
Test environment for verification of multi-processor

interrupt system with virtualization support

Dmitriy Lebedev

Department of Verification and Modeling

MCST

Moscow, Russia

lebedev_d@mcst.ru

Vitaliy Kutsevol

Department of Verification and Modeling

MCST

Moscow, Russia

kutsevol_v@mcst.ru

Abstract —Modern microprocessor interrupt systems include

hardware support for virtualization. Hardware support helps to

increase the performance of virtual machines. However, including

additional functionality may lead to potential errors. The paper

presents an overview of approaches used for multi-core

microprocessors interrupt system verification. Some definitions

and characteristics of interrupt systems that needed to be taken

into account in the process of verification are described. Stand-

alone verification environment general scheme is presented.

Universal Verification Methodology was applied to construct test

system. We describe some difficulties discovered in the verification

process and corresponding solving methods. Generalized test

algorithm stages are presented. Some other techniques for

checking the correctness of interrupt system have been reviewed.

In conclusion, we provide the case study of applying the suggested

approaches for interrupt system verification of microprocessors

with “Elbrus” and “SPARC-V9” architectures developed by

MCST. The results and further plan of the test system

development are presented.

Keywords — test environment, standalone verification, multicore

microprocessors, interrupt system, UVM, virtualization.

I. INTRODUCTION

State of the art microprocessors are becoming complex
systems. The development of new technological processes
allows integrating great number of controllers and subsystems
on the one crystal. The logic of their work becomes more
complicated. As an example: interrupts delivery and handling
mechanisms. Interrupts are widely used for interaction with
hardware and responding to stimuli. Interrupt system is an
important part of microprocessor and have to be tested
thoroughly because errors in this block may lead to a race
condition or multiple accesses to shared memory [1].

Virtualization is necessary for modern tasks like cloud
computing, modeling, information security, and other scientific
researches. Interrupt system hardware support for virtualization
is implemented in the most of modern SoC (System on a Chip)
[2-3]. Performance requirements for virtualized systems are
steadily increasing [4]. One method to increase performance of
virtual operating system is to implement hardware support.
However, this becomes an additional error-prone place in the
microprocessor system. In addition, I/O virtualization is a
difficult part of system virtualization due to the increasing
number of I/O devices attached to the computer and the

increasing diversity of I/O device types [5]. A significant part
of the total number of interrupts is accounted for I/O interrupts.

Many approaches are proposed for verification of the
interrupt system. In [6] authors divide existing techniques for
verifying interrupt systems into two categories. First of them is
testing via executing some programs and invocation various
interrupts. The disadvantage of this approach is probability of
missing important bugs. The second one is constructing and
analyzing formal models. As was already mentioned in [7]
constructing and analyzing of formal models are complicated
and requires detailed specification. In this paper, we propose
simulation-based methods for verification of interrupt system
that are much simpler and could be applied at earlier stage of
RTL (Register Transfer Level) model development when first
versions of specification were available.

In [8] verification of the interrupt system provided using
interrupt-driven software which launched on the whole
microprocessor system. This method gives good results in
finding race condition bugs but requires fine-tuning of interrupt
sending schedule. Moreover, none of the discussed methods
recreates rare dynamic scenarios. Stand-alone verification
usually used for building necessary test conditions to achieve
sufficient testing quality.

There are a number of methods to implement a standalone
functional verification [7]. In this paper, we focus on building
testing environment for interrupt system using Universal
Verification Methodology (UVM) [9]. UVM is IEEE standard
elaborated by Accellera Systems. UVM is a set of class libraries
defined using the syntax and semantics of SystemVerilog
hardware description and verification language. The
verification environment built using UVM divided into specific
components each of them performs its own role in test scenario.
One of the main advantages of UVM-build verification
environments is reusability of components. It helps to support
probable changes in DUV (Device Under Verification). The
main drawback of UVM is a complexity of its learning. Our
verification team have a number of already debugged
components and classes. Therefore, we can apply UVM for
developing interrupt system stand-alone verification
environment.

