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Abstract—The article [1] proposed a notation for the definition
of a protocol message called CMN.1, which was based on an
abstraction named cryptographic stack machine. That declarative
specification language was constructed so as to be directly
used in the ”Request for Comments” (RFC) document series
to considerably enhance the degree of formalization of these
documents. This paper presents the results of the validation of
the aforementioned notation on a wide spectrum of cryptographic
protocols (SSH, EAP, QUIC, HIP, IKEv2, Noise). Limitations of
the declarative style of CMN.1 are discussed and solutions to the
problems, across which came the authors during the development
of specifications of the cryptographic protocols, are proposed.

Index terms— cryptographic stack machine, cryptographic
protocol message notation, SSH, EAP, QUIC, HIP, IKEv2,
Noise.

I. INTRODUCTION

The complexity of modern software systems requires special
attention to quality assurance issues. Two of the most impor-
tant aspects of the quality of software systems are reliability
and security of information transfer in distributed systems. The
complexity of this task is primarily due to the fact that it is
often impossible to avoid the transfer of information through
public networks with uncontrolled access. As a solution to
the problem of secure data transmission network security
protocols are used, which are based on methods of strong
cryptography for protection against unauthorized access to the
information. Absence of vulnerabilities in implementations of
security protocols is critically important. There are various
reasons of occurrence of vulnerabilities:

• Vulnerability in the protocol scheme (for example, using
an encryption function whose cryptographic strength is
less than expected). As a result all protocol implementa-
tions become vulnerable.

• Inconsistency between the implementation of the security
protocol and its specification, incorrect implementation
of the encryption algorithm, what results in the specific
implementation of the protocol becoming vulnerable.

• Side channels, i.e. information about physical processes
occurring in the system, not reflected in the verifica-
tion and testing model: system response time, energy
consumption graph, electromagnetic radiation, etc., can

also be the basis for attacks on a specific protocol
implementation.

One of the main ways to ensure reliability and security
of program systems is to use formal methods of designing,
development and analysis of programs (”formal methods”).
The best results can be obtained by the usage of formal
methods through out the whole stages of the software system
development cycle:

• collection and analysis of requirements to the software
system;

• design and verification;
• implementation;
• testing.

Depending on the kind of software system and its reliability
and security requirements, formal methods can be used in one
or several different ways:

• construction at the design stage of formal specifications or
models based on the requirements to the software system;

• verification and falsification of formal models, proof or
refutation of necessary properties, in particular security
properties;

• generation of the software system implementation accord-
ing to its formal specification;

• usage of programming languages with an elaborate sys-
tem of types and the possibility of declarative description
of required program behavior (for example, with the help
of assumptions and postconditions) with the support of
appropriate tools;

• testing the implementation of a software system for
compliance with the constructed formal specification.

There exist many ways to improve the reliability of protocol
implementation:

• Using special languages to implement protocols. One
can attribute to them languages, which type systems
allow to describe data security restrictions (security-
typed languages [2], such as Jif [3] and Flow Caml
[4]) or security properties of cryptographic primitives and
design solutions of the protocol. Security properties of the
protocol implementation written in such a language, can
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be verified. It allows to use the verified implementation
of the protocol as reference (miTLS [5]).

• Testing of protocol implementation for compliance with
its formal specification. This method does not impose
restrictions on the way of creation of the protocol im-
plementation, and when the quality criteria is chosen
correctly, it can provide a sufficient level of reliability,
although it does not guarantee the absence of
vulnerabilities.

The Cryptographic Stack Machine Notation One (CMN.1)
is a domain specific language, which is designed for specifi-
cation of cryptographic protocols. This specification language
is embedded in Haskell programming language, that is any
semantically correct protocol specification in CMN.1 is a se-
mantically correct program in Haskell language. Thus, by the
specification of protocols not only CMN.1 constructions are
available, but also all functionalities of the Haskell language.

