
 

 

Tracing Network Packets in the Linux Kernel using 

eBPF 
 

Mark Kovalev 

Software Engineering Department 

Saint Petersburg State University 

Saint Petersburg, Russia 

restonich@gmail.com 

  

Abstract—During the development and maintenance of 

complex network infrastructure for a big project, developers 

face a lot of problems. Although there exist plenty of tools and 

software that helps to troubleshoot such problems, their 

functionality is limited by the API that Linux kernel provides. 

Usually, they are narrowly targeted on solving one problem and 

cannot show a system-wide network stack view, which could be 

helpful in finding the source of the malfunction. This situation 

could be changed with the appearance of a new type of tools 

powered by the Linux kernel's eBPF technology, which provides 

a flexible and powerful way to run a userspace code inside the 

kernel. In this paper, an approach to tracing the path of network 

packets in the Linux kernel using eBPF is described. 
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I. INTRODUCTION 

Software and hardware solutions are becoming 
increasingly complex, which leads to an increasingly complex 
network infrastructure that lies at the basis of such solutions. 
Such infrastructures could include multiple physical devices 
and virtual interfaces, various network namespaces, firewall 
settings, routing tables, packet filtering, networking protocols, 
and so on. These technologies are very powerful and feature-
rich, but on the other hand, it also makes troubleshooting of 
such network systems much harder and more time-
consuming. 

There are a lot of ways to troubleshoot networking 
problems. One of them is to walk through the OSI stack: go 
all the way up from the link layer to upper ones checking the 
system to work correctly on each layer. Check if the network 
interface is working and is configured right, look at the ARP 
and routing tables, firewall rules, packet filtering, and move 
on to check the high-level configurations. Most problems are 
solved in one of these steps. But complexity of the system 
configuration will eventually lead to non-obvious relations 
between different parts of it and more difficult problems will 
appear. Such problems are solved by excluding possible 
sources of malfunction one by one with different tools. This is 
a long and tedious process, and it needs to be repeated for 
every problem over and over since, for each problem, possible 
sources of malfunction are new and need to be rechecked. 
Most of the tools, being narrowly targeted on solving specific 
issues, do not help either. Though doing their job very well, 
they cannot provide a system-wide network stack view, which 
could help us solve non-obvious problems in complex 
network infrastructures. 

In this paper, the "system-wide network stack view" 
means a path of the network packet through Linux's 
networking stack. It shows which functions processed the 

packet and for how long, where it was consumed or dropped, 
or if it went the wrong way, not intended by the network 
architecture. With this information, the developer could 
narrow down the scope of troubleshooting and solve the 
problem quickly with the use of the appropriate tools. 

In the past, information about the packet's path would not 
be possible to obtain without direct kernel code modification 
or some serious restrictions. Now it can be easily done with 
the use of eBPF technology. 

II. TECHNOLOGY OVERVIEW 

A. BPF 

Berkley Packet Filter (BPF) is a technology that consists 
of the register-based virtual machine and the instruction set for 
that machine. It was designed for a highly optimized and 
performant network traffic filtering [1]. It is used as the 
backend for the libpcap library and does packet filtering for 
tools such as tcpdump. When tcpdump is executed with 
some filtering rule, it generates BPF bytecode for that rule and 
sends it to the kernel to attach at the early stages of the network 
stack processing. That bytecode then gets interpreted on the 
virtual machine and decides which packet shows up in 
tcpdump's output [2]. 

This filtering mechanism is performant and secure by 
design. BPF programs executed isolated on the in-kernel 
virtual machine. They are limited to 4096 instructions, cannot 
have loops, and all memory accesses are checked for a valid 
range. So, execution of the BPF bytecode is guaranteed to 
terminate; it cannot cause a kernel fault, a denial of service, or 
memory damage. 

While being a useful concept of securely running 
userspace code in the kernel, BPF is limited by its design and 
age. Two registers are not enough to write powerful programs, 
and the instruction set is outdated as modern processors 
moved to 64-bit architecture. So, to take advantage of 
contemporary hardware, BPF had to be improved [3]. 

B. eBPF 

Massive rework of the BPF was initiated in 2014 by Alexei 
Starovoitov [4][5]: 

1. 512 bytes multi-use stack space replaced old spill-fill 
stack. 

2. The number of registers was increased from two to ten, 
and their width became 64-bit. All of them map one to one to 
hardware registers. 



 

 

3. Various old instructions were modified, and new ones 
added, all of them becoming a close match to the hardware 
instructions. It greatly improved JIT compilation. 

4. Maps were introduced — generic key-value data 
structures to exchange information between the BPF programs 
and with the userspace. 

5. New attachment points for the programs were 
implemented: kernel probes (kprobes), tracepoints, perf 
events, and sockets. These programs are invoked every time 
an attachment point is passed by, and they have access to the 
corresponding context. 

