

Implementation of cross-platform mounting remote

file systems

Maksim Elkin

Institute of Computer Science and Technology

Peter the Great Saint-Petersburg Polytechnic University

Saint-Petersburg, Russia

elkin.mm@edu.spbstu.ru

Nikita Voinov

Institute of Computer Science and Technology

Peter the Great Saint-Petersburg Polytechnic University

Saint-Petersburg, Russia

voinov@ics2.ecd.spbstu.ru

Abstract — Modern software solutions for cross-platform

file sharing and file synchronization help users from all over the

world to manage their files across multiple devices. Though it is

quite easy to send a file from one device to another via email,

messenger, file exchanger or cloud storage, we found it not

convenient enough in some cases.

We propose more user-friendly approach that helps user

manage his files easier and faster. Its idea is to mount remote

devices automatically so that user could just install an

application once and then find files of remote devices in system

explorer of user’s device. Such an application requires cross-

platform implementation in order to create experience of having

all devices connected in a single network. Security

considerations must be taken into account to ensure the security

of transferring files between devices, and to prevent

unauthorized access. Moreover, proposed application should

contain viewers for popular file formats to give the user an

ability to view any file of a remote device if other installed

software cannot manage this.

The Android node of proposed distributed file system was

designed and implemented.

Keywords— File sharing, File synchronization, Mounting file

systems, Cross-platform mounting, Remote file systems,

Distributed file system

I. INTRODUCTION

Storing information in the form of files on a computer has
been an important part of human culture for almost half a
century. With the appearing of personal computing devices,
the task of organizing access to files on different devices of
the same user becomes more and more relevant and more and
more difficult. For instance, imagine some office worker who
has a home computer with Microsoft Windows, a workstation
running macOS, and a smartphone with Android. Let’s
suppose that he is in a meeting with a contractor in his office,
and he urgently needs some contracts placed on the
workstation and, at the same time, personal documents stored
on a home computer. How can he access his files located on
different devices running various operating systems?

Easy file access is not the only problem faced by many
computer systems owners. The development of digitalization
technologies leads to an increase in the number of files that a
person needs to manage. The studies show that the amount of
digitized information reached 4.4 Zettabytes in 2016[1]. Let’s
suppose that the mentioned employee has to deal with a
variety of work and personal documents. Some of them have
to be regularly changed, deleted and added. How to organize
centralized file management on different devices so as not to
bore the user with the routine actions of connecting to
different devices and synchronizing files between devices?

Moreover, the security of storing data has always been a
priority among users owning particularly valuable
information. Data storage must be protected from
unauthorized physical and logical access, devices must
exchange data via secure network protocols. These are critical
operating conditions for the system managing remote files.

Therefore, providing secure storing, easy access and
convenient management of files on various devices of the
same user is one of important problems of computer science
nowadays.

The objective of the study is to improve user experience
when working with files stored on various devices. In order to
achieve it, the possibilities and disadvantages of existing
solutions are reviewed, their impact on the user experience are
analyzed in Section II. In Section III we propose a system that
solves stated problem without leading to issues arising in
similar systems. Functional specification of such a system will
be formed. Section IV describes architecture of the system.
Section V contains implementation details of a part of the
system on Android platform. Section VI gives an example of
use of the system. Section VII concludes the paper.

The proposed system can help owners of complex
computer systems around the world facilitate the work with
their files. This study can serve as a starting point for further
research to improve user experience when working with large
amounts of information on a regular basis.

II. DISTRIBUTED FILE SYSTEMS

The stated problem has been generally solved by various
distributed file systems (DFS) - methods of storing and
accessing files based in a client/server architecture [2]. It must
be noted that in this paper we consider practical tools that are
ready for use by a wide range of users, in contrast to related
technologies, such as virtual file system (VFS), because it is
just an abstraction layer on top of a more concrete file system
[3]; network file system (NFS), as it is an application layer
protocol of DFS [4]; parallel file systems (PFS), because they
are a type of DFS that distributes file data across multiple
servers and provides for concurrent access by multiple tasks
of a parallel application [5]. So, let’s review applied hardware
and software designed to solve the stated problem.

