

Tracing Network Packets in the Linux Kernel using

eBPF

Mark Kovalev

Software Engineering Department

Saint Petersburg State University

Saint Petersburg, Russia

restonich@gmail.com

Abstract—During the development and maintenance of

complex network infrastructure for a big project, developers

face a lot of problems. Although there exist plenty of tools and

software that helps to troubleshoot such problems, their

functionality is limited by the API that Linux kernel provides.

Usually, they are narrowly targeted on solving one problem and

cannot show a system-wide network stack view, which could be

helpful in finding the source of the malfunction. This situation

could be changed with the appearance of a new type of tools

powered by the Linux kernel's eBPF technology, which provides

a flexible and powerful way to run a userspace code inside the

kernel. In this paper, an approach to tracing the path of network

packets in the Linux kernel using eBPF is described.

Keywords—Linux, kernel, networking, tracing, eBPF

I. INTRODUCTION

Software and hardware solutions are becoming
increasingly complex, which leads to an increasingly complex
network infrastructure that lies at the basis of such solutions.
Such infrastructures could include multiple physical devices
and virtual interfaces, various network namespaces, firewall
settings, routing tables, packet filtering, networking protocols,
and so on. These technologies are very powerful and feature-
rich, but on the other hand, it also makes troubleshooting of
such network systems much harder and more time-
consuming.

There are a lot of ways to troubleshoot networking
problems. One of them is to walk through the OSI stack: go
all the way up from the link layer to upper ones checking the
system to work correctly on each layer. Check if the network
interface is working and is configured right, look at the ARP
and routing tables, firewall rules, packet filtering, and move
on to check the high-level configurations. Most problems are
solved in one of these steps. But complexity of the system
configuration will eventually lead to non-obvious relations
between different parts of it and more difficult problems will
appear. Such problems are solved by excluding possible
sources of malfunction one by one with different tools. This is
a long and tedious process, and it needs to be repeated for
every problem over and over since, for each problem, possible
sources of malfunction are new and need to be rechecked.
Most of the tools, being narrowly targeted on solving specific
issues, do not help either. Though doing their job very well,
they cannot provide a system-wide network stack view, which
could help us solve non-obvious problems in complex
network infrastructures.

In this paper, the "system-wide network stack view"
means a path of the network packet through Linux's
networking stack. It shows which functions processed the

packet and for how long, where it was consumed or dropped,
or if it went the wrong way, not intended by the network
architecture. With this information, the developer could
narrow down the scope of troubleshooting and solve the
problem quickly with the use of the appropriate tools.

In the past, information about the packet's path would not
be possible to obtain without direct kernel code modification
or some serious restrictions. Now it can be easily done with
the use of eBPF technology.

II. TECHNOLOGY OVERVIEW

A. BPF

Berkley Packet Filter (BPF) is a technology that consists
of the register-based virtual machine and the instruction set for
that machine. It was designed for a highly optimized and
performant network traffic filtering [1]. It is used as the
backend for the libpcap library and does packet filtering for
tools such as tcpdump. When tcpdump is executed with
some filtering rule, it generates BPF bytecode for that rule and
sends it to the kernel to attach at the early stages of the network
stack processing. That bytecode then gets interpreted on the
virtual machine and decides which packet shows up in
tcpdump's output [2].

This filtering mechanism is performant and secure by
design. BPF programs executed isolated on the in-kernel
virtual machine. They are limited to 4096 instructions, cannot
have loops, and all memory accesses are checked for a valid
range. So, execution of the BPF bytecode is guaranteed to
terminate; it cannot cause a kernel fault, a denial of service, or
memory damage.

While being a useful concept of securely running
userspace code in the kernel, BPF is limited by its design and
age. Two registers are not enough to write powerful programs,
and the instruction set is outdated as modern processors
moved to 64-bit architecture. So, to take advantage of
contemporary hardware, BPF had to be improved [3].

B. eBPF

Massive rework of the BPF was initiated in 2014 by Alexei
Starovoitov [4][5]:

1. 512 bytes multi-use stack space replaced old spill-fill
stack.

2. The number of registers was increased from two to ten,
and their width became 64-bit. All of them map one to one to
hardware registers.

3. Various old instructions were modified, and new ones
added, all of them becoming a close match to the hardware
instructions. It greatly improved JIT compilation.

