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Abstract —Modern microprocessor interrupt systems include 

hardware support for virtualization. Hardware support helps to 

increase the performance of virtual machines. However, including 

additional functionality may lead to potential errors. The paper 

presents an overview of approaches used for multi-core 

microprocessors interrupt system verification. Some definitions 

and characteristics of interrupt systems that needed to be taken 

into account in the process of verification are described. Stand-

alone verification environment general scheme is presented. 

Universal Verification Methodology was applied to construct test 

system. We describe some difficulties discovered in the verification 

process and corresponding solving methods. Generalized test 

algorithm stages are presented. Some other techniques for 

checking the correctness of interrupt system have been reviewed. 

In conclusion, we provide the case study of applying the suggested 

approaches for interrupt system verification of microprocessors 

with “Elbrus” and “SPARC-V9” architectures developed by 

MCST. The results and further plan of the test system 

development are presented. 

Keywords — test environment, standalone verification, multicore 

microprocessors, interrupt system, UVM, virtualization. 

I. INTRODUCTION 

State of the art microprocessors are becoming complex 
systems. The development of new technological processes 
allows integrating great number of controllers and subsystems 
on the one crystal. The logic of their work becomes more 
complicated. As an example: interrupts delivery and handling 
mechanisms. Interrupts are widely used for interaction with 
hardware and responding to stimuli. Interrupt system is an 
important part of microprocessor and have to be tested 
thoroughly because errors in this block may lead to a race 
condition or multiple accesses to shared memory [1]. 

Virtualization is necessary for modern tasks like cloud 
computing, modeling, information security, and other scientific 
researches. Interrupt system hardware support for virtualization 
is implemented in the most of modern SoC (System on a Chip) 
[2-3]. Performance requirements for virtualized systems are 
steadily increasing [4]. One method to increase performance of 
virtual operating system is to implement hardware support. 
However, this becomes an additional error-prone place in the 
microprocessor system. In addition, I/O virtualization is a 
difficult part of system virtualization due to the increasing 
number of I/O devices attached to the computer and the 

increasing diversity of I/O device types [5]. A significant part 
of the total number of interrupts is accounted for I/O interrupts. 

Many approaches are proposed for verification of the 
interrupt system. In [6] authors divide existing techniques for 
verifying interrupt systems into two categories. First of them is 
testing via executing some programs and invocation various 
interrupts. The disadvantage of this approach is probability of 
missing important bugs. The second one is constructing and 
analyzing formal models. As was already mentioned in [7] 
constructing and analyzing of formal models are complicated 
and requires detailed specification. In this paper, we propose 
simulation-based methods for verification of interrupt system 
that are much simpler and could be applied at earlier stage of 
RTL (Register Transfer Level) model development when first 
versions of specification were available. 

In [8] verification of the interrupt system provided using 
interrupt-driven software which launched on the whole 
microprocessor system. This method gives good results in 
finding race condition bugs but requires fine-tuning of interrupt 
sending schedule. Moreover, none of the discussed methods 
recreates rare dynamic scenarios. Stand-alone verification 
usually used for building necessary test conditions to achieve 
sufficient testing quality. 

There are a number of methods to implement a standalone 
functional verification [7]. In this paper, we focus on building 
testing environment for interrupt system using Universal 
Verification Methodology (UVM) [9]. UVM is IEEE standard 
elaborated by Accellera Systems. UVM is a set of class libraries 
defined using the syntax and semantics of SystemVerilog 
hardware description and verification language. The 
verification environment built using UVM divided into specific 
components each of them performs its own role in test scenario. 
One of the main advantages of UVM-build verification 
environments is reusability of components. It helps to support 
probable changes in DUV (Device Under Verification). The 
main drawback of UVM is a complexity of its learning. Our 
verification team have a number of already debugged 
components and classes. Therefore, we can apply UVM for 
developing interrupt system stand-alone verification 
environment. 

The rest of the paper is organized as follows. Section 2 
reviews some definitions and describes general technique for 
standalone verification of the interrupt subsystem. Section 3 



describes a case study and suggests approaches for functional 
verification of interrupt system. Section 4 describes additional 
used approaches. Section 5 reveals results and Section 6 
concludes the paper. 

II. DEFINITIONS AND VERIFICATION METHODS 

Let us give a few definitions. An interrupt is asynchronous 
signal that indicates necessity for control transferring to some 
external to the processor core requester. An interrupt vector 
characterizes the transmitted signal. Interrupt vector points to 
the memory area where the corresponding interrupt handler is 
located. The interrupt handler is a code that should be executed 
instead of current main program. It essential to mention that 
interrupts change main memory and device registers state but 
main context of processor work stays the same. 