A. Network-attached storage

Network-attached storage (NAS) is a file level computer
data storage server connected to a computer network that
provides data access to multiple number of clients [6].
Examples of such devices include products of companies like
Synology, QNAP, Western Digital. A NAS device uses its
own operating system and integrated hardware and software
components to meet a variety of user’s needs. NAS connects

to wireless router – enabling multiple users from multiple
devices to access the files and data on the network [7].

The advantages of NAS for working with files are as
follows:

• Network attached storage system helps to organize
and save critical and confidential information in an
efficient and accessible manner to valid persons [7]

• User has direct physical access to the NAS so he can
set the level of physical data protection as high as he
needs

However, using NAS as a universal tool for working with
files may be complex to manage.

• The user is forced to buy a separate device in addition
to bought ones

• NAS as a technology does not guarantee ease of
access to files on various devices. To do this, it is
required to install specialized NAS manufacturer
software or third-party software, whose quality and
functionality may vary

• Centralized file storage forces the user to download
files from all devices to NAS, resulting in additional
difficulties in managing files if there are a lot of
them, and they are often added or become outdated
and need to be deleted.

Thus, we can conclude that network-attached storage is
well suited for secure storing of files, but not perfect if we
want to achieve maximum ease of access and convenience of
managing files stored on multiple devices.

B. Public cloud storages

A cloud-based synchronization system is used to store
user’s files in a central server, owned and governed by a
certain entity (eg: an enterprise, or a small company). Users
upload their files to this server from one device, and download
them on another [8]. Examples of such a storage are Google
Drive and Microsoft OneDrive. Let’s consider benefits of
cloud storage.

• Cloud services provide ample opportunities to view
and edit files on various platforms using
multifunctional applications

• The security of user data is guaranteed based on the
security of the infrastructure of the service provider,
many of which are the largest corporations in the
world. The long-standing reputation and fault
tolerance of servers create confidence that user's files
are better protected than if they were on his personal
devices

Cloud storages provide easier access to files from different
platforms than NAS, but they also have some limitations, as
listed in [8].

• Centralized storing introduces inconvenience of file
management, as mentioned earlier

• Limitations of the size of available disk space may
be critical for some users

• Storing data on remote servers of a third-party
organization can be a fundamental problem if these
data are secret or particularly valuable

We can infer that cloud storage provides easy access to
user’s files, but has potential issues with convenience of file
management and with confidentiality of stored files.

C. P2P-based File Synchronization Systems

A peer-to-peer-based synchronization system, unlike a
cloud-based synchronization system is a decentralized system
wherein each peer in the network acts as both a server, as well
as a client, to synchronize files between a user’s authorized
devices. In this system, files are broken down in encrypted
pieces, and each peer uploads a certain number of pieces to,
and downloads from, other nodes in the system, ensuring that
the files are almost always available for synchronization, and
that no one peer contains the complete file, thus enforcing
privacy and security of the users’ data [8]. Accordingly, in
order to view the file, user must firstly download it to the
device. Such systems, for example, Resilio Connect, solve
many problems of cloud storages.

• A high level of privacy and security of data storage
is provided. Files are stored on the user's devices, but
even unauthorized physical access to one of the
devices does not guarantee an opportunity to read the
data

• The amount of free disk space is determined by the
user

• Decentralized storage does not force the user to
transfer files to a dedicated device so that they are
visible on other devices. In order to have access to
files, it is only required that the host nodes of these
files are available on the network. This simplifies
management of files if there are a lot of them, and
they are tied to different devices.

However, the restrictions of peer-to-peer file
synchronizers have the following impact on user experience.

