

Recommendation system based on user actions in
the social network

Vitaly Monastyrev
Institute of computer science and

technology
Peter the Great St. Petersburg

Polytechnic University
Russia, Saint-Petersburg

vit34-95@mail.ru

Pavel Drobintsev
Institute of computer science and

technology
Peter the Great St. Petersburg

Polytechnic University
Russia, Saint-Petersburg
drobintsev_pd@spbstu.ru

Abstract – Currently, a large number of people use various
photo hosting services, social networks, online services, and so
on. At the same time, users leave a lot of information about
themselves on the Internet. These can be photos, comments,
geotags, and so on. This information can be used to create a
system that can identify different target groups of users. In the
future, you can run ad campaigns based on target groups,
create recommendation ads, and so on. This article will discuss
a system that allows users to identify their interests based on
their actions in a social network. The following features were
selected for analysis: published photos and text, comments on
posts, information about favorite publications, and geotags. To
identify target groups, the task was to analyze images in photos
and analyze text. Image analysis involves object recognition,
and text analysis involves highlighting the main theme of the
text and analyzing the tone of the text. The analysis data is
combined using a unique identifier with the rest of the
information and allows you create a data showcase that can be
used to select target groups using a simple SQL-query.

Keyword — machine learning, recommendation system,
natural language processing, image recognition

I. INTRODUCTION
Currently, humanity actively uses various Internet

services and leaves a lot of different data on the Internet.
This can be photos, text information, and so on. Based on
this information, you can divide users into groups based on
their interests. Many companies have their own
recommendation systems that operate on this principle -
Yandex [1], Google (YouTube) [2], Netflix [3].

In this article, we will look at a recommedation system
that will identify interest groups based on the following data:
photos, text, rated publications, and geotags. The final goal is
to create a target data table (in SQL format). From the SQL
table, you can get a list of users based on the specified
interest using an SQL query. To create such a table, you need
to recognize objects in images, and recognize the main theme
and tone in the text. This will help you understand which
topics the user treats positively, which ones negatively, and
which ones are neutral.

Thus, the final table will contain information about what
the user posts, what they comment on, what and how they
evaluate, as well as information about geolocation. Based on
this information, which is specific to a particular user, you
can easily get different groups of users by interests and
geolocation.

II. EXISTING RECOMMENDATION SYSTEMS
As mentioned above, many large companies use different

recommendation systems to process their data. It all depends
on the specific task and the available data, so companies

build the data processing process in a way that is convenient
for them and usually such solutions are not open source.
These can be systems for recommending movies, music,
friends, interesting authors, and so on. Let's look at some of
them in more detail.

To generate a smart news feed, the social network
Vkontakte marks data with the help of users who have
received the status of experts [4]. These users vote for or
against publishing on a particular topic. Then the marked-up
data is already transmitted to the neural network, which is
trained on it and improved. Due to the large amount of
marked-up data, the neural network is well trained and can
find similar publications that are more likely to attract users'
interest. One of the disadvantages is that not every project
can attract a large number of users for data markup. In
addition, this solution is not an open source solution.

Another example is Yandex music. The recommendation
system analyzes the user's actions: likes and dislikes, skipped
tracks, repeated playback, and so on. Each action has weights
that are later used in the algorithm. In addition, the system
analyzes similar profiles. The final list of recommendations
is compiled using Matrixnet [5], which processes the list of
all possible recommendations and determines which ones
should be shown to the user on the Yandex Music home page
and in what order to place them. It is worth noting that more
than a hundred training models are used when making
recommendations for a single user. This consumes a large
amount of resources — hundreds of servers collect data
about user requests to the search engine, viewed products,
etc. this approach can be used by large companies, but it is
not suitable for small projects.

It is worth noting that the systems described above and
other similar systems are sharpened for a specific set of data
that a particular service works with. Also, the entire data
processing process (data cleaning, preprocessing, model
learning) is not open source. This article will discuss the
process of working with the most popular data types, as well
as building an algorithm for data processing and training
models in such a way that this algorithm can be reused on
other data types and in other projects.