We can divide interrupts into two types: non-maskable and 
maskable. Non-maskable interrupt cannot be disabled. It has 
more priority then maskable and used for exceptional 
conditions like critical faults, system handling and other. 
Maskable interrupt is intended for maintenance of system and 
user programs: the organization of external exchanges, 
interaction of different processes and working with timers. 
Maskable interrupts usually have several levels of priority. If 
an interrupt signal is received, but its priority is less than the 
one that came earlier, the interrupt becomes pending. Important 
time characteristic is interrupt latency. This is a time interval 
from the start of the interrupt request to the start of the interrupt 
handler execution. A set of system setups such as interrupt 
enabling, current priority, and the presence of a large number 
of pending interrupts can cause an interrupt loss or spurious 
interrupt. The spurious interrupt is an invalid, short-duration 
signal on an interrupt input. It is necessary to take into account 
these features when verifying interrupt system. 

It is necessary to define some concepts related to 
virtualization. Hypervisor is a system software that distributes 
physical resources between virtual machines. A computer on 
which a hypervisor handles one or more virtual machines is 
called a host, and each virtual machine is called a guest. As a 
part of hardware interrupts support, the guest can be bounded 
on one or more cores. These cores are called guest cores. 
Without hardware support, the virtual software model of the 
interrupt controller, register requests, and interrupt delivery 
involved interception and emulation. Because of this, the 
performance of the VM is reduced. 

We isolate a part of microprocessor system while providing 
stand-alone verification. The device specification have to 
describe correct sequence of stimuli and reactions in different 
device states. All interactions controlled by test environment - a 
program that generates input stimuli, checks correctness of 
reactions and calculates the quality of testing. Therefore, test 
environment could be divided into separate modules each 
performing its own function: 

● input stimuli generator; 

● correctness checking module; 

● coverage collector. 

Usually the interrupt controllers are handled by a set of 
software-visible registers. All requests to registers processed 
sequentially strictly one at a time. Thus, input generator is 
responsible not only for sending primary requests it also sets up 
a device. Next, we need to collect device responses and process 
them correctly. Generation of stimulus and collection of 
reactions simplified by using Transaction Level Modeling 
(TLM) [10]. This method allows concentrating on the 
interaction functionality with DUV. It is necessary to 
implement only once how to handle with interface and then 
simple data sending and receiving functions are used. Collected 
information about functional code coverage is used to identify 
untapped regions of controller during testing. Analyzing that 
information helps to refine test scenarios and add new ones. 
This approach is called coverage driven constrained random 
verification [11]. 

 

Fig 1. Generalized scheme of test environment 

Checking of behavior correctness is a complex and an 
important part while providing interrupt system stand-alone 
verification. It is usually easier to build test environment 
external to the reference model for this purpose. Identical input 
stimuli fed into the DUV and reference model. If reactions 
differ, it indicates a possible error in the system. Reference 
models usually written in high-level language (C, C++) or some 
specialized languages for hardware verification, such as 
SystemVerilog, SystemC or «e». The reference models could 
be divided into three types: cycle-accurate, discrete-event with 
time accounting and event models [12]. The type of verified 
device defines the type of the reference model. Cycle-accurate 
and discrete-event with time accounting models require 
specification with describing behavior on a register transfer 
level. Development of models of these types is labor-intensive 
when the design specification is changing. However, because 
the interrupt system includes the use of counters, we have to 
choose more accurate reference model. To simplify 
development of checking module we use discrete-event with 
time accounting reference model. Communication between 
reference model and test environment carried out with DPI 
(Directed Programming Interface). The use of DPI is necessary 
to coordinate the variable types used in different programming 
languages. Exchange of test data occurs instantly by calling 



appropriate functions. Generalized scheme of test environment 
shown on fig. 1. 