The abstract executor of the protocol specification in CMN.1
is a stack machine implemented in the support library. The set
of instructions of this stack machine was developed taking
into account specifics of cryptographic protocols. The crypto-
graphic stack machine aims to process protocol messages –
parse incoming messages and generate outgoing ones. More-
over, the same specification can be used for both variants of
work.

In this work we tried to find out, how useful the pro-
posed domain specific language could be for specification
of cryptographic protocols. We chose 6 sufficiently compli-
cated cryptographic protocols (SSH, EAP, QUIC, HIP, IKEv2,
Noise), which support several methods of authentication, key
generation and encryption, and wrote specifications for them.
We implemented protocols not in their whole complexity but
only their handshake parts, i.e. packet exchange responsible
for authentication, generation of keys and selection of cipher
suite.

II. PROTOCOLS OVERVIEW

A. EAP

Extensible Authentication Protocol (EAP) is an authentica-
tion framework which supports multiple authentication meth-
ods [6]. EAP typically runs directly over data link layers such
as Point-to-Point Protocol (PPP) [7] or IEEE 802 [8], without
requiring IP [9]. EAP provides its own support for duplicate
elimination and retransmission, but is reliant on lower layer
ordering guarantees. Fragmentation is not supported within
EAP itself; however, individual EAP methods may support
this.

EAP was designed for network access authentication, where
IP layer connectivity may not be available. Since EAP does
not require IP connectivity, it provides just enough support for
the reliable transport of authentication protocols, and no more.

EAP is a lock-step protocol which only supports a single
packet in flight. As a result, EAP cannot efficiently transport
bulk data, unlike transport protocols such as TCP [10] or
SCTP [11]. While EAP provides support for retransmission, it

assumes ordering guarantees provided by the lower layer, so
out of order reception is not supported.

EAP architecture uses the following roles for network
nodes:

• authenticator — The end of the link initiating EAP
authentication.

• peer — The end of the link that responds to the authen-
ticator.

• backend authentication server — A backend authentica-
tion server is an entity that provides an authentication
service to an authenticator.

• EAP server — The entity that terminates the EAP au-
thentication method with the peer. In the case where no
backend authentication server is used, the EAP server is
part of the authenticator. In the case where the authenti-
cator operates in pass-through mode, the EAP server is
located on the backend authentication server.

One of the advantages of the EAP architecture is its flexibi-
lity. EAP is used to select a specific authentication mechanism,
typically after the authenticator requests more information in
order to determine the specific authentication method to be
used. Rather than requiring the authenticator to be updated
to support each new authentication method, EAP permits the
use of a backend authentication server, which may implement
some or all authentication methods, with the authenticator
acting as a pass-through for some or all methods and peers.

The general scheme of the protocol looks like this. A
client (peer) requests access to some resource by addressing
to the access system (authenticator). The authenticator sends
the request with client’s data to the EAP server. The EAP
server requests additional data from the client. The message
exchange between the client and the EAP server continues
until the selected authentication method succeeds or fails. The
authenticator, based on the authentication result obtained from
the EAP server, decides whether to grant the client access to
the requested resource or not. Thus, the authenticator acts as
an intermediary between the client and the EAP server.

The first communication channel between client and au-
thenticator can be either wired or wireless. Quite often a
mobile device acts as a client and an access point acts as
an authenticator. EAP packets between the client and the
authenticator are forwarded by encapsulating EAP packets in
the lower layer protocol, such as PPP when using point-to-
point channels, or EAPOL (EAP over LAN) on IEEE 802
networks [12].

The second channel between the authenticator and the
EAP server is usually wired, but in some cases (such as
in roaming scenarios) additional message forwarding objects
may be placed between them. The above scheme allows for
different variations. For example, the EAP server itself may
be located on both the authenticator and the dedicated host.
The second option allows to simplify access management to
several shared resources, what is very important in a number
of cases.

