
Hybrid image recommendation algorithm combining
content and collaborative filtering approaches

Kirill Kobyshev
High School of Software Engineering

Peter the Great St. Petersburg Polytechnic University
St. Petersburg, Russia

kobyshev.ks@edu.spbstu.ru

Nikita Voinov
High School of Software Engineering

Peter the Great St. Petersburg Polytechnic University
St. Petersburg, Russia

voinov@ics2.ecd.spbstu.ru

Abstract—Recommender systems are software tools for search
of suitable for users content. This research relates to the
subject field of image recommendations. Image recommender
systems are used in photo hosting services, social networks
and other applications, that have materials containing images.
The proposed approach of automatic image recommendations
addresses the following shortcomings of existing solutions: the
necessity of the manual filling of metadata by users, lack of user
rating history consideration, necessity of significant computation
resources. The main idea of the proposed approach is to recognize
object classes from images using a convolutional neural network
to make recommendations. In the proposed solution users and
images are located in the semantic space represented as a
graph. The proposed approach was implemented in the form
of a correctly working prototype of the recommender system.
Currently it is planned to finalize the prototype and deploy it on
the webserver.

Index Terms—recommender system, graph database, graphs,
image recognition, cnn, inception, word embedding, word2vec,
glove, hybrid filtering, collaborative filtering, content filtering,
image recommendation

I. INTRODUCTION

Recommender systems are software tools that have been
developed since the mid-1990 with services for Internet
users and used to find suitable for users content: articles
(Arxiv.org), news (Surfingbird), people (Linkedin), products
(Amazon, Ozon, Aliexpress), images (500px, Pinterest,
Instagram), videos and movies (YouTube, Netflix), music
(Fast.fm, Pandora, Spotify). The development of recommender
systems is based on methodologies and algorithms from
the following scientific and applied disciplines: discrete
mathematics (social graphs, interest graphs), mathematical
statistics (statistic criteria), machine learning (algorithms
of semantic analysis, clusterization, neural networks), data
science. Recommender systems might be developed using the
following instruments and technologies: big data processing
systems (Hadoop HDFS, Apache Spark, Apache HBase),
graph database (InfiniteGraph, Neo4j), machine learning
algorithms implementation (TensorFlow, DeepLearning4j,
Keras).

There are two main approaches for automatic
recommendation: collaborative and content filtering [1].
Content filtering is a search of content, similar to the
interested user previously content. Collaborative filtering is a

search of content similar to the content other users interested
in which are similar to the current user.

The proposed solution is hybrid (combines content and
collaborative filtering) and relates to image recommendations.
Image recommendations are used in photo hosting services,
social networks and other applications, that have materials
containing images. The proposed algorithm allows us
to avoid the necessity of manual filling of metadata
by users and to consider user rating history. Source
code of the solution is posted in the public repository:
https://github.com/kruchon/ImageBasedRecommender.

II. PROBLEMS OF EXISTING IMAGE RECOMMENDATION
SOLUTIONS

There are the following automatic image recommendation
approaches: analysis of images metadata [3]; extraction and
analysis of visual features from images [5], [6]; analysis
of hybrid features [7] generated from metadata and visual
features. Results of the comparative analysis of existing
implementations is presented in Table I.

The first image recommendation approach is an analysis
of image metadata, and the solution based on the approach
is described in [3]. Recommender system forms a matrix
of user interests from metadata of the images user
rated before. Authors described the such simple visual
feature as image color density also (red, green and blue),
which was added to user interest matrix, but this feature
does not contain significant information about images and
doesn’t improve image recommendation significantly. So, this
implementation was classified as “use images metadata to
make recommendations“ approach. The system predicts user
ratings relative to images with using of Pearson correlation
coefficient to calculate distances between users in feature
space (one of the commonly used collaborative filtering
algorithms). And there are a lot of other possible solutions
and algorithms, even not related to image recommendations,
because the source data describing images is represented in
textual form. When we implement image recommender system
using an approach based on metadata analysis, we able to
reuse any solution working with textual data. But all of
these solutions will have same disadvantages. Necessity of
manual filling of metadata (for example, a text description