• The lack of random access to the contents of the file
leads to a long wait for the file to download if the
ratio of its size to the speed of the Internet connection
is too high. Moreover, the file may simply not fit on
the user's device. And finally, the amount of Internet
traffic consumed also matters, especially if someone
need to view a small part of a large file (for example,
a video clip), and the price of the traffic is significant
for the user.

• The availability of the file depends not only on the
device where it was originally added, but also on
another hosting node. Accordingly, the risk of denial
of access to the file is doubled.

We can conclude that peer-to-peer file synchronization
systems provide relatively secure data storing and convenient
file management, but have issues with ease of access to files.

D. Private cloud storages

The issues of distributed file systems have already been
studied previously, and in order to resolve them, hybrid
systems based on the principle of private cloud storaging were
created, as was done by Jakub T. Mościcki and Massimo
Lamanna in «Prototyping a file sharing and synchronization
service with Owncloud» [9].

In such systems, shared files are stored on a dedicated
user’s computer, pre-configured to allow file clients to access
files. Files are stored on the server’s filesystem (primary

storage) in a transparent directory tree which reflects the client
folder structure. It is not only easy to understand, but it also
allows to access data directly on storage if needed. Access
control is supported for sharing of files and folders. ACLs
(Access Control Lists) are not propagated on the file-system
level but are enforced when accessing files via the owncloud
server [9].

File synchronization is provided by uploading the file from
the client device to the server in the corresponding folder.
Next, version control of the file is carried out so that both the
server and the client have consistent contents. Similarly,
content control of folders is supported: if the file was added to
the synchronized folder on the server, then it is downloaded to
the client device, and vice versa.

The system also provides ample features for working with
files: a set of viewing and editing tools for some types of files,
offline work, mobile devices support, seamless integration
with major desktop environments.

Such systems provide a convenient solution to the problem
of the research, because they overcome drawbacks of both
public cloud storages and file synchronizers. The user data
privacy is entrusted to the user himself, and the size of the
available storage is also determined by the disk capacity of the
user's computer, and is not limited by the tariff plans of public
cloud storage. Moreover, such solutions provide the same
convenient access to files and collaboration on them.

However, such systems still force the user to copy files to
the server to synchronize them between devices. As we
discussed earlier, such centralized file management is not
convenient enough in some cases. If files were simply
accessible from each device on which they are stored, the user
would not have to upload them to a dedicated server.

The proposed system should work as a file server on each
target platform. In this case, remote file systems can be
entirely mounted, without the need for creating shared folders.
Consider what additional features a system must have in order
to overcome the shortcomings of similar systems and combine
their advantages.

III. FUNCTIONAL REQUIREMENTS FOR THE SYSTEM OF CROSS-

PLATFORM MOUNTING REMOTE FILE SYSTEMS

A. File storing security

In terms of file storing security, the system must meet the
level of network-attached storage. In order to achieve this, it
must fulfill the following requirements:

1.1. Files must be located on personal devices of user.
Therefore, he can provide any required level of
physical security of his data. In addition, he will not
have to buy an additional device. Finally, the amount
of available disk space is limited only by the
capabilities of the user.

1.2. Devices must communicate over secure network
protocols.

1.3. The system should provide authentication of users to
differentiate access to devices.

1.4. Devices must be visible on the Internet in order to
have access to them from anywhere in the world.

B. Convenience of file management

In terms of convenience of managing files, the system
must match the level of peer-to-peer synchronization systems.
This requires support for the following features:

2.1 The system must provide decentralized file storing.
This means that the files must be stored on the device
to which they were originally added. This eliminates
the need for the user to manually transfer all files to
a single repository, which takes as much time as
many files.

2.2 The designed system must mount the entire remote
file systems so as not to force the user to select
special shared folders and transfer files there, which
again is centralized storing, but within the same
device.

2.3 The system must support standard file operations
between devices and within the same device: copy,
move, delete, rename etc.