The rest of the paper is organized as follows. Section 2
reviews some definitions and describes general technique for
standalone verification of the interrupt subsystem. Section 3

describes a case study and suggests approaches for functional
verification of interrupt system. Section 4 describes additional
used approaches. Section 5 reveals results and Section 6
concludes the paper.

II. DEFINITIONS AND VERIFICATION METHODS

Let us give a few definitions. An interrupt is asynchronous
signal that indicates necessity for control transferring to some
external to the processor core requester. An interrupt vector
characterizes the transmitted signal. Interrupt vector points to
the memory area where the corresponding interrupt handler is
located. The interrupt handler is a code that should be executed
instead of current main program. It essential to mention that
interrupts change main memory and device registers state but
main context of processor work stays the same.

We can divide interrupts into two types: non-maskable and
maskable. Non-maskable interrupt cannot be disabled. It has
more priority then maskable and used for exceptional
conditions like critical faults, system handling and other.
Maskable interrupt is intended for maintenance of system and
user programs: the organization of external exchanges,
interaction of different processes and working with timers.
Maskable interrupts usually have several levels of priority. If
an interrupt signal is received, but its priority is less than the
one that came earlier, the interrupt becomes pending. Important
time characteristic is interrupt latency. This is a time interval
from the start of the interrupt request to the start of the interrupt
handler execution. A set of system setups such as interrupt
enabling, current priority, and the presence of a large number
of pending interrupts can cause an interrupt loss or spurious
interrupt. The spurious interrupt is an invalid, short-duration
signal on an interrupt input. It is necessary to take into account
these features when verifying interrupt system.

It is necessary to define some concepts related to
virtualization. Hypervisor is a system software that distributes
physical resources between virtual machines. A computer on
which a hypervisor handles one or more virtual machines is
called a host, and each virtual machine is called a guest. As a
part of hardware interrupts support, the guest can be bounded
on one or more cores. These cores are called guest cores.
Without hardware support, the virtual software model of the
interrupt controller, register requests, and interrupt delivery
involved interception and emulation. Because of this, the
performance of the VM is reduced.

We isolate a part of microprocessor system while providing
stand-alone verification. The device specification have to
describe correct sequence of stimuli and reactions in different
device states. All interactions controlled by test environment - a
program that generates input stimuli, checks correctness of
reactions and calculates the quality of testing. Therefore, test
environment could be divided into separate modules each
performing its own function:

● input stimuli generator;

● correctness checking module;

● coverage collector.

Usually the interrupt controllers are handled by a set of
software-visible registers. All requests to registers processed
sequentially strictly one at a time. Thus, input generator is
responsible not only for sending primary requests it also sets up
a device. Next, we need to collect device responses and process
them correctly. Generation of stimulus and collection of
reactions simplified by using Transaction Level Modeling
(TLM) [10]. This method allows concentrating on the
interaction functionality with DUV. It is necessary to
implement only once how to handle with interface and then
simple data sending and receiving functions are used. Collected
information about functional code coverage is used to identify
untapped regions of controller during testing. Analyzing that
information helps to refine test scenarios and add new ones.
This approach is called coverage driven constrained random
verification [11].

Fig 1. Generalized scheme of test environment

Checking of behavior correctness is a complex and an
important part while providing interrupt system stand-alone
verification. It is usually easier to build test environment
external to the reference model for this purpose. Identical input
stimuli fed into the DUV and reference model. If reactions
differ, it indicates a possible error in the system. Reference
models usually written in high-level language (C, C++) or some
specialized languages for hardware verification, such as
SystemVerilog, SystemC or «e». The reference models could
be divided into three types: cycle-accurate, discrete-event with
time accounting and event models [12]. The type of verified
device defines the type of the reference model. Cycle-accurate
and discrete-event with time accounting models require
specification with describing behavior on a register transfer
level. Development of models of these types is labor-intensive
when the design specification is changing. However, because
the interrupt system includes the use of counters, we have to
choose more accurate reference model. To simplify
development of checking module we use discrete-event with
time accounting reference model. Communication between
reference model and test environment carried out with DPI
(Directed Programming Interface). The use of DPI is necessary
to coordinate the variable types used in different programming
languages. Exchange of test data occurs instantly by calling

appropriate functions. Generalized scheme of test environment
shown on fig. 1.

