
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Verification Automation of UML Diagrams Created

by Students

Tatiana Gasheva

Mathematics and Mechanics Faculty

Perm State University

Perm, Russia

gasheva_99@mail.ru

Dmitry Vlasov

Mathematics and Mechanics Faculty

Perm State University

Perm, Russia

dima.vlasov@icloud.com

Andrey Otinov

Mathematics and Mechanics Faculty

Perm State University

Perm, Russia

otinovandry@gmail.com

Natalia Datsun

Computer Science Department

Mathematics and Mechanics Faculty

Perm State University

Perm, Russia

nndatsun@inbox.ru

Abstract— Unified Modeling Language (UML) is the current

notation standard (ISO/IEC 19505:2012) to visualize models in

software development. UML provides essential guidelines and

rules to visualize and understand complex software systems.

This is the reason why it has become part of curricula for

software engineering courses at many universities worldwide.

However, many students, teachers or software developers

make mistakes when constructing or miss these on checking the

correctness of these diagrams. This paper presents software that

can help to solve this problem.

Keywords— verification, UCD, AD, CD

I. INTRODUCTION

UML is a standard that provides system architects,
software engineers, and software developers with tools for
analysis, design, and implementation of software-based
systems as well as for modeling business and similar processes
[1]. This standard is widely used in the software industry.
Today, the systems are becoming more and more complex and
finding errors in models at an early stage can reduce the time
and material costs for development.

On the one hand, it is used in Object-oriented analysis and
design (OOAD) in the development of complex systems [2].
Formal methods are used to validate such models [3], [4].

On the other hand, a preparation of IT professionals
involves the learning modeling process [5] and Model Driven
Architecture® (MDA®) [6]. Studies of student perception of
UML modeling indicate that this process is perceived as quite
complex. This opinion is shared by both computer scientists
[7], [8] and computer science majors [7].

The process of manual verification and validation can take
a considerable amount of time. This is especially evident
during the review of dozens of student models by the teacher.
Therefore, the creation of such a system is actual.

Methods for verification use case diagrams (UCD),
activity diagrams (AD) and class diagrams (CD) are presented
in this article. Verification is defined as “the process of
determining that a model or simulation implementation
accurately represents the developer’s conceptual description
and specification” [9]. This paper focuses on verification each

1 https://openfoam.org/

2 www.ibm.com/software/developer/rosexde/

type of diagram separately, without maintaining consistency
between different UML models. However, all these
verification methods are combined in one system, which
allows to check any of the described types of diagrams,
including in a package mode.

The paper is organized as follows. Section 2 surveys
domain knowledge, existing software for drawing and
verification of UML diagrams. Section 3 describes our
approach to check use case, activity and class diagrams.
Section 4 shows the process of realization of the developing
system and section 5 and 6 conclude the paper.

II. ANALYSIS

A. Domain Knowledge Analysis

An analysis of the subject area was carried out, which
identified and confirmed the need and importance of
developing this system for the following groups of users:
students and teachers [10], IT industry specialists [11].

B. Analysis Mistakes in Creating UML Diagram Made by

Users

Modern approaches to verification student models are
based on the use of catalogs or lists of common mistakes [10],
[11], [12], [13]. An analysis of existing catalogues was carried
out, as well as an own review of this problem based on the
works provided by students of Perm State University. The
result of this study was a list of lexical, syntactic and semantic
mistakes.

C. Analysis Mistakes in Creating UML Diagram Made by

Students

An analysis was carried out of 206 the work of IT students
who create models of information systems based on an object-
oriented approach to modeling.

D. Analysis of Existing Software for Verification of UML

Diagrams

For UC verification, two open source software was
discovered: FOAM1 tool and Rational Rose2.

For AD verification there are analyzed tools such as UML-
VT3, Woflan4.

3 http://www.cs.umd.edu/~rance/projects/uml-vt/
4 https://www.win.tue.nl/woflan/doku.php

In existing publications [14], there are only brief
descriptions of algorithms for verifying CD, and it is
impossible to study and analyze them in detail, since they are
in the private domain. The set of libraries used in private
verification systems: Eclipse (2000 LoC) [15], Java classes
(11500 LoC) [16], Dresden OCL toolkit extensible libraries
(for processing and loading constraints) [17] and MDR (for
importing/exporting UML models from XMI).