2.4 Devices must exchange data directly, without
intermediaries. This enhances privacy and
transmission speed.

2.5 The user must be able to enable and disable external
access to the file system on device.

C. Ease of access

In terms of ease of access to files, the system must match
the level of cloud storages. In order to achieve this, it must
also fulfill following requirements:

3.1. The system must have client applications on different
platforms so that from any device it is possible to
access the file system of any other user’s device
connected to the system. Access implies the ability
to browse any of the folders on the remote system
and work with files located there.

3.2. Client applications should provide viewing of files in
the most convenient way. The user should be
provided with ability to open files in preinstalled
third-party viewers. On mobile platforms, it makes
sense to add built-in file viewers of the most common
formats in case third-party viewers are not available
on the device.

3.3. Remote files should provide random access to the
content in order to instantly start viewing large files
without waiting for them to be downloaded to user’s
device.

3.4. The remote file system must be mounted in operation
system as if it was just a folder on device. This helps
to browse remote folders not only in the client
application, but also in system and other file
browsers.

3.5. Files should only be stored on the devices to which
they were originally added. Thus, the availability of
data will depend only on the availability of its direct
source.

This set of high-level requirements can be treated as a
functional specification that we can use to design the proposed
system. Also, these requirements can be treated as criteria by
which we can further evaluate the results in achieving the goal.

IV. SYSTEM DESIGN

The architecture of the proposed system is shown in Fig. 1

Fig. 1. Architecture of the system of cross-platform mounting remote file

systems.

Applications on different platforms act as file clients and

allow user to run a file server. A file server provides remote

clients access to its file system. File clients allow browsing

remote file servers, and perform all other functions specified

in the functional specification.

For the entire system, a common virtual file system

interface is defined that file clients can use. Each file server

implements this interface. Because the capabilities of

different file systems are different, the interface includes state

of the concrete file system and its capabilities. Since the

interaction between the file client and the file server is via the

Internet, this interface is essentially a remote API, the same

as the API of any other remote service on the Internet.

Through separate requests to the file server, the client

receives information about the state of its file system and can

make changes to it.

To speed up the interaction, both the client and server

must support the establishment of a permanent peer-to-peer

connection and a pool of such connections for multiple

simultaneous asynchronous operations. After establishing a

connection, the user can directly manage remote files. The

quality of access to them will depend only on the speed of the

Internet connection on the file server and file client sides.

Moreover, if both the client and the server are registered in

the same local network, the data exchange must occur at the

speed of this local network.

Requests should be processed by the file server only if

they came from an authorized source. If the entire distributed

file system was decentralized, the user would have to specify

server address, each time he connects to the server. The

problem is that the IP address of the file server can change

when its Internet Service Provider changed (when using

mobile networks and replacing SIM card); when the serving

base station changed (if device was physically moved to the

area covered by another base station); on demand of the

Internet Service Provider (if the user does not have a

dedicated static IP); on demand of router, operating system or

third-party firewall, or for other reasons. The need to

administer each of the servers reduces the system’s

usefulness in achieving its goal - to improve the user

experience of working with remote files. Moreover, the very

need to find out the current IP address of the desired server,

and then enter it can be difficult for users who are quite new

to computer technologies. The main use case for them will

only be to view some remote file, so we need to simplify this

process as much as possible.

Therefore, to automatically administer file servers and

ensure the security of data exchange, a specialized dedicated

server is used, common to all users. In fig. 1. it is designated

as the Main Server. It is intended for user authentication,

authorization of file clients and registration of file servers in

the system. After receiving data about file servers from the

main web server, the file client can establish a peer-to-peer

connection with any of them. Thus, the user only needs to go

through the familiar authentication process using a login,

password or other credentials.