TABLE I
EXISTING IMAGE RECOMMENDAION APPROACHES AND SOLUTIONS BASED ON THE APPROACHES

Description
Approach Use images metadata

to make recommendations
Use visual features

to make recommendations
Use hybrid features

to make recommendations

Author(s)
Fuhu Deng, Panlong Ren,

Zhen Qin, Gu Huang,
Zhiguang Qin

Implementation 1:
Kemal Ozkan,

Zuhal Kurt, Erol Seke;
Implementation 2:

Hessel Tuinhof,Clemens Pirker,
Markus Haltmeier

Rex Ying, Ruining He,
Kaifeng Chen,

Pong Eksombatchai

Algorithm Pearson correlation
coefficient

Implementation 1:
SIFT, SURF, LBR, k-NN

Implementation 2:
CNN, k-NN

GCN, random walks

Filtering type Collaborative,
memory-based Content Collaborative,

model-based
Considers user ratings

history Yes No No

Doesn’t require
manual actions No Yes Yes

Computation
resources

Intel Core i5-6500 CPU,
8GB RAM

(insignificant*)

Implementation 1:
unknown;

Implementation 2:
Intel i7-6850K CPU,

NVIDIA 1080Ti GPU
(more significant, than

images metadata approach
implementation)

16 Tesla K80 GPU
(very significant)

of the image) is the one of disadvantages. When we analyse
the metadata we exclude the full automation. Furthermore,
metadata can be described inaccuratelly and can contains
insufficient or excessive amount of information. For example,
average metadata error of the Instagram application is 80
percent [8].

The second approach relates to the search of images by
visual features in the feature space. There are two similar
solutions based on the approach [5], [6]. Before forming of
recommendations the recommender system groups images to
clusters by k-NN algorithm in both implementations. The
first implementation forms image features from the input
image by SIFT, SURF and LBR algorithms, and the second
implementation forms image features by a convolutional
neural network. Then the recommender system finds images
in the cluster, where the input image is located (in both
implementations). These implementations accept just an
image as an input and don’t require to manually fill the
textual description of image. But these implementations don’t
consider user rating history.

The third approach is based on the forming of hybrid
features from images and image metadata. The approach
implementation is described in [7]. Authors propose to train
the convolutional neural network by image relationships graph
in the Pinterest application (Graph Convolutional Neural
Network, GCN). The relationship graph is generated from
topics (“pin“) and collections of topics (“board“). Each image
corresponds to the one of the topics and more. The neural
network is multilayer, the feature space dimension is equal to
amount of neural network layers. Each layer outputs the one of
coordinates Xj

i of the one of images Ij after network training
completion. The first layer takes as input the information about

images including image and image metadata. Each image
has coordinates in the feature space, and the recommender
system finds suitable images with similar content using the
data prepared during the training on the graph. Users form
the graph, thus the filtering type of this implementation is
collaborative. The solution has several disadvantages related
to the training: the necessity of the large initial sample
(18 TB), significant computing resources, the necessity of
relationship graphs between images. This solution doesn’t
consider user rating history and forms recommendations from
the one chosen image.

In this research an algorithm based on the second approach
was proposed. The proposed algorithm includes several
improvements relative to existing solutions:

1) No necessity of manual metadata configuration. This
improvement allows us to make the fully automated
recommendation algorithm and to avoid errors, caused
by human factor.

2) Consideration of user rating history. If a
recommendation system recommends not only similar
to the passed image another images and recommends
images corresponding user interests (formed from his
rating history) the recommendations are more complete.
And we aren’t able to compare the recommendation
completeness (recall metric) of the proposed solution
and another solutions not considering user rating
history. Authors of these solutions [5]–[7] got metrics
after execution of recommendation algorithm on the
test data marked by the another method distinctive
from marking method applied on the test data for
proposed solution. Test data of these solutions includes
images, which marked, as recommended, if they are



similar to the passed image. In the proposed solution
we mark image as recommended, if it corresponds to
user interests, that are formed from his ratings. Also
we aren’t to compare completess with the solution
related with metadata analysis [3], because there are
not provided results of this metric measurement.

Non-functional requirements were defined also relative to
the proposed algorithm:

1) Satisfactory precision and recall values. Precision, that
we expected in our research, is more than 0.6. Expected
recall is more than 0.6 also. Recommended images in
test data should consist around 5 percent of all images.