Many network devices usually have quite limited resources
and, for example, cannot store information about a large
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number of users in memory. In addition, the number of users
can change regularly and a single database is required. In
such a system, the authenticator of a particular resource must
support only the basic functionality of the EAP protocol. And
realization of all authentification methods and the database
with the information on all users and their access rights
reside in a uniform subsystem - an authentification server. The
transfer of EAP packets between the back-end authentication
server and the client is done by encapsulating EAP packets
into the Authentication, Authorization and Accounting (AAA)
protocol, which is used between the authenticator and the
back-end authentication server. RADIUS [13] and Diameter
[14] are usually used as AAA protocols.

At the same time, however, the network traffic increases.
A combined scheme is also possible, where the authenticator
supports some authentication methods, while other methods
use a dedicated server. Also EAP server may not store data
for authentication of clients and address for them to an external
database. Thus one of the important properties of EAP is
independence from the mode of operation of the authenticator,
i.e. any EAP method works identically in all aspects regardless
of whether the authenticator works in relay mode or not.

Other important properties of EAP protocol are indepen-
dence from the environment, independence from the method
and independence from the cipher suite. EAP protocol was
originally developed for usage with the Point-to-Point Protocol
(PPP) [7]. Later it came of use for access authentication in
wired networks IEEE 802 [12] and wireless networks IEEE-
802.11 [15] and IEEE-802.16e [16]. It is also used as a method
of authentication in Internet Key Exchange Protocol version 2,
IKEv2 [17].

Thus, one of the purposes of EAP creation was to ensure
that its methods function properly above any underlying
protocol, i.e. EAP methods should not use any downstream
information, such as MAC addresses, during their execution.
Method independence means that by providing relay mode,
an authenticator can support any method implemented on the
partner and server, not just locally implemented methods.

Essentially, independence from cipher suites provides in-
dependence from the environment. Since the cipher suites of
different underlying protocols differ, independence from the
environment requires that the key material being exported
has sufficient length and entropy to handle any cipher suite.
With EAP authentication, different environments can be used
simultaneously and, as a result, EAP will be executed through
different communication protocol stacks.

B. SSH

Secure Shell (SSH) is a protocol for secure remote login
and other secure network services over an insecure network
[18]. It consists of three major components:

• The Transport Layer Protocol [19] provides server au-
thentication, confidentiality, and integrity. It may option-
ally also provide compression. The transport layer will
typically be run over a TCP/IP connection, but might
also be used on top of any other reliable data stream.

• The User Authentication Protocol [20] authenticates the
client-side user to the server. It runs over the transport
layer protocol.

• The Connection Protocol [21] multiplexes the encrypted
tunnel into several logical channels. It runs over the user
authentication protocol.

The client sends a service request once a secure transport
layer connection has been established. A second service re-
quest is sent after user authentication is complete. This allows
new protocols to be defined and coexist with the protocols
listed above.

The connection protocol provides channels that can be
used for a wide range of purposes. Standard methods are
provided for setting up secure interactive shell sessions and
for forwarding (”tunneling”) arbitrary TCP/IP ports and X11
[22] connections.

The SSH transport layer [19] is a secure, low level transport
protocol. It provides strong encryption, cryptographic host
authentication, and integrity protection. Authentication in this
protocol level is host-based; this protocol does not perform
user authentication. A higher level protocol for user authenti-
cation can be designed on top of this protocol.

The protocol has been designed to be simple and flexible to
allow parameter negotiation, and to minimize the number of
round-trips. The key exchange method, public key algorithm,
symmetric encryption algorithm, message authentication algo-
rithm, and hash algorithm are all negotiated.

C. QUIC

QUIC (Quick UDP Internet Connections) is a multiplexed
and secure general-purpose transport protocol [23] that pro-
vides:

• Stream multiplexing
• Stream and connection-level flow control
• Low-latency connection establishment
• Connection migration and resilience to network address

translation (NAT) rebinding
• Authenticated and encrypted header and payload
QUIC uses UDP as a substrate to avoid requiring changes

to legacy client operating systems and middleboxes. QUIC
authenticates all of its headers and encrypts most of the data
it exchanges, including its signaling, to avoid incurring a
dependency on middleboxes.

