
Elicitation of functional requirements from the
application programming interface documentation

for functional testing
1st Evgeny Gerlits

Software Engineering Department
Ivannikov Institute for System Programming of the RAS

Moscow, Russia
gerlits@ispras.ru

2nd Denis Kildishev
Software Engineering Department

Ivannikov Institute for System Programming of the RAS
Moscow, Russia

kildishev@ispras.ru

3d Alexey Khoroshilov
Software Engineering Department

Ivannikov Institute for System Programming of the RAS
Moscow, Russia

khoroshilov@ispras.ru

Abstract—We address a common problem in this paper. The
only available documentation for a computer program consists
of a user API documentation while we need to identify functional
requirements and build test suite to test them. We describe
a technique for functional requirements elicitation from the
user API documentation. Requality software management tool
is exploited in this technique. The tool has been used in several
industrial software verification projects.

Index Terms—requirements elicitation, requirements extrac-
tion, API documentation, Requality, requirements management,
functional requirements, requirements markup, requirements
catalog

I. INTRODUCTION

Many computer programs provide an application program-
ming interface (API). These are operating systems, software
libraries and even social networks, messengers and online-
services. So, let we have a computer program providing an
API. The task is set to create functional tests for a subset of
functions from this API.

API is usually specified in a user API documentation. This
kind of documentation commonly includes overall description
of the computer program and its subsystems, contains some
kind of specifications of classes and should include specifica-
tions of functions or methods. Signatures of functions are de-
clared in a programming language. The behavior of functions
is usually written in a natural language. An API documentation
of high quality should describe reaction of every interface
function for all possible values of the arguments and internal
states of the computer program. A function may react by:

• returning a particular value;
• modifying the internal state of the program;
• generating an exception or returning an error code.
In this paper, we suppose the only written source of the

requirements is the user API documentation. Our experience

in the field confirms these assumptions. A functional require-
ments specification of high quality is almost always available
if it is required by a standard like DO-178C [1].

Software test engineers often extract functional require-
ments from the user API documentation implicitly, i.e. just
by reading and analyzing the text without making an explicit
requirements catalogue. We believe, this approach can be
justified in some cases, for instance, when smoke tests are
to be developed.

However functional testing of high quality implies as-
sessment of completeness of a test suite. A common test
adequacy criterion for functional testing is the percentage of
the requirements verified by the tests. To be able to calculate
the test coverage, every test should somehow be traced to the
requirements it verifies.

As the behavior of functions is described in the user
API documentation in plain text, an additional layer of re-
quirements is needed in which every requirement is isolated
explicitly and has a unique identifier [2]. This layer of require-
ments over the user API documentation is usually called the
requirements catalogue.

In addition, standard ISO/IEC/IEEE 29148-2018 [3] defines
key characteristics of requirements. Some of these character-
istics are difficult to check in plain texts. For instance, these
are completeness, verifiability and traceability.

In this paper, we publish a technique to build a catalog of
functional requirements. To our mind, a technique is a set of
actions aimed at one particular result. The API documentation
is the primary source of the requirements in this technique. The
functional requirements are not explicitly listed in the text of
the API documentation as it is in the functional requirements
specification. So, our technique aims at elicitation of the
functional requirements from the plain text.

Extraction of functional requirements from the plain text is



a challenge. The source of the problems is the focus of the API
documentation on the needs of software users but not on the
needs of software test engineers and developers. It describes
the interface of a computer program. The completeness of a
set of functional requirements is not the primary goal of the
user API documentation.

The task is additionally complicated because of the ambi-
guity, inconsistency and overlapping of some statements in the
text. Deduction of some statements in the text from some other
statements is another problem among many other problems
related to the use of natural language.

This paper is structured as follows. We explain our reasons
to perform this study in chapter 2. The goal of this study and
the reachability criterion for the goal are expressed in chapter
3. In chapter 4, we represent our technique for functional
requirements elicitation. This technique has been elaborated
during a series of industrial projects on software requirements
elicitation. We briefly mention these projects in chapter 5.
We overview investigations related to our study and show the
novelty of our study in chapter 6. We explain why we reach
the goal of this study with our technique and come to some
conclusions in chapter 7. Chapter 8 contains a list of references
to the cited literature.

II. MOTIVATION

To our mind, challenges associated with elicitation of
functional requirements from the API documentation may be
overcome by applying:

• a proper requirements elicitation process;
• effective technical solutions for existing issues;
• automation of labor intensive tasks.
In this paper, we present a requirements elicitation process

elaborated during a number of industrial projects. We also
propose solutions for some issues concearning markup of API
documentation text. We automate routine and labor intensive
tasks with our requirements management solution Requality.

Industrial requirements management tools [22] usually
come along with a requirements management process. These
processes do not directly address the problem of requirements
elicitation from written sources like API documentations or
standards. In this paper, we declare a requirements elicitation
process for our Requality requirements management tool.