2) Satisfactory time of recommendation calculation. We
expected calculation time less than 300 ms.

3) No necessity in significant resources like implementation
of the approach based on analysis of hybrid features
[7]. The configuration of typical PC should be enough
to calculate recommendations in expected time limits
(like computation resources of implementations of
the metadata analysis and visual feature analysis
approaches).

III. PROPOSED IMAGE RECOMMENDATION SOLUTION

Consider the main idea of the proposed solution and what
methods, algorithms, distinctive features the solution contains.
The distinctive features of the proposed solution are:

1) Object class recognition, that allows us to do the text
analysis instead of visual features analysis.

2) Storing users, images, and topics in the graph structure.
Edges between topics and images allows us to consider
object class probabilities. Edges beetween users and
topics allows us to consider user interest weight. And
edges between topics allows us to find the closest (and
the most relevant) to user images. The proposed solution
mostly specializes exactly on image recommendations,
because it consider class probabilities of images and
stores them in edge weights.

The scheme of the proposed solution is presented in Fig.1.
Let’s say, there is a set of images in some photo hosting. For
each of the images, the recommendation system defines a list
of images. Some of these images are rated by the user. A list
of user interests is formed from the set of rated images. A list
of image classes and a list of user interests are saved in the
database. The recommender system generate recommendations
based on user interests and information about object classes
in images.

A. Object Class Recognition

So, the proposed solution relates to the second approach
(image visual features extraction and analysis). This approach
was adjusted by using of fully-connected layers and output
layer, where softmax function is used to get probabilities of
object classes.

Object classes, recognized on images that interested the
user, forms user interests. Thus the image recommendation

Fig. 1. Scheme of the proposed image recommendation solution

issue was transformed to the issue of recommendation based
on the textual information about images with weights.

Each of user action represented as a pair Ii and Ri, where Ii
is an image and Ri is a user rating. For the user U a weight
MUT of interest T is calculated by the formula (1). In this
formula P (T ∈ classes(Ii)) is a probability of object class T
in the image Ii, and if the object class T wasn’t recognized
in the image Ii, then P (T ∈ classes(Ii)) = 0.

MUT =

n∑
i=1

P (T ∈ classes(Ii))×Ri (1)

B. Graph Consisting of Users, Images and Topics

In the proposed solution all object class IDs correspond
to natural language words. Representation of object class
in words allows us to find semantically close words by
using the Word2Vec model [13] [14] or modifications (for
example, GloVe [15]). The Word2Vec model is used in many
recommender systems [9], [11], [12]. The application of
Word2Vec in the current solution is based on the solution [11],
where user coordinates in the semantic space are midpoints
between items users liked. The content filtering in this solution
is a search of the nearest to user items in the semantic
space, collaborative filtering is a search of the nearest users in
semantic space to current user and recommendation of items
liked by them. This solution has two disadvantages:



1) If user liked items semantically far from each other, then
the midpoint between these items will not describe user
interests right.

2) If this solution will be applied in image
recommendations, interest weights and object class
probabilities will not considered.

Because of the solution [11] has disadvantages, the semantic
space with images and users was converted to the graph G.
The graph has a base constant part GT ∈ G containing topics
(natural language words). And the recommender system adds
images and users to the graph G = (E, V ). The simple
example of the graph is presented in Fig.2. The graph G
contains a set of nodes V containing a subset of images I ∈ V ,
a subset of topics T ∈ V , a subset of users U ∈ V . And the
graph G contains the set of edges E containing a subset of
edges between topics ETT ∈ E, between topics and images
ETI ∈ E and between users and topics ETU ∈ E.

Fig. 2. The example of the graph with images, users and topics

The algorithm described in [10] was used to convert the
semantic space containing natural language words to the base
graph GT . Authors describe the algorithm converting GloVe
model [15] to graph. The nearest words are grouped to clusters,
all cluster words are linked by edges to the central word.
Central words should be grouped to clusters also and the
clustering algorithm is recursive. The resulting graph is a set
of connected to each other nodes of topics. The example with
the two-layer cluster is shown in Fig.3.