These tools did not meet most of the requirements of the
target group of users. This confirmed the actuality of the
development.

E. Analysis of UML Diagram Creation Software Providing

Metadata

The choice of the software that will be used for the
construction of diagrams is an important step in this work,
since the chosen software tool will determine the possibility
and success of further analysis, design and implementation of
the prototype. That is why special requirements were defined
for the selection process of competing modeling systems. The
result of the research in this issue was the choice of the
GenMyModel5. It combines a simple user interface, does not
require installation and has the function to export the diagram
in the required formats. The advantage of this tool is that when
building diagrams, it does not allow you to perform some
actions that can lead to mistakes. Thanks to this, the list of
conditions to be checked can be reduced.

Based on this, it was decided that the input data (XMI and
PNG files) will be generated using the GenMyModel tool.

F. Analysis of UML Diagrams Metadata Exported from

GenMyModel

The data is received in the XML Metadata Interchange
(XMI) format [18]. The analysis of the input metadata was
carried out and, on the basis of the results obtained, the stages
of reading the elements of the diagrams, their unification,
storage and processing in the system was designed and
implemented.

III. METHODS

A. Choosing Types of UML Diagrams for Verification

Automatisation

Not all types of UML diagrams were opted for research.
To automate the verification, two analysis phase models were
chosen - UCD and AD, and one design phase model - CD.
This choice is based on the experience of verifying these
models and the preferences of the authors of this articles [7],
[10].

B. An Approach to Classifying Student Mistakes

We propose to classify three groups of mistakes:

1) Model mistakes: Lexical, sintactic, semantic.

2) Positioning mistakes: Visual presentation and

positioning of diagram’s elements.
Also we will note that the input model does not allow the

full determination of positioning mistakes.

C. Approach for Use-Case Diagram Verification

A research was carried out among the existing UCD
verification methods. For the use case diagrams, the following
were identified: Object-Oriented Reading Techniques

5 https://www.genmymodel.com/

(OORT) [19] and Checklist-Based Reading (CBR) [20] -
reading based on a list of requirements.

Since we have a list of errors, the CBR methodology was
chosen. CBR is a very common method. List of mistakes
should be checked during the verification. CBR provides more
aid and advice to the inspectors than ad-hoc reading and is
therefore a very common technique.

List of mistakes, that can be detected are presented.

1) Lexical: System package is missing. Invalid actor

name: should be represented by a noun, starting with a capital

letter. Incorrect use case name: should be presented as an

action (verb or verbal noun) with a capital letter. Missing

system name (subject name). Using elements not standarted

by UML for UCD. Use cases should be represented by an

appropriate element.

2) Syntactic: No extension point for use case with

extension relation. Missing text at use-case extension point.

Missing text in extension condition. Actor names should be

unique. Use case names should be unique. Using the

inclusion relationship among actors. Using extension

relationships between actors. Finding an actor inside the

system. Using an association relationship between use cases.

A use case has no links to other elements in the diagram. A

use case has no relationship with other diagram elements. A

use case should have an association with an actor, or have an

extension, addition, or inclusion relationship with other use

cases. Using a generalization relationship not between two

actors or use cases. Using an include relationship not between

two actors or use cases. Using an extension relationship not

between two actors or use cases. The actor does not have any

association with use cases.

3) Semantic: A parent use case that has an include or

extension relationship does not have any association

relationship. A use case with an inclusion relation includes

only one use case. Two or more actors with the same set of

associated use cases. The relationship of inclusion and

extension is directed in the wrong direction. Inclusion

relation abuse. Non-hierarchical structure of use cases.
Fig.1 is presented possible UCD students mistakes.

Fig. 1. Example of mistakes in UCD.

D. Approach for Activity Diagram Verification

To solve the AD verification problem, the analysis of
existing methods was carried out, such as the construction of
a Petri net [21], the use of temporal logic [22], as well as graph
transformation systems [23].