III. PROBLEM STATEMENT

Let a user API documentation is given. One should ex-
tract functional requirements from this documentation, build
a catalogue of functional requirements and supplement the
catalogue with new requirements obtained from other sources.
A proper requirements elicitation technique should satisfy to
the following requirements:

1) The technique should form a functional requirements
catalogue in which every requirement has a unique
identifier.

2) The technique should support tracing of requirements
to text fragments from the documentation that represent
this requirement.

Such a traceability relation can be used to estimate
coverage of the documentation text by the requirements
markup.

3) The technique should tolerate possible changes in the
text of the API documentation.
Problems are often discovered in the documentation text
during analysis. The author of the documentation fixes
them and issues a new version of the documentation.
Some text fragments may be changed due to fixes.
These changed text fragments might already be traced
to existing requirements in the previous version of the
documentation. A mechanism is required to transfer the
existing mapping of requirements to text fragments onto
the next (fixed) version of the documentation.

4) The technique should assist in refinement of functional
requirements.
Requirements refinement is the primary way to improve
understanding of the desired functions behavior.

5) The technique should assist in supplementation of the
requirements catalogue with new requirements.
New requirements are those that can not be deduced
from the existing requirements. Every new requirement
improves completeness of the set of requirements.

6) The technique should not rely on a particular natural
language.

IV. REQUIREMENTS ELICITATION TECHNIQUE

In this section, we describe different aspects our technique
for functional requirements elicitation from the user API
documentation.

A. Demo example

All examples in this paper refer to select function from
POSIX [4] standard. This function waits until an event is
registered for one of the file descriptors provided. There are
three types of events:

• a file descriptor is ready for reading;
• a file descriptor is ready for writing;
• and error is registered for a file descriptor.
Function select is complex. It handles different file types

differently. There are several file types:
• regular files;
• sockets;
• terminals and pseudo terminal.

In this paper, we assume for simplicity that select function is
applied to regular files only.

Automation makes it easier and faster to extract require-
ments from the documentation. We apply Requality [5] re-
quirements management tool in our industrial projects. Some
images in this paper are screenshots of Requality graphical
user interface.

B. Requirements catalogue structure

Let us build our requirements catalogue in the form of a
tree [6] in which:

• verticies are requirements;



• an arc between two incident requirements represents the
refinement relation, i.e. the requirement having a higher
depth refines the requirement having a lower depth.

The following conditions should be checked before insertion
of a new requirement into the requirements catalogue:

• the new requirement is interpreted unambiguously;
• the new requirement does not contradict the existing

requirements;
• the new requirement can not be logically deduced from

the existing requirements;
• the new requirement does not semantically intersect with

the existing requirements.
In this chapter, we do not specify methods used to check

the above conditions. Proving each condition is a challenge
but it is often not necessarily. For instance, a requirement may
be labeled as unambiguous if all teem members interpret the
requirement in the same way. A meeting of all teem members
can be appointed to address this issue.

If one of the above conditions is not met, we should fix the
new requirement or the requirements catalogue or both. Thus,
by adding a new requirement to the requirements catalogue:

• we refine another requirement;
• we improve the completness of the set of requirements.

Fig. 1. A fragment of a requirements catalogue

A fragment of a requirements catalogue is depicted on figure
1. Let us look at the sub-tree with the root named SELECT.
The root requirement is refined by two requirements:

• a requirement to the return value of the function;
• a requirement to the value of errno variable after the

function call.
Requality requirements management tool automatically gen-

erates internal identifiers for the requirements. We give
mnemonic names to the requirements. All requirements refin-
ing one requirement should be given unique names. The path
from the root of the requirements catalogue to a requirement
may be used as a link to the requirement from the outside.
For instance, the unique link to EBADF requirement is /Re-
quirements/SELECT/ERRORS/EBADF.

The structure of the API documentation usually determines
the structure of the requirements catalogue up to a certain
level. For instance:

1) The root requirement can be named after the computer
program name. The corresponding requirement formu-
lates the main task, goal or mission of the program.

2) The subsystems or main components of the computer
program can reside on the first level of the requirements
catalogue. The corresponding requirements formulate
the main task or goal of the subsystem or component.

3) Classes and global functions can reside on the second
level. The corresponding requirements formulate the
main task or goal of a class or function.

4) Methods of classes reside on the third level. Functional
requirements for the global functions also start to appear
on the third level.

5) Functional requirements for the class methods start to
appear on the fourth level.

The text describing functions usually structured in some
way. There are two reasons:

• it helps not to lose an important section of information;
• the API documentation is usually generated by a tem-

plate.

For instance, description of select function in POSIX [4]
contains the following structure of headings: NAME, SYN-
OPSIS, DESCRIPTION, RETURN VALUE, ERRORS. Sections
NAME and SYNOPSIS do not contain functional requirements.
Headings RETURN VALUE and ERRORS become child nodes
(requirements) of requirement SELECT. In the next section,
we explain how to formulate requirements RETURN VALUE
and ERRORS correctly.

