

Hard Drives Monitoring Automation Approach for Kubernetes Container Orchestration System

Shemyakinskaya Anastasia Sergeevna
Peter the Great St.Petersburg

Polytechnic University
Russia, 195251, St.Petersburg,

Polytechnicheskaya, 29
shem98a@gmail.com

Nikiforov Igor Valerevich
Peter the Great St.Petersburg

Polytechnic University
Russia, 195251, St.Petersburg,

Polytechnicheskaya, 29
igor.nikiforovv@gmail.com

Today, a laborious and non-trivial task is to automate
monitoring of hard drives in a cluster infrastructure using the
Kubernetes container management system.

The paper discusses existing approaches to monitoring hard
drives in the Kubernetes container orchestration system and
provides a comparative analysis of them. Based on the presented
analysis, a conclusion is drawn on the need to improve and
automate approaches. The paper proposes an approach to
automating the collection of metrics from hard drives by
implementing the Kubernetes “operator” for a tool with which you
can effectively obtain information about the state of hard drives in
the system.

As results, the temporal characteristics of collecting
information about disks using existing approaches and the
proposed approach are given. Numerical results and graphs
showing the gain of the proposed approach are presented.

Key words: Monitoring of disk media, Kubernetes Operator,
Container Orchestration System.

I. INTRODUCTION

Currently container orchestration systems for the
automatic deployment of applications in a cluster
infrastructure are gaining popularity. These systems include
Kubernetes [1], Docker Swarm [2], Mesos [3].

At the same time a lot of applications need to store their
data on hard drives, which sets in turn increasing requirements
for the reliability of used hard drives. That’s why special
attention is paid to monitoring of hard drive state in a cluster
infrastructure to prevent their failure and data loss. Many
companies such as Dell EMC encounter the problem of disk
monitoring.

System administrators and engineers who monitor hard
drives in a cluster system use different methods and
approaches for obtaining disk information, discussed in
Section II.

Section III provides a theoretical basis and defines
container orchestration systems using Kubernetes as an
example. Section IV describes the operator pattern for
Kubernetes.

Section V describes advantages of the proposed approach
for automating disk monitoring in a Kubernetes cluster.

Section VI covers the implementation of the proposed
approach using the “operator” for disk monitoring tool.

Section Ⅶ presents the results and temporal characteristics
of collecting information about disks using existing
approaches and the proposed one. Charts show the time gain
while using the proposed approach.

II. APPROCHES FOR EVALUATION OF THE HARD DRIVES

STATUSES

One way to get the state of hard drive is to use utilities built
into the Linux operating system such as lsblk, fdisk, etc. lsblk
utility [4] displays information about all available or specified

device blocks. It reads information from the sysfs and udev db
file systems. The problem with this approach is that the lsblk
utility does not provide information about the current state and
availability of the disk.

Another disk health evaluation utility is smartctl. This
Linux utility allows to retrieve S.M.A.R.T. disk information.
S.M.A.R.T. is a technology which allows to analyze and
predict the state of hard drives[5]. S.M.A.R.T. monitors the
main characteristics of the drive. Each receives estimates and
then recounts them into numbers. Depending on the reference
value, the state of the disk can be estimated from the result.
There are over 150 S.M.A.R.T. indicators with their own
reference values, so manual analysis of such information is
quite time-consuming for a person. To reduce the complexity
of the analysis S.M.A.R.T. indicators, neural networks can be
used, which is described in [6, 7].

There is also an intelligent platform management interface
(IPMI) designed for remote monitoring and control of a
computer system [8]. It is possibly to connect remotely to the
server and manage its operation using IPMI. The IPMI
specification standardizes an interface. Various companies
have the implementations of this interface: IDRAC (DELL),
Cisco IMC (Cisco), ILO (HP). This approach is more efficient
than using lsblk and smartctl utilities, because specific IPMI
implementations (IDRAC, IMC, ILO) provide a graphical
interface and a wide range of server functionality in addition
to monitoring hard drives. The disadvantage of this method is
the lack of free licenses for products that implement the IPMI
interface.

The last of the considered approaches is the Linux
ipmitool command [9], which implements the interface, but its
functionality is limited by the ability to provide information
about FRU, LAN configuration, sensor readings and remote
power management. The hardware also must have a special
BMC port in order to use IPMI, so this approach is not
universal.