Certainly, the main web server acts as a single point of

failure, that is, when it stops working, the entire distributed

file system starts to work partially. Already established

connections between the file client and the file server

continue to function, but it is not possible to obtain data about

the servers and their addresses on the network. Thus, with a

short-term failure of the main web server, the current file

operations will not be canceled, and the user may not even

notice the problems encountered. Long-term failures of the

main web server should be eliminated using standard

practices of supporting server infrastructure, such as

duplication of equipment, load balancing, and others. Other

configuration of the main server’s execution environment,

the selection of the appropriate hardware and software is up

to the system developers.

Having a common web server opens up the possibility of

using cloud storage technologies for further work on the

system. For example, adding storage servers will allow user

to expand the amount of available disk space or use backup

and automatic recovery of user-selected files, folders, or

entire file systems.

The proposed system can be treated as functioning if the

main server, file client, and at least one file server is

functioning. Application that works both in file client mode

and in file server mode is a Subsystem of the described

system. There are three Subsystems shown on the Fig. 1:

Android Subsystem, Windows Subsystem and macOS

Subsystem. In this paper we describe the implementation of

the Android Subsystem. In order to maximize ease of access

to files, it is necessary to implement similar subsystems for

Windows, MacOS, Linux, iOS and other platforms.

V. IMPLEMENTATION OF SUBSYSTEM ON ANDROID

Physically, the subsystem looks like an application for a

smartphone, as shown in Fig. 2.

Fig. 2. Android subsystem of cross-platform mounting remote file systems.

The user interacts with the application through the display

of his smartphone. The application interacts with servers

through the Internet connection module.

To fulfill the requirements of the functional specification,

the application must contain many software modules, each of

which implements some functionality. Inside the application,

the exchange of information between modules and the user is

carried out by program classes structured as a multilayer

architecture Model-View-ViewModel (MVVM) [10], as

shown in Fig. 3.

Fig. 3. File client’s architecture layers.

The best user experience is provided by applications with

maximum responsiveness of the graphical user interface,

which cannot be achieved without asynchronous exchange of

information. Therefore, the transfer of the user's intentions is

carried out by means of a direct call to the classes, but the

data are displayed according to the Observer design pattern.

The used class (to which the dependency arrow points, as

shown in Figure 3) stores information about its state in a

special object (Observable), and the class that uses it (from

which the dependency arrow comes out, the Observer)

subscribes to changes in this state. The Observable stores a

list of observers and notifies them when its state has changed

[11]. This eliminates the need for the used class to have a

reference to the Observer, and to callback objects. Thus, each

class has links only to those classes that it itself uses. This

approach is called the rule of unidirectional dependencies, it

helps to split responsibilities of classes, increase cohesion and

reduce coupling [12].

Each application feature visible to user has a

corresponding class on the View, ViewModel and Model

layers. The Model layer contains the logic of the application,

on the basis of which it interacts with functional modules and

forms the state of this feature in the system. The ViewModel

layer transfers user actions to the Model layer and, based on

its state, forms the state of the user interface. The View layer

displays this state on the smartphone screen.

Let’s review functional modules of file client, describe

principles of their work and technologies used to implement

them. Structure of Android Subsystem is shown in Fig. 4.

Fig. 4. Functional modules of Android Subsystem

Work with the system starts with authentication of user

by email and password (requirement 1.3 of the functional

specification, hereinafter referred to as FS). The authorization

module automatically communicates with the main server to

grant user access to remote file systems. Additionally, a one-

time password is sent to the email, if this is specified in the

settings. The settings module also stores other user

preferences.

After authorization, the file management module

receives from the main server a list of file servers registered

in the system and available at the moment. Data exchange

with servers using the HTTPS protocol (FS 1.2) is

implemented in the C ++ dynamic library, an application in

the Kotlin language interacts with it through the JNI interface.

Information about the server contains data for connecting to

it via the Internet (FS 1.4). After selecting a file server, a peer-

to-peer connection (FS 2.4) is established and contents of the

remote file system root are displayed.