Fig. 3. Graph with the two-layer cluster

Each of the topic nodes TS contains a vector with
coordinates of their words WS located in the sematic space
X ∈ Rn of dimension n. Weight of edge between topics TA

and TB is equal to the Euclidean distance (2), where XA are
coordinates of the topic TA in the semantic space and XB are
coordinates of TB .

weight(ETATB
) =

√√√√ n∑
i=1

(Xi
A −Xi

B)
2 (2)

Images are connected by edges to topics, which are object
classes for images. These edges weight calculated by a formula
(3), TA is a topic A and IB is an image B, WA is a natural
language word related to the topic TA, classes(IB) is a
set of object classes recognized in the image IB , P (WA ∈
classes(IB)) is a probability of the class WA in image IB .

weight(ETAIB ) = 1− P (WA ∈ classes(IB)) (3)

Users are connected by edges to the graph GT according the
list of their interests with weights. The topic node to which the
user was connected is one of his interests. Each of edges ETiUj

corresponds to the interest weight Mij . The weight of the edge
between topic A and user B is calculated by expression (4),
where MAB is an interest weight of the user B relative to the
topic A, MiB is an interest weight of the user B relative to
the topic i, k is an amount of user interests. In other words,
the weight of the edge is a relation of interest weight to the
sum of all user interest weights.

weight(ETAUB
) =

MAB∑k
i=1MiB

(4)

IV. IMAGE RECOMMENDER SYSTEM

Consider the structure of the recommender system
implementing the proposed solution, how the recommender
algorithm works in detail.

The architecture of the recommender system is presented
in Fig.4. The recommender system interacts with the external
system (photo hosting service) by HTTP requests. “REST
Controller“ receives requests from the external system,
transfers parameters to other services. There are the following
types of requests from the external system: “Save Image“,
“Update User Interests“, “Calculate Recommendations“.

Fig. 4. Recommender system architecture



The component “ImageService“ does:
1) Saving of image node to the graph database.
2) Object class recognition from images.
3) Saving of object classes to graph database as edges

between images and topics.
The component “UserService“ updates edges between users

and topics by received information about user ratings.
The component “Recommender“ forms recommendations

from content and collaborative filtering results.

V. PROCESSING OF EXTERNAL SYSTEM REQUESTS

A. Processing of the “Save Image“ Request

The sequence of actions on the receiving of the “Save
image“ request is described in Algorithm 1.

Algorithm 1 Image node saving algorithm
Input: userId, imageId,G = (V,E)

1: create image node with imageId
2: imageBitmap← load image from FTP by imageId
3: classes← recognize from imageBitmap
4: for class in classes do
5: topicId← class.name
6: P ← class.probability
7: create edge Eclass ∈ E between image node with

imageId and topic node with topicId
8: Eclass.weight = 1− P
9: end for

The recommender system creates an image node in the
graph database (line 1). Then recommender system loads the
image from FTP server and sends the image to the input of the
convolutional neural network, which outputs the list of object
classes with probabilities (lines 2–3). Then the recommender
system saves edges between image and topics that are object
classes of the image (lines 4–9).

B. Processing of the “Update User Interests“ Request

The sequence of actions on receiving of “Update User
Interests“ request is presented in Algorithm 2.

Algorithm 2 “Update User Interests“ algorithm
Input: userId, imageId, rating,G = (V,E)

1: topics← next to image with imageId nodes ∈ G
2: for topic in topics do
3: topicsnext ← next to user nodes ∈ G
4: edgesnext ← edges ∈ E between user and topicsnext
5: edgecurrent ← edge ∈ E between user and topic
6: if edgecurrent = ∅ then
7: create edge ∈ E between user and topic
8: end if
9: increase edgecurrent.interest to rating

10: end for

The recommender system loads from the graph database
topics related to the image and weights from these topics to

image (line 1). Then the recommender system for each of the
topics increases edges from user weight to the value of the
user rating (lines 2–10).

C. Processing of the “Calculate Recommendations“ Request
The sequence of actions on the “Calculate

recommendations“ request is presented in Algorithm 3.
The recommender system loads from the configuration the
following parameters: K, M, N. The system finds K nearest
to the user images in the graph (line 1). The obtained result
is a result of content filtering. Then the recommender system
finds M nearest to the current user other users (line 2) and
topics that are of interest for the current user (line 3). The
recommender system forms a list of interests, which another
M nearest users have (lines 5–18). Thus, the new list of
potential interests for the current user is formed. Then the
recommender system filters interests by weight, only interests
having share more α part are left. The recommender system
finds the N next to these topics images in the graph (line 21).
The obtained result is a result of collaborative filtering. The
system returns the content and collaborative filtering results
to the external system (line 22).