For this work we use a subset of UML 2.0 activities. We
consider the initial node, final node, decision node, merge
node, action node, fork node, join node, swimlane, comment
node, flow.

Now we describe the basic idea of the verification process.
For each node in AD, there is a class in our system. These
classes have three parts: class name, attributes, functions.
Class name is a name of node and one of the attributes for
node is token attribute [23] and one attribute is a list of links
on the next objects. For each AD’s node, the object is created
and placed in a graph. The graph’s vertices represent AD’s
nodes and the graph’s edges represent AD’s flows.

The verification is divided into two steps. At the first step
lexical, semantic and partial syntax are checked. Then we
complete checking syntax by modeling token flow through the
graph.

After the model passes the first steps of verification, in
order to continue verification, we impose some restrictions.
The restrictions are as follows.

1) AD must have exactly one initial node, one or more

final nodes and at least one action node.

2) Initial node has no incoming edge and the final node

has no outgoing flow.

3) Action, merge, join and init nodes must have exactly

one outgoing flow.

4) Fork and decision nodes can have any number of

outgoing flows.

5) Action, fork, decision, final nodes should have only

one incoming flow.

6) Each join and merge node can have any number of

incoming flows.

7) Flows can not start and finish in the same node.
If the restriction was violated, we finish verification

without graph checking.

The tokens flow through the graph along the edge
directions from initial to final node. The verification is
completed when all token flows are checked or a mistake is
found. In this case mistakes are the situations when several
tokens appear in one node at once or when a token remains in
the graph upon reaching the final node or when deadlock
occurs (the situation when there is no token can be moved).

According to [23], the graph uses token-flow semantics.
The rules are as follows.

1) At the beginning only the init node has a token. Action

consumes one input token and creates one token in the output

place.

2) Final node consumes one input token.

3) Decision consumes one input token and produces one

in any output place.

4) Merge consumes one token from any input place and

produces one token in output.

5) Join consumes one token from each input place and

creates one token in output.

6) Fork consumes one input token and creates tokens in

each output place.
These rules ensure the token flows through the graph.

Fig. 2 presents the original diagram and the graph.

.

Fig. 2. (a) Sample of AD. (b) Graph represented AD.

The state of the graph at each step can be encoded with a
sequence of zeros and ones, where zero means that the element
is inactive (does not have a token), and one means that it is
active. A stack of current masks and a set of checked masks
are created. At each step, the top mask is taken from the
current masks and processed. The processing’s result is new
masks, that are checked for use early using a set of used masks
and, if they have not been previously used, are added to the
list of current masks.

At each step, all existing tokens are moved to one of the
next nodes. In the case of a decision node, a token can activate
a random element. So it generates several possible next states
that are pushed into the current mask stack.

However, the problem of unpaired use of a joint and a fork
remains. Indeed, when there are several fork nodes
corresponding to one join nodes, the join can be activated. To
figure out this kind of mistake, it was proposed to use tokens
of different colors. It is some additional data that is stored on
the token’s stack. The fork nodes generate a unique color
every time a token passes through it. The output tokens have
the same color, it means that the fork’s color is placed on the
token’s stack of colors. For join node activation it is necessary
that the colors at the top of the stacks have the same color. If
the condition is right the join node becomes activated, and the
output token remains all colors except the top color. In another
case, a mistake occurs and verification is completed.

The list of tracked model’s mistakes are presented.

1) Lexical: The signature starts with a small letter; the

activity’s name begins with a verb; the decision does not have

a question mark; the alternative is not signed; the flow has a

signature, not being an alternative or a condition; the use of

an element that does not belong to AD; the use of special

characters in the naming.

2) Syntactic: There is no initial node or no final node, or

no action nodes; more than one initial node; several decision

nodes in a row are used; the number of incoming or outgoing

flows does not match the required one; the element does not

belong to any participant; the name of the action node, or

participant is not unique; alternatives lead to the same

element; unpaired use of a fork and join nodes; the use of an

empty swimlane.

3) Semantic: Decision’s alternatives are the same.

