload error distribution

Fig. 4. SPEC CPU2006 L1D cache hit rate

Fig. 5. SPEC CPU2006 L2 cache hit rate

Fig. 6. SPEC CPU2006 L3 cache hit rate

0

20

40

60

80

100

120

N
o

rm
al

iz
ed

 r
u

n
 t

im
e,

 %

Reference system AL cycle-accurate simulator Error

19

8

3
1 1 1

0

5

10

15

20

<4% 4-8% 8-12% 12-16% 16-20% 20-24%N
u

m
b

er
 o

f
ta

sk
s

Error ranges

0

50

100

150

L1
D

 c
ac

h
e

h
it

 r
at

e,
 %

Reference system AL cycle-accurate simulator Absolute difference

0
20
40
60
80

100
120

L2
 c

ac
h

e
h

it
 r

at
e,

 %

Reference system AL cycle-accurate simulator Absolute difference

0

50

100

150

L3
 c

ac
h

e
h

it
 r

at
e,

 %

Reference system AL cycle-accurate simulator Absolute difference

Table II. The AL cycle-accurate simulator and the SL memory subsystem simulator speed comparison

Workload
CFP CINT

453.povray 434.zeusmp 410.bwaves 471.omnetpp 462.libquantum 429.mcf

CPWI 1.6 3.1 6.6 1.7 3.5 4.6

Machine Intel Core i7-2600 CPU @ 3.40GHz, 16GB RAM Intel Xeon E3-12xx v2 (Ivy Bridge), 32GB RAM

Simulator

speed, MHz

FUNC 5.081 4.152 9.442 3.579 3.361 10.565

AL 0.796 0.670 0.817 0.462 0.609 0.795

SLM 0.734 0.699 0.965 0.577 0.733 1.066

Speed (FUNC) / speed

(AL)

8.37 8.43 12.67 6.30 5.43 13.77

Speed (AL) / speed

(SLM)

1.09 0.96 0.85 0.80 0.83 0.75

VII. RELATED WORK

It was demonstrated by [10] that proper validation and
calibration of simulator is very important for its accuracy.
Accuracy evaluation made during this study showed that the
least error in accuracy is achieved by simulators Sniper and
ZSim, which have been validated against real hardware. It
is also worth mentioning that these simulators are most
accurate despite being of application level type.

Simulator Sniper was validated [11] against Intel
Nehalem architecture and was shown to achieve average
error of 11.1% on the SPLASH-2 benchmarks [12]. This
high accuracy preserved (with reasonable variation) during
later evaluation conducted in [10] on SPEC-CPU2006 [4]
and MiBench [13] benchmarks targeting Intel Haswell
architecture.

Simulator ZSim was validated [14] against Intel
Westmere architecture. It achieved absolute IPC error of
8.5% on SPEC-CPU2006 [4] benchmark (single-threaded
benchmarks) and .11.2% on combination of PARSEC [14],
SPLASH-2 [12] and SPEC-OMP2001 [15] benchmarks
(multi-threaded benchmarks). Absolute error for Intel
Silvermont configuration of simulator is 20.9%, which is
roughly twice as large comparing to Intel Westmere
configuration. This emphasizes importance of validation
and calibration against specific target hardware.

Simulator SiNUCA was validated [9] against Intel Core
2 Duo and Intel Sandy Bridge microprocessors. Validation
was conducted on two sets of benchmarks: specially
constructed micro-benchmarks and SPEC-CPU2006 suit
[4]. Micro-benchmarks were constructed to evaluate
specific features of microarchitecture and interactions of
different components of microprocessor. On these micro-
benchmarks simulator achieves average error of 10% for
Intel Core 2 Duo and 6% for Intel Sandy Bridge, while on
SPEC-CPU2006 it achieves average error of 19% for both
hardware configurations, which is significantly larger than
for microbenchmarks. This error increase reaffirms
importance of selection of representative workloads during
simulator accuracy validation.

VIII. CONCLUSION AND FUTURE WORK

Cycle-accurate simulators are very useful and important
class of tools for investigating performance of applications
and for exploring and evaluating design space of processor

microarchitectures. And memory subsystem simulation is
major part of any cycle-accurate simulator.

But, as microprocessors become more and more
complex, simulator complexity grows accordingly. That is
why it is important not only to implement working software
model of microprocessor, but also to have means to debug
it and make it more accurate.

In this paper we described our approach to integration of
memory subsystem model into application-level cycle-
accurate simulator of Elbrus microprocessors and the tools
we implemented and used to debug this simulator.

However, while the simulator described in this paper is
reasonably performant and accurate (with mean running
time error below 5%), there is always more work to be done.

Firstly, there are still some features and components of
microprocessor that are not yet simulated with sufficient
accuracy. Most notably, simulation of Array Access Unit
(AAU) is still very simplified. Part of our future work is to
properly implement more components. Also, one can
always find bugs and inaccuracies that should be fixed.

For the memory subsystem timing model specifically,
the authors plan to further validate the model and to reduce
the error rate via fixing of simulator inaccuracies and
adjustment of performance counters.

It is known that behavior of OS and effects of I/O can
have significant effect on performance [16][17]. Such
details are not properly captured by application-level
simulators, unlike system-level simulators. Concrete
examples of this can be seen in our evaluation. It is
interesting to explore ways to take into account such details
(for example, stalls caused by DTLB, TLU and other
components), while staying within AL simulation.