These improvements significantly increased the 
programmability and performance of BPF. After some other 
modifications, API of that rework was frozen and named as 
extended BPF (eBPF) [6]. Since then, eBPF has been actively 
developed, providing more usability and flexibility for 
extending the Linux kernel's functionality without editing its 
source code. There is an example of the Linux TCP stack 
extension from the user space with the help of eBPF [7]. 

Plenty of attachment points makes eBPF a very useful 
technology for creating tracing and profiling tools. 
bcctools and bpftrace are great examples that make use 

of this functionality. A thorough explanation of how to use 
these tools in performance testing can be found in Brendan 
Gregg's "BPF Performance Tools" [8]. 

C. Toolchain 

Classic BPF programs were written directly in VM 
instructions. This approach would be restricting for the eBPF 
as it would be harder to use new features and extensions. To 
simplify programming, the eBPF backend for LLVM was 
introduced [9]. It allows to write eBPF programs in restricted 
C language and then compile them to the ELF objects with a 
clang. Restrictions for C language come from the eBPF 
design and features of ELF parsing: 

1. Main program functions and map structures have to be 
defined with section() attribute as loaders need eBPF 
objects to be self-contained in the ELF sections. 

2. Multiple programs can be described inside a single C 
file in different sections. 

3. No global variables, constant strings, or arrays allowed. 

4. The stack is limited to 512 bytes. 

5. No ability to call library functions (except for those 
defined with inline in included headers or for eBPF 
helpers). 

6. Only bounded loops are available. 

These are not all of the limitations and features of writing 
eBPF programs in C. An up-to-date list with explanations can 
be found in Cilium's BPF and XDP Reference Guide [10]. 
Since technology is being actively developed, some 
restrictions are being fixed. For example, bounded loops were 
introduced relatively recently, and before that, no loops at all 

were allowed in the eBPF programs (or they had to be unrolled 
with pragma directive) [11]. 

The eBPF helpers are special in-kernel functions intended 
to expand functionality and ease programming. They are used 
to interact with the eBPF maps, get the time elapsed since 
system boot, print some information for debugging, edit the 
network packets, and many more. The exact set of helpers 
accessible by the eBPF program is determined by its type [12]. 

Successfully compiled ELF objects with eBPF objects 
(programs and maps) are passed to the kernel via loader. This 
is done via bpf() syscall, but for ease of use, bpftool loader 
backed by libbpf library should be used instead. Though 
bpftool covers overall management of eBPF objects, the 
attachment eBPF programs to the network path should be 
done via the tc tool from the iproute2 suite. 

When the eBPF program is loaded into the kernel, it is 
processed by a static verifier. A directed acyclic graph is 
created from the program to check for the loops and 
unreachable instructions. Then the verifier simulates the 
execution of the program for every possible path and observes 
the state change of registers and stack. If the program passes, 
a descriptor is created for it that is then used to attach it to an 
appropriate attachment point. 

III. IMPLEMENTATION 

A. Program flow 

The tool has a command-line interface, taking a filter 
expression as an input and passing network packet path in 
plain text format as an output. The general sequence is shown 
in Fig. 1: 

1. Filter expression describing network traffic that needs 
to be observed is passed to the tool. 

2. eBPF program for the network path traffic control 
attachment point (TC program) is generated from that filter 
and loaded into the kernel along with skb_map and 
path_map eBPF maps. 

3. eBPF programs for the attachment to kprobes of the 
main network functions (kprobe programs) are compiled and 
loaded into the kernel. 

4. The TC program matches every packet against the filter. 
Upon finding a match, the program stores a pointer to the 
packet's sk_buff structure in the skb_map. 

5. The kprobe program checks arguments passed as the 
probed function's context, and if it matches the pointer stored 
in the skb_map, program stores current timestamp in the 
path_map. If the program's probed function is marked as the 
last in packet path, it also fills the skb_map with 1's. That 
serves as a signal for the tool to stop the packet tracing. 

6. The tool retrieves information from the path_map, 
sorts it by the timestamp values and passes it as the output.



 

 

Fig. 1. Program flow

B. Implementation details 

Every eBPF program has a different context passed to it 
based on the program type (which depends on the attachment 
point). For the TC programs, it is a 
struct __sk_buff *skb and for the kprobe programs — 
struct pt_regs *ctx. 

struct __sk_buff is a user-accessible mirror of the in-
kernel struct sk_buff. It is not a copy, more like access 
instructions. Accesses to the fields of this struct are processed 
in the eBPF verifier and translated to the accesses to the same 
fields of the real buffer structure. This approach improves 
security and portability, as programs do not rely on the in-
kernel definition of the sk_buff. 

struct pt_regs stores saved registers of the probed 
function. Arguments of the function are accessed from this 
structure by architecture-dependent macros, which improves 
portability of the kprobe functions. 