Considering the approaches, the automating analysis of
the state of hard drive through the implementation of
Kubernetes “operator” of the disk monitoring tool is proposed.
A more detailed definition of the “operator" of Kubernetes is
given in Section IV.

The proposed approach is better than others, because of
efficient and automatic provision of information on the current
state of disks without creating additional load on the
Kubernetes cluster;

III. CONTAINER ORCHESTRATION SYSTEMS

Containerization is an approach in software development
which allows an application or service, its dependencies and
configuration (abstract deployment manifest files) to be
packaged together into a container image [10]. In fact, this is
virtualization at the operating system level. Containers greatly
simplify and automate application deployment regardless of

environment. In turn, the Docker tool [11] helps simplify the
creation and launch of containers. As modern applications
include more and more containers and distributed servers
require complex management and deployment of applications,
there is a need for container orchestration systems.

Container orchestration allows to determine how to select,
deploy, track and dynamically manage the configuration of
multi-container packaged applications [12].

Container orchestration concerns not only the initial
deployment of multi-container applications, but also includes
management, for example, scaling a multi-container
application as a single object.

The most popular is the Kubernetes container
orchestration system [1]. Kubernetes is the open source
software needed to manage and deploy a Docker container
cluster.

A Kubernetes deployment is known as a cluster.
Kubernetes cluster can be imagined as two parts: a
management layer, which consists of the main node(s) and
worker nodes. Pods consisting of containers are made on
working nodes. Each node represents its own Linux
environment and can be either a physical or virtual machine.

IV. PATTERN «OPERATOR»

“Operator” is a Kubernetes plug-in that uses user resources
to manage applications and their components [13].

A resource in Kubernetes stores a collection of specific
types of API objects. Kubernetes objects are persistent
resources in the Kubernetes system. Each resource has HTTP
request at a unique address, which is processed by the server
with the Kubernetes API and returns information about this
resource. Kubernetes uses these entities to represent the state
of a cluster. For example, Kubernetes Deployment is an object
that can represent an application running in a cluster. While
deploying applications, there should be a specification for the
final configuration. For example, setting up three replicas of
an application makes Kubernetes system reads the
specification and starts three instances of the desired
application, updating the state according to the configuration.

 Pods can be example of resources. It is embedded
resource and it contains a collection of pod objects. Custom
Resource is a Kubernetes API extension that is not necessarily
available when Kubernetes is installed by default.

“Operator” combines user resources and custom
controllers. They allow to monitor the specified resources and
maintain their state in accordance with the value the user set.
When a corresponding event occurs with a resource, the
“operator” reacts and performs a specific action.

V. DISK INFORMATION GATHERING AUTOMATING APPROACH

USING «OPERATOR »

Figure 1 shows the scheme of the disk information
gathering automating approach in the Kubernetes cluster and
user interaction.

Fig. 1 Scheme of the "the disk information gathering automating

approach " in the Kubernetes cluster

The approach proposes to introduce an “operator” into the
Kubernetes container orchestration system to automate
monitoring of hard drives on nodes. “Operator” is an
application deployed on a Kubernetes cluster. It works with its
Kubernetes API and monitors events within the cluster. Its
task is to collect information from cluster nodes about hard
drives, create disk objects on the cluster and monitor them.

Once objects are created, Kubernetes can provide
information about them through a client application. Using the
command line utility, the user can access the Kubernetes
cluster to obtain information about the specified resources.
The use of the “operator” has several advantages:

1. “Operator” allows to take advantage of Kubernetes, e.g.
work with custom resources.

2. One of the advantages of the “operator” is the ability to
process the network events of the Kubernetes cluster (GET,
CREATE, DELETE, PATCH, etc.), that is, the programmer
decides what should happen to the custom resource during an
event.

3. Since a resource is created in the system, this opens up
the possibility of using the Kubernetes command-line
interface. The user can get information about all resources
with a single command (Fig. 3).

4. The information that Kubernetes can show about
resources also might be regulated. For example, if you need
to know the status of disks, then the command line can show
only the requested information. This filtering approach
reduces human analysis time.

5. Kubernetes provides data in the form of a table, which
simplifies the analysis of information by a person.

6. Kubernetes administrators can create volumes,
knowing which drives can be used for this.

Thus, the use of the “operator” allows not only to
automate monitoring of hard drives, but also to reduce the

Kubernetes master
node

Operator

Worker Node 1 Worker Node 3Worker Node 2

Command line interface

time of analyzing disk information. Working with the
Kubernetes API allows to take advantage of Kubernetes
described above.