The remote file system access module uses file system

interface that remote file server implements. This eliminates

the need to interact with the central server and allows to store

files directly on the device (FS 1.1, 2.1, 3.5). Accordingly, a

file server itself manages scope of access and file

permissions, but for more convenient file management, the

root of file server should contain all file disks (FS 2.2).

Similarly, the host system access module also implements a

file system interface so that a user can access files on the

device he uses. The user can start file server and then other

file clients of this user will also get access to these files (FS

2.5).

The list of files and other user interface elements are

based on the components of both the Android OS and

AndroidX library [13]. Clicking on some folder displays

contents of this folder (FS 3.1), clicking on some file launches

built-in viewer, if available for the format of this file (FS 3.2),

otherwise the user is prompted to select another viewer from

the list of already installed programs. The file context menu

allows you to view information about this file, or apply

standard file operations to it (FS 2.3).

The file viewer module contains tools for viewing files

of the following MIME types:

• text/* - using Android WebView [14]

• image/* - using Glide library [15]

• audio/*, video/* - using ijkplayer library [16]

• application/pdf - using Android PdfRenderer [17]

Viewing files is carried out with restrictions imposed by

various versions of the Android OS and third-party libraries.

Viewers use the interface of random access to the contents of

the file so that the user can quickly navigate to the desired

part of the file (FS 3.3).

The file systems mounting module allows user to view

remote file systems not only in the application, but also in the

system or other file browsers (FS 3.4). On the Android

platform, this is implemented using the Android Content

Provider [18] and Android Storage Manager [19]. FUSE

technology, used to access remote files through file

descriptors of the operating system, is only supported on

Android 8.0 and higher. Therefore, on older Android devices,

a separate server with socket access is launched to provide

external viewers with random access to remote file.

Part of the system of cross-platform mounting remote

file systems is implemented on the Android platform. The

subsystem fulfills all the requirements of the functional

specification.

VI. PROCESS OF MOUNTING REMOTE FILE SYSTEM

An example of usage of the implemented system is

shown in the following screenshots. We launched the system

on both a smartphone with Android OS and a computer with

Windows OS. Both subsystems work as a file client and as a

file server. In Fig. 5, we can see the window of Windows

Explorer, which displays all the disks in the file system and

also the mounted file system of the phone (redmi-note-7).

Fig. 5. Mounted remote Android file system

Fig. 6. Mounted remote Windows file system

Similarly, on the smartphone we can browse mounted

file system of PC on Windows. Fig. 6 shows launched system

file manager on Android 8.0.

Disk space of computer (‘C:’ and ‘D: Home’ folders in

Fig. 6) can be browsed so user can work with files on PC as

if they were stored on a smartphone. At the same time, the

subsystem on Windows additionally mounts the folder with

user documents for faster access (‘Max’ folder in Fig. 6).

VII. CONCLUSION

The described system is designed to improve user

experience when working with remote files. In order to

achieve this goal, it solves the problem of providing secure

storing, easy access and convenient file management on

various devices of the same user. However, the convenience,

security and ease are relative and subjective concepts,

therefore, to compare the described approach with others, we

use a qualitative research method - we consider the

functionality of similar systems and principal, unresolved

issues that the user could potentially encounter when using

these systems. We contend that a system that combines the

advantages of other systems and solves their fundamental

issues is a qualitatively better system in terms of achieving

the goal.

In Section III the requirements for such a system were

specified and in Section V it was indicated that the

implemented system meets all the requirements. Therefore,

we contend that it surpasses similar solutions in terms of

improving user experience when working with remote files.

In other words, we contend that mounting remote file systems

is actually more convenient for user than transferring or

synchronizing files between them.

Further evaluation of user experience requires an

extensive and long survey of users after the market

introduction of technology. Nevertheless, in the era of many

various personal devices with different operating systems, the

problem of convenient file management will always remain

relevant.