QUIC relies on a combined cryptographic and transport
handshake to minimize connection establishment latency.
QUIC provides reliable, ordered delivery of the cryptographic
handshake data. QUIC packet protection is used to encrypt as
much of the handshake protocol as possible. TLS [24] acts
as a security component of QUIC. TLS 1.3 provides criti-
cal latency improvements for connection establishment over
previous versions. Absent packet loss, most new connections
can be established and secured within a single round trip; on
subsequent connections between the same client and server,
the client can often send application data immediately, that is,
using a zero round trip setup.
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After completing the TLS handshake, the client will have
learned and authenticated an identity for the server and the
server is optionally able to learn and authenticate an identity
for the client. TLS supports X.509 [25] certificate-based
authentication for both server and client.

TLS provides two basic handshake modes of interest to
QUIC:

• A full 1-RTT handshake in which the client is able to
send application data after one round trip and the server
immediately responds after receiving the first handshake
message from the client.

• A 0-RTT handshake in which the client uses informa-
tion it has previously learned about the server to send
application data immediately.

Rather than a strict layering, these two protocols are co-
dependent: QUIC uses the TLS handshake; TLS uses the
reliability, ordered delivery, and record layer provided by
QUIC. At a high level, there are two main interactions between
the TLS and QUIC components:

• The TLS component sends and receives messages via the
QUIC component, with QUIC providing a reliable stream
abstraction to TLS.

• The TLS component provides a series of updates to the
QUIC component, including (a) new packet protection
keys to install (b) state changes such as handshake
completion, the server certificate, etc.

QUIC carries TLS handshake data in CRYPTO frames, each
of which consists of a contiguous block of handshake data
identified by an offset and length. Those frames are packaged
into QUIC packets and encrypted under the current TLS
encryption level. As with TLS over TCP, once TLS handshake
data has been delivered to QUIC, it is QUIC’s responsibility
to deliver it reliably. Each chunk of data that is produced by
TLS is associated with the set of keys that TLS is currently
using.

One important difference between TLS records (used with
TCP) and QUIC CRYPTO frames is that in QUIC multiple
frames may appear in the same QUIC packet as long as they
are associated with the same encryption level. For instance,
an implementation might bundle a Handshake message and an
ACK for some Handshake data into the same packet. QUIC
takes the unprotected content of TLS handshake records as
the content of CRYPTO frames. TLS record protection is not
used by QUIC. QUIC assembles CRYPTO frames into QUIC
packets, which are protected using QUIC packet protection.
TLS also provides QUIC with the transport parameters that
the peer advertised during the handshake.

D. IKEv2

Version 2 of the Internet Key Exchange (IKE) protocol
[17] performs mutual authentication between two parties and
establishes an IKE Security Association (SA) that includes
shared secret information that can be used to efficiently
establish SAs for Encapsulating Security Payload (ESP) [26]
or Authentication Header (AH) [27] and a set of cryptographic

algorithms to be used by the SAs to protect the traffic that they
carry.

IKE normally listens and sends on UDP. Since UDP is
a datagram (unreliable) protocol, IKE includes in its defini-
tion recovery from transmission errors, including packet loss,
packet replay, and packet forgery. IKE is designed to function
so long as (1) at least one of a series of retransmitted packets
reaches its destination before timing out; and (2) the channel
is not so full of forged and replayed packets so as to exhaust
the network or CPU capacities of either endpoint. Even in the
absence of those minimum performance requirements, IKE is
designed to fail cleanly (as though the network were broken).
IKEv2 itself does not have a mechanism for fragmenting large
messages.

