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Abstract – Currently, a large number of people use various 
photo hosting services, social networks, online services, and so 
on. At the same time, users leave a lot of information about 
themselves on the Internet. These can be photos, comments, 
geotags, and so on. This information can be used to create a 
system that can identify different target groups of users. In the 
future, you can run ad campaigns based on target groups, 
create recommendation ads, and so on. This article will discuss 
a system that allows users to identify their interests based on 
their actions in a social network. The following features were 
selected for analysis: published photos and text, comments on 
posts, information about favorite publications, and geotags. To 
identify target groups, the task was to analyze images in photos 
and analyze text. Image analysis involves object recognition, 
and text analysis involves highlighting the main theme of the 
text and analyzing the tone of the text. The analysis data is 
combined using a unique identifier with the rest of the 
information and allows you create a data showcase that can be 
used to select target groups using a simple SQL-query. 
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I. INTRODUCTION 
Currently, humanity actively uses various Internet 

services and leaves a lot of different data on the Internet. 
This can be photos, text information, and so on. Based on 
this information, you can divide users into groups based on 
their interests. Many companies have their own 
recommendation systems that operate on this principle - 
Yandex [1], Google (YouTube) [2], Netflix [3]. 

In this article, we will look at a recommedation system 
that will identify interest groups based on the following data: 
photos, text, rated publications, and geotags. The final goal is 
to create a target data table (in SQL format). From the SQL 
table, you can get a list of users based on the specified 
interest using an SQL query. To create such a table, you need 
to recognize objects in images, and recognize the main theme 
and tone in the text. This will help you understand which 
topics the user treats positively, which ones negatively, and 
which ones are neutral. 

Thus, the final table will contain information about what 
the user posts, what they comment on, what and how they 
evaluate, as well as information about geolocation. Based on 
this information, which is specific to a particular user, you 
can easily get different groups of users by interests and 
geolocation. 

II. EXISTING RECOMMENDATION SYSTEMS 
As mentioned above, many large companies use different 

recommendation systems to process their data. It all depends 
on the specific task and the available data, so companies 

build the data processing process in a way that is convenient 
for them and usually such solutions are not open source. 
These can be systems for recommending movies, music, 
friends, interesting authors, and so on. Let's look at some of 
them in more detail. 

To generate a smart news feed, the social network 
Vkontakte marks data with the help of users who have 
received the status of experts [4]. These users vote for or 
against publishing on a particular topic. Then the marked-up 
data is already transmitted to the neural network, which is 
trained on it and improved. Due to the large amount of 
marked-up data, the neural network is well trained and can 
find similar publications that are more likely to attract users' 
interest. One of the disadvantages is that not every project 
can attract a large number of users for data markup. In 
addition, this solution is not an open source solution. 

Another example is Yandex music. The recommendation 
system analyzes the user's actions: likes and dislikes, skipped 
tracks, repeated playback, and so on. Each action has weights 
that are later used in the algorithm. In addition, the system 
analyzes similar profiles. The final list of recommendations 
is compiled using Matrixnet [5], which processes the list of 
all possible recommendations and determines which ones 
should be shown to the user on the Yandex Music home page 
and in what order to place them. It is worth noting that more 
than a hundred training models are used when making 
recommendations for a single user. This consumes a large 
amount of resources — hundreds of servers collect data 
about user requests to the search engine, viewed products, 
etc. this approach can be used by large companies, but it is 
not suitable for small projects. 

It is worth noting that the systems described above and 
other similar systems are sharpened for a specific set of data 
that a particular service works with. Also, the entire data 
processing process (data cleaning, preprocessing, model 
learning) is not open source. This article will discuss the 
process of working with the most popular data types, as well 
as building an algorithm for data processing and training 
models in such a way that this algorithm can be reused on 
other data types and in other projects. 

III. APPROACH TO BUILDING A RECOMMENDATION SYSTEM 
 The data set analyzed in this article was collected in one 
of the photo hosting services. This data set contains 127 
images, 307 comments, 496 rating entries (likes and 
dislikes), and 47 geotags. The recommendation system will 
consist of several data processing modules. The algorithm of 
the system is shown in figure 1: 



Fig. 1. The architecture of the recomedation system. 

 
  
 Raw data is sent to the system input. This data is divided 
into three categories: 

• Images; 
• Text; 
• Geotags and ratings. 