Algorithm 3 Image recommendation algorithm
Input: userId,K,M,N,G = (V,E)
Output: recommended

1: contentRes ← the nearest to user with userId image
nodes ∈ G

2: anotherUsers ← the nearest to user with userId user
nodes ∈ G

3: currTopics← next to user with userId nodes ∈ G
4: interests← ∅
5: for anotherUser in anotherUsers do
6: topics← next to anotherUser nodes ∈ G
7: for topic in topics do
8: if topic 6∈ currTopics then
9: weight ← weight of edge ∈ E between

anotherUser and topic
10: if ∃interestsi : interestsi.topic = topic then
11: increase interestsi.weight to weight
12: else
13: interest← object with topic and weight
14: interests← interests ∪ interest
15: end if
16: end if
17: end for
18: end for
19: interest← ∀interesti :

interesti.weight∑n
j=1 interestj .weight

> α

20: interestTopics← map interests array to topics array
21: collabRes← N next to interestTopics image nodes ∈ G
22: return contentRes ∪ collabRes

D. Search of the Nearest Nodes Algorithm
Consider the lines 1–2 from Algorithm 3 in detail. The

recommender system finds the nearest image nodes in line 1



Fig. 5. Search of the nearest nodes

and the nearest user nodes in line 2 to the current user node.
The principle of search is the same in these two lines and an
example of search is schematically described in Fig.5.
threshold and search depth are two parameters specified

in the configuration of the recommender system, and these
parameters take part in the search of the nearest nodes.

We want to find the nodes in limits specified in
the parameter search depth. As presented in Fig.5 the
recommender system finds the nodes in limits of search depth
value equals to 2. In the beginning recommender system marks
the node of the current user (signed with a char “u“). Then
the recommender system marks the next nodes (topics, signed
with a char “t“) and neighbor images or users (signed with
a char “o“) to these nodes. The current search depth value
equals to 0 in this iteration. Then the recommender system
repeats this procedure and starts to move from the marked
nodes. In each iteration recommender system increments the
current search depth value while it will not reach the specified
limit of search depth parameter.

Then the recommender system filters the found nearest
nodes βi (images for content filtering or users for collaborative
filtering). For each of the found nodes βi the recommender
system calculates weightiUser value by expression (5):

weightiUser = weightiUser→Topic + weightiTopic→Topic+

+ weightiTopic→β = weightiUser→Topic+

+ γ ×
k∑
j=1

weightiTopicj→Topicj+1
+ weightiTopic→β (5)

In this expression weightiUser→Topic is a weight of edge
from user to the neighbour topic, weightiTopicj→Topicj+1

is
a weight of edge from one topic to other topic, that consist

a part of path from the current user to the found node βi,
weightiTopic→β is a weight of edge from topic to node βi, γ is
a coefficient involving to sum weightiTopic→Topic terms share
in the common sum (meaning how important are weights of
edges between topics for the common sum weightiUser). This
sum considers three factors:

1) User interests (weightiUser→Topic).
2) Similarity of topics in the path (weightiTopic→Topic).
3) Value of weightiTopic→β , that will be a probability of

the class (topic) in the image (weightiTopic→β) in the
case of content filtering and the weight of interest in the
case on collaborative filtering.

Then the recommender system finds the maximum
weightiUser and returns the nodes related with path from
user, that has weight less than multiplying of threshold
parameter and maximum of weightiUser. In other words, the
recommender system filters the found in limits of search
depth nodes by threshold parameter.

VI. USED TECHNOLOGIES

A prototype containing content filtering was developed and
it is planned to implement the collaborative filtering also. The
prototype was developed on Java and was built on the Spring
Boot platform. Medium GloVe model [15] containing 50000
natural language words and 100 coordinates in semantic space
for each of words was converted to the graph of topics GT .
The graph was stored in Neo4j database. The recommender
system system finds the nearest images for content filtering by
execution of Cypher query. Google Vision AI service was used
to recognize classes on images. It is planned to use Inception
CNN model [18] locally to exclude network load related with
sending requests to Google Vision AI service.