C. Requirements text structure

Each requirement should have a textual description:

• a non-empty set of text fragments from the documenta-
tion;

• or a manually written text by a template;

Text fragment is a continuous word sequence in a document.
Using Requality one can mark text fragments in a document
and then link them to a requirement. It is possible to switch
between text fragments and corresponding requirements with
a single mouse click. There is, for example, the following sen-
tence If function select ends by time limit then return 0 in the
description of function select. This text fragment is assigned to
the requirement BY_TIMEOUT_RETURNED_ZERO and tends
to describe it properly. Therefore in this case an additional
manual description of the requirement is not mandatory.

In Requality you can supplement requirements by attributes.
A manual description is an example of such an attribute.
We write manual descriptions for functional requirements
according to the following template [7]:

The function/subsystem/system MUST [actions set], [[if
CONDITION]], [while CONDITION], [until CONDITION].
An action can be either:



• a modification of the internal state of the computer
program;

• or return of a specific value from the function;
• or an exception.
A condition can be a first-order logic relation where

predicates are written in a natural language and traditional
conjunction, disjunction and negation are used to form more
complex logical expressions. A condition is skipped if actions
are unconditional. If the subject of the actions is obvious
then the phrase Function/subsystem/system MUST may also
be omitted.

If a set of text fragments from the API documen-
tation is unambiguously argued as a single requirement
by stakeholders and this set of text fragments satisfies
NEW_REQ_VERIFICATION conditions, then this require-
ment may have no manual description. All requirements with-
out text fragments from the API documentation are considered
to come from other sources like an interview with developers
or as a result of the analysis.

Let us look at an example. We assign the root requirement
SELECT to a page header with text select. We found it useful
for understanding to clarify this text fragment by defining
the general purpose of select function: Function MUST wait
UNTIL one of the provided file descriptors is ready to perform
an operation.

Here is another example. A manual description for sub-
requirement ERRORS can be as follows: Function MUST write
the unique error code into variable errno if an error happened.

Sometimes it is more precise and simpler for understanding
to represent requirements in the form of tables, images and
models. Requality supports tables and arbitrary images in
manual descriptions of requirements.

Every text fragment may be linked to one and only one
requirement. All text fragments should be linked to require-
ments. This is the necessary condition to finish the require-
ments elicitation process. This condition contributes to the
completeness of the requirements set.

D. Heuristic technique

We formulate a set of heuristics in this section that make
a requirements elicitation technique effective. We tried to
implement them in our technique.

1) Attempts to achieve the best possible requirements qual-
ity characteristics are often irrational. The quality of
requirements should be enough to achieve the planned
testing quality defined in the completeness criterion.
The API documentation is not supposed to contain a
complete set of functional requirements. Therefore the
authors of the documentation, designers, developers and
test engineers become an important source of functional
requirements. They help to elicit and improve the re-
quirements catalog [8].

2) The use of special requirements management tools like
Requality greatly facilitates and simplifies the require-
ments elicitation process and the maintenance of large
requirements catalogs.

3) Improvement of the API documentation is required to
improve the quality of the requirements extracted from
that documentation.

4) Representation of some requirements in a more suitable
form rather than textual one and visual modeling of
unclear requirements help to improve the requirements
quality [7]. Effective non-textual requirements represen-
tations include tables and formulas. Data flow diagrams
[9], UML action diagrams, UML state diagrams, deci-
sion tables [10] and other models [11] can be used to
model different aspects of requirements.

5) A group work on a complex problem like requirements
elicitation is efficient since it implies mutual assistance
and participation of engineers having complementary
qualifications. However an excessive team may have
a negative impact on the efficiency of requirements
elicitation.

6) The use of a task management system, bug tracking
system and a version control system helps to support
controllable, goal-oriented, responsible interaction of
team members and to meet project deadlines.

E. Roles of participants

The process of requirements elicitation is a process of
organized and controlled interaction of participants:

1) Requirement analyst (analyst):
• helps technical project manager to assign priorities

to functions;
• extracts functional requirements from the API doc-

umentation;
• supplements the requirements catalog with require-

ments from other sources;
• reveals issues in the requirements catalog and fixes

them by himself;
• reveals issues in the API documentation by himself

and makes the author of the API documentation
responsible for correcting those issues;

• manages and actively participates in requirements
verification procedures.

2) Author of the API documentation:
• creates the API documentation;
• reveals issues in the API documentation by himself;
• fixes issues in the API documentation;
• as an important source of functional requirements

provides them to the analyst;
• participates in requirements verification procedures.

