
An Approach to the Translation of
Software-Defined Network Switch Flow Table into

Network Processing Unit Assembly Language
Andrei Markoborodov

Lomonosov Moscow State University
Moscow, Russia

amark@lvk.cs.msu.su

Yuliya Skobtsova
Lomonosov Moscow State University

Moscow, Russia
xenerizes@lvk.cs.msu.su

Dmitry Volkanov
Lomonosov Moscow State University

Moscow, Russia
volkanov@asvk.cs.msu.su

Abstract—This paper considers the OpenFlow 1.3 switch based
on a programmable network processing unit (NPU). OpenFlow
switch performs flow entry lookup in a flow table by the values
of packet header fields to determine actions to apply to incoming
packet (classification).

In the considered NPU assembly language, lookup operation
may be implemented on the basis of search trees. But these trees
cannot be directly used for OpenFlow classification because of
compared operands width limitation. In this paper, we propose
flow table representation designed for easy translation into NPU
search trees. Another goal was to create a compact program that
fits in NPU memory.

Another NPU limitation requires program updating after each
flow table modification. Consequently, the switch must maintain
the current flow table state to provide a fast NPU program
update. We developed algorithms for incremental update of flow
table representation (flow addition and removal).

To evaluate the proposed flow table translation approach, a set
of flow tables was translated into NPU assembly language using
a simple algorithm (based on related work) and an improved
algorithm (our proposal). Evaluation was performed on the
NPU simulation model and showed that our approach effectively
reduces program size.

Index Terms—OpenFlow, network processing unit, flow table,
software-defined network

I. INTRODUCTION

Software-Defined Networks (SDN) have been actively de-
veloped recently. In SDN network devices, or switches, im-
plement data forwarding plane, when device and data flow
management (control plane) is performed by special soft-
ware — SDN controller, running on a separate server [1].
For interaction between the data plane and the control plane,
a special control protocol is used. The OpenFlow 1.3 [2]
protocol is one of the most widespread SDN control protocols.

Packet processing in the OpenFlow switch is performed
using special processing rules (called flow entries in the
OpenFlow protocol) organized in flow tables. SDN controller
updates these flow entries by sending OpenFlow messages.
To classify incoming packets, OpenFlow switch looks up
for the flow entry in the flow table that matches values of
corresponding packet header fields.

One of the directions of the SDN technology development
are high-performance switches based on programmable net-

work processor units (NPU) [3], which are widely used. NPU
is a System-on-a-Chip with architecture specialized for net-
work traffic processing. NPU performs packet header parsing,
classification of incoming packets, modification of the packet
header and traffic management functions [4]. Programmable
NPUs allow us to change packet processing algorithms and
distinguishable packet header fields, which is highly valuable
in SDN deployments with emerging standards like data centers
or 5G [5].

NPU is a specialized device that executes packet processing
program loaded into its memory and usually does not make
changes to its program itself. The central processing unit
(CPU) of the switch implements the interface with the SDN
control plane. OpenFlow software in the operating system
environment of the CPU provides a connection with the con-
troller and makes changes to the NPU program. Program up-
date requires a special system to translate OpenFlow abstrac-
tions into the assembly language of the NPU. This research is
devoted to the development of such a system, specifically, its
part responsible for packet classification according to the flow
table.

The paper has the following structure. Section II describes
the main architectural features of the NPU and its assembly
language. Section III contains the problem statement of this
research. In Section IV, we perform an analysis of related
work applied to flow table representation in considered NPU.
Section V presents developed data structure and algorithms
for translating it into the assembly language and also the data
structure updating algorithms. Section VI is devoted to the
evaluation of the developed flow table translation approach.

II. NPU ARCHITECTURE

Our research considers a switch with the NPU based on
specialized computing cores. This NPU contains a set of
parallel packet processing pipelines consisting of the uniform
stages that execute binary code loaded into them.