Fig. 3 and Fig. 4 present possible AD students mistakes.

Fig. 3. The example of AD mistake – inapproper number of output flows.

Fig. 4. The example of AD mistake – impossibility to activate join node.

E. Approach for Class Diagram Verification

There are very few fully automated methods for verifying
CD. Most of the existing solutions require a translation
process into specific data formats that must be performed by a
human. This approach is not suitable, since we need to quickly
verify the diagrams, and the translation process takes a
sufficient amount of time.

The verification process is based on and similar to the
program compilation analysis stage, and it can be divided into
three stages: the first stage is lexical analysis, the second is
syntactic analysis and the third stage is semantic analysis. At
each stage, the corresponding rules will be checked. During
the first stage, metadata is converted into a set of tokens, the
use of invalid tokens, incorrect names, designations and
properties of tokens is detected. During the second stage, the
correctness of creating constructions of the UML language
from a valid set of tokens. And at the final stage of
verification, the semantics of the constructed class diagram is
considered, namely the correctness of the semantic meanings
of words, phrases and elements.

Verification process begins with reading all data about the
model from the XMI file. All properties of the CD tokens can
be retrieved from these data. Already on the basis of these
properties, it will be easy to detect some inconsistencies and
mistakes.

The main point in this method is to designate a set of rules
for constructing UML CD such as to identify all mistakes in
the verified diagram. The set of rules was compiled using the
UML specification [1]. The list of all rules that will be checked
during verification was described in detail earlier in Chapter
1. Also, special attention will be paid to common mistakes
when constructing CD.

At the moment, the verifier is able to find the following
lexical, syntactic and semantic errors in CD.

1) Lexical: Using tokens that are not allowed for the class

diagram (actor, use case, component). Incorrect class,

interface or enumeration name (it must begin with a capital

letter and must not contain spaces). Incorrect attribute or

operation name (it must begin with a lowercase letter (except

constructors and destructors) and must not contain spaces).

Data type names do not match the names used in the target

programming language or other class names of the model.

The text of various restrictions is not enclosed in curly braces

{}.

2) Syntactic: There are classes, interfaces and

enumerations that do not have connections. During

composition the multiplicity from the composite object

exceeds one. During composition or aggregation at least one

of the main object attributes type contains the name of the

subordinate object. The text of restrictions for a class do not

match its attributes. The class containing protected members

or operations is not associated with its descendants. Between

the element "class" and "enumeration" there is not a

"dependency" relationship.

3) Semantic: When specifying the roles multiplicity,

some numbers are negative integers. If multiplicity is

indicated as interval, it does not begin with a smaller number.

F. Verification System for Three Types of UML Diagrams

The system has the following features:

1) the ability to upload one or several files into the

system;

2) the ability to automatically find the pair "metadata -

image" while files are uploading into the system;

3) the ability to add and remove diagrams from the

current list of models;

4) the ability to work only with metadata diagrams

(without images);

5) dynamic changing the graphical presentation of

diagrams while switching is occurring between them;

6) dynamic mistakes designation on the graphical

presentation of the diagram while switching is occurring

between errors;

7) highlighting each error in a different color depending

on its severity;

8) the ability to verify all diagrams with "not verified"

status at once.

IV. REALIZATION

The process of verification system creating was divided
into two stages.

1) Implementation of the UCD, AD and CD verification

modules in prototype mode as a console application and

presentation the result in the form of text message: C# (UCD

and CD verification modules) and Java (AD verification

module) were used for implementation. At this stage, we

tested the detection of the most common mistakes of groups

1 and 2.

2) Integration of UCD, AD and CD verification modules

into a system with a user graphical interface and realization

of package processing function: The AD verification module

at this stage was implemented in C#. The detection of new

mistakes of groups 1 and 2, which appeared in the works of

students, and mistakes of group 3 were tested.
Fig. 5 shows the results of CD verification.

.

Fig. 5. Results of CD verification.