E. HIP

Host Identity Protocol (HIP) [28] allows consenting hosts to
securely establish and maintain shared IP-layer state, allowing
separation of the identifier and locator roles of IP addresses,
thereby enabling continuity of communications across IP
address changes. The protocol is designed to be resistant
to denial-of-service (DoS) and man-in-the-middle (MitM)
attacks. When used together with another suitable security
protocol, such as the Encapsulated Security Payload (ESP)
[26], it provides integrity protection and optional encryption
for upper-layer protocols, such as TCP and UDP.

In HIP, public cryptographic keys, of a public/private key
pair, are used as Host Identifiers (HI), to which higher layer
protocols are bound instead of an IP address. By using public
keys (and their representations) as host identifiers, dynamic
changes to IP address sets can be directly authenticated
between hosts, and if desired, strong authentication between
hosts at the TCP/IP stack level can be obtained. A system can
have multiple identities, some ’well known’, some unpublished
or ’anonymous’. A system may self-assert its own identity,
or may use a third-party authenticator like DNS Security
(DNSSEC) [30], Pretty Good Privacy (PGP) [33], or X.509
[25] to ’notarize’ the identity assertion. If the private key
is possessed by more than one node, the Identity can be
considered to be a distributed one.

A hashed encoding of the HI, the Host Identity Tag (HIT),
is used in protocols to represent the Host Identity. The HIT is
128 bits long and has the following three key properties:

• it is the same length as an IPv6 address and can be used
in address-sized fields in APIs and protocols;

• it is self-certifying (i.e., given a HIT, it is computationally
hard to find a Host Identity key that matches the HIT);

• the probability of HIT collision between two hosts is very
low.

The HIP base exchange is a two-party cryptographic proto-
col used to establish communications context between hosts.
The base exchange is a Sigma-compliant [29] four-packet
exchange. The first party is called the Initiator and the second
party the Responder. The four-packet design helps to make
HIP DoS resilient. The protocol exchanges Diffie-Hellman
keys in the 2nd and 3rd packets, and authenticates the parties
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in the 3rd and 4th packets. Additionally, the Responder starts a
puzzle exchange in the 2nd packet, with the Initiator complet-
ing it in the 3rd packet before the Responder stores any state
from the exchange. The Responder can remain stateless and
drop most spoofed 3rds because puzzle calculation is based on
the Initiator’s Host Identity Tag. The idea is that the Responder
has a (perhaps varying) number of precalculated 2nd packets,
and it selects one of these based on the information carried in
the 1st.

Finally, HIP is designed as an end-to-end authentication and
key establishment protocol, to be used with Encapsulated Se-
curity Payload (ESP) and other end-to-end security protocols.
The base protocol does not cover all the fine-grained policy
control found in Internet Key Exchange (IKE) [17] that allows
IKE to support complex gateway policies. Thus, HIP is not a
replacement for IKE.

F. Noise

Noise [34] is a framework for crypto protocols based on
Diffie-Hellman key agreement. Noise can describe protocols
that consist of a single message as well as interactive protocols.
The Noise framework supports handshakes where each party
has a long-term static key pair and/or an ephemeral key
pair. A Noise protocol sends a fixed sequence of handshake
messages based on a fixed set of cryptographic choices. In
some situations the responder needs flexibility to accept or
reject the initiator’s Noise protocol choice, or make its own
choice based on options offered by the initiator.

NoiseSocket [35] provides an encoding layer for the Noise
Protocol Framework. NoiseSocket can encode Noise messages
and associated negotiation data into a form suitable for trans-
mission over reliable, stream-based protocols such as TCP. The
NoiseSocket framework allows the initiator and responder to
negotiate a particular Noise protocol.

NoiseSocket doesn’t specify the contents of negotiation
data, since different applications will encode and advertise
protocol support in different ways. NoiseSocket just defines
a message format to transport this data, and APIs to access it.