The computing core of the NPU pipeline stage contains
a single general-purpose register and a memory area to store
the currently processed packet header and associated metadata
(such as ingress port identifier). The register is used as an



operand register and a result register. NPU does not contain a
separated memory area to store program data. Program data is
recorded directly to the binary code of the stage processor
instructions. Thus, any change of the data, such as flow
removal in OpenFlow, requires a new program to be loaded.

The assembly language of the NPU contains conditional
jump instructions that compare the value in the register with
the value from the instruction operand. Length of the value
should be 64 bits or less. Conditional jump can be made
only to the label located in the program below. Therefore,
for example, it is impossible to implement loops or return to
previously defined packet modifying action.

The program in the assembly language of the NPU can be
represented as a finite set of linear instruction blocks connected
by jump instructions. The program contains the following main
types of linear instruction blocks:

• Load value. The sequence of instructions of this block
loads a value from the packet header memory area or
associated metadata memory into the register.

• Change register. The sequence of instructions of this
block performs arithmetical or logical operations to
change the current value of the register.

• Search tree. In the simplest case (exact match search
tree) this block contains a set of jump instructions. The
search key is an integer value, which length is 64 bits or
less. It can also be the longest-prefix match search tree,
which additionally requires prefix length for the search
key.

• Apply actions. The sequence of instructions of this block
performs modifying actions on the packet header memory
or associated metadata memory, such as changing header
field values, pushing tags.

A directed graph of the program can be created from the
instruction blocks of the program. In this graph vertices are
created for each instruction block. An arc leads from one
vertex to another, if the block corresponding to the first vertex
has jump instruction to label located in instruction block
corresponding to the second vertex. The program graph has
no cycles and contains only one vertex without incoming arcs.

Fig. 1. Example NPU program graph

Figure 1 shows the graph for a simple NPU program which
performs classification by the value of one header field and
applies one of the three packet modifying actions. The program
has one instruction block for loading the value of this field and

one block containing the search tree. In the program graph
three arcs lead from the vertex of search tree block to three
vertices of action blocks to apply.

III. PROBLEM STATEMENT

Consider a switch that operates under the OpenFlow 1.3
protocol, based on the NPU described in Section II. Let R be
flow table with flow entries containing only match fields with
exact values. The set of flow table match fields is denoted by
I = {m1,m2, . . . ,mk}. Flow entry may specify exact value
only for a subset of I allowing any value in other match fields.
Let the symbol “∗” denote any value of the match field. To
avoid search ambiguity, each flow entry is marked with priority
p.

Our goal is to create a program in the assembly language
that is compliant with the graph described in Section II and
performs received packet classification by the given flow table
R. The program must perform the search for matching flow
entry in the flow table that has the highest priority and matches
packet header fields.

Additionally, we have to load a new program into the
NPU each time flow table contents are changed. Considering
the usual frequency of flow table updates, it is advisable to
maintain an incrementally updated intermediate representation
of the flow table for quick translation after the update.

Thus, the problem is to develop a data structure for trans-
lating given flow table R into the program in the assembly
language of the considered NPU, which implements a search
on this set of flow entries and supports the addition and
removal of flow entries.

IV. RELATED WORK

This section provides a brief review of other researches
devoted to data structures developed for classification by the
flow table or similar multi-field tables.

The papers [6], [7] investigate an approach based on the
decomposition of the classification by many fields into several
classifications by one field. This approach uses a separate
data structure for each match field, such as search trees or
hash tables. The search result for one data structure is the
Bloom filter [8] or label identifier. To get the classification
result for all fields, it is necessary to intersect pairs of separate
classification results. As a result, an identifier of the required
flow entry is calculated.

This approach has significant limitations in implementation
for the considered NPU, including the impossibility of hash
function implementation required for Bloom filters and the ne-
cessity to store intermediate labels when classification results
are intersected.

The papers [9], [10], [11], [12] suggest an approach that
uses decision trees. Each vertex of such a tree is associated
with a predicate. During the search, the predicate determines
the next descendant vertex to continue the search. During
passing from vertex to its descendant, the initial set of flow
entries decreases and, as a result, turns into a smaller set of



flow entries, among which the desired flow entry is determined
by simple enumeration.