III. APPROACH TO BUILDING A RECOMMENDATION SYSTEM
 The data set analyzed in this article was collected in one
of the photo hosting services. This data set contains 127
images, 307 comments, 496 rating entries (likes and
dislikes), and 47 geotags. The recommendation system will
consist of several data processing modules. The algorithm of
the system is shown in figure 1:

Fig. 1. The architecture of the recomedation system.

 Raw data is sent to the system input. This data is divided
into three categories:

• Images;
• Text;
• Geotags and ratings.

 To identify user interests, images and text will be
processed by machine learning modules. Image processing
involves a module that will recognize objects in the image.
Text processing includes two submodules: recognition of the
main subject of the text and recognition of the tone of the
text (positive or negative).
 All processed data will be combined by a unique
identifier (id). As a result, this will create a target tables that
will contain the following information:

• What the user posts;
• What the user writes about and in what key;
• What the user evaluates positively;
• What the user evaluates negatively;
• Geotags attached to the user's records.
This data will help you identify user groups based on

their interests. You can use interest groups to recommend
new publications, recommend various products, and so on.

It is worth noting that MySQL [6] relational database
was chosen for storing information. Moreover, images are
not stored directly in the database, but are stored in the file
system. The database stores only links to images. Machine
learning modules are written in Python, as this language
offers a wide range of tools for data processing.

IV. MACHINE LEARNING MODULES
 Let's take a closer look at how machine learning modules
work for image and text processing.

A. Module for recognizing objects in an image.
The pre-trained Inception-v3 [7] model was used for

recognizing objects in images. This is one of the most
popular models for recognizing objects in images [8]. This
model achieves an accuracy of more than 78.1% on the
Imagenet dataset. The model has been trained in 1000 [9]
classes. The use of the pre-trained model is due to the fact
that the model has good performance, has open source code,

is easily integrated into existing solutions, and works fast
enough (about 1-2 seconds for 1 image on Intel core i7).

When analyzing images, this model outputs the top
prediction classes with the highest score value. Within the
recommendation system, only the value with the highest
score was recorded. An example of how the model works is
shown in figure 2:

Fig. 2. Example of how the image recognition model works.

In total, 127 photos from the original data set were

processed using this model. Of the 1000 classes available in
the model, 87 images were recognized. The average score
value for all data is about 0.49. Information about
recognized objects is shown in the figure:

Fig. 3. The recognized objects.

The most popular "chainlink fence" images shown on

the chart are a classifier error, such images have a very
small score. The most common objects are the sea, the
coast, cars, and architectural objects. In the data set under
consideration, the results of the classifier were analyzed.
Correctly predicted values had a score greater than 0.5, so
these images were considered correctly recognized and
taken into account in the future (there are also incorrectly
recognized images, but only about 10% of them).

All data was written to a MySQL table with the
following fields:

• id;
• photo_id;
• photo_desc;
• score.

Where id is a unique identifier, photo_id is a foreign key
from the photo table, photo_desc is the name of the
recognized object, and score is the value of score.

B. The analysis module of text subject
Working with text is a more complex topic than image

recognition, so there are no ready-made models here. This is
because each language has its own grammar and it is
difficult to adapt one model for all languages at once. In our
case, the entire text was in Russian. However, there are
various algorithms that can be adapted to your data and
trained. To highlight the main topic of the text, a model

Data

Image processing

Text processing

Images

Text

Geotags
Ratings

Processed
data

based on the Latent Dirichlet Allocation (LDA) [10]
algorithm was used. The main idea of this algorithm is that
each document is considered as a set of topics in a certain
proportion. Each topic is a set of the most common word
and each document consists of a specific set of words [14].

The origin data set cannot be passed directly to the
model. First, you need to additionally process the text:

• Eliminate unnecessary characters (punctuation
marks);

• Remove stop words (conjunctions, particles,
etc.);

• Form stable phrases;
• Make lemmatization.

The simple_preprocess() method of the Gensim library
[11] was used to remove punctuation and tokenize the text.
To delete stop words, a set of stop words from the nltk [12]
package was used. Bigrams and trigrams were formed as
stable phrases using the Gensim library. The ru2 model from
the spacy package was used for lemmatization.