III. CMN.1 DESCRIPTION

The article [1] presented a notation for the definition of
a protocol message called CMN.1, namely the syntax and
semantics of CMN.1 and the principles of implementation of
the CMN.1-based executable protocol specification language.
The article also proposed an abstraction named cryptographic
stack machine (abbreviated as CSM), which is a stack machine
specifically tailored to the needs of cryptographic protocols.
Within the proposed approach, the message definition is in
fact a sequence of the CSM instructions. The instructions
set is divided into ”bare-metal” and ”sugared” parts. The
”sugared” instructions make the message definitions (which
in their essence are imperative) look declarative.

The core language library (the CSM) performs all the mes-
sage processing, whereas a specification should only provide
the declarative definitions of the messages. If an outcoming
message must be formed, the CSM takes the CMN.1 definition

as input and produces the binary data in consistency with it.
When an incoming message is received, the CSM verifies
the binary data with respect to the given CMN.1 definition
memorizing all the information needed in the further actions.

CMN.1-based specification language is integrated in Haskell
language, in order to take advantage of the elegant and concise
Haskell syntax.

CSM implementation details
Components of the cryptographic state machine:
express is a storage of symbolic expressions: a set of pairs

(j,t), where j is a unique descriptor of the expression (positive
integer), t is a symbolic expression of the form T opcode
[j1,...,jn], where opcode is the code of some operation of the
machine, j1,...,jn are descriptors of some other expressions
from the storage of express;

groups is a storage of expression groups: a set of pairs
(p,ks), where p is the number of the group (integer), ks is a
set of descriptors included into the group; two descriptors are
included into one group if the byte values of their expressions
coincide;

lengths is a storage of byte value lengths of expressions:
a set of pairs (p,n), where p is the number of the expression
group, n is the length of the byte value of the expression (an
integer number not exceeding 228 − 1);

values is a storage of byte values of expressions: a set of
pairs (p,bs), where p is the number of the expression group,
bs is a byte string;

myRole is a register that stores the identifier of the protocol
role that this copy of the machine is running;

myNames is a storage of personal names of the subject of
the protocol who owns this copy of the machine: a set of ks
descriptors; each k in ks corresponds to an expression whose
byte value is one of the names (e.g. in ASCII encoding or
X.509 DN format);

step is a register that stores a two-dimensional machine step
number: a pair of positive integers (d,z), where d is the session
number, z is the message number in the session;

events is an event log (list of pairs of the type (ev,j), where
ev is the event identifier , j is the descriptor, to which the event
refers);

defaults is a storage of expressions used by default in
case of non-computability (a descriptor is computable if the
machine storages (values and others) have all the information
needed to calculate the byte value of the given descriptor)
of the main expression (a set of pairs (j, (k, r)), where j is
the descriptor of the main expression, k is the descriptor of
the ”default” expression, r is the role of the protocol member
(Clnt, Serv, etc.), for which the default expression applies;

stacks, number of which can vary, that are dynamically
created and destroyed during the operation of the crypto-
graphic machine; a stack element is a descriptor of a symbolic
expression;

At first the programs are executed symbolically: the
elements of the stack are not byte strings but symbolic
expressions, and then the final bytes strings are calculated.
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This well-known technique allows to fully take over the task
of verification of the incoming messages using the same
CMN.1 definitions that are used in the direct task of mes-
sage generation. The verification is complete: ciphertexts are
decrypted, MACs and signatures are checked, etc. Throughout
a protocol execution, the generated symbolic expressions are
accumulated with their values, lengths and types. This infor-
mation is used to generate or verify the protocol messages in
the future.

The scheme of the verification is as follows. Let the byte
string bs be considered by the CSM as a protocol message with
the CMN.1 definition p. Let EQ be a set variable containing
equations, i.e. pairs of type (symbolic expression, byte string).
The verification procedure is implemented as follows:

1) CSM executes the program p symbolically resulting
the symbolic expression exp. EQ is initialized with the
equation (exp,bs).