This approach also has limitations for implementing in
the considered NPU. In the search process, it is required to
load the header field values more than once, that can lead
to unreasonable expenses for the packet processing time and
multiple duplication of instruction blocks for loading the field
value.

All considered approaches to the representation of flow
tables have limitations and disadvantages for their implemen-
tation in the assembly language of considered NPU. Data
structures based on decision trees are more suitable for our
research problem. However, the disadvantages of such data
structures should be eliminated, or the program just will not
fit into NPU memory.

V. PROPOSED APPROACH

In this section, we describe the developed data structure
for representing the flow table and the developed algorithms
for flow addition and removal from the data structure and for
translating the data structure into a program in the assembly
language of the NPU.

A. Data Structure

To represent a flow table with the set of flow entries R, we
use a tree with marked vertices and arcs. The following values
are associated with each tree vertex, except for leaf vertices:

• Match field from the set of considered fields I =
{m1,m2, . . . ,mk}: the tree root corresponds to the
field m1, the descendants of the root correspond to the
field m2, etc.

• Subset of the flow set R. The tree root corresponds to
the whole set R.

TABLE I
EXAMPLE FLOW TABLE

Flow Priority Field 1 Field 2
F1 2 0 0
F2 2 0 1
F3 2 1 0
F4 1 1 *

Each tree leaf is associated with a flow entry subset of
R sorted in descending priority order. The tree has a depth
of k, and all the tree leaves are vertices of the depth k.
Table I presents an example flow table with two match fields,
consisting of four flow entries F1, F2, F3, F4. In Figure 2, the
data structure constructed for example flow table in Table I is
shown.

Consider the tree vertex v, which corresponds to the field m
and a flow subset S ⊂ R. Then:

• If M is a set of all possible values of the field m in the
flow entries from the set S, including the special value
∗, for each value f ∈ M the vertex v has a descendant
which arc is marked f .

• If the vertex u is a descendant of the vertex v with arc
marked f , the flow subset of the vertex u contains only

Fig. 2. Data structure constructed from flow entries given in Table I

those flow entries from S, which value for the field m is
f or ∗.

The developed data structure differs from approaches shown
in related work by a fixed order of viewing fields. Vertices
having the same depth refer to the same match field. This
allows us to load the value of each match field only once in
the search process. This order also allowed us to develop an
algorithm for translating the data structure into the assembly
language of the NPU, which receives the program without
duplicating the instruction blocks for loading field value.

B. Flow Addition

Flow addition to the data structure is performed by travers-
ing the tree vertices, starting from the root. When traversing
a vertex, a new flow entry is added to its flow subset. Then,
traversing continues in vertex along the arc, which is marked
with the value of the field specified in the added flow entry.
If such an arc is in absent, a new vertex descendant is added.

When traversing a vertex, two special cases require addi-
tional actions:

1) The value of the field corresponding to the vertex
specified in the added flow entry is ∗. In this case, in
addition to the descendant along the arc marked ∗, it is
necessary to traverse all other descendants of this vertex.

2) The value of the field corresponding to the vertex in
the added flow entry is f 6= ∗, and this vertex has a
descendant along the arc marked ∗. Then, in case of
adding a new descendant, it is necessary firstly to copy
the subtree corresponding to the arc marked ∗ to the
subtree along the arc marked f , and then continue the
traversal.

C. Flow Removal

Flow removal from the data structure is also performed
by traversing the tree vertices, starting from the root. When
traversing a vertex, the removed flow entry is deleted from the
vertex flow subset, and traversing continues in vertex along the
arc, which is marked with the value of the field specified in
the removed flow entry.

When traversing a vertex, two special cases require addi-
tional actions:

1) The value of the field corresponding to the vertex
specified in the removed flow entry is ∗. In this case,
in addition to the descendant along the arc marked ∗, it



is necessary to traverse all the other descendants of this
vertex.