3) Test engineer:
• formulates a test completeness criterion;
• traces tests to requirements;
• as an important source of functional requirements

provides them to the analyst;
• reports issues found in the requirements catalogue

during the testing process and makes the analyst
responsible for correcting those issues;



• helps technical project manager to assign priorities
to functions;

• participates in requirements verification procedures.
4) Developer of the computer program (developer):

• as an important source of functional requirements
provides them to the analyst;

• answers to the questions about the implementation
of the computer program;

• helps technical project manager to assign priorities
to functions;

• participates in requirements verification procedures.
5) Technical project manager (manager):

• ensures the requirements elicitation process to meet
its deadline;

• assigns priorities to functions;
• organizes productive interaction of the team mem-

bers.
The analyst or the author of the documentation creates a

task in a bug tracking system for every issue found in the API
documentation. The author of the API documentation becomes
responsible for fixing the issues. The developer helps to re-
solve the issues. The bug tracker records all stages of the issue
life-cycle from assigning a responsible person to confirmation
that the error has been fixed in a new documentation version.

Likewise the test engineer reports all issues found in the
requirements catalogue into the bug tracking system and
assigns the analyst to be responsible for fixing those issues.

The authors of the API documentation use a version control
system to jointly work on the API documentation. A new
release of the API documentation is usually issued along with
a new version of the computer program.

Likewise analysts use the version control system to jointly
work on the requirements catalogue. A new release of the
requirements catalogue is usually issued before transferring
the requirements catalogue onto a new version of the API
documentation.

The manager creates a central repository where he saves
the project technical requirement, contacts of the participants,
information about the software used in the project, links to
valuable resources, local project documentation and other. The
manager creates the following tasks in a task management
system:

• to mark up documentation for certain functions according
to their priorities;

• to test functions for which requirements are ready.
The analyst creates the following tasks in the task manage-

ment system:
• to verify the requirements extracted for certain functions;
• to supplement the requirements extracted for certain

functions (meetings, consultations, interviews, question-
naires).

F. Requirements elicitation process

The requirements elicitation process begins from a prepara-
tory stage.

1) Preparatory stage: In the first step of the preparatory
phase, the analyst structures functions provided for testing
and requirements analysis. Functions are usually divided into
subsets that correspond to individual subsystems. Subsets can
also form functions performing related operations: send and
receive a message, write and read some data, set and unset an
attribute.

In the second step of the preparatory stage, the analyst
builds a list of pages in the API documentation that may
contain functional requirements for each interface function.
In practice, interface functions are described in a single and
separate page in the API documentation.

In the third step of the preparatory phase, the manager
assigns the priorities to the interface functions. The analyst,
the tester and the developer are also actively involved in the
prioritization process. Priorities can be assigned to subsets of
functions rather than to individual functions.

The requirements elicitation process consists of many tasks
that are performed by the participants. Every task is linked
to one interface function or to a number of related interface
functions. The function’s priority determines the task’s prior-
ity. As a result, functions with higher priorities are handled
first.

Prioritization depends on different factors: available human
and time resources, criticality of subsystems or functions,
complexity of subsystems or functions, the size of the doc-
umentation text describing a function, restrictions imposed by
the project technical requirement document. Priorities may be
changed during the requirements elicitation process.

The API documentation is the foundation on which the
requirements catalogue is built. If the quality of the API docu-
mentation is low, then the analyst reveals systemic problems in
the API documentation in the fourth stage of the preparatory
stage. The problem is considered to be systemic if it affects
a significant number of functions or functions having high
priorities. The person responsible for fixing these problems is
the author of the API documentation.

2) Requirements markup: The analyst marks up require-
ments in the documentation according to the priorities of the
interface functions. Let us consider some challenges in the
requirements markup process.

Is there a functional requirement in a text fragment
or a set of text fragments? Some researchers suggest to
focus on the keywords that may indicate the presence of a
requirement in a sentence [13]. In this case the text of the API
documentation should be written according to some syntax
rules. For example, the requirements in POSIX [4] standard
can be identified by the verb must: Upon successful completion
of the function, pselect () and select () must return the total
number of bits specified in bitmasks.

In general, a requirement can not be recognized in a given
set of text fragments on the basis of syntax rules. A functional
requirement is a statement about what the computer program,
a subsystem or a function should do under a condition or
unconditionally. The object of actions in a software system



is data: a return value of a function, the internal state of the
computer program, an exception, a message.

Let us assume that a set of text fragments formulates one
or more requirements if:

• an action is performed or a number of actions;
• the subject of the action is the computer program, a

subsystem or a function;
• the object of the action is some data;
• the action should be performed under a condition or

unconditionally.
How a set of text fragments should be handled which can

not be interpreted as a requirement? To be able to control
the completeness of documentation markup, it is necessary to
separate this set of text fragments from marked and unmarked
text fragments. Requality tool supports nodes of type text node.
All text fragments that does not contain any requirements are
assigned to nodes of this kind.

How a single text fragment should be handled which
describes a behavioral aspect of several functions? For
example, this is the case for select and pselect functions in the
POSIX [4] standard. Separate requirement sets are necessary
to be able to trace tests checking two different functions.

Requirements management tools do not usually allow to
assign one text fragment to several requirements. Requality
allows to copy and paste sub-trees of the requirements cata-
logue. The copies of the requirements duplicate the original
requirements except that the links from the requirements to the
text fragments are not copied, i.e. the text fragments remain
associated with the source sub-tree only.