Typically, eBPF programs cannot store their state. 
Therefore, eBPF maps are used to save the observed packet's 
pointer and to collect the information about its path. This 
allows to filter the packet only once in the early stages of its 
processing and to make the kprobe programs as simple as 
possible. 

The TC program is attached to the appropriate point with 
the tc tool. clsact qdisc is added to the network interface, 
through which the observed traffic will be passing, and the TC 
program is passed to it as a classifier. Full command reference 
can be found in the tc man page [13]. 

To load and attach the kprobe programs, I've implemented 
a program based on the libbpf library, as bpftool lacks 
such functionality. My loader also replaces eBPF maps in 
loaded objects for those already created by the TC program 
load. This is necessary to establish communication between 
programs. 

The Code of the kprobe programs is basically the same and 
simple. To attach them to the various kernel functions they are 
identified by the macros: 

• KP_NUM stores a number of the probed function; 

• KP_SEC stores a name of the probed function in the 
format "kprobe/<function_name>"; 

• KP_FIN stores 1 if probed function marked as the last 
one and 0 otherwise. 

These values are taken from a kp_funcs.txt file and are 
filled on the compilation phase with the use of the 
clang's -D<macroname>=<value> option. This way 
kprobe programs for all the observed functions are created 
from the only one source file. This mechanism creates 
unnecessary overhead and is to be changed for a more suitable 
solution. 

kp_funcs.txt file used in the kprobe program's 
compilation is necessary to provide portability for the tool. It 
is to be adapted for different Linux versions as names of the 
in-kernel functions change from time to time. Also, users can 
easily add new functions to this list to observe if the packets 
pass through them. 



 

 

On the Linux systems /etc/security/limits.conf 
file controls limits of the various system values such as 
maximum file size, stack size, or processes count [14]. For my 
tool memlock value is the most important one. It is a 
maximum locked-in-memory address space that limits an 
amount of the memory pages in RAM that are not to be placed 
in the swap space. So, to be able to load a large amount of 
kprobe programs, this limit needs to be increased by the user. 

IV. SIMILAR APPROACHES 

A. VMware Traceflow 

Traceflow is a part of the VMware NSX Data Center for 
vSphere platform [15]. It injects packets into the network and 
traces them as they travel between nodes. It provides a good 
overview of the whole network, from which an administrator 
could get information about possible sources of malfunction 
or performance reduction. 

Traceflow operates on a high level of networking and does 
not tell about internal packet processing. My tool can operate 
only on one node yet provides a thorough network packet path 
through the kernel. Additionally, it does not inject special 
traffic into the system and works on the existing one. Also, 
usage of the Traceflow is restricted to the vSphere platform, 
while my solution runs on any system with a recent enough 
Linux kernel version. 

B. ftrace 

ftrace system [16] also could be used to trace network 
packets in the Linux. This could be done by restricting all 
network traffic in the system except for the one that is to be 
observed. Then function_graph tracer can be used on the 
function such as __netif_receive_skb_list_core() 
to show the path of the incoming packet. 

It is an easy and detailed approach, though not so useful 
on a production system. My tool traces determined network 
packets, and the presence of another traffic in the system does 
not interfere with it. 

C. tcpdrop 

tcpdrop tool is a part of the BCC (BPF Compiler 
Collection) project and is built on the eBPF [17]. It provides a 
stack trace of Linux kernel functions that led to the drop of the 
TCP packet along with other useful information. This helps 
answer why such drops are happening. 

Though being limited to only TCP traffic and not 
observing the full path of the packets, tcpdrop shows a good 
example of the usefulness of the approach that lies in the 
foundation of my tool. 

V. FUTURE WORK 

The current state of the tool is as follows: 

1. The TC program is static and can trace incoming ICMP, 
TCP, or UDP packets with a manual macro modification. 

2. The kprobe programs are compiled manually with 
appropriate values passed. 

3. Information of the packet passing through functions is 
printed by programs via bpf_trace_printk() helper and 
is observed through the 
/sys/kernel/debug/tracing/trace_pipe file. 

To reach an MVP (minimum viable product) state for the 
tool, the following things are to be implemented:  

1. The generation of the TC program based on the filter 
passed. 

2. A kp_func.txt file composition and a kprobe 
programs compilation automatization. 

3. A path_map information retrieval mechanism and a 
packet path composition. 

At the scope of the whole project, there are several points 
of consideration: 

1. Amount of the kprobe programs that is acceptable to 
sustain a balance between performance and usability of the 
tracing information. 

2. Different use-cases need to be described as well as 
scenarios of troubleshooting comparison with and without this 
tool. 

3. Kprobes are not a part of the stable Linux API, the name 
of the functions could change. This should be handled to 
guarantee the operation of this tool on various kernel versions. 
Also, it is possible that thorough kprobe tracing is unnecessary 
in some scenarios, so instead the tool could rely on the 
tracepoints as a more stable kernel API. 

The tool source files can be found in my GitHub repository 
[18]. 
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