V. RESULTS

The UCD verification module at the prototype stage was
tested on 70 student models. The list of initially identified 25
errors in the process of integration into the system was
expanded with the following errors: the lack of a hierarchy of
use case relationships, the lack of a package element, the use
of elements of other diagram types. In the AD verification
module, at the prototype stage, 19 types of errors were
detected using the example of 30 student models. The initial
list of mistakes during integration into the system was
supplemented with the use of special characters in naming, the
absence of an initial or final state, and the use of an empty
swimlane. 80 errors CD verification module detects were
tested on an example of 26 students' works. All of them are
presented in the list of errors that are processed by the verifier
in the integrated system.

VI. DISCUSSION AND FUTURE WORK

The current version of the UML diagram verification
system solves the following tasks:

1) First: Based on the exported XMI file, mistakes are

searched in AD, ACD and CD.

2) Second: Visualization of found mistakes and their

display on exported diagram images.
It can be recommended for use by two categories of users:

1) Students: To check models before submitting for

teacher’s grading.

2) Teachers: For verification of diagrams in package

mode.

For the future we will work on the validation functions for

teachers in order to qualify the degree of deviation of the

student model from the task specification and to form the

recommended score for the model.

VII. CONCLUSION

139 student’s UCD models, 41 AD models, and 26 CD

models were analyzed. A classification of diagram’s mistakes

into two groups, model mistakes and positioning mistakes,

was proposed. The choice of the tool for creating UML

diagrams was justified. The lexical, syntactic and semantic

analysis of the metadata of the UCD, AD and CD models

exported from GenMyModel was performed. Modules for

verification of three types of UML diagrams were developed

and realized. These modules were integrated into a system

allowing package processing of model files.

REFERENCES

[1] Unified Modeling Language 2.5.1. (2017). Object Management Group.
Accessed: Mar. 31, 2021. [Online]. Available:
https://www.omg.org/spec/UML/About-UML/

[2] D. Boberic and D. Tesendic, “Experience in Teaching OOAD to
Various Students,” Informat. Educ., vol. 12, pp. 43-58, 2013.

[3] L. Baresi, A. Morzenti, A. Motta, M. M. Pourhashem K., and M. Rossi,
“A Logic-Based Approach for the Verification of UML Timed
Models,” ACM Trans.Softw. Eng. Methodol., vol. 26, no. 2, article 7,
Oct. 2017.

[4] Z. Daw, John Mangino, and R. Cleaveland, “UML-VT: A Formal
Verification Environment for UML Activity Diagrams,” in Proc.
P&D@MoDELS, 2015. [Online]. Available: http://ceur-ws.org/Vol-
1554/PD_MoDELS_2015_paper_16.pdf.

[5] P. Bourque, R. Dupuis, A. Abran, J. W. Moore, and L. Tripp, “Guide
to the software engineering body of knowledge,” IEEE Computer
Society Press, 1999.

[6] MDA Guide rev. 2.0 (2014). [Online]. Available:
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01

[7] R. Reuter, T. Stark, Y. Sedelmaier, D. Landes, J. Mottok, and C. Wolff,
“Insights in Students’ Problems during UML Modeling,” in 2020 IEEE
Global Eng. Educ. Conf. (EDUCON), Porto, Portugal, pp. 592-600.

[8] K. Matyokurehwa and K. T. Makoni. “Students' Perceptions in
Software Modelling Using UML in Undergraduate Software
Engineering Projects,” Int. J. Inf. Commun. Technol. Educ., vol. 15,
no. 4, 2019.

[9] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, and M.
Pourzandi, “Formal Verification and Validation of UML 2.0 Sequence
Diagrams using Source and Destination of Messages,” Electron. Notes
Theor. Comput. Sci., vol. 254, pp. 143–160, 2009.

[10] S. Chren, B. Buhnova, M. Macak, L. Daubner, and B. Rossi, “Mistakes
in UML Diagrams: Analysis of Student Projects in a Software
Engineering Course,” in Proc. 2019 IEEE/ACM 41st Int. Conf. Softw.
Eng.: Softw. Eng. Educ. and Training (ICSE-SEET), Montreal, QC,
Canada, pp. 100-109.