4. Maps were introduced — generic key-value data
structures to exchange information between the BPF programs
and with the userspace.

5. New attachment points for the programs were
implemented: kernel probes (kprobes), tracepoints, perf
events, and sockets. These programs are invoked every time
an attachment point is passed by, and they have access to the
corresponding context.

These improvements significantly increased the
programmability and performance of BPF. After some other
modifications, API of that rework was frozen and named as
extended BPF (eBPF) [6]. Since then, eBPF has been actively
developed, providing more usability and flexibility for
extending the Linux kernel's functionality without editing its
source code. There is an example of the Linux TCP stack
extension from the user space with the help of eBPF [7].

Plenty of attachment points makes eBPF a very useful
technology for creating tracing and profiling tools.
bcctools and bpftrace are great examples that make use

of this functionality. A thorough explanation of how to use
these tools in performance testing can be found in Brendan
Gregg's "BPF Performance Tools" [8].

C. Toolchain

Classic BPF programs were written directly in VM
instructions. This approach would be restricting for the eBPF
as it would be harder to use new features and extensions. To
simplify programming, the eBPF backend for LLVM was
introduced [9]. It allows to write eBPF programs in restricted
C language and then compile them to the ELF objects with a
clang. Restrictions for C language come from the eBPF
design and features of ELF parsing:

1. Main program functions and map structures have to be
defined with section() attribute as loaders need eBPF
objects to be self-contained in the ELF sections.

2. Multiple programs can be described inside a single C
file in different sections.

3. No global variables, constant strings, or arrays allowed.

4. The stack is limited to 512 bytes.

5. No ability to call library functions (except for those
defined with inline in included headers or for eBPF
helpers).

6. Only bounded loops are available.

These are not all of the limitations and features of writing
eBPF programs in C. An up-to-date list with explanations can
be found in Cilium's BPF and XDP Reference Guide [10].
Since technology is being actively developed, some
restrictions are being fixed. For example, bounded loops were
introduced relatively recently, and before that, no loops at all

were allowed in the eBPF programs (or they had to be unrolled
with pragma directive) [11].

The eBPF helpers are special in-kernel functions intended
to expand functionality and ease programming. They are used
to interact with the eBPF maps, get the time elapsed since
system boot, print some information for debugging, edit the
network packets, and many more. The exact set of helpers
accessible by the eBPF program is determined by its type [12].

Successfully compiled ELF objects with eBPF objects
(programs and maps) are passed to the kernel via loader. This
is done via bpf() syscall, but for ease of use, bpftool loader
backed by libbpf library should be used instead. Though
bpftool covers overall management of eBPF objects, the
attachment eBPF programs to the network path should be
done via the tc tool from the iproute2 suite.

When the eBPF program is loaded into the kernel, it is
processed by a static verifier. A directed acyclic graph is
created from the program to check for the loops and
unreachable instructions. Then the verifier simulates the
execution of the program for every possible path and observes
the state change of registers and stack. If the program passes,
a descriptor is created for it that is then used to attach it to an
appropriate attachment point.

III. IMPLEMENTATION

A. Program flow

The tool has a command-line interface, taking a filter
expression as an input and passing network packet path in
plain text format as an output. The general sequence is shown
in Fig. 1:

1. Filter expression describing network traffic that needs
to be observed is passed to the tool.

2. eBPF program for the network path traffic control
attachment point (TC program) is generated from that filter
and loaded into the kernel along with skb_map and
path_map eBPF maps.

3. eBPF programs for the attachment to kprobes of the
main network functions (kprobe programs) are compiled and
loaded into the kernel.

4. The TC program matches every packet against the filter.
Upon finding a match, the program stores a pointer to the
packet's sk_buff structure in the skb_map.

5. The kprobe program checks arguments passed as the
probed function's context, and if it matches the pointer stored
in the skb_map, program stores current timestamp in the
path_map. If the program's probed function is marked as the
last in packet path, it also fills the skb_map with 1's. That
serves as a signal for the tool to stop the packet tracing.