III. FUNCTIONAL VERIFICATION OF INTERRUPT SYSTEM 

Elbrus Programmable Interrupt Controller (EPIC) is a 
device intended for capturing, storing external and 
interprocessor interrupts and delivering them to the 
microprocessor cores. EPIC is a part of 16-core microprocessor 
with “Elbrus” architecture developing by MCST. 
Software-available registers manage the controller setup and 
handling of interrupts. The algorithms for working with 
maskable and non-maskable interrupts are different. Maskable 
interrupts have four priority classes. An unhandled interrupt 
with the highest priority are placed on CIR (Current Interrupt 
Register) or if CIR is busy placed on PMIRR (Pending 
Maskable Interrupt Request Registers). Signal to the core sets 
only if current core priority is less than interrupt priority in CIR 
register. Interrupt system implements hardware support of 
virtualization. Supporting options include additional control 
registers representing the state of guest interrupt system and 
guest-physical core mapping table. 

As we mentioned before, test system for stand-alone 
verification of the interrupt system is based on UVM. UVM 
helps to setup system, generate pseudo-random constrained 
input requests and monitor all changes of device states. Input 
stimuli generation is usually implemented at level that is more 
abstract than register transfers and interface signals. Input and 
output device ports combined into interfaces based on the 
similarity of the performed functions. Transaction level packets 
are transferred on interfaces [13]. Serialization and 
deserialization modules transform transaction level packets to 
signal level interfaces.  

In modern microprocessor system, there are several sources 
of interrupt requests or primary requests. Each interrupt source 
is replaced by a special test sequence. Generation of primary 
requests should be similar to that in real microprocessor system. 
One of the benefits of stand-alone verification is ability to 
create highly loaded test scenarios relatively easily. The 
efficiency of verification increases because generated pseudo-
random requests can cover most of the edge cases. We use 
sequences of primary requests and generate secondary requests 
automatically in the special modules named auto-handlers. In 
case of interrupts system secondary request is a writes and reads 
sequence to the registers that simulating a real software 
behavior. Interrupts generated from primary requests are 
monitored and collected in special buffers. After that auto-
handler randomly choose next interrupt to handle. Thus, an 
interrupt latency parameter randomly changes. 

For virtualization support, the hardware implements a DAT 
(Destination Address Table) that stores the number of the 
currently active guest core for each physical core. Hypervisor 
manages the table by requests to the registers. The state of the 
table has to be the same in all processors of multiprocessor 
system. This is implemented through hardware-generated 
control messages. Auto-handler module with randomized 
parameters of sending service messages were added to verify 
the described above functionality. 

Maskable and non-maskable interrupt handling is differ. For 
maskable interrupts, it is necessary to restore the previous core 
priority after handling current interrupt. For this purpose, we 
add monitoring module with memory where ratio “number of 
core-current priority” stored. 

There was a dynamic inconsistency problem between the 
RTL implementation of the controller behavior and the 
reference model. Under dynamic test conditions, there may be 
situations when we start to handle a maskable interrupt 
m.handle(x), read vector value from RTL-model register and it 
is not equal to reference model value. For this situation, we 
introduce additional function m.correct(x) that transfer RTL-
model value to the reference model. During a test, the reference 
model accumulates possible vectors. When there is a values 
inconsistency situation the special algorithm in reference model 
iterates over possible vector values and makes a decision about 
correction. The pseudo-code of the algorithm is presented 
below. 

Vector correctness check: 

while true do 
 wait m ← start(x) 
 m.handle(x) 
 if check(x !=x`) then 
    m.correct(x) 
 else m.print_ok(x) 
end 

Register for non-maskable interrupts contains several types 
of interrupts and they represented as one bit for an interrupt. In 
high-load dynamic tests with many non-maskable input 
requests for interrupts there may be differences in a register 
content. A similar procedure for correction nm.correct(x) is 
performed for non-maskable interrupts. From a functional point 
of view, handling guest interrupts does not differ from the 
procedures described above. The only difference is setting the 
bit that indicates a guest when working with registers. 

Another problem is an interrupt vectors overlay. This is a 
subtype of dynamic inconsistency problem when the same 
vector values are imposed on each other. This can happen for 
example when working with cyclic timers. Additional 
functionality was added to the RTL and reference models of 
verified device. A special module and interface signaling about 
interrupt overlay monitored in the test environment and then 
transferred to the reference model. Method when we use hints 
from a verified device for single correct state identification 
named “gray box” method [7, 11]. The information about 
overlay type used by reference model to exclude extra 
interrupts. This method required direct involvement of the 
device developer and a detailed description of the interface.  

In a multiprocessor system, the interrupt system settings in 
each processor may differ. It is possible to configure the 
presence and numbers of processors and cores. It is necessary 
to check all possible system setups for completeness of 
verification. Interrupt routing changes when we change the 
processor or core numbering. This adds restrictions on 
generating primary requests. To simplify primary requests 
generation we added a set of functions that automatically 



capture changes in system settings and allow easily select 
possible interrupt directions. 