III. FUNCTIONAL VERIFICATION OF INTERRUPT SYSTEM

Elbrus Programmable Interrupt Controller (EPIC) is a
device intended for capturing, storing external and
interprocessor interrupts and delivering them to the
microprocessor cores. EPIC is a part of 16-core microprocessor
with “Elbrus” architecture developing by MCST.
Software-available registers manage the controller setup and
handling of interrupts. The algorithms for working with
maskable and non-maskable interrupts are different. Maskable
interrupts have four priority classes. An unhandled interrupt
with the highest priority are placed on CIR (Current Interrupt
Register) or if CIR is busy placed on PMIRR (Pending
Maskable Interrupt Request Registers). Signal to the core sets
only if current core priority is less than interrupt priority in CIR
register. Interrupt system implements hardware support of
virtualization. Supporting options include additional control
registers representing the state of guest interrupt system and
guest-physical core mapping table.

As we mentioned before, test system for stand-alone
verification of the interrupt system is based on UVM. UVM
helps to setup system, generate pseudo-random constrained
input requests and monitor all changes of device states. Input
stimuli generation is usually implemented at level that is more
abstract than register transfers and interface signals. Input and
output device ports combined into interfaces based on the
similarity of the performed functions. Transaction level packets
are transferred on interfaces [13]. Serialization and
deserialization modules transform transaction level packets to
signal level interfaces.

In modern microprocessor system, there are several sources
of interrupt requests or primary requests. Each interrupt source
is replaced by a special test sequence. Generation of primary
requests should be similar to that in real microprocessor system.
One of the benefits of stand-alone verification is ability to
create highly loaded test scenarios relatively easily. The
efficiency of verification increases because generated pseudo-
random requests can cover most of the edge cases. We use
sequences of primary requests and generate secondary requests
automatically in the special modules named auto-handlers. In
case of interrupts system secondary request is a writes and reads
sequence to the registers that simulating a real software
behavior. Interrupts generated from primary requests are
monitored and collected in special buffers. After that auto-
handler randomly choose next interrupt to handle. Thus, an
interrupt latency parameter randomly changes.

For virtualization support, the hardware implements a DAT
(Destination Address Table) that stores the number of the
currently active guest core for each physical core. Hypervisor
manages the table by requests to the registers. The state of the
table has to be the same in all processors of multiprocessor
system. This is implemented through hardware-generated
control messages. Auto-handler module with randomized
parameters of sending service messages were added to verify
the described above functionality.

Maskable and non-maskable interrupt handling is differ. For
maskable interrupts, it is necessary to restore the previous core
priority after handling current interrupt. For this purpose, we
add monitoring module with memory where ratio “number of
core-current priority” stored.

There was a dynamic inconsistency problem between the
RTL implementation of the controller behavior and the
reference model. Under dynamic test conditions, there may be
situations when we start to handle a maskable interrupt
m.handle(x), read vector value from RTL-model register and it
is not equal to reference model value. For this situation, we
introduce additional function m.correct(x) that transfer RTL-
model value to the reference model. During a test, the reference
model accumulates possible vectors. When there is a values
inconsistency situation the special algorithm in reference model
iterates over possible vector values and makes a decision about
correction. The pseudo-code of the algorithm is presented
below.

Vector correctness check:

while true do
 wait m ← start(x)
 m.handle(x)
 if check(x !=x`) then
 m.correct(x)
 else m.print_ok(x)
end

Register for non-maskable interrupts contains several types
of interrupts and they represented as one bit for an interrupt. In
high-load dynamic tests with many non-maskable input
requests for interrupts there may be differences in a register
content. A similar procedure for correction nm.correct(x) is
performed for non-maskable interrupts. From a functional point
of view, handling guest interrupts does not differ from the
procedures described above. The only difference is setting the
bit that indicates a guest when working with registers.