6. The tool retrieves information from the path_map,
sorts it by the timestamp values and passes it as the output.

Fig. 1. Program flow

B. Implementation details

Every eBPF program has a different context passed to it
based on the program type (which depends on the attachment
point). For the TC programs, it is a
struct __sk_buff *skb and for the kprobe programs —
struct pt_regs *ctx.

struct __sk_buff is a user-accessible mirror of the in-
kernel struct sk_buff. It is not a copy, more like access
instructions. Accesses to the fields of this struct are processed
in the eBPF verifier and translated to the accesses to the same
fields of the real buffer structure. This approach improves
security and portability, as programs do not rely on the in-
kernel definition of the sk_buff.

struct pt_regs stores saved registers of the probed
function. Arguments of the function are accessed from this
structure by architecture-dependent macros, which improves
portability of the kprobe functions.

Typically, eBPF programs cannot store their state.
Therefore, eBPF maps are used to save the observed packet's
pointer and to collect the information about its path. This
allows to filter the packet only once in the early stages of its
processing and to make the kprobe programs as simple as
possible.

The TC program is attached to the appropriate point with
the tc tool. clsact qdisc is added to the network interface,
through which the observed traffic will be passing, and the TC
program is passed to it as a classifier. Full command reference
can be found in the tc man page [13].

To load and attach the kprobe programs, I've implemented
a program based on the libbpf library, as bpftool lacks
such functionality. My loader also replaces eBPF maps in
loaded objects for those already created by the TC program
load. This is necessary to establish communication between
programs.

The Code of the kprobe programs is basically the same and
simple. To attach them to the various kernel functions they are
identified by the macros:

• KP_NUM stores a number of the probed function;

• KP_SEC stores a name of the probed function in the
format "kprobe/<function_name>";

• KP_FIN stores 1 if probed function marked as the last
one and 0 otherwise.

These values are taken from a kp_funcs.txt file and are
filled on the compilation phase with the use of the
clang's -D<macroname>=<value> option. This way
kprobe programs for all the observed functions are created
from the only one source file. This mechanism creates
unnecessary overhead and is to be changed for a more suitable
solution.

kp_funcs.txt file used in the kprobe program's
compilation is necessary to provide portability for the tool. It
is to be adapted for different Linux versions as names of the
in-kernel functions change from time to time. Also, users can
easily add new functions to this list to observe if the packets
pass through them.

On the Linux systems /etc/security/limits.conf
file controls limits of the various system values such as
maximum file size, stack size, or processes count [14]. For my
tool memlock value is the most important one. It is a
maximum locked-in-memory address space that limits an
amount of the memory pages in RAM that are not to be placed
in the swap space. So, to be able to load a large amount of
kprobe programs, this limit needs to be increased by the user.

IV. SIMILAR APPROACHES

A. VMware Traceflow

Traceflow is a part of the VMware NSX Data Center for
vSphere platform [15]. It injects packets into the network and
traces them as they travel between nodes. It provides a good
overview of the whole network, from which an administrator
could get information about possible sources of malfunction
or performance reduction.

Traceflow operates on a high level of networking and does
not tell about internal packet processing. My tool can operate
only on one node yet provides a thorough network packet path
through the kernel. Additionally, it does not inject special
traffic into the system and works on the existing one. Also,
usage of the Traceflow is restricted to the vSphere platform,
while my solution runs on any system with a recent enough
Linux kernel version.

B. ftrace

ftrace system [16] also could be used to trace network
packets in the Linux. This could be done by restricting all
network traffic in the system except for the one that is to be
observed. Then function_graph tracer can be used on the
function such as __netif_receive_skb_list_core()
to show the path of the incoming packet.

It is an easy and detailed approach, though not so useful
on a production system. My tool traces determined network
packets, and the presence of another traffic in the system does
not interfere with it.

C. tcpdrop

tcpdrop tool is a part of the BCC (BPF Compiler
Collection) project and is built on the eBPF [17]. It provides a
stack trace of Linux kernel functions that led to the drop of the
TCP packet along with other useful information. This helps
answer why such drops are happening.

Though being limited to only TCP traffic and not
observing the full path of the packets, tcpdrop shows a good
example of the usefulness of the approach that lies in the
foundation of my tool.

V. FUTURE WORK

The current state of the tool is as follows:

1. The TC program is static and can trace incoming ICMP,
TCP, or UDP packets with a manual macro modification.

2. The kprobe programs are compiled manually with
appropriate values passed.

3. Information of the packet passing through functions is
printed by programs via bpf_trace_printk() helper and
is observed through the
/sys/kernel/debug/tracing/trace_pipe file.