2) For every new equation (exp,bs) from EQ, until neither
of Step 2.a or Step 2.b can be applied anymore:

a) CSM tries to apply a rewriting rule to this equation.
This rule can be a simple inversion (for Enco,
SEnc, Xor, ModMult, ModAdd, ModInv or Add
functions) or be a complex group operation taking
into account other equations from EQ (e.g. for
Split). The application of the rule produces one or
several new equations, which are inserted in EQ.
If some rule was applied, the engine returns to the
beginning of the Step 2. Otherwise, it goes to the
Step 2.b.

b) If the values of all the arguments of the top op-
eration of the symbolic expression exp are known,
CSM calculates the value of exp. If this value is
equal to bs, CSM removes the equation from EQ.
Otherwise, it returns the message verification error.

CMN.1 details
A CMN.1 program is a sequence of CSM instructions. The

language of the CSM instructions supports branches, but not
loops or recursion.

Examples of the instructions are listed below:

I n s : : =
I n s F u n c t i o n s | I n sS t ackMan ip |
In sS tepDepen | I n s A t t r i b | I n s S u g a r e d

I n s F u n c t i o n s : : =
F u n R e v e r s i b l e | FunNonrevers |
iConc I n t | C [ Word8 ] |
Vk S t r i n g S tep | iK S t r i n g S tep KeyTy |
i S e l e c t [ CaseTy ] | i S u b s e t I n t |
i C h o i c e I n t | i P a c k [ I n t ] |
i O p t i o n a l | Undef

F u n R e v e r s i b l e : : =
i E n c r y p t EncryptCtxTy |
iEncode EncodeCtxTy | iPad PadTy |

iModAdd | iModMult | iModInv |
iAdd I n t e g e r | i R e v e r s e |
iWithTerm [ Word8 ] | iXor I n t |
Rev F u n R e v e r s i b l e

FunNonrevers : : =
iHash HashCtxTy | iMAC MACCtxTy |
i T a k e F i r s t | i T a k e L a s t |
i L e n g t h LenHdr | iMod | iModExp |
iECMult | iECAdd | iTakeElem I n t S p l i t T y |
i S p l i t E l e m I n t S p l i t T y | iPadWith [ Word8 ] I n t

In sS tepDepen : : =
Vi S t r i n g | Ki S t r i n g KeyTy [ I n s ] |
A l l I n s [ With [ ( Ins , C o n d i t i o n ’ ) ] ] |
Prev I n s | L a s t I n s

I n s A t t r i b : : =
Len I n t I n s | D e f a u l t I n s I n s |
D e f a u l t F o r Role I n s I n s | D e f a u l t F o r S r c I n s I n s |
I s I n s I n s

I n s S u g a r e d : : =
W S t r i n g | V S t r i n g | Vr S t r i n g Role |
Vri S t r i n g Role | La s t V i S t r i n g | L a s t V r i S t r i n g |
PrevVi S t r i n g | P r e v V r i S t r i n g |
K S t r i n g KeyTy [ I n s ] |
Kr S t r i n g Role KeyTy [ I n s ] |
Kri S t r i n g Role KeyTy [ I n s ] |
Kk S t r i n g S tep KeyTy [ I n s ] | M [ I n s ] | B [ I n s ] |
Hash HashCtxTy [ I n s ] ] |
E n c r y p t Encryp tCtxTy [ I n s ] |
Pad [ I n s ] PadTy I n s | ModAdd [ I n s ] |
I n s / / I n s | I n s ## I n s | . . .

IV. RESULTS

For each of these protocols, formal specifications in the
CMN.1 notation have been developed that provide for se-
cure connections. The correctness of these specifications was
checked by establishing secure connections with well-known
implementations of corresponding protocols. The protocol
implementations used in our project were selected based on
their availability only.

FreeRADIUS is the only multifunctional free implemen-
tation that has outlived many competitors [37]. The given
implementation is positioned by the developer as the most
widespread RADIUS server which advantages include free
distribution, an open source code, the developed functionality,
support of numerous methods of EAP authentication.