VII. RECOMMENDER SYSTEM PARAMETERS AND
OBTAINED METRICS

Consider, how recommender system parameter values were
defined and how the recommender system was tested.

A dataset containing 3 users, 1500 images and lists of user
positive ratings was prepared manually, because there are no
published datasets containing images of different topics and
user histories. For example, the dataset “Pinterest Fashion
Compability“ [19] contains only fashion items. A set of images
were collected from Google Images service with using of
Selenium Webdriver framework. 100 topics were specified
in csv file and for each of these topics 15 images were
downloaded. There are 50 images defined for each of 3
users, that users already positively rated and that related
with the one abstract topic for one user (“wild“ for the
first user, “art“ for the second, “cities“ for the third). There
are recommended images manually marked also, that contain
objects corresponding their interests. It is planned to collect
dataset from the real deployed photo hosting.

Values of recommender system parameters were defined
to achieve as more accurate and effective recommendations
as possible for now, when we have only test data prepared
manually. So, the found parameter values will be an initial
approximation for more powerful optimization methods. When
the recommender system will be deployed on the production
environment, then we will have more reliable data, that will
be used to find the best parameter values with using of
optimization methods.

The γ parameter was defined by the following requirement:
it was preferrable to have values of weightiTopic→Topic
between 0 and 1 (the most part of values). This requirement
lets to to achieve the same influence of terms of the summing
expression (5). The found value of γ parameter that satisfied
the requirement is 0.01 (initial approximation).

The recommender system classifies all images to two
classes: recommended and not recommended. We can evaluate
the quality of the proposed algorithm with using of methods
for classifiers. Values for parameters threshold and search
depth (that are used in the algorithm of the search of the
nearest nodes) were defined by the method of complete
enumeration to reach the reach the maximum values of
precision and recall metrics (to reach the maximum of these
metrics).

The source metrics are:
• TP - images that were recommended right (true positives).
• TN - images that weren’t recommended, but should be

recommended (true negatives).
• FP - images that were recommended, but shouldn’t be

recommended (false positives).
• FN - images that weren’t recommended right (false

negatives).
The precision metric was calculated by expression (6).

Precision =
TP

TP + FP
(6)

The chart of precision is presented in Fig.6.

Fig. 6. Precision chart

The precision metric increases with increase of threshhold
value and decreases with search depth more than 3.

The recall metric was calculated by expression (7).

Recall =
TP

TP + FN
(7)

The chart of recall is presented in Fig.7.

Fig. 7. Recall chart

The recall metric increases with decrease of threshhold
value and decrease of search depth.

The best point, where expected precision and recall were
reached is: threshold is equal to 0.8 and search depth is
equal to 4. Precision is equal to 0.61 and recall is equal to
0.72.

The time measurement was done on two computing nodes
connected to the same local network. The recommender
system was deployed on nodes having configuration of typical
modern PC (see Table II).

The time measurement results are presented in Fig.8. The
relatively rapid growth of time is observed since search depth



TABLE II
COMPUTING NODES OF THE RECOMMENDER SYSTEM

Node 1 Node 2
What was deployed Application part Database (Neo4j)

CPU Intel Core
i5-8250U

Intel Core
i7-4702MQ

RAM 8Gb 8Gb

is equal to 5. The almost same delay (around 300 ms) from 0
to 4 values of search depth is caused by the network load of
connection to the graph database. So, when search depth is
equal to 2, the recommender system isn’t loaded significantly.

Fig. 8. Execution time chart

Thus the recommender system showed good results, but the
one potential problem wasn’t considered yet. In the future we
planned to study the case when one topic contains significantly
more images then other topics. If this topic will be close to
the user, the recommender system might recommend almost all
images of this topic and it isn’t preferable. We want to modify
the algorithm in a way, that recommendations were quite
different. For example, we can take the first recommended
image of this topic with the same weight, the second with
less, the third even less and e.t.c.