How should the analyst resolve a nontrivial issue found
in the API documentation? Some examples of nontrivial
issues are the following: unclear meaning of a certain text
fragment, a contradictory statement, an ambigous statement.
In this case, the analyst creates a task in a bug tracking system,
makes the author of the API documentation responsible for it
to be resolved and sets the priority for the task in accordance
with the priority of the function.

The analyst often understands how a particular issue in the
API documentation can be fixed. For example, it can be a
duplicate information. Should the analyst refine the text
fragments manually in the requirements catalog or should
a task be created in a bug tracking system and assigned
to the author of the API documentation to fix the issue?
The analyst is better to refine the text fragments manually in
the requirements catalog. Then the analyst can create a low-
priority task in a bug tracking system in order this issue to be
fixed in the API documentation.

The context of text fragments can affect their meaning.
Should text fragments be manually refined in the require-
ments catalogue or should the context be always taken
into account? In general, we recommend to clarify context-
dependent text fragments in the requirements catalog since
the size of the context is not always bounded with a single
paragraph and the context itself may be ambigous.

3) Suspension criterion for the requirements markup of a
function: The requirements markup process for a function

is gradually approaching a state when further progress is
either limited or difficult. The main natural reason for this
is the limited function description in the API documentation.
In addition, a large number of issues may slow down the
requirements markup process for a function.

Criterion IV.1 (Suspension criterion for the requirements
markup of a function). For every text fragment in the function
description holds:

• either the text fragment is marked up, i.e. referred to a
requirement or a text node;

• or a task has been created in a bug tracking system
concearning the text fragment.

The criterion can be more complex. Some factors that can be
used in the suspension criterion for the requirements markup
of a function are the following:

• the number of issues revealed in the function description;
• the amount of marked-up text;
• the amount of time spent on elicitation of requirements

for the function;
• the complexity of the function defined by the developer.

At the beginning of the next markup iteration, it is useful
to schedule some time to self-testing the existing markup of
the function. Breaks help to take a fresh look at the API
documentation and the existing requirements.

4) Transfer of requirements catalog onto a new version of
API documentation: The transfer of requirements to the new
documentation version should be automated, as this is a routine
and time-consuming process. We use the Requality tool for
that purpose. One can select two document versions and start
the transferring process. After the process has been finished,
the tool shows a view where one can look over the transfer
status for all text fragments in the document. There are several
possible statuses:

• red: text fragments that have not been found in the new
version of the documentation;

• yellow: text fragments for which some text has lost in
the new version of the documentation;

• green: text fragments that have been completely trans-
ferred to the new version of the documentation.

Some of the transfer statuses require additional manual
actions. Status ”red” assigned to a text fragment requires a
new text fragment to be selected in the new version of the
documentation. As an alternative, one can confirm that the
text fragment is no longer present in the new version of the
documentation. Similarly, one should confirm that a yellow
text fragment has really been changed or should reselect it in
the new version of the documentation.

5) Verification of requirements catalog for a function:
When the function description in the documentation has been
completely marked up, it is necessary to decide whether the re-
quirements are ready for testing or the catalog of requirements
for the function should be verified first. A high complexity
of a function is the key factor in favor of verification. The



following values can be used to estimate the complexity of a
function:

• the time spent to build the requirements catalogue for the
function;

• the number of issues in a bug tracking system related to
the function;

• the size of the function description in the API documen-
tation;

• the number of completed iterations of the requirements
elicitation process;

• an assessment of the function’s developer.

There are several requirements verification methods. One
of the most effective is the formal inspection [14]. A list of
issues is formed as the main result of a verification procedure.
All issues should be written into a bug tracking system. If the
number of issuies is high, an additional verification procedure
may be planned.

We recommend to verify requirements according to a pre-
liminary created plan. Such a plan should contain:

• the object of verification, i.e. the requirements for a
function or a set of functions;

• the place, the date, the start and the finish times;
• a list of participants and their tasks;
• the subject of verification, i.e. the requirements properties

to be verified such as uniqueness, completeness, consis-
tency;

• verification methods like formal inspection [14], equiv-
alence partitioning [15], boundary value analysis [16],
decision table analysis [10], meetings [12], consultation,
interview [17], questionnaires [17] [18] and others.

6) Necessary conditions to stop the requirements elicitation
process for a function: The complexity of a function usually
allows a trained analyst to realize its behavior at a certain
degree of detail. This understanding of how the function
works is essentially an informal behavioral model of the
function. The analyst should not have any doubts about the
correctness of this behavioral model and there should not
be any tasks in the bug tracking system dealing with this
function respectively. In addition, in order all participants of
the requirements elicitation process to have the same or similar
behavioral models of the function, the requirements catalogue
for the function should be jointly verified.