Secondly, while performance of simulator is reasonable
enough and stays within our original requirements,
complete simulation of many applications can take days of
real time. It is important to improve this situation.

One obvious way to address this is to reduce
inefficiencies of current implementation. The main
advantage of this approach is that it does not negatively
affect accuracy of simulation. The work on several
optimizations of this sort is currently in progress.

Another way to speed up the simulation process is to
identify and simplify the least impactful parts of the
simulation. It is less obvious how to do it properly, but as
accuracy and reliability of current simulator increases, it
becomes easier to investigate and evaluate such options.

Thirdly, as it became evident during implementation of
cycle-accurate simulator, proper tooling has significant
impact on productivity. And it is quite reasonable to
improve existing tools to further improve efficiency of
debugging and developing of simulator. For example, it
could be useful to add more types of events to execution
statistics and to implement more verbose version of
execution log.

Finally, the support of the upcoming version of the
Elbrus ISA is yet to be done.

REFERENCES

[1] Kutsevol V.N., Meshkov A.N., Chernykh S.V. The approaches to
the performance optimization of multi-core «Elbrus» processors

program models. Voprosy radioelektroniki, 2017, no. 3, pp. 57–61.

[2] Poroshin P.A., Meshkov A.N. An exploration of approaches to
instruction pipeline implementation for cycle-accurate simulators of

«Elbrus» Microprocessors. Proc. ISP RAS, 2019, vol. 31, no. 3, pp.
47-58.

[3] Znamenskiy D.V., Kutsevol V.N. Development of a cycle-accurate

simulator of the Elbrus processor core memory subsystem. Radio
industry (Russia), 2019, vol. 29, no. 2, pp. 17-27, DOI:

10.21778/2413-9599-2019-29-2-17-27. (In Russian)

[4] Henning J.L. SPEC CPU2006 benchmark descriptions. ACM

SIGARCH Computer Architecture News, 2006, vol. 34, no. 4, pp. 1-
17.

[5] Weidendorfer J. KCachegrind: Call graph viewer. Official Website

http://kcachegrind.github.io/html/Home.html, Accessed April 10,
2020.

[6] Kozhin A.S., Neiman-zade M.I., Tikhorskiy V.V. Memory

subsystem impact on the 8-core «Elbrus-8C» processor
performance. Issues of radio electronics, 2017, no. 3, pp. 13–21. (In

Russian)

[7] Ermolitckii A.V., Neiman-Zade M.I., Chetverina O.A., Markin
A.L., Volkonskii V.Y. Aggressive Inlining for VLIW. Proc. ISP

RAS, 2015, vol. 27, no. 6, pp. 189-198, DOI: 10.15514/ISPRAS-

2015-27(6)-13. (In Russian)

[8] Yourst M.T. PTLsim: A Cycle Accurate Full System x86-64

Microarchitectural Simulator. 2007 IEEE International Symposium
on Performance Analysis of Systems and Software, 2007, pp. 23-34,

DOI: 10.1109/ISPASS.2007.363733.

[9] Alves M.A.Z., Villavieja C., Diener M., Moreira F.B., Navaux
P.O.A.. SiNUCA: A Validated Micro-Architecture Simulator. 2015

IEEE 17th International Conference on High Performance
Computing and Communications, 2015 IEEE 7th International

Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems,

2015, pp. 605-610

[10] Akram A., Sawalha L. A survey of computer architecture simulation
techniques and tools. Ieee Access, 2019, vol. 7, pp. 78120-78145.

[11] Carlson T.E., Heirman W., Eyerman S., Hur I., Eeckhout L. An

evaluation of high-level mechanistic core models. ACM
Transactions on Architecture and Code Optimization (TACO), 2014,

vol. 11, no. 3, pp. 1-25.

[12] Woo S.C., Ohara M., Torrie E., Singh J.P., Gupta A. The SPLASH-
2 programs: Characterization and methodological considerations

ACM SIGARCH computer architecture news, 1995, vol. 23, no. 2,
pp. 24-36.

[13] Guthaus M.R, Ringenberg J.S., Ernst D., Austin T.M., Mudge T.,

Brown R.B. MiBench: A free, commercially representative
embedded benchmark suite. Proceedings of the fourth annual IEEE

international workshop on workload characterization. WWC-4 (Cat.
No. 01EX538), IEEE, 2001, pp. 3-14.

[14] Bienia C., Kumar S., Singh J.P., Li K. The PARSEC benchmark
suite: Characterization and architectural implications. Proceedings

of the 17th international conference on Parallel architectures and
compilation techniques, 2008, pp. 72-81.

[15] Aslot V., Eigenmann R. Performance characteristics of the SPEC

OMP2001 benchmarks. ACM SIGARCH Computer Architecture
News, 2001, vol. 29, no. 5, pp. 31-40.

[16] Vandierendonck H., De Bosschere K. On the Impact of OS and

Linker Effects on Level-2 Cache Performance. 14th IEEE
International Symposium on Modeling, Analysis, and Simulation,

IEEE, 2006, pp. 87-95.

[17] Cain H.W., Lepak K.M., Schwartz B.A., Lipasti M.H. Precise and
accurate processor simulation. Workshop on Computer Architecture

Evaluation using Commercial Workloads, HPCA, 2002. vol. 8.