2) The value of the field corresponding to the vertex in
the removed flow entry is f 6= ∗, and this vertex has
a descendant along the arc marked ∗. For this case,
after traversing the subtree along the arc marked f , it is
necessary to compare the subtree along the arc marked
f and the subtree along the arc marked ∗. In case of
equality, the subtree along the arc f is removed, because
it is redundant.

D. Translation into NPU Assembly Language

Proposed data structure can be directly translated into a
program in the assembly language of the NPU. The program
graph will have a structure similar to a tree, but for each vertex
of the tree, except for the leaves, the program graph will
contain sequentially connected vertices corresponding to the
instruction block of loading the field value, which corresponds
to the vertex, and the instruction block of a search tree,
for the values that mark the outgoing arcs from the vertex.
The tree leaf will correspond to the instruction blocks of
actions of the flow entry that has the highest priority in leaf
flow set. Listing 1 and Figure 3 show the program and the
program graph translated by the direct method from flow table
representation presented in Figure 2.

Fig. 3. Program graph obtained by direct translation method

However, with the direct method of translation, the resulting
program contains a lot of search trees for similar key sets
and duplicating instruction blocks for loading the field value
(see duplicating field loading block in Figure 3). To eliminate
this drawback, a method for translating the data structure with
encoding arcs was developed (method with encoding).

When translating by the method with encoding, tree levels
are introduced. Tree level corresponds to the table match field
and includes vertices of the same depth. The arcs outgoing
from the tree levels vertices are numbered, that is, the code is
assigned to each arc. Numbering for each level is independent.
Then, for each tree level, a level list, consisting of all pairs
(code of the incoming arc, marker of the outgoing arc) is
formed. For the root vertex, zero is used instead of the
incoming arc code. Figure 4 shows arc encodings, tree levels,
and level lists for our example data structure.

Listing 1
PROGRAM OBTAINED BY DIRECT TRANSLATION METHOD

<...> // Load Field 1
t r e e i n "tree_1"
j End

L1: // Load Field 2
t r e e i n "tree_2"
j End

L2: <...> // Load Field 2
t r e e i n "tree_3"
j F4

F1: <...> // Actions F1
j End

F2: <...> // Actions F2
j End

F3: <...> // Actions F3
j End

F4: <...> // Actions F4
j End

End:

Fig. 4. Flow table representation marked up with tree levels, encoded arcs
and level lists

Instruction blocks of the search tree and loading field
corresponding to the level are created for each list of pairs.
Jumps in the block of the search tree are performed in a
special block for loading the code of the outgoing arc, to which
the pair corresponds. Then jump is performed to loading the
value of the next field. In Figure 5, the resulting program
graph, obtained by the method with encoding from marked
flow table representation in Figure 4, is shown. In Listing 2, the
corresponding program in the assembly language is presented.

Thus, the resulting program contains one loading instruction
block for each match field and a fixed number of search trees,
one search tree per match field.

VI. EVALUATION

For the developed data structure, we evaluated translation
method with encoding in comparison to the direct translation
method inspired by approaches from related work.

For the evaluation, we used a simulation model of the
NPU pipeline. The simulation model receives a program in
the assembly language, translated by one of the methods in
our case, and a set of input packets to be processed. As an
output the model produces a set of outgoing packets along
with statistics, including the amount of memory occupied by
the program binary code and the average number of ticks
spent on processing the input packets. Before processing



Fig. 5. Program graph obtained by translation method with encoding

Listing 2
PROGRAM OBTAINED BY TRANSLATION METHOD WITH ENCODING

<...> // Load Field 1
tree lpm "tree_1"
j End

L1: l o a d i 1
j L3

L2: l o a d i 2
j L3

L3: r o l FIELD_2_WIDTH
<...> // Load Field 2
tree lpm "tree_2"
j End

F1: <...> // Actions F1
j End

F2: <...> // Actions F2
j End

F3: <...> // Actions F3
j End

F4: <...> // Actions F4
j End

End:

the packets, the simulation model translates the program in
assembly language into binary code, where each instruction
has 16 bytes length.