Proposition IV.1 (Necessary conditions to stop the require-
ments elicitation process for a function). After stopping the
requirements elicitation process for a function, the following
conditions should hold:

• the markup of the function description in the API docu-
mentation should have been completed;

• all tasks in the bug tracking system dedicated to correc-
tion of the function description in the API documentation
should have been completed;

• all tasks in the bug tracking system dedicated to correc-
tion of the requirements catalogue for the function should
have been completed;

• all tasks in the task managment system dedicated to
supplementation of the requirements catalogue for the
function from other sources should have been completed;

• all requirements verification tasks for the function in the
task management system should have been completed and
the subject of the verification included:

– unambiguity of the requirements;
– the accuracy of the leaf requirements in the require-

ments catalogue;
– consistency of the set of requirements;
– completeness of the set of requirements.

• the function has been tested and all found erros have
been fixed.

7) Feedback from functional testing: API testing is always
automated. Test programs are to be developed. The checks
in these programs should be written in accordance with the
functional requirements. Tracing establishes links between
tests and requirements being verified. Thus, testing allows
us to naturally confirm such an important characteristic of
requirements as verifiability.

The test engineer can discover a number of issues in the
requirements during the process of requirements-based test
design. In addition, inconsistencies between the requirements
and the observed behavior of the computer program can be
found during testing. Some of these inconsistencies may be
due to issues in the requirements. The test engineer should
create a task for all found issues in a bug tracking system.
The analyst should be made responsible to fix the issues. The
priority for a task is set in accordance with the priority of the
function in which the issue has been found.

The process of testing a function improves understanding
of the behavior of the function. The test engineer becomes an
important source of functional requirements for the function.
Therefore the analyst should make the test engineer to be a
participant of requirements verification and supplementation
procedures. This will help to ensure the completeness of the
requirements catalogue.

8) Necessary conditions to stop the elicitation process:

Proposition IV.2 (Necessary conditions to stop the elicitation
process). After stopping the requirements elicitation process,
the following conditions should hold:

• the markup of the API documentation or its target part
should have been completed;

• all tasks in the bug tracking system dedicated to cor-
rection of the API documentation should have been
completed;

• all tasks in the bug tracking system dedicated to cor-
rection of the requirements catalogue should have been
completed;

• all tasks in the task managment system dedicated to
supplementation of the requirements catalogue from other
sources should have been completed;

• all requirements verification tasks in the task management
system should have been completed;



• all target API functions should have been tested and all
found errors have been fixed.

V. APROBATION

Our technique for functional requirements elicitation has
evolved during a number of industrial projects. Those projects
have been performed by the authors of this study and other
researchers from the software engineering department of IS-
PRAS [19].

The finally formed techniqe has recently been applied to
extract requirements for input-output multiplexing functions
from POSIX [4] standard. These are the following functions:

• poll;
• select;
• pselect.
The above functions were implemented in a real time oper-

ating system. The API of the operating system was described
in an API documentation. As a result of a multiiterative
requirements elicitation process a requirements catalogue con-
sisting of 317 functional requirements has been built. Dozens
of erros were found in the API documentation:

• incompleteness of information;
• inaccuracy of statements;
• conflicts with POSIX standard.
Similar work has been performed for function semReport-

Status. This function outputs information about semaphore
objects opened in the operating system.

We have also used Requality to build requirement cata-
logues for some parts of the following standards and speci-
fications: ARINC 653 [21], TTCN-3 interface specifications,
several RFCs including RFC 826, RFC 760 and RFC 768.

VI. RELATED WORK

The subject area of this study is methods for requirements
elicitation from texts written in a natural language. Researchers
have being investigated this field for decades. One way or
another, individual ideas or approaches expressed in this paper
might already be published in books or applied in practice.
However, we have failed to find any requirements elicitation
methods characterized as follows:

• the method is aimed at a specific type of documentation,
i.e. the user API documentation;

• the method uses feedback from functional testing to
enhance the quality of requirements;

• the method is effective in practice due to the use of
a specialized software tools like Requality requirements
management tool.

Our research group has being developed Requality require-
ments management tool. We know for sure there are no
publications concerning techniques for requirements elicitation
on the basis of this software tool. We fill this gap by publishing
this study.

There are several industrial requirements management tools
alternative to Requality [22]. The main usage scenario of most
of these software tools is development of requirements for a

new software or hardware systems from scratch. Requirement
management tools assist in building requirements catalogs and
support relations between requirements originated at different
levels of the software life cycle. These are:

• business requirements;
• system requirements;
• functional requirements.

Requirements management tools operate during the whole life
cycle and propose many features including version control,
analysis of relations, various reports and etc. Requlity has also
been used to develop requirements for new software systems
from scratch. In turn, other requirements management tools
may also be used to mark up API documentation in order to
elicit functional requirements from it.

NLP (natural language processing) methods [23] are widely
used to extract various information like requirements from
texts written in a natural language. NLP methods are usually
well automated therefore they effectively analyze big text data.