VI. «OPERATOR» IMPLEMENTATION

A. Structure of «operator» units

Figure 2 shows the architecture of the “operator” for disk
monitoring.

Fig 2 The architecture of the “operator”

"Operator" is a software tool for Kubernetes, which
implements two controllers: monitoring tool controller and
disk resource controller.

The controller of the monitoring tool deploys a server on
each node of the cluster, which collects information about the
hard drives of this node on request.

The disk resource controller requests this information and
sends a request to create a resource in Kubernetes.
Kubernetes API server based on the received information
creates custom resources (CR) for disks. Disks CR store
information about a specific drive from a node, for example,
serial number, size, etc.

B. Technical implementation features

Since all Kubernetes “operators” have the same structure,
it is possible to generate common code, filling it with own
logic. Usually such tools are used for generation as Operator-
SDK [14], Kubebuilder [15], Code-Generator [16] and
written. Usually Golang programming language is used for
«operator» development

The Operator-SDK tool was used in this work. It allows to
generate a resource structure template for Kubernetes, in the
case of an “operator” for disk monitoring - Disk Custom
Resource Definition (CRD) and a resource represented disk
monitoring tool on each machine in the Kubernetes cluster. It
runs as a gRPC server. To generate code template Operator-
sdk has a command (fig. 3). Controllers have also been created
to manage these resources. Each controller has a
synchronization function (Reconcile loop). It is called by the
Kubernetes system every time during any events happening to
a custom resource.

Fig. 3 Command for generating code template

- First command generates Golang project for
«operator».

- Second command generate Golang structure
represented Kubernetes objects (fig. 4).

- Third command generate code template for object
controller with Reconcile loop.

In the operator implementation, the controller of the disk
monitoring tool in the Reconcile loop ensures that the gRPC
server is running on each node of the cluster. In turn, the Disk
CRD controller in the synchronization function creates a
connection with the monitoring servers and makes a request
for information about the disks. Then using a REST client the
request for creating resources is sent. Based on the
information received, Kubernetes creates disk object. If such
object already exists, then Kubernetes updates it. The
synchronization cycle is called every 2 seconds to keep disk
information up to date.

To build docker image the command on fig. 5 can be used.

To deploy “operator” in Kubernetes cluster Helm tool was
used [17]. This tool allows to deploy application using one
command (fig. 6). We can develop special manifests (charts)
for Helm to represent “operator” application in Kubernetes.
These manifests contain all necessary information about the
application, so Kubernetes deploy it correctly. For example,
we can specify how many replicas of application should be
deployed on Kubernetes cluster.

Thus, Kubernetes has a resource that can be accessed using
the command line or an HTTP request.

Output is shown in figure 3.

Fig 3 Command line output

$ operator-sdk new monitoring-operator --repo
github.com/example-inc/monitoring-operator
$ cd monitoring-operator

$ operator-sdk add api --api-
version=app.example.com/v1alpha1 --kind=Disk

$ operator-sdk add controller --api-
version=app.example.com/v1alpha1 --kind=Disk

type DiskSpec struct {
DiskID string

`json:"disk_id"`
NodeID string

`json:"node_id"`
Path string

`json:"path"`
Capacity int

`json:"capacity"`
SerialNumber string

`json:"serialNumber"`
DriverHealth string

`json:"driveHealth"`
}

Fig 4 Disk structure in Golang

operator-sdk build operator:v0.0.1

Fig 5 Command for building docker image

helm install operator charts/operator

Fig 6 Command for deploying “operator” in Kubernetes cluster

~# kubectl get disks

NAME NODE HEALTH
disk-node1-dev-sda node1 HEALTH_GOOD
disk-node2 -dev-sdb node2 HEALTH_GOOD
disk- node3-dev-sdc node3 HEALTH_UNKNOWN
disk- node4 -dev-sdb node4 HEALTH_FAILED

VII. RESULTS

Table 1 shows the results of assessing the status of the
Kubernetes cluster hard drives in three ways:

- using the smartclt utility;
- using the IDRAC program (implementation of the ipmi

interface);
 - the proposed approach with the “operator” Kubernetes;
The characteristics of the tested cluster are:
- the cluster consists of 4 nodes;
- each node has 4 hard drives (system drive: 112 GB SSD,

3 drives: 8 TB HDD)
- each node has a Linux operating system deployed;

The necessary command was entered on each node in
order to obtain information.