[11] A. M. Fernández-Sáez, D. Caivano, M. Genero, and M. R. V.
Chaudron, “On the use of UML documentation in software
maintenance: Results from a survey in industry,” in Proc. 2015
ACM/IEEE 18th Int. Conf. Model Driven Eng. Languages and Syst.
(MODELS), Ottawa, ON, Canada, pp. 292-301.

[12] 5 Common UML Mistakes. (2014). GenMyModel [Online]. Available:
http://blog.genmymodel.com/5-common-uml-mistakes.html

[13] K. Chytalová, 2018, “Katalog chyb v UML diagramech PB007 -
Softwarové inženýrství I,” (in Czech) [Catalog of errors in UML
diagrams PB007 - software engineering I], Lasaris Lab, Faculty of
Informatics, Masaryk University [Online]. Available:
https://drive.google.com/file/d/1J3_Ueb4E2YdAZjksryC4-
F123Xqmyhkm/view

[14] J. Campbell. (2007). Verification and Validation. UML Models
[PowerPoint slides]. Available: https://docplayer.net/24240668-Uml-
models-lecture-10-part-1-verification-and-validation-uml-models-2-
non-uml-models-verification-and-validation.html

[15] F. Mokhati, P. Gagnon, and M. Badri, “Verifying UML Diagrams with
Model Checking: A Rewriting Logic Based Approach,” Seventh Int.
Conf. Quality Softw. (QSIC), Portland, OR, USA, 2007, pp. 356-362.

[16] J. Cabot, R. Claris 'o, and D. Riera, “Verification of UML/OCL Class
Diagrams using Constraint Programming,” 2008 IEEE Int. Conf.
Softw. Testing Verification and Validation Workshop, Lillehammer,
Norway, 2008, pp. 73-80.

[17] A. Delgado, A. Dias, and F. Brito e Abreu, Verification and Validation
of UML Diagrams using Checklists [Online]. Available:
http://docplayer.net/33548062-Verification-and-validation-of-uml-
diagrams-using-checklists.html [18] Dresden OCL. (2016). Accessed:
Mar. 31, 2021. [Online]. Available: https://github.com/dresden-
ocl/dresdenocl

[18] XML Metadata Interchange (XMI) Specification 2.5.1. (2015). Object
Management Group. Accessed: Mar. 31, 2021. [Online].
https://www.omg.org/spec/XMI/2.5.1/PDF

[19] R. Conradi, P. Mohagheghi, T. Arif, L. C. Hegde, G. A. Bunde, and A.
Pedersen, “Object-Oriented Reading Techniques for Inspection of
UML Models – An Industrial Experiment,” in Lecture Notes in
Computer Science, vol. 2743, Berlin, Heidelberg: Springer, 2003.

[20] G. Kösters, H. Six, and M. Winter, Validation and Verification of Use
Cases and Class Models [Online]. Available:
https://www.researchgate.net/publication/2330184_Validation_and_V
erification_of_Use_Cases_and_Class_Models

[21] L. Вaresi and M. Pezzè, “On Formalizing UML with High-Level Petri
Nets,” in Concurrent Object-Oriented Programming and Petri Nets.
Lecture Notes in Computer Science, vol. 2001, Berlin, Heidelberg,
Springer, 2001.

[22] J. Araujo and A. Moreira, “Integrating UML Activity Diagrams with
Temporal Logic Expressions,” in Proc. 10th Int. Workshop on
Exploring Modeling Methods in Syst. Anal. and Design (EMMSAD),
2005. [Online]. Available: http://ceur-ws.org/Vol-363/paper8.pdf [24]
A. Raschke, “Translation of UML 2 Activity Diagrams into Finite State
Machines for Model Checking,” in Proc. 2009 35th Euromicro Conf.
on Softw. Eng. and Advanced Appl., Patras, Greece, pp. 149-154.

[23] V. Rafe and A. T. Rahmani, “Formal Analysis of Workflows Using
UML 2.0 Activities and Graph Transformation Systems,” in Lecture
Notes in Computer Science, vol. 5160, J.S. Fitzgerald, A.E.
Haxthausen, and H. Yenigun, Eds., 2008, pp. 305–318.