To reach an MVP (minimum viable product) state for the
tool, the following things are to be implemented:

1. The generation of the TC program based on the filter
passed.

2. A kp_func.txt file composition and a kprobe
programs compilation automatization.

3. A path_map information retrieval mechanism and a
packet path composition.

At the scope of the whole project, there are several points
of consideration:

1. Amount of the kprobe programs that is acceptable to
sustain a balance between performance and usability of the
tracing information.

2. Different use-cases need to be described as well as
scenarios of troubleshooting comparison with and without this
tool.

3. Kprobes are not a part of the stable Linux API, the name
of the functions could change. This should be handled to
guarantee the operation of this tool on various kernel versions.
Also, it is possible that thorough kprobe tracing is unnecessary
in some scenarios, so instead the tool could rely on the
tracepoints as a more stable kernel API.

The tool source files can be found in my GitHub repository
[18].

REFERENCES

[1] Steven McCanne, Van Jacobson, "The BSD Packet Filter: A New
Architecture for User-level Packet Capture", Lawrence Berkeley
Laboratory, December 1992. http://www.tcpdump.org/papers/bpf-
usenix93.pdf

[2] Marek Majkowski, "BPF - the forgotten bytecode", The Cloudflare
Blog, May 2014, https://blog.cloudflare.com/bpf-the-forgotten-
bytecode/

[3] Matt Fleming, "A thorough introduction to eBPF", LWN, December
2017. https://lwn.net/Articles/740157/

[4] Alexei Starovoitov, "net: filter: rework/optimize internal BPF
interpreter's instruction set", Linux project, commit, March 2014.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/comm
it/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8

[5] "Linux Socket Filtering aka Berkeley Packet Filter (BPF)", Linux in-
kernel documentation.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/D
ocumentation/networking/filter.txt

[6] Alexei Starovoitov, "net: filter: split filter.h and expose eBPF to user
space", Linux project, commit, September 2014.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/comm
it/?id=daedfb22451dd02b35c0549566cbb7cc06bdd53b

[7] Viet-Hoang Tran, Olivier Bonaventure, "Making the Linux TCP stack
more extensible with eBPF", Netdev 0x13, 2019.
https://netdevconf.info/0x13/session.html?talk-tcp-ebpf

[8] Brendan Gregg, "BPF Performance Tools", December 2019, Addison-
Wesley Professional, ISBN-13: 9780136554820.

[9] Alexei Starovoitov, "BPF backend", LLVM project, commit,
December 2014. https://reviews.llvm.org/D6494

[10] "BPF and XDP Reference Guide", Cilium.
https://docs.cilium.io/en/latest/bpf/

[11] Daniel Borkmann, Alexei Starovoitov, "Merge branch 'bpf-bounded-
loops'", commit, June 2019.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/comm
it/?id=94079b64255fe40b9b53fd2e4081f68b9b14f54a

[12] "BPF-HELPERS - list of eBPF helper functions", manual page.
http://man7.org/linux/man-pages/man7/bpf-helpers.7.html

[13] Bert Hubert, "tc - show / manipulate traffic control settings", manual
page. http://man7.org/linux/man-pages/man8/tc.8.html

[14] Cristian Gafton, "limits.conf - configuration file for the pam_limits
module". http://man7.org/linux/man-pages/man5/limits.conf.5.html

[15] VMware Docs, "VMware NSX Data Center for vSphere
Documentation" Traceflow documentation, May 2019.
https://docs.vmware.com/en/VMware-NSX-Data-Center-for-
vSphere/6.4/com.vmware.nsx.admin.doc/GUID-233EB2CE-4B8A-
474C-897A-AA1482DBBF3D.html

[16] “ftrace - Function Tracer”, Linux in-kernel documentation.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/D
ocumentation/trace/ftrace.rst

[17] Brendan Gregg, "Linux bcc/eBPF tcpdrop", Brendan Gregg's Blog,
May 2018. http://www.brendangregg.com/blog/2018-05-31/linux-
tcpdrop.html

[18] Mark Kovalev, bpfpath, GitHub repository.
https://github.com/restonich/bpfpath