The main input data for the LDA model is the dictionary
and corpus. Gensim creates a unique identifier for each
word in the document, and the corpus shows the frequency
of occurrence of this word.

One of the hyperparameters is the number of topics in
the text. Since we had a fairly small data set, we set 20
topics. Other alpha and eta (was set to ‘auto’) parameters
affect the sparsity of topics, chunksize (was set to 100) - the
number of documents in each training chunk, and passes
(was set to 10) - the total number of training passes.

To visualize the result, an interactive diagram was built
using the pyLDAvis [13] package, which is shown in figure
3:

Fig. 4. Visualization of the LDA model operation.

Fig. 5. Visualization of the LDA model operation.

 It is convenient to use the coherence metric to evaluate
the model performance. As a result, the coherence metric of
the model was 0.6561.
 Additionally, an LDA model was built for each user
individually, and the list of topics was set to 1. The
coherence metric was also calculated for each model. The
average value of this metric for all models was 0.6585. Data
with the selected topics was written to a MySQL table.

C. The analysis module of text sentiment
A convolutional neural network was used to analyze the

tone of the text [15, 16, 17, 18]. The Word2Vec library was
used to create the feature space. The training was conducted
on a corpus of words based on Russian-language messages
from Twitter, which contains 114991 positive and 111923
negative tweets, as well as 17639674 unmarked tweets [19].
Before training, all data was pre-processed (reduced to
lowercase, replacing links to the token, etc.). The Word2Vec
model was trained using the Gensim library. The Keras
library [20] was used to build the neural network. This
model, trained on tweets, was applied to text messages from
the data set in question. The model metrics are shown in
figure 4:

Fig. 6. Metric models the tone of the text.

This model was used to process the original data set that
contained comments. As a result, the following results were
obtained:

Fig. 7. The results of the model determine the tone of the text.

In this case, the abscissus axis shows the percentage

predicted by the model, and the ordinate axis shows the
number of similar comments. As you can see, most of the
comments in the provided data set had a mostly neutral
accent (values between 0.3 and 0.7 were taken as neutral,
this data was viewed manually).

The trained model was used on the source data. All
results were written to a MySQL table.

V. RESULTS
The results of all three models were recorded in MySQL.

All data is combined with a single id. This way we can now
distinguish user groups based on their interests. As a result
the database contains the following tables:

• Post. This table stores the id, photo and / or
text, rating, geolocation (if available), and
author of the publication;

• Comment. This table stores the id, publication
id, text, rating, and comment author;

• Rating. This tables stores id, user id, photo id
and rating (negative, positive or neutral);

• Object in the photo. This table stores the id,
information about objects in the image (this
information was obtained using the model), and
the image id;

• Main theme of the text. This table stores the id,
the main subject of the text, the type of post
(post or comment), and the id of the post or
comment.

• Tone of the text. This table stores the id, the
tone of the text, the type of post (post or
comment), and the id of the post or comment.

Let's look at an example of making recommendations
using these tables. Let's say that we create an individual
recommendation system to recommend interesting authors.
To do this, we need to select what the user posts and what
they rate positively (posts and comments). Then we need to
find authors who publish similar images and recommend
such authors to the user. For example, if these are sea coasts,
we can use the following SQL query: “select
distinct(photo.userid) from photo_desc, photo where
(photo_desc.photo_desc like '%coast%' or
photo_desc.photo_desc like '%sea%') and pho-

to_desc.photo_id=photo.id and score > '0.5'”. 3 such users
were found in the data set under consideration:

Fig. 8. Result of the SQL query.

Another example of using this system is searching for a

target audience. Let's say we want to find an audience for
advertising a guitar store. Then we look for users who
publish photos of guitars, write about them, or positively
evaluate publications with guitars. You can also use
information about geotags. In other words, we filter
additionally those users who live near the guitar store.