 To identify user interests, images and text will be 
processed by machine learning modules. Image processing 
involves a module that will recognize objects in the image. 
Text processing includes two submodules: recognition of the 
main subject of the text and recognition of the tone of the 
text (positive or negative). 
 All processed data will be combined by a unique 
identifier (id). As a result, this will create a target tables that 
will contain the following information: 

• What the user posts; 
• What the user writes about and in what key; 
• What the user evaluates positively; 
• What the user evaluates negatively; 
• Geotags attached to the user's records. 
This data will help you identify user groups based on 

their interests. You can use interest groups to recommend 
new publications, recommend various products, and so on. 

It is worth noting that MySQL [6] relational database 
was chosen for storing information. Moreover, images are 
not stored directly in the database, but are stored in the file 
system. The database stores only links to images. Machine 
learning modules are written in Python, as this language 
offers a wide range of tools for data processing. 

IV. MACHINE LEARNING MODULES 
 Let's take a closer look at how machine learning modules 
work for image and text processing. 

A. Module for recognizing objects in an image. 
The pre-trained Inception-v3 [7] model was used for 

recognizing objects in images. This is one of the most 
popular models for recognizing objects in images [8]. This 
model achieves an accuracy of more than 78.1% on the 
Imagenet dataset. The model has been trained in 1000 [9] 
classes. The use of the pre-trained model is due to the fact 
that the model has good performance, has open source code, 

is easily integrated into existing solutions, and works fast 
enough (about 1-2 seconds for 1 image on Intel core i7). 

When analyzing images, this model outputs the top 
prediction classes with the highest score value. Within the 
recommendation system, only the value with the highest 
score was recorded. An example of how the model works is 
shown in figure 2: 

Fig. 2. Example of how the image recognition model works. 

 
In total, 127 photos from the original data set were 

processed using this model. Of the 1000 classes available in 
the model, 87 images were recognized. The average score 
value for all data is about 0.49. Information about 
recognized objects is shown in the figure: 

Fig. 3. The recognized objects. 

 
The most popular "chainlink fence" images shown on 

the chart are a classifier error, such images have a very 
small score. The most common objects are the sea, the 
coast, cars, and architectural objects. In the data set under 
consideration, the results of the classifier were analyzed. 
Correctly predicted values had a score greater than 0.5, so 
these images were considered correctly recognized and 
taken into account in the future (there are also incorrectly 
recognized images, but only about 10% of them).  

All data was written to a MySQL table with the 
following fields: 

• id; 
• photo_id; 
• photo_desc; 
• score. 

Where id is a unique identifier, photo_id is a foreign key 
from the photo table, photo_desc is the name of the 
recognized object, and score is the value of score. 

B. The analysis module of text subject 
Working with text is a more complex topic than image 

recognition, so there are no ready-made models here. This is 
because each language has its own grammar and it is 
difficult to adapt one model for all languages at once. In our 
case, the entire text was in Russian. However, there are 
various algorithms that can be adapted to your data and 
trained. To highlight the main topic of the text, a model 
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based on the Latent Dirichlet Allocation (LDA) [10] 
algorithm was used. The main idea of this algorithm is that 
each document is considered as a set of topics in a certain 
proportion. Each topic is a set of the most common word 
and each document consists of a specific set of words [14]. 

The origin data set cannot be passed directly to the 
model. First, you need to additionally process the text: 

• Eliminate unnecessary characters (punctuation 
marks); 

• Remove stop words (conjunctions, particles, 
etc.); 

• Form stable phrases; 
• Make lemmatization. 

The simple_preprocess() method of the Gensim library 
[11] was used to remove punctuation and tokenize the text. 
To delete stop words, a set of stop words from the nltk [12] 
package was used. Bigrams and trigrams were formed as 
stable phrases using the Gensim library. The ru2 model from 
the spacy package was used for lemmatization. 

The main input data for the LDA model is the dictionary 
and corpus. Gensim creates a unique identifier for each 
word in the document, and the corpus shows the frequency 
of occurrence of this word. 

One of the hyperparameters is the number of topics in 
the text. Since we had a fairly small data set, we set 20 
topics. Other alpha and eta (was set to ‘auto’) parameters 
affect the sparsity of topics, chunksize (was set to 100) - the 
number of documents in each training chunk, and passes 
(was set to 10) - the total number of training passes. 

To visualize the result, an interactive diagram was built 
using the pyLDAvis [13] package, which is shown in figure 
3: 

Fig. 4. Visualization of the LDA model operation. 

 

  
Fig. 5. Visualization of the LDA model operation. 

 
 It is convenient to use the coherence metric to evaluate 
the model performance. As a result, the coherence metric of 
the model was 0.6561.  
    Additionally, an LDA model was built for each user 
individually, and the list of topics was set to 1. The 
coherence metric was also calculated for each model. The 
average value of this metric for all models was 0.6585. Data 
with the selected topics was written to a MySQL table. 