We generated a set of OpenFlow tables with match fields
of the data link (L2) and network layer (L3) header fields
with different numbers of flow entries. For each table, the
evaluated data structure was built and translated into NPU
assembly language. For each flow table, one input packet per
flow entry was generated.

The dependency between the number of table flow entries
and the average number of instructions is presented in Fig-
ure 6. The measurements show that the program translated by
the direct method takes from 1.2 to 1.5 times more memory
than the program translated by the method with encoding.

Figure 7 shows the proportion of the search trees instruc-
tions in the program depending on the number of table flow
entries. The proposed method with encoding uses memory
much more effectively than the direct method, removing from

Fig. 6. Average number of instructions for different flow table sizes

Fig. 7. Proportion of the search trees instructions for different flow table sizes

Fig. 8. Average number of ticks per packet for different flow table sizes

15 to 30% duplicating code from the program.
However, the fee for reducing the size of the program is

an increase in the number of ticks per packet, which is about
10%. In Figure 8, the dependency between the number of flow
entries in the table, and the average number of ticks per packet
is rendered. The increase in packet processing time, though,
is still within acceptable limits for our NPU and does not lead
to unexpected delays or packet drops.

In future research, we are going to determine the dependen-
cies of the evaluated characteristics by the number of match
fields in the flow entries. All of the proposed algorithms,
including flow addition and removal, will be evaluated in terms
of data structure update time.



VII. CONCLUSION

In our research, we considered the switch based on pro-
grammable NPU, which has architectural limitations in mem-
ory organization. To use this NPU in the SDN switch operating
under the OpenFlow 1.3 protocol, the system for translating
flow table into NPU program was developed. The system
allows us to get a program for the NPU with acceptable
packet processing time, which takes up to 30% less memory
comparing to the programs based on data structures in the con-
sidered related work. These results are achieved by reducing
the duplication of instruction blocks that load the value of the
same fields, reducing the program size (in some cases by 1.5
times). In the future, we will consider maskable match fields
of the flow entries and examine the effect of the fields parsing
order on the resulting program characteristics.

REFERENCES

[1] Open Networking Foundation. Software-defined networking: the new
norm for networks. ONF white paper, 2012.

[2] Open Networking Foundation. OpenFlow switch specification version
1.3.0. 2012.

[3] Giladi R. Network processors: architecture, programming, and imple-
mentation. Morgan Kaufmann, 2008.

[4] Orphanoudakis T., Perissakis S. Embedded multi-core processing for
networking. Embedded Multi-Core Systems, 2010, pp. 399–463.

[5] Bifulco R.,Rtvri G. A survey on the programmable data plane: ab-
stractions, architectures, and open problems. IEEE 19th International
Conference on High Performance Switching and Routing (HPSR), 2018,
pp. 1–7.

[6] Taylor D., Turner J. Scalable packet classification using distributed
crossproducting of field labels. 2005.

[7] Kekely M., Korenek J. Packet classification with limited memory re-
sources. Euromicro Conference on Digital System Design (DSD), 2017,
pp. 179–183.

[8] Bloom B. H. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 1970, vol. 13, no. 7, pp. 422–426.

[9] Gupta P., McKeown N. Classifying packets with hierarchical intelligent
cuttings. IEEE Micro, 2000, vol. 20, no. 1, pp. 34–41.

[10] Singh S., Baboescu F., Varghese G., Wang J. Packet classification using
multidimensional cutting. Computer Communication Review, 2003, vol.
33.

[11] Qi X., Xu L., Yang B. Packet classification algorithms: from theory to
practice. Proceedings - IEEE INFOCOM, 2009, pp. 648–656.

[12] Li W., Li X., Li H., Xie G. CutSplit: a decision-tree combining cutting
and splitting for scalable packet classification. IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, 2018, pp. 2645–2653.