Another problem is an interrupt vectors overlay. This is a
subtype of dynamic inconsistency problem when the same
vector values are imposed on each other. This can happen for
example when working with cyclic timers. Additional
functionality was added to the RTL and reference models of
verified device. A special module and interface signaling about
interrupt overlay monitored in the test environment and then
transferred to the reference model. Method when we use hints
from a verified device for single correct state identification
named “gray box” method [7, 11]. The information about
overlay type used by reference model to exclude extra
interrupts. This method required direct involvement of the
device developer and a detailed description of the interface.

In a multiprocessor system, the interrupt system settings in
each processor may differ. It is possible to configure the
presence and numbers of processors and cores. It is necessary
to check all possible system setups for completeness of
verification. Interrupt routing changes when we change the
processor or core numbering. This adds restrictions on
generating primary requests. To simplify primary requests
generation we added a set of functions that automatically

capture changes in system settings and allow easily select
possible interrupt directions.

The generalized test algorithm is presented below:

1. randomization of device configuration;

2. configuring registers;

3. configuring guest cores;

4. choosing random requester and presence of receiver;

5. choosing random type of interrupt;

6. sending primary requests for interrupt, collecting
reactions, starting auto handling;

7. transferring transaction information to reference model
on each step of algorithm;

IV. ADDITIONAL VERIFICATION METHODS

A. Special cases

To check the interrupt system functionality related to
virtualization support it was necessary to create special tests
scenarios. For example, hypervisor can remove a guest from
core if it receives an intercept signal. In this moment guest may
contain unfinished or unhandled interrupts. In real system after
bounding the guest back, we needed to recover it previous state.
Special test cases of this kind play a big role in verifying
correctness of controller operating. The development of
algorithms for such narrowly focused tests is possible due to the
availability of well-described documentation, analysis of the
functional coverage of the code, and discussions of the strategy
with the device developer.

B. Assertions

SystemVerilog Assertions (SVA) is a part of SystemVerilog
[14]. The assertions are used to specify the behavior of the test
environment and DUV interfaces. Parts of a verification
environment have to implement certain functions. We can add
assertions to check correctness of the module. Violation of an
assertion signals about an error. Usage of assertions is an
effective method of error detection especially in the beginning
of the project. In addition, assertions alert about uncertain and
unconnected states of interface signals.

C. After test checking

Communication between test environment and reference
model is provided using DPI. Special buffers and memories
contain generated answers form different interfaces. The
correct behavior of the DUV and reference model determined
in providing certain number of responses. After test scenario
ending we check an absence of transactions in these
communication buffers. Detection of extra number of requests
signals about a potential error either in the verified device or in
the reference model.

V. RESULTS

The approaches described in this paper were applied for
standalone verification of interrupt system of the 16-core
microprocessor with “Elbrus” architecture and 2-core
microprocessor with “SPARC-V9” architecture.

There are some difference in interrupt systems in these
microprocessors. The 16-core microprocessor’s interrupt
system has a hardware support of virtualization and specialized
interfaces for handling requests from virtual OS and hypervisor.

The 2-core microprocessor does not support virtualization.
Most of interfaces differs from the “Elbrus” interrupt system.
One of its features is an additional module that handles direct
MSI-X interrupts and a separate register interface for handling
MSI-X interrupts. The test environment based on UVM made
it relatively easy to change the format of modules that work
with the interfaces while preserving their functionality.

“SPARC-V9” implementation of the interrupt system
contains an additional synchro signal. The parts of the interrupt
system in which several synchro signals interact should be
checked carefully. At the beginning of each test, we generate
random periods of synchro signals and their shifts that are
relative to each other. Ranges of each synchro signal have to be
described in the device specification. This method helped us to
detect synchronization errors in RTL-model internal modules.