C. The analysis module of text sentiment 
A convolutional neural network was used to analyze the 

tone of the text [15, 16, 17, 18]. The Word2Vec library was 
used to create the feature space. The training was conducted 
on a corpus of words based on Russian-language messages 
from Twitter, which contains 114991 positive and 111923 
negative tweets, as well as 17639674 unmarked tweets [19]. 
Before training, all data was pre-processed (reduced to 
lowercase, replacing links to the token, etc.). The Word2Vec 
model was trained using the Gensim library. The Keras 
library [20] was used to build the neural network. This 
model, trained on tweets, was applied to text messages from 
the data set in question. The model metrics are shown in 
figure 4: 

Fig. 6. Metric models the tone of the text. 

 



This model was used to process the original data set that 
contained comments. As a result, the following results were 
obtained: 

Fig. 7. The results of the model determine the tone of the text. 

 
In this case, the abscissus axis shows the percentage 

predicted by the model, and the ordinate axis shows the 
number of similar comments. As you can see, most of the 
comments in the provided data set had a mostly neutral 
accent (values between 0.3 and 0.7 were taken as neutral, 
this data was viewed manually). 

The trained model was used on the source data. All 
results were written to a MySQL table. 

V. RESULTS 
The results of all three models were recorded in MySQL. 

All data is combined with a single id. This way we can now 
distinguish user groups based on their interests. As a result 
the database contains the following tables: 

• Post. This table stores the id, photo and / or 
text, rating, geolocation (if available), and 
author of the publication; 

• Comment. This table stores the id, publication 
id, text, rating, and comment author; 

• Rating. This tables stores id, user id, photo id 
and rating (negative, positive or neutral); 

• Object in the photo. This table stores the id, 
information about objects in the image (this 
information was obtained using the model), and 
the image id; 

• Main theme of the text. This table stores the id, 
the main subject of the text, the type of post 
(post or comment), and the id of the post or 
comment. 

• Tone of the text. This table stores the id, the 
tone of the text, the type of post (post or 
comment), and the id of the post or comment. 

Let's look at an example of making recommendations 
using these tables. Let's say that we create an individual 
recommendation system to recommend interesting authors. 
To do this, we need to select what the user posts and what 
they rate positively (posts and comments). Then we need to 
find authors who publish similar images and recommend 
such authors to the user. For example, if these are sea coasts, 
we can use the following SQL query: “select 
distinct(photo.userid) from photo_desc, photo where 
(photo_desc.photo_desc like '%coast%' or 
photo_desc.photo_desc like '%sea%') and pho-

to_desc.photo_id=photo.id and score > '0.5'”. 3 such users 
were found in the data set under consideration: 

Fig. 8. Result of the SQL query. 

 
Another example of using this system is searching for a 

target audience. Let's say we want to find an audience for 
advertising a guitar store. Then we look for users who 
publish photos of guitars, write about them, or positively 
evaluate publications with guitars. You can also use 
information about geotags. In other words, we filter 
additionally those users who live near the guitar store. 

VI. CONCLUSION 
As a result, we implemented a recommendation system 

that allows us to identify target groups of users. The process 
of data processing by several machine learning models was 
considered. The Concept-v3 model was used for image 
processing, an LDA-based model was used to highlight the 
subject of the text, and a neural network-based model was 
used to determine the tone of the text. The model results 
were used for building SQL queries. The results of all 
models in the test data set were checked manually. For the 
object recognition model, the extreme score value was set to 
0.5. For the text tone recognition model, the values 0-0. 3 
were set for negative text, 0.3-0.7 for neutral text, and 0.7-1 
for positive text. 

This system can be used on small projects, since models 
are trained on marked - up data from open sources. In 
addition, the logic of setting up search targets is quite clear; 
it can be performed by any analyst who knows the SQL 
language. This architecture is suitable for almost any 
purpose, whether it is recommending services, searching for 
interesting publications, etc. 

In future plans: 
• Building the process of fully automating the 

launch of model training. To do this, you plan 
to use the Linux scheduler, or 
Jenkins/TeamCity; 

• Implementation of a recommendation system in 
a real project. At this point, the data was 
received as a separate set of values and 
processed on a separate computer. For the full 
operation of the service, it is planned to transfer 
the entire data processing process to an 
industrial server; 

• Analysis of model metrics. After implementing 
this system in the service, it is planned to 
analyze the accuracy of the models. This can be 
tracked by user clicks on the proposed content. 
It will also allow you to conduct A / B tests 
when some users see suggestions of 
recommendations from one model, and others 
from another. These tests will help you identify 
the best-performing models. 
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