Measurements were performed three times on the
cluster. It was made of the time to enter the necessary tool
commands to obtain information about the disks. The time of
manual analysis of the output of commands is also measured.
The average value of each measurement was taken. In the
future, it is planned to automate this process and collect more
metrics.

TABLE 1 COMPARATIVE ANALYSIS OF DISK MONITORING
APPROACHES

Time\Approach Smartctl
utility

ipmi
(IDRAC)

Using operator

𝑇௖ (seconds) 5 7 5

𝑇ௗ (seconds per
disk)

10 2 2

𝑇௔ (second) in
tested system

60 36 28

Fig. 5 Chart of spending time on analysis for various instruments

Td expresses the time for manual analysis of the received logs
from the specified methods.
𝑇௖ is the time to enter commands into the terminal.
𝑇௔ – the total time spent in the tested system. This is the time
to enter the command and the time to analyze the logs.

We can conclude from Table 1 and the graph in Figure 5,
the gain of the “operator” approach compared to IDRAC was
8 seconds, and for smartctl utility the total analysis time
decreased by 2 times.

VIII. CONCLUSION

Thus an “operator” approach was developed for
Kubernetes, which provides information about hard drives in
a cluster infrastructure.

This approach requires 2 times less time than using built-
in utilities in the Linux operating system. The proposed
approach is suitable for different platforms, as it runs in a
Kubernetes cluster, which can be run on different platforms.

However, the approach has several disadvantages
compared to the existing ones. For example, the smartctl
utility and the ipmi IDRAC implementation provide more
information about hard drives, while the “operator” provides
only status.

In the future, it is planned to expand the list of indicators
that can be analyzed through the kubectl utility using the
"operator" and to create a graphical interface and scripts to
automate command input to reduce the amount of time
analyzing disk information.

REFERENCES
[1] Kuberntes, [online] Available: https://kubernetes.io/

[2] Docker Swarm, [online] Available:
https://docs.docker.com/engine/swarm/

[3] Mesos, [online] Available: http://mesos.apache.org/

[4] Adam K. D. (2016), "Linux Administration Cookbook", Birmingham,
UK: Packt Publishing.

[5] A. Chatzidimitriou, G. Papadimitriou and D. Gizopoulos, "HealthLog
Monitor: Errors, Symptoms and Reactions Consolidated," in IEEE
Transactions on Device and Materials Reliability, vol. 19, no. 1, pp. 46-
54, March 2019.

[6] S. Ganguly, A. Consul, A. Khan, B. Bussone, J. Richards and A.
Miguel, "A Practical Approach to Hard Disk Failure Prediction in
Cloud Platforms: Big Data Model for Failure Management in
Datacenters," 2016 IEEE Second International Conference on Big Data
Computing Service and Applications (BigDataService), Oxford, 2016,
pp. 105-116.

[7] X. Sun et al., "System-level hardware failure prediction using deep
learning," 2019 56th ACM/IEEE Design Automation Conference
(DAC), Las Vegas, NV, USA, 2019, pp. 1-6.

[8] IPMI Specification, [online] Available:
https://www.intel.ru/content/www/ru/ru/products/docs/servers/ipmi/ip
mi-second-gen-interface-spec-v2-rev1-1.html

[9] ipmitool man page, [online] Available:
https://linux.die.net/man/1/ipmitool

[10] M. Abdelbaky et al., (2015) Docker Containers across Multiple Clouds
and Data Centers, 2015 IEEE/ACM 8th Int. Conf. on Utility and Cloud
Computing, Limassol, 2015.

[11] Docker, [online] Available: https://www.docker.com/

[12] I. M. A. Jawarneh et al., "Container Orchestration Engines: A
Thorough Functional and Performance Comparison," ICC 2019 - 2019
IEEE International Conference on Communications (ICC), Shanghai,
China, 2019, pp. 1-6.

[13] Operator Pattern [online] Available:
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

[14] Operator SDK [online] Available: https://github.com/operator-
framework/operator-sdk

[15] Kubebuilder [online] Available: https://github.com/kubernetes-
sigs/kubebuilder

[16] Code-generator [online] Available: https://github.com/kubernetes/code-
generator

[17] Helm [online] Available: https://helm.sh/