VI. CONCLUSION
As a result, we implemented a recommendation system

that allows us to identify target groups of users. The process
of data processing by several machine learning models was
considered. The Concept-v3 model was used for image
processing, an LDA-based model was used to highlight the
subject of the text, and a neural network-based model was
used to determine the tone of the text. The model results
were used for building SQL queries. The results of all
models in the test data set were checked manually. For the
object recognition model, the extreme score value was set to
0.5. For the text tone recognition model, the values 0-0. 3
were set for negative text, 0.3-0.7 for neutral text, and 0.7-1
for positive text.

This system can be used on small projects, since models
are trained on marked - up data from open sources. In
addition, the logic of setting up search targets is quite clear;
it can be performed by any analyst who knows the SQL
language. This architecture is suitable for almost any
purpose, whether it is recommending services, searching for
interesting publications, etc.

In future plans:
• Building the process of fully automating the

launch of model training. To do this, you plan
to use the Linux scheduler, or
Jenkins/TeamCity;

• Implementation of a recommendation system in
a real project. At this point, the data was
received as a separate set of values and
processed on a separate computer. For the full
operation of the service, it is planned to transfer
the entire data processing process to an
industrial server;

• Analysis of model metrics. After implementing
this system in the service, it is planned to
analyze the accuracy of the models. This can be
tracked by user clicks on the proposed content.
It will also allow you to conduct A / B tests
when some users see suggestions of
recommendations from one model, and others
from another. These tests will help you identify
the best-performing models.

REFERENCES
[1] Recommendation Technology ‘Disco’ URL:
https://yandex.com/company/technologies/disco/.

[2] Covington, P., Adams, J., & Sargin, E. (2016). Deep
Neural Networks for YouTube Recommendations.
Proceedings of the 10th ACM Conference on Recommender
Systems - RecSys ’16. the 10th ACM Conference.
[3] Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix
Recommender System. ACM Transactions on Management
Information Systems, 6(4), 1–19.
[4] VK Experts URL: https://vk.com/press/theme-feeds.
[5] Matrixnet URL:
https://yandex.ru/company/technologies/matrixnet/.
[6] Joel Murach: Murach's MySQL – 2012. – p. 612. ISBN
1890774685.
[7] TensorFlow models GitHub URL:
https://github.com/tensorflow/models.
[8] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., &
Wojna, Z. (2016, June). Rethinking the Inception
Architecture for Computer Vision. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
[9] 1000 synsets for Task 2 (same as in ILSVRC2012)
URL: http://image-net.org/challenges/LSVRC/2014/browse-
synsets.
[10] Bíró, I., & Szabó, J. (2009). Latent Dirichlet Allocation
for Automatic Document Categorization. In Machine
Learning and Knowledge Discovery in Databases (pp. 430–
441).

[11] Gensim project page URL:
https://pypi.org/project/gensim/.
[12] NLTK project page URL: https://www.nltk.org/.
[13] pyLDAvis project page URL: https://www.nltk.org/.
[14] Thematic modeling using Gensim (Python) URL:
https://webdevblog.ru/tematicheskoe-modelirovanie-s-
pomoshhju-gensim-python/.
[15] Jin, R., Lu, L., Lee, J., & Usman, A. (2019). Multi‐
representational convolutional neural networks for text
classification. Computational Intelligence, 35(3), 599–609.
[16] Text tonality analysis using convolutional neural
networks URL:
https://habr.com/ru/company/mailru/blog/417767/.
[17] Cliche M. BB_twtr at SemEval-2017 Task 4: Twitter
Sentiment Analysis with CNNs and LSTMs //Proceedings
of the 11th International Workshop on Semantic Evaluation
(SemEval-2017). — 2017. — С. 573-580.
[18] Zhang Y., Wallace B. A Sensitivity Analysis of (and
Practitioners' Guide to) Convolutional Neural Networks for
Sentence Classification //arXiv preprint arXiv:1510.03820.
— 2015.
[19] Rubtsova, Y. V. (2015). Построение корпуса текстов
для настройки тонового классификатора.
Международный журнал “Программные продукты и
системы,” 27, 72–78.
[20] Keras project page URL: https://keras.io/.