Information about hierarchy of classes (resources) and
methods of these classes is extracted from the API documen-
tation in study [24]. Methods are divided into categories:

• create a resource;
• lock access to a resource;
• modify a resource;
• unlock access to a resource;
• delete a resource.

Hierarchy of classes is determined by inheritance of classes.
Information is extracted with NLP methods. Then an automa-
ton is created for every resource on the basis of the above
information. The automaton is then used to reveal defects in
the computer program. For instance, using a resource before
creating it is a defect.

Our study and work [24] are similar in that they analyze the
same object, i.e. the API documentation. The both studies have
the same goal to improve the quality of computer programs.
However the methods to reach this goal are different. We look
for functional requirements. The authors of study [24] look
for defects.

Study [24] illustrates abilities of automatic text analyzers
with NLP methods. Skills of requirements analyzis are still
required nowadays to build a relatively complete catalogue
of functional requirements. As of our technique, it is labor
intensive and difficult to scale.

NLP methods can be used to verify some characteristics
of requirements. For instance, QuARS [25] software tool
can reveal ambiguity of text and subjectivity of text (not a
requirement but a personal opinion). LOLITA [26] software
tool analyzes text and incorporates it in a semantic net [27].
Then possible text interpretations are looked up.

Complex lexis, syntax and morphology of some natural
languages and many exceptions from language rules make it
more difficult to apply NLP methods. From one hand, our
technique does not have these restrictions. From the other
hand, all these problems become responsibilities of the analyst.

Application of several requirements elicitation techniques
gives synergistic effect. The choice of a complementary tech-



nique depends on human resources available, i.e. the number
of engineers, their experience, qualification and etc. Tech-
niques effectively complementing our requirements elicitation
technique do not strictly relate to mark up of texts. Among
them are the following methods:

• formal inspection [14];
• equivalence partitioning [15];
• boundary value analysis [16];
• decision table analysis [10];
• meeting [12];
• consultation;
• interview [17];
• questionnairies [17] [18].
Correction of problems in the API documentation is an

important part of our requirements elicitation technique. There
are methods specially designed to reveal errors in the API doc-
umentation. For instance, texts written in a natural language
are analyzed with NLP methods and source code snippets are
analyzed by a code analyzer in study [28]. Combination of
two types of analyzes allows for inconsistencies to be found
between a text fragment and a source code snippet.

A method for requirements elicitation from the user docu-
mentation for a legacy system is proposed in study [29]. The
requirements extracted are then used to create a functional
specification document for a new system similar to the legacy
system. A number of heuristics forms the basis of the method.
Text structure, key words, lexical, syntactical and other text
characteristics are used to extract key features of the system,
functional requirements, use cases and nonfunctional require-
ments according to those heuristics.

VII. CONCLUSION

In this paper, we propose a technique for functional re-
quirements elicitation from the user API documentation. We
have elaborated our technique during a number of industrial
projects. Using this technique a requirements analyst can
create a catalogue of functional requirements suitable for func-
tional testing. Markup of all documentation text or the target
part of it is a necessary condition to build the complete set of
requirements. An acceptable quality of functional requirements
is obtained due to systematic verification procedures and
feedback from functional testing.

The functional requirements catalogue is built in the form of
a tree in which every requirement has a unique identifier. This
tree structure assists in refinement of functional requirements.
A requirement can be defined by selecting a set of text
fragments from the API documentation or by manually writing
a text by a template.

The requirements elicitation process proposed in this study
is accompanied with correction of the API documentation. We
use Requality requirements management tool to transfer the
requirements catalogue onto a new corrected version of the
API documentation.

Many problems appear during the requirements elicitation
process. We have proposed solutions for some text mark up
problems in this paper. We use third party methods like formal

inspection [14], equivalence partitioning [15], boundary value
analysis [16], decision table analysis [10], meeting [12], con-
sultation, interview [17] and questionnairies [17] [18] to verify
properties of requirements like unambiguity, completeness,
consistency and accuracy.

REFERENCES

[1] DO-178C. Software Considerations in Airborne Systems and Equipment
Certification, RTCA SC-205 and EUROCAE WG-12 Std., 01 2012.

[2] V. Kuliamin, N. Pakulin, O. Petrenko, and A. Sortov, “Formalizacija
trebovanij na praktike,” Preprint Instituta sistemnogo programmirovanija
RAN, vol. 13, 2006.

[3] ISO/IEC/IEEE International Standard - Systems and software engineer-
ing – Life cycle processes – Requirements engineering, ISO and IEC
and IEEE Std., 11 2018.

[4] Portable Operating System Interface, ISO and IEC and JTC 1/SC 22
Std., Rev. 9945:2009, 09 2009.

[5] D. Kildishev and A. Khoroshilov, “Developing requirements
management tool for safety-critical systems,” in Proceedings of 2019
Actual Problems of Systems and Software Engineering (APSSE), 2019.
[Online]. Available: https://doi.org/10.1109/APSSE47353.2019.00013

[6] A. Khoroshilov and D. Kildishev, “Formalizing metamodel of require-
ments management system,” Proceedings of ISP RAS, vol. 30, no. 5, pp.
163–176, 2018.