VIII. CONCLUSION

In this paper we analyzed existing solutions related to
the automation of image recommendations. The proposed
approach of automatic image recommendations addresses the
following shortcomings of existing solutions: the necessity
of manual configuration of metadata by users, lack of user
interests consideration. The proposed algorithm eliminates
shortcomings by recognizing images by locating users and
images in the semantic space, and storing users, topics, and
images in the graph. The proposed algorithm was implemented
in the form of a correctly working prototype, that has
satisfying precision, recall and execution time. It is planned
to calibrate parameters of the algorithm to improve accuracy
and execution time with using of real production data.

REFERENCES

[1] F.O.Isinkayea, Y.O.Folajimib, B.A.Ojokoh, “Recommendation systems:
Principles, methods and evaluation“, Egyptian Informatics Journal,
November 2015, pp.261-273.

[2] Houtao Deng, “Recommender Systems in Practice“, Towards Data
Science, February 2019.

[3] Fuhu Deng, Panlong Ren, Zhen Qin, Gu Huang, Zhiguang Qin,
“Leveraging Image Visual Features in Content-Based Recommender
System“, Scientific Programming, April 2018.

[4] A.G. Gomzin, A.V. Korshunov, “Recommender Systems: modern
methods review“, in Proc. of the Institute for System Programming of
the RAS, vol.22, 2012.

[5] Kemal Ozkan, Zuhal Kurt, Erol Seke, “Image-based recommender
system based on feature extraction techniques“, Sarajevo, Bosnia-
Herzegovina: International Conference on Computer Science and
Engineering (UBMK), October 2017.

[6] Hessel Tuinhof, Clemens Pirker, Markus Haltmeier, “Image Based
Fashion Product Recommendation with Deep Learning“, Volterra, Italy:
International Conference on Machine Learning, Optimization, and
Data Science Machine Learning, Optimization, and Data Science 4th
International Conference (KDD), July 2018.

[7] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, “Graph
Convolutional Neural Networks for Web-Scale Recommender Systems“,
Gr. Britain: London: 24TH ACM SIGKDD conference on knowledge
discovery and data mining, June 2018.

[8] Stamatios Giannoulakis, Nicolas Tsapatsoulis, Klimis Ntalianis
“Identifying Image Tags from Instagram Hashtags Using the HITS
Algorithm“, Orlando, FL, USA: IEEE 15th Intl Conf on Dependable,
Autonomic and Secure Computing, April 2018.

[9] Oren Barkan, Noam Koenigstein, “Item2Vec: Neural Item Embedding
for Collaborative Filtering“, arXiv, March 2016.

[10] Thomas A. Trost, Dietrich Klakow, “Parameter Free Hierarchical
Graph-Based Clustering for Analyzing Continuous Word Embeddings“,
Vancouver, Canada: Association for Computational Linguistics, pp.30-
38, August 2018.

[11] Makbule Gulcin Ozsoy, “From Word Embeddings to Item
Recommendation“, arXiv, June 2016.

[12] Ramzi Karam, “Using Word2vec for Music Recommendations“,
Towards Data Science, December 2017.

[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey
Dean, “Distributed Representations of Words and Phrases and their
Compositionality“, arXiv, October 2013.

[14] Nikiforov Igor, Drobintsev Pavel, Voinov Nikita, “A System Prototype
for Real Time Automatic Fraud Detection in Text Data“, Proc. of XXI
International Conference of Soft Computing and Measurement, May
2018.

[15] Jeffrey Pennington, Richard Socher, Christopher D. Manning, “GloVe:
Global Vectors for Word Representation“, Proc. of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
January 2014.

[16] Justin J. Miller, “Graph Database Applications and Concepts with
Neo4j“, Proc. of SAIS, 24, May 2013.

[17] Angira Amit Patel, Jyotindra N. Dharwa, “An integrated hybrid
recommendation model using graph database“, Indore, India: Proc. of
International Conference on ICT in Business Industry and Government
(ICTBIG), November 2016.

[18] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew
Rabinovich, “Going Deeper with Convolutions“, Proc. of The Computer
Vision Foundation, CVPR 2015.

[19] Wang-Cheng Kang, Eric Kim, Jure Leskovec, Charles Rosenberg, Julian
McAuley, “Complete the Look: Scene-based complementary product
recommendation“, Proc. of CVPR, 2019.