Dropbear is a relatively small SSH server and client [36].
It runs on a variety of POSIX-based platforms. Dropbear is
open source software.

strongSwan is an IKE daemon [38] with full support for
IKEv1 and IKEv2. It is open source software and runs on a
variety of POSIX-based platforms.

6



ngtcp2 project is an effort to implement QUIC protocol. It
is available at GitHub [39].

OpenHIP is a free, open source implementation of the Host
Identity Protocol (HIP) for use on multiple operating systems
[40].

Noise-C is a plain C implementation of the Noise Protocol,
intended as a reference implementation [41].

The servers were installed on Debian 10.
In the course of specifications development, the following

limitations of the basic notation and support library have been
revealed:

1) Lack of implementations of some hash functions and
encryption methods used in cryptographic protocols.

2) Lack of support for some kinds of padding and integer
encoding.

3) Lack of support for bitwise operations.
4) Lack of UDP support.
5) Lack of support for lists or arrays.
6) The architecture of the stack machine makes it difficult

to perform calculations, which can not be described in
terms of CMN.1. In such cases we have to operate
with raw bytes, but the machine does not give access
to the byte values of instructions at the time of packet
generation or verification. Such a restriction harms the
main goal of this notation, namely the declarative proto-
col description, because a programmer has to overcome
arising problems in a very imperative style(e.g. solution
to a puzzle in HIP).

7) CMN.1 specifies only structure of the packets but offers
nothing for specification of order, in which packets
should be exchanged.

8) Lack of support for error handling or ”asymmetrical”
instructions (i.e., instructions whose work would depend
on whether the packet is being generated or parsed) leads
to the fact that many calculations (e.g., digital signature
verification) have to be performed in the main body of
the messages exchanging program. This is detrimental
to the declarative nature of the description.

9) CSM inner State is too huge. The machine tries to
perform all the necessary computations at the very
moment when it receives or sends a packet, making it
difficult to decompose the task.

10) CMN.1 was integrated in Haskell, in order to use its
functionality, but all CSM instructions are of the same
data type. It makes us think that the abilities of the static
type control of the Haskell compiler are underused.

11) Lack of support for multiple application of the spec-
ification or its part to parsing the received packet. In
QUIC protocol, there are situations when several QUIC
packets are sent in one UDP packet and when several
TLS packets are sent in one QUIC packet. Since all
specification variables are either global or tied to the
sequence number of the packet generation or parse
function call, to parse such nested packets one has to call
the packet parse function, catch CSM error telling you
that there is some data left not parsed, put this data back

into the CSM buffer and call the packet parse function
again and so several times.

12) When the data used for encryption, hash and keys are
changed several times in one message, it is problematic
to use CSM variables to store them. Such a variable
can only have one value at each step of the stack
machine, and the number and nature of such changes
varies from message to message and from schema to
schema, making it nearly impossible to use an indexed
set of variables of the same type. Nevertheless, the actual
state containing the keys, hash and other data, one has to
transfer from one message to another. Such imperative
nature of the protocol (e.g., Noise) does not match
well with the capabilities of CMN.1. When creating
a protocol specification, one has to store relevant data
(current state of the protocol) in the form of a set of
CMN.1 instructions, using the Haskell language tools,
and in each message the entire chain of calculations must
be built anew to obtain the actual keys and hash.

The first three limitations were not fundamental, as the
architecture of the support library allows to add supplementary
cryptographic functions. The forth limitation was also not that
difficult to overcome and to add UDP support.

Limitation number 5 requires significant improvement of the
support library, as it affects the basic principles of its design.
The point is that the support library allows to extract only one
value of a given variable from one message (the variable’s
value is always a byte sequence). And if you have a list of
fields, the length of which is unknown in advance, you need a
previously unknown number of variables in the specification
to extract data from these fields. One of the possible solutions
to this problem is to introduce variables which values are lists
of byte sequences; lengths of lists will be determined by the
number of fields in the message.
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