In the process of the standalone verification of the interrupt
systems, we verified not only RTL-models. Parts of reference
models were used in full-system “Elbrus” and “SPARC”
machine simulators. Aforementioned approaches helped to find
and correct some errors in the simulators. Interrupt systems
distribution of errors is presented in Table 1. Code functional
coverage was carried out and for “Elbrus” it was 94%, for
SPARC 96% coverage was extracted.

TABLE 1. DISTRIBUTION OF ERRORS AND ITS QUANTITY

Verified object Number of bugs

RTL Elbrus 84

Elbrus Simulator 163

RTL SPARC 24

SPARC Simulator 23

VI. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

Interrupt system with hardware virtualization support is one
of important parts of modern microprocessors. The correct
operation of the interrupt system allows avoiding critical errors
and improves performance of virtual machines.

In this paper, we have presented a stand-alone test
environment for interrupt system based on UVM. The proposed
approaches could be used to verify interrupt systems of
different multicore microprocessors regardless of their
architectures. Developed test environment and test scenarios
made it possible to detect and correct a number of errors that
were not detected by other verification methods.

In the future, we plan to enhance error diagnostics and adapt
the test environment for the forthcoming projects.

REFERENCES

[1] Makoto Higashi, Tetsuo Yamamoto, Yasuhiro Hayase, Takashi Ishio, and
Katsuro Inoue. An effective method to control interrupt handler for data
race detection. In Proceedings of the 5th Workshop on Automation of
Software Test, pages 79–86, 2010.

[2] ARM® Generic Interrupt Controller Architecture Specification version
4.0,2107
https://static.docs.arm.com/ihi0069/c/IHI0069C_gic_architecture_specif
ication.pdf (12.04.2020).

[3] Intel Virtualization Technology for Directed I/O, Architecture
Specification. Intel, 2019
https://software.intel.com/sites/default/files/managed/c5/15/vt-directed-
io-spec.pdf (12.04.2020).

[4] Znamensky D.V. Alternatives of hardware virtualization support
implementation for elbrus processor architecture.
http://www.mcst.ru/files/5345a0/320cd8/501670/000000/znamenskiy-
vybor_variantov_realizatsii.pdf (12.04.2020).

[5] Hennessy J.L., Patterson D.A. Computer Architecture: A Quantitative
Approach. Fifth Edition. Morgan Kaufmann, 2012. 857 p.

[6] Sung, Chungha & Kusano, Markus & Wang, Chao. (2017). Modular
Verification of Interrupt-Driven Software. arXiv:1709.10078v1 [cs.PL]
28 Sep 2017.

[7] Lebedev D.A., Petrochenkov M.V. Test environment for verification of
multi-processor memory subsystem unit. Trudy ISP RAN/Proc. ISP RAS,
vol. 31, issue 3, 2019. pp. 67-76. DOI: 10.15514/ISPRAS-2019-31(3)-6

[8] John Regehr. Random testing of interrupt-driven software. In
International Conference on Embedded Software, pages 290–298, 2005.

[9] Standard Universal Verification Methodology
http://accellera.org/downloads/standards/uvm (12.04.2020).

[10] Kamkin A., Chupilko M. A TLM-based approach to functional
verification of hardware components at different abstraction levels. Proc.
of the 12th Latin-American Test Workshop (LATW), 2011, pp. 1-6.

[11] Petrochenkov M., Stotland I., Mushtakov R. Approaches to Stand-alone
Verification of Multicore Multiprocessor Cores. Trudy ISP
RAN/Proc.ISP RAS, vol. 28, issue 3, 2016, pp. 161-172. DOI:
10.15514/ISPRAS-2016-28(3)-10.

[12] Kelton W., Law A. Imitatsionnoe modelirovanie [Simulation modeling]
// Klassika CS. 3-e izd. SPb.: Piter, 2004.

[13] TLM-2.0.1. TLM Transaction-Level Modeling Library.
http://www.accellera.org/downloads/standards/systemc (12.04.2020).

[14] 1800-2017 - IEEE Standard for SystemVerilog--Unified Hardware
Design, Specification, and Verification Language
https://standards.ieee.org/standard/1800-2017.html (12.04.2020).