REFERENCES

[1] W. Xia et al., "A Comprehensive Study of the Past, Present, and Future
of Data Deduplication," in Proceedings of the IEEE, vol. 104, no. 9,
pp. 1681-1710, Sept. 2016.

[2] M. Jayanand, M. A. Kumar, K. G. Srinivasa, and G. M. Siddesh, “Big
Data Computing Strategies,” Handbook of Research on Securing
Cloud-Based Databases with Biometric Applications, pp. 72–90, 2015.

[3] E. V. Sharma, E. M. Varshney, and S. Sharma, Design and
implementation of operating system. Bangalore: University Science
Press, 2010.

[4] A. B. Karuvally, B. Hameem, A. J. Sundar and J. P. Joseph, "Enhancing
Performance and Reliability of Network File System," 2018
International CET Conference on Control, Communication, and
Computing (IC4), Thiruvananthapuram, 2018, pp. 317-321.

[5] R. Filgueira, M. Atkinson, Y. Tanimura, and I. Kojima, “Applying
Selectively Parallel I/O Compression to Parallel Storage
Systems,” Lecture Notes in Computer Science Euro-Par 2014 Parallel
Processing, pp. 282–293, 2014.

[6] A. Lanka and A. Gargeyas, "Remotely Accessible, Low Power
Network Attached Storage Device," 2018 Second International
Conference on Inventive Communication and Computational
Technologies (ICICCT), Coimbatore, 2018, pp. 1083-1088.

[7] K. Shaikh, S. Soni, V. Shah, K. Thakkar, and K. Belwalkar, “Network
Attached Storage,” International Research Journal of Engineering and
Technology, vol. 06, no. 01, pp. 1413–1416, Jan. 2019.

[8] Z. Mehdi and H. Ragab-Hassen, “File Synchronization Systems
Survey,” Computer Science & Information Technology (CS & IT),
2016.

[9] J. T. Mościcki and M. Lamanna, “Prototyping a file sharing and
synchronization service with Owncloud,” Journal of Physics:
Conference Series, vol. 513, no. 4, p. 042034, Nov. 2014.

[10] W. Sun, H. Chen, and W. Yu, “The Exploration and Practice of MVVM
Pattern on Android Platform,” Proceedings of the 2016 4th
International Conference on Machinery, Materials and Information
Technology Applications, 2016.

[11] Liu Jicheng, Yin Hui and Wang Yabo, "A novel implementation of
observer pattern by aspect based on Java annotation," 2010 3rd
International Conference on Computer Science and Information
Technology, Chengdu, 2010, pp. 284-288.

[12] M. Fowler, “Reducing coupling,” IEEE Software, vol. 18, no. 4, pp.
102–104, 2001.

[13] D. Zelenchuk, “AndroidX Test Library,” Android Espresso Revealed,
pp. 271–280, 2019.

[14] P. Hazarika, Rahul Raj CP and S. Tolety, "Recommendations for
Webview Based Mobile Applications on Android," 2014 IEEE

International Conference on Advanced Communications, Control and
Computing Technologies, Ramanathapuram, 2014, pp. 1589-1592.

[15] Bumptech, “Glide,” GitHub. [Online]. Available:
https://github.com/bumptech/glide. [Accessed: 30-Mar-2020].

[16] Bilibili, “ijkplayer,” GitHub. [Online]. Available:
https://github.com/bilibili/ijkplayer. [Accessed: 30-Mar-2020].

[17] Google, “PdfRenderer,” Android Developers Documentation.
[Online]. Available:

https://developer.android.com/reference/kotlin/android/graphics/pdf/P
dfRenderer. [Accessed: 30-Mar-2020].

[18] W. Jackson, “Android Content Providers: Datastore
Concepts,” Android Apps for Absolute Beginners, pp. 415–472, 2017.

[19] Google, “StorageManager,” Android Developers Documentation.
[Online]. Available:
https://developer.android.com/reference/android/os/storage/StorageM
anager. [Accessed: 30-Mar-2020]