The generalized test algorithm is presented below: 

1. randomization of device configuration; 

2. configuring registers; 

3. configuring guest cores; 

4. choosing random requester and presence of receiver; 

5. choosing random type of interrupt; 

6. sending primary requests for interrupt, collecting 
reactions, starting auto handling; 

7. transferring transaction information to reference model 
on each step of algorithm; 

IV. ADDITIONAL VERIFICATION METHODS 

A. Special cases 

To check the interrupt system functionality related to 
virtualization support it was necessary to create special tests 
scenarios. For example, hypervisor can remove a guest from 
core if it receives an intercept signal. In this moment guest may 
contain unfinished or unhandled interrupts. In real system after 
bounding the guest back, we needed to recover it previous state. 
Special test cases of this kind play a big role in verifying 
correctness of controller operating. The development of 
algorithms for such narrowly focused tests is possible due to the 
availability of well-described documentation, analysis of the 
functional coverage of the code, and discussions of the strategy 
with the device developer. 

B. Assertions 

SystemVerilog Assertions (SVA) is a part of SystemVerilog 
[14]. The assertions are used to specify the behavior of the test 
environment and DUV interfaces. Parts of a verification 
environment have to implement certain functions. We can add 
assertions to check correctness of the module. Violation of an 
assertion signals about an error. Usage of assertions is an 
effective method of error detection especially in the beginning 
of the project. In addition, assertions alert about uncertain and 
unconnected states of interface signals. 

C. After test checking 

Communication between test environment and reference 
model is provided using DPI. Special buffers and memories 
contain generated answers form different interfaces. The 
correct behavior of the DUV and reference model determined 
in providing certain number of responses. After test scenario 
ending we check an absence of transactions in these 
communication buffers. Detection of extra number of requests 
signals about a potential error either in the verified device or in 
the reference model.  

V. RESULTS 

The approaches described in this paper were applied for 
standalone verification of interrupt system of the 16-core 
microprocessor with “Elbrus” architecture and 2-core 
microprocessor with “SPARC-V9” architecture. 

There are some difference in interrupt systems in these 
microprocessors. The 16-core microprocessor’s interrupt 
system has a hardware support of virtualization and specialized 
interfaces for handling requests from virtual OS and hypervisor. 

The 2-core microprocessor does not support virtualization. 
Most of interfaces differs from the “Elbrus” interrupt system. 
One of its features is an additional module that handles direct 
MSI-X interrupts and a separate register interface for handling 
MSI-X interrupts. The test environment based on UVM made 
it relatively easy to change the format of modules that work 
with the interfaces while preserving their functionality. 

“SPARC-V9” implementation of the interrupt system 
contains an additional synchro signal. The parts of the interrupt 
system in which several synchro signals interact should be 
checked carefully. At the beginning of each test, we generate 
random periods of synchro signals and their shifts that are 
relative to each other. Ranges of each synchro signal have to be 
described in the device specification. This method helped us to 
detect synchronization errors in RTL-model internal modules. 

In the process of the standalone verification of the interrupt 
systems, we verified not only RTL-models. Parts of reference 
models were used in full-system “Elbrus” and “SPARC” 
machine simulators. Aforementioned approaches helped to find 
and correct some errors in the simulators. Interrupt systems 
distribution of errors is presented in Table 1. Code functional 
coverage was carried out and for “Elbrus” it was 94%, for 
SPARC 96% coverage was extracted. 

TABLE 1. DISTRIBUTION OF ERRORS AND ITS QUANTITY 

Verified object Number of bugs 

RTL Elbrus 84 

Elbrus Simulator 163 

RTL SPARC 24 

SPARC Simulator 23 

VI. CONCLUSION AND DIRECTIONS FOR FUTURE WORK 

Interrupt system with hardware virtualization support is one 
of important parts of modern microprocessors. The correct 
operation of the interrupt system allows avoiding critical errors 
and improves performance of virtual machines.  

In this paper, we have presented a stand-alone test 
environment for interrupt system based on UVM. The proposed 
approaches could be used to verify interrupt systems of 
different multicore microprocessors regardless of their 
architectures. Developed test environment and test scenarios 
made it possible to detect and correct a number of errors that 
were not detected by other verification methods. 

In the future, we plan to enhance error diagnostics and adapt 
the test environment for the forthcoming projects.  
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