[7] K. Eugene-Wiegers and J. Beatty, Software Requirements. Microsoft
Press, 2013.

[8] Z. Zhang, “Effective requirements development-a comparison of re-
quirements elicitation techniques,” in Proceedings of Software Quality
Management XV : software quality in the knowledge society, 2007, pp.
225–240.

[9] T. DeMarco, Pioneers and Their Contributions to Software Engineering,
M. Broy and E. Denert, Eds., 1979.

[10] R. Shiffman and R. Greenes, “Improving clinical guidelines with logic
and decision-table techniques: Application to hepatitis immunization
recommendations,” Medical Decision Making, vol. 14, no. 3, 1994.
[Online]. Available: https://doi.org/10.1177/0272989X9401400306

[11] J. Beatty and A. Chen, “Visual models for software requirements.
edition: 1,” 2012.

[12] R. Ocker, J. Fjermestad, S. Hiltz, and K. Johnson, “Effects
of four modes of group communication on the outcomes of
software requirements determination,” Journal of Management
Information Systems, vol. 15, 6 1998. [Online]. Available:
https://doi.org/10.1080/07421222.1998.11518198

[13] N. Niu and S. Easterbrook, “Extracting and modeling product line
functional requirements,” 09 2008, pp. 155–164. [Online]. Available:
https://doi.org/10.1109/RE.2008.49

[14] M. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, 1976. [Online].
Available: https://doi.org/10.1147/sj.153.0182

[15] D. Richardson and L. Clarke, “A partition analysis method to increase
program reliability,” in Proceedings of the 5th International Conference
on Software Engineering, ser. ICSE ’81. IEEE Press, 1981, p.
244–253. [Online]. Available: https://doi.org/10.5555/800078.802537

[16] S. Reid, “An empirical analysis of equivalence partitioning,
boundary value analysis and random testing,” in Proceedings Fourth
International Software Metrics Symposium, 1997. [Online]. Available:
https://doi.org/10.1109/METRIC.1997.637166

[17] S. Sharma and S. Pandey, “Article: Revisiting requirements elicitation
techniques,” International Journal of Computer Applications, vol. 75,
no. 12, pp. 35–39, August 2013.

[18] Y. Theng, S. Foo, D. Goh, and J.-C. Na, “Handbook of research on
digital libraries: Design, development, and impact,” pp. 287–297, 01
2009. [Online]. Available: https://doi.org/10.4018/978-1-59904-879-6

[19] [Online]. Available: https://www.ispras.ru/
[20] A. Godunov and V. Soldatov, “Baget real-time operating system family

(features, comparison, and future development),” Programming and
Computer Software, vol. 40, no. 5, pp. 259–264, 2014. [Online].
Available: https://doi.org/10.1134/S036176881405003X

[21] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor, “A
portable arinc 653 standard interface,” in Proceedings of the 2008
IEEE/AIAA 27th Digital Avionics Systems Conference, 2008. [Online].
Available: https://doi.org/10.1109/DASC.2008.4702767



[22] N. Gorelits, D. Kildishev, and A. Khoroshilov, “Requirements
management for safety-critical systems. overview of solutions,”
Proceedings of ISP RAS, vol. 31, no. 1, pp. 25–48, 2019. [Online].
Available: https://doi.org/10.15514/ISPRAS-2019-31(1)-2

[23] J. Eisenstein, Introduction to Natural Language Processing. Cambridge,
Massachusetts, London, England: The MIT Press, 2019.

[24] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring specifications
for resources from naturallanguage api documentation,” in Proceedings
of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, 2009, pp. 307–318. [Online]. Available:
https://doi.org/10.1109/ASE.2009.94

[25] G. Lami, “Quars: A tool for analyzing requirement,” Software
Engineering Institute, Tech. Rep., 2005. [Online]. Available:
https://doi.org/10.1184/R1/6582770.v1

[26] L. Mich, “Nl-oops: From natural language to object oriented
requirements using the natural language processing system lolita,”
Natural Language Engineering, vol. 2, no. 2, pp. 161–187, 1996.
[Online]. Available: https://doi.org/10.1017/S1351324996001337

[27] L. Schubert, R. Goebel, and N. Cercone, Associative Networks.
Academic Press, 1979, ch. The structure and organization of a
semantic net for comprehension and inference. [Online]. Available:
https://doi.org/10.1016/B978-0-12-256380-5.50010-4

[28] H. Zhong and Z. Su, “Detecting api documentation errors,” in Proceed-
ings of the 2013 ACM SIGPLAN international conference on Object
oriented programming systems languages and applications, 2013, pp.
803–816.

[29] I. John and J. Dörr, “Elicitation of requirements from user documen-
tation,” in Proceedings of the the Ninth International Workshop on
Requirements Engineering: Foundation for Software Quality, vol. 3,
2003.


